CN113151981B - 一种饮水除砷膜及其制备方法 - Google Patents

一种饮水除砷膜及其制备方法 Download PDF

Info

Publication number
CN113151981B
CN113151981B CN202110383709.4A CN202110383709A CN113151981B CN 113151981 B CN113151981 B CN 113151981B CN 202110383709 A CN202110383709 A CN 202110383709A CN 113151981 B CN113151981 B CN 113151981B
Authority
CN
China
Prior art keywords
spinning solution
preparation
drinking water
layer spinning
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110383709.4A
Other languages
English (en)
Other versions
CN113151981A (zh
Inventor
葛彦
徐飞妮
傅海洪
汤佳鹏
孙梦琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Dayu Chuangfu Technology Co ltd
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202110383709.4A priority Critical patent/CN113151981B/zh
Publication of CN113151981A publication Critical patent/CN113151981A/zh
Application granted granted Critical
Publication of CN113151981B publication Critical patent/CN113151981B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/021Moisture-responsive characteristics hydrophobic

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于水处理技术领域,公开了一种饮水除砷膜及其制备方法,本发明通过高温焙烧聚硅酸硫酸铁、活性污泥和氮化铈的混合物,制得了氮化硅铈掺杂的铁基生物炭材料,利用有机硅水解得到均相硅溶胶,结合聚氨酯溶液同轴电纺制得饮水除砷膜。该膜能够高效去除水中残留的砷酸盐,且适应各种操作环境。

Description

一种饮水除砷膜及其制备方法
技术领域
本发明属于水处理技术领域,具体涉及一种饮水除砷膜及其制备方法。
背景技术
砷(As)是环境中的致癌非金属元素。据报道,全世界约有1.4亿人处于砷不安全水平的危险中,引起人们对砷的高毒性和广泛污染的关注。由于铁对砷的高亲和力,在水和土壤环境中经常发现次生的Fe-As矿物或类矿物,这可能在很大程度上降低砷的生物利用度。因此,使用含铁材料固定砷被认为是污染土壤和水最有效的处理方法之一。为了改善与团聚有关的氧化铁颗粒的低效率以及再循环的难度,由于其高的比表面积和孔通道,已将碳质材料(如活性炭,氧化石墨烯或碳纳米管)用作载体结构。然而,碳纳米管等碳载体的较高成本将研究者的注意力转向了具有成本效益的产品。
生物炭是在有限的氧气条件下生物质热解的副产物,它通过吸附或催化作用在废水处理中显示出巨大的潜力。此外,由于其良好的稳定性和低成本,它被认为是有前景的用于氧化铁的碳载体。已经开发出两种类型的方法来制备铁-生物炭复合材料,包括通过热解载有铁的生物质进行预处理和通过向原始生物炭中添加铁进行后处理。在两种情况下,均成功制备了具有不同铁类型的生物炭复合材料。
但是地表水中溶解态砷常以砷(III)、砷(V)两种价态形式存在,其化合物均有毒性,三价化合物比五价化合物毒性强,多以砷酸盐状态存在。单一吸附剂对两者的吸附有选择性,容易造成水体中砷清除不彻底。
发明内容
有鉴于此,本发明的目的在于提供一种饮水除砷膜及其制备方法,该膜具有可见光下高效砷吸附能力,可用于净化含砷水。
为了解决上述技术问题,本发明提供了一种饮水除砷膜及其制备方法,包括如下步骤:
S1.将聚硅酸硫酸铁与活性污泥充分混合,干燥,然后加入氮化铈粉末,在氮气保护下热处理48h后,研磨制得氮化硅铈掺杂的铁基生物炭;
S2.将正硅酸乙酯、所述氮化硅铈掺杂的铁基生物炭、乙醇和柠檬酸依次加入水中,连续搅拌8h后,通过正硅酸乙酯水解反应,非均相混合悬浮液转化得到均相硅溶胶,将所述均相硅溶胶作为壳层纺丝液;
S3.将热塑性聚氨酯弹性体加入二甲基甲酰胺与四氢呋喃的混合溶剂中,制得核层纺丝液;
S4.将所述壳层纺丝液与所述核层纺丝液同轴电纺,制得饮水除砷膜。
优选的,步骤S1中,所述干燥温度为60-80℃,干燥时间为48-72h。
优选的,步骤S1中,所述聚硅酸硫酸铁、活性污泥、氮化铈粉末的比例为10g:(1000-1200)g:(1-3)g。
优选的,步骤S1中,所述热处理温度为600-700℃。
优选的,步骤S1中,所述研磨粒度为100-200nm。
优选的,步骤S2中,所述正硅酸乙酯、氮化硅铈掺杂的铁基生物炭、乙醇、水和柠檬酸重量比为1:(0.2-0.3):(0.3-0.4):(0.3-0.4):(0.01-0.03)。
优选的,步骤S3中,所述混合溶剂中二甲基甲酰胺与四氢呋喃的体积比1:1-3。
优选的,步骤S3中,所述热塑性聚氨酯弹性体与混合溶剂比例为1g:(4-5)mL。
优选的,步骤S4中,所述同轴电纺条件为电压15-20kV、距离15-20cm,核层纺丝液注射速率0.8-1.5mL/h,壳层纺丝液注射速率1-2mL/h,环境温度100-150℃,相对湿度20-30%。
本发明还提供了一种上述制备方法制备得到的饮水除砷膜。
与现有技术相比,本发明具有以下有益效果:
1)通过聚硅酸硫酸铁、活性污泥和氮化铈的高温焙烧,制得了氮化硅铈掺杂的铁基生物炭材料。一步法合成的氮化硅铈,作为窄带隙半导体催化材料,掺杂铁基生物炭后通过氮化硅铈的电子传递能够将不同价态的砷结合到铁配基上,因此具有很强的固砷能力。
2)通过有机硅水解制得均相硅溶胶进而同轴电纺制得纳米纤维壳层,能够提高纳米纤维的适应性,使纳米纤维拒水拒油且耐高温。
附图说明
图1是实施例1所制得的饮水除砷膜的扫描电镜图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为了进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
实施例1
一种饮水除砷膜及其制备方法,包括如下步骤:
1.将10g聚硅酸硫酸铁与1100g活性污泥充分混合,70℃下干燥60h,然后加入2g氮化铈粉末在氮气保护下650℃热处理48h后,研磨制得粒度为150nm氮化硅铈掺杂的铁基生物炭;
2.将100g正硅酸乙酯、25g步骤1制得的氮化硅铈掺杂的铁基生物炭、35g乙醇、35g水和2g柠檬酸依次倒入烧杯中,连续搅拌8h后制得均相硅溶胶作为壳层纺丝液;
3.将1g热塑性聚氨酯弹性体加入4.5mL二甲基甲酰胺与四氢呋喃体积比为1:2的混合溶剂中,制得核层纺丝液;
4.在电压为18kV、距离为16cm,核层纺丝液注射速率为1.2mL/h,壳层纺丝液注射速率为1.5mL/h,环境温度为120℃,相对湿度为25%的条件下同轴电纺,制得饮水除砷膜A(图1)。
实施例2
一种饮水除砷膜及其制备方法,包括如下步骤:
1.将10g聚硅酸硫酸铁与1000g活性污泥充分混合,60℃下干燥72h,然后加入1g氮化铈粉末在氮气保护下600℃热处理48h后,研磨制得粒度为100nm氮化硅铈掺杂的铁基生物炭;
2.将100g正硅酸乙酯、20g步骤1制得的氮化硅铈掺杂的铁基生物炭、30g乙醇、30g水和1g柠檬酸依次倒入烧杯中,连续搅拌8h后制得均相硅溶胶作为壳层纺丝液;
3.将1g热塑性聚氨酯弹性体加入4mL二甲基甲酰胺与四氢呋喃体积比为1:1的混合溶剂中,制得核层纺丝液;
4.在电压为15kV、距离为15cm,核层纺丝液注射速率为1.5mL/h,壳层纺丝液注射速率为2mL/h,环境温度为150℃,相对湿度为30%的条件下同轴电纺,制得饮水除砷膜B。
实施例3
一种饮水除砷膜及其制备方法,包括如下步骤:
1.将10g聚硅酸硫酸铁与1200g活性污泥充分混合,80℃下干燥48h,然后加入3g氮化铈粉末在氮气保护下700℃热处理48h后,研磨制得粒度为200nm氮化硅铈掺杂的铁基生物炭;
2.将100g正硅酸乙酯、30g步骤1制得的氮化硅铈掺杂的铁基生物炭、40g乙醇、40g水和3g柠檬酸依次倒入烧杯中,连续搅拌8h后制得均相硅溶胶作为壳层纺丝液;
3.将1g热塑性聚氨酯弹性体加入5mL二甲基甲酰胺与四氢呋喃体积比为1:3的混合溶剂中,制得核层纺丝液;
4.在电压为20kV、距离为20cm,核层纺丝液注射速率为0.8mL/h,壳层纺丝液注射速率为1mL/h,环境温度为100℃,相对湿度为20%的条件下同轴电纺,制得饮水除砷膜C。
对比例1
一种纳米纤维膜及其制备方法,包括如下步骤:
1.将1100g活性污泥70℃下干燥60h,然后加入2g氮化铈粉末在氮气保护下650℃热处理48h后,研磨制得粒度为150nm生物炭;
2.将100g正硅酸乙酯、25g步骤1制得的生物炭、35g乙醇、35g水和2g柠檬酸依次倒入烧杯中,连续搅拌8h后制得均相硅溶胶作为壳层纺丝液;
3.将1g热塑性聚氨酯弹性体加入4.5mL二甲基甲酰胺与四氢呋喃体积比为1:2的混合溶剂中,制得核层纺丝液;
4.在电压为18kV、距离为16cm,核层纺丝液注射速率为1.2mL/h,壳层纺丝液注射速率为1.5mL/h,环境温度为120℃,相对湿度为25%的条件下同轴电纺,制得纳米纤维膜D。
对比例2
一种纳米纤维膜及其制备方法,包括如下步骤:
1.将30g聚硅酸硫酸铁70℃下干燥60h,然后加入6g氮化铈粉末在氮气保护下650℃热处理48h后,研磨制得粒度为150nm生物炭;
2.将100g正硅酸乙酯、25g步骤1制得的生物炭、35g乙醇、35g水和2g柠檬酸依次倒入烧杯中,连续搅拌8h后制得均相硅溶胶作为壳层纺丝液;
3.将1g热塑性聚氨酯弹性体加入4.5mL二甲基甲酰胺与四氢呋喃体积比为1:2的混合溶剂中,制得核层纺丝液;
4.在电压为18kV、距离为16cm,核层纺丝液注射速率为1.2mL/h,壳层纺丝液注射速率为1.5mL/h,环境温度为120℃,相对湿度为25%的条件下同轴电纺,制得纳米纤维膜E。
对比例3
一种纳米纤维膜及其制备方法,包括如下步骤:
1.将10g聚硅酸硫酸铁与1100g活性污泥充分混合,70℃下干燥60h,在氮气保护下650℃热处理48h后,研磨制得粒度为150nm生物炭;
2.将100g正硅酸乙酯、25g步骤1制得的生物炭、35g乙醇、35g水和2g柠檬酸依次倒入烧杯中,连续搅拌8h后制得均相硅溶胶作为壳层纺丝液;
3.将1g热塑性聚氨酯弹性体加入4.5mL二甲基甲酰胺与四氢呋喃体积比为1:2的混合溶剂中,制得核层纺丝液;
4.在电压为18kV、距离为16cm,核层纺丝液注射速率为1.2mL/h,壳层纺丝液注射速率为1.5mL/h,环境温度为120℃,相对湿度为25%的条件下同轴电纺,制得纳米纤维膜F。
对比例4
一种纳米纤维膜及其制备方法,包括如下步骤:
1.将10g聚硅酸硫酸铁与1100g活性污泥充分混合,70℃下干燥60h,然后加入2g氮化铈粉末在氮气保护下650℃热处理48h后,研磨制得粒度为150nm氮化硅铈掺杂的铁基生物炭;
2.将25g步骤1制得的氮化硅铈掺杂的铁基生物炭、35g乙醇、35g水和2g柠檬酸依次倒入烧杯中,连续搅拌8h后制得混合溶液作为壳层纺丝液;
3.将1g热塑性聚氨酯弹性体加入4.5mL二甲基甲酰胺与四氢呋喃体积比为1:2的混合溶剂中,制得核层纺丝液;
4.在电压为18kV、距离为16cm,核层纺丝液注射速率为1.2mL/h,壳层纺丝液注射速率为1.5mL/h,环境温度为120℃,相对湿度为25%的条件下同轴电纺,制得纳米纤维膜G。
饮水除砷实验
取实施例1-3和对比例1-4的纳米纤维膜样品,剪成15cm×20cm长方形,卷绕后装入层析柱内。配制1mg/L亚砷酸钠(砷III)和正砷酸钠(砷V)溶液。在白天用自然光照和夜晚用日光灯照射条件下,以0.2mL/min的流速将配制的亚砷酸钠或正砷酸钠溶液流经层析柱,柱温分别控制在4℃,20℃,50℃,80℃,收集一周流出液,用原子荧光光度计测定流出液中的砷浓度,结果如表1所示。
表1饮水除砷实验结果
Figure BDA0003014025220000031
Figure BDA0003014025220000041
由表1可知,本发明实施例制备的饮水除砷膜能将含有高浓度砷III和砷V的水吸附,流出液中砷浓度下降至0.001以下,且吸附不会因为处理温度不同产生显著差异,说明处理的稳定性和适应性。氮化硅铈,作为窄带隙半导体催化材料,掺杂铁基生物炭后通过氮化硅铈的电子传递能够将不同价态的砷结合到铁配基上,因此具有很强的固砷能力。对比例1-3制备的纳米纤维膜无法得到氮化硅铈掺杂的铁基生物炭材料,催化吸附砷III与砷V的能力不如实施例除砷膜。对比例4由于在壳层缺乏硅溶胶,对温度适应性较差,影响了材料催化吸附的效果。另外,对比例1-4制备的材料对砷III与砷V的吸附效果也存在明显差异。
本发明提供了一种饮水除砷膜及其制备方法的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (10)

1.一种饮水除砷膜的制备方法,其特征在于,包括如下步骤:
S1.将聚硅酸硫酸铁与活性污泥充分混合,干燥,然后加入氮化铈粉末,在氮气保护下热处理48h后,研磨制得氮化硅铈掺杂的铁基生物炭;
S2.将正硅酸乙酯、所述氮化硅铈掺杂的铁基生物炭、乙醇和柠檬酸依次加入水中,连续搅拌8h后,得到均相硅溶胶,将所述均相硅溶胶作为壳层纺丝液;
S3.将热塑性聚氨酯弹性体加入二甲基甲酰胺与四氢呋喃的混合溶剂中,制得核层纺丝液;
S4.将所述壳层纺丝液与所述核层纺丝液同轴电纺,制得饮水除砷膜。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤S1中,干燥温度为60-80℃,干燥时间为48-72h。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤S1中,聚硅酸硫酸铁、活性污泥、氮化铈粉末的比例为10g:(1000-1200)g:(1-3)g。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤S1中,热处理温度为600-700℃。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤S1中,研磨粒度为100-200nm。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤S2中,正硅酸乙酯、生物炭、乙醇、水和柠檬酸重量比为1:(0.2-0.3):(0.3-0.4):(0.3-0.4):(0.01-0.03)。
7.根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述混合溶剂中二甲基甲酰胺与四氢呋喃的体积比为1:1-3。
8.根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述热塑性聚氨酯弹性体与混合溶剂比例为1g:(4-5)mL。
9.根据权利要求1所述的制备方法,其特征在于,所述步骤S4中,同轴电纺条件为电压15-20kV、距离15-20cm,核层纺丝液注射速率0.8-1.5mL/h,壳层纺丝液注射速率1-2mL/h,环境温度100-150℃,相对湿度20-30%。
10.根据权利要求1~9任一项所述制备方法制备得到的一种饮水除砷膜。
CN202110383709.4A 2021-04-09 2021-04-09 一种饮水除砷膜及其制备方法 Active CN113151981B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110383709.4A CN113151981B (zh) 2021-04-09 2021-04-09 一种饮水除砷膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110383709.4A CN113151981B (zh) 2021-04-09 2021-04-09 一种饮水除砷膜及其制备方法

Publications (2)

Publication Number Publication Date
CN113151981A CN113151981A (zh) 2021-07-23
CN113151981B true CN113151981B (zh) 2022-04-01

Family

ID=76889621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110383709.4A Active CN113151981B (zh) 2021-04-09 2021-04-09 一种饮水除砷膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113151981B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102476043A (zh) * 2010-11-26 2012-05-30 中国科学院理化技术研究所 用于水中除砷的纤维素基/Fe3O4复合吸附材料及其制备方法
CN103706335A (zh) * 2013-11-05 2014-04-09 中国科学院城市环境研究所 一种铁/壳聚糖/聚氧化乙烯复合纳米纤维膜除砷材料及其静电纺丝制备方法
CN104388094A (zh) * 2014-10-13 2015-03-04 广东省生态环境与土壤研究所(广东省土壤科学博物馆) 一种铁基生物炭材料、其制备工艺以及其在土壤污染治理中的应用
CN105562013A (zh) * 2016-01-08 2016-05-11 清华大学 一种纳米Ce0掺杂Fe0复合材料及制备和应用方法
CN105688837A (zh) * 2016-04-13 2016-06-22 伊美特(上海)环保科技有限公司 一种用于去除水中的镉和砷的纳米纤维膜及其制备方法
CN106345314A (zh) * 2016-09-23 2017-01-25 江苏大学 一种多孔氧化铁‑氧化钛‑活性炭复合纤维膜及制备方法
CN106955678A (zh) * 2017-05-15 2017-07-18 南京大学 一种去除重金属阴离子的多孔纳米复合纤维膜的制备方法
CN108998841A (zh) * 2017-06-07 2018-12-14 南京理工大学 一种多孔聚丙烯腈纳米纤维的制备方法
CN109082276A (zh) * 2018-08-07 2018-12-25 芜湖格丰环保科技研究院有限公司 一种场地砷镉复合钝化剂、制备方法及其应用
CN110592806A (zh) * 2019-07-29 2019-12-20 同济大学 一种双纳米功能核心负载的砷去除纳米纤维膜及其制备方法
CN111268880A (zh) * 2020-02-26 2020-06-12 徐州工程学院 一种金属离子改性污泥基生物炭的制备方法及其应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102476043A (zh) * 2010-11-26 2012-05-30 中国科学院理化技术研究所 用于水中除砷的纤维素基/Fe3O4复合吸附材料及其制备方法
CN103706335A (zh) * 2013-11-05 2014-04-09 中国科学院城市环境研究所 一种铁/壳聚糖/聚氧化乙烯复合纳米纤维膜除砷材料及其静电纺丝制备方法
CN104388094A (zh) * 2014-10-13 2015-03-04 广东省生态环境与土壤研究所(广东省土壤科学博物馆) 一种铁基生物炭材料、其制备工艺以及其在土壤污染治理中的应用
CN105562013A (zh) * 2016-01-08 2016-05-11 清华大学 一种纳米Ce0掺杂Fe0复合材料及制备和应用方法
CN105688837A (zh) * 2016-04-13 2016-06-22 伊美特(上海)环保科技有限公司 一种用于去除水中的镉和砷的纳米纤维膜及其制备方法
CN106345314A (zh) * 2016-09-23 2017-01-25 江苏大学 一种多孔氧化铁‑氧化钛‑活性炭复合纤维膜及制备方法
CN106955678A (zh) * 2017-05-15 2017-07-18 南京大学 一种去除重金属阴离子的多孔纳米复合纤维膜的制备方法
CN108998841A (zh) * 2017-06-07 2018-12-14 南京理工大学 一种多孔聚丙烯腈纳米纤维的制备方法
CN109082276A (zh) * 2018-08-07 2018-12-25 芜湖格丰环保科技研究院有限公司 一种场地砷镉复合钝化剂、制备方法及其应用
CN110592806A (zh) * 2019-07-29 2019-12-20 同济大学 一种双纳米功能核心负载的砷去除纳米纤维膜及其制备方法
CN111268880A (zh) * 2020-02-26 2020-06-12 徐州工程学院 一种金属离子改性污泥基生物炭的制备方法及其应用

Also Published As

Publication number Publication date
CN113151981A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
Liang et al. Highly dispersed bismuth oxide quantum dots/graphite carbon nitride nanosheets heterojunctions for visible light photocatalytic redox degradation of environmental pollutants
Mengting et al. Fabrication, characterization, and application of ternary magnetic recyclable Bi2WO6/BiOI@ Fe3O4 composite for photodegradation of tetracycline in aqueous solutions
Russo et al. Applications of metal organic frameworks in wastewater treatment: a review on adsorption and photodegradation
Liu et al. Magnetic Fe3O4@ MIL-53 (Fe) nanocomposites derived from MIL-53 (Fe) for the photocatalytic degradation of ibuprofen under visible light irradiation
Salam et al. Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co3O4 nanoparticles
Zou et al. Removal of VOCs by photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst
Rey et al. Simulated solar-light assisted photocatalytic ozonation of metoprolol over titania-coated magnetic activated carbon
Kim et al. Enhanced photocatalytic decomposition of VOCs by visible-driven photocatalyst combined Cu-TiO2 and activated carbon fiber
Perumal et al. Hydrothermal assisted precipitation synthesis of highly stable g-C3N4/BiOBr/CdS photocatalyst with enhanced visible light photocatalytic degradation of tetracycline
Moeini et al. Removal of atrazine from water using titanium dioxide encapsulated in salicylaldehydeNH2MIL-101 (Cr): Adsorption or oxidation mechanism
Dai et al. Effect of preparation method on the structure and photocatalytic performance of BiOI and Bi5O7I for Hg0 removal
CN106362785A (zh) 一种酸化氮化碳纳米片石墨烯复合气凝胶的制备方法
Qiu et al. Bismuth molybdate photocatalyst for the efficient photocatalytic degradation of tetracycline in water under visible-light irradiation
Tu et al. Heterogeneous photo‐Fenton oxidation of Acid Orange II over iron–sewage sludge derived carbon under visible irradiation
Tan et al. Design and controllable preparation of Bi2MoO6/attapulgite photocatalyst for the removal of tetracycline and formaldehyde
Teixeira et al. Efficient and versatile fibrous adsorbent based on magnetic amphiphilic composites of chrysotile/carbon nanostructures for the removal of ethynilestradiol
Wang et al. A dual-functional UiO-66/TiO 2 composite for water treatment and CO 2 capture
Liu et al. Simultaneous efficient adsorption and accelerated photocatalytic degradation of chlortetracycline hydrochloride over novel Fe-based MOGs under visible light irradiation assisted by hydrogen peroxide
Pereira et al. Magnetic photocatalysts from industrial residues and TiO2 for the degradation of organic contaminants
Zhang et al. A 2D/3D g-C3N4/BiOI heterostructure nano-sphere with oxygen-doped for enhanced visible light− driven photocatalytic activity in environmental remediation
Sudrajat et al. Boosting electron population in δ-Bi2O3 through iron doping for improved photocatalytic activity
Chuaicham et al. Fabrication of visible-light-active ZnCr mixed metal oxide/fly ash for photocatalytic activity toward pharmaceutical waste ciprofloxacin
CN113151981B (zh) 一种饮水除砷膜及其制备方法
Dat et al. Performance of heterogeneous Fenton catalyst from solid wastes for removal of emerging contaminant in water: a potential approach to circular economy
CN112473652B (zh) 过氧化氢改性含过渡金属生物炭的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230717

Address after: Room 801, 85 Kefeng Road, Huangpu District, Guangzhou City, Guangdong Province

Patentee after: Guangzhou Dayu Chuangfu Technology Co.,Ltd.

Address before: 226019 Jiangsu city of Nantong province sik Road No. 9

Patentee before: NANTONG University