CN110394443B - 一种用于处理染料废水的零价纳米铁镍粉体及其制备方法 - Google Patents

一种用于处理染料废水的零价纳米铁镍粉体及其制备方法 Download PDF

Info

Publication number
CN110394443B
CN110394443B CN201910597061.3A CN201910597061A CN110394443B CN 110394443 B CN110394443 B CN 110394443B CN 201910597061 A CN201910597061 A CN 201910597061A CN 110394443 B CN110394443 B CN 110394443B
Authority
CN
China
Prior art keywords
powder
zero
nano iron
nickel powder
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910597061.3A
Other languages
English (en)
Other versions
CN110394443A (zh
Inventor
朱正吼
何帅
陈杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201910597061.3A priority Critical patent/CN110394443B/zh
Publication of CN110394443A publication Critical patent/CN110394443A/zh
Application granted granted Critical
Publication of CN110394443B publication Critical patent/CN110394443B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Sorption (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种用于处理染料废水的零价纳米铁镍粉体,所述的零价纳米铁镍粉体为核壳型结构,粉体的粒径约为60~100nm,呈球形,芯部为FeNi合金,表层包覆Fe3O4,将零价纳米铁镍粉体用于处理含刚果红染料废水的脱色。该粉体具有独特的核壳形结构,抗氧化性能优异,脱色率高,该粉体优良的磁性能,有利于其在污水分散后利用磁场回收,经还原处理后可循环再利用,将磁性nZVIN粉体应用于染料废水脱色处理,相较于混凝、电解、吸附、生物降解等其他脱色方法,具有简单易行,脱色效率高,可循环利用,成本低等特点。

Description

一种用于处理染料废水的零价纳米铁镍粉体及其制备方法
技术领域
本发明涉及废水处理的技术领域,具体涉及一种用于处理染料废水的零价纳米铁镍粉体及其制备方法。
背景技术
合成染料在纸张,纺织,化妆品等行业的大规模使用,造成了严重的水污染问题。而偶氮染料是合成染料的一种,这类染料通常以不饱和的偶氮(N=N)键作为发色基团,以磺酸基(SO3H),氨基(NH2)等作为助色基团,并且有着复杂的芳香烃分子结构。由于其成本低,稳定性好,使用简单,使用最为广泛,是水体污染的主力军。首先这类染料着色效果强,即使是浓度很低的染料废水,依然具有很高的色度,会严重危害水生动植物的生长和繁殖。其次,这类染料在水体中苯环上的氢容易被取代,会产生各种有害的芳香族化合物,有的甚至会有很大的致癌性。最后,染料废水中有些有毒的污染物一旦形成就很难降解,会长期稳定的存在于环境中,对生态系统造成不可逆的破坏。
目前针对此类染料废水的处理主要有以下三种方法,第一种是物理吸附法,通过特定的吸附剂来吸附水体中的染料,但是存在吸附效果单一,仅仅对特定的一种或几种染料有效果,难以应对复杂多样的污染废水,且吸附后的吸附剂处理也是问题。第二种是膜滤法,但是作为过滤的膜容易被污染,需要频繁的更换,其使用成本过高。第三种是生物降解法,在实际应用上,由于微生物受环境等各种因素的影响大,不稳定,对染料废水的降解效果比较一般,对于处理成分复杂的染料废水并不适用。
零价铁(ZVI)由于其化学性质活泼,价格低廉,对染料废水的降解还原能力强,其在染料废水处理中的潜力越来越被重视。Ravikumar K.V.G用厌氧污泥颗粒在厌氧条件下制备了零价纳米铁(nZVI)对甲基橙染料取得了99%的去除率;张连安使用采用磺化的方式制备了S-ZVI提高了其对偶氮染料的去除率。
但是上述方法制备上工艺复杂,能耗巨大,且易造成污染。此种零价铁虽提高了反应活性,但对于零价铁在实际应用中易被氧化,难以运输和保存的难题尚未解决,使其无法在实际生活中大规模模应用。
发明内容
本发明的目的是本发明的目的是为解决上述现有技术中存在的技术问题,提供成型简单易行,制备成本低,可回收再利用的偶氮染料废水的脱色的零价纳米铁镍粉体。
为实现上述目的,本发明采用的技术方案是:
一种用于处理染料废水的零价纳米铁镍粉体,其特征在于,所述的零价纳米铁镍粉体为核壳型结构,粉体的粒径约为60~100nm,呈球形,芯部为FeNi合金,表层包覆Fe3O4
本发明还提供了一种用于处理染料废水的零价纳米铁镍粉体的制备方法,所述的制备方法步骤如下:
(1)以1∶1的比例取含Fe2+浓度0.15~0.25mol/L和Ni2+浓度0.20~0.25mol/L的水溶
液,调整溶液pH在13~14;
(2)将N2H4·H2O加入水溶液,使其浓度至0.6mol/L,水浴保持温度在80℃左右,搅拌15min;
(3)加入FeCl3,使其浓度在0.1~0.15mol/L,继续反应15min;
(4)用去离子水和乙醇洗涤,除去残留的原料和试剂,通过磁分离获得零价纳米铁镍 (nZVIN)粉体。
本发明还提供了一种用零价纳米铁镍粉体处理染料废水的方法,将零价纳米铁镍粉体加入废水中处理10-20min,废水的pH为7-11,零价纳米铁镍粉体的添加量为 0.05-0.2g/100mL。
与现有技术相比,本发明的有益效果是:
(1)粉体具有独特的核壳型结构,芯部为FeNi合金,具有优异的磁性能;表层包覆Fe3O4,抗氧化性能优异,在脱色反应时也可以提供芬顿反应的原料,脱色效率高;
(2)该粉体优良的磁性能,有利于其在污水中分散后利用磁场回收,解决了循环再利用难题。
附图说明
图1为刚果红降解实验图;
图2为nZVIN粉体的XRD图
图3为nZVIN粉体的SEM图;
图4为nZVIN粉体的透射电镜图;
图5为刚果红降解率随pH变化图;
图6为不同保存时间所对应的刚果红降解率。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一、制备实施例
实施例1
一种用零价纳米铁镍粉体处理刚果红染料废水的方法:
(1)磁性nZVIN粉体的制备:
A:将10.5g FeSO4·7H2O和10g NiSO4·6H2O溶解在200mL水中,调整溶液pH在 13~14;
B:将0.6mol的N2H4·H2O加入水溶液,水浴保持温度在80℃左右,搅拌15min;
C:加0.1~0.15mol的FeCl3,继续反应15min;
D:用去离子水和乙醇洗涤三次,以除去残留的原料和试剂;通过磁分离获得最终的 nZVIN纳米粉体,在烘箱中烘干后保存使用;
(2)偶氮染料废水的脱色处理:将制备好的磁性nZVIN粉体按比例0.1g/100mL加入刚果红(CR)染料模拟的偶氮染料废水中脱色15min;脱色过程如图1所示,刚开始时溶液为红色,加入nZVIN后变为黑红色,随着时间的增长,磁分离后的溶液逐渐变为无色;
(3)磁性nZVIN粉体的回收:将脱色处理后的nZVIN-废水混合液置于0.1T的磁场中,在磁场力作用下nZVIN粉体附着在容器壁,将处理后的废水倒出。
实施例2
一种用零价纳米铁镍粉体处理刚果红染料废水的方法:
(1)磁性nZVIN粉体的制备:
A:取0.2mol/L的FeSO4和0.25mol/L的NiSO4水溶液各500mL,调整溶液pH在 13~14;
B:将0.6mol的N2H4·H2O加入水溶液,使其浓度至0.6mol/L,水浴保持温度在80℃左右,搅拌15min;
C:加入400mL浓度为0.1mol/L的FeCl3,继续反应15min;
D:用去离子水和乙醇洗涤,除去残留的原料和试剂,通过磁分离获得零价纳米铁镍粉体。
(2)偶氮染料废水的脱色处理:将制备好的磁性nZVIN粉体按比例0.2g/100mL加入刚果红(CR)染料模拟的偶氮染料废水中脱色15min。
(3)磁性nZVIN粉体的回收:将脱色处理后的nZVIN-废水混合液置于0.1T的磁场中,在磁场力作用下nZVIN粉体附着在容器壁,将处理后的废水倒出。
二、试验实施例
(1)磁性nZVIN粉体结构分析
将按实施例1制备出的磁性nZVIN粉体样品分别采用德国Bruruker-axe D8ADVANCE 型X射线衍射分析仪(XRD,CuKα)分析,采用高分辨率扫面电子显微镜JSM-6701F(JEOL) 对粉体进行微观形貌分析和分布情况观察,采用80千伏运行的Hitachi 7650B显微镜上测试透射电子显微镜(TEM)图像。
通过对纳米粉体结构的分析,得到的nZVIN粉体为核壳型结构,粉体的粒径约为60~100nm,呈球形,芯部为FeNi合金,表层包覆Fe3O4
图2 XRD图表明,在制备的nZVIN的XRD图中仅有Fe3O4(矩形框内的晶面指数) 与FeNi3(括号内的晶面指数)两种晶体结构。
本发明提供的制备方法采用加入Ni元素的方法制nZVIN,初始Ni与Fe的比例为1∶1,在反应开始时,首先形成FeNi3的晶核,晶核逐渐长大至Ni元素消耗殆尽后,剩下的 Fe2+的一部分则会被氧化为Fe3+,与剩余的Fe2+结合形成Fe3O4会首先在溶液中已析出的FeNi3处形核,包覆在nZVIN的外壳,形成核壳型结构的nNZVIN纳米粉末。通过SEM 图像(图3)可以观察到nZVIN纳米粉体独特的尺寸和形态,FeNi纳米粉体的粒径约为 60nm,呈球形。这种特殊的尺寸和形状使nZVIN纳米粉体具有较大的比表面积和表面能,有助于增强其在溶液中的反应活性。由图4 TEM图像可以看出,对于单个球形的颗粒,颜色从球体的中心到表面逐渐变浅,而Fe3O4的晶体结构相对于FeNi3并没有那么致密,且Ni元素在TEM下颜色相对于Fe元素更深,这也可以证明nZVIN的核壳型结构。
表层的Fe3O4对CR具有吸附作用,可将溶液中的CR分子吸附到nZVIN的表面,然后,内部的0价铁原子氧化使水中产生原子氢,而内部的镍又对原子氢的产生具有催化作用,最终吸附在表面的CR分子的偶氮键被产生的原子氢还原裂解,使溶液脱色,nZVIN 这种独特的核壳型结构对降解废水具有明显优势。
表面包覆的Fe3O4在运输或者保存时可以阻止内部零价纳米铁的氧化,在脱色反应时也可以提供芬顿反应的原料。
(2)不同浓度CR溶液对nZVIN纳米粉体降解CR的影响
在100ml不同浓度的CR溶液中加入0.1g nZVIN纳米粉体。持续搅拌,每隔一定的时间用移液枪去3mL悬浊液,离心后取上层清液,通过紫外分光光度计测其吸光度,然后通过回归方程计算出CR的浓度。在时间t(min)内CR的脱色量可由Qt=(C0-Ct)/m*V 计算,溶液的脱色率可由R=(C0-Ct)/C0×100%算出。
回归方程:采用去离子水制备1g/L的CR作为储备溶液,取储备液配置成不同浓度的CR标准溶液。通过紫外分光光度计在CR的特征吸收峰(λ=497nm)处测定不同浓度刚果红溶液的吸光度,得到CR溶液浓度-吸光度曲线,回归方程为y=122.141x-8.274。
(3)不同初始溶液pH对nZVIN纳米粉体降解CR的影响
研究溶液pH对nZVIN纳米粉体降解CR的影响。图5显示了nZVIN纳米粉末降解CR在7-11.5的初始pH范围内的去除效率。可以观察到,通过初始溶液pH从7增加到 11.5,去除效率均能保持90%以上。由于生产中产生的染料废水是碱性的,在碱性下宽泛的pH值对于nZVIN的实际应用有重要意义。
(4)保存不同时间的nZVIN的对降解CR的影响
使用初始浓度为150mg/L的CR溶液,使用在空气中保存了不同时间nZVIN测定其降解率,如图6所示,结果显示,制备的nZVIN粉体烘干保存一年后其降解能力也没有丝毫的下降。
尽管已经对本发明的技术方案做了较为详细的阐述和列举,应当理解,对于本领域技术人员来说,对上述实施例做出修改或者采用等同的替代方案,这对本领域的技术人员而言是显而易见,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (2)

1.一种用于处理染料废水的零价纳米铁镍粉体,其特征在于,所述的零价纳米铁镍粉体为核壳型结构,粉体的粒径为60~100nm,呈球形,芯部为FeNi合金,表层包覆Fe3O4
所述零价纳米铁镍粉体的制备方法步骤如下:
(1)以1∶1的比例取含Fe2+浓度0.15~0.25mol/L和Ni2+浓度0.20~0.25mol/L的水溶液,调整溶液pH在13~14;
(2)将N2H4•H2O加入水溶液,使其浓度至0.6mol/L,水浴保持温度在80℃,搅拌15 min;
(3)加入FeCl3,使其浓度在0.1~0.15mol/L,继续反应15min;
(4)用去离子水和乙醇洗涤,除去残留的原料和试剂,通过磁分离获得零价纳米铁镍(nZVIN)粉体。
2.一种利用权利要求1所述的零价纳米铁镍粉体处理染料废水的方法,其特征在于,将零价纳米铁镍粉体加入废水中处理10-20min,废水的pH为7-11,零价纳米铁镍粉体的添加量为0.05-0.2g/100mL。
CN201910597061.3A 2019-07-03 2019-07-03 一种用于处理染料废水的零价纳米铁镍粉体及其制备方法 Active CN110394443B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910597061.3A CN110394443B (zh) 2019-07-03 2019-07-03 一种用于处理染料废水的零价纳米铁镍粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910597061.3A CN110394443B (zh) 2019-07-03 2019-07-03 一种用于处理染料废水的零价纳米铁镍粉体及其制备方法

Publications (2)

Publication Number Publication Date
CN110394443A CN110394443A (zh) 2019-11-01
CN110394443B true CN110394443B (zh) 2021-08-06

Family

ID=68322803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910597061.3A Active CN110394443B (zh) 2019-07-03 2019-07-03 一种用于处理染料废水的零价纳米铁镍粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN110394443B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112007611A (zh) * 2020-09-14 2020-12-01 北京航空航天大学 一种吸附染料的铁镍/石墨烯纳米复合材料及其制备方法
CN114853144A (zh) * 2022-05-17 2022-08-05 南昌大学 一种对偶氮染料废水有效降解的铁镍合金@石墨烯粉体的制备方法
CN114807915A (zh) * 2022-05-17 2022-07-29 南昌大学 一种对偶氮染料废水有效降解的铁镍合金薄膜的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100118666A (ko) * 2009-04-29 2010-11-08 진혜경 에코경량토
CN105033280B (zh) * 2015-08-27 2017-10-17 太原理工大学 一种纳米零价铁镍双金属颗粒的制备方法及用途
CN105198067A (zh) * 2015-09-30 2015-12-30 中山大学 一种零价铁-镍双金属活化过硫酸盐的水处理方法
CN105382270A (zh) * 2015-11-24 2016-03-09 太原理工大学 一种绿色合成纳米零价铁镍双金属材料的方法及用途
CN105582878B (zh) * 2015-12-25 2018-12-18 国家纳米科学中心 一种磁性纳米复合材料及其制备方法和应用
CN105562679B (zh) * 2015-12-29 2017-08-25 哈尔滨工业大学 一种铁@四氧化三铁多形貌复合材料的制备方法
CN105771148B (zh) * 2016-03-04 2019-05-28 华南师范大学 一种纳米Fe0@Fe3O4复合材料及其制备方法与应用
CN105731606A (zh) * 2016-03-24 2016-07-06 大连理工大学 一种电化学协同Ni-Fe-LDH/rGO催化剂活化过硫酸盐处理有机废水的方法
CN106848256B (zh) * 2017-03-24 2019-06-21 中南大学 一种镍铁电池用核双壳结构负极纳米材料及其制备方法和应用
CN109420773B (zh) * 2017-08-25 2021-02-19 北京化工大学 一种纳米零价铁基双金属/三金属材料的制备方法
CN108176402A (zh) * 2018-02-09 2018-06-19 西北工业大学 负载型高分散易再生铁基Fenton反应催化剂的制备方法
CN108705078B (zh) * 2018-06-19 2019-12-13 中国科学院化学研究所 一种金属合金-金属氧化物双磁性壳核结构纳米晶及其制备方法与应用
CN108746604A (zh) * 2018-06-26 2018-11-06 厦门理工学院 一种空气稳定型纳米零价铁及其制备方法和应用
CN109675518B (zh) * 2018-11-12 2021-05-25 天津大学 用于去除工业废水中重金属离子的蒙脱土负载的纳米零价铁镍双金属复合物及其制备方法

Also Published As

Publication number Publication date
CN110394443A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
CN110394443B (zh) 一种用于处理染料废水的零价纳米铁镍粉体及其制备方法
Wang et al. An integration of photo-Fenton and membrane process for water treatment by a PVDF@ CuFe2O4 catalytic membrane
Karimi et al. Application of decorated magnetic nanophotocatalysts for efficient photodegradation of organic dye: A comparison study on photocatalytic activity of magnetic zinc sulfide and graphene quantum dots
Muhd Julkapli et al. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes
Wu et al. CeO2/Co3O4 porous nanosheet prepared using rose petal as biotemplate for photo-catalytic degradation of organic contaminants
Wu et al. Activation of peroxymonosulfate by magnetic CuFe2O4@ ZIF-67 composite catalyst for the study on the degradation of methylene blue
Liu et al. Photoreduction of Cr (VI) from acidic aqueous solution using TiO2-impregnated glutaraldehyde-crosslinked alginate beads and the effects of Fe (III) ions
Ammar et al. Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe3O4@ ZnO/PMOs)
CN108176403B (zh) 一种活性炭纤维负载Co3O4催化材料的制备方法
Zangeneh et al. Photomineralization of recalcitrant wastewaters by a novel magnetically recyclable boron doped-TiO2-SiO2 cobalt ferrite nanocomposite as a visible-driven heterogeneous photocatalyst
Dung et al. Enhanced degradation of organic dyes by peroxymonosulfate with Fe3O4-CoCO3/rGO hybrid activation: a comprehensive study
US20150315048A1 (en) Material used in the removal of contaminants from liquid matrices
Zhou et al. Stable self-assembly Cu2O/ZIF-8 heterojunction as efficient visible light responsive photocatalyst for tetracycline degradation and mechanism insight
CN102060334A (zh) 多羟基结构态亚铁化合物的制备及用于废水还原预处理
CN105056926A (zh) 一种新型TiO2/WO3包覆的磁性纳米复合粒子及其制备方法和用途
Su et al. Fabrication of magnetic Fe3O4@ SiO2@ Bi2O2CO3/rGO composite for enhancing its photocatalytic performance for organic dyes and recyclability
CN111111611A (zh) 去除水体染料污染的磁性氧化铁-石墨烯纳米复合材料及其制备方法和应用
Ghazzaf et al. Synthesis of heterogeneous photo-Fenton catalyst from iron rust and its application to degradation of Acid Red 97 in aqueous medium
Ge et al. Visible light-Fenton degradation of tetracycline hydrochloride over oxygen-vacancy-rich LaFeO3/polystyrene: Mechanism and degradation pathways
Qin et al. Efficient activation of peroxymonosulfate by nanotubular Co3O4 for degradation of Acid Orange 7: performance and mechanism
Alsohaimi et al. Tailoring confined CdS quantum dots in polysulfone membrane for efficiently durable performance in solar-driven wastewater remediating systems
CN110627126A (zh) 一种自支撑超薄二维花状锰氧化物纳米片的制备及应用
Li et al. Synthesis of recyclable magnetic mesoporous RH-FSBA photoelectrocatalyst with double cavity structure
Zhang et al. Modification of polyvinylidene fluoride membrane with different shaped α-Fe2O3 nanocrystals for enhanced photocatalytic oxidation performance
Li et al. A nano‐Fe0/ACF cathode applied to neutral electro‐Fenton degradation of Orange II

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant