WO2014132354A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2014132354A1
WO2014132354A1 PCT/JP2013/055081 JP2013055081W WO2014132354A1 WO 2014132354 A1 WO2014132354 A1 WO 2014132354A1 JP 2013055081 W JP2013055081 W JP 2013055081W WO 2014132354 A1 WO2014132354 A1 WO 2014132354A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
steel sheet
grain
oriented electrical
annealing
Prior art date
Application number
PCT/JP2013/055081
Other languages
English (en)
French (fr)
Inventor
正憲 上坂
稔 高島
今村 猛
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020157023294A priority Critical patent/KR101683693B1/ko
Priority to EP13876350.3A priority patent/EP2963130B1/en
Priority to PCT/JP2013/055081 priority patent/WO2014132354A1/ja
Priority to US14/770,620 priority patent/US10431359B2/en
Priority to RU2015140997A priority patent/RU2610204C1/ru
Priority to CN201380073829.8A priority patent/CN105008555B/zh
Publication of WO2014132354A1 publication Critical patent/WO2014132354A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a method of manufacturing a grain-oriented electrical steel sheet mainly used for iron cores such as transformers and generators. Specifically, the directionality of ultrathin and low iron loss with a thickness of 0.15 to 0.23 mm.
  • the present invention relates to a method for manufacturing an electromagnetic steel sheet.
  • a grain-oriented electrical steel sheet containing Si and highly oriented in the ⁇ 110 ⁇ ⁇ 001> orientation (Goss orientation) or ⁇ 100 ⁇ ⁇ 001> orientation (Cube orientation) has excellent soft magnetic properties. Therefore, it is widely used as a core material for various electric devices used in the commercial frequency range.
  • the grain-oriented electrical steel sheet used for such applications is generally required to have a low iron loss W 17/50 (W / kg) representing magnetic loss when magnetized to 1.7 T at a frequency of 50 Hz. .
  • W / kg the efficiency of the generator and the transformer can be greatly improved by using an iron core material having a low W 17/50 value. Therefore, development of materials with low iron loss has been increasingly demanded.
  • the iron loss of an electromagnetic steel sheet is expressed as the sum of hysteresis loss that depends on crystal orientation and purity, and eddy current loss that depends on sheet thickness, specific resistance, magnetic domain size, and the like. Therefore, as a method of reducing the iron loss, the degree of integration of the crystal orientation is increased to improve the magnetic flux density, the hysteresis loss is reduced, the Si content is increased to increase the electric resistance, or the thickness of the steel plate is increased. There are known methods for reducing the eddy current loss by reducing the eddy current or by subdividing the magnetic domain.
  • a rolling method and a chemical polishing method are known, but the method of thinning by chemical polishing has a large decrease in yield, and for production on an industrial scale. Not suitable. For this reason, a rolling method is exclusively used as a method for reducing the plate thickness.
  • a rolling method is exclusively used as a method for reducing the plate thickness.
  • secondary recrystallization in finish annealing becomes unstable and it is difficult to stably manufacture a product having excellent magnetic properties.
  • Patent Document 4 in addition to the combined addition of Sn and Se, in the manufacture of a thin unidirectional electrical steel sheet characterized by AlN as the main inhibitor and the final cold rolling under strong pressure, Nb is added in the method of manufacturing a thin unidirectional electrical steel sheet having a thickness of 0.20 mm or less, because an excellent iron loss value can be obtained by adding Cu and / or Sb. It has been proposed that fine dispersion of carbonitrides is promoted by this to strengthen the inhibitor and improve the magnetic properties.
  • Patent Document 5 discloses that the thickness of the hot-rolled sheet is reduced, the coil winding temperature is lowered, and the finish annealing pattern is appropriately controlled, so that the thin film having excellent magnetic properties can be obtained by one cold rolling.
  • Patent Document 6 discloses a method of manufacturing a grain-oriented electrical steel sheet, in which a sheet thickness of a hot-rolled coil is set to 1.9 mm or less to produce a grain-oriented electrical steel sheet of 0.23 mm or less by a single cold rolling method. A method has been proposed.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and to stably cause secondary recrystallization even in an ultrathin grained electrical steel sheet having a thickness of 0.15 to 0.23 mm.
  • the object is to propose an advantageous method for producing a grain-oriented electrical steel sheet having uniform iron loss in the coil and extremely low iron loss.
  • the inventors are in the middle of secondary recrystallization annealing when finishing annealing the steel sheet after primary recrystallization annealing.
  • the steel sheet was taken out and the precipitation state of the inhibitor and the growth state of the crystal grains were investigated.
  • the inhibitor becomes coarse and the ability to suppress crystal grain growth decreases, and in the temperature region of 875 ° C. or higher, the inhibitor component is oxidized and disappeared due to the surface oxidation of the steel sheet, and the surface layer The coarsening of the grains occurs, in particular, the tendency becomes remarkable at 975 ° C. or more.
  • the inventors have established a method for ensuring sufficient driving force required for secondary recrystallization by suppressing the growth of primary recrystallized grains and stably causing secondary recrystallization over the entire coil length.
  • the sol depending on the product sheet thickness, that is, the final sheet thickness d after cold rolling, the sol.
  • the ratio of the content of Al and N is controlled to an appropriate range so that the grain size of the central layer of the steel plate thickness is suitable for secondary recrystallization.
  • the steel sheet before the secondary recrystallization is kept at a predetermined temperature for a predetermined time to equalize the temperature in the coil, and then rapidly heated at a heating rate of 10 to 60 ° C./hr to set the grain size of the steel sheet surface to an appropriate range. It has been found that the secondary recrystallization can be stably expressed over the entire length of the coil by controlling the length of the coil to obtain a grain-oriented electrical steel sheet having a uniform and extremely low iron loss over the entire length of the coil.
  • the present invention developed on the basis of the above findings includes C: 0.04 to 0.12 mass%, Si: 1.5 to 5.0 mass%, Mn: 0.01 to 1.0 mass%, sol. Al: 0.010 to 0.040 mass%, N: 0.004 to 0.02 mass%, one or two selected from S and Se: a total of 0.005 to 0.05 mass%, with the balance being Fe And a steel slab having a component composition consisting of inevitable impurities is heated to 1250 ° C. or higher, and then hot-rolled to form a hot-rolled sheet having a thickness of 1.8 mm or more.
  • a method for producing a grain-oriented electrical steel sheet comprising a series of steps in which a cold-rolled sheet having a final thickness of 0.15 to 0.23 mm is formed by rolling, subjected to primary recrystallization annealing and then finish annealing, the sol.
  • the ratio of the content of Al and N (sol. Al / N) and the final thickness d (mm) are the following formula (1): 4d + 1.52 ⁇ sol. Al / N ⁇ 4d + 2.32 (1)
  • the steel sheet is held at a temperature of 775 to 875 ° C. for 40 to 200 hours in the heating process of the above finish annealing, and then heated in a temperature range of 875 to 1050 ° C. at a temperature rising rate of 10 to 60 ° C./hr.
  • This is a method for producing a grain-oriented electrical steel sheet characterized by the following.
  • the steel slab in the method for producing a grain-oriented electrical steel sheet according to the present invention may further include Ni: 0.1 to 1.0 mass%, Cu: 0.02 to 1.0 mass%, and Sb: 0.0. It contains one or more selected from 01 to 0.10 mass%.
  • the steel slab in the method for producing a grain-oriented electrical steel sheet of the present invention is one or two selected from Ge, Bi, V, Nb, Te, Cr, Sn and Mo in addition to the above component composition. It contains 0.002 to 1.0 mass% of seeds or more in total.
  • the grain-oriented electrical steel sheet manufacturing method according to the present invention heats between 200 and 700 ° C. in the heating process of the primary recrystallization annealing at a heating rate of 50 ° C./s or more, and any of 250 to 600 ° C.
  • the holding treatment is performed for 1 to 10 seconds at the above temperature.
  • the grain-oriented electrical steel sheet manufacturing method of the present invention is characterized in that, at any stage after cold rolling, a groove is formed on the steel sheet surface in a direction crossing the rolling direction and subjected to magnetic domain refinement treatment. To do.
  • the grain-oriented electrical steel sheet manufacturing method of the present invention performs the magnetic domain fragmentation treatment by irradiating the surface of the steel sheet with the insulating coating continuously or intermittently in the direction intersecting the rolling direction. It is characterized by giving.
  • the inhibitor during secondary recrystallization annealing is performed.
  • the steel sheet before the secondary recrystallization was kept at a predetermined temperature for a predetermined time during heating in the finish annealing to make the temperature in the coil uniform. After that, the temperature is rapidly raised to the secondary recrystallization temperature to suppress the coarsening of the steel sheet surface layer grains, so that secondary recrystallization can be stably expressed over the entire length of the coil, and the iron loss characteristics are excellent. It becomes possible to manufacture a grain-oriented electrical steel sheet with a high yield.
  • Magnetic flux density B 8 is a graph showing the range of 1.90T or higher final thickness d and the resulting (sol.Al/N). 6 is a graph showing the relationship between a temperature increase rate between 850 and 1050 ° C. and a guaranteed value in a coil of iron loss W 17/50 in finish annealing.
  • the steel plate is heated up to 850 ° C. in a N 2 atmosphere at a heating rate of 20 ° C./hr, and 850 ° C. in after holding for 50 hours, at a heating rate of 20 ° C. / hr, a mixed atmosphere of 25vol% N 2 -75vol% of H 2 between 850 ⁇ 1150 ° C., the temperature heating between 1150 ⁇ 1200 ° C. under an atmosphere of H 2
  • a secondary recrystallization annealing in which cooling at 800 ° C.
  • an insulating coating mainly composed of aluminum phosphate and colloidal silica was formed to obtain a product coil.
  • FIG. 1 shows the range of the plate thickness d and (sol.Al/N) at which the magnetic flux density B 8 is 1.90 T or more.
  • the magnetic flux density B 8 is an effective index for determining that secondary recrystallization has occurred properly.
  • the high guaranteed value of B 8 in the coil indicates that the secondary recrystallization is uniformly performed in the coil. It indicates that crystals are occurring.
  • the test pieces for magnetic measurement were taken from five places in the longitudinal direction of 0 m, 1000 m, 2000 m, 3000 m and 4000 m of the product coil having a total length of about 4000 m thus obtained, and the magnetic flux density B 8 and the magnetic flux density at a magnetizing force of 800 A / m.
  • the iron loss value W 17/50 per mass at an amplitude of 1.7 T and 50 Hz was measured, and the worst B 8 and W 17/50 values in the coil were measured as guaranteed values in the coil and the best B 8 in the coil.
  • W 17/50 was regarded as a good value in the coil, and the results are also shown in Table 2.
  • FIG. 2 shows the relationship between the heating rate between 850 and 1050 ° C., the guaranteed value in the coil of the magnetic flux density B 8 and the iron loss W 17/50 , and the good value in the coil.
  • the heating pattern A which was not held for 50 hours at 850 ° C. during the heating of the finish annealing and the heating pattern B whose heating rate between 850 to 1050 ° C. was as low as 5 ° C./hr were
  • the secondary recrystallization is not uniform, the guaranteed value in the coil is poor, but the secondary recrystallization is stable in the heating patterns C to G that are rapidly heated at a temperature increase rate of 10 ° C./hr or more after holding at 850 ° C.
  • the magnetic properties are improved over the entire length in the coil. However, the magnetic properties are slightly deteriorated at a temperature rising rate of 100 ° C./hr (heating pattern G).
  • the present invention has been made based on the above findings.
  • C 0.04 to 0.12 mass%
  • C is an element useful for uniform refinement of the structure during hot rolling and cold rolling and development of Goss orientation, and it is necessary to contain at least 0.04 mass%. However, if added over 0.12 mass%, decarburization annealing may cause insufficient decarburization, and the magnetic properties may deteriorate. Therefore, C is in the range of 0.04 to 0.12 mass%. Preferably, it is in the range of 0.05 to 0.10 mass%.
  • Si 1.5 to 5.0 mass%
  • Si is an element that increases the specific resistance of the steel sheet and contributes effectively to the reduction of iron loss. From the viewpoint of securing good magnetic properties, Si is contained in an amount of 1.5 mass% or more in the present invention. On the other hand, addition exceeding 5.0 mass% significantly impairs cold workability. Therefore, Si is set in the range of 1.5 to 5.0 mass%. Preferably, it is in the range of 2.0 to 4.0 mass%.
  • Mn 0.01 to 1.0 mass%
  • Mn is an element effective for improving hot workability and preventing surface flaws during hot rolling, and in order to obtain such an effect, it is necessary to contain 0.01 mass% or more. However, when it is added exceeding 1.0 mass%, the magnetic flux density is lowered. Therefore, Mn is set to a range of 0.01 to 1.0 mass%. The range is preferably 0.04 to 0.2 mass%.
  • Al 0.010 to 0.040 mass%
  • AlN is an inhibitor. If the Al content is less than 0.010 mass%, the amount of AlN precipitated during hot rolling or during the temperature rising process of hot-rolled sheet annealing is insufficient, and the inhibitor effect cannot be obtained. On the other hand, if added in excess of 0.040 mass%, the precipitated inhibitor becomes coarse, and conversely, the suppressive power decreases. Therefore, in order to sufficiently obtain the inhibitor effect of AlN, Al is sol. It is necessary to make the range of 0.010 to 0.040 mass% with Al. Preferably, it is in the range of 0.02 to 0.03 mass%.
  • N 0.004 to 0.02 mass% N, like Al, is an essential element constituting AlN, which is an inhibitor. However, since this N can be added after performing a nitriding treatment in the cold rolling process, it may be contained at 0.004 mass% or more in the slab stage. However, when nitriding is not performed in the cold rolling process, it is necessary to contain 0.005 mass% or more. On the other hand, when N is added in excess of 0.02 mass%, blistering may occur in hot rolling. Therefore, N is in the range of 0.004 to 0.02 mass%. Preferably, it is in the range of 0.005 to 0.01 mass%.
  • sol. Al / N In the present invention, depending on the final thickness (product thickness) d (mm) of cold rolling, the sol. To optimize the ratio of Al and N content (mass%), specifically, the following formula (1); 4d + 1.52 ⁇ sol. Al / N ⁇ 4d + 2.32 (1) It is important that it is contained so as to satisfy the relationship. As shown in FIG. 1, when the value of (sol.Al/N) is large, the inhibitory force of AlN as an inhibitor is not sufficient, leading to the coarsening of crystal grains in the surface layer and the central layer of the steel sheet. End up.
  • the left side of the formula (1) is 4d + 1.81, and the right side is 4d + 2.32.
  • the value of (sol.Al/N) is set to the final plate thickness d (mm) and the sol.
  • the N content may be adjusted by performing nitriding before the secondary recrystallization.
  • S and Se are indispensable elements that are required for fine precipitation of Cu 2 S, Cu 2 Se, and the like in combination with AlN.
  • S and Se are used alone or in total in the range of 0.005 to 0.05 mass%.
  • it is in the range of 0.01 to 0.03 mass%.
  • the grain-oriented electrical steel sheet of the present invention may further contain one or more selected from Ni, Cu and Sb.
  • Ni 0.10 to 1.0 mass%
  • Ni segregates at the grain boundary, promotes the co-segregation effect with other segregating elements such as Sb, and suppresses the coarsening of the inhibitor, so Ni is contained in an amount of 0.10 mass% or more.
  • Ni is set in the range of 0.10 to 1.0 mass%.
  • it is in the range of 0.10 to 0.50 mass%.
  • Cu 0.02 to 1.0 mass%
  • Cu is an element that constitutes Cu 2 S and Cu 2 Se, and is advantageous because the decrease in the suppressive force during finish annealing is moderate compared to MnS and MnSe. Furthermore, when Cu 2 S and Cu 2 Se are segregated together with Ni and Sb, the inhibitory suppressive force is unlikely to decrease. Therefore, in this invention, 0.02 mass% or more of Cu can also be added. However, if the content exceeds 1.0 mass%, the inhibitor becomes coarse. Therefore, Cu is in the range of 0.02 to 1.0 mass%. Preferably, it is in the range of 0.04 to 0.5 mass%.
  • Sb 0.01 to 0.10 mass%
  • Sb is an element necessary for segregating on the surface of the precipitated inhibitors AlN, Cu 2 S, Cu 2 Se, MnS, and MnSe, and suppressing the coarsening of the inhibitors. Such an effect can be obtained by addition of 0.01 mass% or more. However, if it is added in excess of 0.10 mass%, the decarburization reaction is hindered and the magnetic properties are deteriorated. Therefore, Sb is set in the range of 0.01 to 0.10 mass%. Preferably, it is in the range of 0.02 to 0.05 mass%.
  • the grain-oriented electrical steel sheet according to the present invention further includes one or more selected from Ge, Bi, V, Nb, Te, Cr, Sn and Mo as an inhibitor auxiliary component.
  • the total content can be 0.002 to 1.0 mass%. All of these elements form precipitates and segregate on the grain boundaries and the surface of the precipitates to perform an auxiliary function of strengthening the suppression force. In order to obtain such an action, it is necessary to contain one or more of these elements in a total of 0.002 mass%. However, addition exceeding 1.0 mass% may cause embrittlement or decarburization failure of the steel. Therefore, the above elements are preferably contained in the range of 0.002 to 1.0 mass% in total.
  • the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
  • the method for producing a grain-oriented electrical steel sheet according to the present invention after reheating the steel slab adjusted to the above-described component composition, hot rolling is performed, and hot-rolled sheet annealing is performed as necessary. It consists of a series of processes in which cold rolling is performed more than once, primary recrystallization annealing is performed, and finish annealing is performed that combines secondary recrystallization annealing and purification treatment.
  • the production method is not particularly limited and can be produced under generally known production conditions.
  • the steel slab is then reheated to a temperature of 1250 ° C.
  • the method of reheating can use well-known methods, such as a gas furnace, an induction heating furnace, and an electric furnace.
  • the conditions of hot rolling should just be conventionally well-known conditions, and there is no restriction
  • hot rolling is performed to obtain a hot rolled sheet (hot rolled coil) having a thickness of 1.8 mm or more.
  • the reason for limiting the hot-rolled sheet thickness to 1.8 mm or more is to shorten the rolling time and reduce the temperature difference in the rolling direction of the hot-rolled coil.
  • the hot rolling conditions may be performed according to a conventional method, and there is no particular limitation.
  • the hot-rolled sheet (hot-rolled coil) obtained by hot rolling is then subjected to hot-rolled sheet annealing as necessary, and then pickled and cold-rolled twice or more with one or intermediate annealing in between.
  • a cold-rolled sheet (cold-rolled coil) having a final thickness is obtained.
  • the hot-rolled sheet annealing and intermediate annealing are preferably performed at a temperature of 800 ° C. or higher in order to recrystallize using strain introduced by hot rolling or cold rolling.
  • aging between passes or warm rolling may be applied.
  • the final thickness (product thickness) of the grain-oriented electrical steel sheet of the present invention is in the range of 0.15 to 0.23 mm. If the plate thickness exceeds 0.23 mm, the driving force of secondary recrystallization becomes excessive, and the dispersion of secondary recrystallized grains from the Goss orientation increases. On the other hand, when the thickness is less than 0.15 mm, secondary recrystallization becomes unstable or the ratio of the insulating film relatively increases and the magnetic flux density decreases, and it is difficult to roll and manufacture. Because it becomes.
  • the cold-rolled sheet with the final thickness is then degreased and subjected to primary recrystallization annealing that also serves as decarburization annealing, and then an annealing separator is applied to the surface of the steel sheet, wound around a coil, Finish annealing is performed to raise the crystal and purify it.
  • primary recrystallization annealing heating is performed at a temperature rising rate of 50 ° C./s or more between 200 to 700 ° C. in the heating process, and is maintained at any temperature between 250 to 600 ° C. for 1 to 10 seconds. It is preferable to perform the treatment.
  • the recrystallization after the secondary recrystallization is made finer, so that it is possible to obtain a grain-oriented electrical steel sheet with low iron loss and small variations in iron loss values. It is. It should be noted that there is no problem if the temperature change during the retention treatment is ⁇ 50 ° C. or less.
  • the nitriding treatment may be performed as necessary.
  • a nitriding treatment step may be added between after cold rolling and before finish annealing.
  • the cold-rolled sheet Before the primary recrystallization annealing, the cold-rolled sheet may be subjected to a magnetic domain refinement process in which grooves are formed by etching on the steel sheet surface in order to reduce iron loss of the product sheet. Further, the cold-rolled plate may be subjected to a known magnetic domain refinement process, for example, a spot-like local heat treatment or chemical process for generating fine crystal grains, before secondary recrystallization.
  • the annealing separator applied to the steel sheet surface a known one can be used, but it is preferable to use properly depending on whether or not a forsterite film is formed on the steel sheet surface.
  • a forsterite film is formed on the steel sheet surface.
  • an annealing separator such as an Al 2 O 3 system that does not form a film is preferably used.
  • the finish annealing is the most important step in the production method of the present invention. Usually, the finish annealing is performed at a temperature of about 1200 ° C. at the maximum, which combines the secondary recrystallization annealing and the purification annealing, but in the method of manufacturing the grain-oriented electrical steel sheet of the present invention, in the temperature raising process of the finish annealing. It is necessary to hold for 40 to 200 hours in the temperature range of 775 to 875 ° C. before the secondary recrystallization. The reason is as follows.
  • secondary recrystallization occurs at a temperature around 1000 ° C., but in the temperature range exceeding 875 ° C., the inhibitor component is oxidized, and the primary recrystallized grains of the steel sheet surface layer become coarse. And this coarsening of the surface primary recrystallized grains causes a secondary recrystallization failure in the grain-oriented electrical steel sheet having a thin plate thickness.
  • the inventors have conducted research on a solution to this problem, and as a result, kept the steel sheet before the secondary recrystallization in the temperature range of 775 to 875 ° C. for 40 to 200 hours, thereby allowing the primary recrystallization of the surface layer. It has been found that grain coarsening is suppressed. When the holding time is less than 40 hours, the primary recrystallized grains in the surface layer are coarsened, resulting in poor secondary recrystallization, and the magnetic properties are deteriorated.
  • a preferred holding time between 775-875 ° C. is in the range of 45-100 hours.
  • the holding before the secondary recrystallization may be held at a specific temperature between 775 and 875 ° C. for 40 to 200 hours, or between 775 and 875 ° C. over 40 to 200 hours. May be.
  • the reason why the coarsening of the primary recrystallized grains in the surface layer is suppressed by maintaining the temperature in the temperature range of 775 to 875 ° C. for 40 to 200 hours is considered as follows.
  • AlN decomposes at a temperature of about 920 ° C. or higher, resulting in coarsening of primary recrystallized grains in the surface layer.
  • the temperature increase rate from 875 ° C. to 1050 ° C. following the above holding in the temperature range of 775 to 875 ° C. is set to 10 ° C./hr or more from the viewpoint of suppressing the coarsening of the primary recrystallized grains in the surface layer.
  • it is 20 ° C./hr or more.
  • the upper limit is set to 60 ° C./hr.
  • it is 50 degrees C / hr or less.
  • the rate of temperature increase from 1050 ° C. to the maximum temperature is preferably 5 ° C./hr or more from the viewpoint of economy, while it is preferably 100 ° C./hr or less from the viewpoint of uniformizing the temperature in the coil. preferable.
  • MnS and MnSe which are inhibitors other than AlN, may be coarsened and the suppressing power may be reduced. Therefore, in the present invention, Cu 2 S or Cu 2 Se whose inhibitory power is hardly reduced is used as an inhibitor, and Sb is added, and Sb is segregated on the surface of the precipitated Cu 2 S or Cu 2 Se inhibitor. It is preferable to suppress the coarsening of the film. Further, when Ni is added, segregation of Sb is promoted, so that the suppressive power of Cu 2 S and Cu 2 Se is further reinforced, and the inhibitory power of the inhibitor can be kept high.
  • N 2 , H 2 , Ar, or a mixed gas thereof is used as the atmospheric gas in the above-mentioned finish annealing.
  • N 2 is a temperature higher than that.
  • H 2 or a mixed gas of H 2 and N 2 or H 2 and Ar is used.
  • the unreacted annealing separator on the surface of the steel sheet is removed, and if necessary, an insulating coating solution is applied and baked, or flattened annealing is performed to obtain a product plate.
  • an insulating coating solution is applied and baked, or flattened annealing is performed to obtain a product plate.
  • a known magnetic domain subdivision treatment that continuously or intermittently irradiates an electron beam or a laser, or imparts a linear strain with a protruding roll. May be applied.
  • the steel sheet surface is further mirror-finished or subjected to a grain orientation selection process using NaCl electrolysis or the like, and then a tension film is further formed. And it is good also as a product board.
  • a steel slab having the composition of components A to Q shown in Table 3 was hot-rolled according to a conventional method to form a hot-rolled coil having a thickness of 2.4 mm, and subjected to hot-rolled sheet annealing at 900 ° C. ⁇ 40 seconds, Pickling, primary cold rolling to a sheet thickness of 1.5 mm, intermediate annealing at 1150 ° C. for 80 seconds, followed by warm rolling at a temperature of 170 ° C. and a cold rolled coil with a final sheet thickness of 0.17 mm It was. Next, the cold rolled coil was degreased, and then subjected to primary recrystallization annealing also serving as a decarburization process at 850 ° C.
  • the heat treatment was performed for a period of time, and then finish annealing was performed to cool 800 ° C. or lower in an N 2 atmosphere.
  • finish annealing was performed to cool 800 ° C. or lower in an N 2 atmosphere.
  • an insulating film mainly composed of magnesium phosphate and colloidal silica was formed to obtain a product coil.
  • test pieces for magnetic measurement were collected from a total of five locations in the longitudinal direction of 0 m, 1000 m, 2000 m, 3000 m and 4000 m of the product coil having a total length of about 4000 m thus obtained, and the iron loss value W at a magnetic flux density of 1.7 T was obtained. 17/50 was measured, and among the above five iron losses, the worst value was the guaranteed value in the coil, and the best value was the good value in the coil.
  • Table 3 From Table 3, one or more selected from Ni, Cu and Sb, or, in addition, one or more selected from Ge, Bi, V, Nb, Tb, Cr, Sn and Mo can be added to add iron. It can be seen that the loss characteristics are further improved, and that if the (sol.Al/N) is removed, the iron loss characteristics are greatly deteriorated.
  • the cold-rolled coil is divided into two, and after one is subjected to a magnetic domain refinement treatment in which a groove having a width of 180 ⁇ m and extending in a direction perpendicular to the rolling direction is formed on the steel sheet surface at intervals of 5 mm in the rolling direction.
  • the primary recrystallization annealing that doubles as decarburization annealing was performed in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 without performing the above-mentioned magnetic domain refinement treatment. Note that the heating up to 840 ° C. in the primary recrystallization annealing is performed by changing the rate of temperature increase from 200 ° C. to 700 ° C.
  • an annealing separator mainly composed of MgO was applied to the steel sheet surface, and then heated to 850 ° C. at a heating rate of 20 ° C./hr in an N 2 atmosphere and held at 850 ° C. for 50 hours.
  • a tension coating solution composed of 50 mass% colloidal silica and magnesium phosphate is applied and baked to form an insulating coating, and a product coil It was.
  • Test pieces for magnetic measurement were collected from a total of five locations in the longitudinal direction of 0 m, 1000 m, 2000 m, 3000 m and 4000 m of the product coil having a total length of about 4000 m thus obtained, and the iron loss value W 17 at a magnetic flux density of 1.7 T was obtained. / 50 was measured and the average value was determined.
  • Table 4 The results of the above measurement are shown in Table 4 with classification according to whether or not the magnetic domain fragmentation treatment was performed. From Table 4, in addition to optimizing the heating conditions for the finish annealing, the iron loss characteristics are further improved by performing the holding treatment in the heating process in the primary recrystallization annealing, in particular, the magnetic domain refinement treatment was performed. It can be seen that the iron loss improvement effect in the case is remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

mass%で、C:0.04~0.12%、Si:1.5~5.0%、Mn:0.01~1.0%、sol.Al:0.010~0.040%、N:0.004~0.02%、SおよびSeを合計で0.005~0.05含有する鋼スラブを熱間圧延し、冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造方法において、上記鋼スラブにおけるsol.AlとNの含有量の比(sol.Al/N)と、二次再結晶焼鈍時の鋼板板厚d(mm)とが、4d+1.52≦sol.Al/N≦4d+2.32の式を満たし、かつ、上記仕上焼鈍の加熱過程で二次再結晶前の鋼板を775~875℃の温度に40~200時間保持した後、875~1050℃の温度域を昇温速度10~60℃/hrで加熱し、二次再結晶と純化処理を施すことにより、鉄損が低くかつ製品コイル内のばらつきが小さい極薄方向性電磁鋼板を製造する。

Description

方向性電磁鋼板の製造方法
 本発明は、主として変圧器や発電機等の鉄心に用いられる方向性電磁鋼板の製造方法に関し、具体的には、板厚が0.15~0.23mmの極薄かつ低鉄損の方向性電磁鋼板の製造方法に関するものである。
 Siを含有し、結晶方位が{110}<001>方位(Goss方位)や{100}<001>方位(Cube方位)に高度に配向した方向性電磁鋼板は、優れた軟磁気特性を示すことから、商用周波数領域で用いられる各種電気機器の鉄心材料として広く用いられている。このような用途に用いられる方向性電磁鋼板には、一般に、50Hzの周波数で1.7Tに磁化させたときの磁気損失を表す鉄損W17/50(W/kg)が低いことが求められる。その理由は、発電機や変圧器の効率は、W17/50の値が低い鉄心材料を用いることで、大幅に向上することができるからである。そのため、鉄損の低い材料の開発が益々強く求められるようになってきている。
 電磁鋼板の鉄損は、結晶方位や純度等に依存するヒステリシス損と、板厚や比抵抗、磁区の大きさ等に依存する渦電流損との和で表される。したがって、鉄損を低減する方法としては、結晶方位の集積度を高めて磁束密度を向上し、ヒステリシス損を低減する方法や、電気抵抗を高めるSiの含有量を増加させたり、鋼板の板厚を低減したり、磁区を細分化したりすることで渦電流損を低減する方法等が知られている。
 これらの鉄損低減方法のうち、磁束密度を向上させる方法に関しては、例えば、特許文献1および特許文献2には、AlNをインヒビタとする方向性電磁鋼板の製造方法において、Niを添加しかつNi添加量に応じてSbを所定の範囲で添加することで、一次再結晶粒の成長に対し極めて強い抑制力効果が得られ、一次再結晶粒集合組織の改善と二次再結晶粒の微細化が図れるだけでなく、{110}<001>方位から圧延方向の平均面内ずれ角を小さくすることができ、鉄損を大きく低減できることが開示されている。
 また、板厚を低減する方法に関しては、圧延による方法と、化学研磨する方法とが知られているが、化学研磨で薄くする方法は、歩留まりの低下が大きく、工業的規模での生産には適さない。そのため、板厚を薄くする方法には、専ら圧延による方法が用いられている。しかし、圧延して板厚を薄くすると、仕上焼鈍における二次再結晶が不安定となり、磁気特性の優れた製品を安定して製造することが難しくなるという問題がある。
 この問題に対しては、例えば、特許文献3には、AlNを主インヒビタとし、強圧下最終冷延を特徴とする薄手一方向性電磁鋼板の製造において、SnとSeの複合添加に加えてさらにCuおよび/またはSbを添加することにより優れた鉄損値が得られることが、特許文献4には、板厚0.20mm以下の薄手一方向性電磁鋼板の製造方法において、Nbを添加することによって炭窒化物の微細分散が促進されてインヒビタが強化され、磁気特性が向上することが提案されている。また、特許文献5には、熱延板の板厚を薄くし、コイルの巻取温度を下げ、仕上焼鈍パターンを適正に制御することで、1回の冷延で磁気特性の優れた薄手一方向性電磁鋼板を製造する方法が、特許文献6には、熱延コイルの板厚を1.9mm以下とすることで、0.23mm以下の方向性電磁鋼板を一回冷延法で製造する方法が提案されている。
特許3357601号公報 特許3357578号公報 特公平07-017956号公報 特開平06-025747号公報 特公平07-042507号公報 特開平04-341518号公報
 方向性電磁鋼板の鉄損を低減する方法としては、上述した従来技術を適用し、圧延で板厚を薄くし、渦電流損を低下させることが有効である。しかし、最終冷延後の板厚が0.15~0.23mmという極薄の方向性電磁鋼板では、上記従来技術に開示された技術を適用しても、依然としてコイルの一部で二次再結晶不良が発生し、歩留りが低下するという問題が発生している。
 そこで、本発明の目的は、従来技術が抱える上記問題点を解決し、板厚が0.15~0.23mmの極薄の方向性電磁鋼板でも二次再結晶を安定して起こさせ、製品コイル内の鉄損が均一かつ極めて鉄損が低い方向性電磁鋼板を製造する有利な方法を提案することにある。
 発明者らは、板厚が薄い方向性電磁鋼板における二次再結晶挙動が不安定となる原因を解明するため、一次再結晶焼鈍後の鋼板を仕上焼鈍する際、二次再結晶焼鈍途中の鋼板を取り出して、インヒビタの析出状態および結晶粒の成長状態を調査した。その結果、仕上焼鈍の加熱過程においては、インヒビタが粗大化し、結晶粒成長を抑制する力が低下すること、875℃以上の温度領域では、鋼板の表面酸化によりインヒビタ成分が酸化、消失し、表層粒の粗大化が起きていること、特に、その傾向は975℃以上で著しくなること、そして、板厚が0.15~0.23mmの極薄の方向性電磁鋼板では、上記したインヒビタの粗大化による結晶粒成長抑制力の低下、および、表層粒の粗大化の進行が二次再結晶不良の主原因であることが明らかとなった。
 そこで、発明者らは、二次再結晶に必要な駆動力を十分に確保する方法について、一次再結晶粒の成長を抑制してやることで、二次再結晶をコイル全長に亘って安定的に起こさせることができるのではないかとの考えの下、さらに検討を重ねた。その結果、製品板厚、即ち、冷間圧延後の最終板厚dに応じて、素材となる鋼スラブ中のsol.AlとNの含有量の比(sol.Al/N)を適正範囲に制御して鋼板板厚の中心層の粒径を二次再結晶に適した大きさとするとともに、仕上焼鈍の加熱過程において、二次再結晶前の鋼板を所定温度に所定時間保持してコイル内の温度を均一化した後、昇温速度を10~60℃/hrとして急速加熱して鋼板表層の粒径を適正範囲に制御することによって、二次再結晶がコイルの全長に亘って安定的に発現するようになり、コイル全長の鉄損が均一かつ極めて低い方向性電磁鋼板を得ることができることを見出した。
 上記知見に基づき開発した本発明は、C:0.04~0.12mass%、Si:1.5~5.0mass%、Mn:0.01~1.0mass%、sol.Al:0.010~0.040mass%、N:0.004~0.02mass%、SおよびSeから選ばれる1種または2種:合計0.005~0.05mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1250℃以上に加熱後、熱間圧延して板厚1.8mm以上の熱延板とし、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚0.15~0.23mmの冷延板とし、一次再結晶焼鈍した後、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、上記鋼スラブのsol.AlとNの含有量の比(sol.Al/N)と、最終板厚d(mm)とが下記(1)式;
 4d+1.52≦sol.Al/N≦4d+2.32 ・・・(1)
を満たし、かつ、上記仕上焼鈍の加熱過程で鋼板を775~875℃の温度に40~200時間保持した後、875~1050℃の温度域を昇温速度10~60℃/hrで加熱することを特徴とする方向性電磁鋼板の製造方法である。
 本発明の方向性電磁鋼板の製造方法における上記鋼スラブは、上記成分組成に加えてさらに、Ni:0.1~1.0mass%、Cu:0.02~1.0mass%およびSb:0.01~0.10mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。
 また、本発明の方向性電磁鋼板の製造方法における上記鋼スラブは、上記成分組成に加えてさらに、Ge,Bi,V,Nb,Te,Cr,SnおよびMoのうちから選らばれる1種または2種以上を合計で0.002~1.0mass%含有することを特徴とする。
 また、本発明の方向性電磁鋼板の製造方法は、上記一次再結晶焼鈍の加熱過程における200~700℃間を昇温速度50℃/s以上で加熱するとともに、250~600℃間のいずれかの温度において、1~10秒間、保定処理を施すことを特徴とする。
 また、本発明の方向性電磁鋼板の製造方法は、冷間圧延後のいずれかの段階で、鋼板表面に圧延方向と交差する方向に溝を形成して磁区細分化処理を施すことを特徴とする。
 また、本発明の方向性電磁鋼板の製造方法は、絶縁被膜を被成した鋼板表面に、圧延方向と交差する方向に連続的または断続的に電子ビームあるいはレーザを照射して磁区細分化処理を施すことを特徴とする。
 本発明によれば、鋼素材(スラブ)中の(sol.Al/N)の値を製品板厚(最終板厚)に応じて適正範囲に制御することによって、二次再結晶焼鈍時におけるインヒビタの抑制力低下を抑止して板厚中心層の粒径を適正化し、さらに、仕上焼鈍の加熱時に二次再結晶前の鋼板を所定温度に所定時間保持してコイル内の温度を均一化した後、急激に二次再結晶温度まで昇温して鋼板表層粒の粗大化を抑制するので、コイル全長に亘って二次再結晶を安定的に発現させることができ、鉄損特性に優れた方向性電磁鋼板を高い歩留りで製造することが可能となる。
磁束密度B:1.90T以上が得られる最終板厚dと(sol.Al/N)の範囲を示すグラフである。 仕上焼鈍における850~1050℃間の昇温速度と鉄損W17/50のコイル内保証値との関係を示すグラフである。
 まず、本発明を開発するに至った実験について説明する。
<実験1>
 表1に示したように、C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、Se:0.015mass%、Ni:0.3mass%、Cu:0.03mass%およびSb:0.04mass%を含有し、かつ、sol.AlとNの含有量の比(sol.Al/N)を2.10~3.56の範囲で種々に変化させた成分組成を有する7種の鋼スラブを熱間圧延して板厚2.4mmの熱延コイルとし、900℃×40秒の熱延板焼鈍し、酸洗し、一次冷間圧延して板厚1.5mmとし、1150℃×80秒の中間焼鈍し、170℃の温度で温間圧延して0.12~0.25mmの範囲の種々の板厚の冷延コイルとし、脱脂した後、60vol%H-40vol%Nの湿水素雰囲気下で850℃×2分の脱炭を兼ねた一次再結晶焼鈍を施した。
 次いで、一次再結晶後の上記鋼板表面に、MgOを主成分とする焼鈍分離剤を塗布、乾燥した後、850℃までをN雰囲気下で昇温速度20℃/hrで加熱し、850℃で50時間保持した後、昇温速度20℃/hrで、850~1150℃間を25vol%N-75vol%のHの混合雰囲気下、1150~1200℃間をH雰囲気下で加熱昇温し、さらに、H雰囲気下で1200℃×10時間の均熱処理した後、800℃以下をN雰囲気下で冷却する二次再結晶焼鈍と純化処理を兼ねた仕上焼鈍を施した。次いで、上記仕上焼鈍後の鋼板表面から未反応の焼鈍分離剤を除去した後、リン酸アルミニウムとコロイダルシリカを主成分とする絶縁被膜を被成し、製品コイルとした。
Figure JPOXMLDOC01-appb-T000001
 斯くして得た全長約4000mの製品コイルの長手方向0m、1000m、2000m、3000および4000mの5箇所から、磁気測定用の試験片を採取し、磁化力800A/mにおける磁束密度Bを測定し、コイル内で磁束密度が最も低い値をコイル内保証値、最も高い値をコイル内良好値とし、その結果を表1に併記した。また、図1には、磁束密度B:1.90T以上が得られる板厚dと(sol.Al/N)の範囲を示した。ここで、磁束密度Bは、二次再結晶が適正に起こったことを判断するのに有効な指標であり、Bのコイル内保証値が高いことは、コイル内で均一に二次再結晶が起こっていることを示している。
 これらの結果から、鋼素材(スラブ)中の(sol.Al/N)の値を、二次再結晶焼鈍時の板厚(最終板厚)に応じて適正範囲に制御する、具体的には、下記(1)式;
 4d+1.52≦sol.Al/N≦4d+2.32 ・・・(1)
を満たすよう制御することで、コイル全長に亘って二次再結晶が発現し、磁気特性が向上することがわかる。
<実験2>
 C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、sol.Al:0.020mass%、N:0.007mass%、Se:0.015mass%、Ni:0.3mass%、Cu:0.03mass%およびSb:0.04mass%を含有する鋼スラブを熱間圧延して板厚2.4mmの熱延コイルとし、900℃×40秒の熱延板焼鈍し、酸洗し、一次冷間圧延して板厚1.5mmとし、1150℃×80秒の中間焼鈍し、170℃の温度で温間圧延して最終板厚0.20mmの冷延コイルとし、脱脂し、その後、60vol%H-40vol%Nの湿水素雰囲気下で850℃×2分の脱炭を兼ねた一次再結晶焼鈍を施した。
 次いで、一次再結晶後の上記鋼板表面に、MgOを主成分とする焼鈍分離剤を塗布、乾燥した後、850℃までをN雰囲気下で昇温速度20℃/hrで加熱し、その後、表2に示したように、850℃での保持の有無および850~1050℃間の昇温速度を変えたA~Gの加熱パターンで1200℃まで、850~1150℃間は25vol%N-75vol%Hの混合雰囲気下、1150~1200℃間はH雰囲気下で加熱し、さらに、H雰囲気下で1200℃×10時間の均熱処理した後、800℃以下をN雰囲気下で冷却する二次再結晶焼鈍と純化処理を兼ねた仕上焼鈍を施した。次いで、上記仕上焼鈍後の鋼板表面から未反応の焼鈍分離剤を除去した後、リン酸アルミニウムとコロイダルシリカを主成分とする絶縁被膜を被成し、製品コイルとした。
Figure JPOXMLDOC01-appb-T000002
 斯くして得た全長約4000mの製品コイルの長手方向0m、1000m、2000m、3000mおよび4000mの5箇所から磁気測定用の試験片を採取し、磁化力800A/mにおける磁束密度Bおよび磁束密度の振幅1.7T、50Hzにおける質量あたりの鉄損値W17/50を測定し、コイル内で最も悪いBおよびW17/50の値をコイル内保証値、コイル内で最も良好なBおよびW17/50の値をコイル内良好値とし、それらの結果を表2に併記した。また、850~1050℃間の昇温速度と、磁束密度Bおよび鉄損W17/50のコイル内保証値とコイル内良好値の関係を図2に示した。
 これらの結果から、仕上焼鈍の加熱途中の850℃において50時間の保持を行わなかった加熱パターンAおよび850~1050℃間の昇温速度が5℃/hrと低い加熱パターンBは、コイル内で均一に二次再結晶していないためコイル内保証値が悪いが、上記850℃保持後、昇温速度を10℃/hr以上として急速加熱した加熱パターンC~Gでは、二次再結晶が安定して発現し、コイル内全長に亘って磁気特性が向上していることがわかる。ただし、昇温速度が100℃/hr(加熱パターンG)では、磁気特性が若干低下している。
 本発明は、上記知見に基づいてなされたものである。
 次に、本発明の方向性電磁鋼板の鋼素材の成分組成について説明する。
C:0.04~0.12mass%
 Cは、熱間圧延、冷間圧延中の組織の均一微細化ならびにGoss方位の発達のために有用な元素であり、少なくとも0.04mass%を含有させる必要がある。しかし、0.12mass%を超えて添加すると、脱炭焼鈍で脱炭不足を起こし、磁気特性が劣化するおそれがある。よって、Cは0.04~0.12mass%の範囲とする。好ましくは0.05~0.10mass%の範囲である。
Si:1.5~5.0mass%
 Siは、鋼板の比抵抗を高めて鉄損の低減に有効に寄与する元素であり、良好な磁気特性を確保する観点から、本発明では1.5mass%以上含有させる。一方、5.0mass%を超える添加は、冷間加工性を著しく害するようになる。よって、Siは1.5~5.0mass%の範囲とする。好ましくは2.0~4.0mass%の範囲である。
Mn:0.01~1.0mass%
 Mnは、熱間加工性を改善し、熱間圧延時の表面疵を防止するのに有効な元素であり、斯かる効果を得るためには0.01mass%以上含有させる必要がある。しかし、1.0mass%を超えて添加すると、磁束密度が低下するようになる。よって、Mnは0.01~1.0mass%の範囲とする。好ましくは0.04~0.2mass%の範囲である。
sol.Al:0.010~0.040mass%
 Alは、インヒビタであるAlNを構成する必須の元素であり、sol.Alとして0.010mass%未満では、熱延時や熱延板焼鈍の昇温過程等において析出するAlNの量が不足し、インヒビタの効果を得ることができない。一方、0.040mass%を超えて添加すると、析出するインヒビタが粗大化し、逆に抑制力が低下してしまう。よって、AlNのインヒビタ効果を十分に得るためには、Alはsol.Alで0.010~0.040mass%の範囲とする必要がある。好ましくは0.02~0.03mass%の範囲である。
N:0.004~0.02mass%
 Nは、Alと同様、インヒビタであるAlNを構成する必須の元素である。ただし、このNは、冷延工程において窒化処理を施し、添加することが可能であるので、スラブ段階では、0.004mass%以上含有していればよい。ただし、冷延工程において窒化処理を施さない場合には0.005mass%以上含有させる必要がある。一方、Nを0.02mass%超え添加した場合には、熱間圧延においてふくれを生じるおそれがある。よって、Nは0.004~0.02mass%の範囲とする。好ましくは0.005~0.01mass%の範囲である。
sol.Al/N
 本発明では、冷間圧延の最終板厚(製品板厚)d(mm)に応じて、鋼素材中のsol.AlおよびNの含有量(mass%)の比を適正化する、具体的には下記(1)式;
 4d+1.52≦sol.Al/N≦4d+2.32 ・・・(1)
の関係を満たすよう含有させることが重要である。
 図1に示したように、(sol.Al/N)の値が大きい場合は、AlNのインヒビタとしての抑制力が十分ではないため、鋼板の表層と中心層の結晶粒の粗大化を招いてしまう。一方、(sol.Al/N)が小さい場合には、Goss方位からの角度差が大きい粒も二次再結晶するようになるため、二次再結晶後の磁束密度が低下したり、鉄損が増大したりするからである。好ましくは、上記(1)式の左辺は4d+1.81、右辺は4d+2.32である。
 なお、(sol.Al/N)の値を、最終板厚d(mm)および鋼素材中のsol.Alの含有量に応じて適正化するため、二次再結晶させる前に、窒化処理を施してNの含有量を調整してもよい。
SおよびSe:合計で0.005~0.05mass%
 SおよびSeは、CuSやCuSe等を、AlNと複合して微細析出させるために必要な必須の元素である。斯かる目的のため、本発明では単独もしくは合計で0.005mass%以上を含有させる必要がある。しかし、0.05mass%を超えて添加すると、析出物の粗大化を招く。よって、SおよびSeは単独または合計で0.005~0.05mass%の範囲とする。好ましくは0.01~0.03mass%の範囲である。
 本発明の方向性電磁鋼板は、上記成分に加えてさらに、Ni,CuおよびSbのうちから選ばれる1種または2種以上を添加してもよい。
Ni:0.10~1.0mass%
 Niは、粒界に偏析し、他の偏析元素、例えば、Sbなどとの共偏析効果を促進し、インヒビタの粗大化を抑止する元素であるので、0.10mass%以上含有させる。しかし、1.0mass%を超えて添加すると、一次再結晶焼鈍後の集合組織が劣化し、磁気特性が低下する原因となる。よって、Niは0.10~1.0mass%の範囲とする。好ましくは0.10~0.50mass%の範囲である。
Cu:0.02~1.0mass%
 Cuは、CuSやCuSeを構成する元素であり、MnSやMnSeに比べて仕上焼鈍中の抑制力の低下が緩やかであるので有利である。さらに、CuS,CuSeがNi,Sbと共に偏析している場合には、インヒビタの抑制力は低下し難い。そのため、本発明では、Cuを0.02mass%以上添加することもできる。しかし、1.0mass%を超えて含有させると、インヒビタの粗大化を招く。よって、Cuは0.02~1.0mass%の範囲とする。好ましくは0.04~0.5mass%の範囲である。
Sb:0.01~0.10mass%
 Sbは、析出したインヒビタであるAlNやCuS,CuSe,MnS,MnSeの表面に偏析し、インヒビタの粗大化を抑止するために必要な元素である。斯かる効果は0.01mass%以上の添加で得られる。しかし、0.10mass%を超えて添加すると、脱炭反応を阻害し、磁気特性の劣化を招くようになる。よって、Sbは0.01~0.10mass%の範囲とする。好ましくは0.02~0.05mass%の範囲である。
 また、本発明の方向性電磁鋼板は、上記成分に加えてさらに、インヒビタ補助成分として、Ge,Bi,V,Nb,Te,Cr,SnおよびMoのうちから選ばれる1種または2種以上を、合計で0.002~1.0mass%の範囲で含有させることができる。
 これらの元素は、いずれも析出物を形成し、結晶粒界や析出物の表面に偏析して抑制力を強化する補助的機能を果たす。斯かる作用を得るためには、これらの元素を1種または2種類以上の合計で0.002mass%以上含有させる必要がある。しかし、1.0mass%を超える添加は、鋼の脆化や脱炭不良を招くおそれがある。よって、上記元素は合計で0.002~1.0mass%の範囲で含有させるのが好ましい。
 次に、本発明の方向性電磁鋼板の製造方法について説明する。
 本発明の方向性電磁鋼板の製造方法は、上述した成分組成に調整した鋼スラブを再加熱した後、熱間圧延し、必要に応じて熱延板焼鈍し、1回または中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、二次再結晶焼鈍と純化処理を兼ねた仕上焼鈍を施す一連の工程からなるものである。
 上記鋼スラブは、上述した本発明の成分組成を満たして含有する限り、特に製造方法に制限はなく、通常公知の製造条件で製造することができる。
 上記鋼スラブは、その後、1250℃以上の温度に再加熱した後、熱間圧延に供する。再加熱温度が1250℃未満では、添加した元素が鋼中に固溶しないからである。なお、再加熱する方法は、ガス炉、誘導加熱炉、通電炉などの公知の方法を用いることができる。また、熱間圧延の条件は、従来公知の条件であればよく、特に制限はない。
 上記スラブ再加熱後、熱間圧延して板厚1.8mm以上の熱延板(熱延コイル)とする。ここで、熱延板厚を1.8mm以上に限定する理由は、圧延時間を短縮し、熱延コイルの圧延方向の温度差を低減させるためである。なお、熱間圧延の条件は、常法に準じて行えばよく、特に制限はない。
 熱間圧延して得た熱延板(熱延コイル)は、その後、必要に応じて熱延板焼鈍を施した後、酸洗し、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板(冷延コイル)とする。
 上記熱延板焼鈍および中間焼鈍は、熱間圧延や冷間圧延で導入された歪を利用して再結晶させるため、800℃以上の温度で行うことが好ましい。また、上記焼鈍における冷却を、所定の冷却速度で急冷し、鋼中の固溶C量を高めることは、二次再結晶の核生成頻度を高める効果があるので好ましい。また、急速冷却した後、所定の温度範囲で保定することは、微細カーバイドを鋼中に析出させ上記効果を高めるのでより好ましい。上記の冷間圧延では、パス間時効や温間圧延を適用してもよいことは勿論である。
 なお、本発明の方向性電磁鋼板の最終板厚(製品板厚)は、0.15~0.23mmの範囲とする。板厚が0.23mmを超えると、二次再結晶の駆動力が過剰となり、二次再結晶粒のGoss方位からの分散が増大する。一方、0.15mm未満となると、二次再結晶が不安定化したり、相対的に絶縁被膜の比率が増加して磁束密度が低下したりするだけでなく、圧延して製造することが困難となるからである。
 最終板厚とした冷延板は、その後、脱脂し、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、コイルに巻き取った後、二次再結晶を起こさせるとともに純化処理する仕上焼鈍を施す。
 ここで、上記一次再結晶焼鈍は、加熱過程における200~700℃間を昇温速度50℃/s以上で加熱するとともに、250~600℃間のいずれかの温度において、1~10秒間、保定処理を施すことが好ましい。この急速加熱と保定処理を施すことで、二次再結晶後の再結晶がより細粒化されるので、低鉄損でかつ鉄損値のばらつきが小さい方向性電磁鋼板を得ることができるからである。なお、上記保定処理時の温度変化は、±50℃以下であれば問題はない。
 なお、上記一次再結晶焼鈍では、(sol.Al/N)の値を適正範囲に調整するため、必要に応じて窒化処理を兼ねて行ってもよく、また、一次再結晶焼鈍とは別に、冷間圧延後から仕上焼鈍前までの間に、窒化処理工程を付加してもよい。
 上記冷延板は、一次再結晶焼鈍する前に、製品板の鉄損を低減するため、鋼板表面にエッチングで溝を形成する磁区細分化処理を施してもよい。また、上記冷延板は、二次再結晶させる前までに、公知の磁区細分化処理、たとえば、微細結晶粒を生成させる点状の局所的熱処理や化学的処理を施してもよい。
 また、鋼板表面に塗布する焼鈍分離剤は、公知のものを用いることができるが、鋼板表面にフォルステライト質の被膜を形成するか否かによって使い分けるのが好ましく、例えば、上記の被膜を形成させる場合にはMgOを主成分とする焼鈍分離剤を、一方、鋼板表面を鏡面化したい場合には、被膜を形成しないAl系等の焼鈍分離剤を用いることが好ましい。
 また、上記仕上焼鈍は、本発明の製造方法において、最も重要な工程である。通常、仕上焼鈍は、二次再結晶焼鈍と純化焼鈍を兼ねて、最高1200℃程度の温度で行われるが、本発明の方向性電磁鋼板の製造方法においては、上記仕上焼鈍の昇温過程において、二次再結晶前の775~875℃の温度域で40~200時間保持する必要がある。その理由は、以下のとおりである。
 通常、二次再結晶は1000℃付近の温度で起こるが、875℃を超える温度域では、インヒビタ成分の酸化がおこり、鋼板表層の一次再結晶粒が粗大化する。そして、この表層一次再結晶粒の粗大化は、板厚が薄い方向性電磁鋼板においては、二次再結晶不良を引き起こす原因となる。
 発明者らは、この問題点の解決策について研究を重ねた結果、二次再結晶を起こす前の鋼板を、775~875℃の温度域で40~200時間保持してやることによって、表層一次再結晶粒の粗大化が抑制されることを見出した。上記保持時間が40時間未満では、表層一次再結晶粒が粗大化し、二次再結晶不良となり、磁気特性が劣化する。一方、保持時間が200時間を超えると、一次再結晶粒が全体的に粗大化して、Goss方位以外の粒も粗大化するため二次再結晶が起こり難くなり、やはり、磁気特性が劣化する。775~875℃間での好ましい保持時間は、45~100時間の範囲である。
 なお、上記二次再結晶前の保持は、775~875℃間の特定温度で40~200時間保持してもよいし、775~875℃の間を40~200時間かけて昇温するようにしてもよい。
 775~875℃の温度域で40~200時間保持することで、表層一次再結晶粒の粗大化が抑制される理由については、以下のように考えている。
 インヒビタとしてAlNを用いる方向性電磁鋼板の製造では、およそ920℃以上の温度でAlNが分解し、表層の一次再結晶粒の粗大化が生じる。ここで、二次再結晶を開始する前にAlNが分解するのを抑制するためには、二次再結晶温度域に速やかに昇温してやる必要があるが、コイル焼鈍では、加熱初期段階での昇温速度が緩やかとなるため、AlNの分解を抑制することができず、表層の一次再結晶粒の粗大化を招いていた。そこで、再結晶する温度まで加熱する前に、所定温度で所定時間の保持を行うことで、コイル内の温度分布が均一となり、AlNが分解する温度域での昇温速度が速くなり、二次再結晶前の一次再結晶粒の粗大化を抑制することができる。
 上記775~875℃の温度域での保持に続く、875℃から1050℃までの昇温速度は、表層の一次再結晶粒の粗大化を抑制する観点から、10℃/hr以上とする。好ましくは、20℃/hr以上である。しかし、昇温速度を大きくし過ぎると、二次再結晶粒のGoss方位への先鋭度が低下して、磁気特性が劣化するおそれがあるので、上限は60℃/hrとする。好ましくは50℃/hr以下である。
 また、1050℃から最高温度までの昇温速度は、経済性の観点から5℃/hr以上とするのが好ましく、一方、コイル内温度を均一化する観点から100℃/hr以下とするのが好ましい。
 なお、上記の保持を十分に行おうとすると、AlN以外のインヒビタであるMnSやMnSeが粗大化して抑制力が低下するおそれがある。そこで、本発明では、インヒビタとして抑制力が低下し難いCuSやCuSeを用いると共に、Sbを添加し、析出したCuSやCuSeのインヒビタ表面にSbを偏析させて、インヒビタの粗大化を抑制するのが好ましい。さらに、Niを添加すると、Sbの偏析が促進されるので、CuSやCuSeの抑制力がより補強され、インヒビタの抑制力を高く維持することが可能となる。
 また、上記仕上焼鈍における雰囲気ガスとしては、N、H,Arあるいはこれらの混合ガスを用いるが、一般に、温度が850℃以下の加熱過程および冷却過程では、Nが、それ以上の温度では、HまたはHとNあるいはHとArの混合ガスが用いられる。
 仕上焼鈍した鋼板は、その後、鋼板表面の未反応の焼鈍分離剤を除去した後、必要に応じて、絶縁被膜液を塗布・焼付けたり、平坦化焼鈍を施したりして製品板とする。上記絶縁被膜は、鉄損を低減するためには、張力被膜を用いることが好ましい。また、仕上焼鈍後の鋼板に、鉄損を低減するため、連続的または断続的に電子ビームあるいはレーザを照射したり、突起状ロールで線状の歪を付与したりする公知の磁区細分化処理を施してもよい。また、仕上焼鈍で鋼板表面にフォルステライト被膜を形成しない場合には、鋼板表面をさらに鏡面化処理したり、NaCl電解などで粒方位選別処理等を施したりした後、さらに、張力被膜を被成して製品板としてもよい。
 表3に示したA~Qの成分組成を有する鋼スラブを常法に準じて熱間圧延し、板厚2.4mmの熱延コイルとし、900℃×40秒の熱延板焼鈍を施し、酸洗し、一次冷間圧延して板厚1.5mmとし、1150℃×80秒の中間焼鈍を施した後、170℃の温度で温間圧延して最終板厚0.17mmの冷延コイルとした。次いで、上記冷延コイルを脱脂した後、60vol%H-40vol%Nの湿水素雰囲気下で、850℃×2分の脱炭処理を兼ねた一次再結晶焼鈍を施した。次いで、上記鋼板表面にMgOを主体とする焼鈍分離剤を塗布、乾燥した後、N雰囲気下で850℃までを昇温速度40℃/hrで加熱し、850℃で50時間保持した後、引き続き、昇温速度20℃/hrで、850~1150℃までを100vol%N雰囲気下で、1150~1200℃までをH雰囲気下で加熱し、さらに、H雰囲気下で1200℃×10時間の均熱処理し、その後、800℃以下をN雰囲気下で冷却する仕上焼鈍を施した。次いで、上記仕上焼鈍を施した鋼板表面から未反応の焼鈍分離剤を除去した後、リン酸マグネシウムとコロイダルシリカを主成分とする絶縁被膜を被成し、製品コイルとした。
Figure JPOXMLDOC01-appb-T000003
 斯くして得た全長約4000mの製品コイルの長手方向0m、1000m、2000m、3000mおよび4000mの計5箇所から、磁気測定用の試験片を採取し、1.7Tの磁束密度における鉄損値W17/50を測定し、上記5箇所の鉄損の中で最も悪い値をコイル内保証値、最も良好な値をコイル内良好値とし、その結果を表3に併記した。
 表3から、Ni,CuおよびSbのうちから選ばれる1種以上、あるいはさらに、Ge,Bi,V,Nb,Tb,Cr,SnおよびMoのうちから選ばれる1種以上を添加することによって鉄損特性がより改善されていること、また、(sol.Al/N)が外れると、鉄損特性が大きく劣化することがわかる。
 C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、sol.Al:0.018mass%、N:0.007mass%、Se:0.015mass%、Ni:0.3mass%、Cu:0.03mass%およびSb:0.04mass%を含有する成分組成の鋼スラブを、熱間圧延して板厚2.4mmの熱延コイルとし、900℃×40秒の熱延板焼鈍し、酸洗し、一次冷間圧延して板厚1.5mmとし、1150℃で80秒の中間焼鈍した後、170℃の温度で温間圧延して最終板厚0.17mmの冷延コイルとした。次いで、上記冷延コイルを2つに分け、一方には鋼板表面に幅180μmで圧延方向に対して直角方向に延びる溝を圧延方向に5mm間隔で形成する磁区細分化処理を施した後、他方には上記磁区細分化処理を施すことなく、50vol%H-50vol%Nの湿潤雰囲気下で、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。なお、上記一次再結晶焼鈍における840℃に達するまでの加熱は、200℃から700℃までの昇温速度を、表4に示したように、20~200℃/sの範囲で種々に変化させた。なお、上記200~700℃間の昇温速度は一定とし、かつ、その加熱途中の450℃で0.5~3秒間保定を行う条件とし、また、一部のコイルには保定を実施しなかった。
Figure JPOXMLDOC01-appb-T000004
 その後、鋼板表面にMgOを主体とする焼鈍分離剤を塗布した後、N雰囲気下で850℃までを昇温速度20℃/hrで加熱し、850℃で50時間保持し、引き続き、850~1150℃までを50vol%N-50vol%Hの混合雰囲気、1150~1200℃までをH雰囲気として昇温速度40℃/hrで1200℃まで加熱し、さらに、H雰囲気下で1200℃×10時間の均熱を施し、その後、800℃以下をN雰囲気下で冷却する仕上焼鈍を施した。次いで、上記仕上焼鈍後の鋼板表面から未反応の焼鈍分離剤を除去した後、50mass%のコロイダルシリカとリン酸マグネシウムからなる張力被膜液を塗布し、焼付けて絶縁被膜を被成し、製品コイルとした。
 斯くして得た全長約4000mの製品コイルの長手方向0m、1000m、2000m、3000mおよび4000mの計5箇所から磁気測定用の試験片を採取し、1.7Tの磁束密度における鉄損値W17/50を測定し、その平均値を求めた。
 上記測定の結果を、磁区細分化処理の有無に区分して表4に併記した。表4から、仕上焼鈍の加熱条件の適正化に加えて、一次再結晶焼鈍における加熱過程において保定処理を施すことによって、鉄損特性がさらに改善されること、特に、磁区細分化処理を施した場合における鉄損改善効果が著しいことがわかる。
 
 

Claims (6)

  1. C:0.04~0.12mass%、Si:1.5~5.0mass%、Mn:0.01~1.0mass%、sol.Al:0.010~0.040mass%、N:0.004~0.02mass%、SおよびSeから選ばれる1種または2種:合計0.005~0.05mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1250℃以上に加熱後、熱間圧延して板厚1.8mm以上の熱延板とし、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚0.15~0.23mmの冷延板とし、一次再結晶焼鈍した後、仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の製造方法において、
    前記鋼スラブのsol.AlとNの含有量の比(sol.Al/N)と、最終板厚d(mm)とが下記(1)式を満たし、かつ、
    前記仕上焼鈍の加熱過程で鋼板を775~875℃の温度に40~200時間保持した後、875~1050℃の温度域を昇温速度10~60℃/hrで加熱することを特徴とする方向性電磁鋼板の製造方法。
                記
     4d+1.52≦sol.Al/N≦4d+2.32 ・・・(1)
  2. 前記鋼スラブは、前記成分組成に加えてさらに、Ni:0.1~1.0mass%、Cu:0.02~1.0mass%およびSb:0.01~0.10mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  3. 前記鋼スラブは、前記成分組成に加えてさらに、Ge,Bi,V,Nb,Te,Cr,SnおよびMoのうちから選らばれる1種または2種以上を合計で0.002~1.0mass%含有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。
  4. 前記一次再結晶焼鈍の加熱過程における200~700℃間を昇温速度50℃/s以上で加熱するとともに、250~600℃間のいずれかの温度において、1~10秒間、保定処理を施すことを特徴とする請求項1~3のいずれか1項に記載の方向性電磁鋼板の製造方法。
  5. 冷間圧延後のいずれかの段階で、鋼板表面に圧延方向と交差する方向に溝を形成して磁区細分化処理を施すことを特徴とする請求項1~4のいずれか1項に記載の方向性電磁鋼板の製造方法。
  6. 絶縁被膜を被成した鋼板表面に、圧延方向と交差する方向に連続的または断続的に電子ビームあるいはレーザを照射して磁区細分化処理を施すことを特徴とする請求項1~4のいずれか1項に記載の方向性電磁鋼板の製造方法。
     
     
PCT/JP2013/055081 2013-02-27 2013-02-27 方向性電磁鋼板の製造方法 WO2014132354A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157023294A KR101683693B1 (ko) 2013-02-27 2013-02-27 방향성 전자 강판의 제조 방법
EP13876350.3A EP2963130B1 (en) 2013-02-27 2013-02-27 Method for producing grain-orientated electrical steel sheets
PCT/JP2013/055081 WO2014132354A1 (ja) 2013-02-27 2013-02-27 方向性電磁鋼板の製造方法
US14/770,620 US10431359B2 (en) 2013-02-27 2013-02-27 Method for producing grain-oriented electrical steel sheet
RU2015140997A RU2610204C1 (ru) 2013-02-27 2013-02-27 Способ изготовления листа из текстурированной электротехнической стали
CN201380073829.8A CN105008555B (zh) 2013-02-27 2013-02-27 方向性电磁钢板的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055081 WO2014132354A1 (ja) 2013-02-27 2013-02-27 方向性電磁鋼板の製造方法

Publications (1)

Publication Number Publication Date
WO2014132354A1 true WO2014132354A1 (ja) 2014-09-04

Family

ID=51427658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055081 WO2014132354A1 (ja) 2013-02-27 2013-02-27 方向性電磁鋼板の製造方法

Country Status (6)

Country Link
US (1) US10431359B2 (ja)
EP (1) EP2963130B1 (ja)
KR (1) KR101683693B1 (ja)
CN (1) CN105008555B (ja)
RU (1) RU2610204C1 (ja)
WO (1) WO2014132354A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3214188A4 (en) * 2014-10-30 2017-09-06 JFE Steel Corporation Production method for oriented grain-electromagnetic steel sheet
WO2020149333A1 (ja) * 2019-01-16 2020-07-23 日本製鉄株式会社 一方向性電磁鋼板の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624180B2 (ja) * 2016-10-18 2019-12-25 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
KR101966370B1 (ko) * 2016-12-21 2019-04-05 주식회사 포스코 방향성 전기강판의 제조방법
KR102437377B1 (ko) * 2017-12-28 2022-08-26 제이에프이 스틸 가부시키가이샤 저철손 방향성 전자 강판과 그의 제조 방법
CN111902555A (zh) * 2018-03-22 2020-11-06 日本制铁株式会社 方向性电磁钢板及方向性电磁钢板的制造方法
EP3913088B1 (en) * 2019-01-16 2024-05-22 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet
KR20220128653A (ko) * 2020-06-24 2022-09-21 닛폰세이테츠 가부시키가이샤 방향성 전자 강판의 제조 방법
RU2763025C1 (ru) * 2021-02-04 2021-12-24 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Лист из анизотропной электротехнической стали со стабилизацией магнитных потерь и термостабильными лазерными барьерами
RU2767370C1 (ru) * 2021-02-04 2022-03-17 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства анизотропной электротехнической стали с термостабильными лазерными барьерами

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115319A (ja) * 1988-10-21 1990-04-27 Kawasaki Steel Corp 高磁束密度方向性けい素鋼板の製造方法
JPH042724A (ja) * 1990-04-20 1992-01-07 Kawasaki Steel Corp 磁気特性の優れた薄手一方向性電磁鋼板の製造方法
JPH04341518A (ja) 1991-01-29 1992-11-27 Nippon Steel Corp 極薄手高磁束密度低鉄損一方向性電磁鋼板の製造方法
JPH0625747A (ja) 1992-07-13 1994-02-01 Nippon Steel Corp 薄手高磁束密度一方向性電磁鋼板の製造方法
JPH0717956B2 (ja) 1989-02-10 1995-03-01 新日本製鐵株式会社 鉄損の優れた薄手高磁束密度一方向性電磁鋼板の製造方法
JPH07188773A (ja) * 1993-12-27 1995-07-25 Kawasaki Steel Corp 磁気特性の優れた方向性珪素鋼板の製造方法
JPH07188758A (ja) * 1993-12-28 1995-07-25 Kawasaki Steel Corp 磁束密度の高い方向性けい素鋼板の製造方法
JPH09316537A (ja) * 1996-05-24 1997-12-09 Kawasaki Steel Corp 磁気特性に優れた方向性電磁鋼板の製造方法
JPH11199939A (ja) * 1998-01-14 1999-07-27 Kawasaki Steel Corp 磁束密度が高く被膜特性に優れた方向性電磁鋼板の製造方法
JP3357601B2 (ja) 1997-03-26 2002-12-16 川崎製鉄株式会社 極めて鉄損の低い方向性電磁鋼板とその製造方法
JP3357578B2 (ja) 1997-07-25 2002-12-16 川崎製鉄株式会社 極めて鉄損の低い方向性電磁鋼板及びその製造方法
JP2009209428A (ja) * 2008-03-05 2009-09-17 Nippon Steel Corp 著しく磁束密度が高い方向性電磁鋼板の製造方法
JP2010280970A (ja) * 2009-06-05 2010-12-16 Nippon Steel Corp 磁束密度の良好な方向性電磁鋼板の製造方法
JP2013047382A (ja) * 2011-07-28 2013-03-07 Jfe Steel Corp 方向性電磁鋼板の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US429A (en) * 1837-10-18 Cookiktg-stove
US326A (en) * 1837-07-31 Mode of constrtjctiire paddle-wheels fob
JPS535800A (en) * 1976-07-05 1978-01-19 Kawasaki Steel Co Highhmagneticcflux density oneeway siliconnsteellfolstellite insulator film and method of formation thereof
DE3400168A1 (de) 1984-01-04 1985-07-11 Bayer Ag, 5090 Leverkusen 5-halogenalkyl-1,3,4-thiadiazol-2-yloxyacetamide
JPH0811492B2 (ja) 1986-06-24 1996-02-07 トヨタ自動車株式会社 駆動力伝達装置
JPS63105926A (ja) * 1986-10-23 1988-05-11 Kawasaki Steel Corp 一方向性けい素鋼板の製造方法
RU2041268C1 (ru) * 1991-10-25 1995-08-09 Армко Инк. Способ получения высококремнистой электротехнической стали
DE4311151C1 (de) * 1993-04-05 1994-07-28 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientierten Elektroblechen mit verbesserten Ummagnetisierungsverlusten
US5666842A (en) * 1993-07-22 1997-09-16 Kawasaki Steel Corporation Method of cold rolling grain-oriented silicon steel sheet having excellent and uniform magnetic characteristics along rolling direction of coil and a roll cooling controller for cold rolling mill using the cold rolling method
JPH0742507A (ja) 1993-07-29 1995-02-10 Toshiba Corp バランスウェイト取付穴用閉止装置
JP3110599B2 (ja) 1993-12-27 2000-11-20 トヨタ自動車株式会社 コラムカバー装置
DE19628136C1 (de) * 1996-07-12 1997-04-24 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientiertem Elektroblech
DE69706388T2 (de) * 1996-10-21 2002-02-14 Kawasaki Steel Co Kornorientiertes elektromagnetisches Stahlblech
IT1290173B1 (it) * 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino di acciaio al silicio a grano orientato
KR19990088437A (ko) * 1998-05-21 1999-12-27 에모또 간지 철손이매우낮은고자속밀도방향성전자강판및그제조방법
JP4002724B2 (ja) 2000-12-19 2007-11-07 スパイラックス・サーコ リミテッド ボールフロート式スチームトラップのフロート保護シェル
EP1889928B1 (en) * 2005-06-10 2016-07-20 Nippon Steel & Sumitomo Metal Corporation Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same
US7976644B2 (en) 2006-05-24 2011-07-12 Nippon Steel Corporation Method of production of grain-oriented electrical steel sheet with high magnetic flux density
EP2460902B1 (en) * 2009-07-31 2016-05-04 JFE Steel Corporation Grain-oriented magnetic steel sheet
JP5839172B2 (ja) * 2011-02-24 2016-01-06 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115319A (ja) * 1988-10-21 1990-04-27 Kawasaki Steel Corp 高磁束密度方向性けい素鋼板の製造方法
JPH0717956B2 (ja) 1989-02-10 1995-03-01 新日本製鐵株式会社 鉄損の優れた薄手高磁束密度一方向性電磁鋼板の製造方法
JPH042724A (ja) * 1990-04-20 1992-01-07 Kawasaki Steel Corp 磁気特性の優れた薄手一方向性電磁鋼板の製造方法
JPH0742507B2 (ja) 1990-04-20 1995-05-10 川崎製鉄株式会社 磁気特性の優れた薄手一方向性電磁鋼板の製造方法
JPH04341518A (ja) 1991-01-29 1992-11-27 Nippon Steel Corp 極薄手高磁束密度低鉄損一方向性電磁鋼板の製造方法
JPH0625747A (ja) 1992-07-13 1994-02-01 Nippon Steel Corp 薄手高磁束密度一方向性電磁鋼板の製造方法
JPH07188773A (ja) * 1993-12-27 1995-07-25 Kawasaki Steel Corp 磁気特性の優れた方向性珪素鋼板の製造方法
JPH07188758A (ja) * 1993-12-28 1995-07-25 Kawasaki Steel Corp 磁束密度の高い方向性けい素鋼板の製造方法
JPH09316537A (ja) * 1996-05-24 1997-12-09 Kawasaki Steel Corp 磁気特性に優れた方向性電磁鋼板の製造方法
JP3357601B2 (ja) 1997-03-26 2002-12-16 川崎製鉄株式会社 極めて鉄損の低い方向性電磁鋼板とその製造方法
JP3357578B2 (ja) 1997-07-25 2002-12-16 川崎製鉄株式会社 極めて鉄損の低い方向性電磁鋼板及びその製造方法
JPH11199939A (ja) * 1998-01-14 1999-07-27 Kawasaki Steel Corp 磁束密度が高く被膜特性に優れた方向性電磁鋼板の製造方法
JP2009209428A (ja) * 2008-03-05 2009-09-17 Nippon Steel Corp 著しく磁束密度が高い方向性電磁鋼板の製造方法
JP2010280970A (ja) * 2009-06-05 2010-12-16 Nippon Steel Corp 磁束密度の良好な方向性電磁鋼板の製造方法
JP2013047382A (ja) * 2011-07-28 2013-03-07 Jfe Steel Corp 方向性電磁鋼板の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3214188A4 (en) * 2014-10-30 2017-09-06 JFE Steel Corporation Production method for oriented grain-electromagnetic steel sheet
WO2020149333A1 (ja) * 2019-01-16 2020-07-23 日本製鉄株式会社 一方向性電磁鋼板の製造方法
JPWO2020149333A1 (ja) * 2019-01-16 2021-12-02 日本製鉄株式会社 一方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
KR101683693B1 (ko) 2016-12-07
US20160012948A1 (en) 2016-01-14
EP2963130B1 (en) 2019-01-09
CN105008555B (zh) 2017-09-29
CN105008555A (zh) 2015-10-28
EP2963130A4 (en) 2016-03-16
RU2610204C1 (ru) 2017-02-08
US10431359B2 (en) 2019-10-01
EP2963130A1 (en) 2016-01-06
KR20150109486A (ko) 2015-10-01

Similar Documents

Publication Publication Date Title
JP5988026B2 (ja) 方向性電磁鋼板の製造方法
WO2014132354A1 (ja) 方向性電磁鋼板の製造方法
JP4840518B2 (ja) 方向性電磁鋼板の製造方法
JP6132103B2 (ja) 方向性電磁鋼板の製造方法
JP6838601B2 (ja) 低鉄損方向性電磁鋼板とその製造方法
JP6191826B2 (ja) 磁気特性に優れる方向性電磁鋼板の製造方法
WO2016067636A1 (ja) 方向性電磁鋼板の製造方法
JP6418226B2 (ja) 方向性電磁鋼板の製造方法
JP6601649B1 (ja) 低鉄損方向性電磁鋼板とその製造方法
KR20240035911A (ko) 방향성 전자 강판의 제조 방법
JP6079092B2 (ja) 板厚0.12〜0.25mmの方向性電磁鋼板の製造方法
JP4192399B2 (ja) 方向性電磁鋼板およびその製造方法
JP6572956B2 (ja) 方向性電磁鋼板の製造方法
JP5712652B2 (ja) 方向性電磁鋼板の製造方法
JP2014173103A (ja) 方向性電磁鋼板の製造方法
JP7338511B2 (ja) 方向性電磁鋼板の製造方法
JP6702259B2 (ja) 方向性電磁鋼板の製造方法
WO2022210504A1 (ja) 方向性電磁鋼板の製造方法
WO2022210503A1 (ja) 方向性電磁鋼板の製造方法
WO2022186300A1 (ja) 方向性電磁鋼板の製造方法
JP2006144042A (ja) 磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法
CN116940695A (zh) 取向性电磁钢板的制造方法和取向性电磁钢板用热轧钢板
JP2005120452A (ja) 磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法
JP2000144250A (ja) 極めて鉄損が低い方向性けい素鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14770620

Country of ref document: US

Ref document number: 2013876350

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157023294

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015140997

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: JP