WO2014188632A1 - 放熱構造を有する半導体装置および半導体装置の積層体 - Google Patents

放熱構造を有する半導体装置および半導体装置の積層体 Download PDF

Info

Publication number
WO2014188632A1
WO2014188632A1 PCT/JP2014/000546 JP2014000546W WO2014188632A1 WO 2014188632 A1 WO2014188632 A1 WO 2014188632A1 JP 2014000546 W JP2014000546 W JP 2014000546W WO 2014188632 A1 WO2014188632 A1 WO 2014188632A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
lead
semiconductor
semiconductor substrate
heat sink
Prior art date
Application number
PCT/JP2014/000546
Other languages
English (en)
French (fr)
Inventor
越智 岳雄
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2015518045A priority Critical patent/JPWO2014188632A1/ja
Publication of WO2014188632A1 publication Critical patent/WO2014188632A1/ja
Priority to US14/885,222 priority patent/US20160035647A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49537Plurality of lead frames mounted in one device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1029All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being a lead frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1094Thermal management, e.g. cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18165Exposing the passive side of the semiconductor or solid-state body of a wire bonded chip

Definitions

  • the present disclosure relates to a semiconductor device having a heat dissipation structure and a manufacturing method thereof.
  • FIG. 13 is a cross-sectional view of the semiconductor device disclosed in Patent Document 1.
  • the semiconductor device includes a semiconductor substrate 101, a wire 102, a sealing resin 103, and leads 104, and the leads 104 are arranged on the outer periphery of the semiconductor substrate 101.
  • the circuit including the electrode 108 is formed on the upper surface side of the semiconductor substrate 101, and the electrode 108 of the semiconductor substrate 101 and the internal terminal 127 of the lead 104 are connected by the wire 102.
  • the semiconductor substrate 101, the leads 104, and the wires 102 are sealed with the sealing resin 103, and the lower surface 106 of the semiconductor substrate 101 and the lower surface 126 of the leads 104 are exposed from the sealing resin 103 on the lower surface of the semiconductor device.
  • FIG. 14 is a cross-sectional view of the semiconductor device disclosed in Patent Document 2.
  • the semiconductor device includes a semiconductor substrate 101, wires 102, sealing resin 103, and leads 104, and leads 104 are arranged on the outer periphery of the semiconductor substrate 101.
  • a circuit including the electrode 108 is formed on the upper surface side of the semiconductor substrate 101, the electrode 108 of the semiconductor substrate 101 and the internal terminal portion 127 of the lead 104 are connected by the wire 102, and the semiconductor substrate 101, the lead 104, and the wire 102 are sealed. Sealed with resin 103.
  • the thickness of the semiconductor substrate 101 is thinner than the lead 104, the lead 104 has a step, and the internal terminal 127 is formed one step lower than the upper surface 125 of the lead 104.
  • the lower surface 126 of the lead 104 and the lower surface 106 of the semiconductor substrate 101 are exposed to the outside of the sealing resin 103 in the same plane on the lower surface of the semiconductor device, and the upper surface 125 of the lead 104 is exposed to the outside on the upper surface of the semiconductor device.
  • the above prior art has the following problems from the viewpoint of heat dissipation.
  • an object of the present disclosure is to provide a semiconductor device that has high heat dissipation and can be thinned, and a stacked body thereof.
  • a semiconductor device includes a semiconductor substrate, an electrode disposed on a first surface of the semiconductor substrate, a circuit formed on a second surface opposite to the first surface of the semiconductor substrate, and a circuit
  • the conductor for connecting the electrode, the first lead disposed on the outer periphery of the semiconductor substrate, the connecting member for connecting the electrode and the first lead, and the semiconductor substrate, the first lead and the connecting member are sealed. And a second surface of the semiconductor substrate is exposed from the sealing material.
  • the second surface of the semiconductor substrate may have an insulating film arranged to cover the circuit and a metal film arranged to cover the insulating film.
  • the semiconductor device can separate a surface on which a circuit of a semiconductor substrate is arranged from a surface on which an electrode is arranged by a conductor. Therefore, by forming the circuit on the second surface of the semiconductor substrate and exposing it from the sealing material, it is possible to realize a semiconductor device with high heat dissipation while maintaining a thin shape without attaching an additional member for heat dissipation. .
  • the second surface of the semiconductor substrate can be covered with a metal film and exposed from the sealing material, further higher heat dissipation can be achieved.
  • FIG. 1A is a cross-sectional view of the semiconductor device according to the first embodiment.
  • FIG. 1B is an enlarged cross-sectional view of a semiconductor substrate used in the semiconductor device according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the semiconductor device according to the second embodiment.
  • FIG. 3A is a cross-sectional view of a stacked body of semiconductor devices according to a modification of the second embodiment.
  • FIG. 3B is a cross-sectional view of a stacked body of semiconductor devices according to a modification of the second embodiment.
  • FIG. 4A is a diagram illustrating the configuration of the semiconductor device according to the third embodiment, and is a top view when the sealing material 3 is seen through.
  • FIG. 4A is a diagram illustrating the configuration of the semiconductor device according to the third embodiment, and is a top view when the sealing material 3 is seen through.
  • FIG. 4B is a diagram illustrating the configuration of the semiconductor device according to the third embodiment, and is a cross-sectional view taken along the line IVB-IVB in FIG. 4A.
  • FIG. 4C is a diagram illustrating the configuration of the semiconductor device according to the third embodiment, and is a cross-sectional view taken along line IVc-IVc in FIG. 4A.
  • FIG. 4D is a top view illustrating the configuration of the semiconductor device according to the third embodiment.
  • FIG. 4E is a bottom view showing the configuration of the semiconductor device according to the third embodiment.
  • FIGS. 5A to 5F are views for explaining a first example of the manufacturing process of the semiconductor device according to the third embodiment.
  • 6A to 6F are views for explaining a second example of the manufacturing process of the semiconductor device according to the third embodiment.
  • FIGS. 7A to 7F are views for explaining a third example of the manufacturing process of the semiconductor device according to the third embodiment.
  • FIG. 8A is a cross-sectional view of a stacked body of semiconductor devices according to Modification 1 of the third embodiment.
  • FIG. 8B is a cross-sectional view of a stacked body of semiconductor devices according to Modification 1 of the third embodiment.
  • FIG. 9 is a top view of the connection body of the semiconductor device according to the second modification of the third embodiment.
  • FIG. 10A is a diagram illustrating a configuration of the semiconductor device according to the fourth embodiment, and is a top view when the sealing material 3 is seen through.
  • FIG. 10A is a diagram illustrating a configuration of the semiconductor device according to the fourth embodiment, and is a top view when the sealing material 3 is seen through.
  • FIG. 10B is a diagram illustrating the configuration of the semiconductor device according to the fourth embodiment, and is a cross-sectional view taken along line Xb-Xb in FIG. 10A.
  • FIG. 10C is a diagram illustrating the configuration of the semiconductor device according to the fourth embodiment, and is a cross-sectional view taken along line Xc-Xc in FIG. 10A.
  • FIG. 10D is a top view illustrating the configuration of the semiconductor device according to the fourth embodiment.
  • FIG. 10E is a bottom view showing the configuration of the semiconductor device according to the fourth embodiment.
  • FIG. 11A is another example of a bottom view of the semiconductor device according to the fourth embodiment.
  • FIG. 11B is another example of a bottom view of the semiconductor device according to the fourth embodiment.
  • FIG. 12 is a top view of a connection body of a semiconductor device according to a modification of the fourth embodiment.
  • FIG. 13 is a configuration diagram of a conventional semiconductor device.
  • FIG. 14 is another configuration diagram of a conventional semiconductor device.
  • the semiconductor device includes a semiconductor substrate 1, a connection member 2, a sealing material 3, and a lead 4 that is a first lead.
  • the semiconductor substrate 1 has an electrode 8 on the first surface 7, a circuit 23 on the second surface, and a conductor 9 that electrically connects the electrode 8 and the circuit 23. Yes.
  • an insulating film 24 is disposed on the circuit 23 on the second surface 6 of the semiconductor substrate 1, and a metal film 10 is provided so as to cover it.
  • the connecting member 2 is a thin metal wire such as a wire, and an Au wire, a Cu wire, an Al wire, or the like can be used.
  • the sealing material 3 is for sealing the semiconductor substrate 1, the connection member 2, and the leads 4, and is generally a resin.
  • blended Si filler with the epoxy material is used.
  • the lead 4 is disposed on the outer periphery of the semiconductor substrate 1. Further, the semiconductor substrate 1 and the leads 4 are arranged in the lowermost layer of the semiconductor device, and the second surface is exposed from the sealing material 3. The electrode 8 disposed on the first surface 7 of the semiconductor substrate 1 and the internal terminal 27 of the lead 4 are connected by the connecting member 2.
  • the second surface 26 of the lead 4 and the second surface 6 of the semiconductor substrate 1 may be exposed to the outside in the same plane.
  • the lead 4 is made of Cu or Fe as a base material, Cu, Ni, Pd, Au plating laminated, Ni, Pd, Ag plating laminated, Fe—Ni alloy plated Ag, etc. Can be used.
  • the first surface 25 of the lead 4 may be the same height as the first surface 7 of the semiconductor substrate 1.
  • the electrode 8 formed on the upper surface 7 of the semiconductor substrate 1 is, for example, Al, and can be formed by stacking Cu, Ni, and Au.
  • the electrode 8 and the circuit 23 are connected by a conductor 9 that electrically connects the first surface 7 and the second surface 6 of the semiconductor substrate 1.
  • the conductor 9 is, for example, a through electrode penetrating from the first surface 7 to the second surface 6. After an insulating layer such as SiO 2 is formed in a through hole formed in silicon, Ti and Cu are deposited. It can be formed by a method such as plating with Cu.
  • the shape of the conductor 9 is arbitrary.
  • the circuit 23 and the electrode 8 of the semiconductor substrate 1 can be arranged separately on the first surface 6 and the second surface 7, respectively. Thereby, the 1st surface 6 with big emitted-heat amount can be exposed from the sealing material 3, and the semiconductor device which improved heat dissipation can be obtained. Further, since it is not necessary to externally attach a heat sink or the like in order to improve heat dissipation, the thickness of the semiconductor device can be kept thin.
  • Insulating film 24 covering the circuit 23 is disposed on the second surface 6 of the semiconductor substrate 1.
  • Insulating film 24 is, for example SiO 2 or SiN, a film of polyimide or the like.
  • the insulating film 24 may cover the entire second surface 6 on which the circuit 23 is formed, or may cover only the region where the circuit 23 is exposed.
  • the insulating film 24 may be any material and thickness that can insulate the circuit 23 from the outside of the semiconductor substrate 1. Further, the thinner the semiconductor device, the better.
  • the metal film 10 is, for example, a film of Cu, Al or the like, and when surface protection or connection is required, a laminate of Cu, Ni, Au plating, a laminate of Cu, Ni, Pd plating, and solder Etc. may be covered.
  • the metal film 10 is exposed from the sealing material 3 and exposed outside the semiconductor device. From the viewpoint of heat dissipation, it is desirable that the metal film 10 covers the entire surface of the insulating film 24.
  • the exposed surface of the metal film 10 and the second surface 26 of the lead 4 may be the same plane.
  • the semiconductor substrate 1 is disposed so that the second surface 6 side is the lowest layer of the semiconductor device, and has a die padless structure.
  • the circuit 23 and the electrode 8 of the semiconductor substrate 1 can be separated into the first surface 6 and the second surface 7 by the conductor 9. Furthermore, the second surface 6 of the semiconductor substrate 1 on which the circuit 23 is disposed can be covered with the metal film 10 via the insulating film 24 and exposed from the semiconductor device without being covered with the sealing material 3. High heat dissipation becomes possible. In addition, since it is not necessary to externally attach a heat radiating plate or the like for improving heat dissipation, the thickness of the semiconductor device can be made as thin as possible. Furthermore, since it is not necessary to add a process required for mounting the heat sink, it can be manufactured without impairing mass productivity. Moreover, since the outer shape of the semiconductor device can be made the same as that without a heat sink, it is easier to handle than when the heat sink is externally attached.
  • the lead 4 has a step on the side facing the semiconductor substrate 1. Specifically, the internal terminal 27 of the lead 4 is formed lower than the first surface 25 of the lead 4. The number of steps between the internal terminal 27 and the first surface 25 of the lead 4 is arbitrary.
  • the electrode 8 on the first surface 7 of the semiconductor substrate 1 and the internal terminal 27 of the lead 4 are connected by the connecting member 2.
  • the height is lower than the height of the first surface 25 of the lead 4.
  • the second surface 26 of the lead 4 and the second surface 6 of the semiconductor substrate 1 are exposed from the sealing material 3 and the first surface of the lead 4 is.
  • the surface 25 is exposed from the sealing material 3. That is, since the leads 4 can be exposed on the upper and lower surfaces of the semiconductor device, a thin semiconductor device with high heat dissipation can be easily stacked.
  • metal film 10 covering the second surface 6 of the semiconductor substrate 1 and the second surface 26 of the lead 4 may be exposed from the sealing material 3 in the same plane.
  • FIG. 3A and FIG. 3B are cross-sectional views each showing an example of a stacked body of semiconductor devices in which a plurality of semiconductor devices according to the second embodiment are stacked.
  • the first semiconductor device 17 and the second semiconductor device 18 shown in FIGS. 3A and 3B have the same configuration as the semiconductor device shown in FIG.
  • the stacked body of semiconductor devices shown in FIG. 3A includes a first semiconductor device 17 and a second semiconductor device 18 arranged so that the first surfaces 25 of the leads 4 face each other. That is, the first surface 25 of the lead 4 of the first semiconductor device 17 and the first surface 25 of the lead 4 of the second semiconductor device 18 are connected by the solder 13 to form a stacked body.
  • both the first and second semiconductor devices 17 and 18 can expose the second surface 6 of the semiconductor substrate 1 on which the circuit 23 is formed without being covered with the sealing material 3. it can. Further, since the second surface 6 of the semiconductor substrate 1 of the second semiconductor device 18 faces away from the lower first semiconductor device 17, the circuit 23 disposed on the second surface 6 is It is possible to prevent the heat dissipation from being deteriorated by being sandwiched between the sealing materials 3 of the first and second semiconductor devices 17 and 18.
  • the laminated body of the semiconductor device of the present modification may have the heat dissipation plate 5 attached to the surface of the second semiconductor device 18 on which the circuit 23 is formed.
  • the heat sink 5 is an alloy such as Cu or 42 alloy, for example, and is joined to the metal film 10 by solder 13.
  • the first semiconductor device 17 may be mounted on the mounting substrate 14. That is, in the first semiconductor device 17, the second surface 26 of the lead 4 is connected to the wiring land 15 of the mounting substrate 14 by the solder 13.
  • the mounting substrate 14 may have a heat dissipation land 16 at a location facing the semiconductor substrate 1, and the metal film 10 of the semiconductor substrate 1 is connected to the heat dissipation land 16 by solder 13. The heat radiation land 16 penetrates the mounting substrate 14 in the thickness direction.
  • the stacked body of semiconductor devices shown in FIG. 3A is formed by stacking the first and second semiconductor devices 17 and 18 against the second surface 6 on which the circuit 23 of each semiconductor substrate 1 is formed. Further, the metal film 10 of the semiconductor substrate 1 of the first semiconductor device 17 is connected to the heat dissipation land 16 of the mounting substrate 14, or the metal film 10 of the semiconductor substrate 1 of the second semiconductor device 18 is connected to the heat dissipation plate 5, respectively. Therefore, high heat dissipation can be achieved.
  • the first and second semiconductor devices 17 and 18 are arranged so that the second surfaces 26 of the leads 4 face each other, and the first semiconductor device 17 and the second semiconductor device 17
  • the heat sink 5 is provided between the semiconductor devices 18. That is, the second surface 26 of the lead 4 of the first semiconductor device 17 and the second surface 26 of the lead 4 of the second semiconductor device 18 are connected by the solder 13 to form a laminated body, and the heat sink 5 is connected to the metal film 10 of the first and second semiconductor devices 17 and 18 through the solder 13.
  • both the first and second semiconductor devices 17 and 18 are exposed without covering the surface on which the circuit 23 is formed with the sealing material 3, and the heat sink 5 is attached to the metal film 10. Therefore, high heat dissipation can be realized. Moreover, since one heat sink 5 can be shared by the semiconductor devices 17 and 18 stacked one above the other, it is possible to reduce the thickness while improving heat dissipation.
  • the first semiconductor device 17 may be mounted on the mounting substrate 14. That is, in the first semiconductor device 17, the first surface 25 of the lead 4 is connected to the wiring land 15 of the mounting substrate 14 by the solder 13.
  • the mounting substrate 14 may have a heat radiation land 16 at a location facing the semiconductor substrate 1 as in the example of FIG. 3A.
  • the first and second semiconductor devices 17 and 18 are stacked such that the second surface 6 on which the circuit 23 of each semiconductor substrate 1 is formed faces each other.
  • the metal film 10 of the semiconductor substrate 1 of the first and second semiconductor devices 17 can be connected to the common heat sink 5, high heat dissipation and thinning can be achieved.
  • the heat sink 5 may be embedded in the sealing material 3 instead of the metal film 10 and incorporated in the package, and the lower surface thereof may be exposed.
  • FIG. 4A is a top view of the semiconductor device according to the present embodiment, and the internal perspective when the external shape of the semiconductor substrate 1 inside the sealing material 3, the arrangement of the electrodes 8, the leads 4 and the connection member 2 is seen through.
  • FIG. 4B is a sectional view taken along line IVb-IVb in FIG. 4A
  • FIG. 4C is a sectional view taken along line IVc-IVc in FIG. 4A.
  • 4D is a top view when the sealing material 3 is not seen through
  • FIG. 4E is a bottom view of the semiconductor device as seen from the bottom.
  • differences from the second embodiment will be mainly described.
  • the semiconductor device according to the third embodiment has a heat sink 5 disposed above the semiconductor substrate 1.
  • the first surface 28 of the heat sink 5 is exposed from the sealing material 3.
  • the heat sink 5 has an opening 30 in a region including the connection member 2 and the lead 4. Further, the heat sink 5 is formed to extend to the outer peripheral portion of the semiconductor device with the same thickness as the lead 4 in a region not including the semiconductor substrate 1. On the other hand, the region including the semiconductor substrate 1 in the heat sink 5 is thinner than the outer peripheral portion by reducing the second surface 29 of the heat sink 5 so as to cover the semiconductor substrate 1. That is, the region including the semiconductor substrate 1 in the heat sink 5 is located above the semiconductor substrate 1.
  • the second surface 26 of the lead 4, the second surface 6 of the semiconductor substrate 1, and the second surface of the outer peripheral portion of the heat sink 5. 29 is exposed from the sealing material 3.
  • the second surface 26 of the lead 4, the second surface 6 of the semiconductor substrate 1, the second surface 29 of the outer peripheral portion of the heat sink 5, and the bottom surface of the sealing material 3 are preferably flush with each other.
  • the first surface 25 of the lead 4 and the first surface 28 of the heat sink 5 are exposed from the sealing material 3. It is desirable that the first surface 25 of the lead 4, the first surface 28 of the heat radiating plate 5, and the upper surface of the sealing material 3 are flush with each other.
  • the heat sink 5 can be extended outward from the outer peripheral portion of the semiconductor substrate 1, and the heat sink 5 can be formed larger and thicker at the outer peripheral portion of the semiconductor device. That is, since the heat sink 5 can be maximized, the surface area of the heat sink 5 is increased, and the heat dissipation can be further improved.
  • the heat radiating plate 5 can be formed to a thickness necessary for sealing the connection member 2 connecting the electrode 8 of the semiconductor substrate 1 and the internal terminal 27 of the lead 4. Therefore, the semiconductor device can be thinned.
  • the volume of the sealing material 3 of the semiconductor device is reduced, and the balance between the upper and lower structures is improved, so that the strength of the semiconductor device is improved and damage and warpage can be reduced. That is, according to the semiconductor device with a built-in heat sink as in the present embodiment, it is possible to achieve both thinness, mass productivity, and easy stacking in addition to high heat dissipation.
  • the semiconductor device according to the present embodiment can be formed with the outer shape of the semiconductor device equivalent to the case without a heat sink, it is more easy to handle than a conventional semiconductor device with an external heat sink.
  • production lines and jigs can be shared with conventional products.
  • the electrodes 8 of the semiconductor substrate 1 are concentrated on two parallel sides of the semiconductor substrate 1 and the heat sink 5 is formed to be H-shaped in plan view. Therefore, since the two side surfaces of the semiconductor device can be used as the heat sink 5, the capacity of the heat sink 5 and the externally exposed area can be maximized, and the strength of the semiconductor device can be improved.
  • 5A to 5B show an example of the manufacturing process of the semiconductor device according to the present embodiment in the order of processes.
  • the second surface 6 of the semiconductor substrate 1 is attached to the first release film 11.
  • a heat resistant material of 170 ° C. or higher such as polyimide or Teflon (registered trademark) is used as the base material, and olefin is used as the adhesive.
  • a lead frame having leads 4 and a heat radiating plate 5 is attached to the release film 11.
  • the electrode 8 of the semiconductor substrate 1 and the lead 4 are connected by the connecting member 2.
  • the semiconductor substrate 1, the lead 4, the connection member 2, and the heat sink 5 are sealed with a sealing material 3 by, for example, a compression molding method.
  • a liquid material is applied on the second release film 12, printed, or a granular material is dispersed and heated to be melted.
  • the sealing material 3 uses a thermosetting material such as a glass epoxy material.
  • the lead frame on which the semiconductor substrate 1 is mounted and the connection member bonding is performed is aligned so as to face the second release film 12, and in a molten state.
  • the lead frame is pressed against the second release film 12 with the sealing material 3 interposed therebetween, and both are bonded and compressed, and the semiconductor substrate 1, the lead 4, the connecting member 2, the heat sink 5, and the sealing The material 3 is integrated.
  • the thicknesses of the outer peripheral portions of the lead 4 and the heat sink 5 are the same, and the thickness of the heat sink 5 above the semiconductor substrate 1 is reduced by the thickness of the semiconductor substrate 1.
  • the lead 4 and the outer peripheral portion of the heat sink 5 interfere with the mold and stop before the heat sink 5 contacts the semiconductor substrate 1. It is possible to automatically prevent damage due to interference. Further, since the lead 4 and the heat radiating plate 5 function as spacers, it is possible to dispense with a mold.
  • the heat sink 5 can be as close as possible to the main surface of the semiconductor substrate 1, and at the same time, the heat sink 5 can be maximized inside the device other than the region including the semiconductor substrate 1 and the connection member 2. The heat dissipation effect can be maximized.
  • the distance between the semiconductor substrate 1 and the heat radiating plate 5 is preferably minimized from the viewpoint of the heat dissipation effect, but is larger than the filler size of the sealing material 3 in consideration of damage to the main surface of the semiconductor substrate 1. There is a need.
  • the interval is 50 to 100 ⁇ m in consideration of variations in the thickness and parallelism of the semiconductor substrate 1 and the heat radiating plate 5, the filler size of the sealing material 3, and the filling property.
  • the filler size of the sealing material 3 can be reduced and the filler can be made more aggressively.
  • sealing material 3 may be properly used between the semiconductor substrate 1 and the heat sink 5 and other portions.
  • a small filler or a filler-less can be provided between the semiconductor substrate 1 and the heat sink 5.
  • the thickness of the semiconductor device can be controlled by utilizing the lead 4 and the heat sink 5 as a spacer.
  • the mold cavity can be omitted, sealing molding can be performed with a flat plate mold, and the commonality of the mold is improved.
  • the compression mold method is used.
  • the release films 11 and 12 are peeled off, and as shown in FIG.5 (f), it dices and separates into a semiconductor device.
  • the first surface 25 and the second surface 26 of the lead 4, the first surface 28 and the second surface 29 of the heat sink 5, and the second surface 6 of the semiconductor substrate 1 are sealed with the sealing material 3. It is covered with a release film during the sealing process. Therefore, the first surface and the second surface of the semiconductor device can be exposed from the semiconductor device by peeling the release film after molding.
  • the heat sink 5 extended to the outer periphery of the semiconductor device is molded in a lump and then cut and divided by dicing, the cut surface of the heat sink 5 can be exposed to the outer periphery of the semiconductor device. Can be maximized.
  • the heat radiating plate 5 crosses the outer shape obliquely, there is a concern that the cut surface of the heat radiating plate 5 may vary from one piece to another due to misalignment of dicing.
  • the heat dissipation plate 5 of the semiconductor device always intersects the outer shape perpendicularly to the outer shape because the opening 30 in the connection member bond region is rectangular and the entire shape is H-shaped in plan view. Therefore, halfway cutting residue does not occur, and the cut surface of each piece can be made uniform.
  • the use of a lead frame in which the lead 4 and the heat sink 5 are integrated reduces the number of materials and processes. Moreover, the lead 4 and the heat sink 5 may be prepared separately and integrated at the time of sealing molding.
  • 6A to 6F show another example of the manufacturing process of the semiconductor device according to this embodiment in the order of processes.
  • the second surface 6 of the semiconductor substrate 1 is attached to the first release film 11.
  • a lead frame having leads 4 is attached to the release film 11.
  • the electrode 8 of the semiconductor substrate 1 and the lead 4 are connected by the connecting member 2.
  • the heat radiating plate 5 is attached to the second release film 12.
  • the semiconductor substrate 1, the lead 4, the connection member 2, and the heat sink 5 are sealed with a sealing material 3 by, for example, a compression molding method.
  • a liquid material is applied on the second release film 12, printed, or a granular material is dispersed and heated to be melted.
  • the lead frame on which the semiconductor substrate 1 is mounted and the connection member bonding is performed is aligned so as to face the second release film 12, and in a molten state.
  • the lead frame is pressed against the second lead frame 12 with the sealing material 3 interposed therebetween, and the two are bonded together and compressed, and the semiconductor substrate 1, the lead 4, the connecting member 2, the heat sink 5, and the sealing The material 3 is integrated.
  • the semiconductor substrate 1 and the heat sink 5 may be bonded in advance, and sealing molding may be performed after the connection member is bonded.
  • FIG. 7A to 7F show still another example of the manufacturing process of the semiconductor device according to this embodiment in the order of processes.
  • the adhesive member 31 may be a thermosetting material such as an epoxy material or an acrylic material, a material in which an adhesive is applied to both sides of a polyimide fill, or a metal such as solder. In order to further improve the heat dissipation, it is preferable to mix a heat conductive filler or the like into the adhesive member 31 or use a metal such as solder.
  • the electrode 8 of the semiconductor substrate 1 and the lead 4 are connected by the connecting member 2.
  • the semiconductor substrate 1, the lead 4, the connection member 2, and the heat radiating plate 5 are sealed with a sealing material 3 by, for example, a compression molding method in a mold. To do.
  • a liquid material is applied on the second release film 12, printed, or a granular material is dispersed and heated to be melted.
  • the lead frame on which the semiconductor substrate 1 is mounted and the connection member bonding is performed is aligned so as to face the second release film 12, and in a molten state.
  • the lead frame is pressed against the second lead frame with the sealing material 3 interposed therebetween, and the two are bonded and compressed, and the semiconductor substrate 1, the lead 4, the connection member 2, the heat sink 5, and the sealing material 3 is integrated.
  • the sealing material 3 is not filled between the semiconductor substrate 1 and the heat radiating plate 5, so that the semiconductor substrate 1 and the heat radiating plate are independent of the sealing material 3. 5 and the material of the adhesive member 31 can be arbitrarily determined, and heat dissipation can be improved.
  • the first release film 11 can be omitted.
  • the heat sink 5 is exposed on the same surface as the lead 4 on the upper surface and the lower surface of the semiconductor device, when connecting the leads 4 of the upper and lower semiconductor devices, the upper and lower The heat sinks 5 of the semiconductor device can be connected to each other.
  • circuit 23 of the semiconductor substrate 1 of the upper semiconductor device can be directly connected to the heat sink 5 of the lower semiconductor device and the heat sink of the mounting substrate, it is possible to realize a high heat dissipation laminate.
  • 8A and 8B are cross-sectional views of a stacked body of semiconductor devices in which a plurality of semiconductor devices according to the third embodiment are stacked.
  • FIG. 8A is a cross-sectional view taken along the line IVb-IVb shown in FIG. 4A when the semiconductor devices according to the third embodiment are stacked
  • FIG. 8B is a cross-sectional view taken along the line IVc-IVc shown in FIG. 4A.
  • the first semiconductor device 17 is mounted on the mounting substrate 14, and the second semiconductor device 18 and the third semiconductor device 19 are stacked on the mounting substrate 14 in this order.
  • the second surface 26 of the lead 4 of the first semiconductor device 17 is connected to the wiring land 15 of the mounting substrate 14 by the solder 13, and the metal of the second surface 6 of the semiconductor substrate 1 of the first semiconductor device 17.
  • the film 10 is connected to the heat radiation land 16 of the mounting substrate 14 by solder 13.
  • the second surface 26 of the lead 4 of the second semiconductor device 18 is connected to the first surface 25 of the lead 4 of the first semiconductor device 17 by solder 13, and the semiconductor substrate 1 of the second semiconductor device 18
  • the metal film 10 on the second surface 6 is connected to the first surface 28 of the heat sink 5 of the first semiconductor device 17 by solder 13.
  • the second surface 26 of the lead 4 of the third semiconductor device 19 is connected to the first surface 25 of the lead 4 of the second semiconductor device 18 by solder 13, and the semiconductor substrate 1 of the third semiconductor device 19
  • the metal film 10 on the second surface 6 is connected to the first surface 28 of the heat sink 5 of the second semiconductor device 18 by solder 13.
  • the second surface 29 of the heat sink 5 of the first semiconductor device 17 is connected to the wiring land 15 of the mounting substrate 14 by solder 13.
  • the second surface 29 of the heat sink 5 of the second semiconductor device 18 is connected to the first surface 28 of the heat sink 5 of the first semiconductor device 17 by solder 13.
  • the second surface 29 of the heat sink 5 of the third semiconductor device 19 is connected to the first surface 28 of the heat sink 5 of the second semiconductor device 18 by solder 13.
  • the laminated body of semiconductor devices According to the laminated body of semiconductor devices according to this modification, it is possible to efficiently dissipate heat from the semiconductor substrate 1 of the semiconductor devices 17 to 19 of each layer. Further, by incorporating the heat sink 5 in each of the semiconductor devices 17 to 19, when the respective leads 4 are joined by soldering, it is possible to solder at the same time, so that the materials and processes are simplified.
  • solder 13 is used for the connection between the leads 4 of the upper and lower semiconductor devices 17 to 19 and the connection between the upper semiconductor substrate 1 and the lower heat sink 5. Other methods may be used.
  • connection between the leads 4 of the upper and lower semiconductor devices 17 to 19 and the connection between the upper semiconductor substrate 1 and the lower radiator plate 5 may be made of different materials.
  • connection between the metal film 10 of the upper semiconductor substrate 1 and the lower radiator plate 5 may be merely contact.
  • the number of stacked semiconductor devices can be arbitrarily set, and the upper and lower semiconductor devices may be semiconductor devices having different configurations.
  • the lead 4 and the heat sink 5 are exposed not only on the first surface and the second surface of the semiconductor devices 17 to 19 but also on the side surfaces of the semiconductor devices 17 to 19, and therefore in the side surface direction. It is possible to connect the lead 4 and the heat sink 5 arbitrarily to perform electrical conduction and heat transfer. Therefore, it is possible to stack the semiconductor devices three-dimensionally up and down, left and right, and freely perform electrical connection and heat dissipation between the semiconductor devices.
  • FIG. 9 is a top view of a connection body in which a plurality of semiconductor devices according to the third embodiment are connected in the horizontal direction.
  • the lead 4 exposed from the sealing material 3 serves as a terminal and is electrically connected by solder 13 or the like.
  • the side surfaces of the heat sink 5 are connected by solder 13. With such a configuration, even when there is a variation in the amount of heat generated in each semiconductor device, there is an effect of making the temperature distribution closer to uniform by connecting a plurality of heat sinks and causing heat conduction to each other. That is, even when the heat generation amount of a specific semiconductor substrate is higher than others, the connection structure of the heat sink 5 can enhance heat dissipation and prevent deterioration of characteristics due to heat.
  • the heat sink 5 of the semiconductor device can be used as the heat sink / second lead 21 as described below.
  • the heat sink 5 can be made as close as possible to the semiconductor substrate 1 while avoiding interference with the connection member 2. Since the size of the heat sink 5 can be maximized, the heat radiation effect can be maximized.
  • the heat sink 5 can be sealed and integrated with the semiconductor substrate 1 or the like for a plurality of semiconductor devices, the semiconductor device can be made thinner and more productive than the conventional product.
  • the semiconductor device in a stacked body or in a horizontal direction, it is possible to freely connect in the vertical and horizontal directions and to form a through path, and dramatically improve the degree of freedom of electrical wiring and heat dissipation paths. It becomes possible.
  • the semiconductor device can be formed with the heat radiating plate 5 except for the region of the connecting member 2 on the main surface and the side surface, it is possible to increase heat dissipation, reduce warpage, increase strength, and increase reliability. There are many advantages over conventional semiconductor devices.
  • FIG. 10A is a top view of the semiconductor device according to the present embodiment, and shows the outline of the semiconductor substrate 1 inside the sealing material 3, the arrangement of the electrodes 8, and the leads 4 and the connection member 2 as seen through.
  • FIG. 10B is an Xb-Xb cross-sectional view of FIG. 10A
  • FIG. 10C is an Xc-Xc cross-sectional view.
  • 10D is a top view when the sealing material 3 is not seen through
  • FIG. 10E is a bottom view of the semiconductor device as seen from the bottom.
  • differences from the third embodiment will be mainly described.
  • a second lead 21 that is divided into a plurality of parts in plan view is formed above the second surface 7 of the semiconductor substrate 1.
  • the second lead 21 can be used as a structure for heat dissipation, a signal transmission terminal, or both. That is, in addition to the function as a heat sink, an electrical signal from the semiconductor substrate 1 may be passed.
  • the material of the second lead 21 may be the same as that of the heat radiating plate 5. However, when mainly functioning as a heat radiating plate, priority is given to thermal conductivity, and when function as a terminal is necessary, priority is given to conductivity. It is effective to select.
  • the second lead 21 is only disposed on the first surface 7 of the semiconductor substrate 1 and is not connected to the semiconductor substrate 1. Therefore, for example, when the lower semiconductor device is stacked so as to connect the upper surface lead 4 shown in FIG. 10D and the upper semiconductor device bottom surface lead 4 shown in FIG. The second lead 21 is simply thermally connected.
  • the metal film 10 disposed on the second surface 6 of the semiconductor substrate 1 may be divided and formed so as to correspond to the shape of the second lead 21 as shown in FIG. 11A. That is, as shown in FIG. 11A, the metal film 10 and the heat sink / second lead 21 are arranged so that their longitudinal sides are in the same direction.
  • the metal film 10 of the semiconductor substrate 1 of the upper semiconductor device and the second lead 21 of the lower layer are short-circuited even when the second lead conducts as a signal path. It can be configured not to.
  • the metal film 10 of the semiconductor substrate 1 of the upper semiconductor device and the second lead 21 are electrically connected, the metal film 10 may be divided.
  • the upper and lower semiconductor devices may be stacked by rotating 90 degrees in the horizontal direction.
  • the upper lead 4 shown in FIG. 10D of the lower semiconductor device and the second lead 21 shown in FIG. 11A of the upper semiconductor device are connected.
  • the electrical signal from the semiconductor substrate 1 of the upper semiconductor device passes through the lead 4 and is transmitted to the second lead 21 of the lower semiconductor device.
  • the second lead 21 can be used as a signal path in addition to the heat dissipation function.
  • the metal film 10 of the semiconductor substrate 1 is assumed in advance assuming that the upper semiconductor device is rotated 90 degrees in the horizontal direction with respect to the lower semiconductor device. May be formed in a shape rotated 90 degrees with respect to the second lead 21. That is, as shown in FIG. 11B, the metal film 10 and the second lead 21 are arranged so that their longitudinal sides are orthogonal to each other.
  • the second lead 21 can be connected not only in the stacking direction of the semiconductor device but also in the horizontal direction, and can be freely connected in all directions, up and down, left and right, and a through path can be formed. is there.
  • connection body of the semiconductor device according to this modification can be configured by connecting, for example, the semiconductor device shown in FIG. 10A in the horizontal direction.
  • the adjacent semiconductor devices are arranged by being rotated 90 degrees in the horizontal direction, and the leads 4 and the second leads 21 are connected to those of the adjacent semiconductor devices on the side surfaces.
  • all terminals of the lead 4 and the second lead 21 are connected by the solder 13, but only a part of the leads may be connected. Further, it is arbitrary whether each semiconductor device is rotated by 90 degrees.
  • the surface-mount type leadless package similar to the wire bond type QFN package has been described as an example, but the present invention is not limited to this. That is, the idea that the electrode 8 connected to the internal terminal 27 is disposed on the first surface 7 of the semiconductor substrate 1 and the circuit 23 is disposed on the second surface 6 on the opposite side is based on the package and the connecting member 2 illustrated. It is not limited to the presence or absence, and is effective for various package forms.
  • connection member 2 a wire has been described as an example of the connection member 2, the present invention is not limited to this, and a lead having a width wider than the wire may be used.
  • the through electrode is exemplified as the conductor 9, the present invention is not limited to this, and the electrode on the first surface of the semiconductor substrate 1 and the circuit on the second surface are electrically connected. I just need it.
  • the upper and lower surfaces and the side surfaces of the lead 4 and the second lead 21 do not always have to be exposed, and may be exposed according to the semiconductor device or module.
  • the shape of the lead 4 or the second lead 21 is an H-type in which the opening 30 is formed by concentrating the connection member 2 on two opposing sides of the semiconductor substrate 1, but is not limited to this.
  • Arbitrary patterns can be applied according to the heat transfer between the substrates and the connection design requirements.
  • This disclosure is applicable to electronic devices that require high heat dissipation and thin and small size. Specifically, it can be widely applied to mobile devices such as smartphones.

Abstract

 半導体装置は、半導体基板と、半導体基板の第一の面に配置された電極と、半導体基板の第一の面と反対側の第二の面に形成された回路と、回路と電極とを接続する導電体と、半導体基板の外周に配置された第1のリードと、電極と第1のリードとを接続する接続部材と、半導体基板と第1のリードと接続部材とを封止する封止材とを備え、半導体基板の第二の面が封止材から露出している。

Description

放熱構造を有する半導体装置および半導体装置の積層体
 本開示は、放熱構造を有する半導体装置とその製造方法に関する。
 以下、特許文献1の半導体装置の構成について図13を参照しながら説明する。図13は、特許文献1の半導体装置の断面図である。
 図13に示すように、半導体装置は、半導体基板101、ワイヤ102、封止樹脂103、およびリード104からなり、半導体基板101の外周にリード104が配置されている。
 電極108を含む回路は半導体基板101の上面側に形成され、半導体基板101の電極108とリード104の内部端子127とがワイヤ102で接続されている。
 半導体基板101、リード104、およびワイヤ102が封止樹脂103で封止成形され、半導体基板101の下面106とリード104の下面126とが半導体装置の下面において封止樹脂103から露出する。
 特許文献2の半導体装置の構成について、図14を参照しながら説明する。図14は、特許文献2の半導体装置の断面図である。
 図14に示すように、半導体装置は、半導体基板101、ワイヤ102、封止樹脂103、リード104からなり、半導体基板101の外周にリード104が配置されている。
 電極108を含む回路は半導体基板101の上面側に形成され、半導体基板101の電極108とリード104の内部端子部127とがワイヤ102で接続され、半導体基板101、リード104およびワイヤ102が封止樹脂103で封止されている。
 半導体基板101の厚さはリード104よりも薄く、また、リード104には段差があり、内部端子127はリード104の上面125よりも一段低く形成されている。
 リード104の下面126と半導体基板101の下面106は、半導体装置の下面において同一平面で封止樹脂103の外部に露出し、かつリード104の上面125が、半導体装置の上面で外部に露出する。
特開2006-196556号公報 特開2001-177005号公報
 上記従来技術には放熱性の観点から以下の問題点がある。
 1)半導体基板の回路が、半導体基板の上面に形成され、かつ封止樹脂で覆われているため、回路からの放熱性が悪い。
 2)上記放熱性の課題への対策として放熱板を外付けする方法があるが、その場合は実装体の厚みが増加し、薄型化が困難となる。また、工程が増加し、量産性が低下する。
 3)半導体装置を複数積層した場合、各層の半導体基板が、上下の半導体装置に挟まれて、更に放熱性が悪くなる。
 かかる点に鑑みて、本開示の課題は、放熱性が高く、薄型化が可能な半導体装置とその積層体を提供することである。
 本開示に係る半導体装置は、半導体基板と、半導体基板の第一の面に配置された電極と、半導体基板の第一の面と反対側の第二の面に形成された回路と、回路と電極とを接続する導電体と、半導体基板の外周に配置された第1のリードと、電極と第1のリードとを接続する接続部材と、半導体基板と第1のリードと接続部材とを封止する封止材とを備え、半導体基板の第二の面が封止材から露出している。
 また、上記半導体装置において半導体基板の第二の面には、回路を覆うように配置された絶縁膜と、絶縁膜を覆うように配置された金属膜とを有してもよい。
 本開示に係る半導体装置は、導電体により、半導体基板の回路が配置される面と電極が配置される面とを分離することができる。したがって、回路を半導体基板の第二の面に形成し、封止材から露出させることで、放熱のための追加部材を外付けせず薄型を保ったままで、放熱性が高い半導体装置を実現できる。
 また、本開示に係る他の半導体装置は、半導体基板の第二の面を金属膜で被覆して、封止材から露出させることができるため、さらなる高放熱化が可能になる。
図1Aは、第1の実施形態に係る半導体装置の断面図である。 図1Bは、第1の実施形態に係る半導体装置に用いる、半導体基板の断面拡大図である。 図2は、第2の実施形態に係る半導体装置の断面図である。 図3Aは、第2の実施形態の変形例に係る、半導体装置の積層体の断面図である。 図3Bは、第2の実施形態の変形例に係る、半導体装置の積層体の断面図である。 図4Aは、第3の実施形態に係る半導体装置の構成を示す図であり、封止材3を透視した場合の上面図である。 図4Bは、第3の実施形態に係る半導体装置の構成を示す図であり、図4AのIVB-IVB線における断面図である。 図4Cは、第3の実施形態に係る半導体装置の構成を示す図であり、図4AのIVc-IVc線における断面図である。 図4Dは、第3の実施形態に係る半導体装置の構成を示す上面図である。 図4Eは、第3の実施形態に係る半導体装置の構成を示す底面図である。 図5(a)~(f)は、第3の実施形態に係る半導体装置の製造工程の第一の例を説明するための図である。 図6(a)~(f)は、第3の実施形態に係る半導体装置の製造工程の第二の例を説明するための図である。 図7(a)~(f)は、第3の実施形態に係る半導体装置の製造工程の第三の例を説明するための図である。 図8Aは、第3の実施形態の変形例1に係る、半導体装置の積層体の断面図である。 図8Bは、第3の実施形態の変形例1に係る、半導体装置の積層体の断面図である。 図9は、第3の実施形態の変形例2に係る、半導体装置の接続体の上面図である。 図10Aは、第4の実施形態に係る半導体装置の構成を示す図であり、封止材3を透視した場合の上面図である。 図10Bは、第4の実施形態に係る半導体装置の構成を示す図であり、図10AのXb-Xb線における断面図である。 図10Cは、第4の実施形態に係る半導体装置の構成を示す図であり、図10AのXc-Xc線における断面図である。 図10Dは、第4の実施形態に係る半導体装置の構成を示す上面図である。 図10Eは、第4の実施形態に係る半導体装置の構成を示す底面図である。 図11Aは、第4の実施形態に係る半導体装置の底面図の他の例である。 図11Bは、第4の実施形態に係る半導体装置の底面図の他の例である。 図12は、第4の実施形態の変形例に係る、半導体装置の接続体の上面図である。 図13は、従来の半導体装置の構成図である。 図14は、従来の半導体装置の別の構成図である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 (第1の実施形態)
 以下、第1の実施形態に係る半導体装置の構成について、図1Aおよび図1Bを参照しながら説明する。
 図1Aに示すように、第1の実施形態に係る半導体装置は、半導体基板1と、接続部材2と、封止材3と、第1のリードであるリード4とを備えている。
 図1Bに示すように、半導体基板1は、第一の面7に電極8を、第二の面に回路23を、電極8と回路23とを電気的に接続する導電体9を有している。
 さらに、半導体基板1の第二の面6には、回路23上に絶縁膜24が配置され、それを覆うように金属膜10を備えているのが望ましい。
 接続部材2は、例えばワイヤ等の金属細線であり、Au線、Cu線、Al線等を用いることができる。
 封止材3は、半導体基板1、接続部材2およびリード4を封止するためのもので、一般的には樹脂である。例えば、エポキシ材にSiフィラーを配合した熱硬化性材料を用いる。
 リード4は、半導体基板1の外周に配置されている。また、半導体基板1とリード4とは半導体装置の最下層に配置され、第二の面が封止材3から露出している。半導体基板1の第一の面7に配置された電極8とリード4の内部端子27とは、接続部材2によって接続されている。
 なお、リード4の第二の面26と半導体基板1の第二の面6は、同一平面で外部に露出していてもよい。
 リード4は、CuやFeを基材とし、CuにNi、Pd、Auメッキを積層したものや、Ni、Pd、Agメッキを積層したもの、もしくはFe-Ni合金にAgをメッキしたもの等を用いることができる。
 リード4の第一の面25は、半導体基板1の第一の面7と同じ高さであってもよい。
 半導体基板1の上面7に形成された電極8は、例えばAlであり、また、Cu、Ni、Auを積層して形成したもの等で形成することができる。
 電極8と回路23とは、半導体基板1の第一の面7と第二の面6を電気的に接続する導電体9によって接続されている。導電体9は、例えば第一の面7から第二の面6までを貫通する貫通電極であり、シリコンに形成した貫通孔にSiO等の絶縁層を形成した後に、Ti及びCuを蒸着後、Cuでメッキする等の方法で形成することができる。なお、導電体9の形状は任意である。
 導電体9により、半導体基板1の回路23と電極8とを、それぞれ第一の面6と第二の面7とに分離して配置することができる。これにより、発熱量の大きい第一の面6を封止材3から露出させることができ、放熱性を向上させた半導体装置を得られる。また、放熱性を高めるために、放熱板等を外付けする必要がないため、半導体装置の厚さを薄く保つことができる。
 半導体基板1の第二の面6には、回路23を被覆する絶縁膜24が配置される。絶縁膜24は、例えばSiOやSiN、ポリイミド等の膜である。絶縁膜24は、回路23が形成された第二の面6の全面を被覆してもよいし、回路23が露出した領域のみ被覆してもよい。絶縁膜24は、回路23と半導体基板1の外部との絶縁がとれる程度の材料と厚みであればよい。また、半導体装置の薄型化の観点からは、薄いほど望ましい。
 また、絶縁膜24の、回路23と対向する面の反対側は、金属膜10で被覆される。金属膜10は、例えばCuやAl等の膜であり、更に表面保護や接続が必要な場合は、Cu、Ni、Auメッキを積層したもの、Cu、Ni、Pdメッキを積層したもの、およびハンダ等で被覆してもよい。金属膜10は、封止材3から露出し、半導体装置外部に露出している。放熱性の観点からは、金属膜10は絶縁膜24の全面を覆っていることが望ましい。
 なお、金属膜10の露出面とリード4の第二の面26とは同一平面であってもよい。
 以上、半導体基板1は、その第二の面6側が半導体装置の最下層になるように配置され、ダイパッドレス構造となっている。
 以上、本実施形態に係る半導体装置よると、導電体9により、半導体基板1の回路23と電極8とを、それぞれ第一の面6と第二の面7とに分離して配置できる。さらに、回路23が配置された半導体基板1の第二の面6を、絶縁膜24を介して金属膜10で被覆し、封止材3で覆うことなく、半導体装置から露出させることができるため、高放熱化が可能になる。また、放熱性を高めるための放熱板等を外付けする必要がないため、半導体装置の厚さを極力薄くすることができる。さらに、放熱板の装着に要する工程の追加が不要であるため、量産性を損なわずに製造できる。また、半導体装置の外形を、放熱板がない場合と同等にできるため、放熱板を外付けする場合よりも、取り扱い性に優れる。
 (第2の実施形態)
 以下、第2の実施形態に係る半導体装置の構成ついて、図2を参照しながら説明する。主に、第1の実施形態との相違点を説明する。
 本実施形態では、リード4は半導体基板1に向かい合う側に段差を備える。具体的には、リード4の内部端子27は、リード4の第一の面25よりも低く形成されている。内部端子27とリード4の第一の面25との間における段差の数は任意である。
 図2に示すように、半導体基板1の第一の面7の電極8とリード4の内部端子27とは接続部材2で接続されているが、上述した段差により、接続部材2の頂点の高さはリード4の第一の面25の高さよりも低い。
 以上のように、本実施形態に係る半導体装置では、リード4の第二の面26と半導体基板1の第二の面6とが、封止材3から露出し、かつリード4の第一の面25が、封止材3から露出した構成となる。つまり、半導体装置の上下面にリード4を露出することができるため、放熱性が高く薄型の半導体装置を容易に積層することができる。
 なお、半導体基板1の第二の面6を覆う金属膜10と、リード4の第二の面26とは、同一平面で封止材3から露出してもよい。
 (第2の実施形態の変形例)
 次に、第2の実施形態に係る半導体装置を用いた積層体の構成について、図3A、図3Bを参照しながら説明する。
 図3A、図3Bは各々、第2の実施形態に係る半導体装置を複数積層した、半導体装置の積層体の例を示す断面図である。図3A、図3Bに示す第1の半導体装置17および第2の半導体装置18は、図2に示す半導体装置と同様の構成であり、リード4に段差を有する。
 図3Aに示す半導体装置の積層体は、第1の半導体装置17と、第2の半導体装置18が、互いのリード4の第一の面25を対向して配置されて成る。すなわち、第1の半導体装置17のリード4の第一の面25と第2の半導体装置18のリード4の第一の面25とが、ハンダ13で接続されて積層体を形成する。
 このような構成により、第1および第2の半導体装置17、18はいずれも、回路23が形成された、半導体基板1の第二の面6を封止材3で覆うことなく露出させることができる。また、第2の半導体装置18の半導体基板1の第二の面6は、下側の第1の半導体装置17と反対側を向くため、第二の面6に配置された回路23が、第1および第2の半導体装置17、18の封止材3に挟まれて放熱性が悪化することを防げる。
 さらに放熱性を高めるために、本変形例の半導体装置の積層体は、第2の半導体装置18の回路23が形成された側の面に放熱板5を取り付けてもよい。放熱板5は、例えばCuや42アロイなどの合金であり、金属膜10にハンダ13で接合されている。
 また、第1の半導体装置17は、実装基板14に搭載されてもよい。すなわち、第1の半導体装置17において、リード4の第二の面26は、ハンダ13によって実装基板14の配線用ランド15に接続されている。ここで、実装基板14は、半導体基板1に対向する箇所に放熱用ランド16を有してもよく、半導体基板1の金属膜10は、ハンダ13によって放熱用ランド16に接続されている。放熱用ランド16は、実装基板14を厚み方向に貫通している。
 このように、図3Aに示す半導体装置の積層体は、第1および第2の半導体装置17、18を、各々の半導体基板1の回路23が形成された第二の面6を背けて積層し、さらに第1の半導体装置17の半導体基板1の金属膜10を実装基板14の放熱用ランド16に、あるいは第2の半導体装置18の半導体基板1の金属膜10を放熱板5に、それぞれ接続できるため、高放熱化が可能になる。
 図3Bに示す半導体装置の積層体は、第1および第2の半導体装置17、18が、互いのリード4の第二の面26を対向して配置され、第1の半導体装置17と第2の半導体装置18の間に、放熱板5を備える。すなわち、第1の半導体装置17のリード4の第二の面26と第2の半導体装置18のリード4の第二の面26とが、ハンダ13で接続されて積層体を形成し、放熱板5はハンダ13を介して、第1および第2の半導体装置17、18の金属膜10と接続される。
 このような構成により、第1および第2の半導体装置17、18はいずれも、回路23が形成された面を封止材3で覆うことなく露出したうえ、金属膜10に放熱板5を取り付けるため、高放熱化を実現できる。また、上下に積層した半導体装置17、18で1つの放熱板5を共用することができるため、放熱性を高めながら薄型化が可能である。
 また、第1の半導体装置17は、実装基板14に搭載されてもよい。すなわち、第1の半導体装置17において、リード4の第一の面25は、ハンダ13によって実装基板14の配線用ランド15に接続されている。
 なお、実装基板14は、図3Aの例のように、半導体基板1に対向する箇所に放熱用ランド16を有してもよい。
 このように、図3Bに示す半導体装置の積層体は、第1および第2の半導体装置17、18を、各々の半導体基板1の回路23が形成された第二の面6を向かい合わせて積層し、さらに第1および第2の半導体装置17の半導体基板1の金属膜10を共通の放熱板5に接続できるため、高放熱化と薄型化が可能になる。
 なお、上記第1および第2の実施形態において、金属膜10の代わりに放熱板5を封止材3に埋め込むなどしてパッケージ内に内蔵し、その下面を露出してもよい。
 (第3の実施形態)
 以下、第3の実施形態に係る半導体装置の構成ついて、図4A~図4Eを参照しながら説明する。
 図4Aは本実施形態に係る半導体装置を上から見た図であり、封止材3の内側の半導体基板1の外形、電極8の配置、リード4や接続部材2を透視した場合の内部透視図である。図4Bは図4AのIVb-IVb断面図、図4Cは図4AのIVc-IVc断面図である。また、図4Dは封止材3を透視しない場合の上面図、図4Eは半導体装置を底から見た底面図である。本実施形態では、主に、第2の実施形態との相違点を説明する。
 図4Aに示すように、第3の実施形態に係る半導体装置は、半導体基板1の上方に配置された放熱板5を有する。放熱板5の第一の面28は、封止材3から露出している。
 放熱板5は、接続部材2とリード4とを含む領域に開口部30を有する。また、放熱板5は、半導体基板1を含まない領域において、リード4と同じ厚さで半導体装置の外周部まで延伸するように形成されている。一方、放熱板5における半導体基板1を含む領域は、半導体基板1を覆うように、放熱板5の第二の面29を削減して、外周部より薄くなっている。つまり、放熱板5のうち半導体基板1を含む領域は、半導体基板1の上方に位置している。
 以上、本実施形態に係る半導体装置よると、半導体装置の底面では、リード4の第二の面26と、半導体基板1の第二の面6と、放熱板5の外周部の第二の面29が、封止材3から露出する。リード4の第二の面26、半導体基板1の第二の面6、放熱板5の外周部の第二の面29、封止材3の底面は、面一であるのが望ましい。一方、半導体装置の上面では、リード4の第一の面25と放熱板5の第一の面28が、封止材3から露出した構成となっている。リード4の第1の面25、放熱板5の第一の面28、封止材3の上面は、面一であるのが望ましい。
 このような構成とすることで、放熱板5を、半導体基板1の外周部よりも外側に延伸することができ、半導体装置の外周部で放熱板5を大きくかつ厚く形成することができる。つまり、放熱板5を最大化することができるため、放熱板5の表面積が大きくなり、放熱性をさらに向上することができる。
 また、半導体基板1の上面において、放熱板5を、半導体基板1の電極8とリード4の内部端子27とを接続した接続部材2を封止するのに必要な厚さに形成することができるため、半導体装置の薄型化が可能になる。また、同時に半導体装置の封止材3の体積が減り、上下の構成のバランスも改善するため、半導体装置の強度が向上し、ダメージおよび反りの低減が可能になる。つまり、本実施形態のような放熱板内蔵型の半導体装置によると、高放熱性に加えて、薄型化および量産性、ならびに積層容易性を両立することができる。
 さらに、本実施形態に係る半導体装置は、半導体装置の外形を、放熱板がない場合と同等に形成することができるため、放熱板を外付けする従来の半導体装置よりも、取り扱い性に優れる。また、製造ライン、治工具を従来品と共用化することができる。
 また、本実施形態では、半導体基板1の電極8を半導体基板1の平行する2辺に集中して配置し、放熱板5を、平面視でH型となるように形成している。これにより、半導体装置の2つの側面を放熱板5とすることができるため、放熱板5の容量と外部露出面積を最大化することができるとともに、半導体装置の強度を向上することができる。
 (第3の実施形態の製造方法)
 次に、本実施形態に係る半導体装置の製造方法について説明する。
 図5(a)~(b)は、本実施形態に係る半導体装置の製造工程の例を工程順に示している。
 まず、図5(a)に示すように、第1のリリースフィルム11に半導体基板1の第二の面6を貼り付ける。リリースフィルム11は封止成形後に取り外すことを前提とし、基材にポリイミド系やテフロン(登録商標)系等、粘着剤にオレフィン等の170℃以上の耐熱性の材料を使用する。
 次に、図5(b)に示すように、リード4と放熱板5とを有するリードフレームをリリースフィルム11に貼り付ける。
 次に、図5(c)に示すように、半導体基板1の電極8とリード4とを接続部材2で接続する。
 次に、図5(d)に示すように、半導体基板1と、リード4と、接続部材2と、放熱板5とを、例えば圧縮成形工法により、封止材3で封止する。方法としては、第2のリリースフィルム12上に液状材を塗布、印刷、もしくは顆粒状材をばら撒き、過熱して溶融させる。封止材3はガラスエポキシ材等の熱硬化性材料を用いる。
 具体的に、図5(d)に示すように、半導体基板1が搭載され、接続部材ボンドまで行われたリードフレームを、第2のリリースフィルム12に対向するように位置合わせし、溶融状態の封止材3を間に挟んでリードフレームを第2のリリースフィルム12に押し付けて両者を貼り合わせて圧縮し、半導体基板1と、リード4と、接続部材2と、放熱板5と、封止材3とを一体化させる。
 この際、リード4と放熱板5の外周部の厚さは同一とし、半導体基板1の上方の放熱板5の厚さは半導体基板1の厚みの分だけ薄くすることが望ましい。これにより、圧縮成形する際に、放熱板5が半導体基板1に接触する前に、リード4と放熱板5の外周部とが金型と干渉して止まるため、放熱板5と半導体基板1との干渉によるダメージを自動的に防ぐことが可能になる。また、リード4と放熱板5とがスペーサーとして機能するので、金型を不要にすることも可能である。
 以上のようにすると、放熱板5を半導体基板1の主面に極力近づけることができ、同時に半導体基板1や接続部材2を含む領域以外の装置内部で放熱板5を最大化することができるので放熱効果の最大化が可能である。
 なお、半導体基板1と放熱板5との間隔は、放熱効果の観点からは最小化することが望ましいが、半導体基板1の主面のダメージを考慮すると封止材3のフィラーサイズよりも大きくする必要がある。
 実用的には、半導体基板1や放熱板5の厚みや平行度のバラツキ、封止材3のフィラーサイズ、充填性を考慮するとその間隔は50~100μmであることが望ましい。
 半導体基板1と放熱板5との間隔をより縮めるためには、封止材3のフィラーサイズを小さくし、より積極的にはフィラーレスにすることもできる。
 また、半導体基板1と放熱板5との間とそれ以外の箇所とで封止材3を使い分けてもよい。例えば、半導体基板1と放熱板5との間にのみ、小フィラーもしくはフィラーレスとすることも可能である。
 また、リード4と放熱板5をスペーサーとして活用することで、半導体装置の厚みを制御することもできる。この場合、モールドキャビティを省略することができるので、平板の金型で封止成形が可能になり、金型の共用性が向上する。
 また、本実施形態ではコンプレッションモールド工法を用いたが、従来どおり、トランスファーモールド工法や、ポッティング、印刷により、封止成形することも可能である。
 そして、封止成形後は、図5(e)に示すように、リリースフィルム11、12を剥がして、図5(f)に示すように、ダイシングして半導体装置に個片化する。
 このとき、リード4の第一の面25および第二の面26、放熱板5の第一の面28および第二の面29、ならびに半導体基板1の第二の面6は、封止材3で封止する工程時にリリースフィルムによって被覆されている。そのため、成形後にリリースフィルムを剥がすことで、半導体装置の第一の面および第二の面をそれぞれ半導体装置から露出させることができる。
 さらに、半導体装置の外周部に延伸した放熱板5を、一括でモールドした後にダイシングによりカット分割することで、放熱板5のカット面を半導体装置の外周に露出させることができるので、放熱板5の露出面積を最大化することができる。
 ところで、このとき、放熱板5が外形と斜めに交わっていると、ダイシングの位置ずれにより、放熱板5の切断面が個片毎にまちまちになる懸念がある。しかしながら、本実施形態では、半導体装置の放熱板5は、接続部材ボンド領域の開口部30が長方形で、平面視で全体がH型形状をしているため、常に外形と垂直に交わる。したがって、中途半端な切り残しは発生せず、個片毎の切断面を均一にすることができる。
 本実施形態の製造方法の例では、リード4と放熱板5とを一体としたリードフレームを使用することで、材料や工程が少なくなる。また、リード4と放熱板5とを別々に用意し、封止成形時に一体化してもよい。
 図6(a)~(f)は、本実施形態に係る半導体装置の製造工程の別の例を工程順に示している。
 まず、図6(a)に示すように、半導体基板1の第二の面6を第1のリリースフィルム11に貼り付ける。
 次に、図6(b)に示すように、リード4を有するリードフレームをリリースフィルム11に貼り付ける。
 次に、図6(c)に示すように、半導体基板1の電極8とリード4とを接続部材2で接続する。
 次に、図6(d)に示すように、第2のリリースフィルム12に放熱板5を貼り付ける。
 次に、図6(d)に示すように、半導体基板1と、リード4と、接続部材2と、放熱板5とを、例えば圧縮成形工法により、封止材3で封止する。
 方法としては、第2のリリースフィルム12上に液状材を塗布、印刷、もしくは顆粒状材をばら撒き、過熱して溶融させる。
 具体的に、図6(d)に示すように、半導体基板1が搭載され、接続部材ボンドまで行われたリードフレームを、第2のリリースフィルム12に対向するように位置合わせし、溶融状態の封止材3を間に挟んでリードフレームを第2のリードフレーム12に押し付けて両者を貼り合わせて圧縮し、半導体基板1と、リード4と、接続部材2と、放熱板5と、封止材3とを一体化させる。
 以降の工程は、図5(e)~(f)で説明した工程と同様であるため省略する。
 図6(a)~(f)に示す製造方法では、ワイヤボンド時に放熱板5が無いので、ワイヤボンド工程や放熱板5の形状の自由度を大きくすることができる。
 また、図4の半導体装置において、半導体基板1と放熱板5とをあらかじめ接着しておき、接続部材ボンド後に封止成形してもよい。
 図7(a)~(f)は、本実施形態に係る半導体装置の製造工程のさらに別の例を工程順に示している。
 まず、図7(a)に示すように、半導体基板1の第一の面7とリードフレームの放熱板5の第二の面29とを貼り付ける。接着部材31としては、エポキシ材やアクリル材などの熱硬化性の材や、ポリイミドフィルの両面に接着剤を塗布したもの、ハンダ等の金属等を用いればよい。より放熱性を高める場合は、接着部材31に熱伝導フィラー等を混合するか、ハンダ等の金属を使うとよい。
 次に、図7(c)に示すように、半導体基板1の電極8とリード4とを接続部材2で接続する。
 次に、図7(d)に示すように、金型内で半導体基板1と、リード4と、接続部材2と、放熱板5とを、例えば圧縮成形工法により、封止材3で封止する。
 方法としては、第2のリリースフィルム12上に液状材を塗布、印刷、もしくは顆粒状材をばら撒き、過熱して溶融させる。
 具体的に、図7(d)に示すように、半導体基板1が搭載され、接続部材ボンドまで行われたリードフレームを、第2のリリースフィルム12に対向するように位置合わせし、溶融状態の封止材3を間に挟んでリードフレームを第2のリードフレームに押し付けて両者を貼り合わせて圧縮し、半導体基板1と、リード4と、接続部材2と、放熱板5と、封止材3とを一体化させる。
 以降の工程は、図5(e)~(f)で説明した工程と同様であるため、省略する。
 なお、放熱効果の観点からは半導体基板1と放熱板5との間隔は、最小化することが望ましい。
 図7(a)~(f)に示す製造方法では、半導体基板1と放熱板5との間には封止材3を充填しないので、封止材3に関係なく、半導体基板1と放熱板5との間隔や、接着部材31の材料を任意に決定することができ、放熱性を向上することできる。
 また、半導体基板1を第1のリリースフィルム11に貼り付ける必要が無いので、第1のリリースフィルム11を省略することができる。
 本実施形態の半導体装置は、その上下にリード4が露出しているため、半導体装置を上下に積層することが可能であることは、図2に示す第2の実施形態に係る半導体装置と同様である。
 しかし、本実施形態の半導体装置では、放熱板5が半導体装置の上面および下面で、リード4と同一面に露出しているため、上下の半導体装置のリード4どうしを接続する際に、上下の半導体装置の放熱板5同士の連結を行うことができる。
 さらに、上層の半導体装置の半導体基板1の回路23を、下層の半導体装置の放熱板5や実装基板の放熱板に直接接続できるため、高放熱な積層体の実現が可能になる。
 (第3の実施形態の変形例1)
 以下、第3の実施形態の変形例1に係る、半導体装置を用いた積層体の構成について、図8A、図8Bを参照しながら説明する。
 図8A、図8Bは各々、第3の実施形態に係る半導体装置を複数積層した、半導体装置の積層体の断面図である。
 図8Aは、第3の実施形態に係る半導体装置を積層した場合における、図4Aに示すIVb-IVb断面図であり、図8Bは、同じく図4Aに示すIVc-IVc断面図である。
 第1の半導体装置17は実装基板14に搭載され、その上に第2の半導体装置18、第3の半導体装置19がこの順で積層されている。
 第1の半導体装置17のリード4の第二の面26は、実装基板14の配線用ランド15にハンダ13で接続され、第1の半導体装置17の半導体基板1の第二の面6の金属膜10は実装基板14の放熱用ランド16にハンダ13で接続されている。
 第2の半導体装置18のリード4の第二の面26は、第1の半導体装置17のリード4の第一の面25にハンダ13で接続され、第2の半導体装置18の半導体基板1の第二の面6の金属膜10は第1の半導体装置17の放熱板5の第一の面28にハンダ13で接続されている。
 第3の半導体装置19のリード4の第二の面26は、第2の半導体装置18のリード4の第一の面25にハンダ13で接続され、第3の半導体装置19の半導体基板1の第二の面6の金属膜10は第2の半導体装置18の放熱板5の第一の面28にハンダ13で接続されている。
 また、第1の半導体装置17の放熱板5の第二の面29は、実装基板14の配線用ランド15にハンダ13で接続されている。第2の半導体装置18の放熱板5の第二の面29は、第1の半導体装置17の放熱板5の第一の面28にハンダ13で接続されている。そして、第3の半導体装置19の放熱板5の第二の面29は、第2の半導体装置18の放熱板5の第一の面28にハンダ13で接続されている。このとき、上下に積層された半導体装置のリード4は互いに接続するため、各々の半導体装置から出力される信号ラインは共通化される。
 本変形例に係る半導体装置の積層体によると、各層の半導体装置17~19の半導体基板1の熱を効率的に放熱することが可能である。また、放熱板5を各半導体装置17~19に内蔵することで、それぞれのリード4をハンダで接合するときに、同時にハンダ付けすることが可能であるため、材料や工程がシンプルとなる。
 また、放熱板5を外付けする必要が無く、製品の厚さも増加しないので、積層体の薄型化が可能になる。
 なお、本変形例では、上下の半導体装置17~19のリード4の間の接続、および上層の半導体基板1と下層の放熱板5の接続はハンダ13を用いたが、導電ペースト等のハンダ付け以外の方法でも良い。
 また、上下の半導体装置17~19のリード4の間の接続、および上層の半導体基板1と下層の放熱板5の接続は、別々の材料でも良い。
 また、上層の半導体基板1の金属膜10と下層の放熱板5の接続は単なる接触だけでも良い。
 また、半導体装置の積層数は任意に設定でき、かつ上下の半導体装置が別の構成の半導体装置でも良い。
 更に、本変形例では、リード4と放熱板5は半導体装置17~19の第一の面、第二の面だけでなく、半導体装置17~19の側面でも露出しているため、側面方向でもリード4や放熱板5を任意に接続し、電気的な導通や伝熱を行うことが可能である。そのため、半導体装置を上下左右に3次元的に積み上げて、自在に半導体装置間の電気的接続と放熱を行うことが可能である。
 (第3の実施形態の変形例2)
 以下、第3の実施形態の変形例2に係る、半導体装置を用いた接続体の構成ついて、図9を参照しながら説明する。
 図9は、第3の実施形態に係る半導体装置を水平方向に複数接続した、接続体の上面図である。各半導体装置の側面において、封止材3から露出したリード4が端子となり、ハンダ13等で電気的に接続されている。
 さらに、放熱板5の側面同士がハンダ13で接続されている。このような構成により、各々の半導体装置の発熱量にばらつきがある場合も、複数の放熱板を接続して互いに熱伝導を生じさせることで、温度分布を均一に近づける効果がある。すなわち、特定の半導体基板の発熱量が他と比べて高い場合も、放熱板5の連結構造により、放熱性を高めて熱による特性劣化等を防止することができる。
 なお、図9に示す例では、各半導体装置の対向する全端子を接続しているが、これに限られず、特定の端子のみを接続してもよい。また、隣接する放熱板5も、対向する部分全てを接続することは必須でない。
 なお、より多くの信号線を必要とする場合、以下で説明するように、半導体装置の放熱板5を放熱板兼第2のリード21として活用することができる。
 以上、第3の実施形態および変形例に係る半導体装置は、放熱板5を、接続部材2との干渉を回避しつつ半導体基板1との距離を極力近づけることができ、併せて、半導体装置内部で放熱板5のサイズを最大化できるので放熱効果を最大化できる。
 また、複数の半導体装置について、放熱板5を半導体基板1などと一括封止して一体成形できるため、従来品よりも半導体装置としての薄型化、量産性の向上が可能になる。
 また、半導体装置を積層体や水平方向の配置とすることで、上下左右方向への自在な接続やスルーパスの形成が可能となり、電気的配線や放熱経路の自由度を飛躍的に向上させることが可能となる。
 また、半導体装置は、主面の接続部材2の領域を除く部分と、側面とを放熱板5で形成できるため、高放熱化、反りの低減化、高強度化、高信頼性化が可能になる等、従来の半導体装置よりも多くの利点がある。
 (第4の実施形態)
 以下、第4の実施形態に係る半導体装置の構成について、図10A~図10Eを参照しながら説明する。
 図10Aは、本実施形態に係る半導体装置を上から見た図であり、封止材3の内側の半導体基板1の外形、電極8の配置、リード4や接続部材2を透視した場合の内部透視図である。図10Bは、図10AのXb-Xb断面図、図10CはXc-Xc断面図である。また、図10Dは封止材3を透視しない場合の上面図、図10Eは半導体装置を底から見た底面図である。本実施形態では、主に、第3の実施形態との相違点を説明する。
 本実施形態では、放熱板5の代わりに、半導体基板1の第二の面7の上方には、平面視で複数に分割された、第2のリード21を形成している。第2のリード21は、放熱のための構造としても、信号伝達用の端子としても、またその両方としても使用できる。すなわち、放熱板としての機能に加えて、半導体基板1からの電気的信号を流すものであってもよい。
 第2のリード21の材質は放熱板5と同じでよいが、主に放熱板として機能させる場合は熱伝導率を優先し、端子としての機能が必要な場合は導電率を優先して材料を選択するのが効果的である。
 本実施形態では、一個の半導体装置において、第2のリード21は半導体基板1の第一の面7の上に配置されているだけで、半導体基板1とは接続されていない。よって、例えば、下側の半導体装置の、図10Dに示す上面のリード4と、上側の半導体装置の、図10Eに示す底面のリード4とを接続するように積層した場合は、上下の半導体装置の第2のリード21は、単に熱的に接続される。
 なお、半導体基板1の第二の面6に配置された金属膜10は、図11Aに示すように、第2のリード21の形状に対応するように分割して形成されてもよい。つまり、図11Aに示すように、金属膜10と放熱板兼第2のリード21とは、それらの長手方向の辺が同一方向となるように配置されている。
 これにより、半導体装置を積層する際に、第2のリードが信号経路として導電する場合も、上層の半導体装置の半導体基板1の金属膜10と、下層の第2のリード21とが接続時にショートしないように構成することができる。上層の半導体装置の半導体基板1の金属膜10と第2のリード21とを電気的に接続する場合は、金属膜10を分割すればよい。
 また、積層した半導体装置の上下の信号線を分離したい場合は、上層と下層の半導体装置を水平方向で90度回転させて積層してもよい。例えば、下側の半導体装置の、図10Dに示す上面のリード4と、上側の半導体装置の、図11Aに示す底面の第2のリード21とを接続する。そうすると、上側の半導体装置の半導体基板1からの電気信号は、リード4を通り、下側の半導体装置の第2のリード21に伝わる。このように、第2のリード21は放熱機能に加えて信号の経路として利用することも可能である。
 さらに、半導体装置を積層した場合に、上側の半導体装置が、下側の半導体装置に対して、水平方向に90度回転して配置されることを予め想定して、半導体基板1の金属膜10を、第2のリード21に対して90度回転した形状となるように形成してもよい。つまり、図11Bに示すように、金属膜10と第2のリード21とが、それらの長手方向の辺が直交するように配置されている。
 これにより、上下の半導体装置が水平方向に90度回転して配置されていても、第2のリード21と半導体基板1の第二の面6とがショートすることなく、接続することが可能になる。
 さらに、第4の実施形態では、第2のリード21は半導体装置の積層方向だけではなく、水平方向においても接続可能であり、上下左右の全方向への自在な接続やスルーパスの形成が可能である。
 (第4の実施形態の変形例)
 以下、第4の実施形態の変形例について、図12を参照しながら説明する。
 本変形例に係る半導体装置の接続体は、例えば図10Aに示す半導体装置を水平方向に接続して構成することができる。
 隣接する半導体装置は、水平方向に90度回転して配置されており、側面において、リード4や第2のリード21が、隣接する半導体装置のそれと接続されている。図12では、リード4や第2のリード21の全端子がハンダ13で接続されているが、一部のリード間のみ接続してもよい。また、各半導体装置を90度回転させるかどうかは任意である。
 これにより、電気的配線や放熱経路の自由度を3次元的な立体配置として、飛躍的に向上させることが可能となり、その用途が非常に大きいものとなる。
 以上のように、本開示における技術の例示として、実施の形態およびその変形例を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態およびその変形例は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 例えば、上記各実施形態および変形例では、ワイヤボンド型のQFNパッケージに類似した、表面実装型のリードレスパッケージを例に説明したが、これに限られるものではない。すなわち、半導体基板1の第一の面7に内部端子27と接続する電極8を配置し、反対側の第二の面6に回路23を配置するという考え方は、例示したパッケージや接続部材2の有無に限定されず、多様なパッケージ形態に対して有効である。
 また、接続部材2の例としてワイヤを挙げたが、これに限られるものではなく、ワイヤよりも幅広のリード等であってもよい。
 また、導電体9にとして貫通電極を例示したが、これに限定されるものではなく、半導体基板1の第一の面の電極と、第二の面の回路とを電気的に接続するものであればよい。
 また、放熱板5として平板状の形状を例示したが、上述した効果が得られる限りこれに限られない。
 また、リード4や第2のリード21は、必ずしも上下面および側面が常に露出する必要はなく、半導体装置やモジュールに応じて露出させてもよい。
 リード4や第2のリード21の形状は、半導体基板1の対向する2辺に接続部材2を集中させて開口部30が形成されたH型としているが、これに限られるものではなく、半導体基板間の伝熱や結線の設計上の必要に応じて、任意のパターンが適用可能である。
 また、絶縁膜24に開口部を設けるなどして、半導体基板1の回路23と金属膜10を接続することも可能である。
 本開示は、高放熱化と薄型小型化が求められる電子機器に適用可能である。具体的には、スマートフォンなどの携帯機器に幅広く適用可能である。
 1,101  半導体基板
 2,102  接続部材
 3,103  封止材
 4,104  リード(第1のリード)
 5  放熱板
 8,108  電極
 9  導電体
 10  金属膜
 21  第2のリード
 23,123  回路
 24,124  絶縁膜

Claims (20)

  1.  半導体基板と、
     前記半導体基板の第一の面に配置された電極と、
     前記半導体基板の前記第一の面と反対側の第二の面に形成された回路と、
    前記回路と前記電極とを接続する導電体と、
     前記半導体基板の外周に配置された第1のリードと、
     前記電極と前記第1のリードとを接続する接続部材と、
     前記半導体基板と前記第1のリードと前記接続部材とを封止する封止材とを備え、
     前記半導体基板の第二の面が前記封止材から露出していることを特徴とする半導体装置。
  2.  請求項1の半導体装置において、
     前記半導体基板の第二の面には、前記回路を覆うように配置された絶縁膜を有することを特徴とする半導体装置。
  3.  請求項2の半導体装置において、
     前記絶縁膜を覆うように配置された金属膜を有することを特徴とする半導体装置。
  4.  請求項1の半導体装置において、
     前記第1のリードの第二の面は、前記封止材から露出していることを特徴とする半導体装置。
  5.  請求項3の半導体装置において、
     前記第1のリードの第二の面と前記金属膜の第二の面とは同一平面であることを特徴とする半導体装置。
  6.  請求項1または3の半導体装置において、
     前記第1のリードの第一の面は前記封止材から露出し、
     前記第1のリードは前記半導体基板と対向する側に段差を有し、
     前記電極は、前記接続部材を介して、前記段差に接続されていることを特徴とする半導体装置。
  7.  請求項3の半導体装置において、
     前記金属膜に接続された放熱板を備えていることを特徴とする半導体装置。
  8.  請求項1または3半導体装置において、
     前記半導体基板の上方に配置された放熱板を備え、
     前記放熱板は、その第一の面を露出するように、前記封止材によって封止されていることを特徴とする半導体装置。
  9.  請求項8の半導体装置において、
     前記封止材の第一の面と前記放熱板の第一の面とは同一平面であることを特徴とする半導体装置。
  10.  請求項8の半導体装置において、
     前記放熱板には、当該半導体装置の上面視における、前記第1のリードおよび前記接続部材を含む領域に、開口部が形成されていることを特徴とする半導体装置。
  11.  請求項8の半導体装置において、
     前記放熱板と前記半導体基板との隙間は50~100μmであることを特徴とする半導体装置。
  12.  請求項1または3の半導体装置において、
     前記導電体は、前記半導体基板を貫通するように、前記回路と前記電極とを接続する貫通電極であることを特徴とする半導体装置。
  13.  請求項6の半導体装置を、第1、第2の半導体装置各々として備え、
     前記第1の半導体装置の上に、前記第2の半導体装置が、平面視で重なるように搭載されており、
     前記第1の半導体装置の前記第1のリードの第一の面と、前記第2の半導体装置の前記第1のリードの第一の面とが対向して接続されていることを特徴とする半導体装置の積層体。
  14.  請求項6の半導体装置を、第1、第2の半導体装置各々として備え、
     前記第1の半導体装置の上に、前記第2の半導体装置が、平面視で重なるように搭載されており、
     前記第1の半導体装置の前記第1のリードの第二の面と、前記第2の半導体装置の前記第1のリードの第二の面とが対向して接続されていることを特徴とする半導体装置の積層体。
  15.  請求項8の半導体装置を、第1、第2の半導体装置各々として備え、
     前記第1の半導体装置の上に、前記第2の半導体装置が、平面視で重なるように搭載されており、
     前記第1の半導体装置の前記第1のリードの第一の面と、前記第2の半導体装置の前記第1のリードの第二の面とが対向して接続され、
     前記第1の半導体装置の前記放熱板は、前記第2の半導体装置に接続されていることを特徴とする半導体装置の積層体。
  16.  請求項3の半導体装置において、
     前記半導体基板の上方に配置された第2のリードを備え、
     前記第2のリードは、前記第1のリードの前記第一の面と同じ側に配置された、第三の面を露出するように、前記封止材によって封止され、
     前記第1のリードと前記第2のリードとは垂直方向に配置されていることを特徴とする半導体装置。
  17.  請求項16の半導体装置において、
     前記第2のリードは、複数に分割されており、
     前記金属膜は複数の金属片で構成され、
     前記各金属片と前記複数に分割された第2のリードとは、これらの長手方向の辺が同一方向となるように配置されていることを特徴とする半導体装置。
  18.  請求項16の半導体装置において、
     前記第2のリードは、複数に分割されており、
     前記金属膜は複数の金属片で構成され、
     前記各金属片と前記複数に分割された第2のリードとは、これらの長手方向の辺が直交するように配置されていることを特徴とする半導体装置。
  19.  請求項17の半導体装置を、第1、第2の半導体装置各々として備え、
     前記第1の半導体装置上に、前記第2の半導体装置が平面視で重なるように搭載され、
     前記第1の半導体装置の前記各金属片と、前記第2の半導体装置の前記複数に分割された第2のリードとは、これらの長手方向の辺が同一方向となるように接続されていることを特徴とする半導体装置の積層体。
  20.  請求項18の半導体装置を、第1、第2の半導体装置各々として備え、
     前記第1の半導体装置上に、前記第2の半導体装置が平面視で重なるように搭載され、
     前記第1の半導体装置の前記各金属片と、前記第2の半導体装置の前記複数に分割された第2のリードとは、これらの長手方向の辺が直交するように接続されていることを特徴とする半導体装置の積層体。
PCT/JP2014/000546 2013-05-23 2014-02-03 放熱構造を有する半導体装置および半導体装置の積層体 WO2014188632A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015518045A JPWO2014188632A1 (ja) 2013-05-23 2014-02-03 放熱構造を有する半導体装置および半導体装置の積層体
US14/885,222 US20160035647A1 (en) 2013-05-23 2015-10-16 Semiconductor device having heat dissipation structure and laminate of semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013108759 2013-05-23
JP2013-108759 2013-05-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/885,222 Continuation US20160035647A1 (en) 2013-05-23 2015-10-16 Semiconductor device having heat dissipation structure and laminate of semiconductor devices

Publications (1)

Publication Number Publication Date
WO2014188632A1 true WO2014188632A1 (ja) 2014-11-27

Family

ID=51933207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000546 WO2014188632A1 (ja) 2013-05-23 2014-02-03 放熱構造を有する半導体装置および半導体装置の積層体

Country Status (3)

Country Link
US (1) US20160035647A1 (ja)
JP (1) JPWO2014188632A1 (ja)
WO (1) WO2014188632A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032852A (ja) * 2016-08-22 2018-03-01 ローム株式会社 半導体装置、半導体装置の実装構造
CN117133746A (zh) * 2023-10-26 2023-11-28 成都电科星拓科技有限公司 用于双面焊接的方形扁平无引脚封装芯片结构及封装方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3065319B1 (fr) * 2017-04-13 2019-04-26 Institut Vedecom Module electronique de puissance et convertisseur electrique de puissance l’incorporant
US10574025B2 (en) * 2018-01-26 2020-02-25 Lightwave Logic Inc. Hermetic capsule and method for a monolithic photonic integrated circuit
WO2020103147A1 (zh) * 2018-11-23 2020-05-28 北京比特大陆科技有限公司 芯片散热结构、芯片结构、电路板和超算设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136356A (ja) * 1987-11-24 1989-05-29 Nec Corp 樹脂封止型半導体装置
JPH03238852A (ja) * 1990-02-15 1991-10-24 Nec Corp モールド型半導体集積回路
JPH1197580A (ja) * 1997-09-24 1999-04-09 Matsushita Electric Works Ltd 半導体装置および集積半導体装置
JPH11233693A (ja) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd ベアic実装方法および封止材料
JP2003031744A (ja) * 2001-07-12 2003-01-31 Mitsubishi Electric Corp 半導体装置
JP2004319577A (ja) * 2003-04-11 2004-11-11 Dainippon Printing Co Ltd 樹脂封止型半導体装置とその製造方法、および積層型樹脂封止型半導体装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940006427Y1 (ko) * 1991-04-12 1994-09-24 윤광렬 독서용 확대경
KR0147259B1 (ko) * 1994-10-27 1998-08-01 김광호 적층형 패키지 및 그 제조방법
US5798564A (en) * 1995-12-21 1998-08-25 Texas Instruments Incorporated Multiple chip module apparatus having dual sided substrate
KR0179921B1 (ko) * 1996-05-17 1999-03-20 문정환 적측형 반도체 패키지
US5986209A (en) * 1997-07-09 1999-11-16 Micron Technology, Inc. Package stack via bottom leaded plastic (BLP) packaging
US6020629A (en) * 1998-06-05 2000-02-01 Micron Technology, Inc. Stacked semiconductor package and method of fabrication
KR100344927B1 (ko) * 1999-09-27 2002-07-19 삼성전자 주식회사 적층 패키지 및 그의 제조 방법
US6452255B1 (en) * 2000-03-20 2002-09-17 National Semiconductor, Corp. Low inductance leadless package
US6399415B1 (en) * 2000-03-20 2002-06-04 National Semiconductor Corporation Electrical isolation in panels of leadless IC packages
TW473965B (en) * 2000-09-04 2002-01-21 Siliconware Precision Industries Co Ltd Thin type semiconductor device and the manufacturing method thereof
SG111919A1 (en) * 2001-08-29 2005-06-29 Micron Technology Inc Packaged microelectronic devices and methods of forming same
US6664615B1 (en) * 2001-11-20 2003-12-16 National Semiconductor Corporation Method and apparatus for lead-frame based grid array IC packaging
US6710246B1 (en) * 2002-08-02 2004-03-23 National Semiconductor Corporation Apparatus and method of manufacturing a stackable package for a semiconductor device
US6781243B1 (en) * 2003-01-22 2004-08-24 National Semiconductor Corporation Leadless leadframe package substitute and stack package
US7405468B2 (en) * 2003-04-11 2008-07-29 Dai Nippon Printing Co., Ltd. Plastic package and method of fabricating the same
US7315077B2 (en) * 2003-11-13 2008-01-01 Fairchild Korea Semiconductor, Ltd. Molded leadless package having a partially exposed lead frame pad
US7521788B2 (en) * 2004-11-15 2009-04-21 Samsung Electronics Co., Ltd. Semiconductor module with conductive element between chip packages
JP4783906B2 (ja) * 2004-11-30 2011-09-28 国立大学法人九州工業大学 パッケージングされた積層型半導体装置及びその製造方法
US8163604B2 (en) * 2005-10-13 2012-04-24 Stats Chippac Ltd. Integrated circuit package system using etched leadframe
US8803299B2 (en) * 2006-02-27 2014-08-12 Stats Chippac Ltd. Stacked integrated circuit package system
US8310060B1 (en) * 2006-04-28 2012-11-13 Utac Thai Limited Lead frame land grid array
US7531893B2 (en) * 2006-07-19 2009-05-12 Texas Instruments Incorporated Power semiconductor devices having integrated inductor
KR100826979B1 (ko) * 2006-09-30 2008-05-02 주식회사 하이닉스반도체 스택 패키지 및 그 제조방법
KR100923562B1 (ko) * 2007-05-08 2009-10-27 삼성전자주식회사 반도체 패키지 및 그 형성방법
US8035210B2 (en) * 2007-12-28 2011-10-11 Stats Chippac Ltd. Integrated circuit package system with interposer
US8896126B2 (en) * 2011-08-23 2014-11-25 Marvell World Trade Ltd. Packaging DRAM and SOC in an IC package
US7994624B2 (en) * 2008-09-24 2011-08-09 Stats Chippac Ltd. Integrated circuit package system with adhesive segment spacer
KR101118235B1 (ko) * 2008-12-15 2012-03-16 하나 마이크론(주) 삼차원 반도체 디바이스
US8604603B2 (en) * 2009-02-20 2013-12-10 The Hong Kong University Of Science And Technology Apparatus having thermal-enhanced and cost-effective 3D IC integration structure with through silicon via interposers
US8263434B2 (en) * 2009-07-31 2012-09-11 Stats Chippac, Ltd. Semiconductor device and method of mounting die with TSV in cavity of substrate for electrical interconnect of Fi-PoP
US9324672B2 (en) * 2009-08-21 2016-04-26 Stats Chippac, Ltd. Semiconductor device and method of forming dual-active sided semiconductor die in fan-out wafer level chip scale package
KR101695846B1 (ko) * 2010-03-02 2017-01-16 삼성전자 주식회사 적층형 반도체 패키지
US20120049334A1 (en) * 2010-08-27 2012-03-01 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Leadframe as Vertical Interconnect Structure Between Stacked Semiconductor Die
JP2012156327A (ja) * 2011-01-26 2012-08-16 Elpida Memory Inc 半導体装置、及び積層型半導体装置
JP2012209497A (ja) * 2011-03-30 2012-10-25 Elpida Memory Inc 半導体装置
JP2013225595A (ja) * 2012-04-20 2013-10-31 Shinko Electric Ind Co Ltd リードフレーム及び半導体パッケージ並びにそれらの製造方法
ITVI20120145A1 (it) * 2012-06-15 2013-12-16 St Microelectronics Srl Struttura comprensiva di involucro comprendente connessioni laterali
JP2014063974A (ja) * 2012-08-27 2014-04-10 Ps4 Luxco S A R L チップ積層体、該チップ積層体を備えた半導体装置、及び半導体装置の製造方法
KR20150005113A (ko) * 2013-07-04 2015-01-14 에스케이하이닉스 주식회사 광학 신호 경로를 포함하는 반도체 패키지
CN104576565A (zh) * 2013-10-18 2015-04-29 飞思卡尔半导体公司 具有散热体的半导体器件及其组装方法
KR20150053088A (ko) * 2013-11-07 2015-05-15 에스케이하이닉스 주식회사 반도체 소자 및 제조 방법
US20150371938A1 (en) * 2014-06-19 2015-12-24 Invensas Corporation Back-end-of-line stack for a stacked device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136356A (ja) * 1987-11-24 1989-05-29 Nec Corp 樹脂封止型半導体装置
JPH03238852A (ja) * 1990-02-15 1991-10-24 Nec Corp モールド型半導体集積回路
JPH1197580A (ja) * 1997-09-24 1999-04-09 Matsushita Electric Works Ltd 半導体装置および集積半導体装置
JPH11233693A (ja) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd ベアic実装方法および封止材料
JP2003031744A (ja) * 2001-07-12 2003-01-31 Mitsubishi Electric Corp 半導体装置
JP2004319577A (ja) * 2003-04-11 2004-11-11 Dainippon Printing Co Ltd 樹脂封止型半導体装置とその製造方法、および積層型樹脂封止型半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032852A (ja) * 2016-08-22 2018-03-01 ローム株式会社 半導体装置、半導体装置の実装構造
CN117133746A (zh) * 2023-10-26 2023-11-28 成都电科星拓科技有限公司 用于双面焊接的方形扁平无引脚封装芯片结构及封装方法
CN117133746B (zh) * 2023-10-26 2024-01-30 成都电科星拓科技有限公司 用于双面焊接的方形扁平无引脚封装芯片结构及封装方法

Also Published As

Publication number Publication date
US20160035647A1 (en) 2016-02-04
JPWO2014188632A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
KR101634067B1 (ko) 반도체 패키지 및 그 제조방법
US8344499B2 (en) Chip-exposed semiconductor device
US10204882B2 (en) Stacked package module having an exposed heat sink surface from the packaging
US8963315B2 (en) Semiconductor device with surface electrodes
TW201631722A (zh) 功率轉換電路的封裝模組及其製造方法
TW201119003A (en) Semiconductor device packages and manufacturing method thereof
JP2009099697A (ja) 半導体装置及びその製造方法
WO2014188632A1 (ja) 放熱構造を有する半導体装置および半導体装置の積層体
JP2019071412A (ja) チップパッケージ
KR20170086828A (ko) 메탈범프를 이용한 클립 본딩 반도체 칩 패키지
KR20120079325A (ko) 반도체 패키지 및 그 제조방법
TWI406376B (zh) 晶片封裝構造
WO2014136735A1 (ja) 半導体装置
WO2014106879A1 (ja) 放熱部材を備えた半導体装置
JP5397278B2 (ja) 半導体装置
JP5621712B2 (ja) 半導体チップ
KR101494411B1 (ko) 반도체패키지 및 이의 제조방법
JP5147295B2 (ja) 半導体装置
JP2012253118A (ja) 半導体装置
TW201603201A (zh) 嵌入式封裝及封裝方法
JPS63190363A (ja) パワ−パツケ−ジ
JP5675210B2 (ja) 半導体発光装置
WO2014171403A1 (ja) 半導体装置
US20220301967A1 (en) Semiconductor device
WO2021020456A1 (ja) 半導体パッケージおよび半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801187

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801187

Country of ref document: EP

Kind code of ref document: A1