CN105562013B - 一种纳米Ce0掺杂Fe0复合材料及制备和应用方法 - Google Patents

一种纳米Ce0掺杂Fe0复合材料及制备和应用方法 Download PDF

Info

Publication number
CN105562013B
CN105562013B CN201610012105.8A CN201610012105A CN105562013B CN 105562013 B CN105562013 B CN 105562013B CN 201610012105 A CN201610012105 A CN 201610012105A CN 105562013 B CN105562013 B CN 105562013B
Authority
CN
China
Prior art keywords
nano
adulterate
composite material
reaction
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610012105.8A
Other languages
English (en)
Other versions
CN105562013A (zh
Inventor
王建龙
万众
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201610012105.8A priority Critical patent/CN105562013B/zh
Publication of CN105562013A publication Critical patent/CN105562013A/zh
Application granted granted Critical
Publication of CN105562013B publication Critical patent/CN105562013B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明属于材料制备及环境技术领域,具体涉及一种纳米Ce0掺杂Fe0复合材料及制备和应用方法。制备方法为:采用铁盐与铈盐共沉淀法合成纳米Ce0掺杂Fe0复合材料。应用方法为:以纳米Ce0掺杂Fe0复合材料为催化剂,在H2O2存在下与废水中难生物降解有毒有害污染物反应,并将污染物去除。本发明的制备方法工艺简单、设备要求低、成本低;处理废水中难生物降解有毒有害污染物时,高效快速,经济可行,且无二次污染,在污水处理领域具有广泛的应用前景。

Description

一种纳米Ce0掺杂Fe0复合材料及制备和应用方法
技术领域
本发明属于材料制备及环境技术领域,具体涉及一种纳米Ce0掺杂Fe0复合材料及制备和应用方法。
背景技术
随着全球科技水平的提高,畜牧业及水产养殖的迅速发展,水体中已经陆续检测出十几种微污染有机物,例如,药品与个人护理用品(PPCPs),内分泌干扰物(EDCs)等,这类有机物浓度低,具有生物活性较强和生物降解缓慢的特性,可产生“三致”效应,即致癌、致畸、致突变型,给人类健康带来了潜在的危险。虽然某些痕量有机污染物可以通过传统的处理方法去除,例如吸附、絮凝、沉淀、生物法,但是会形成一些有毒物质。因此,处理废水中难生物降解的有毒有害污染物显得尤为重要。
近年来,高级氧化技术处理难降解废水成为人们关注的热点。其中,芬顿反应用于去除水中有机污染物的研究不断增多。芬顿法处理这类污染物具有廉价、效果好等优点。研究表明,传统的Fe2+用于芬顿反应的催化剂,能够矿化大部分污染物,经济、相对简单,产物毒性小,有利于后续生物处理,但是pH范围窄,依赖H2O2和Fe2+浓度,且Fe2+/3+易沉淀。因此,目前更倾向于研究类芬顿反应的非均相催化剂材料,一是可以拓展反应时的pH范围,二是能明显加快污染物的降解速率,三是催化剂可以回收利用。此类催化剂主要有Fe0及 Fe3O4、Fe2O3等以及相关的改性材料,例如,皂石-Fe、SiO2-Fe、蒙脱石-Fe、沸石-Fe、CeO2掺杂Fe等,它们具有良好的催化效果,能有效降低化合物的生物毒性,增强可生化性。
但是,用零价铈(Ce0)掺杂纳米零价铁(Fe0)用来做类芬顿反应的催化剂未见报道。零价铁(Fe0)具有一定的比表面积,电负性很大,电极电位E0(Fe2+/Fe)=-0.44V,具有还原能力,因而零价铁可以被氧化为Fe2+。Fe2+具有还原性,E0(Fe3+/Fe2+)=0.771V,当水中有氧化剂存在时,Fe2+可进一步被氧化成Fe3+,产生羟基自由基。零价铈(Ce0)有储氧和放氧的功能,可提高催化剂的效率。将Ce0作为催化剂Fe0的助剂或者催化剂载体的添加剂,可通过与过渡金属之间的协同作用,提高催化剂的活性,增加稳定性。
这种新型的纳米Fe0基催化剂是当今研究的前沿领域。在处理废水中难生物降解有毒有害污染物领域有着广阔的应用前景。
发明内容
本发明的目的是提供一种纳米Ce0掺杂Fe0复合材料及制备和应用方法,具体技术方案如下:
一种纳米Ce0掺杂Fe0复合材料的制备方法:采用铁盐与铈盐共沉淀法合成纳米Ce0掺杂 Fe0复合材料。
具体步骤如下:
(1)在反应容器中加入FeSO4·7H2O溶液与Ce(NO3)3·6H2O溶液,两者的摩尔比为(20:1) ~(10:1),搅拌并通入氩气使之处于无氧状态,在20~22℃条件下反应50~60min,得到铁铈离子混合溶液;
(2)将KBH4溶液滴入反应容器中,使上述铁铈离子混合溶液反应生成纳米铁粒子与纳米铈粒子。反应过程中鼓入氩气保持反应在无氧状态下进行,曝气产生的微小气泡作为纳米铁粒子和纳米铈粒子的附着核,并防止纳米粒子的团聚,保持搅拌使溶液处于均匀混合状态。反应1~2h后,将合成的纳米Ce0掺杂Fe0粒子沉淀,洗涤并真空干燥,得到纳米Ce0掺杂Fe0复合材料。
其中,KBH4溶液与铁铈离子混合溶液的体积比为(1:1)~(2.5:1),浓度比为(5:1)~ (8:1),以保证BH4 -过量。反应原理为:
Fe(H2O)6 2++2BH4 -→Fe0↓+2B(OH)3+7H2
Ce(NO3)4+4NaBH4+12H2O=Ce0↓+4NaNO3+4B(OH)3+14H2
上述反应容器可以为四口圆底烧瓶。
如上所述方法制备得到的纳米Ce0掺杂Fe0复合材料。
如上所述的纳米Ce0掺杂Fe0复合材料的应用:以纳米Ce0掺杂Fe0复合材料为催化剂,在H2O2存在下与废水中难生物降解有毒有害污染物反应,并将污染物去除。
所述污染物的初始浓度为20~40mg/L,纳米Ce0掺杂Fe0复合材料的用量为0.3~0.5g/L,反应时的pH为2~7。
本发明的主要反应原理为:纳米零价铁在水中易于腐蚀,反应方程式为(1):
Fe+2H2O→Fe2++H2+2OH- (1)
当水中存在溶解氧与双氧水时,发生反应(2-5):
2Fe+O2+2H2O→2Fe2++4OH- (2)
Fe0+H2O2+2H+→Fe2++H2O (3)
Fe2++H2O2→Fe3++HO-+·HO (4)
Fe3++H2O2→Fe2++HO-+HO2· (5)
Ce的加入,催化剂表面吸附的氧含量增加,可以促发产生大量的活性自由基,促进降解,反应方程式为(6-9):
Ce3++O2→Ce4++·O2 - (6)
·O2 -+H+→2·OH (7)
Ce3++H2O2+H+→Ce4++·OH+H2O (9)
Ce4+易于捕获电子形成Ce3+,而Ce4+/Ce3+还原反应所具有的势能级为1.84eV,能促进 Fe3+被还原为Fe2+,从而提高了纳米零价铁的催化活性。反应方程式为(10-11):
Ce4++e-→Ce3+ (10)
Ce3++Fe3+→Ce4++Fe2+ (11)
催化剂中Ce的掺杂可以抑制铁粒子的长大与团聚,增大催化剂的表面积。
本发明的有益效果主要体现在:材料合成工艺简单、设备要求低、成本低;处理废水中难生物降解有毒有害污染物时,高效快速,经济可行,且无二次污染,在污水处理领域具有广泛的应用前景。
具体实施方式
下面结合具体实施例对本发明作进一步描述,但本发明的保护范围并不仅限于此。
本发明以磺胺二甲嘧啶为代表性污染物,使用纳米Ce0掺杂Fe0复合材料去除废水中难生物降解有毒有害污染物。
实施例1
采用共沉淀法合成纳米Ce0掺杂Fe0粒子催化剂,步骤如下:在四口圆底烧瓶中加入浓度为0.02M的FeSO4·7H2O和0.001M Ce(NO3)3·6H2O溶液各50mL,搅拌并通入氩气使之处于无氧状态,得到铁铈离子混合溶液。
将浓度为0.08M的KBH4溶液250mL通过调节阀滴入四口圆底烧瓶中,使上述铁铈离子混合溶液反应生成纳米铁粒子与纳米铈粒子;反应过程中鼓入氩气保持反应在无氧状态下进行,曝气产生的微小气泡作为纳米铁粒子和纳米铈粒子的附着核,并防止纳米粒子的团聚,保持搅拌使溶液处于均匀混合状态。反应1.5h后,将合成的纳米Ce0掺杂Fe0粒子沉淀,去离子水和无水乙醇各洗涤一遍,真空干燥后即制得Fe0和Ce0负载比为20:1~10:1的纳米Ce0掺杂Fe0复合材料。
采用纳米Ce0掺杂Fe0复合材料为催化剂处理含有磺胺二甲嘧啶的废水,以10mL血清瓶为反应器,废水初始浓度为40mg/L,pH通过0.1M盐酸由7.2调节到7,加入0.5g/L 纳米Ce掺杂Fe0复合物,将反应器置于水浴震荡器中,转速为150rpm,温度为30℃。
检测方法:磺胺二甲嘧啶采用高效液相色谱仪(Agilent 1200 Series,Agilent,USA)测定;TOC值采用总有机碳分析仪(MultiN/C2100TOC/TN,Jena,Germany)测定。
采用纳米Ce0掺杂Fe0处理磺胺二甲嘧啶废水,反应30min后,磺胺二甲嘧啶的转化率和TOC去除率分别为81%和18.3%。
实施例2
纳米Ce0掺杂Fe0复合材料的制备方法同实施例1。
采用纳米Ce掺杂Fe0复合材料为催化剂处理磺胺二甲嘧啶废水,废水初始浓度为20 mg/L,pH=7,加入0.5g/L纳米Ce0掺杂Fe0复合材料,将反应器置于水浴震荡器中,转速为150rpm,温度为40℃。
检测方法:同实施例1。
采用纳米Ce掺杂Fe0处理磺胺二甲嘧啶废水,反应30min后,磺胺二甲嘧啶的转化率 TOC去除率分别为84.23%和20%。
实施例3
纳米Ce0掺杂Fe0复合材料的制备方法同实施例1。
采用纳米Ce掺杂Fe0合材料为催化剂处理磺胺二甲嘧啶废水,废水初始浓度为20mg/L, pH调节至5,加入0.5g/L纳米Ce掺杂Fe0复合物,将反应器置于水浴震荡器中,转速为150 rpm,温度为30℃。
检测方法:同实施例1。
纳米Ce0掺杂Fe0复合材料能快速有效去除废水中的磺胺二甲嘧啶,反应3min后,磺胺二甲嘧啶的转化率高达78.4%,5min转化率为100%,最终TOC去除率为31%。对照组零价铁Fe0去除废水中的磺胺二甲嘧啶在3min和5min的转化率分别为50.9%和70%。
实施例4
纳米Ce0掺杂Fe0复合材料的制备方法同实施例1。
采用纳米Ce掺杂Fe0合材料为催化剂处理磺胺二甲嘧啶废水,废水初始浓度为20mg/L, pH调节至7,加入0.5g/L纳米Ce掺杂Fe0复合物,将反应器置于水浴震荡器中,转速为150 rpm,温度为30℃。
检测方法:同实施例1。
纳米Ce掺杂Fe0复合材料能快速有效去除废水中的磺胺二甲嘧啶,反应30min后,磺胺二甲嘧啶的转化率高达76.1%。对照组零价铁Fe0去除废水中的磺胺二甲嘧啶的转化率为 19.7%。
上述实施例表明本发明制备的纳米Ce0掺杂Fe0复合材料能有效去除废水中难生物降解有毒有害类有机物,无需添加别的试剂,降低了能耗,有着广阔的市场开发前景。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (8)

1.一种纳米Ce0掺杂Fe0复合材料的制备方法,其特征在于,具体步骤如下:
(1)在反应容器中加入FeSO4·7H2O溶液与Ce(NO3)3·6H2O溶液,搅拌并通入氩气使之处于无氧状态,反应得到铁铈离子混合溶液;
(2)将KBH4溶液滴入反应容器中,使上述铁铈离子混合溶液反应生成纳米铁粒子与纳米铈粒子,反应过程中鼓入氩气保持反应在无氧状态下进行,曝气产生的微小气泡作为纳米铁粒子和纳米铈粒子的附着核,并防止纳米粒子的团聚,保持搅拌使溶液处于均匀混合状态,反应1~2h后,将合成的纳米Ce0掺杂Fe0粒子沉淀,洗涤并真空干燥,得到纳米Ce0掺杂Fe0复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述FeSO4·7H2O与Ce(NO3)3·6H2O的摩尔比为(20:1)~(10:1)。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)的反应时间为50~60min,反应温度为20~22℃。
4.根据权利要求1所述的制备方法,其特征在于,KBH4溶液与铁铈离子混合溶液的体积比为(1:1)~(2.5:1),浓度比为(5:1)~(8:1)。
5.权利要求1-4任一项所述制备方法得到的纳米Ce0掺杂Fe0复合材料的应用,其特征在于,以纳米Ce0掺杂Fe0复合材料为催化剂,在H2O2存在下与废水中难生物降解有毒有害污染物反应,并将污染物去除。
6.根据权利要求5所述的应用,其特征在于,所述污染物的初始浓度为20~40mg/L。
7.根据权利要求5所述的应用,其特征在于,纳米Ce0掺杂Fe0复合材料的用量为0.3~0.5g/L。
8.根据权利要求5所述的应用,其特征在于,反应时的pH为2~7。
CN201610012105.8A 2016-01-08 2016-01-08 一种纳米Ce0掺杂Fe0复合材料及制备和应用方法 Active CN105562013B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610012105.8A CN105562013B (zh) 2016-01-08 2016-01-08 一种纳米Ce0掺杂Fe0复合材料及制备和应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610012105.8A CN105562013B (zh) 2016-01-08 2016-01-08 一种纳米Ce0掺杂Fe0复合材料及制备和应用方法

Publications (2)

Publication Number Publication Date
CN105562013A CN105562013A (zh) 2016-05-11
CN105562013B true CN105562013B (zh) 2018-05-29

Family

ID=55872967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610012105.8A Active CN105562013B (zh) 2016-01-08 2016-01-08 一种纳米Ce0掺杂Fe0复合材料及制备和应用方法

Country Status (1)

Country Link
CN (1) CN105562013B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811525B (zh) * 2020-12-31 2022-08-26 同济大学 一种碳毡负载铈掺杂α-FeOOH纳米片阵列电极及其制备方法与应用
CN113151981B (zh) * 2021-04-09 2022-04-01 南通大学 一种饮水除砷膜及其制备方法
CN113171777B (zh) * 2021-04-26 2022-07-05 湖南大学 铁/铈双金属非均相电芬顿催化剂及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792205B (zh) * 2010-02-10 2014-12-17 哈尔滨工业大学 芬顿、类芬顿体系强化剂及其使用方法
CN102295341B (zh) * 2011-06-13 2014-01-01 清华大学 一种非均相类Fenton反应处理含氯有机废水的方法
CN102266782B (zh) * 2011-06-13 2013-04-03 清华大学 纳米Fe(0)/CeO2复合材料的制备及其在去除氯酚类污染物中的应用
CN103521229A (zh) * 2013-10-31 2014-01-22 中国环境科学研究院 一种铁钴类芬顿催化剂的制备方法及其产品和应用

Also Published As

Publication number Publication date
CN105562013A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
Abdelsalam et al. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure
Ma et al. Model-based evaluation of tetracycline hydrochloride removal and mineralization in an intimately coupled photocatalysis and biodegradation reactor
Zhang et al. Degradation of tetracycline hydrochloride by ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst: Influencing factors, products and mechanism insight
Liu et al. Historical development and prospect of intimately coupling photocatalysis and biological technology for pollutant treatment in sewage: A review
Zhang et al. The effect of Fe0/Fe2+/Fe3+ on nitrobenzene degradation in the anaerobic sludge
CN102327773A (zh) 纳米Fe3O4/CeO2复合材料的制备方法及应用
CN105562013B (zh) 一种纳米Ce0掺杂Fe0复合材料及制备和应用方法
CN104190472B (zh) 一种新型高效的多相Fenton催化剂Fe3O4@EDTA的制备及应用
CN102249365B (zh) γ辐照降解水中磺胺嘧啶的方法
CN103803711A (zh) 一种固定化微生物处理氨氮废水的方法
Fu et al. Effective removal of odor substances using intimately coupled photocatalysis and biodegradation system prepared with the silane coupling agent (SCA)-enhanced TiO2 coating method
CN105642298B (zh) 还原性石墨烯负载纳米Ce0/Fe0复合材料及其制备方法和应用
CN108855083A (zh) 一种用改性沸石活化过氧乙酸去除水中磺胺类药物的方法
Yang et al. Phenol and 17β-estradiol removal by Zoogloea sp. MFQ7 and in-situ generated biogenic manganese oxides: Performance, kinetics and mechanism
CN102874914A (zh) 一种利用负载型钌催化剂去除饮用水中污染物的方法
CN112110625A (zh) 一种基于过氧化钙类芬顿强化技术去除污染底泥难降解有机物的方法及应用
CN105536812A (zh) 一种纳米Fe3O4/Mn3O4复合材料及其制备方法和应用
CN110436603A (zh) 一种超重力场中非均相催化臭氧降解苯酚废水的方法及装置
CN108435231A (zh) 一种TiO2/CN23光催化剂及其制备方法与应用
CN113908835A (zh) 一种基于非自由基高效矿化磺胺类抗生素的活性复合材料的制备及其应用
CN103508622A (zh) 碳纳米管生物净化水体的材料和方法
CN109912002A (zh) 一种处理染料废水中有机污染物的方法
Wen et al. Efficient removal of sulfamethazine from irrigation water using an ultra-stable magnetic carbon composite catalyst
Chen et al. Rapid degradation of levofloxacin by pn heterojunction AgFeO2/Ag3VO4 photocatalyst: Mechanism study and degradation pathway
CN104291433B (zh) 一种基于聚噻吩/零价铁复合材料活化分子氧处理有机废水的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant