CN106391030B - 一种无定形铁锌复合氧化物光芬顿催化剂的制备方法 - Google Patents

一种无定形铁锌复合氧化物光芬顿催化剂的制备方法 Download PDF

Info

Publication number
CN106391030B
CN106391030B CN201610845646.9A CN201610845646A CN106391030B CN 106391030 B CN106391030 B CN 106391030B CN 201610845646 A CN201610845646 A CN 201610845646A CN 106391030 B CN106391030 B CN 106391030B
Authority
CN
China
Prior art keywords
composite oxide
amorphous iron
zinc composite
catalyst
light fenton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610845646.9A
Other languages
English (en)
Other versions
CN106391030A (zh
Inventor
邢胜涛
刘玉蕙
尹璐
马子川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Normal University
Original Assignee
Hebei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Normal University filed Critical Hebei Normal University
Priority to CN201610845646.9A priority Critical patent/CN106391030B/zh
Publication of CN106391030A publication Critical patent/CN106391030A/zh
Application granted granted Critical
Publication of CN106391030B publication Critical patent/CN106391030B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种无定形铁锌复合氧化物光芬顿催化剂的制备方法。在室温条件下,向硝酸铁、硝酸锌和葡萄糖的混合溶液中滴加氢氧化钠溶液,调节pH大于10,硝酸铁、硝酸锌和葡萄糖的适宜摩尔比为2:1:(8‑16),在水热釜中100‑130℃加热12‑24小时,将反应液抽滤洗涤,滤饼60℃干燥,得到无定形铁锌复合氧化物光芬顿催化剂。本发明方法、设备简单,成本低廉,无环境污染。所制备的材料可以有效催化可见光芬顿降解水中多种有机污染物,在酸性和中性条件下均表现出较好的催化活性。

Description

一种无定形铁锌复合氧化物光芬顿催化剂的制备方法
技术领域
本发明涉及一种复合氧化物催化剂材料的制备方法,特别是一种无定形铁锌复合氧化物催化剂材料的制备方法,属于环境催化与水污染控制技术领域。
背景技术
多相芬顿反应能够产生强氧化性的活性物种,可以去除水中的难降解有机污染物,并且催化剂可以回收利用,成为近年来国际上广泛采用的一种新型高级氧化水处理技术。纳米零价铁、铁的氧化物和负载型铁氧化物是常用的多相芬顿催化剂,但是固体表面的Fe3+在pH较高时转化为Fe2+的速度要远低于低pH时,因此这些催化剂在中高pH时催化活性较低,往往需要辅助紫外光照来加快反应,这大大的增加了运行成本。在太阳能中紫外光所占比例仅有4%-5%,而可见光可占45%,因此,研发具有可见光响应活性的多相芬顿催化剂受到了越来越多的关注。Sánchez等研究发现二氧化钛在室内光源照射下催化芬顿降解亚甲基蓝的活性比暗态时略有提高(Sánchez等,Applied Catalysis B: Environmental,2013, 142–143: 662–667)。将可见光催化剂与多相芬顿催化剂复合是获得具有可见光芬顿活性催化剂的一种有效方法。例如中国专利文献(申请号201510036208.3)报道了一种α-Fe2O3/石墨烯复合材料的制备方法,该复合材料比表面积大,光芬顿活性明显提高。由于铁是芬顿反应的活性组分,所以催化剂的开发更多的集中在含铁的半导体材料上。例如ZnFe2O4可以在可见光照射条件下产生电子和空穴,光生电子可以还原Fe3+为Fe2+或直接和H2O2反应生成,提高对水中酸性橙II的降解效率(Cai等,Applied Catalysis B:Environmental, 2016, 182: 456–468;Su等,Journal of Hazardous Materials, 2012,211–212: 95–103)。然而目前所研究的可见光芬顿催化剂的目标污染物多为有机染料,而有机污染物的结构是影响催化剂性能的一个重要因素,有机染料的降解往往与其自身光敏化有关,无法准确的评价催化剂的活性。此外所研究的催化剂均为具有良好晶型的可见光催化剂,无定形材料由于其自身电子空穴复合效率高,关于其在可见光芬顿领域的研究未见报道。为此,研究无定形材料对水体中有机污染物的可见光芬顿催化降解有着重要意义,更进一步的,寻找一种可见光芬顿催化剂的制备方法,对实现将水中多种有机污染物的高效去除,其意义也就显得尤为重要。
发明内容
本发明的目的在于提供一种无定形铁锌复合氧化物光芬顿催化剂的制备方法。
本发明的目的是这样实现的。一种无定形铁锌复合氧化物光芬顿催化剂的制备方法,包括以下步骤:
(1)在室温条件下,向硝酸铁、硝酸锌和葡萄糖的混合溶液中滴加氢氧化钠溶液,调节pH大于10,在水热釜中控温100-130℃,加热12-24小时;
(2)反应液经抽滤洗涤,将滤饼60℃干燥,得到无定形铁锌复合氧化物。
本发明中,硝酸铁、硝酸锌和葡萄糖最适宜的摩尔比为2:1:(8-16)。
本发明还给出了该无定形铁锌复合氧化物的应用。具体就是该无定形铁锌复合氧化物作为光芬顿催化剂,在可见光中去除水中有机污染物中的应用。以罗丹明B、亚甲基蓝、安替比林和苯酚为目标污染物来评价该无定形铁锌复合氧化物的催化活性。反应温度为室温,光源是装有λ ≥420 nm滤光片的300 W氙灯,水溶液pH=4.5-7.5,过氧化氢浓度为10mmol/L,催化剂的投加量为0.5 g/L。
本发明取得的有益效果如下:本发明的制备方法无环境污染,工艺简单,成本低廉。所制备的无定形铁锌复合氧化物对罗丹明B、亚甲基蓝、安替比林和苯酚均表现出较好的可见光芬顿活性,并且催化剂适宜pH范围较宽,pH=4.5-7.5时可见光照均能明显提高催化芬顿降解污染物效率,对处理酸性和中性有机废水非常有利。
附图说明
图1是实施例1制备的无定形铁锌复合氧化物对罗丹明B的催化活性测试数据图。
图2是实施例1制备的无定形铁锌复合氧化物在不同pH下对罗丹明B的可见光芬顿催化活性图。
图3是实施例1制备的无定形铁锌复合氧化物对亚甲基蓝、安替比林和苯酚的催化活性测试数据图。
具体实施方式
以下实施例用于说明本发明。
实施例1
(1)在室温条件下,向硝酸铁、硝酸锌和葡萄糖的混合溶液中滴加氢氧化钠溶液,调节pH大于10, 硝酸铁、硝酸锌和葡萄糖的摩尔比为2:1:12,在水热釜中120℃加热12小时;
(2)抽滤洗涤,滤饼60℃干燥,得到无定形铁锌复合氧化物。
将所得样品用XRD(X射线衍射)测定其晶型,没有观察到任何衍射峰的存在,说明该材料为无定形结构。EDS(扫描电镜能谱)和XPS(X射线光电子能谱)分析结果表明,材料体相和表面的铁锌原子比分别为3:1和1.65:1,表面铁以二价铁为主,二价铁与三价铁的原子比为2.1:1。
(3)催化剂活性评价
将得到的无定形铁锌复合氧化物用于按前述实验方法和条件比较了不同反应体系中罗丹明B的降解情况,结果见附图1。可见光/H2O2和催化剂/可见光体系中罗丹明B的降解率仅有10.5%和16.8%,催化剂/H2O2体系中降解率略有提高,达到36.6%。而在催化剂、可见光和H2O2同时存在时,降解率显著提高,达到了95.2%。
图2比较了不同pH时无定形铁锌复合氧化物催化剂的可见光芬顿活性,随着pH值的降低,罗丹明B的降解速率明显加快,pH4.5时30分钟的降解率就达到93.6%,说明该催化剂在中性和酸性条件下均有良好的催化活性。
图3比较了无定形铁锌复合氧化物催化剂作为光芬顿催化剂,对不同有机污染物的可见光芬顿和暗态芬顿活性,在暗态条件下亚甲基蓝、安替比林和苯酚的降解率仅为34.5%、7.6%和31.2%,而在可见光照条件下降解率显著提升到96.2%、84.1%和99%,说明该催化剂对水中不同的有机污染物均有良好的可见光芬顿活性。

Claims (1)

1.一种无定形铁锌复合氧化物光芬顿催化剂的制备方法,其特征在于包括以下步骤:
(1)在室温条件下,向硝酸铁、硝酸锌和葡萄糖的混合溶液中滴加氢氧化钠溶液,调节pH大于10, 硝酸铁、硝酸锌和葡萄糖的摩尔比为2:1:(8-16),在水热釜中控温100-130℃,加热12-24小时;
(2)反应液经抽滤洗涤,将滤饼60℃干燥,得到无定形铁锌复合氧化物。
CN201610845646.9A 2016-09-23 2016-09-23 一种无定形铁锌复合氧化物光芬顿催化剂的制备方法 Expired - Fee Related CN106391030B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610845646.9A CN106391030B (zh) 2016-09-23 2016-09-23 一种无定形铁锌复合氧化物光芬顿催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610845646.9A CN106391030B (zh) 2016-09-23 2016-09-23 一种无定形铁锌复合氧化物光芬顿催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN106391030A CN106391030A (zh) 2017-02-15
CN106391030B true CN106391030B (zh) 2019-02-19

Family

ID=57997511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610845646.9A Expired - Fee Related CN106391030B (zh) 2016-09-23 2016-09-23 一种无定形铁锌复合氧化物光芬顿催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106391030B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743625B (zh) * 2019-10-25 2021-07-06 大连理工大学 一种具有摩擦降解性能的材料制备方法及其应用
CN115703061B (zh) * 2021-08-10 2024-05-28 中国科学院大连化学物理研究所 一种复合铁氧化物催化剂及制备与应用
CN113649012B (zh) * 2021-08-23 2022-10-11 福州大学 一种碳包覆铁酸锌催化剂的制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285862A (zh) * 2013-04-03 2013-09-11 中南民族大学 一种微米级类芬顿催化剂及其制备方法和应用
US20160271591A1 (en) * 2013-10-31 2016-09-22 Chinese Research Academy Of Environmental Sciences Preparation method, product, and application of iron-cobalt fenton-like catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285862A (zh) * 2013-04-03 2013-09-11 中南民族大学 一种微米级类芬顿催化剂及其制备方法和应用
US20160271591A1 (en) * 2013-10-31 2016-09-22 Chinese Research Academy Of Environmental Sciences Preparation method, product, and application of iron-cobalt fenton-like catalyst

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Amorphous Fe2+-rich FeOx loaded in mesoporous silica as a highly efficient heterogeneous Fenton catalyst";Min Wang et al.;《Dalton Transactions》;20140509;第43卷;全文
"Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange II in water";Chun Cai et al.;《Applied Catalysis B: Environmental》;20151009;第182卷;第458左栏第2段,第467左栏第2段
"纳米铁酸锌的水热合成";阎鑫等;《化学通报》;20020918(第9期);全文
"高校实验室催化剂还原方法的分析与探索";李云华;《实验室科学》;20101228;第13卷(第6期);说明书第95页表1及右栏第2段

Also Published As

Publication number Publication date
CN106391030A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
Raja et al. Fabrication of effective visible-light-driven ternary Z-scheme ZnO-Ag-BiVO4 heterostructured photocatalyst for hexavalent chromium reduction
Wang et al. Two-dimensional ultrathin perforated Co3O4 nanosheets enhanced PMS-Activated selective oxidation of organic micropollutants in environmental remediation
Rahmat et al. Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process
Wang et al. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation
Sarafraz et al. Enhanced photocatalytic degradation of ciprofloxacin by black Ti3+/N-TiO2 under visible LED light irradiation: Kinetic, energy consumption, degradation pathway, and toxicity assessment
Pang et al. Rapid Cr (VI) reduction in aqueous solution using a novel microwave-based treatment with MoS2-MnFe2O4 composite
JP6857659B2 (ja) 大気汚染物質を分解するための光触媒複合材料
Liu et al. Hierarchical biomimetic BiVO4 for the treatment of pharmaceutical wastewater in visible-light photocatalytic ozonation
Nie et al. Enhanced Fenton-like degradation of refractory organic compounds by surface complex formation of LaFeO3 and H2O2
Chen et al. Highly-efficient degradation of amiloride by sulfate radicals-based photocatalytic processes: reactive kinetics, degradation products and mechanism
Ioannou et al. Solar/TiO2 photocatalytic decomposition of β-blockers atenolol and propranolol in water and wastewater
Mostafa et al. Enhanced photocatalytic degradation of malachite green dye by highly stable visible-light-responsive Fe-based tri-composite photocatalysts
Das et al. ZnFe2O4‐decorated mesoporous Al2O3 modified MCM‐41: a solar‐light‐active photocatalyst for the effective removal of phenol and Cr (VI) from water
Guo et al. Synthesis and characterization of Ag3PO4/LaCoO3 nanocomposite with superior mineralization potential for bisphenol A degradation under visible light
Zhou et al. Fabrication of walnut-like BiVO4@ Bi2S3 heterojunction for efficient visible photocatalytic reduction of Cr (VI)
Mosleh et al. A Bi 2 WO 6/Ag 2 S/ZnS Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity towards the degradation of multiple dye pollutants
Zhang et al. Insights into photothermally enhanced photocatalytic U (VI) extraction by a step-scheme heterojunction
Zhou et al. Efficient degradation of rhodamine B with magnetically separable Ag3PO4@ MgFe2O4 composites under visible irradiation
Yu et al. Surface oxygen vacancies formation on Zn2SnO4 for bisphenol-A degradation under visible light: The tuning effect by peroxymonosulfate
Yang et al. Dual H2O2 production paths over chemically etched MoS2/FeS2 heterojunction: Maximizing self-sufficient heterogeneous Fenton reaction rate under the neutral condition
Rosaline et al. Enhanced sunlight-driven photocatalytic activity of SnO2-Sb2O3 composite towards emerging contaminant degradation in water
Thein et al. Highly UV light driven WOx@ ZnO nanocomposites synthesized by liquid impregnation method
CN106391030B (zh) 一种无定形铁锌复合氧化物光芬顿催化剂的制备方法
Jawad et al. Fabrication, optimization and application of an immobilized layer-by-layer TiO 2/Chitosan system for the removal of phenol and its intermediates under 45-W fluorescent lamp
Wang et al. Crystal defect engineering to construct oxygen vacancies in MXene-derived TiO2 nanocomposites for boosting photocatalytic degradation of 2, 4, 6-trichlorophenol

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Xing Shengtao

Inventor after: Liu Yuhui

Inventor after: Yin Lu

Inventor after: Ma Zichuan

Inventor before: Xing Shikai

Inventor before: Liu Yuhui

Inventor before: Yin Lu

Inventor before: Ma Zichuan

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190219

Termination date: 20190923

CF01 Termination of patent right due to non-payment of annual fee