WO2015022974A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2015022974A1
WO2015022974A1 PCT/JP2014/071373 JP2014071373W WO2015022974A1 WO 2015022974 A1 WO2015022974 A1 WO 2015022974A1 JP 2014071373 W JP2014071373 W JP 2014071373W WO 2015022974 A1 WO2015022974 A1 WO 2015022974A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
organic compound
organic
compound
Prior art date
Application number
PCT/JP2014/071373
Other languages
English (en)
French (fr)
Inventor
一 中野谷
安達 千波矢
貴史 樋口
太郎 古川
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP22204502.3A priority Critical patent/EP4152910A1/en
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to EP20152673.8A priority patent/EP3706182B1/en
Priority to KR1020217039087A priority patent/KR102543775B1/ko
Priority to KR1020227040753A priority patent/KR102577829B1/ko
Priority to EP14836585.1A priority patent/EP3035401A4/en
Priority to KR1020167006684A priority patent/KR102191957B1/ko
Priority to CN201480043716.8A priority patent/CN105453294B/zh
Priority to US14/911,761 priority patent/US10862047B2/en
Priority to KR1020207035361A priority patent/KR102335123B1/ko
Priority to KR1020237018853A priority patent/KR102665000B1/ko
Publication of WO2015022974A1 publication Critical patent/WO2015022974A1/ja
Priority to US17/071,719 priority patent/US11450817B2/en
Priority to US17/809,786 priority patent/US11944010B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • C09K2211/1077Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to an organic electroluminescence device having high luminous efficiency.
  • organic light emitting devices such as organic electroluminescence devices (organic EL devices)
  • organic electroluminescence devices organic electroluminescence devices
  • various studies have been made to improve the light emission efficiency by devising materials used for the light emitting layer.
  • organic electroluminescence devices that use a host material and a guest material (light-emitting dopant), and emit light by transferring excitation energy generated in the host material to the guest material.
  • Patent Documents 1 and 2 disclose organic electroluminescent elements using a host material, a light-emitting dopant, and an assist dopant as materials for the light-emitting layer.
  • the assist dopant supplements the movement of carriers in the light emitting layer.
  • a hole-moving material such as a phenylamine derivative is used.
  • an electron mobility material is used. This document describes that the use of such assist dopants increases the probability of carrier recombination and increases the light emission efficiency of the organic electroluminescence element.
  • Patent Document 3 a first dopant made of a material that can convert triplet excitation energy into light emission and having a first energy gap, and a material that can convert triplet excitation energy into light emission and
  • An organic electroluminescent device using a second dopant having a second energy gap larger than the energy gap and a host material having a third energy gap larger than the second energy gap as a material of the light emitting layer is disclosed.
  • An organometallic complex having iridium as a central metal is described as an example of the first dopant and the second dopant.
  • This document describes that the use of a combination of two types of dopants and a host material improves the light emission efficiency of the organic electroluminescence element, lowers the driving voltage, and improves the light emission lifetime. Yes.
  • Patent Documents 1 and 2 cannot sufficiently increase the light emission efficiency for the following reasons. That is, in an organic electroluminescence device using a host material and a light-emitting dopant, when holes and electrons are injected into the light-emitting layer, holes and electrons are recombined mainly in the molecule of the host material to generate excitation energy. The material enters an excited singlet state and an excited triplet state. The formation probability of this excited singlet exciton (singlet exciton) and excited triplet exciton (triplet exciton) is statistically 25% for singlet excitons and triplet excitons. 75%.
  • the luminescent dopant is a perylene derivative, an oxadiazole derivative, or an anthracene derivative as exemplified in the same document
  • the energy of the singlet exciton is transferred to the luminescent dopant, and the luminescent dopant is excited by a singlet. Excited to the term state.
  • the luminescent dopant excited to the excited singlet state then emits fluorescence when returning to the ground state.
  • the energy of the triplet exciton does not move to the luminescent dopant, and the triplet exciton returns to the ground state as it is without contributing to light emission.
  • the organic electroluminescence element of Patent Document 3 uses a material capable of converting triplet excitation energy such as iridium organometallic complex into light emission as the first dopant.
  • the iridium organometallic complex is known to receive excited triplet energy from the host material by virtue of its heavy metal, and in this system as well, the first dopant is composed of the excited triplet state host material and the second dopant. It is thought that energy can be received and converted into luminescence.
  • the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and the quantum yield of phosphorescence is generally not high. For this reason, it is difficult for the organic electroluminescent element of the same literature mainly using light emission (phosphorescence) from triplet excitation energy to sufficiently increase the light emission efficiency.
  • the present inventors have conducted intensive studies for the purpose of providing an organic electroluminescence element having high luminous efficiency in consideration of the problems of these conventional techniques.
  • the present inventors have found that when a delayed phosphor is used as an assist dopant, the delayed triplet state delayed phosphor crosses back to the excited singlet state, resulting in triplet excitation energy. It has been found that an organic electroluminescence device having a high luminous efficiency can be provided. Based on these findings, the present inventors have provided the following present invention as means for solving the above problems.
  • An organic electroluminescence device having an anode, a cathode, and at least one organic layer including a light emitting layer between the anode and the cathode, wherein the light emitting layer satisfies the following formula (A):
  • An organic electroluminescent device comprising at least one organic compound, a second organic compound, and a third organic compound, wherein the second organic compound is a delayed phosphor, and the third organic compound is a light emitter.
  • E S1 (A) > E S1 (B)> E S1 (C) (In the above formula, E S1 (A) represents the lowest excited singlet energy level of the first organic compound, E S1 (B) represents the lowest excited singlet energy level of the second organic compound, and E S1 (C) represents the lowest excited singlet energy level of the third organic compound.) [2] The organic electro according to [1], wherein the second organic compound has an energy difference ⁇ E st of 0.3 eV or less between the lowest excited singlet state and the lowest excited triplet state of 77K. Luminescence element.
  • the organic electroluminescence device of the present invention is characterized by extremely high luminous efficiency because it uses a combination of three types of organic compounds that satisfy specific conditions.
  • the present invention can greatly improve the luminous efficiency when the third organic compound is a compound that emits fluorescence when returning from the lowest excited singlet energy level to the ground energy level.
  • FIG. 2 is a transient decay curve of organic electroluminescence elements produced in Example 1 and Comparative Examples 1 and 3.
  • FIG. 2 is an absorption emission spectrum of an organic compound used in Example 3. 4 is an emission spectrum of the organic electroluminescence device produced in Example 3.
  • 6 is a graph showing luminance-external quantum efficiency characteristics of an organic electroluminescence element fabricated in Example 3.
  • 6 is a graph showing voltage-current density characteristics of an organic electroluminescence element produced in Example 3.
  • 6 is an emission spectrum of the organic electroluminescence device produced in Example 4.
  • 6 is an emission spectrum of a delayed fluorescence component of an organic electroluminescence device produced in Example 4.
  • 6 is a transient attenuation curve of an organic electroluminescence element produced in Example 4.
  • 6 is a graph showing luminance-external quantum efficiency characteristics of an organic electroluminescence element fabricated in Example 4.
  • 6 is an emission spectrum of the organic electroluminescence device produced in Example 5.
  • 6 is a graph showing voltage-current density characteristics of an organic electroluminescence element fabricated in Example 5.
  • FIG. 6 is a graph showing current density-external quantum efficiency characteristics of an organic electroluminescence element fabricated in Example 5.
  • FIG. 6 is a graph showing luminance-external quantum efficiency characteristics of an organic electroluminescence element fabricated in Example 6.
  • 6 is a graph showing luminance-external quantum efficiency characteristics of the organic electroluminescence device fabricated in Example 7.
  • 10 is a graph showing luminance-external quantum efficiency characteristics of the organic electroluminescence device fabricated in Example 8.
  • 10 is a graph showing the luminance-external quantum efficiency characteristics of the organic electroluminescence device fabricated in Example 9.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all the hydrogen atoms in the molecule may be 1 H, or a part or all of them are 2 H. (Deuterium D) may be used.
  • the organic electroluminescence device of the present invention has a structure in which an organic layer is formed between an anode, a cathode, and an anode and a cathode.
  • the organic layer includes at least a light emitting layer, and the organic electroluminescent element of the present invention is characterized by the structure of the light emitting layer. This configuration will be described in detail later.
  • the organic layer may be composed only of the light emitting layer, or may have one or more organic layers in addition to the light emitting layer. Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
  • the hole transport layer may be a hole injection / transport layer having a hole injection function
  • the electron transport layer may be an electron injection / transport layer having an electron injection function.
  • FIG. 1 A specific example of the structure of an organic electroluminescence element is shown in FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode. Below, each member and each layer of an organic electroluminescent element are demonstrated.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from the anode and the cathode, respectively.
  • the light emitting layer includes at least a first organic compound, a second organic compound, and a third organic compound that satisfy the following formula (A), and the second organic compound is a delayed phosphor.
  • the third organic compound is a light emitter.
  • E S1 (A) represents the lowest excited singlet energy level of the first organic compound
  • E S1 (B) represents the lowest excited singlet energy level of the second organic compound
  • E S1 (C ) Represents the lowest excited singlet energy level of the third organic compound.
  • the “delayed phosphor” in the present invention can cross the inverted singlet state after transitioning to the excited triplet state, and emits fluorescence when returning from the excited singlet state to the ground state. Refers to organic compounds.
  • the lowest excited singlet energies E S1 (A), E S1 (B), E S1 (C) of the first to third organic compounds satisfy the above formula (A) and Since the two organic compound is a delayed phosphor, excitation energy generated by recombination of holes and electrons injected into the light emitting layer is efficiently converted into fluorescence, and high light emission efficiency can be obtained. This is thought to be due to the following reasons. That is, in this light emitting layer, when excitation energy is generated by recombination of holes and electrons, each organic compound contained in the light emitting layer transitions from a ground state to an excited singlet state and an excited triplet state.
  • the formation probability of an organic compound in the excited singlet state (singlet exciton) and an organic compound in the excited triplet state (triplet exciton) is statistically 25% for singlet excitons and 75 for triplet excitons. %. Then, the energies of the first organic compound and the second organic compound in the excited singlet state among excitons move to the third organic compound, and the third organic compound in the ground state transitions to the excited singlet state. The third organic compound in the excited singlet state then emits fluorescence when returning to the ground state.
  • the second organic compound is a delayed phosphor
  • the second organic compound in the excited triplet state intersects the excited singlet state, and this inverse intersystem crossing.
  • the singlet excitation energy due to is also transferred to the third organic compound.
  • the energy of the second organic compound in the excited triplet state having a large abundance ratio also indirectly contributes to light emission, and the light emission efficiency of the organic electroluminescence device is greatly improved as compared with the configuration in which the light emitting layer does not contain the second organic compound. Can be improved.
  • light emission mainly occurs from the third organic compound.
  • the light emission may be partly or partly from the first organic compound and the second organic compound. This luminescence includes both fluorescence and delayed fluorescence.
  • the organic electroluminescence device of the present invention has the first organic compound and the second organic compound as long as the above formula (A) is satisfied, the second organic compound is a delayed phosphor, and the third organic compound is a light emitter.
  • the type and combination of the second organic compound are not particularly limited.
  • the organic electroluminescence device of the present invention preferably satisfies the following formula (B) from the standpoint of realizing higher luminous efficiency.
  • E T1 (A) represents the lowest excited triplet energy level at 77 K of the first organic compound
  • E T1 (B) represents the lowest excited triplet energy level at 77 K of the second organic compound.
  • the relationship between the lowest excited triplet energy level E T1 (B) at 77 K of the second organic compound and the lowest excited triplet energy level E T1 (C) at 77 K of the third organic compound is not particularly limited. You may select so that it may become T1 (B)> E T1 (C).
  • T1 (B)> E T1 (C) the lowest excited triplet energy level at 77 K of the second organic compound.
  • the delayed phosphor used as the second organic compound is not particularly limited, but is preferably a thermally activated delayed phosphor that crosses back from the excited singlet state to the excited triplet state by absorption of thermal energy. .
  • Thermally activated delayed phosphor absorbs the heat generated by the device and crosses the reverse triplet from the excited triplet state to the excited singlet relatively easily and efficiently contributes to the emission of the excited triplet energy. Can do.
  • the difference ⁇ E st between the energy level E s1 in the lowest excited singlet state and the energy level E T1 in the lowest excited triplet state of 77K is preferably 0.3 eV or less. More preferably, it is 0.2 eV or less, further preferably 0.1 eV or less, and still more preferably 0.08 eV or less.
  • the reverse intersystem crossing from the excited triplet state to the excited singlet state occurs relatively easily, and the excited triplet energy can efficiently contribute to light emission. .
  • the delayed phosphor used as the second organic compound is not particularly limited as long as it can emit delayed fluorescence.
  • a compound represented by the following general formula (1) can be preferably used.
  • Ar 1 to Ar 3 each independently represents a substituted or unsubstituted aryl group, and at least one represents an aryl group substituted with a group represented by the following general formula (2) .
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • Z represents O, S, O ⁇ C or Ar 4 —N
  • Ar 4 represents a substituted or unsubstituted aryl group.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure. Good.
  • the aromatic ring constituting the aryl group represented by Ar 1 to Ar 3 in the general formula (1) may be a single ring or a fused ring. Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring. Can be mentioned.
  • the aryl group preferably has 6 to 40 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 14 carbon atoms.
  • At least one of Ar 1 to Ar 3 is an aryl group substituted with a group represented by the general formula (2).
  • Two of Ar 1 to Ar 3 may be aryl groups substituted with a group represented by the general formula (2), or all three may be substituted with a group represented by the general formula (2) It may be an aryl group.
  • One aryl group may be substituted with two or more groups represented by the general formula (2).
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • R 1 to R 8 may all be hydrogen atoms.
  • substituents may be the same or different.
  • substituents include a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, and an alkyl substitution having 1 to 20 carbon atoms.
  • substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, a substituted or unsubstituted dialkylamino group having 1 to 10 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 40 carbon atoms, and 12 to 40 carbon atoms A substituted or unsubstituted carbazolyl group; More preferred substituents are a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms
  • an unsubstituted dialkylamino group a substituted or unsubstituted diarylamino group having 12 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, and a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms It is a group.
  • the alkyl group in the present specification may be linear, branched or cyclic, and more preferably has 1 to 6 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, and butyl. A tert-butyl group, a pentyl group, a hexyl group and an isopropyl group.
  • the aryl group may be a single ring or a fused ring, and specific examples thereof include a phenyl group and a naphthyl group.
  • the alkoxy group may be linear, branched or cyclic, and more preferably has 1 to 6 carbon atoms.
  • the two alkyl groups of the dialkylamino group may be the same or different from each other, but are preferably the same.
  • the two alkyl groups of the dialkylamino group may each independently be linear, branched or cyclic, and more preferably have 1 to 6 carbon atoms.
  • Specific examples include a methyl group, an ethyl group, Examples thereof include a propyl group, a butyl group, a pentyl group, a hexyl group, and an isopropyl group.
  • Two alkyl groups of the dialkylamino group may be bonded to each other to form a cyclic structure together with the nitrogen atom of the amino group.
  • the aryl group that can be employed as the substituent may be a single ring or a fused ring, and specific examples thereof include a phenyl group and a naphthyl group.
  • the heteroaryl group may be a monocyclic ring or a fused ring, and specific examples include a pyridyl group, a pyridazyl group, a pyrimidyl group, a triazyl group, a triazolyl group, and a benzotriazolyl group.
  • These heteroaryl groups may be a group bonded through a hetero atom or a group bonded through a carbon atom constituting a heteroaryl ring.
  • the two aryl groups of the diarylamino group may be monocyclic or fused, and specific examples thereof include a phenyl group and a naphthyl group. Two aryl groups of the diarylamino group may be bonded to each other to form a cyclic structure together with the nitrogen atom of the amino group.
  • An example is a 9-carbazolyl group.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 are bonded to each other to form a cyclic structure. May be formed.
  • the cyclic structure may be an aromatic ring or an alicyclic ring, and may contain a hetero atom.
  • the hetero atom here is preferably selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom.
  • Examples of cyclic structures formed include benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, imidazoline ring, oxazole ring, isoxazole ring, thiazole And a ring, an isothiazole ring, a cyclohexadiene ring, a cyclohexene ring, a cyclopentaene ring, a cycloheptatriene ring, a cycloheptadiene ring, and a cycloheptaene ring.
  • Z in the general formula (2) represents O, S, O ⁇ C or Ar 4 —N
  • Ar 4 represents a substituted or unsubstituted aryl group.
  • the aromatic ring constituting the aryl group represented by Ar 4 may be a single ring or a fused ring, and specific examples include a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring.
  • the aryl group preferably has 6 to 40 carbon atoms, more preferably 6 to 20 carbon atoms.
  • the description and preferred range of the substituent that can be taken by R 1 to R 8 can be referred to.
  • the group represented by the general formula (2) is a group having a structure represented by the following general formula (3), a group having a structure represented by the following general formula (4), or A group having a structure represented by the following general formula (5) is preferable.
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure. Good.
  • the compound represented by the general formula (1) particularly includes a structure represented by the following general formula (6).
  • Ar 2 , Ar 3 , Ar 2 ′ and Ar 3 ′ each independently represent a substituted or unsubstituted aryl group
  • Ar 5 and Ar 5 ′ each independently represent a substituted or unsubstituted arylene.
  • R 1 ⁇ R 8 each independently represent a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure. Good.
  • the aromatic ring constituting the arylene group that can be taken by Ar 5 and Ar 5 ′ of the general formula (6) may be a single ring or a fused ring. Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, Mention may be made of phenanthrene rings.
  • the arylene group preferably has 6 to 40 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 14 carbon atoms.
  • R 1 ⁇ R 8 of general formula (6) For the description and the preferred range of R 1 ⁇ R 8 of general formula (6), reference can be made to the descriptions and preferred ranges of R 1 ⁇ R 8 in the general formula (2).
  • a compound in which Ar 2 and Ar 2 ′ are the same, Ar 3 and Ar 3 ′ are the same, and Ar 5 and Ar 5 ′ are the same is easily synthesized. There is an advantage of being.
  • the compound represented by the general formula (1) preferably has a structure represented by the following general formula (7).
  • R 11 to R 25 represents a group represented by the above general formula (2), and the other each independently represents a hydrogen atom or a substituent other than the above general formula (2).
  • At least one of R 11 to R 25 in the general formula (7) is a group represented by the general formula (2), but the number of substitutions of the group represented by the general formula (2) is R 11 to R 25 . Of these, 1 to 9 is preferable, and 1 to 6 is more preferable. For example, it can be selected within a range of 1 to 3.
  • the group represented by the general formula (2) may be bonded to each of the three benzene rings bonded to the 1,3,5-triazine ring, or may be bonded to only one or two of them. You may do it.
  • Preferred is the case where each of the three benzene rings has 0 to 3 groups represented by the general formula (2), and more preferred is that each of the three benzene rings is represented by the general formula (2). In this case, 0 to 2 groups are present.
  • the case where each of the three benzene rings has 0 or 1 group represented by the general formula (2) can be selected.
  • the substitution position of the group represented by the general formula (2) may be either R 11 ⁇ R 25 is a substituted positions in the R 12 ⁇ R 14, R 17 ⁇ R 19 and R 22 ⁇ R 24 It is preferable to select from.
  • R 11 ⁇ R 25 is a substituted positions in the R 12 ⁇ R 14, R 17 ⁇ R 19 and R 22 ⁇ R 24 It is preferable to select from.
  • 0 to 2 of R 12 to R 14 , 0 to 2 of R 17 to R 19 , and 0 to 2 of R 22 to R 24 are represented by the general formula (2).
  • 0 or 1 of R 12 to R 14 , 0 or 1 of R 17 to R 19 , or 0 or 1 of R 22 to R 24 is represented by the general formula (2)
  • the case where it is group represented by can be illustrated.
  • the substitution position is R 12 or R 13.
  • the substitution positions are R 12 and R 14 , or any of R 12 and R 13 or that it is preferable that either R 17 or R 18.
  • the substitution position is any of R 12 , R 14 , R 17, or R 18 ; Alternatively, either R 12 or R 13 , R 17 or R 18 , and R 22 or R 23 is preferred.
  • R 11 to R 25 those not represented by the general formula (2) each independently represent a hydrogen atom or a substituent other than the general formula (2). All of these may be hydrogen atoms. Moreover, when two or more are substituents, those substituents may be the same or different. For the explanation and preferred ranges of the substituents that R 11 to R 25 can take, the explanation and preferred ranges of the substituents that R 1 to R 8 can take can be referred to.
  • R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 and R 20 , R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , and R 24 and R 25 may be bonded to each other to form a cyclic structure.
  • R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , and R 24 and R 25 may be bonded to each other to form a cyclic structure.
  • the group represented by the general formula (2) included in the general formula (7) is a group having a structure represented by the general formula (3) or a structure represented by the general formula (4). Or a group having a structure represented by the general formula (5).
  • the compound represented by the general formula (7) preferably has a symmetrical molecular structure.
  • R 11 , R 16 and R 21 in the general formula (7) are the same
  • R 12 , R 17 and R 22 are the same
  • R 13 , R 18 and R 23 are the same
  • R 14 , R 19 and R 24 are the same
  • R 15 , R 20 and R 25 are the same.
  • a compound in which R 13 , R 18, and R 23 are groups represented by the general formula (2) and the others are hydrogen atoms can be given.
  • the compound represented by the general formula (7) particularly includes a structure represented by the following general formula (8).
  • R 1 ⁇ R 8, R 11, R 12, R 14 ⁇ R 25, R 11 ', R 12' to and R 14 ' ⁇ R 25' each independently represent a hydrogen atom or a substituent To express.
  • R 1 ⁇ R 8 of general formula (8) reference can be made to the descriptions and preferred ranges of R 1 ⁇ R 8 in the general formula (2).
  • the corresponding description in the general formula (2) the corresponding description in the general formula (2)
  • the delayed phosphor used as the second organic compound for example, a compound represented by the following general formula (9) can also be preferably used.
  • X is an oxygen atom, a sulfur atom, or a nitrogen atom (a hydrogen atom or a substituent is bonded to the nitrogen atom, and the substituent is an alkyl group having 1 to 10 carbon atoms or 6 carbon atoms)
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • at least one of R 1 to R 8 is each independently a group represented by any one of the following general formulas (10) to (14).
  • X may be either an oxygen atom or a sulfur atom, but is preferably an oxygen atom.
  • the group represented by any one of the following general formulas (10) to (14) may be only one, or may be two or more.
  • any one of the following formulas (10) to (14) Is preferably at least one of R 1 to R 4 and at least one of R 5 to R 8 .
  • the groups represented by any of the following general formulas (10) to (14) are 1 to 3 of R 1 to R 4 and 1 to 3 of R 5 to R 8. It is preferably 1 or 2 of R 1 to R 4 , and more preferably 1 or 2 of R 5 to R 8 .
  • R 1 to R 4 are represented by any of the general formulas (10) to (14)
  • R 5 to R 8 are represented by any of the general formulas (10) to (14).
  • the number of groups may be the same or different, but is preferably the same.
  • R 1 to R 4 at least one of R 2 to R 4 is preferably a group represented by any one of the general formulas (10) to (14), and at least R 3 is represented by the general formula (10). It is more preferably a group represented by any one of (14) to (14).
  • R 5 to R 8 at least one of R 5 to R 7 is preferably a group represented by any one of the general formulas (10) to (14), and at least R 6 is a general formula ( The group represented by any one of 10) to (14) is more preferable.
  • Preferred compounds are those in which R 3 and R 6 in the general formula (9) are groups represented by any one of the general formulas (10) to (14), and R 2 and R 7 in the general formula (9) are general.
  • a compound which is a group represented by any one of formulas (10) to (14), and R 2 , R 3 , R 6 and R 7 in formula (9) are any one of formulas (10) to (14)
  • a more preferred compound is a compound in which R 3 and R 6 are groups represented by any one of the general formulas (10) to (14).
  • the groups represented by any of the plurality of general formulas (10) to (14) present in the general formula (9) may be the same or different, but are preferably the same.
  • the group represented by the general formula (9) preferably has a symmetrical structure.
  • R 1 and R 8 , R 2 and R 7 , R 3 and R 6 , and R 4 and R 5 are preferably the same.
  • Compounds of general formula (9) is more preferably both of R 3 and R 6 is a group represented by any one of the following formulas (10) to (14).
  • a preferred compound is a compound in which at least one of R 3 or R 6 in the general formula (9) is a group represented by the following general formula (10) or (11).
  • L 20 , L 30 , L 40 , L 50 and L 60 each independently represent a single bond or a divalent linking group
  • R 21 to R 28 , R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 , and R 61 to R 68 each independently represent a hydrogen atom or a substituent.
  • L 20 , L 30 , L 40 , L 50 and L 60 may be a single bond or a divalent linking group, but are preferably a single bond.
  • At least one of R 1 to R 8 in the general formula (9) is a group represented by the general formulas (10) to (14) in which L 20 , L 30 , L 40 , L 50 , and L 60 are linking groups.
  • the number of linking groups present in the general formula (9) may be only one, or may be two or more.
  • these linking groups may be the same or different.
  • Examples of the divalent linking group that L 20 , L 30 , L 40 , L 50 , and L 60 can take include, for example, an alkenylene group, an alkynylene group, an arylene group, a thiophendiyl group, and a linking group composed of a combination thereof. Can do.
  • the alkylene group or alkenylene group preferably has 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms. Further, the carbon number of the arylene group is preferably 6 to 10, more preferably 6, and even more preferably a paraphenylene group.
  • Examples of the thiophenediyl group include a 3,4-thiophenediyl group and a 2,5-thiophenediyl group.
  • Preferred examples of the general linking group include a linking group represented by — (CR a ⁇ CR b ) n—.
  • R a and R b each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms.
  • n is preferably 1 to 5, more preferably 1 to 3, and still more preferably 1 or 2.
  • —CH ⁇ CH— and — (CH ⁇ CH) 2 — can be mentioned.
  • the number of substituents in the general formulas (10) to (14) is not particularly limited.
  • R 21 to R 28 , R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 , R 61 to R All of 68 may be unsubstituted (that is, a hydrogen atom), but at least one of R 21 to R 28 , R 31 to R 38 , R 41 to R 48 , R 51 to R 58 , and R 61 to R 68 is acceptable.
  • R 21 to R 28 , R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 , R 61 to R 68 can be substituted with R 1 to R 8.
  • Examples of possible substituents include a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, and an alkyl having 1 to 20 carbon atoms.
  • substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, and a dialkyl-substituted amino group having 1 to 20 carbon atoms.
  • substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, and a dialkyl-substituted amino group having 1 to 20 carbon
  • substituents are a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, and a substituted group having 6 to 15 carbon atoms.
  • it is an unsubstituted aryl group or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • R 23 , R 26 , R 33 , R 36 , R 43 , R 46 , R 53 , R 56 , R 63 , R 66 is independently selected from the above general formulas (10) to (14). It is preferable that it is group represented by either.
  • the cyclic structure may be an aromatic ring or an alicyclic ring, may contain a hetero atom, and the cyclic structure may be a condensed ring of two or more rings.
  • the hetero atom here is preferably selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom.
  • Examples of cyclic structures formed include benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, imidazoline ring, oxazole ring, isoxazole ring, thiazole And a ring, an isothiazole ring, a cyclohexadiene ring, a cyclohexene ring, a cyclopentaene ring, a cycloheptatriene ring, a cycloheptadiene ring, and a cycloheptaene ring.
  • the following luminescent materials that can emit delayed fluorescence can also be preferably used.
  • Preferred examples of the light emitting material include compounds represented by the following general formula.
  • the entire specification of the publication including the description of paragraphs 0008 to 0048 and 0095 to 0133 of WO2013 / 154064 is cited herein as a part of this specification.
  • at least one of R 1 ⁇ R 5 represents a cyano group
  • at least one of R 1 ⁇ R 5 represents a group represented by the following general formula (111)
  • the remaining R 1 to R 5 each represents a hydrogen atom or a substituent.
  • R 21 to R 28 each independently represents a hydrogen atom or a substituent.
  • ⁇ A> R 25 and R 26 together form a single bond.
  • ⁇ B> R 27 and R 28 together represent an atomic group necessary for forming a substituted or unsubstituted benzene ring.
  • R 1 to R 5 is preferably a group represented by any one of the following general formulas (112) to (115).
  • R 31 to R 38 each independently represents a hydrogen atom or a substituent.
  • R 41 to R 46 each independently represents a hydrogen atom or a substituent.
  • R 51 to R 62 each independently represents a hydrogen atom or a substituent.
  • R 71 to R 80 each independently represents a hydrogen atom or a substituent.
  • Preferred examples of the light emitting material include the following compounds.
  • 0 to 1 of R 1 to R 5 are cyano groups
  • 1 to 5 of R 1 to R 5 are groups represented by the following General Formula (132)
  • the rest R 1 to R 5 are a hydrogen atom or a substituent other than those described above.
  • R 11 to R 20 each independently represents a hydrogen atom or a substituent.
  • R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 And R 20 may be bonded to each other to form a cyclic structure.
  • L 12 represents a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
  • R 21 to R 24 , R 27 to R 38 , R 41 to R 48 , R 51 to R 58 , R 61 to R 65 , R 71 to R 79 , R 81 R 90 each independently represents a hydrogen atom or a substituent.
  • L 13 to L 18 each independently represents a substituted or unsubstituted arylene group or a substituted or unsubstituted heteroarylene group.
  • [3] The compound according to [1] or [2], wherein R 3 in the general formula (131) is a cyano group.
  • [4] The compound according to any one of [1] to [3], wherein R 1 and R 4 in the general formula (131) are a group represented by the general formula (132).
  • [5] The compound according to any one of [1] to [4], wherein L 12 in the general formula (132) is a phenylene group.
  • Preferred examples of the light emitting material include compounds represented by the following general formula.
  • the entire specification of the publication including the descriptions of paragraphs 0007 to 0047 and 0073 to 0085 of WO2013 / 011954, is cited herein as a part of the specification of the present application.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 17 are each independently a hydrogen atom or an electron donating group, One represents an electron donating group.
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom or an electron withdrawing group having no unshared electron pair at the ⁇ -position.
  • Z is a single bond, an electron withdrawing without a R 9, R 10, R 11 , R 12, R 13, R 14, at least one of R 15 and R 16 are unshared electron pair to the position ⁇ It is a group.
  • D1 to D3 represent aryl groups substituted with the following electron donating groups
  • A1 to A5 represent the following electron withdrawing groups
  • H represents a hydrogen atom
  • Ph represents a phenyl group.
  • Preferred examples of the light emitting material include compounds represented by the following general formula.
  • the entire specification of the publication including the descriptions of paragraphs 0007 to 0033 and 0059 to 0066 of WO 2013/011955 is cited herein as a part of the specification of the present application.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom or an electron-donating group, and at least one of Represents an electron donating group.
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom or an electron withdrawing group, and at least one represents an electron withdrawing group.
  • D1 to D10 represent unsubstituted electron donating groups having the following skeleton.
  • Preferred examples of the light emitting material include compounds represented by the following general formula.
  • the entire specification of the publication including the descriptions of paragraphs 0008 to 0071 and 0118 to 0133 of WO2013 / 081088 is cited herein as a part of the specification of the present application.
  • any one of Y 1 , Y 2 and Y 3 represents a nitrogen atom and the remaining one represents a methine group, or all of Y 1 , Y 2 and Y 3 represent a nitrogen atom.
  • Z 1 and Z 2 each independently represent a hydrogen atom or a substituent.
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 8 represents a substituted or unsubstituted diarylamino group or a substituted or unsubstituted carbazolyl group.
  • the compound represented by the general formula (161) includes at least two carbazole structures in the molecule.
  • Preferred examples of the light emitting material include compounds represented by the following general formula.
  • the entire specification of the gazette including paragraphs 0008 to 0020 and 0038 to 0040 of JP 2013-116975 A is cited herein as a part of the specification of the present application.
  • R 1 , R 2 , R 4 to R 8 , R 11 , R 12 and R 14 to R 18 each independently represent a hydrogen atom or a substituent.
  • Preferred examples of the light emitting material include the following compounds.
  • a compound represented by the following general formula (191) Ar 1 represents a substituted or unsubstituted arylene group, and Ar 2 and Ar 3 each independently represent a substituted or unsubstituted aryl group.
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 8 is a substituted or unsubstituted diarylamino group.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure. Good.
  • At least one of R 1 to R 4 in the general formula (191) is a substituted or unsubstituted diarylamino group, and at least one of R 5 to R 8 is a substituted or unsubstituted diarylamino group
  • R 3 and R 6 in the general formula (191) are a substituted or unsubstituted diarylamino group.
  • R 1 to R 8 and R 11 to R 24 each independently represent a hydrogen atom or a substituent, and at least one of R 1 to R 8 is a substituted or unsubstituted diarylamino group It is.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 11 and R 12 , R 12 and R 13 , R 13 And R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 and R 20 , R 21 and R 22 , R 23 and R 24 are bonded to each other.
  • a ring structure may be formed.
  • At least one of R 1 to R 4 in the general formula (192) is a substituted or unsubstituted diarylamino group, and at least one of R 5 to R 8 is a substituted or unsubstituted diarylamino group [7] The compound according to [7]. [9] The compound according to [8], wherein R 3 and R 6 in the general formula (192) are substituted or unsubstituted diarylamino groups.
  • Ph represents a phenyl group.
  • Preferred examples of the light emitting material include the following compounds.
  • a compound represented by the following general formula (201). wherein R 1 to R 8 each independently represents a hydrogen atom or a substituent, at least one of R 1 to R 8 is a substituted or unsubstituted carbazolyl group.
  • Ar 1 to Ar 3 each represents Independently represents a substituted or unsubstituted aromatic or heteroaromatic ring.
  • Preferred examples of the light emitting material include compounds represented by the following general formula.
  • the entire specification of the publication including the descriptions of paragraphs 0007 to 0032 and 0079 to 0084 of WO 2013/133359 is cited herein as a part of the specification of the present application.
  • Z 1 , Z 2 and Z 3 each independently represent a substituent.
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 each independently represent a substituted or unsubstituted aryl group.
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5, and Ar 6 are all the same, and are collectively referred to as Ar.
  • R 1 to R 10 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 10 is a substituted or unsubstituted aryl group, substituted or unsubstituted A substituted diarylamino group, or a substituted or unsubstituted 9-carbazolyl group.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 And R 10 may be bonded to each other to form a cyclic structure.
  • R 1 to R 4 each independently represents a hydrogen atom or a substituted or unsubstituted (N, N-diarylamino) aryl group, and at least one of R 1 to R 4 is substituted or It represents an unsubstituted (N, N-diarylamino) aryl group.
  • Two aryl groups constituting the diarylamino part of the (N, N-diarylamino) aryl group may be linked to each other.
  • W 1 , W 2 , X 1 , X 2 , Y 1 , Y 2 , Z 1 and Z 2 each independently represent a carbon atom or a nitrogen atom.
  • m 1 to m 4 each independently represents 0, 1 or 2.
  • Preferred examples of the light emitting material include compounds represented by the following general formula.
  • R 1 to R 6 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 6 represents a substituted or unsubstituted (N, N-diarylamino) aryl group Represents. Two aryl groups constituting the diarylamino part of the (N, N-diarylamino) aryl group may be linked to each other.
  • X 1 to X 6 and Y 1 to Y 6 each independently represent a carbon atom or a nitrogen atom.
  • n 1 , n 2 , p 1 , p 2 , q 1 and q 2 each independently represents 0, 1 or 2.
  • Preferred examples of the light emitting material include the following compounds.
  • 1 to 4 of A 1 to A 7 represent N, and the rest each independently represents CR.
  • R represents a non-aromatic group.
  • Ar 1 to Ar 3 each independently represents a substituted or unsubstituted arylene group.
  • Z represents a single bond or a linking group.
  • the general formula (252) 1 to 4 of A 1 to A 7 represent N, and the rest each independently represents C—R. R represents a non-aromatic group.
  • Ar 1 represents a substituted or unsubstituted arylene group.
  • R 11 to R 14 and R 17 to R 20 each independently represents a hydrogen atom or a substituent.
  • R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 17 and R 18 , R 18 and R 19 , and R 19 and R 20 may be bonded to each other to form a cyclic structure.
  • Z 1 represents a single bond or a linking group having 1 or 2 linking chain long atoms.
  • R represents a non-aromatic group.
  • Ar 1 represents a substituted or unsubstituted arylene group.
  • Y represents a substituted or unsubstituted carbazol-9-yl group, a substituted or unsubstituted 10H-phenoxazin-10-yl group, a substituted or unsubstituted 10H-phenothiazin-10-yl group, or a substituted or unsubstituted 10H -Represents a phenazin-5-yl group.
  • Y in the general formula (253) is a group represented by any of the following general formulas (254) to (257).
  • R 21 to R 24 , R 27 to R 38 , R 41 to R 48 , R 51 to R 58 , and R 61 to R 65 are each independently a hydrogen atom or a substituent. Represents a group.
  • R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , R 27 and R 28 , R 28 and R 29 , R 29 and R 30 , R 31 and R 32 , R 32 and R 33 , R 33 And R 34 , R 35 and R 36 , R 36 and R 37 , R 37 and R 38 , R 41 and R 42 , R 42 and R 43 , R 43 and R 44 , R 45 and R 46 , R 46 and R 47 , R 47 and R 48 , R 51 and R 52 , R 52 and R 53 , R 53 and R 54 , R 55 and R 56 , R 56 and R 57 , R 57 and R 58 , R 61 and R 62 , R 62 and R 63 , R 63 and R 64 , R 64 and R 65 , R 54 and R 61 , and R 55 and R 65 may be bonded to each other to form a cyclic structure.
  • R 21 ′ to R 24 ′ and R 27 ′ to R 30 each independently represents a hydrogen atom or a substituent, and at least one of R 23 ′ and R 28 ′ is a substituent. is there.
  • R 21 ' and R 22' , R 22 ' and R 23' , R 23 ' and R 24' , R 27 ' and R 28' , R 28 ' and R 29' , R 29 ' and R 30' are bonded to each other Thus, a ring structure may be formed.
  • R 23 ′ and R 28 ′ are a substituted or unsubstituted diarylamino group, or a substituted or unsubstituted carbazol-9-yl group [ 5].
  • Y in the general formula (253) is a group represented by the general formula (255).
  • Preferred examples of the light emitting material include the following compounds.
  • R 1 to R 10 each independently represents a hydrogen atom or a substituent.
  • at least one of R 1 to R 10 is each independently a group represented by the following general formula (272).
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 4 and R 5 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 and R 10 are bonded to each other.
  • a ring structure may be formed.
  • R 11 to R 20 each independently represents a hydrogen atom or a substituent.
  • R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 15 and R 16 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 And R 20 may be bonded to each other to form a cyclic structure.
  • Ph represents a substituted or unsubstituted phenylene group.
  • n1 represents 0 or 1.
  • Ph represents a substituted or unsubstituted phenylene group.
  • n1 represents 0 or 1.
  • [3] It is characterized in that at least one of R 1 to R 5 in general formula (271) and at least one of R 6 to R 10 are a group represented by general formula (272).
  • [4] The compound according to [3], wherein R 3 and R 8 in the general formula (271) are a group represented by the general formula (272).
  • [5] The compound according to any one of [1] to [4], wherein the group represented by the general formula (272) is a group represented by the general formula (274) .
  • Preferred examples of the light emitting material include the following compounds.
  • a compound comprising a compound represented by the following general formula (281).
  • X represents an oxygen atom or a sulfur atom.
  • R 1 ⁇ R 8 each independently represent a hydrogen atom or a substituent. However, at least one of R 1 to R 8 is each independently a group represented by any one of the following general formulas (282) to (287).
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 8 and R 9 , R 9 and R 1 are bonded to each other Thus, a ring structure may be formed.
  • R 9 represents a substituent.
  • R 9 contains an atom having a lone pair of electrons that does not form a single bond with a boron atom
  • the atom may be coordinated with the boron atom to form a cyclic structure.
  • L 12 to L 17 each independently represents a single bond or a divalent linking group
  • * represents a bonding site to the benzene ring in the general formula (281).
  • R 11 to R 20 , R 21 to R 28 , R 31 to R 38 , R 3a , R 3b , R 41 to R 48 , R 4a , R 51 to R 58 , R 61 to R 68 are each independently hydrogen Represents an atom or substituent.
  • At least one of R 2 , R 3 , R 6 , and R 7 in the general formula (281) is a group represented by any one of the general formulas (282) to (287) [1] The compound according to any one of [3].
  • R 3 and R 6 in formula (281) is, according to each, characterized in that a group represented by any one of formulas independently (282) - (287) [5] Compound.
  • Preferred examples of the light emitting material include the following compounds.
  • X represents O, S, N—R 11 , C ⁇ O, C (R 12 ) (R 13 ) or Si (R 14 ) (R 15 ), and Y represents O, S Or represents N—R 16 .
  • Ar 1 represents a substituted or unsubstituted arylene group, and Ar 2 represents an aromatic ring or a heteroaromatic ring.
  • R 1 to R 8 and R 11 to R 16 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure.
  • X represents O, S, N—R 11 , C ⁇ O, C (R 12 ) (R 13 ) or Si (R 14 ) (R 15 )
  • Y represents O, S Or represents N—R 16 .
  • Ar 2 represents an aromatic ring or a heteroaromatic ring.
  • R 1 to R 8 , R 11 to R 16 and R 21 to R 24 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 21 and R 22 , R 23 and R 24 are respectively They may be bonded to each other to form a cyclic structure.
  • the compound according to [1], wherein the compound represented by the general formula (291) is a compound represented by the following general formula (293).
  • X represents O, S, N—R 11 , C ⁇ O, C (R 12 ) (R 13 ) or Si (R 14 ) (R 15 ), and Y represents O, S Or represents N—R 16 .
  • R 1 to R 8 , R 11 to R 16 , R 21 to R 24 and R 31 to R 34 each independently represent a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 21 and R 22 , R 23 and R 24 , R 31 And R 32 , R 32 and R 33 , and R 33 and R 34 may be bonded to each other to form a cyclic structure.
  • Y is O, S or N—R 16 , and R 16 is a substituted or unsubstituted aryl group. .
  • R 1 to R 8 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted group having 1 to 10 carbon atoms.
  • Preferred examples of the light emitting material include the following compounds.
  • a compound represented by the following general formula (301) (D) n-A [In General Formula (301), D represents a group represented by the following General Formula (302), and A represents an n-valent group including a structure represented by the following General Formula (303). n represents an integer of 1 to 8. ]
  • Z 1 represents O, S, C ⁇ O, C (R 21 ) (R 22 ), Si (R 23 ) (R 24 ), N—Ar 3 or a single bond; 21 to R 24 each independently represents an alkyl group having 1 to 8 carbon atoms, and Ar 3 represents a substituted or unsubstituted aryl group.
  • R 1 ⁇ R 8 each independently represent a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure.
  • Z 1 is a single bond
  • at least one of R 1 to R 8 represents a substituted or unsubstituted diarylamino group.
  • Y represents O, S or N—Ar 4
  • Ar 4 represents a substituted or unsubstituted aryl group.
  • Z 1 in the general formula (302) represents O, S, C ⁇ O, C (R 21 ) (R 22 ), Si (R 23 ) (R 24 ), or a single bond.
  • a in the general formula (301) has a structure represented by the following general formula (304).
  • Y represents O, S or N—Ar 4
  • Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aromatic group.
  • n in the general formula (301) is an integer of 1 to 4.
  • Z 1 and Z 2 are each independently O, S, C ⁇ O, C (R 21 ) (R 22 ), Si (R 23 ) (R 24 ), N—Ar 3 or Represents a single bond
  • R 21 to R 24 each independently represents an alkyl group having 1 to 8 carbon atoms
  • Ar 3 represents a substituted or unsubstituted aryl group.
  • Ar 1 and Ar 2 each independently represent a substituted or unsubstituted aromatic group.
  • Y represents O, S or N—Ar 4
  • Ar 4 represents a substituted or unsubstituted aryl group.
  • R 1 to R 8 and R 11 to R 18 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 11 and R 12 , R 12 and R 13 , R 13 And R 14 , R 15 and R 16 , R 16 and R 17 , and R 17 and R 18 may be bonded to each other to form a cyclic structure.
  • n1 and n2 each independently represents an integer of 0 to 8, and the sum of n1 and n2 is 1 to 8.
  • the compound according to [6], wherein Z 1 and Z 2 in the general formula (305) are each independently O, S, N—Ar 3 or a single bond.
  • the compound according to [6] or [7], wherein Y in the general formula (305) is O or N—Ar 4 .
  • Z 1 represents O, S, C ⁇ O, C (R 21 ) (R 22 ), Si (R 23 ) (R 24 ), N—Ar 3 or a single bond; 21 to R 24 each independently represents an alkyl group having 1 to 8 carbon atoms, and Ar 3 represents a substituted or unsubstituted aryl group.
  • Ar 1 ′ represents a substituted or unsubstituted arylene group.
  • Ar 2 ′ represents a substituted or unsubstituted aryl group.
  • R 1 ⁇ R 8 each independently represent a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure.
  • Z 1 is a single bond, at least one of R 1 to R 8 represents a substituted or unsubstituted diarylamino group.
  • Z 1 and Z 2 are each independently O, S, C ⁇ O, C (R 21 ) (R 22 ), Si (R 23 ) (R 24 ), N—Ar 3 or Represents a single bond
  • R 21 to R 24 each independently represents an alkyl group having 1 to 8 carbon atoms
  • Ar 3 represents a substituted or unsubstituted aryl group.
  • Ar 1 ′′ and Ar 2 ′′ each independently represent a substituted or unsubstituted arylene group.
  • Y represents O, S or N—Ar 4
  • Ar 4 represents a substituted or unsubstituted aryl group.
  • R 1 to R 8 and R 11 to R 18 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 11 and R 12 , R 12 and R 13 , R 13 And R 14 , R 15 and R 16 , R 16 and R 17 , and R 17 and R 18 may be bonded to each other to form a cyclic structure.
  • Z 1 and Z 2 in the general formula (307) are the same, Ar 1 ′′ and Ar 2 ′′ are the same, R 1 and R 14 are the same, and R 2 and R 13 are the same.
  • R 3 and R 12 are the same, R 4 and R 11 are the same, R 5 and R 18 are the same, R 6 and R 17 are the same, R 7 and R 16 are the same , R 8 and R 15 are the same, [10].
  • the compound according to [10] or [11], wherein Z 1 and Z 2 in the general formula (307) are each independently O, S or N—Ar 3 .
  • Preferred examples of the light emitting material include the following compounds.
  • Formula (311) ADA [In the general formula (311), D represents the following formula: Wherein the hydrogen atom in the structure may be substituted with a substituent, and two A's are each independently the following groups: Represents a group of a structure selected from: (wherein a hydrogen atom in the structure may be substituted with a substituent). ]
  • R 1 to R 8 and R 11 to R 20 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 11 and R 12 , R 12 and R 13 , R 13 And R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , and R 19 and R 20 may be bonded to each other to form a cyclic structure.
  • R 12 is a cyano group or a group having the following structure (however, a hydrogen atom may be substituted with a substituent)
  • R 13 is a cyano group or a group having any structure of the following group (wherein a hydrogen atom may be substituted with a substituent)
  • R 17 is a cyano group or a group having the following structure (however, a hydrogen atom may be substituted with a substituent), R 18 is a cyano group or a group of any of the following groups (wherein a hydrogen atom may be substituted with a substituent), or R 17 and R 18 are bonded to each other, and together with the benzene ring to which R 17 and R 18 are bonded, a group that forms one of the following structures (however, a hydrogen atom may be substituted with a substituent) ).
  • R 1 to R 8 in the general formula (313) are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, [6]
  • R 12 , R 13 , R 17 and R 18 in the general formula (313) have a substituent so as to satisfy the above conditions ⁇ 1> and ⁇ 2>;
  • Each of R 11 to R 20 independently represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, A substituted or unsubstituted dialkylamino group having 1 to 10 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, or 3 to 12 carbon atoms.
  • the substituent in which the hydrogen atom having the structure described in the above ⁇ 1> and ⁇ 2> in the general formula (313) may be substituted is a fluorine atom, a chlorine atom, a cyano group, a carbon number of 1 to 10 substituted or unsubstituted alkyl groups, 1 to 10 carbon atoms substituted or unsubstituted alkoxy groups, 1 to 10 carbon atoms substituted or unsubstituted dialkylamino groups, 12 to 40 carbon atoms substituted or unsubstituted [4] to [4] characterized by being selected from the group consisting of a diarylamino group, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, and a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms The compound according to any one of 6].
  • the molecular weight of the second organic compound is preferably 1500 or less, and more preferably 1200 or less, when it is intended to use a light-emitting layer containing the second organic compound formed by vapor deposition, for example.
  • it is 1000 or less, more preferably 800 or less.
  • the lower limit of the molecular weight is, for example, the molecular weight of the minimum compound represented by these general formulas if it is a compound represented by the general formula (1) or (9).
  • coating method even if it is a comparatively large molecular weight, it can use preferably regardless of molecular weight.
  • the delayed phosphor that can be used as the second organic compound in the present invention is not limited to the compound represented by the general formula (1), and as long as the formula (A) is satisfied, the general formula (1) A delayed phosphor other than the compound represented by the formula can also be used.
  • Examples of other delayed phosphors include compounds in which the triazine skeleton of the general formula (1) is a pyridine skeleton, and compounds in which various heterocyclic structures are substituted on a benzophenone skeleton or a xanthone skeleton.
  • the first organic compound is an organic compound having a minimum excited singlet energy higher than that of the second organic compound and the third organic compound, and functions as a host material responsible for carrier transport and the energy of the third organic compound in the compound. It has a function to be confined in. Accordingly, the third organic compound can efficiently convert the energy generated by recombination of holes and electrons in the molecule and the energy received from the first organic compound and the second organic compound into light emission. In addition, an organic electroluminescence element with high luminous efficiency can be realized.
  • the first organic compound is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents an increase in the wavelength of light emission, and has a high glass transition temperature.
  • R and R 1 to R 10 in the structural formulas of the following exemplary compounds each independently represent a hydrogen atom or a substituent.
  • n represents an integer of 3 to 5.
  • the third organic compound is a light emitter that has a lowest lowest excited singlet energy than the first organic compound and the second organic compound.
  • the third organic compound receives energy from the first organic compound and the second organic compound in the excited singlet state, and from the second organic compound in the excited singlet state by crossing the reverse triplet state into the excited singlet state. Fluorescence is emitted when transitioning to the term excited state and then returning to the ground state.
  • the light emitter used as the third organic compound is not particularly limited as long as it can emit light upon receiving energy from the first organic compound and the second organic compound as described above. Or phosphorescence.
  • the light emitter used as the third organic compound emits fluorescence when returning from the lowest excited singlet energy level to the ground energy level.
  • the third organic compound satisfies the relationship of the formula (A)
  • two or more kinds may be used.
  • a desired color can be emitted by using two or more third organic compounds having different emission colors in combination.
  • the preferable compound which can be used as a 3rd organic compound is mentioned for every luminescent color.
  • Et represents an ethyl group
  • i-Pr represents an isopropyl group.
  • the following compounds can also be used as the third organic compound.
  • content of each organic compound contained in a light emitting layer is not specifically limited, It is preferable that content of a 2nd organic compound is smaller than content of a 1st organic compound. Thereby, higher luminous efficiency can be obtained.
  • the first organic compound content W1. is preferably 15% by weight or more and 99.9% by weight or less, and the content W2 of the second organic compound is preferably 5.0% by weight or more and 50% by weight or less, and the content of the third organic compound
  • the amount W3 is preferably 0.5% by weight or more and 5.0% by weight or less.
  • the light emitting layer may be composed of only the first organic compound to the third organic compound, or may contain an organic compound other than the first organic compound to the third organic compound.
  • Examples of the organic compound other than the first organic compound to the third organic compound include an organic compound having a hole transport ability and an organic compound having an electron transport ability.
  • the organic compound having a hole transport ability and the organic compound having an electron transport ability the following hole transport material and electron transport material can be referred to.
  • the organic electroluminescence device of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements.
  • a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture
  • Suitable are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission, and includes a hole injection layer and an electron injection layer, Further, it may be present between the cathode and the light emitting layer or the electron transport layer.
  • the injection layer can be provided as necessary.
  • the blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer.
  • the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer.
  • the blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer.
  • the term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
  • the material for the hole blocking layer the material for the electron transport layer described later can be used as necessary.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
  • an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided.
  • the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the compound represented by the general formula (1) may be used not only for the light emitting layer but also for layers other than the light emitting layer.
  • the compound represented by General formula (1) used for a light emitting layer and the compound represented by General formula (1) used for layers other than a light emitting layer may be same or different.
  • the compound represented by the general formula (1) may be used for the injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transporting layer, electron transporting layer, and the like. .
  • the method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
  • the preferable material which can be used for an organic electroluminescent element is illustrated concretely.
  • the material that can be used in the present invention is not limited to the following exemplary compounds. Moreover, even if it is a compound illustrated as a material which has a specific function, it can also be diverted as a material which has another function.
  • R and R 2 to R 7 each independently represent a hydrogen atom or a substituent.
  • n represents an integer of 3 to 5.
  • the organic electroluminescent device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
  • the excited triplet energy is unstable and is converted into heat and the like, and the lifetime is short and it is immediately deactivated.
  • the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
  • the organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, an organic light emitting device with greatly improved light emission efficiency can be obtained by containing the compound represented by the general formula (1) in the light emitting layer.
  • the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
  • organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
  • Photonics C11347), source meter (Ceethley: 2400 series), semiconductor parameter analyzer (Agilent Technology: E5273A), optical power meter measuring device (Newport: 1930C), optical spectrometer ( The measurement was carried out using a spectroradiometer (manufactured by Topcon Co., Ltd .: SR-3) and a streak camera (C4334, manufactured by Hamamatsu Photonics Co., Ltd.).
  • the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 of the compounds used in Examples and Comparative Examples were determined by the following procedure.
  • the energy difference ⁇ E st between the lowest excited singlet state and the lowest excited triplet state of 77K was obtained by calculating the difference between E S1 and E T1 .
  • (1) Lowest excited singlet energy level E S1 The sample to be measured was deposited on a Si substrate to prepare a sample, and the fluorescence spectrum of this sample was measured at room temperature (300K). In the fluorescence spectrum, the vertical axis represents light emission and the horizontal axis represents wavelength.
  • the maximum point having a peak intensity of 10% or less of the maximum peak intensity of the spectrum is not included in the above-mentioned maximum value on the shortest wavelength side, and has the maximum slope value closest to the maximum value on the shortest wavelength side.
  • the tangent drawn at the point where the value was taken was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • Example 1 Production and evaluation of organic electroluminescence device using mCBP (first organic compound), PXZ-TRZ (second organic compound), and TBRb (third organic compound) Prepared.
  • FIG. 2 shows a transient attenuation curve of the PXZ-TRZ thin film. From FIG. 2, it was confirmed that PXZ-TRZ is an organic compound exhibiting delayed fluorescence. The energy difference ⁇ E st between the lowest excited singlet state of PXZ-TRZ and the lowest excited triplet state of 77K was 0.070 eV.
  • an organic electroluminescence element was fabricated using mCBP, PXZ-TRZ, and TBRb as materials for the light emitting layer.
  • Each thin film was laminated at a vacuum degree of 5.0 ⁇ 10 ⁇ 5 Pa or less by a vacuum deposition method on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 110 nm was formed.
  • ITO indium tin oxide
  • HATCN was formed on ITO with a thickness of 10 nm
  • TrisPCz was formed thereon with a thickness of 30 nm.
  • mCBP, PXZ-TRZ, and TBRb were co-evaporated from different evaporation sources to form a 15 nm thick layer as a light emitting layer.
  • the concentration of PXZ-TRZ was selected in the range of 10 to 50% by weight, and the concentration of TBRb was 1% by weight.
  • T2T was formed to a thickness of 10 nm
  • BPyTP2 was formed thereon to a thickness of 55 nm.
  • lithium fluoride (LiF) was vacuum-deposited at 0.8 nm
  • aluminum (Al) was deposited at a thickness of 100 nm to form a cathode, thereby obtaining various organic electroluminescent elements having different light-emitting layer composition ratios. It was.
  • FIG. 3 shows the emission spectrum of the manufactured organic electroluminescence device
  • FIG. 4 shows the luminance-external quantum efficiency characteristics
  • FIGS. 5 and 6 show the transient decay curves.
  • Example 1 Fabrication and Evaluation of Organic Electroluminescence Device Using mCBP and TBRb
  • a vapor deposition film composed of mCBP and 1 wt% TBRb was formed without using a vapor deposition source of PXZ-TRZ. Except for this, an organic electroluminescence element was obtained in the same manner as in Example 1.
  • the emission spectrum, luminance-external quantum efficiency characteristic, and transient attenuation curve of the manufactured organic electroluminescence device are shown in FIG. 3, FIG. 4, FIG. 5, and FIG. 6 together with the measurement results of Example 1.
  • Example 2 Production and evaluation of organic electroluminescence device using PXZ-TRZ and TBRb
  • a vapor deposition film composed of PXZ-TRZ and 1 wt% TBRb was used without using an mCBP vapor deposition source.
  • An organic electroluminescent element was obtained in the same manner as in Example 1 except that it was formed.
  • the emission spectrum and luminance-external quantum efficiency characteristics of the produced organic electroluminescence device are shown in FIG. 3 and FIG. 4 together with the measurement result of Example 1.
  • the organic electroluminescent device of Example 1 in which the light emitting layer contains mCBP, PXZ-TRZ, and TBRb is the organic of Comparative Example 1 that does not use PXZ-TRZ or Comparative Example 2 that does not use mCBP.
  • the external quantum efficiency and the current efficiency were remarkably higher than those of the electroluminescence element, and the characteristics were excellent.
  • the organic electroluminescence device of Example 1 has a luminance half-life compared to the organic electroluminescence device of Comparative Example 1 that does not use PXZ-TRZ or Comparative Example 3 that does not use TBRb. It was much longer. Further, from FIG.
  • the time LT90 until the luminance is attenuated to 90% is 1 hour when PXZ-TRZ is 0%, and 3.5 hours when 10% by weight. 25% by weight was 9.7 hours, and 50% by weight was 12.5 hours. It was found that the addition of PXZ-TRZ to the light emitting layer significantly extended the device durability of the organic electroluminescence device. However, since there was almost no difference in element durability between the PXZ-TRZ concentrations of 25% and 50%, it was found that the concentration of PXZ-TRZ is preferably less than 50%, that is, less than the concentration of mCBP.
  • Example 2 Production and evaluation of organic electroluminescence device using ADN (first organic compound), PXZ-TRZ (second organic compound), and TBRb (third organic compound)
  • ADN first organic compound
  • PXZ-TRZ second organic compound
  • TBRb third organic compound
  • An organic electroluminescence device was prepared and evaluated using ADN as the first organic compound instead of mCBP.
  • ADN has a lowest excited singlet energy level E S1 of 2.83 eV and a lowest excited triplet energy level E T1 of 1.69 eV. From the organic electroluminescence device of Example 2, light emission having a wavelength of about 560 nm was observed. It was confirmed that the organic electroluminescence device of Example 1 achieved significantly higher external quantum efficiency than the organic electroluminescence device of Example 2, and exhibited much better characteristics.
  • Example 3 Quaternary organic electroluminescence using mCBP (first organic compound), PXZ-TRZ (second organic compound), TBRb (third organic compound A), and DBP (third organic compound B) Fabrication and Evaluation of Device
  • an organic electroluminescence device was fabricated using only TBRb as the third organic compound.
  • the following DBP was also used as the third organic compound to fabricate an organic electroluminescence device. And evaluated. DBP has a lowest excited singlet energy level E S1 of 2.0 eV.
  • Each thin film was laminated at a vacuum degree of 5.0 ⁇ 10 ⁇ 5 Pa or less by a vacuum deposition method on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 110 nm was formed.
  • ITO indium tin oxide
  • HATCN was formed on ITO with a thickness of 10 nm
  • TrisPCz was formed thereon with a thickness of 30 nm.
  • mCBP, PXZ-TRZ, TBRb, and DBP were co-evaporated from different deposition sources to form a 15 nm thick layer as a light emitting layer.
  • the concentration of PXZ-TRZ was 10% by weight
  • the concentration of TBRb was 3.0% by weight
  • the concentration of DBP was 1.0% by weight.
  • T2T was formed to a thickness of 10 nm
  • BPyTP2 was formed thereon to a thickness of 55 nm.
  • lithium fluoride (LiF) was vacuum-deposited at 0.8 nm
  • aluminum (Al) was evaporated at a thickness of 100 nm to form a cathode to obtain an organic electroluminescence device.
  • the absorption emission spectra of PXZ-TRZ (second organic compound), TBRb (third organic compound A), and DBP (third organic compound B) are shown in FIG.
  • the CIE chromaticity (x, y) was (0.65, 0.35).
  • the luminance-external quantum efficiency characteristics of the manufactured organic electroluminescence device are shown in FIG. 9, and the voltage-current density characteristics are shown in FIG. It was confirmed that the manufactured organic electroluminescence device achieved an external quantum efficiency as high as 7.6%.
  • Example 4 Production and evaluation of organic electroluminescent device using CBP (first organic compound), ptris-PXZ-TRZ (second organic compound), DBP (third organic compound)
  • CBP first organic compound
  • ptris-PXZ-TRZ second organic compound
  • DBP third organic compound
  • CBP has a lowest excited singlet energy level E S1 of 3.26 eV and a lowest excited triplet energy level E T1 of 2.55 eV
  • ptris-PXZ-TRZ has a lowest excited singlet energy level E S1 of 2.
  • the lowest excited triplet energy level E T1 is 2.16 eV.
  • Each thin film was formed on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 110 nm was formed by the same film forming method as in Example 1.
  • ITO indium tin oxide
  • ⁇ -NPD is formed on ITO to a thickness of 35 nm, and then CBP, ptris-PXZ-TRZ, and DBP are co-evaporated from different evaporation sources to form a layer having a thickness of 15 nm. It was set as the light emitting layer.
  • the concentration of ptris-PXZ-TRZ was 15 wt%
  • the concentration of DBP was 1 wt%.
  • TPBi is formed to a thickness of 65 nm
  • lithium fluoride (LiF) is vacuum-deposited thereon to 0.8 nm
  • aluminum (Al) is evaporated to a thickness of 100 nm to form a cathode.
  • An organic electroluminescence device was obtained.
  • the organic electroluminescent element manufactured, the emission spectrum was measured by setting the luminance 10cd / m 2, 100cd / m 2, 500cd / m 2 or 1000 cd / m 2,. The result is shown in FIG.
  • the CIE chromaticity (x, y) was (0.64, 0.36).
  • the emission spectrum of the delayed fluorescence component of the manufactured organic electroluminescence device is shown in FIG.
  • FIG. 14 shows the luminance-external quantum efficiency characteristics of the manufactured organic electroluminescence device.
  • FIG. 14 also shows the luminance-external quantum efficiency characteristics of an organic electroluminescent element (CBP; 1 wt% -DBP) in which a light emitting layer is formed without using ptris-PXZ-TRZ for comparison. It was confirmed that the organic electroluminescence device of this example achieved an external quantum efficiency as high as 12%.
  • the power efficiency was 18.0 lm / W, and the current efficiency was 16.5 cd / A.
  • Example 5 Preparation and evaluation of organic electroluminescence device using DPEPO (first organic compound), ASAQ (second organic compound), TBPe (third organic compound)
  • DPEPO first organic compound
  • ASAQ second organic compound
  • TBPe third organic compound
  • ASAQ has the lowest excited singlet energy level E S1 of 2.75 eV
  • the triplet energy level E T1 is 2.52 eV
  • TBPe has the lowest excited singlet energy level E S1 of 2.70 eV.
  • Each thin film was formed on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 110 nm was formed by the same film forming method as in Example 1.
  • ITO indium tin oxide
  • ⁇ -NPD was formed on ITO to a thickness of 35 nm
  • mCP was formed thereon to a thickness of 10 nm.
  • DPEPO, ASAQ, and TBPe were co-evaporated from different vapor deposition sources to form a 15 nm thick layer as a light emitting layer.
  • the concentration of ASAQ was 15% by weight
  • the concentration of TBPe was 1% by weight.
  • DPEPO was formed to a thickness of 8 nm, and TPBi was formed thereon to a thickness of 37 nm.
  • lithium fluoride (LiF) was vacuum-deposited by 0.8 nm, and then aluminum (Al) was vapor-deposited to a thickness of 100 nm to form a cathode to obtain an organic electroluminescence device.
  • the emission spectrum of the manufactured organic electroluminescence element is shown in FIG.
  • the CIE chromaticity (x, y) was (0.17, 0.30).
  • FIG. 16 shows the voltage-current density characteristics of the manufactured organic electroluminescence device
  • FIG. 17 shows the current density-external quantum efficiency characteristics. It was confirmed that the manufactured organic electroluminescence device achieved an external quantum efficiency as high as 13.4%.
  • Example 6 Preparation and evaluation of organic electroluminescent device using DPEPO (first organic compound), ASAQ (second organic compound), TBPe (third organic compound) Other than changing the thickness of TPBi to 57 nm Obtained an organic electroluminescence device in the same manner as in Example 5.
  • Table 24 shows the energy difference ⁇ E st between the lowest excited singlet state and the lowest excited triplet state and the photoluminescence quantum efficiency ⁇ PL of the formed light emitting layer.
  • FIG. 18 shows the luminance-external quantum efficiency characteristics of the manufactured organic electroluminescence device, and Table 25 shows the characteristic values.
  • Example 7 Production and evaluation of organic electroluminescence device using mCP (first organic compound), MN04 (second organic compound), and TTPA (third organic compound)
  • mCP first organic compound
  • MN04 second organic compound
  • TTPA third organic compound
  • the following mCP is used as the first organic compound.
  • An organic electroluminescence device was prepared and evaluated using the following MN04 as the second organic compound and TTPA as the third organic compound.
  • mCP has the lowest excited singlet energy level E S1 of 3.30 eV and the lowest excited triplet energy level E T1 of 2.90 eV
  • MN04 has the lowest excited singlet energy level E S1 of 2.60 eV
  • the triplet energy level E T1 is 2.47 eV
  • TTPA has the lowest excited singlet energy level E S1 of 2.34 eV.
  • Each thin film was formed on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 110 nm was formed by the same film forming method as in Example 1.
  • ITO indium tin oxide
  • TAPC was formed on ITO to a thickness of 35 nm, and mCP, MN04, and TTPA were co-deposited from different evaporation sources to form a 15 nm-thick layer as a light emitting layer.
  • the concentration of MN04 was 50% by weight
  • the concentration of TTPA was 1% by weight.
  • TPBi is formed to a thickness of 65 nm
  • lithium fluoride (LiF) is vacuum-deposited thereon to 0.8 nm
  • aluminum (Al) is evaporated to a thickness of 100 nm to form a cathode.
  • Table 24 shows the energy difference ⁇ E st between the lowest excited singlet state and the lowest excited triplet state and the photoluminescence quantum efficiency ⁇ PL of the formed light emitting layer.
  • FIG. 19 shows the luminance-external quantum efficiency characteristics of the manufactured organic electroluminescence device
  • Table 25 shows the characteristic values.
  • Example 8 Production and Evaluation of Organic Electroluminescent Device Using mCBP (First Organic Compound), PXZ-TRZ (Second Organic Compound), and TBRb (Third Organic Compound)
  • mCBP is used as the first organic compound.
  • An organic electroluminescence device was prepared and evaluated using the compound, PXZ-TRZ as the second organic compound, and TBRb as the third organic compound.
  • Each thin film was formed on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 110 nm was formed by the same film forming method as in Example 1.
  • ITO indium tin oxide
  • TAPC is formed on ITO to a thickness of 35 nm, and then mCBP, PXZ-TRZ, and TBRb are co-evaporated from different evaporation sources to form a 30 nm-thick layer as a light emitting layer.
  • concentration of PXZ-TRZ was 25% by weight
  • concentration of TBRb was 1% by weight.
  • T2T was formed to a thickness of 10 nm, and Alq3 was formed thereon to a thickness of 55 nm.
  • LiF lithium fluoride
  • Al aluminum
  • Table 24 shows the energy difference ⁇ Est between the lowest excited singlet state and the lowest excited triplet state and the photoluminescence quantum efficiency ⁇ PL of the formed light emitting layer.
  • FIG. 20 shows the luminance-external quantum efficiency characteristics of the manufactured organic electroluminescence device, and Table 25 shows the characteristic values.
  • Example 9 Production and evaluation of organic electroluminescent device using CBP (first organic compound), ptris-PXZ-TRZ (second organic compound), DBP (third organic compound) An organic electroluminescent device was fabricated and evaluated using 1 organic compound, ptris-PXZ-TRZ as the second organic compound, and DBP as the third organic compound. Each thin film was formed on a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 110 nm was formed by the same film forming method as in Example 1.
  • ITO indium tin oxide
  • TAPC is formed on ITO to a thickness of 35 nm, and then CBP, ptris-PXZ-TRZ, and DBP are co-evaporated from different evaporation sources to form a 15 nm-thick layer. It was. At this time, the concentration of ptris-PXZ-TRZ was 15 wt%, and the concentration of DBP was 1 wt%.
  • TPBi is formed to a thickness of 65 nm, lithium fluoride (LiF) is vacuum-deposited thereon to 0.8 nm, and then aluminum (Al) is evaporated to a thickness of 100 nm to form a cathode. An organic electroluminescence device was obtained.
  • Table 24 shows the energy difference ⁇ E st between the lowest singlet state and the lowest excited triplet state and the photoluminescence quantum efficiency ⁇ PL of the formed light-emitting layer.
  • FIG. 21 shows the luminance-external quantum efficiency characteristics of the manufactured organic electroluminescence device, and Table 25 shows the characteristic values.
  • the organic electroluminescence element of the present invention can obtain high luminous efficiency, it can be applied to various devices as an image display device. For this reason, this invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Inorganic Chemistry (AREA)

Abstract

 陽極、陰極、および陽極と陰極の間に発光層を有する有機エレクトロルミネッセンス素子であって、発光層は、以下の式(A)を満たす第1有機化合物と第2有機化合物と第3有機化合物とを少なくとも含み、第2有機化合物は遅延蛍光体であり、第3有機化合物は発光体であるものは、発光効率が高い。式(A) ES1(A)>ES1(B)>ES1(C)(ES1(A)、ES1(B)、ES1(C)は、それぞれ第1有機化合物、第2有機化合物、第3有機化合物の最低励起一重項エネルギー準位を表す。)

Description

有機エレクトロルミネッセンス素子
 本発明は、高い発光効率を有する有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子の発光効率を高める研究が盛んに行われている。特に、発光層に用いる材料を工夫することにより、発光効率を高める研究が種々なされている。その中には、ホスト材料とゲスト材料(発光性ドーパント)を用い、ホスト材料で生じた励起エネルギーをゲスト材料へ移動させて発光させる有機エレクトロルミネッセンス素子に関する研究も見受けられる。
 特許文献1、2には、ホスト材料と、発光性ドーパントと、アシストドーパントとを発光層の材料に用いた有機エレクトロルミネッセント素子が開示されている。この有機エレクトロルミネッセンス素子において、アシストドーパントは、発光層でのキャリアの移動を補完するものであり、例えば電子移動を補完する場合には、フェニルアミン誘導体のようなホール移動性材料が用いられ、ホール移動を補完する場合には電子移動性材料が用いられる。同文献には、このようなアシストドーパントを用いることにより、キャリアの再結合の確率が高くなり、有機エレクトロルミネッセンス素子の発光効率が高められることが記載されている。
 特許文献3には、三重項励起エネルギーを発光に変換しうる材料からなりかつ第1のエネルギーギャップを有する第1のドーパントと、三重項励起エネルギーを発光に変換しうる材料からなりかつ第1のエネルギーギャップよりも大きい第2のエネルギーギャップを有する第2のドーパントと、第2のエネルギーギャップよりも大きい第3のエネルギーギャップを有するホスト材料とを発光層の材料に用いた有機エレクトロルミネッセンス素子が開示されており、第1のドーパントと第2のドーパントの例としてイリジウムを中心金属とする有機金属錯体が記載されている。同文献には、このような2種類のドーパントとホスト材料とを組み合わせて用いることにより、有機エレクトロルミネッセンス素子の発光効率が向上するとともに駆動電圧が低下しかつ発光寿命が向上することが記載されている。
特開2005-108726号公報 特開2005-108727号公報 特開2006-41395号公報
 しかしながら、特許文献1,2の有機エレクトロルミネッセンス素子は、次のような理由から発光効率を十分に高めることができない。
 すなわち、ホスト材料と発光性ドーパントを用いる有機エレクトロルミネッセンス素子では、発光層にホールおよび電子が注入されると、主としてホスト材料の分子内でホールと電子が再結合して励起エネルギーが発生し、ホスト材料が励起一重項状態および励起三重項状態になる。この励起一重項状態の励起子(一重項励起子)と励起三重項状態の励起子(三重項励起子)との形成確率は、統計的に一重項励起子が25%、三重項励起子が75%である。
 そして、発光性ドーパントが同文献に例示されているようなペリレン誘導体、オキサジアゾール誘導体、アントラセン誘導体である場合、一重項励起子のエネルギーは発光性ドーパントに移動して該発光性ドーパントを励起一重項状態に励起する。励起一重項状態に励起された発光性ドーパントは、その後基底状態に戻るときに蛍光を放射する。これに対して、三重項励起子のエネルギーは発光性ドーパントに移動せず、三重項励起子は発光に寄与せずにそのまま基底状態に戻る。このため、この有機エレクトロルミネッセンス素子では、アシストドーパントによってキャリアの再結合の確率が高くなったとしても、励起子全体の75%を占める三重項励起子のエネルギーが無駄になり、発光効率の向上に限界がある。
 一方、特許文献3の有機エレクトロルミネッセンス素子は、イリジウム有機金属錯体のような三重項励起エネルギーを発光に変換しうる材料を第1のドーパントとして用いる。イリジウム有機金属錯体は、その重金属の効果によってホスト材料から励起三重項エネルギーを受け取ることが知られており、この系においても、第1のドーパントが励起三重項状態のホスト材料および第2のドーパントのエネルギーを受け取って発光に変換しうると考えられる。しかし、励起三重項状態は寿命が長いため、励起状態の飽和や励起三重項状態の励起子との相互作用によるエネルギーの失活が起こり、一般にリン光の量子収率が高くない。このため、三重項励起エネルギーからの発光(りん光)を主に利用する同文献の有機エレクトロルミネッセンス素子は、発光効率を十分に高めることが難しい。
 そこで、本発明者らはこれらの従来技術の課題を考慮して、発光効率が高い有機エレクトロルミネッセンス素子を提供することを目的として鋭意検討を進めた。
 鋭意検討を進めた結果、本発明者らは、アシストドーパントとして遅延蛍光体を用いれば励起三重項状態の遅延蛍光体が励起一重項状態に逆項間交差するため、結果的に三重項励起エネルギーを蛍光に変換することができ、高い発光効率を有する有機エレクトロルミネッセンス素子を提供できることを見出した。本発明者らは、これらの知見に基づいて、上記の課題を解決する手段として、以下の本発明を提供するに至った。
[1] 陽極、陰極、および前記陽極と前記陰極の間に発光層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、前記発光層は、以下の式(A)を満たす第1有機化合物と第2有機化合物と第3有機化合物とを少なくとも含み、前記第2有機化合物は遅延蛍光体であり、前記第3有機化合物は発光体であることを特徴とする有機エレクトロルミネッセンス素子。
式(A) ES1(A)>ES1(B)>ES1(C)
(上式において、ES1(A)は前記第1有機化合物の最低励起一重項エネルギー準位を表し、ES1(B)は前記第2有機化合物の最低励起一重項エネルギー準位を表し、ES1(C)は前記第3有機化合物の最低励起一重項エネルギー準位を表す。)
[2] 前記第2有機化合物は、最低励起一重項状態と77Kの最低励起三重項状態とのエネルギーの差ΔEstが0.3eV以下であることを特徴とする[1]に記載の有機エレクトロルミネッセンス素子。
[3] 前記第2有機化合物は、最低励起一重項状態と77Kの最低励起三重項状態とのエネルギーの差ΔEstが0.08eV以下であることを特徴とする[1]に記載の有機エレクトロルミネッセンス素子。
[4] 前記第1有機化合物と前記第2有機化合物が以下の式(B)を満たすことを特徴とする[1]~[3]のいずれか1項に記載の有機エレクトロルミネッセンス素子。
式(B) ET1(A)>ET1(B)
(上式において、ET1(A)は第1有機化合物の77Kにおける最低励起三重項エネルギー準位を表し、ET1(B)は第2有機化合物の77Kにおける最低励起三重項エネルギー準位を表す。)
[5] 前記第3有機化合物は、最低励起一重項エネルギー準位から基底エネルギー準位に戻るときに蛍光を放射するものであることを特徴とする[1]~[4]のいずれか1項に記載の有機エレクトロルミネッセンス素子。
[6] 前記発光層における前記第2有機化合物の含有量が前記第1有機化合物の含有量よりも小さいことを特徴とする[1]~[5]のいずれか1項に記載の有機エレクトロルミネッセンス素子。
[7] 前記発光層は、前記第3有機化合物として2種以上の化合物を含むことを特徴とする[1]~[6]のいずれか1項に記載の有機エレクトロルミネッセンス素子。
[8] 前記発光層は、前記第1有機化合物と前記第2有機化合物と前記第3有機化合物の他に、1種または2種以上の有機化合物を含むことを特徴とする[1]~[7]のいずれか1項に記載の有機エレクトロルミネッセンス素子。
 本発明の有機エレクトロルミネッセンス素子は、特定の条件を満たす3種類の有機化合物を組み合わせて用いるため、発光効率が極めて高いという特徴を有する。特に、本発明は、第3有機化合物が最低励起一重項エネルギー準位から基底エネルギー準位に戻るときに蛍光を放射する化合物である場合に発光効率を大きく向上させることができる。
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。 PXZ-TRZ薄膜の過渡減衰曲線である。 実施例1および比較例1,2で作製した有機エレクトロルミネッセンス素子の発光スペクトルである。 実施例1および比較例1,2で作製した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を示すグラフである。 実施例1および比較例1で作製した有機エレクトロルミネッセンス素子の過渡減衰曲線である。 実施例1および比較例1,3で作製した有機エレクトロルミネッセンス素子の過渡減衰曲線である。 実施例3で用いた有機化合物の吸収発光スペクトルである。 実施例3で作製した有機エレクトロルミネッセンス素子の発光スペクトルである。 実施例3で作製した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を示すグラフである。 実施例3で作製した有機エレクトロルミネッセンス素子の電圧-電流密度特性を示すグラフである。 実施例4で作製した有機エレクトロルミネッセンス素子の発光スペクトルである。 実施例4で作製した有機エレクトロルミネッセンス素子の遅延蛍光成分の発光スペクトルである。 実施例4で作製した有機エレクトロルミネッセンス素子の過渡減衰曲線である。 実施例4で作製した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を示すグラフである。 実施例5で作製した有機エレクトロルミネッセンス素子の発光スペクトルである。 実施例5で作製した有機エレクトロルミネッセンス素子の電圧-電流密度特性を示すグラフである。 実施例5で作製した有機エレクトロルミネッセンス素子の電流密度-外部量子効率特性を示すグラフである。 実施例6で作製した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を示すグラフである。 実施例7で作製した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を示すグラフである。 実施例8で作製した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を示すグラフである。 実施例9で作製した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を示すグラフである。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべて1Hであってもよいし、一部または全部が2H(デューテリウムD)であってもよい。
[有機エレクトロルミネッセンス素子の層構成]
 本発明の有機エレクトロルミネッセンス素子は、陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、本発明の有機エレクトロルミネッセンス素子は発光層の構成に特徴がある。この構成については、後に詳述する。
 有機層は、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。
[発光層]
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層である。
 本発明の有機エレクトロルミネッセンス素子では、発光層は、以下の式(A)を満たす第1有機化合物と第2有機化合物と第3有機化合物とを少なくとも含み、第2有機化合物は遅延蛍光体であり、第3有機化合物は発光体である。
式(A) ES1(A)>ES1(B)>ES1(C)
 上式において、ES1(A)は第1有機化合物の最低励起一重項エネルギー準位を表し、ES1(B)は第2有機化合物の最低励起一重項エネルギー準位を表し、ES1(C)は第3有機化合物の最低励起一重項エネルギー準位を表す。
 また、本発明における「遅延蛍光体」は、励起三重項状態に遷移した後、励起一重項状態に逆項間交差することができ、励起一重項状態から基底状態に戻るときに蛍光を放射する有機化合物のことを言う。なお、励起三重項状態から励起一重項状態への逆項間交差により生じる光の寿命は、通常の蛍光(即時蛍光)やりん光よりも長くなるため、これらよりも遅延した蛍光として観察される。このため、このような蛍光を「遅延蛍光」と称する。
 このような発光層は、第1有機化合物~第3有機化合物の最低励起一重項エネルギーES1(A),ES1(B),ES1(C)が上記式(A)を満たし、かつ第2有機化合物が遅延蛍光体であることにより、該発光層に注入されたホールと電子との再結合によって生じた励起エネルギーが効率よく蛍光に変換され、高い発光効率を得ることができる。これは以下の理由によるものと考えられる。
 すなわち、この発光層では、ホールおよび電子の再結合によって励起エネルギーが発生すると、発光層に含まれる各有機化合物が基底状態から励起一重項状態および励起三重項状態に遷移する。励起一重項状態の有機化合物(一重項励起子)と励起三重項状態の有機化合物(三重項励起子)との形成確率は、統計的に一重項励起子が25%、三重項励起子が75%である。そして、励起子のうち励起一重項状態の第1有機化合物および第2有機化合物のエネルギーが第3有機化合物に移動し、基底状態の第3有機化合物が励起一重項状態に遷移する。励起一重項状態になった第3有機化合物は、その後基底状態に戻るときに蛍光を放射する。
 このとき、本発明の有機エレクトロルミネッセンス素子では、第2有機化合物が遅延蛍光体であるため、励起三重項状態の第2有機化合物が励起一重項状態に逆項間交差し、この逆項間交差による一重項励起エネルギーも第3有機化合物に移動する。このため、存在比率の大きい励起三重項状態の第2有機化合物のエネルギーも間接的に発光に寄与し、発光層が第2有機化合物を含まない構成に比べて有機エレクトロルミネッセンス素子の発光効率を飛躍的に向上させることができる。
 なお、本発明の有機エレクトロルミネッセンス素子において、発光は主として第3有機化合物から生じるが、発光の一部あるいは部分的に第1有機化合物および第2有機化合物からの発光であってもかまわない。また、この発光は蛍光発光および遅延蛍光発光の両方を含む。
 本発明の有機エレクトロルミネッセンス素子は、上記の式(A)を満たし、かつ第2有機化合物が遅延蛍光体であり、第3有機化合物が発光体である限り、第1有機化合物、第2有機化合物、第2有機化合物の種類と組み合わせは特に制限されない。本発明の有機エレクトロルミネッセンス素子は、下記の式(B)も満たすことが一段と高い発光効率を実現できる点で好ましい。
式(B) ET1(A)>ET1(B)
 上式において、ET1(A)は第1有機化合物の77Kにおける最低励起三重項エネルギー準位を表し、ET1(B)は第2有機化合物の77Kにおける最低励起三重項エネルギー準位を表す。第2有機化合物の77Kにおける最低励起三重項エネルギー準位ET1(B)と、第3有機化合物の77Kにおける最低励起三重項エネルギー準位ET1(C)の関係は特に制限されないが、例えばET1(B)>ET1(C)となるように選択してもよい。
 以下において、好ましい具体例を参照しながら本発明をさらに具体的に説明するが、本発明の範囲は以下の具体例に基づく説明により限定的に解釈されるべきものではない。
(第2有機化合物)
 第2有機化合物として用いる遅延蛍光体としては、特に限定されないが、熱エネルギーの吸収によって励起一重項状態から励起三重項状態に逆項間交差する熱活性化型の遅延蛍光体であることが好ましい。熱活性化型の遅延蛍光体は、デバイスが発する熱を吸収して励起三重項状態から励起一重項へ比較的容易に逆項間交差し、その励起三重項エネルギーを効率よく発光に寄与させることができる。
 また、遅延蛍光体は、最低励起一重項状態でのエネルギー準位Es1と77Kの最低励起三重項状態でのエネルギー準位ET1の差ΔEstが0.3eV以下であることが好ましく、0.2eV以下であることがより好ましく、0.1eV以下であることがさらに好ましく、0.08eV以下であることがさらにより好ましい。エネルギー差ΔEstが前記範囲の遅延蛍光体は、励起三重項状態から励起一重項状態への逆項間交差が比較的容易に起こり、その励起三重項エネルギーを効率よく発光に寄与させることができる。
 第2有機化合物として用いる遅延蛍光体は遅延蛍光を放射しうるものであれば特に制限されないが、例えば下記一般式(1)で表される化合物を好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000001
[一般式(1)において、Ar1~Ar3は各々独立に置換もしくは無置換のアリール基を表し、少なくとも1つは下記一般式(2)で表される基で置換されたアリール基を表す。]
Figure JPOXMLDOC01-appb-C000002
[一般式(2)において、R1~R8は各々独立に水素原子または置換基を表す。ZはO、S、O=CまたはAr4-Nを表し、Ar4は置換もしくは無置換のアリール基を表す。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8は、それぞれ互いに結合して環状構造を形成していてもよい。]
 一般式(1)のAr1~Ar3が表すアリール基を構成する芳香環は、単環であっても融合環であってもよく、具体例としてベンゼン環、ナフタレン環、アントラセン環、フェナントレン環を挙げることができる。アリール基の炭素数は6~40であることが好ましく、6~20であることがより好ましく、6~14であることがさらに好ましい。Ar1~Ar3のうちの少なくとも1つは、一般式(2)で表される基で置換されたアリール基である。Ar1~Ar3のうちの2つが一般式(2)で表される基で置換されたアリール基であってもよいし、3つとも一般式(2)で表される基で置換されたアリール基であってもよい。また、1つのアリール基は2つ以上の一般式(2)で表される基で置換されていてもよい。Ar1~Ar3が表すアリール基に置換しうる置換基の説明と好ましい範囲については、後述のR1~R8がとりうる置換基の説明と好ましい範囲を参照することができる。
 一般式(2)のR1~R8は各々独立に水素原子または置換基を表す。R1~R8はすべてが水素原子であってもよい。また、2個以上が置換基である場合、それらの置換基は同じであっても異なっていてもよい。置換基としては、例えばヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数12~40のアリール置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数12~40の置換もしくは無置換のカルバゾリル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基およびニトロ基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、ハロゲン原子、シアノ基、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数12~40の置換もしくは無置換のカルバゾリル基である。さらに好ましい置換基は、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。
 本明細書でいうアルキル基は、直鎖状、分枝状、環状のいずれであってもよく、より好ましくは炭素数1~6であり、具体例としてメチル基、エチル基、プロピル基、ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、イソプロピル基を挙げることができる。アリール基は、単環でも融合環でもよく、具体例としてフェニル基、ナフチル基を挙げることができる。アルコキシ基は、直鎖状、分枝状、環状のいずれであってもよく、より好ましくは炭素数1~6であり、具体例としてメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、イソプロピポキシ基を挙げることができる。ジアルキルアミノ基の2つのアルキル基は、互いに同一であっても異なっていてもよいが、同一であることが好ましい。ジアルキルアミノ基の2つのアルキル基は、各々独立に直鎖状、分枝状、環状のいずれであってもよく、より好ましくは炭素数1~6であり、具体例としてメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基を挙げることができる。ジアルキルアミノ基の2つのアルキル基は互いに結合してアミノ基の窒素原子とともに環状構造を形成していてもよい。置換基として採用しうるアリール基は、単環でも融合環でもよく、具体例としてフェニル基、ナフチル基を挙げることができる。ヘテロアリール基も、単環でも融合環でもよく、具体例としてピリジル基、ピリダジル基、ピリミジル基、トリアジル基、トリアゾリル基、ベンゾトリアゾリル基を挙げることができる。これらのヘテロアリール基は、ヘテロ原子を介して結合する基であっても、ヘテロアリール環を構成する炭素原子を介して結合する基であってもよい。ジアリールアミノ基の2つのアリール基は、単環でも融合環でもよく、具体例としてフェニル基、ナフチル基を挙げることができる。ジアリールアミノ基の2つのアリール基は互いに結合してアミノ基の窒素原子とともに環状構造を形成していてもよい。例えば、9-カルバゾリル基を挙げることができる。
 一般式(2)におけるR1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8は、それぞれ互いに結合して環状構造を形成していてもよい。環状構造は芳香環であっても脂肪環であってもよく、またヘテロ原子を含むものであってもよい。ここでいうヘテロ原子としては、窒素原子、酸素原子および硫黄原子からなる群より選択されるものであることが好ましい。形成される環状構造の例として、ベンゼン環、ナフタレン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、イミダゾリン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、シクロヘキサジエン環、シクロヘキセン環、シクロペンタエン環、シクロヘプタトリエン環、シクロヘプタジエン環、シクロヘプタエン環などを挙げることができる。
 一般式(2)のZはO、S、O=CまたはAr4-Nを表し、Ar4は置換もしくは無置換のアリール基を表す。Ar4が表すアリール基を構成する芳香環は、単環であっても融合環であってもよく、具体例としてベンゼン環、ナフタレン環、アントラセン環、フェナントレン環を挙げることができる。アリール基の炭素数は6~40であることが好ましく、6~20であることがより好ましい。Ar4が表すアリール基に置換しうる置換基の説明と好ましい範囲については、上記のR1~R8がとりうる置換基の説明と好ましい範囲を参照することができる。
 一般式(2)で表される基は、下記一般式(3)で表される構造を有する基であるか、下記一般式(4)で表される構造を有する基であるか、または、下記一般式(5)で表される構造を有する基であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 一般式(3)~(5)において、R1~R8は各々独立に水素原子または置換基を表す。R1~R8の説明と好ましい範囲については、一般式(2)の対応する記載を参照することができる。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8は、それぞれ互いに結合して環状構造を形成していてもよい。
 一般式(2)のZがAr4-Nであるとき、一般式(1)で表される化合物は、特に下記一般式(6)で表される構造を包含する。
Figure JPOXMLDOC01-appb-C000004
 一般式(6)において、Ar2、Ar3、Ar2’およびAr3’は各々独立に置換もしくは無置換のアリール基を表し、Ar5およびAr5’は各々独立に置換もしくは無置換のアリーレン基を表す。R1~R8は各々独立に水素原子または置換基を表す。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8は、それぞれ互いに結合して環状構造を形成していてもよい。
 一般式(6)のAr2、Ar3、Ar2’およびAr3’の説明と好ましい範囲については、一般式(1)のAr1~Ar3の説明と好ましい範囲を参照することができる。一般式(6)のAr5およびAr5’がとりうるアリーレン基を構成する芳香環は、単環であっても融合環であってもよく、具体例としてベンゼン環、ナフタレン環、アントラセン環、フェナントレン環を挙げることができる。アリーレン基の炭素数は6~40であることが好ましく、6~20であることがより好ましく、6~14であることがさらに好ましい。一般式(6)のR1~R8の説明と好ましい範囲については、一般式(2)のR1~R8の説明と好ましい範囲を参照することができる。
 一般式(6)で表される化合物のうち、Ar2とAr2’が同一であり、Ar3とAr3’が同一であり、Ar5とAr5’が同一である化合物は合成が容易であるという利点がある。
 一般式(1)で表される化合物は、下記一般式(7)で表される構造を有するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 一般式(7)において、R11~R25の少なくとも1つは上記一般式(2)で表される基を表し、その他は各々独立に水素原子または上記一般式(2)以外の置換基を表す。
 一般式(7)のR11~R25の少なくとも1つは一般式(2)で表される基であるが、一般式(2)で表される基の置換数はR11~R25のうちの1~9個であることが好ましく、1~6個であることがより好ましい。例えば1~3個の範囲内で選択したりすることができる。一般式(2)で表される基は、1,3,5-トリアジン環に結合している3つのベンゼン環のそれぞれに結合していてもよいし、いずれか1つまたは2つだけに結合していてもよい。好ましいのは、3つのベンゼン環のそれぞれが一般式(2)で表される基を0~3個有する場合であり、より好ましいのは3つのベンゼン環のそれぞれが一般式(2)で表される基を0~2個有する場合である。例えば、3つのベンゼン環のそれぞれが一般式(2)で表される基を0または1個有する場合を選択したりすることができる。
 一般式(2)で表される基の置換位置はR11~R25のいずれであってもよいが、置換位置はR12~R14、R17~R19およびR22~R24の中から選択することが好ましい。例えば、R12~R14のうちの0~2個、R17~R19のうちの0~2個、R22~R24のうちの0~2個が一般式(2)で表される基である場合や、R12~R14のうちの0または1個、R17~R19のうちの0または1個、R22~R24のうちの0または1個が一般式(2)で表される基である場合を例示することができる。
 R11~R25のうちの1個が一般式(2)で表される基で置換されているとき、その置換位置はR12またはR13であることが好ましい。R11~R25のうちの2個が一般式(2)で表される基で置換されているとき、その置換位置はR12とR14であるか、あるいは、R12またはR13のいずれかとR17またはR18のいずれかであることが好ましい。R11~R25のうちの3個が一般式(2)で表される基で置換されているとき、その置換位置はR12とR14とR17またはR18のいずれかであるか、あるいは、R12またはR13のいずれかとR17またはR18のいずれかとR22またはR23のいずれかであることが好ましい。
 R11~R25のうち、一般式(2)で表される基ではないものは、各々独立に水素原子または一般式(2)以外の置換基を表す。これらはすべてが水素原子であってもよい。また、2個以上が置換基である場合、それらの置換基は同じであっても異なっていてもよい。R11~R25がとりうる置換基の説明と好ましい範囲については、上記のR1~R8がとりうる置換基の説明と好ましい範囲を参照することができる。
 なお、一般式(7)におけるR11とR12、R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19、R19とR20、R21とR22、R22とR23、R23とR24、R24とR25は、それぞれ互いに結合して環状構造を形成していてもよい。環状構造の説明と好ましい範囲についは、一般式(2)の対応する記載を参照することができる。
 一般式(7)に含まれる一般式(2)で表される基は、上記一般式(3)で表される構造を有する基であるか、上記一般式(4)で表される構造を有する基であるか、または、上記一般式(5)で表される構造を有する基であることが好ましい。
 一般式(7)で表される化合物は、分子構造が対称形であることが好ましい。例えば、トリアジン環の中心を軸とする回転対称構造を有することが好ましい。このとき、一般式(7)のR11とR16とR21は同一であり、R12とR17とR22は同一であり、R13とR18とR23は同一であり、R14とR19とR24は同一であり、R15とR20とR25は同一である。例えば、R13とR18とR23が一般式(2)で表される基であって、その他が水素原子である化合物を挙げることができる。
 一般式(2)のZがAr4-Nであるとき、一般式(7)で表される化合物は、特に下記一般式(8)で表される構造を包含する。
Figure JPOXMLDOC01-appb-C000006
 一般式(8)において、R1~R8、R11、R12、R14~R25、R11’、R12’およびR14’~R 25’は各々独立に水素原子または置換基を表す。一般式(8)のR1~R8の説明と好ましい範囲については、一般式(2)のR1~R8の説明と好ましい範囲を参照することができる。一般式(8)のR11、R12、R14~R25、R11’、R12’およびR14’~R 25’の説明と好ましい範囲については、一般式(7)のR11~R25の説明と好ましい範囲を参照することができる。一般式(8)におけるR1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8、R11とR12、R14とR15、R16とR17、R17とR18、R18とR19、R19とR20、R21とR22、R22とR23、R23とR24、R24とR25、R11’とR12’、R14’とR15’、R16’とR17’、R17’とR18’、R18’とR19’、R19’とR20’、R21’とR22’、R22’とR23’、R23’とR24’、R24’とR25’は、それぞれ互いに結合して環状構造を形成していてもよい。環状構造の説明と好ましい範囲についは、一般式(2)の対応する記載を参照することができる。
 以下において、一般式(1)で表される化合物の具体例を例示する。ただし、本発明において用いることができる一般式(1)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 第2有機化合物として用いる遅延蛍光体として、例えば下記一般式(9)で表される化合物も好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000010
 一般式(9)において、Xは酸素原子、硫黄原子、または窒素原子(窒素原子には水素原子または置換基が結合しており、置換基としては炭素数1~10のアルキル基または炭素数6~14のアリール基が好ましい)を表し、R1~R8は各々独立に水素原子または置換基を表す。ただし、R1~R8の少なくとも1つは、各々独立に下記一般式(10)~(14)のいずれかで表される基である。Xは酸素原子または硫黄原子のいずれでもよいが、酸素原子であることが好ましい。
 R1~R8のうち下記一般式(10)~(14)のいずれかで表される基は、1つのみであってもよいし、2つ以上であってもよいが、1~4つであることが好ましく、1つまたは2つであることがより好ましい。一般式(9)中に複数の一般式(10)~(14)で表される基が存在する場合、それらの基は同一であっても異なっていてもよい。
 下記一般式(10)~(14)のいずれかで表される基がR1~R8のうちの1つのみであるときは、R2またはR3が下記一般式(10)~(14)のいずれかで表される基であることが好ましく、R3が下記一般式(10)~(14)のいずれかで表される基であることがより好ましい。
 一方、R1~R8のうちの2つ以上が下記一般式(10)~(14)のいずれかで表される基であるときは、下記一般式(10)~(14)のいずれかで表される基は、R1~R4の少なくとも1つと、R5~R8の少なくとも1つであることが好ましい。このとき、下記一般式(10)~(14)のいずれかで表される基は、R1~R4のうちの1~3つ、R5~R8のうちの1~3つであることが好ましく、R1~R4のうちの1または2つ、R5~R8のうちの1または2つであることがより好ましい。R1~R4のうち一般式(10)~(14)のいずれかで表される基の数と、R5~R8のうち一般式(10)~(14)のいずれかで表される基の数は同じであっても異なっていてもよいが、同じであることが好ましい。R1~R4のうちでは、R2~R4の少なくとも1つが一般式(10)~(14)のいずれかで表される基であることが好ましく、少なくともR3が一般式(10)~(14)のいずれかで表される基であることがより好ましい。また、R5~R8のうちでは、R5~R7の少なくとも1つが一般式(10)~(14)のいずれかで表される基であることが好ましく、少なくともR6が一般式(10)~(14)のいずれかで表される基であることがより好ましい。好ましい化合物は、一般式(9)のR3とR6が一般式(10)~(14)のいずれかで表される基である化合物、一般式(9)のR2とR7が一般式(10)~(14)のいずれかで表される基である化合物、一般式(9)のR2、R3、R6、R7が一般式(10)~(14)のいずれかで表される基である化合物であり、さらに好ましい化合物はR3とR6が一般式(10)~(14)のいずれかで表される基である化合物である。一般式(9)中に存在する複数の一般式(10)~(14)のいずれかで表される基は、同一であっても異なっていてもよいが、同一であることが好ましい。また、一般式(9)で表される基は対称構造をとっていることも好ましい。すなわち、R1とR8、R2とR7、R3とR6、R4とR5は、それぞれ同一であることが好ましい。
 一般式(9)の化合物は、R3とR6の両方が下記一般式(10)~(14)のいずれかで表される基であることがより好ましい。好ましい化合物は、一般式(9)のR3またはR6の少なくとも1つが下記一般式(10)または(11)で表される基である化合物である。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 一般式(10)~(14)において、L20,L30,L40、L50,L60は各々独立に単結合または二価の連結基を表し、R21~R28、R31~R38、R3a、R3b、R41~R48、R4a、R51~R58、R61~R68は、各々独立に水素原子または置換基を表す。
 L20,L30,L40、L50,L60は、単結合であっても二価の連結基であってもよいが、単結合であることが好ましい。一般式(9)のR1~R8の少なくとも1つが、L20,L30,L40、L50,L60が連結基である一般式(10)~(14)で表される基であるとき、一般式(9)に存在する連結基の数は、1つのみであってもよいし、2つ以上であってもよい。一般式(9)中に複数の連結基が存在する場合、それらの連結基は同一であっても異なっていてもよい。L20,L30,L40、L50,L60がとりうるニ価の連結基としては、例えば、アルケニレン基、アルキニレン基、アリーレン基、チオフェンジイル基、これらの組み合わせからなる連結基を挙げることができる。アルキレン基やアルケニレン基の炭素数は2~10であることが好ましく、2~6であることがより好ましく、2~4であることがさらに好ましい。また、アリーレン基の炭素数は6~10であることが好ましく、6であることがより好ましく、パラフェニレン基がさらにより好ましい。チオフェンジイル基として、3,4-チオフェンジイル基、2,5-チオフェンジイル基を挙げることができる。好ましい連結基の一般式として-(CRa=CRb)n-で表される連結基を挙げることができる。ここでRaおよびRbは、各々独立に水素原子またはアルキル基を表す。アルキル基の炭素数は1~6であることが好ましく、1~3であることがより好ましい。nは1~5であることが好ましく、1~3であることがより好ましく、1または2であることがさらに好ましい。例えば、-CH=CH-や-(CH=CH)2-を挙げることができる。
 一般式(10)~(14)における置換基の数は特に制限されない。一般式(10)~(14)のそれぞれにおいて、R21~R28、R31~R38、R3a、R3b、R41~R48、R4a、R51~R58、R61~R68のすべてが無置換(すなわち水素原子)であってもよいが、R21~R28、R31~R38、R41~R48、R51~R58、R61~R68の少なくとも1つが置換基であることが好ましく、R23、R26、R33、R36、R43、R46、R53、R56、R63、R66の少なくとも1つが置換基であることがより好ましい。また、一般式(10)~(14)に複数の置換基が存在する場合、それらの置換基は同一であっても異なっていてもよい。
 R21~R28、R31~R38、R3a、R3b、R41~R48、R4a、R51~R58、R61~R68がとりうる置換基と、R1~R8とりうる置換基として、例えばヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基およびニトロ基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、ハロゲン原子、シアノ基、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基、炭素数1~20のジアルキル置換アミノ基である。さらに好ましい置換基は、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。
 また、R23、R26、R33、R36、R43、R46、R53、R56、R63、R66の少なくとも1つは、各々独立に上記一般式(10)~(14)のいずれかで表される基であることが好ましい。
 R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8、R21とR22、R22とR23、R23とR24、R24とR25、R25とR26、R26とR27、R27とR28、R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R3aとR3b、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R61とR62、R62とR63、R63とR64、R65とR66、R66とR67、R67とR68は互いに結合して環状構造を形成していてもよい。環状構造は芳香環であっても脂肪環であってもよく、またヘテロ原子を含むものであってもよく、さらに環状構造は2環以上の縮合環であってもよい。ここでいうヘテロ原子としては、窒素原子、酸素原子および硫黄原子からなる群より選択されるものであることが好ましい。形成される環状構造の例として、ベンゼン環、ナフタレン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、イミダゾリン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、シクロヘキサジエン環、シクロヘキセン環、シクロペンタエン環、シクロヘプタトリエン環、シクロヘプタジエン環、シクロヘプタエン環などを挙げることができる。
 以下において、一般式(9)で表される化合物の具体例を例示する。ただし、本発明において用いることができる一般式(9)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 第2有機化合物として、遅延蛍光を放射しうる以下に示す発光材料も好ましく用いることができる。
 好ましい発光材料として下記一般式で表される化合物を挙げることができる。また、WO2013/154064号公報の段落0008~0048および0095~0133の記載を始めとする該公報の明細書全文を、本願明細書の一部としてここに引用する。
Figure JPOXMLDOC01-appb-C000017
[一般式(101)において、R1~R5の少なくとも1つはシアノ基を表し、R1~R5の少なくとも1つは下記一般式(111)で表される基を表し、残りのR1~R5は水素原子または置換基を表す。]
Figure JPOXMLDOC01-appb-C000018
[一般式(111)において、R21~R28は、各々独立に水素原子または置換基を表す。ただし、下記<A>か<B>の少なくとも一方を満たす。
<A> R25およびR26は一緒になって単結合を形成する。
<B> R27およびR28は一緒になって置換もしくは無置換のベンゼン環を形成するのに必要な原子団を表す。]
 ここで、R1~R5の少なくとも1つは下記一般式(112)~(115)のいずれかで表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
[一般式(112)において、R31~R38は、各々独立に水素原子または置換基を表す。]
Figure JPOXMLDOC01-appb-C000020
[一般式(113)において、R41~R46は、各々独立に水素原子または置換基を表す。]
Figure JPOXMLDOC01-appb-C000021
[一般式(114)において、R51~R62は、各々独立に水素原子または置換基を表す。]
Figure JPOXMLDOC01-appb-C000022
[一般式(115)において、R71~R80は、各々独立に水素原子または置換基を表す。]
 例えば以下の表に示す化合物を挙げることができる。なお、以下の例示化合物において、一般式(112)~(115)のいずれかで表される基が分子内に2つ以上存在している場合、それらの基はすべて同一の構造を有する。また、表中の式(121)~(124)は以下の式を表し、nは繰り返し単位数を表す。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 好ましい発光材料として、下記の化合物を挙げることもできる。
[1] 下記一般式(131)で表される化合物。
Figure JPOXMLDOC01-appb-C000043
[一般式(131)において、R1~R5の0~1つはシアノ基であり、R1~R5の1~5つは下記一般式(132)で表される基であり、残りのR1~R5は水素原子または上記以外の置換基である。]
Figure JPOXMLDOC01-appb-C000044
[一般式(132)において、R11~R20は各々独立に水素原子または置換基を表す。R11とR12、R12とR13、R13とR14、R14とR15、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20は互いに結合して環状構造を形成していてもよい。L12は置換もしくは無置換のアリーレン基、または、置換もしくは無置換のヘテロアリーレン基を表す。]
[2] 前記一般式(132)で表される基が、下記一般式(133)~(138)のいずれかで表される基であることを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
[一般式(133)~(138)において、R21~R24、R27~R38、R41~R48、R51~R58、R61~R65、R71~R79、R81~R90は、各々独立に水素原子または置換基を表す。R21とR22、R22とR23、R23とR24、R27とR28、R28とR29、R29とR30、R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R61とR62、R62とR63、R63とR64、R64とR65、R54とR61、R55とR65、R71とR72、R72とR73、R73とR74、R74とR75、R76とR77、R77とR78、R78とR79、R81とR82、R82とR83、R83とR84、R85とR86、R86とR87、R87とR88、R89とR90は互いに結合して環状構造を形成していてもよい。L13~L18は、各々独立に置換もしくは無置換のアリーレン基、または、置換もしくは無置換のヘテロアリーレン基を表す。]
[3] 一般式(131)のR3が、シアノ基であることを特徴とする[1]または[2]に記載の化合物。
[4] 一般式(131)のR1とR4が前記一般式(132)で表される基であることを特徴とする[1]~[3]のいずれか1項に記載の化合物。
[5] 前記一般式(132)のL12が、フェニレン基であることを特徴とする[1]~[4]のいずれか1項に記載の化合物。
[6] 前記一般式(132)で表される基が、前記一般式(133)で表される基であることを特徴とする[1]~[5]のいずれか1項に記載の化合物。
[7] 前記一般式(133)のL13が、1,3-フェニレン基であることを特徴とする[6]に記載の化合物。
[8] 前記一般式(132)で表される基が、前記一般式(134)で表される基であることを特徴とする[1]~[5]のいずれか1項に記載の化合物。
[9] 前記一般式(134)のL14が、1,4-フェニレン基であることを特徴とする[8]に記載の化合物。
[10] 前記一般式(132)で表される基が、前記一般式(138)で表される基であることを特徴とする[1]~[5]のいずれか1項に記載の化合物。
[11] 前記一般式(132)のL18が、1,4-フェニレン基である[10]に記載の化合物。
 例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 好ましい発光材料として下記一般式で表される化合物を挙げることもできる。また、WO2013/011954号公報の段落0007~0047および0073~0085の記載を始めとする該公報の明細書全文を、本願明細書の一部としてここに引用する。
Figure JPOXMLDOC01-appb-C000053
[一般式(141)において、R1、R2、R3、R4、R5、R6、R7、R8およびR17は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。R9、R10、R11、R12、R13、R14、R15およびR16は、各々独立に水素原子またはα位に非共有電子対を持たない電子吸引基である。Zは、単結合または>C=Yを表し、Yは、O、S、C(CN)2またはC(COOH)2を表す。ただし、Zが単結合であるとき、R9、R10、R11、R12、R13、R14、R15およびR16の少なくとも1つはα位に非共有電子対を持たない電子吸引基である。]
 具体例として、以下の表に記載される化合物を挙げることもできる。表中において、D1~D3は下記の電子供与基で置換されたアリール基を表し、A1~A5は下記の電子吸引基を表し、Hは水素原子を表し、Phはフェニル基を表す。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
 好ましい発光材料として下記一般式で表される化合物を挙げることもできる。また、WO2013/011955号公報の段落0007~0033および0059~0066の記載を始めとする該公報の明細書全文を、本願明細書の一部としてここに引用する。
Figure JPOXMLDOC01-appb-C000065
[一般式(151)において、R1、R2、R3、R4、R5、R6、R7およびR8は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。R9、R10、R11、R12、R13、R14、R15およびR16は、各々独立に水素原子または電子吸引基であって、少なくとも1つは電子吸引基を表す。]
 具体例として、以下の表に記載される化合物を挙げることができる。表中において、D1~D10は下記の骨格を有する無置換の電子供与基を表す。
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
 好ましい発光材料として下記一般式で表される化合物を挙げることもできる。また、WO2013/081088号公報の段落0008~0071および0118~0133の記載を始めとする該公報の明細書全文を、本願明細書の一部としてここに引用する。
Figure JPOXMLDOC01-appb-C000071
[一般式(161)において、Y1、Y2およびY3は、いずれか2つが窒素原子で残りの1つがメチン基を表すか、または、Y1、Y2およびY3のすべてが窒素原子を表す。Z1およびZ2は、各々独立に水素原子または置換基を表す。R1~R8は、各々独立に水素原子または置換基を表し、R1~R8の少なくとも1つは、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾリル基を表す。また、一般式(161)で表される化合物は分子中にカルバゾール構造を少なくとも2つ含む。]
 具体例として、下記の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
 好ましい発光材料として下記一般式で表される化合物を挙げることもできる。また、特開2013-116975号公報の段落0008~0020および0038~0040の記載を始めとする該公報の明細書全文を、本願明細書の一部としてここに引用する。
Figure JPOXMLDOC01-appb-C000088
[一般式(181)において、R1、R2、R4~R8、R11、R12およびR14~R18は、各々独立に水素原子または置換基を表す。]
 例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000089
 好ましい発光材料として、下記の化合物を挙げることもできる。
[1] 下記一般式(191)で表される化合物。
Figure JPOXMLDOC01-appb-C000090
[一般式(191)において、Ar1は置換もしくは無置換のアリーレン基を表し、Ar2およびAr3は各々独立に置換もしくは無置換のアリール基を表す。R1~R8は各々独立に水素原子または置換基を表すが、R1~R8の少なくとも1つは置換もしくは無置換のジアリールアミノ基である。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8は、それぞれ互いに結合して環状構造を形成していてもよい。]
[2] 一般式(191)のR1~R4の少なくとも1つが置換もしくは無置換のジアリールアミノ基であって、R5~R8の少なくとも1つが置換もしくは無置換のジアリールアミノ基であることを特徴とする[1]に記載の化合物。
[3] 一般式(191)のR3およびR6が置換もしくは無置換のジアリールアミノ基であることを特徴とする[2]に記載の化合物。
[4] 一般式(191)のR1~R8の少なくとも1つが置換もしくは無置換のジフェニルアミノ基であることを特徴とする[1]~[3]のいずれか1項に記載の化合物。
[5] 一般式(191)のAr2およびAr3が各々独立に置換もしくは無置換のフェニル基であることを特徴とする[1]~[4]のいずれか1項に記載の化合物。
[6] 一般式(191)のAr1が各々独立に置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基、または置換もしくは無置換のアントラセニレン基であることを特徴とする[1]~[5]のいずれか1項に記載の化合物。
[7] 下記一般式(192)で表される構造を有することを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000091
[一般式(192)において、R1~R8およびR11~R24は各々独立に水素原子または置換基を表すが、R1~R8の少なくとも1つは置換もしくは無置換のジアリールアミノ基である。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8、R11とR12、R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19、R19とR20、R21とR22、R23とR24は、それぞれ互いに結合して環状構造を形成していてもよい。]
[8] 一般式(192)のR1~R4の少なくとも1つが置換もしくは無置換のジアリールアミノ基であって、R5~R8の少なくとも1つが置換もしくは無置換のジアリールアミノ基であることを特徴とする[7]に記載の化合物。
[9] 一般式(192)のR3およびR6が置換もしくは無置換のジアリールアミノ基であることを特徴とする[8]に記載の化合物。
 具体例として、下記の化合物を挙げることができる。Phはフェニル基を表す。
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
 好ましい発光材料として、下記の化合物を挙げることもできる。
[1]下記一般式(201)で表される化合物。
Figure JPOXMLDOC01-appb-C000096
(上式において、R1~R8は各々独立に水素原子または置換基を表すが、R1~R8の少なくとも1つは置換もしくは無置換のカルバゾリル基である。Ar1~Ar3は各々独立に置換もしくは無置換の芳香環または複素芳香環を表す。)
[2]前記一般式(201)のR3およびR6の少なくとも一つが置換もしくは無置換のカルバゾリル基である[1]の化合物。
[3]前記カルバゾリル基が、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基または4-カルバゾリル基である[1]または[2]に記載の化合物。
[4]前記カルバゾリル基が、カルバゾール環構造中の窒素原子に置換基を有する[1]~[3]のいずれか一つの化合物。。
[5]前記一般式(201)のAr1、Ar2およびAr3の少なくとも一つが、ベンゼン環またはナフタレン環である[1]~[4]のいずれか一つの化合物。
[6]前記一般式(201)のAr1、Ar2およびAr3が同一の芳香環または複素芳香環である[1]~[5]のいずれか一つの化合物。
[7]前記一般式(201)のAr1、Ar2およびAr3がベンゼン環である[1]~[6]のいずれか一つの化合物。
 例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
 好ましい発光材料として下記一般式で表される化合物を挙げることもできる。また、WO2013/133359号公報の段落0007~0032および0079~0084の記載を始めとする該公報の明細書全文を、本願明細書の一部としてここに引用する。
Figure JPOXMLDOC01-appb-C000121
[一般式(211)において、Z1、Z2およびZ3は、各々独立に置換基を表す。]
Figure JPOXMLDOC01-appb-C000122
[一般式(212)において、Ar1、Ar2、Ar3、Ar4、Ar5およびAr6は、各々独立に置換もしくは無置換のアリール基を表す。]
 一般式(212)で表される化合物の具体例として、以下の構造式で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000123
 一般式(212)で表される化合物の具体例として、以下の表に記載される化合物を挙げることができる。ここでは、Ar1、Ar2、Ar3、Ar4、Ar5およびAr6はすべて同一であり、これらをまとめてArと表記している。
Figure JPOXMLDOC01-appb-T000124
 好ましい発光材料として下記一般式で表される化合物を挙げることもできる。また、WO2013/161437号公報の段落0008~0054および0101~0121の記載を始めとする該公報の明細書全文を、本願明細書の一部としてここに引用する。
Figure JPOXMLDOC01-appb-C000125
[一般式(221)において、R1~R10は、各々独立に水素原子または置換基を表すが、R1~R10のうちの少なくとも1つは置換もしくは無置換のアリール基、置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換の9-カルバゾリル基である。R1とR2、R2とR3、R3とR4、R4とR5、R5とR6、R6とR7、R7とR8、R8とR9、R9とR10は、それぞれ互いに結合して環状構造を形成してもよい。]
 具体例として、以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
 好ましい発光材料として下記一般式で表される化合物を挙げることもできる。また、特開2014-9352号公報の段落0007~0041および0060~0069の記載を始めとする該公報の明細書全文を、本願明細書の一部としてここに引用する。
Figure JPOXMLDOC01-appb-C000129
[一般式(231)において、R1~R4は各々独立に水素原子または置換もしくは無置換の(N,N-ジアリールアミノ)アリール基を表し、R1~R4の少なくとも1つは置換もしくは無置換の(N,N-ジアリールアミノ)アリール基を表す。前記(N,N-ジアリールアミノ)アリール基のジアリールアミノ部分を構成する2つのアリール基は互いに連結していてもよい。W1、W2、X1、X2、Y1,Y2、Z1およびZ2は、各々独立に炭素原子または窒素原子を表す。m1~m4は各々独立に0、1または2を表す。]
 例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
 好ましい発光材料として下記一般式で表される化合物を挙げることもできる。また、特開2014-9224号公報の段落0008~0048および0067~0076の記載を始めとする該公報の明細書全文を、本願明細書の一部としてここに引用する。
Figure JPOXMLDOC01-appb-C000134
[一般式(241)において、R1~R6は各々独立に水素原子または置換基を表し、R1~R6の少なくとも1つは置換もしくは無置換の(N,N-ジアリールアミノ)アリール基を表す。前記(N,N-ジアリールアミノ)アリール基のジアリールアミノ部分を構成する2つのアリール基は互いに連結していてもよい。X1~X6およびY1~Y6は、各々独立に炭素原子または窒素原子を表す。n1、n2、p1、p2、q1およびq2は各々独立に0、1または2を表す。]
 例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
 好ましい発光材料として、下記の化合物を挙げることもできる。
[1] 下記一般式(251)で表される化合物。
Figure JPOXMLDOC01-appb-C000139
[一般式(251)において、A1~A7のうちの1~4つはNを表し、残りは各々独立にC-Rを表す。Rは非芳香族基を表す。Ar1~Ar3は各々独立に置換もしくは無置換のアリーレン基を表す。Zは単結合または連結基を表す。]
[2] 前記一般式(251)で表される化合物が下記一般式(252)で表される構造を有することを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000140
[一般式(252)において、A1~A7のうちの1~4つはNを表し、残りは各々独立にC-Rを表す。Rは非芳香族基を表す。Ar1は置換もしくは無置換のアリーレン基を表す。R11~R14およびR17~R20は各々独立に水素原子または置換基を表す。R11とR12、R12とR13、R13とR14、R17とR18、R18とR19、R19とR20は互いに結合して環状構造を形成していてもよい。Z1は単結合または連結鎖長原子数が1または2の連結基を表す。]
[3] 前記一般式(251)で表される化合物が下記一般式(253)で表される構造を有することを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000141
[一般式(253)において、A1~A7のうちの2~4つはNを表し、残りはC-Rを表す。Rは非芳香族基を表す。Ar1は置換もしくは無置換のアリーレン基を表す。Yは置換もしくは無置換のカルバゾール-9-イル基、置換もしくは無置換の10H-フェノキサジン-10-イル基、置換もしくは無置換の10H-フェノチアジン-10-イル基、または置換もしくは無置換の10H-フェナジン-5-イル基を表す。]
[4] 前記一般式(253)のYが下記一般式(254)~(257)のいずれかで表される基であることを特徴とする[3]に記載の化合物。
Figure JPOXMLDOC01-appb-C000142
[一般式(254)~(257)において、R21~R24、R27~R38、R41~R48、R51~R58、R61~R65は、各々独立に水素原子または置換基を表す。R21とR22、R22とR23、R23とR24、R27とR28、R28とR29、R29とR30、R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R61とR62、R62とR63、R63とR64、R64とR65、R54とR61、R55とR65は互いに結合して環状構造を形成していてもよい。]
[5] 前記一般式(253)のYが下記一般式(258)で表される基であることを特徴とする[3]に記載の化合物。
Figure JPOXMLDOC01-appb-C000143
[一般式(258)において、R21'~R24'およびR27'~R30は、各々独立に水素原子または置換基を表すが、R23'とR28'の少なくとも一方は置換基である。R21'とR22'、R22'とR23'、R23'とR24'、R27'とR28'、R28'とR29'、R29'とR30'は互いに結合して環状構造を形成していてもよい。]
[6] 一般式(258)において、R23'とR28'の少なくとも一方は置換もしくは無置換のジアリールアミノ基、または置換もしくは無置換のカルバゾール-9-イル基であることを特徴とする[5]に記載の化合物。
[7] 前記一般式(253)のYが前記一般式(255)で表される基であることを特徴とする[4]に記載の化合物。
 例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
 好ましい発光材料として、下記の化合物を挙げることもできる。
[1] 下記一般式(271)で表される化合物。
Figure JPOXMLDOC01-appb-C000149
[一般式(271)において、R1~R10は各々独立に水素原子または置換基を表す。ただし、R1~R10の少なくとも1つは、各々独立に下記一般式(272)で表される基である。R1とR2、R2とR3、R3とR4、R4とR5、R6とR7、R7とR8、R8とR9、R9とR10は互いに結合して環状構造を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000150
[一般式(272)において、R11~R20は各々独立に水素原子または置換基を表す。R11とR12、R12とR13、R13とR14、R14とR15、R15とR16、R16とR17、R17とR18、R18とR19、R19とR20は互いに結合して環状構造を形成していてもよい。Phは置換または無置換のフェニレン基を表す。n1は0または1を表す。]
[2] 前記一般式(272)で表される基が、下記一般式(273)~(278)のいずれかで表される基であることを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
[一般式(273)~(278)において、R21~R24、R27~R38、R41~R48、R51~R58、R61~R65、R71~R79、R81~R90は、各々独立に水素原子または置換基を表す。R21とR22、R22とR23、R23とR24、R27とR28、R28とR29、R29とR30、R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R61とR62、R62とR63、R63とR64、R64とR65、R54とR61、R55とR65、R71とR72、R72とR73、R73とR74、R74とR75、R76とR77、R77とR78、R78とR79、R81とR82、R82とR83、R83とR84、R85とR86、R86とR87、R87とR88、R89とR90は互いに結合して環状構造を形成していてもよい。Phは置換または無置換のフェニレン基を表す。n1は0または1を表す。]
[3] 一般式(271)のR1~R5のうちの少なくとも1つと、R6~R10のうちの少なくとも1つが、前記一般式(272)で表される基であることを特徴とする[1]または[2]に記載の化合物。
[4] 一般式(271)のR3とR8が、前記一般式(272)で表される基であることを特徴とする[3]に記載の化合物。
[5] 前記一般式(272)で表される基が、前記一般式(274)で表される基であることを特徴とする[1]~[4]のいずれか1項に記載の化合物。
[6] 前記一般式(272)で表される基が、前記一般式(273)で表される基であることを特徴とする[1]~[4]のいずれか1項に記載の化合物。
[7] 前記一般式(273)のR21~R24、R27~R30の少なくとも1つが置換基であることを特徴とする[6]に記載の化合物。
[8] 前記置換基が、前記一般式(273)~(278)のいずれかで表される基であることを特徴とする[7]に記載の化合物。
[9] 前記一般式(273)のR23およびR28の少なくとも1つが前記置換基であることを特徴とする[8]に記載の化合物。
 例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
 好ましい発光材料として、下記の化合物を挙げることもできる。
[1] 下記一般式(281)で表される化合物からなる化合物。
Figure JPOXMLDOC01-appb-C000177
[一般式(281)において、Xは酸素原子または硫黄原子を表す。R1~R8は各々独立に水素原子または置換基を表す。ただし、R1~R8の少なくとも1つは、各々独立に下記一般式(282)~(287)のいずれかで表される基である。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8、R8とR9、R9とR1は互いに結合して環状構造を形成していてもよい。R9は置換基を表す。R9がホウ素原子と単結合を形成していない孤立電子対を有する原子を含むとき、該原子はホウ素原子と配位結合して環状構造を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
[一般式(282)~(287)において、L12~L17は各々独立に単結合または二価の連結基を表し、*は一般式(281)におけるベンゼン環への結合部位を表す。R11~R20、R21~R28、R31~R38、R3a、R3b、R41~R48、R4a、R51~R58、R61~R68は、各々独立に水素原子または置換基を表す。R11とR12、R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19、R19とR20、R21とR22、R22とR23、R23とR24、R24とR25、R25とR26、R26とR27、R27とR28、R31とR32、R32とR33、R33とR34、R35とR36、R36とR37、R37とR38、R3aとR3b、R41とR42、R42とR43、R43とR44、R45とR46、R46とR47、R47とR48、R51とR52、R52とR53、R53とR54、R55とR56、R56とR57、R57とR58、R61とR62、R62とR63、R63とR64、R65とR66、R66とR67、R67とR68はそれぞれ互いに結合して環状構造を形成していてもよい。]
[2] 一般式(281)のR1~R8の少なくとも1つが前記一般式(283)~(287)のいずれかで表される基であることを特徴とする[1]に記載の化合物。
[3] 一般式(281)のR1~R8の少なくとも1つが前記一般式(283)で表される基である場合に、前記一般式(283)のR21~R28のうち少なくとも1つは置換基であることを特徴とする[1]または[2]に記載の化合物。
[4] 一般式(281)のR2、R3、R6、およびR7の少なくとも1つが前記一般式(282)~(287)のいずれかで表される基であることを特徴とする[1]~[3]のいずれか1項に記載の化合物。
[5] 一般式(281)のR3およびR6の少なくとも1つが前記一般式(282)~(287)のいずれかで表される基であることを特徴とする[4]に記載の化合物。
[6] 一般式(281)のR3とR6が、各々独立に前記一般式(282)~(287)のいずれかで表される基であることを特徴とする[5]に記載の化合物。
[7] 前記一般式(282)のR11~R20の少なくとも1つ、前記一般式(283)のR21~R28の少なくとも1つ、前記一般式(284)のR31~R38の少なくとも1つと、R3aおよびR3bの少なくとも1つ、前記一般式(285)のR41~R48の少なくとも1つ、前記一般式(286)のR51~R58の少なくとも1つ、および前記一般式(287)のR61~R68の少なくとも1つが置換基であることを特徴とする[1]~[6]のいずれか1項に記載の化合物。
[8] 前記一般式(282)のR13およびR18の少なくとも一方、前記一般式(283)のR23およびR26の少なくとも一方、前記一般式(284)のR33およびR36の少なくとも一方と、R3aおよびR3bの少なくとも一方、前記一般式(285)のR43およびR46の少なくとも一方、前記一般式(286)のR53およびR56の少なくとも一方、並びに前記一般式(287)のR63およびR66の少なくとも一方が置換基であることを特徴とする[7]に記載の化合物。
[9] 前記一般式(282)のR13およびR18の少なくとも一方、前記一般式(283)のR23およびR26の少なくとも一方、前記一般式(284)のR33およびR36の少なくとも一方と、R3aおよびR3bの少なくとも一方、前記一般式(285)のR43およびR46の少なくとも一方、前記一般式(286)のR53およびR56の少なくとも一方、並びに前記一般式(287)のR63およびR66の少なくとも一方が、前記一般式(282)~(287)のいずれかで表される基であることを特徴とする[8]に記載の化合物。
[10] 前記一般式(282)~(287)のL12~L17が、単結合であることを特徴とする[1]~[9]のいずれか1項に記載の化合物。
[11] 一般式(281)のXが、酸素原子であることを特徴とする[1]~[10]のいずれか1項に記載の化合物。
[12] 一般式(281)のR9が、下記一般式(a)で表される基であることを特徴とする[1]~[11]のいずれか1項に記載の化合物。
Figure JPOXMLDOC01-appb-C000180
[式(a)において、*は前記一般式(281)におけるホウ素原子への結合部位を表す。R9a、R9b、R9c、R9d、R9eは、各々独立に水素原子または置換基を表す。R9aとR9b、R9bとR9c、R9cとR9d、R9dとR9eはそれぞれ互いに結合して環状構造を形成していてもよい。]
[13] 前記一般式(a)のR9aとR9eが置換基であることを特徴とする[12]に記載の化合物。
[14] 一般式(281)のR1~R8の少なくとも1つが前記一般式(284)で表される基であることを特徴とする[1]~[13]のいずれか1項に記載の化合物。
[15] 一般式(281)のR3とR6、またはR2とR7が、前記一般式(284)で表される基であることを特徴とする[1]~[4]、[7]~[14]のいずれか1項に記載の化合物。
[16] 前記一般式(284)のR3aとR3bが、置換基であることを特徴とする[14]または[15]に記載の化合物。
[17] 前記置換基が、炭素数1~15のアルキル基またはフェニル基であることを特徴とする[14]~[16]のいずれか1項に記載の化合物。
[18] 前記一般式(284)のR3aとR3bが互いに結合して環状構造を形成していることを特徴とする[14]~[16]のいずれか1項に記載の化合物。
 例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
 好ましい発光材料として、下記の化合物を挙げることもできる。
[1] 下記一般式(291)で表される化合物。
Figure JPOXMLDOC01-appb-C000194
[一般式(291)において、XはO、S、N-R11、C=O、C(R12)(R13)またはSi(R14)(R15)を表し、YはO、SまたはN-R16を表す。Ar1は置換もしくは無置換のアリーレン基を表し、Ar2は芳香環または複素芳香環を表す。R1~R8およびR11~R16は、各々独立に水素原子または置換基を表す。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8は、それぞれ互いに結合して環状構造を形成していてもよい。]
[2] 前記一般式(291)で表される化合物が、下記一般式(292)で表される化合物であることを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000195
[一般式(292)において、XはO、S、N-R11、C=O、C(R12)(R13)またはSi(R14)(R15)を表し、YはO、SまたはN-R16を表す。Ar2は芳香環または複素芳香環を表す。R1~R8、R11~R16およびR21~R24は、各々独立に水素原子または置換基を表す。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8、R21とR22、R23とR24は、それぞれ互いに結合して環状構造を形成していてもよい。]
[3] 前記一般式(291)で表される化合物が、下記一般式(293)で表される化合物であることを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000196
[一般式(293)において、XはO、S、N-R11、C=O、C(R12)(R13)またはSi(R14)(R15)を表し、YはO、SまたはN-R16を表す。R1~R8、R11~R16、R21~R24およびR31~R34は、各々独立に水素原子または置換基を表す。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8、R21とR22、R23とR24、R31とR32、R32とR33、R33とR34は、それぞれ互いに結合して環状構造を形成していてもよい。]
[4] XがOまたはSであることを特徴とする[1]~[3]のいずれか1項に記載の化合物。
[5] YがO、SまたはN-R16であって、R16が置換もしくは無置換のアリール基であることを特徴とする[1]~[4]のいずれか1項に記載の化合物。
[6] R1~R8が、各々独立に水素原子、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数6~15の置換もしくは無置換のアリール基、または炭素数3~12の置換もしくは無置換のヘテロアリール基であることを特徴とする[1]~[5]のいずれか1項に記載の化合物。
 例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000197
 好ましい発光材料として、下記の化合物を挙げることもできる。
[1] 下記一般式(301)で表される化合物。
一般式(301)
   (D)n-A
[一般式(301)において、Dは下記一般式(302)で表される基であり、Aは下記一般式(303)で表される構造を含むn価の基を表す。nは1~8のいずれかの整数を表す。]
Figure JPOXMLDOC01-appb-C000198
[一般式(302)において、Z1はO、S、C=O、C(R21)(R22)、Si(R23)(R24)、N-Ar3または単結合を表し、R21~R24は各々独立に炭素数1~8のアルキル基を表し、Ar3は置換もしくは無置換のアリール基を表す。R1~R8は各々独立に水素原子または置換基を表す。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8は、それぞれ互いに結合して環状構造を形成していてもよい。ただし、Z1が単結合であるとき、R1~R8の少なくとも1つは置換もしくは無置換のジアリールアミノ基を表す。]
Figure JPOXMLDOC01-appb-C000199
[一般式(303)において、YはO、SまたはN-Ar4を表し、Ar4は置換もしくは無置換のアリール基を表す。]
[2] 一般式(302)のZ1が、O、S、C=O、C(R21)(R22)、Si(R23)(R24)または単結合を表す[1]に記載の化合物。
[3] 一般式(302)のZ1が、N-Ar3を表す[1]に記載の化合物。
[4] 一般式(301)のAが下記一般式(304)で表される構造を有することを特徴とする[1]~[3]のいずれか一項に記載の化合物。
Figure JPOXMLDOC01-appb-C000200
[一般式(304)において、YはO、SまたはN-Ar4を表し、Ar1およびAr2は各々独立に置換もしくは無置換の芳香族基を表す。]
[5] 一般式(301)のnが1~4のいずれかの整数であることを特徴とする[1]~[4]のいずれか一項に記載の化合物。
[6] 一般式(305)で表されることを特徴とする[1]~[3]のいずれか一項に記載の化合物。
Figure JPOXMLDOC01-appb-C000201
[一般式(305)において、Z1およびZ2は各々独立にO、S、C=O、C(R21)(R22)、Si(R23)(R24)、N-Ar3または単結合を表し、R21~R24は各々独立に炭素数1~8のアルキル基を表し、Ar3は置換もしくは無置換のアリール基を表す。Ar1およびAr2は各々独立に置換もしくは無置換の芳香族基を表す。YはO、SまたはN-Ar4を表し、Ar4は置換もしくは無置換のアリール基を表す。R1~R8およびR11~R18は各々独立に水素原子または置換基を表す。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8、R11とR12、R12とR13、R13とR14、R15とR16、R16とR17、R17とR18は、それぞれ互いに結合して環状構造を形成していてもよい。ただし、Z1が単結合であるとき、R1~R8の少なくとも1つは置換もしくは無置換のジアリールアミノ基を表し、Z2が単結合であるとき、R11~R18の少なくとも1つは置換もしくは無置換のジアリールアミノ基を表す。n1およびn2は、各々独立に0~8のいずれかの整数を表し、n1とn2の和は1~8である。]
[7] 一般式(305)のZ1およびZ2が各々独立にO、S、N-Ar3または単結合であることを特徴とする[6]に記載の化合物。
[8] 一般式(305)のYがOまたはN-Ar4であることを特徴とする[6]または[7]に記載の化合物。
[9] 一般式(306)で表されることを特徴とする[1]~[3]のいずれか一項に記載の化合物。
Figure JPOXMLDOC01-appb-C000202
[一般式(306)において、Z1はO、S、C=O、C(R21)(R22)、Si(R23)(R24)、N-Ar3または単結合を表し、R21~R24は各々独立に炭素数1~8のアルキル基を表し、Ar3は置換もしくは無置換のアリール基を表す。Ar1'は置換もしくは無置換のアリーレン基を表す。Ar2'は置換もしくは無置換のアリール基を表す。YはO、SまたはN-Ar4を表し、Ar4は置換もしくは無置換のアリール基を表す。R1~R8は各々独立に水素原子または置換基を表す。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8は、それぞれ互いに結合して環状構造を形成していてもよい。ただし、Z1が単結合であるとき、R1~R8の少なくとも1つは置換もしくは無置換のジアリールアミノ基を表す。]
[10] 下記一般式(307)で表されることを特徴とする[1]~[3]のいずれか一項に記載の化合物。
Figure JPOXMLDOC01-appb-C000203
[一般式(307)において、Z1およびZ2は各々独立にO、S、C=O、C(R21)(R22)、Si(R23)(R24)、N-Ar3または単結合を表し、R21~R24は各々独立に炭素数1~8のアルキル基を表し、Ar3は置換もしくは無置換のアリール基を表す。Ar1"およびAr2"は各々独立に置換もしくは無置換のアリーレン基を表す。YはO、SまたはN-Ar4を表し、Ar4は置換もしくは無置換のアリール基を表す。R1~R8およびR11~R18は各々独立に水素原子または置換基を表す。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8、R11とR12、R12とR13、R13とR14、R15とR16、R16とR17、R17とR18は、それぞれ互いに結合して環状構造を形成していてもよい。ただし、Z1が単結合であるとき、R1~R8の少なくとも1つは置換もしくは無置換のジアリールアミノ基を表し、Z2が単結合であるとき、R11~R18の少なくとも1つは置換もしくは無置換のジアリールアミノ基を表す。]
[11] 一般式(307)のZ1とZ2が同一であり、Ar1"とAr2"が同一であり、R1とR14が同一であり、R2とR13が同一であり、R3とR12が同一であり、R4とR11が同一であり、R5とR18が同一であり、R6とR17が同一であり、R7とR16が同一であり、R8とR15が同一であることを特徴とする[10]に記載の化合物。
[12] 一般式(307)のZ1とZ2が各々独立にO、SまたはN-Ar3であることを特徴とする[10]または[11]に記載の化合物。
 例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
 好ましい発光材料として、下記の化合物を挙げることもできる。
[1] 下記一般式(311)で表される化合物。
一般式(311)
   A-D-A
[一般式(311)において、Dは下記式:
Figure JPOXMLDOC01-appb-C000208
で表される構造(ただし構造中の水素原子は置換基で置換されていてもよい)を含む2価の基であり、2つのAは各々独立に下記の群:
Figure JPOXMLDOC01-appb-C000209
から選択される構造(ただし構造中の水素原子は置換基で置換されていてもよい)の基を表す。]
[2] 一般式(311)のDが下記一般式(312)で表される構造を有することを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000210
[一般式(312)において、R1~R8は各々独立に水素原子または置換基を表す。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8は互いに結合して環状構造を形成していてもよい。]
[3] 一般式(311)の2つのAが同一の構造を有することを特徴とする[1]または[2]に記載の化合物。
[4] 下記一般式(313)で表されることを特徴とする[1]~[3]のいずれか1項に記載の化合物。
Figure JPOXMLDOC01-appb-C000211
[一般式(313)において、R1~R8およびR11~R20は各々独立に水素原子または置換基を表す。R1とR2、R2とR3、R3とR4、R5とR6、R6とR7、R7とR8、R11とR12、R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19、R19とR20は互いに結合して環状構造を形成していてもよい。ただし、一般式(313)は、以下の<1>および<2>の条件を満たす。
<1> R12がシアノ基または下記構造の基(ただし水素原子は置換基で置換されていてもよい)であるか、
Figure JPOXMLDOC01-appb-C000212
13がシアノ基または下記の群のいずれかの構造の基(ただし水素原子は置換基で置換されていてもよい)であるか、あるいは
Figure JPOXMLDOC01-appb-C000213
12とR13が互いに結合して、R12とR13が結合しているベンゼン環とともに下記のいずれかの構造を形成している基(ただし水素原子は置換基で置換されていてもよい)である。
Figure JPOXMLDOC01-appb-C000214
<2> R17がシアノ基または下記構造の基(ただし水素原子は置換基で置換されていてもよい)であるか、
Figure JPOXMLDOC01-appb-C000215
18がシアノ基または下記の群のいずれかの構造の基(ただし水素原子は置換基で置換されていてもよい)であるか、あるいは
Figure JPOXMLDOC01-appb-C000216
17とR18が互いに結合して、R17とR18が結合しているベンゼン環とともに下記のいずれかの構造を形成している基(ただし水素原子は置換基で置換されていてもよい)である。
Figure JPOXMLDOC01-appb-C000217

[5] 一般式(313)のR1~R8が、各々独立に水素原子、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数6~15の置換もしくは無置換のアリール基、または炭素数3~12の置換もしくは無置換のヘテロアリール基であることを特徴とする[4]に記載の化合物。
[6] 一般式(313)のR12、R13、R17、R18のうちの少なくとも2つが上記<1>および<2>の条件を満たすように置換基を有しており、それ以外のR11~R20が各々独立に水素原子、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数6~15の置換もしくは無置換のアリール基、または炭素数3~12の置換もしくは無置換のヘテロアリール基であることを特徴とする[4]または[5]に記載の化合物。
[7] 一般式(313)の上記<1>および<2>中に記載される構造の水素原子が置換されていてもよい置換基が、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数6~15の置換もしくは無置換のアリール基、および炭素数3~12の置換もしくは無置換のヘテロアリール基からなる群より選択されることを特徴とする[4]~[6]のいずれか1項に記載の化合物。
 例えば以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
 第2有機化合物の分子量は、例えば第2有機化合物を含む発光層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることがさらにより好ましい。分子量の下限値は、例えば一般式(1)または(9)で表される化合物であれば、これらの一般式で表される最小化合物の分子量である。
 また、発光層を塗布法で成膜する場合には、比較的大きな分子量のものであっても分子量を問わずに好ましく用いることができる。
 なお、本発明において第2有機化合物として使用することができる遅延蛍光体は一般式(1)で表される化合物に限定されるものではなく、式(A)を満たす限り、一般式(1)で表される化合物以外の遅延蛍光体も用いることができる。この他の遅延蛍光体として、一般式(1)のトリアジン骨格をピリジン骨格とした化合物、ベンゾフェノン骨格やキサントン骨格に各種複素環構造が置換した化合物等を挙げることができる。
(第1有機化合物)
 第1有機化合物は、第2有機化合物および第3有機化合物よりも最低励起一重項エネルギーが大きい有機化合物であり、キャリアの輸送を担うホスト材料としての機能や第3有機化合物のエネルギーを該化合物中に閉じ込める機能を有する。これにより、第3有機化合物は、分子内でホールと電子とが再結合することによって生じたエネルギー、および、第1有機化合物および第2有機化合物から受け取ったエネルギーを効率よく発光に変換することができ、発光効率が高い有機エレクトロルミネッセンス素子を実現することができる。
 第1有機化合物としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。以下に、第1有機化合物として用いることができる好ましい化合物を挙げる。なお、以下の例示化合物の構造式におけるR、R1~R10は、各々独立に水素原子または置換基を表す。nは3~5の整数を表す。
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000224
(第3有機化合物)
 第3有機化合物は、第1有機化合物および第2有機化合物よりも最低励起一重項エネルギーが小さい発光体である。第3有機化合物は、励起一重項状態の第1有機化合物および第2有機化合物と、励起三重項状態から逆項間交差して励起一重項状態になった第2有機化合物からエネルギーを受け取って一重項励起状態に遷移し、その後基底状態に戻るときに蛍光を放射する。第3有機化合物として用いる発光体としては、このように第1有機化合物および第2有機化合物からエネルギーを受け取って発光し得るものであれば特に限定されず、発光は蛍光であっても、遅延蛍光であっても、りん光であっても構わない。中でも、第3有機化合物として用いる発光体は、最低励起一重項エネルギー準位から基底エネルギー準位に戻るときに蛍光を放射するものであることが好ましい。第3有機化合物は、式(A)の関係を満たすものであれば2種以上を用いてもよい。例えば、発光色が異なる2種以上の第3有機化合物を併用することにより、所望の色を発光させることが可能になる。
 以下に、第3有機化合物として用いることができる好ましい化合物を発光色毎に挙げる。なお、以下の例示化合物の構造式において、Etはエチル基を表し、i-Prはイソプロピル基を表す。
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000228
(2)赤色発光化合物
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000233
(3)青色発光化合物
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000236
Figure JPOXMLDOC01-appb-C000237
Figure JPOXMLDOC01-appb-C000238
Figure JPOXMLDOC01-appb-C000239
Figure JPOXMLDOC01-appb-C000240
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000242
(4)黄色発光化合物
Figure JPOXMLDOC01-appb-C000243
 以上の各発光色の化合物の他、下記の化合物も第3有機化合物として用いることができる。
Figure JPOXMLDOC01-appb-C000244
(第1有機化合物、第2有機化合物、第3有機化合物の含有量)
 発光層に含まれる各有機化合物の含有量は、特に限定されないが、第2有機化合物の含有量は第1有機化合物の含有量よりも小さいことが好ましい。これにより、より高い発光効率を得ることができる。具体的には、第1有機化合物の含有量W1と第2有機化合物の含有量W2と第3有機化合物の含有量W3の合計重量を100重量%としたとき、第1有機化合物の含有量W1は15重量%以上、99.9重量%以下であることが好ましく、第2有機化合物の含有量W2は5.0重量%以上、50重量%以下であることが好ましく、第3有機化合物の含有量W3は0.5重量%以上、5.0重量%以下であることが好ましい。
(この他の有機化合物)
 発光層は、第1有機化合物~第3有機化合物のみから構成されていてもよいし、第1有機化合物~第3有機化合物以外の有機化合物を含んでいてもよい。第1有機化合物~第3有機化合物以外の有機化合物としては、例えば正孔輸送能を有する有機化合物、電子輸送能を有する有機化合物等を挙げることができる。正孔輸送能を有する有機化合物、電子輸送能を有する有機化合物としては、下記の正孔輸送材料、電子輸送材料をそれぞれ参照することができる。
[基板]
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
[陽極]
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
[陰極]
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
[注入層]
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
[阻止層]
 阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
[正孔阻止層]
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
[電子阻止層]
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
[励起子阻止層]
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
[正孔輸送層]
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
[電子輸送層]
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 有機エレクトロルミネッセンス素子を作製する際には、一般式(1)で表される化合物を発光層に用いるだけでなく、発光層以外の層にも用いてもよい。その際、発光層に用いる一般式(1)で表される化合物と、発光層以外の層に用いる一般式(1)で表される化合物は、同一であっても異なっていてもよい。例えば、上記の注入層、阻止層、正孔阻止層、電子阻止層、励起子阻止層、正孔輸送層、電子輸送層などにも一般式(1)で表される化合物を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。なお、以下の例示化合物の構造式におけるR、R2~R7は、各々独立に水素原子または置換基を表す。nは3~5の整数を表す。
 まず、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000245
 次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000247
Figure JPOXMLDOC01-appb-C000248
Figure JPOXMLDOC01-appb-C000249
Figure JPOXMLDOC01-appb-C000250
Figure JPOXMLDOC01-appb-C000251
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000252
 次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000253
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000256
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000257
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Figure JPOXMLDOC01-appb-C000258
 上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、りん光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
 本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、発光層に一般式(1)で表される化合物を含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、ハイパフォーマンス紫外可視近赤外分光光度計(パーキンエルマー社製:Lambda950)、蛍光分光光度計(堀場製作所社製:FluoroMax-4)、絶対PL量子収率測定装置(浜松ホトニクス社製:C11347)、ソースメータ(ケースレー社製:2400シリーズ)、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、光学分光器(オーシャンオプティクス社製:USB2000)、分光放射計(トプコン社製:SR-3)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。
 実施例および比較例で用いた化合物の最低励起一重項エネルギー準位ES1と、最低励起三重項エネルギー準位ET1は、以下の手順により求めた。また、最低励起一重項状態と77Kの最低励起三重項状態とのエネルギーの差ΔEstは、ES1とET1の差を計算することにより求めた。
(1)最低励起一重項エネルギー準位ES1
 測定対象化合物をSi基板上に蒸着して試料を作製し、常温(300K)でこの試料の蛍光スペクトルを測定した。蛍光スペクトルは、縦軸を発光、横軸を波長とした。この発光スペクトルの短波側の立ち下がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をES1とした。
  換算式:ES1[eV]=1239.85/λedge
 発光スペクトルの測定には、励起光源に窒素レーザー(Lasertechnik Berlin社製、MNL200)を検出器には、ストリークカメラ(浜松ホトニクス社製、C4334)を用いた。
(2)最低励起三重項エネルギー準位ET1
 一重項エネルギーES1と同じ試料を77[K]に冷却し、励起光(337nm)を燐光測定用試料に照射し、ストリークカメラを用いて、燐光強度を測定した。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をET1とした。
  換算式:ET1[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考える。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
 なお、スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
(実施例1) mCBP(第1有機化合物)、PXZ-TRZ(第2有機化合物)、TBRb(第3有機化合物)を用いた有機エレクトロルミネッセンス素子の作製と評価
 発光層の材料として下記の有機化合物を準備した。
Figure JPOXMLDOC01-appb-C000259
 mCBPは最低励起一重項エネルギー準位ES1が2.7eVで最低励起三重項エネルギー準位ET1が2.90eVであり、PXZ-TRZは最低励起一重項エネルギー準位ES1が2.3eVで最低励起三重項エネルギー準位ET1が2.23eVであり、TBRbは最低励起一重項エネルギー準位ES1が2.18eVである。また、PXZ-TRZ薄膜の過渡減衰曲線を図2に示す。図2から、PXZ-TRZは遅延蛍光を示す有機化合物であることが確認できた。PXZ-TRZの最低励起一重項状態と77Kの最低励起三重項状態とのエネルギーの差ΔEstは0.070eVであった。
 次に、mCBP、PXZ-TRZ、TBRbを発光層の材料として有機エレクトロルミネッセンス素子を作製した。
 膜厚110nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-5Pa以下で積層した。まず、ITO上にHATCNを10nmの厚さに形成し、その上にTrisPCzを30nmの厚さに形成した。次に、mCBPとPXZ-TRZとTBRbとを異なる蒸着源から共蒸着し、15nmの厚さの層を形成して発光層とした。この時、PXZ-TRZの濃度は10~50重量%の範囲で選択し、TBRbの濃度は1重量%とした。次に、T2Tを10nmの厚さに形成し、その上にBPyTP2を55nmの厚さに形成した。さらに、フッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成し、発光層の組成比が異なる各種有機エレクトロルミネッセンス素子を得た。
 製造した有機エレクトロルミネッセンス素子の発光スペクトルを図3に示し、輝度-外部量子効率特性を図4に示し、過渡減衰曲線を図5、図6に示した。
(比較例1) mCBP、TBRbを用いた有機エレクトロルミネッセンス素子の作製と評価
 発光層を形成する際、PXZ-TRZの蒸着源を使用せず、mCBPと1重量%TBRbからなる蒸着膜を形成したこと以外は、実施例1と同様にして有機エレクトロルミネッセンス素子を得た。
 製造した有機エレクトロルミネッセンス素子の発光スペクトル、輝度-外部量子効率特性、過渡減衰曲線を、上記の図3、図4、図5、図6に実施例1の測定結果と併せて示した。
(比較例2) PXZ-TRZ、TBRbを用いた有機エレクトロルミネッセンス素子の作製と評価
 発光層を形成する際、mCBPの蒸着源を使用せず、PXZ-TRZと1重量%TBRbからなる蒸着膜を形成したこと以外は、実施例1と同様にして有機エレクトロルミネッセンス素子を得た。
 製造した有機エレクトロルミネッセンス素子の発光スペクトル、輝度-外部量子効率特性を、上記の図3、図4に実施例1の測定結果と併せて示した。
(比較例3)mCBP、PXZ-TRZを用いた有機エレクトロルミネッセンス素子の作製と評価
 発光層を形成する際、TBRbの蒸着源を使用せず、mCBPと25重量%PXZ-TRZからなる蒸着膜を形成したこと以外は、実施例1と同様にして有機エレクトロルミネッセンス素子を得た。
 製造した有機エレクトロルミネッセンス素子の過渡減衰曲線を、実施例1、比較例1の測定結果と併せて図6に示した。
 また、各特性図から求めた各有機エレクトロルミネッセンス素子の特性値を表22に示し、図6の過渡減衰曲線を測定する際の初期輝度および図6から求めた輝度半減時間を表23に示す。
Figure JPOXMLDOC01-appb-T000260
Figure JPOXMLDOC01-appb-T000261
 表22に示すように、発光層がmCBPとPXZ-TRZとTBRbを含む実施例1の有機エレクトロルミネッセンス素子は、PXZ-TRZを用いていない比較例1またはmCBPを用いていない比較例2の有機エレクトロルミネッセンス素子に比べて外部量子効率および電流効率が格段に高く、優れた特性を有していた。
 また、表23に示すように、実施例1の有機エレクトロルミネッセンス素子は、PXZ-TRZを用いていない比較例1またはTBRbを用いていない比較例3の有機エレクトロルミネッセンス素子に比べて輝度半減時間が遥かに長いものであった。
 さらに、図5から、初期輝度(1,000cd/cm2)負担時において、輝度が90%まで減衰するまでの時間LT90は、PXZ-TRZが0%で1時間、10重量%で3.5時間、25重量%で9.7時間、50重量%で12.5時間であり、発光層にPXZ-TRZを添加することで有機エレクトロルミネッセンス素子の素子耐久性が大幅に延長することがわかった。ただし、PXZ-TRZの濃度が25%と50%とで素子耐久性にほとんど差がないことから、PXZ-TRZの濃度は50%未満、すなわちmCBPの濃度より小さいことが好ましいことがわかった。
(実施例2) ADN(第1有機化合物)、PXZ-TRZ(第2有機化合物)、TBRb(第3有機化合物)を用いた有機エレクトロルミネッセンス素子の作製と評価
 本実施例では、実施例1のmCBPのかわりにADNを第1有機化合物として用いて有機エレクトロルミネッセンス素子を作製し評価した。ADNは最低励起一重項エネルギー準位ES1が2.83eVで最低励起三重項エネルギー準位ET1が1.69eVである。実施例2の有機エレクトロルミネッセンス素子からは波長約560nmの発光が認められた。
 実施例2の有機エレクトロルミネッセンス素子よりも、実施例1の有機エレクトロルミネッセンス素子は有意に高い外部量子効率を達成しており、一段と優れた特性を示すことが確認された。
Figure JPOXMLDOC01-appb-C000262
(実施例3) mCBP(第1有機化合物)、PXZ-TRZ(第2有機化合物)、TBRb(第3有機化合物A)、DBP(第3有機化合物B)を用いた4元系の有機エレクトロルミネッセンス素子の作製と評価
 実施例1では第3有機化合物としてTBRbのみを用いて有機エレクトロルミネッセンス素子を作製したが、本実施例ではさらに下記のDBPも第3有機化合物として用いて有機エレクトロルミネッセンス素子を作製して評価した。DBPは、最低励起一重項エネルギー準位ES1が2.0eVである。
Figure JPOXMLDOC01-appb-C000263
 膜厚110nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-5Pa以下で積層した。まず、ITO上にHATCNを10nmの厚さに形成し、その上にTrisPCzを30nmの厚さに形成した。次に、mCBPとPXZ-TRZとTBRbとDBPとを異なる蒸着源から共蒸着し、15nmの厚さの層を形成して発光層とした。この時、PXZ-TRZの濃度は10重量%とし、TBRbの濃度は3.0重量%とし、DBPの濃度は1.0重量%とした。次に、T2Tを10nmの厚さに形成し、その上にBPyTP2を55nmの厚さに形成した。さらに、フッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成して有機エレクトロルミネッセンス素子を得た。
 PXZ-TRZ(第2有機化合物)とTBRb(第3有機化合物A)とDBP(第3有機化合物B)の吸収発光スペクトルを図7に示し、製造した有機エレクトロルミネッセンス素子の発光スペクトルを図8に示す。CIE色度(x,y)は(0.65,0.35)であった。また、製造した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を図9に示し、電圧-電流密度特性を図10に示した。製造した有機エレクトロルミネッセンス素子は7.6%もの高い外部量子効率を達成したことが確認された。
(実施例4) CBP(第1有機化合物)、ptris-PXZ-TRZ(第2有機化合物)、DBP(第3有機化合物)を用いた有機エレクトロルミネッセンス素子の作製と評価
 本実施例では下記のCBPを第1有機化合物として用い、下記のptris-PXZ-TRZを第2有機化合物として用い、DBPを第3有機化合物として用いて有機エレクトロルミネッセンス素子を作製して評価した。CBPは最低励起一重項エネルギー準位ES1が3.26eVで最低励起三重項エネルギー準位ET1が2.55eVであり、ptris-PXZ-TRZは最低励起一重項エネルギー準位ES1が2.30eVで最低励起三重項エネルギー準位ET1が2.16eVでありである。
Figure JPOXMLDOC01-appb-C000264
 膜厚110nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、実施例1と同様の製膜方法により各薄膜を形成した。
 まず、ITO上にα-NPDを35nmの厚さに形成し、その上に、CBPとptris-PXZ-TRZとDBPとを異なる蒸着源から共蒸着し、15nmの厚さの層を形成して発光層とした。この時、ptris-PXZ-TRZの濃度は15重量%とし、DBPの濃度は1重量%とした。次に、TPBiを65nmの厚さに形成し、その上にフッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成して有機エレクトロルミネッセンス素子を得た。
 製造した有機エレクトロルミネッセンス素子について、輝度を10cd/m2、100cd/m2、500cd/m2、または1000cd/m2に設定して発光スペクトルを測定した。その結果を図11に示す。CIE色度(x,y)は(0.64,0.36)であった。また、製造した有機エレクトロルミネッセンス素子の遅延蛍光成分の発光スペクトルを図12に示し、過渡減衰曲線を図13に示した。内部量子効率ηintは59%であり、一重項励起子生成効率ηγSは74%であった。さらに、製造した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を図14に示した。なお、図14には、比較としてptris-PXZ-TRZを用いずに発光層を形成した有機エレクトロルミネッセンス素子(CBP;1wt%-DBP)の輝度―外部量子効率特性も併せて示した。本実施例の有機エレクトロルミネッセンス素子は、12%もの高い外部量子効率を達成したことが確認された。また、電力効率は18.0lm/W、電流効率は16.5cd/Aであった。
(実施例5) DPEPO(第1有機化合物)、ASAQ(第2有機化合物)、TBPe(第3有機化合物)を用いた有機エレクトロルミネッセンス素子の作製と評価
 本実施例では下記のDPEPOを第1有機化合物として用い、下記のASAQを第2有機化合物として用い、下記のTBPeを第3有機化合物として用いて有機エレクトロルミネッセンス素子を作製して評価した。DPEPOは最低励起一重項エネルギー準位ES1が3.20eVで最低励起三重項エネルギー準位ET1が3,00eVであり、ASAQは最低励起一重項エネルギー準位ES1が2.75eVで最低励起三重項エネルギー準位ET1が2.52eVであり、TBPeは最低励起一重項エネルギー準位ES1が2.70eVである。
Figure JPOXMLDOC01-appb-C000265
 膜厚110nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、実施例1と同様の製膜方法により各薄膜を形成した。
 まず、ITO上にα-NPDを35nmの厚さに形成し、その上にmCPを10nmの厚さに形成した。次に、DPEPOとASAQとTBPeとを異なる蒸着源から共蒸着し、15nmの厚さの層を形成して発光層とした。この時、ASAQの濃度は15重量%とし、TBPeの濃度は1重量%とした。次に、DPEPOを8nmの厚さに形成し、その上にTPBiを37nmの厚さに形成した。その上にフッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成して有機エレクトロルミネッセンス素子を得た。
 製造した有機エレクトロルミネッセンス素子の発光スペクトルを図15に示す。CIE色度(x,y)は(0.17,0.30)であった。また、製造した有機エレクトロルミネッセンス素子の電圧-電流密度特性を図16に示し、電流密度-外部量子効率特性を図17に示した。製造した有機エレクトロルミネッセンスルミネッセンス素子は13.4%もの高い外部量子効率を達成したことが確認された。
(実施例6) DPEPO(第1有機化合物)、ASAQ(第2有機化合物)、TBPe(第3有機化合物)を用いた有機エレクトロルミネッセンス素子の作製と評価
 TPBiの厚さを57nmに変更したこと以外は、実施例5と同様にして有機エレクトロルミネッセンス素子を得た。
 形成した発光層の、最低励起一重項状態と最低励起三重項状態とのエネルギー差ΔEstと、フォトルミネッセンス量子効率φPLを表24に示す。また、製造した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を図18に示し、特性値を表25に示す。
(実施例7) mCP(第1有機化合物)、MN04(第2有機化合物)、TTPA(第3有機化合物)を用いた有機エレクトロルミネッセンス素子の作製と評価
 本実施例では下記のmCPを第1有機化合物として用い、下記のMN04を第2有機化合物として用い、下記のTTPAを第3有機化合物として用いて有機エレクトロルミネッセンス素子を作製して評価した。mCPは最低励起一重項エネルギー準位ES1が3.30eVで最低励起三重項エネルギー準位ET1が2.90eVであり、MN04は最低励起一重項エネルギー準位ES1が2.60eVで最低励起三重項エネルギー準位ET1が2.47eVであり、TTPAは最低励起一重項エネルギー準位ES1が2.34eVである。
Figure JPOXMLDOC01-appb-C000266
 膜厚110nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、実施例1と同様の製膜方法により各薄膜を形成した。
 まず、ITO上にTAPCを35nmの厚さに形成し、その上に、mCPとMN04とTTPAとを異なる蒸着源から共蒸着し、15nmの厚さの層を形成して発光層とした。この時、MN04の濃度は50重量%とし、TTPAの濃度は1重量%とした。次に、TPBiを65nmの厚さに形成し、その上にフッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成して有機エレクトロルミネッセンス素子を得た。
 形成した発光層の、最低励起一重項状態と最低励起三重項状態とのエネルギー差ΔEstと、フォトルミネッセンス量子効率φPLを表24に示す。また、製造した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を図19に示し、特性値を表25に示す。
(実施例8) mCBP(第1有機化合物)、PXZ-TRZ(第2有機化合物)、TBRb(第3有機化合物)を用いた有機エレクトロルミネッセンス素子の作製と評価
 本実施例ではmCBPを第1有機化合物として用い、PXZ-TRZを第2有機化合物として用い、TBRbを第3有機化合物として用いて有機エレクトロルミネッセンス素子を作製して評価した。
 膜厚110nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、実施例1と同様の製膜方法により各薄膜を形成した。
 まず、ITO上にTAPCを35nmの厚さに形成し、その上に、mCBPとPXZ-TRZとTBRbとを異なる蒸着源から共蒸着し、30nmの厚さの層を形成して発光層とした。この時、PXZ-TRZの濃度は25重量%とし、TBRbの濃度は1重量%とした。次に、T2Tを10nmの厚さに形成し、その上にAlq3を55nmの厚さに形成した。その上にフッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成して有機エレクトロルミネッセンス素子を得た。
 形成した発光層の、最低励起一重項状態と最低励起三重項状態とのエネルギー差ΔEstとフォトルミネッセンス量子効率φPLを表24に示す。また、製造した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を図20に示し、特性値を表25に示す。
(実施例9) CBP(第1有機化合物)、ptris-PXZ-TRZ(第2有機化合物)、DBP(第3有機化合物)を用いた有機エレクトロルミネッセンス素子の作製と評価
 本実施例ではCBPを第1有機化合物として用い、ptris-PXZ-TRZを第2有機化合物として用い、DBPを第3有機化合物として用いて有機エレクトロルミネッセンス素子を作製して評価した。
 膜厚110nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、実施例1と同様の製膜方法により各薄膜を形成した。
 まず、ITO上にTAPCを35nmの厚さに形成し、その上に、CBPとptris-PXZ-TRZとDBPとを異なる蒸着源から共蒸着し、15nmの厚さの層を形成して発光層とした。この時、ptris-PXZ-TRZの濃度は15重量%とし、DBPの濃度は1重量%とした。次に、TPBiを65nmの厚さに形成し、その上にフッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成して有機エレクトロルミネッセンス素子を得た。
 形成した発光層の、最低起一重項状態と最低励起三重項状態とのエネルギー差ΔEstと、フォトルミネッセンス量子効率φPLを表24に示す。また、製造した有機エレクトロルミネッセンス素子の輝度-外部量子効率特性を図21に示し、特性値を表25に示す。
Figure JPOXMLDOC01-appb-T000267
Figure JPOXMLDOC01-appb-T000268
 表25に示すように、実施例6~実施例9の有機エレクトロルミネッセンス素子は、いずれも電流効率および電力効率が高く、11%以上の高い外部量子効率を達成することができた。
Figure JPOXMLDOC01-appb-C000269
 本発明の有機エレクトロルミネッセンス素子は高い発光効率が得られるため、画像表示装置として様々な機器に適用することが可能である。このため、本発明は産業上の利用可能性が高い。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極

Claims (8)

  1.  陽極、陰極、および前記陽極と前記陰極の間に発光層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、
     前記発光層は、以下の式(A)を満たす第1有機化合物と第2有機化合物と第3有機化合物とを少なくとも含み、前記第2有機化合物は遅延蛍光体であり、前記第3有機化合物は発光体であることを特徴とする有機エレクトロルミネッセンス素子。
    式(A) ES1(A)>ES1(B)>ES1(C)
    (上式において、ES1(A)は前記第1有機化合物の最低励起一重項エネルギー準位を表し、ES1(B)は前記第2有機化合物の最低励起一重項エネルギー準位を表し、ES1(C)は前記第3有機化合物の最低励起一重項エネルギー準位を表す。)
  2.  前記第2有機化合物は、最低励起一重項状態と77Kの最低励起三重項状態とのエネルギーの差ΔEstが0.3eV以下であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記第2有機化合物は、最低励起一重項状態と77Kの最低励起三重項状態とのエネルギーの差ΔEstが0.08eV以下であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  4.  前記第1有機化合物と前記第2有機化合物が以下の式(B)を満たすことを特徴とする請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    式(B) ET1(A)>ET1(B)
    (上式において、ET1(A)は第1有機化合物の77Kにおける最低励起三重項エネルギー準位を表し、ET1(B)は第2有機化合物の77Kにおける最低励起三重項エネルギー準位を表す。)
  5.  前記第3有機化合物は、最低励起一重項エネルギー準位から基底エネルギー準位に戻るときに蛍光を放射するものであることを特徴とする請求項1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  6.  前記発光層における前記第2有機化合物の含有量が前記第1有機化合物の含有量よりも小さいことを特徴とする請求項1~5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  7.  前記発光層は、前記第3有機化合物として2種以上の化合物を含むことを特徴とする請求項1~6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  8.  前記発光層は、前記第1有機化合物と前記第2有機化合物と前記第3有機化合物の他に、1種または2種以上の有機化合物を含むことを特徴とする請求項1~7のいずれか1項に記載の有機エレクトロルミネッセンス素子。
PCT/JP2014/071373 2013-08-14 2014-08-13 有機エレクトロルミネッセンス素子 WO2015022974A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020167006684A KR102191957B1 (ko) 2013-08-14 2014-08-13 유기 일렉트로루미네선스 소자
EP20152673.8A EP3706182B1 (en) 2013-08-14 2014-08-13 Organic electroluminescent device
KR1020217039087A KR102543775B1 (ko) 2013-08-14 2014-08-13 유기 일렉트로루미네선스 소자
KR1020227040753A KR102577829B1 (ko) 2013-08-14 2014-08-13 유기 일렉트로루미네선스 소자
EP14836585.1A EP3035401A4 (en) 2013-08-14 2014-08-13 Organic electroluminescent element
EP22204502.3A EP4152910A1 (en) 2013-08-14 2014-08-13 Organic electroluminescent device
CN201480043716.8A CN105453294B (zh) 2013-08-14 2014-08-13 有机电致发光元件
KR1020237018853A KR102665000B1 (ko) 2013-08-14 2014-08-13 유기 일렉트로루미네선스 소자
KR1020207035361A KR102335123B1 (ko) 2013-08-14 2014-08-13 유기 일렉트로루미네선스 소자
US14/911,761 US10862047B2 (en) 2013-08-14 2014-08-13 Organic electroluminescent device
US17/071,719 US11450817B2 (en) 2013-08-14 2020-10-15 Organic electroluminescent device
US17/809,786 US11944010B2 (en) 2013-08-14 2022-06-29 Organic electroluminescent device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013168587 2013-08-14
JP2013-168587 2013-08-14
JP2014-038472 2014-02-28
JP2014038472 2014-02-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/911,761 A-371-Of-International US10862047B2 (en) 2013-08-14 2014-08-13 Organic electroluminescent device
US17/071,719 Division US11450817B2 (en) 2013-08-14 2020-10-15 Organic electroluminescent device

Publications (1)

Publication Number Publication Date
WO2015022974A1 true WO2015022974A1 (ja) 2015-02-19

Family

ID=52468359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071373 WO2015022974A1 (ja) 2013-08-14 2014-08-13 有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (3) US10862047B2 (ja)
EP (3) EP4152910A1 (ja)
JP (2) JP5669163B1 (ja)
KR (5) KR102335123B1 (ja)
CN (1) CN105453294B (ja)
TW (1) TWI633170B (ja)
WO (1) WO2015022974A1 (ja)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105254562A (zh) * 2015-09-01 2016-01-20 华南理工大学 一种有机小分子发光材料及由其制备的有机电致发光器件
CN105322099A (zh) * 2015-11-30 2016-02-10 华南理工大学 一种全荧光白光有机发光二极管及其制备方法
EP3072943A1 (en) * 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
WO2017099160A1 (ja) * 2015-12-08 2017-06-15 出光興産株式会社 有機el発光装置及び電子機器
JP2017130643A (ja) * 2015-07-24 2017-07-27 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、照明装置、および照明システム
JPWO2016125807A1 (ja) * 2015-02-06 2017-11-24 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
US9905779B2 (en) 2013-12-26 2018-02-27 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and electronic device
US10297764B2 (en) 2015-09-14 2019-05-21 Samsung Electronics Co., Ltd. Mixture, thin film, and organic light emitting device including mixture and thin film
WO2019115577A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Substituted aromatic amines for use in organic electroluminescent devices
WO2020064582A1 (de) 2018-09-24 2020-04-02 Merck Patent Gmbh Verfahren zur herstellung von granulat
US10615348B2 (en) 2015-11-16 2020-04-07 Samsung Electronics Co., Ltd. Organic light-emitting device
US10693095B2 (en) 2014-08-29 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
CN111668392A (zh) * 2015-06-03 2020-09-15 Udc 爱尔兰有限责任公司 具有极短衰减时间的高效oled装置
US10923664B2 (en) 2015-09-14 2021-02-16 Samsung Electronics Co., Ltd. Composition, thin film, and organic light emitting device including composition and thin film
WO2021122868A1 (de) 2019-12-19 2021-06-24 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
KR20210095933A (ko) 2018-11-30 2021-08-03 가부시키가이샤 큐럭스 막의 제조 방법, 유기 반도체 소자의 제조 방법 및 유기 반도체 소자
WO2021157642A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
WO2021235549A1 (ja) 2020-05-22 2021-11-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2022009790A1 (ja) * 2020-07-06 2022-01-13 株式会社Kyulux 有機発光素子
WO2022025248A1 (ja) 2020-07-31 2022-02-03 株式会社Kyulux 化合物、発光材料および発光素子
WO2022129113A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige heteroaromaten für organische elektrolumineszenzvorrichtungen
WO2022129114A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022129116A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Indolo[3.2.1-jk]carbazole-6-carbonitril-derivate als blau fluoreszierende emitter zur verwendung in oleds
WO2022229234A1 (de) 2021-04-30 2022-11-03 Merck Patent Gmbh Stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022244503A1 (ja) 2021-05-20 2022-11-24 株式会社Kyulux 有機発光素子
WO2022270602A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機発光素子および膜
WO2022270354A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022270113A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
WO2023041454A1 (de) 2021-09-14 2023-03-23 Merck Patent Gmbh Borhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023053835A1 (ja) 2021-09-28 2023-04-06 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
WO2023072799A1 (de) 2021-10-27 2023-05-04 Merck Patent Gmbh Bor- und stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023090288A1 (ja) 2021-11-19 2023-05-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2023140130A1 (ja) 2022-01-19 2023-07-27 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2023161167A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023161168A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatische heterocyclen für organische elektrolumineszenzvorrichtungen
WO2024132892A1 (en) 2022-12-19 2024-06-27 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024170605A1 (en) 2023-02-17 2024-08-22 Merck Patent Gmbh Materials for organic electroluminescent devices

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152910A1 (en) 2013-08-14 2023-03-22 Kyulux, Inc. Organic electroluminescent device
CN104716268B (zh) * 2013-12-17 2017-09-29 北京维信诺科技有限公司 一种有机电致发光器件及其制备方法
JP6433935B2 (ja) * 2013-12-26 2018-12-05 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
JP2017123352A (ja) * 2014-03-31 2017-07-13 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
JP6374329B2 (ja) 2014-06-26 2018-08-15 出光興産株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子用材料、および電子機器
JP6482782B2 (ja) * 2014-07-18 2019-03-13 国立大学法人九州大学 有機発光素子
EP3188271B1 (en) * 2014-08-26 2022-05-04 Idemitsu Kosan Co., Ltd Organic electroluminescent element and electronic device
JP2017212024A (ja) * 2014-08-28 2017-11-30 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
KR102460658B1 (ko) * 2014-08-29 2022-10-31 삼성전자주식회사 유기 발광 소자
TWI779405B (zh) * 2015-03-09 2022-10-01 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,與照明裝置
TW202404148A (zh) * 2015-03-09 2024-01-16 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置及照明設備
KR20240142609A (ko) 2015-03-27 2024-09-30 이데미쓰 고산 가부시키가이샤 유기 일렉트로 루미네선스 소자, 전자 기기, 및 화합물
CN106328816B (zh) * 2015-06-16 2018-11-13 昆山国显光电有限公司 一种有机电致发光器件及其制备方法
CN107710444A (zh) * 2015-07-08 2018-02-16 株式会社半导体能源研究所 发光元件、显示装置、电子设备以及照明装置
JP6838268B2 (ja) * 2015-10-21 2021-03-03 コニカミノルタ株式会社 光変換材料、光変換フィルム、及び発光素子
CN106892857B (zh) * 2015-12-18 2020-02-18 昆山国显光电有限公司 热活化延迟荧光材料及其在有机电致发光器件中的应用
JP2019061974A (ja) * 2015-12-28 2019-04-18 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
WO2017115608A1 (ja) * 2015-12-28 2017-07-06 コニカミノルタ株式会社 π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
CA3010340C (en) 2015-12-31 2021-06-15 Delta Faucet Company Water sensor
US20190013476A1 (en) * 2016-02-24 2019-01-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent element, and electronic device
JP6808329B2 (ja) * 2016-02-25 2021-01-06 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置用材料及び有機エレクトロルミネッセンス表示装置
CN107043382A (zh) * 2016-04-25 2017-08-15 中节能万润股份有限公司 一种以三嗪为核心的化合物及其在有机电致发光器件上的应用
JP7253646B2 (ja) * 2016-04-28 2023-04-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング π共役系化合物、有機エレクトロルミネッセンス素子材料、発光材料、電荷輸送材料、発光性薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6876042B2 (ja) * 2016-07-08 2021-05-26 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 有機エレクトロルミネッセンス素子、表示装置、照明装置
US11444248B2 (en) 2016-11-30 2022-09-13 Kyushu University, National University Corporation Organic electro-luminescent element and bioinstrumentation device
JP6890784B2 (ja) 2016-11-30 2021-06-18 国立大学法人九州大学 有機エレクトロルミネッセンス素子及び生体計測用装置
JP6869509B2 (ja) * 2016-11-30 2021-05-12 国立大学法人九州大学 有機エレクトロルミネッセンス素子及び生体計測用装置
CN106803543A (zh) * 2017-01-20 2017-06-06 瑞声科技(南京)有限公司 有机发光显示器件
CN108346756B (zh) * 2017-01-24 2020-03-20 中节能万润股份有限公司 一种有机电致发光器件
KR20180113659A (ko) * 2017-04-06 2018-10-17 삼성디스플레이 주식회사 발광 재료 및 이를 포함하는 유기 전계 발광 소자
CN106972109B (zh) * 2017-04-21 2018-10-12 瑞声科技(南京)有限公司 一种发光器件
JP7085176B2 (ja) * 2017-05-30 2022-06-16 株式会社Kyulux 膜、膜の製造方法、有機発光素子、照明装置および化合物
CN106972111B (zh) 2017-06-01 2018-11-20 上海天马有机发光显示技术有限公司 有机发光器件和显示装置
CN107256927B (zh) * 2017-06-13 2020-01-24 上海天马有机发光显示技术有限公司 有机发光器件和显示装置
KR102024811B1 (ko) * 2017-08-02 2019-11-14 서울대학교산학협력단 유기 발광 소자
WO2019031524A1 (ja) * 2017-08-09 2019-02-14 国立大学法人九州大学 蓄光組成物、蓄光素子および波長制御方法
KR20200072546A (ko) 2017-11-02 2020-06-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
KR102648402B1 (ko) 2018-06-12 2024-03-18 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
US11367837B2 (en) * 2018-07-20 2022-06-21 Samsung Electronics Co., Ltd. Organic light-emitting device
KR102605293B1 (ko) * 2018-08-07 2023-11-22 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
US11937495B2 (en) 2018-08-23 2024-03-19 Kyushu University, National University Corporation Organic light emitting element, composition and membrane
JP7325731B2 (ja) * 2018-08-23 2023-08-15 国立大学法人九州大学 有機エレクトロルミネッセンス素子
EP3975279B1 (en) * 2018-10-15 2024-03-13 Samsung Display Co., Ltd. Organic electroluminescent device emitting blue light
TW202030306A (zh) 2018-11-15 2020-08-16 學校法人關西學院 有機電場發光元件、顯示裝置以及照明裝置
CN111276620B (zh) * 2018-12-05 2023-02-07 乐金显示有限公司 有机发光二极管和具有其的有机发光装置
KR20200072891A (ko) * 2018-12-13 2020-06-23 엘지디스플레이 주식회사 지연형광 화합물, 이를 포함하는 유기발광다이오드 및 유기발광표시장치
US20220081450A1 (en) * 2018-12-14 2022-03-17 Idemitsu Kosan Co.,Ltd. Organic electroluminescent element, compound, material for organic electroluminescent element, and electronic device
KR20200076817A (ko) 2018-12-19 2020-06-30 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
KR20210126000A (ko) 2019-02-06 2021-10-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 디바이스, 발광 기기, 표시 장치, 전자 기기, 및 조명 장치
KR102388487B1 (ko) 2019-02-28 2022-04-19 주식회사 엘지화학 화합물, 이를 포함하는 색변환 필름, 백라이트 유닛 및 디스플레이 장치
TWI699919B (zh) * 2019-03-15 2020-07-21 元智大學 有機發光二極體
WO2020218558A1 (ja) 2019-04-26 2020-10-29 学校法人関西学院 化合物、有機デバイス用材料、発光層形成用組成物、有機電界効果トランジスタ、有機薄膜太陽電池、有機電界発光素子、表示装置、および照明装置
JP2020203875A (ja) 2019-06-13 2020-12-24 学校法人関西学院 多環芳香族化合物
KR102700520B1 (ko) 2019-06-13 2024-09-02 삼성디스플레이 주식회사 유기 발광 소자
KR102675353B1 (ko) * 2019-08-02 2024-06-13 엘지디스플레이 주식회사 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
KR102686121B1 (ko) * 2019-09-04 2024-07-17 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광장치
KR102505882B1 (ko) 2019-10-04 2023-03-06 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 장치
KR102544979B1 (ko) 2019-10-04 2023-06-20 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 장치
KR20210046439A (ko) 2019-10-18 2021-04-28 엘지디스플레이 주식회사 유기발광다이오드 및 유기발광장치
KR20210132601A (ko) 2020-04-27 2021-11-04 삼성전자주식회사 유기 발광 소자
CN115669265A (zh) 2020-05-29 2023-01-31 九州有机光材股份有限公司 有机发光元件
CN114249715B (zh) * 2020-09-25 2024-10-11 江苏三月科技股份有限公司 一种含有氧杂蒽酮搭配三嗪结构的有机化合物及其应用
WO2022107798A1 (ja) * 2020-11-17 2022-05-27 株式会社Kyulux 有機エレクトロルミネッセンス素子、発光組成物の設計方法およびプログラム
KR20240001315A (ko) * 2021-04-26 2024-01-03 가부시키가이샤 큐럭스 유기 발광 소자 및 그 제조 방법
WO2022264857A1 (ja) 2021-06-15 2022-12-22 株式会社Kyulux 有機発光素子およびその製造方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050483A (ja) * 2000-05-22 2002-02-15 Showa Denko Kk 有機エレクトロルミネッセンス素子および発光材料
JP2003520391A (ja) * 1999-07-21 2003-07-02 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機発光素子で励起子を効果的に利用するための項間交差剤
JP2005071986A (ja) * 2003-08-04 2005-03-17 Fuji Photo Film Co Ltd 有機電界発光素子
JP2005108726A (ja) 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント素子用有機化合物
JP2005108727A (ja) 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子
JP2006041395A (ja) 2004-07-29 2006-02-09 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JP2010245061A (ja) * 2007-07-07 2010-10-28 Idemitsu Kosan Co Ltd 有機el素子
WO2012050001A1 (ja) * 2010-10-12 2012-04-19 新日鐵化学株式会社 含カルコゲン芳香族化合物、有機半導体材料及び有機電子デバイス
WO2012133188A1 (ja) * 2011-03-25 2012-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2013011954A1 (ja) 2011-07-15 2013-01-24 国立大学法人九州大学 有機エレクトロルミネッセンス素子およびそれに用いる化合物
WO2013011955A1 (ja) 2011-07-15 2013-01-24 国立大学法人九州大学 遅延蛍光材料およびそれを用いた有機エレクトロルミネッセンス素子
WO2013081088A1 (ja) 2011-12-02 2013-06-06 国立大学法人九州大学 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
JP2013116975A (ja) 2011-12-02 2013-06-13 Kyushu Univ 遅延蛍光材料、有機発光素子および化合物
WO2013133359A1 (ja) 2012-03-09 2013-09-12 国立大学法人九州大学 発光材料および有機発光素子
WO2013154064A1 (ja) 2012-04-09 2013-10-17 国立大学法人九州大学 有機発光素子ならびにそれに用いる発光材料および化合物
WO2013161437A1 (ja) 2012-04-25 2013-10-31 国立大学法人九州大学 発光材料および有機発光素子
JP2014009352A (ja) 2012-07-03 2014-01-20 Kyushu Univ 発光材料、化合物および有機発光素子
JP2014009224A (ja) 2012-07-03 2014-01-20 Kyushu Univ 発光材料、化合物および有機発光素子
WO2014013947A1 (ja) * 2012-07-20 2014-01-23 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2014104315A1 (ja) * 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW518768B (en) * 2000-05-22 2003-01-21 Showa Denko Kk Organic electroluminescent device and light-emitting material
AU5678101A (en) * 2000-05-22 2001-12-03 Showa Denko Kabushiki Kaisha Organic electroluminescent device and light-emitting material
JP2008509565A (ja) 2004-08-13 2008-03-27 ノヴァレッド・アクチエンゲゼルシャフト 発光成分用積層体
JP5371404B2 (ja) 2008-12-10 2013-12-18 凸版印刷株式会社 電子輸送性材料および発光素子
EP2511360A4 (en) 2009-12-07 2014-05-21 Nippon Steel & Sumikin Chem Co Organic light-emitting material and organic light-emitting element
JP2013120770A (ja) * 2011-12-06 2013-06-17 Canon Inc 有機発光素子
JP2013168587A (ja) 2012-02-16 2013-08-29 Sharp Corp 発光装置、半導体レーザ素子、および照明装置
JP6076153B2 (ja) * 2012-04-20 2017-02-08 株式会社半導体エネルギー研究所 発光素子、発光装置、表示装置、電子機器及び照明装置
US8994013B2 (en) * 2012-05-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
JP5904054B2 (ja) 2012-08-15 2016-04-13 日本電気株式会社 情報処理装置、値引登録方法、及びプログラム
JP6113993B2 (ja) * 2012-10-03 2017-04-12 出光興産株式会社 有機エレクトロルミネッセンス素子
US9512136B2 (en) * 2012-11-26 2016-12-06 Universal Display Corporation Organic electroluminescent materials and devices
WO2014104346A1 (ja) * 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子
EP2980877B1 (en) 2013-03-29 2017-11-29 Kyulux, Inc. Organic electroluminescent element
WO2014157610A1 (ja) 2013-03-29 2014-10-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置、表示装置、有機ルミネッセンス素子用発光性薄膜と組成物及び発光方法
EP4152910A1 (en) 2013-08-14 2023-03-22 Kyulux, Inc. Organic electroluminescent device
JP5905916B2 (ja) * 2013-12-26 2016-04-20 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520391A (ja) * 1999-07-21 2003-07-02 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機発光素子で励起子を効果的に利用するための項間交差剤
JP2002050483A (ja) * 2000-05-22 2002-02-15 Showa Denko Kk 有機エレクトロルミネッセンス素子および発光材料
JP2005071986A (ja) * 2003-08-04 2005-03-17 Fuji Photo Film Co Ltd 有機電界発光素子
JP2005108726A (ja) 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント素子用有機化合物
JP2005108727A (ja) 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子
JP2006041395A (ja) 2004-07-29 2006-02-09 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JP2010245061A (ja) * 2007-07-07 2010-10-28 Idemitsu Kosan Co Ltd 有機el素子
WO2012050001A1 (ja) * 2010-10-12 2012-04-19 新日鐵化学株式会社 含カルコゲン芳香族化合物、有機半導体材料及び有機電子デバイス
WO2012133188A1 (ja) * 2011-03-25 2012-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2013011955A1 (ja) 2011-07-15 2013-01-24 国立大学法人九州大学 遅延蛍光材料およびそれを用いた有機エレクトロルミネッセンス素子
WO2013011954A1 (ja) 2011-07-15 2013-01-24 国立大学法人九州大学 有機エレクトロルミネッセンス素子およびそれに用いる化合物
WO2013081088A1 (ja) 2011-12-02 2013-06-06 国立大学法人九州大学 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
JP2013116975A (ja) 2011-12-02 2013-06-13 Kyushu Univ 遅延蛍光材料、有機発光素子および化合物
WO2013133359A1 (ja) 2012-03-09 2013-09-12 国立大学法人九州大学 発光材料および有機発光素子
WO2013154064A1 (ja) 2012-04-09 2013-10-17 国立大学法人九州大学 有機発光素子ならびにそれに用いる発光材料および化合物
WO2013161437A1 (ja) 2012-04-25 2013-10-31 国立大学法人九州大学 発光材料および有機発光素子
JP2014009352A (ja) 2012-07-03 2014-01-20 Kyushu Univ 発光材料、化合物および有機発光素子
JP2014009224A (ja) 2012-07-03 2014-01-20 Kyushu Univ 発光材料、化合物および有機発光素子
WO2014013947A1 (ja) * 2012-07-20 2014-01-23 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2014104315A1 (ja) * 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROKI UOYAMA ET AL.: "Highly efficient organic light-emitting diodes from delayed fluorescence", NATURE, vol. 492, 12 December 2012 (2012-12-12), pages 234 - 238, XP055048388 *

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11569456B2 (en) 2013-12-26 2023-01-31 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and electronic device
US9905779B2 (en) 2013-12-26 2018-02-27 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and electronic device
US10811616B2 (en) 2013-12-26 2020-10-20 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and electronic device
US11997861B2 (en) 2014-08-29 2024-05-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element with fluorescent material, display device, electronic device, and lighting device
US11563191B2 (en) 2014-08-29 2023-01-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element with light-emitting layer including first and second organic compounds, display device, electronic device, and lighting device
US10693095B2 (en) 2014-08-29 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10714700B2 (en) 2014-08-29 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
JPWO2016125807A1 (ja) * 2015-02-06 2017-11-24 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
EP3072943A1 (en) * 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3304612B1 (en) * 2015-06-03 2022-05-04 UDC Ireland Limited Highly efficient oled devices with very short decay times
CN111668392B (zh) * 2015-06-03 2024-01-23 Udc 爱尔兰有限责任公司 具有极短衰减时间的高效oled装置
CN111668392A (zh) * 2015-06-03 2020-09-15 Udc 爱尔兰有限责任公司 具有极短衰减时间的高效oled装置
JP2017130643A (ja) * 2015-07-24 2017-07-27 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、照明装置、および照明システム
CN105254562A (zh) * 2015-09-01 2016-01-20 华南理工大学 一种有机小分子发光材料及由其制备的有机电致发光器件
US10297764B2 (en) 2015-09-14 2019-05-21 Samsung Electronics Co., Ltd. Mixture, thin film, and organic light emitting device including mixture and thin film
US10923664B2 (en) 2015-09-14 2021-02-16 Samsung Electronics Co., Ltd. Composition, thin film, and organic light emitting device including composition and thin film
US10615348B2 (en) 2015-11-16 2020-04-07 Samsung Electronics Co., Ltd. Organic light-emitting device
CN105322099A (zh) * 2015-11-30 2016-02-10 华南理工大学 一种全荧光白光有机发光二极管及其制备方法
CN108369992A (zh) * 2015-12-08 2018-08-03 出光兴产株式会社 有机el发光装置和电子设备
US10854838B2 (en) 2015-12-08 2020-12-01 Idemitsu Kosan Co., Ltd. Organic EL light emitting apparatus and electronic instrument
JP2021009859A (ja) * 2015-12-08 2021-01-28 出光興産株式会社 有機el発光装置及び電子機器
US11322711B2 (en) 2015-12-08 2022-05-03 Idemitsu Kosan Co., Ltd. Organic EL light emitting apparatus and electronic instrument
JP7017933B2 (ja) 2015-12-08 2022-02-09 出光興産株式会社 有機el発光装置及び電子機器
CN108369992B (zh) * 2015-12-08 2021-09-10 出光兴产株式会社 有机el发光装置和电子设备
EP3389107A4 (en) * 2015-12-08 2019-08-14 Idemitsu Kosan Co., Ltd ORGANIC EL LIGHT EMITTING DEVICE AND ELECTRONIC INSTRUMENT
JPWO2017099160A1 (ja) * 2015-12-08 2018-09-27 出光興産株式会社 有機el発光装置及び電子機器
WO2017099160A1 (ja) * 2015-12-08 2017-06-15 出光興産株式会社 有機el発光装置及び電子機器
WO2019115577A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Substituted aromatic amines for use in organic electroluminescent devices
WO2020064582A1 (de) 2018-09-24 2020-04-02 Merck Patent Gmbh Verfahren zur herstellung von granulat
KR20210095933A (ko) 2018-11-30 2021-08-03 가부시키가이샤 큐럭스 막의 제조 방법, 유기 반도체 소자의 제조 방법 및 유기 반도체 소자
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2021122868A1 (de) 2019-12-19 2021-06-24 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
WO2021157642A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
WO2021235549A1 (ja) 2020-05-22 2021-11-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2022009790A1 (ja) * 2020-07-06 2022-01-13 株式会社Kyulux 有機発光素子
WO2022025248A1 (ja) 2020-07-31 2022-02-03 株式会社Kyulux 化合物、発光材料および発光素子
WO2022129114A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022129113A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige heteroaromaten für organische elektrolumineszenzvorrichtungen
WO2022129116A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Indolo[3.2.1-jk]carbazole-6-carbonitril-derivate als blau fluoreszierende emitter zur verwendung in oleds
WO2022229234A1 (de) 2021-04-30 2022-11-03 Merck Patent Gmbh Stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022244503A1 (ja) 2021-05-20 2022-11-24 株式会社Kyulux 有機発光素子
WO2022270602A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機発光素子および膜
WO2022270354A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022270113A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機エレクトロルミネッセンス素子
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
WO2023041454A1 (de) 2021-09-14 2023-03-23 Merck Patent Gmbh Borhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023053835A1 (ja) 2021-09-28 2023-04-06 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
WO2023072799A1 (de) 2021-10-27 2023-05-04 Merck Patent Gmbh Bor- und stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023090288A1 (ja) 2021-11-19 2023-05-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2023140130A1 (ja) 2022-01-19 2023-07-27 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2023161167A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023161168A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatische heterocyclen für organische elektrolumineszenzvorrichtungen
WO2024132892A1 (en) 2022-12-19 2024-06-27 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024170605A1 (en) 2023-02-17 2024-08-22 Merck Patent Gmbh Materials for organic electroluminescent devices

Also Published As

Publication number Publication date
KR102577829B1 (ko) 2023-09-12
JP2015179817A (ja) 2015-10-08
JP6670042B2 (ja) 2020-03-18
KR20200140938A (ko) 2020-12-16
CN105453294A (zh) 2016-03-30
CN105453294B (zh) 2018-02-02
KR102335123B1 (ko) 2021-12-03
EP3706182B1 (en) 2022-11-16
KR20230088510A (ko) 2023-06-19
KR102543775B1 (ko) 2023-06-14
US20220344598A1 (en) 2022-10-27
US10862047B2 (en) 2020-12-08
US11944010B2 (en) 2024-03-26
KR20210148427A (ko) 2021-12-07
US11450817B2 (en) 2022-09-20
KR102191957B1 (ko) 2020-12-16
JP2015179809A (ja) 2015-10-08
US20160190478A1 (en) 2016-06-30
US20210074927A1 (en) 2021-03-11
EP4152910A1 (en) 2023-03-22
TW201510175A (zh) 2015-03-16
EP3706182A1 (en) 2020-09-09
EP3035401A1 (en) 2016-06-22
EP3035401A4 (en) 2017-01-04
TWI633170B (zh) 2018-08-21
KR20220162841A (ko) 2022-12-08
KR20160044522A (ko) 2016-04-25
JP5669163B1 (ja) 2015-02-12
KR102665000B1 (ko) 2024-05-10

Similar Documents

Publication Publication Date Title
JP5669163B1 (ja) 有機エレクトロルミネッセンス素子
JP6513565B2 (ja) 有機エレクトロルミネッセンス素子
WO2016042997A1 (ja) 有機電界発光素子
KR102196821B1 (ko) 유기 발광 소자
JP7182774B2 (ja) 発光素子
JP6567504B2 (ja) 有機発光素子
TW202100720A (zh) 有機電場發光元件用熔融混合物、有機電場發光元件、以及有機電場發光元件的製作方法
KR20180099713A (ko) 유기 전계 발광 소자
CN116710535A (zh) 有机电致发光元件及其制造方法
WO2016111196A1 (ja) 化合物、混合物、発光層、有機発光素子およびアシストドーパント
TW201538514A (zh) 有機電場發光元件用材料以及使用其的有機電場發光元件
WO2022168825A1 (ja) 有機エレクトロルミネッセンス素子、発光組成物の設計方法およびプログラム
JP7408125B2 (ja) 電荷輸送材料および有機発光素子
TWI712599B (zh) 有機電發光材料及使用其之有機電發光元件
JP7337369B2 (ja) 有機発光素子、積層体および発光方法
JP7395136B2 (ja) 組成物および有機発光素子
WO2022230573A1 (ja) 有機発光素子およびその製造方法
JP2018111751A (ja) 発光材料、化合物および有機発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043716.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836585

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14911761

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014836585

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167006684

Country of ref document: KR

Kind code of ref document: A