WO2014099744A1 - Rna-guided human genome engineering - Google Patents

Rna-guided human genome engineering Download PDF

Info

Publication number
WO2014099744A1
WO2014099744A1 PCT/US2013/075317 US2013075317W WO2014099744A1 WO 2014099744 A1 WO2014099744 A1 WO 2014099744A1 US 2013075317 W US2013075317 W US 2013075317W WO 2014099744 A1 WO2014099744 A1 WO 2014099744A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna
cell
enzyme
genomic dna
cas9
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2013/075317
Other languages
English (en)
French (fr)
Inventor
George M. Church
Prashant MALI
Luhan Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard University
Original Assignee
Harvard University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50979072&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014099744(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Harvard University filed Critical Harvard University
Priority to NZ709429A priority Critical patent/NZ709429B2/en
Priority to EP19173061.3A priority patent/EP3553174B1/en
Priority to ES13863815T priority patent/ES2741951T3/es
Priority to DK13863815.0T priority patent/DK2931891T3/da
Priority to IL239326A priority patent/IL239326B2/en
Priority to RU2015129018A priority patent/RU2699523C2/ru
Priority to US14/653,144 priority patent/US9970024B2/en
Priority to CN202510930975.2A priority patent/CN121022900A/zh
Priority to SG11201504621RA priority patent/SG11201504621RA/en
Priority to BR112015014425-0A priority patent/BR112015014425B1/pt
Priority to MX2015007743A priority patent/MX383326B/es
Priority to HK15112584.0A priority patent/HK1212376B/en
Priority to EP13863815.0A priority patent/EP2931891B1/en
Priority to KR1020157018831A priority patent/KR20150095861A/ko
Priority to EP23197923.8A priority patent/EP4282970A3/en
Priority to JP2015549528A priority patent/JP6700788B2/ja
Priority to IL308158A priority patent/IL308158A/en
Priority to CN201380073208.XA priority patent/CN105121641B/zh
Priority to EP24193191.4A priority patent/EP4481048A3/en
Priority to CA2895155A priority patent/CA2895155C/en
Priority to KR1020227034121A priority patent/KR20220139433A/ko
Priority to AU2013363194A priority patent/AU2013363194B2/en
Publication of WO2014099744A1 publication Critical patent/WO2014099744A1/en
Priority to US14/319,255 priority patent/US9260723B2/en
Priority to US14/318,933 priority patent/US20140342456A1/en
Priority to US14/319,100 priority patent/US9023649B2/en
Priority to US14/319,171 priority patent/US10717990B2/en
Priority to US14/681,510 priority patent/US20170044569A9/en
Priority to US14/701,912 priority patent/US20150232833A1/en
Anticipated expiration legal-status Critical
Priority to ZA2015/04739A priority patent/ZA201504739B/en
Priority to US14/790,147 priority patent/US10273501B2/en
Priority to US15/042,573 priority patent/US11236359B2/en
Priority to US15/042,515 priority patent/US10435708B2/en
Priority to US16/397,213 priority patent/US11365429B2/en
Priority to US16/397,423 priority patent/US11359211B2/en
Priority to US16/439,840 priority patent/US11535863B2/en
Priority to AU2019216665A priority patent/AU2019216665B2/en
Priority to US16/884,327 priority patent/US20200308599A1/en
Priority to US17/186,139 priority patent/US20210222193A1/en
Priority to AU2021204024A priority patent/AU2021204024B2/en
Priority to AU2021204023A priority patent/AU2021204023B2/en
Priority to US17/672,744 priority patent/US11512325B2/en
Priority to US18/296,579 priority patent/US12018272B2/en
Priority to AU2024201441A priority patent/AU2024201441A1/en
Priority to US18/619,354 priority patent/US20240279677A1/en
Priority to US18/663,233 priority patent/US20240294939A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases [RNase]; Deoxyribonucleases [DNase]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1024In vivo mutagenesis using high mutation rate "mutator" host strains by inserting genetic material, e.g. encoding an error prone polymerase, disrupting a gene for mismatch repair
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/55Vectors comprising as targeting moiety peptide derived from defined protein from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)

Definitions

  • a eukaryotic cell is transfected with a two component system including RNA complementary to genomic DNA and an enzyme that interacts with the RNA.
  • the RNA and the enzyme are expressed by the cell.
  • the RNA of the RNA/enzyme complex then binds to complementary genomic DNA.
  • the enzyme then performs a function, such as cleavage of the genomic DNA.
  • the RNA includes between about 10 nucleotides to about 250 nucleotides.
  • the RNA includes between about 20 nucleotides to about 100 nucleotides.
  • the enzyme may perform any desired function in a site specific manner for which the enzyme has been engineered.
  • the eukaryotic cell is a yeast cell, plant cell or mammalian cell.
  • the enzyme cleaves genomic sequences targeted by RNA sequences (see references (4-6)), thereby creating a genomically altered eukaryotic cell.
  • the present disclosure provides a method of genetically altering a human cell by including a nucleic acid encoding an RNA complementary to genomic DNA into the genome of the cell and a nucleic acid encoding an enzyme that performs a desired function on genomic DNA into the genome of the cell.
  • the RNA and the enzyme are expressed,
  • the RNA hybridizes with complementary genomic DNA.
  • the enzyme is activated to perform a desired function, such as cleavage, in a site specific manner when the RNA is hybridized to the complementary genomic DNA.
  • the RNA and the enzyme are components of a bacterial Type II CRISPR system.
  • a method of altering a eukaryotic cell including transfecting the eukaryotic cell with a nucleic acid encoding RNA complementary to genomic DNA of the eukaryotic cell, transfecting the eukaryotic cell with a nucleic acid encoding an enzyme that interacts with the RNA and cleaves the genomic DNA in a site specific manner, wherein the cell expresses the RNA and the enzyme, the RNA binds to complementary genomic DNA and the enzyme cleaves the genomic DNA in a site specific manner.
  • the enzyme is Cas9 or modified Cas9 or a homolog of Cas9.
  • the eukaryotic cell is a yeast cell, a plant cell or a mammalian cell.
  • the RNA includes between about 10 to about 250 nucleotides.
  • the RNA includes between about 20 to about 100 nucleotides.
  • a method of altering a human cell including transfecting the human cell with a nucleic acid encoding RNA complementary to genomic DNA of the eukaryotic cell, transfecting the human cell with a nucleic acid encoding an enzyme that interacts with the RNA and cleaves the genomic DNA in a site specific manner, wherein the human cell expresses the RNA and the enzyme, the RNA binds to complementary genomic DNA and the enzyme cleaves the genomic DNA in a site specific manner.
  • the enzyme is Cas9 or modified Cas9 or a homolog of Cas9.
  • the RNA includes between about 10 to about 250 nucleotides.
  • the RNA includes between about 20 to about 100 nucleotides.
  • a method of altering a eukaryotic cell at a plurality of genomic DNA sites including transfecting the eukaryotic cell with a plurality of nucleic acids encoding RNAs complementary to different sites on genomic DNA of the eukaryotic cell, transfecting the eukaryotic cell with a nucleic acid encoding an enzyme that interacts with the RNA and cleaves the genomic DNA in a site specific manner, wherein the cell expresses the RNAs and the enzyme, the RNAs bind to complementary genomic DNA and the enzyme cleaves the genomic DNA in a site specific manner.
  • the enzyme is Cas9.
  • the eukaryotic cell is a yeast cell, a plant cell or a mammalian cell.
  • the RNA includes between about 10 to about 250 nucleotides.
  • the RNA includes between about 20 to about 100 nucleotides.
  • a human codon-optimized version of the Cas9 protein bearing a C-terminus SV40 nuclear localization signal is synthetized and cloned into a mammalian expression system (Fig. 1A and Fig. 3 A).
  • Figure 1 is directed to genome editing in human cells using an engineered type II CRISPR system.
  • RNA-guided gene targeting in human cells involves co-expression of the Cas9 protein bearing a C-terminus SV40 nuclear localization signal with one or more guide RNAs (gRNAs) expressed from the human U6 polymerase III promoter.
  • gRNAs guide RNAs
  • Cas9 unwinds the DNA duplex and cleaves both strands upon recognition of a target sequence by the gRNA, but only if the correct protospacer-adjacent motif (PAM) is present at the 3' end.
  • Any genomic sequence of the form GN 2 oGG can in principle be targeted.
  • a genomically integrated GFP coding sequence is disrupted by the insertion of a stop codon and a 68bp genomic fragment from the AAVS l locus.
  • Restoration of the GFP sequence by homologous recombination (HR) with an appropriate donor sequence results in GFP + cells that can be quantitated by FACS.
  • Tl and T2 gRNAs target sequences within the AAVS l fragment.
  • Binding sites for the two halves of the TAL effector nuclease heterodimer are underlined.
  • crRNA-tracrRNA fusion transcripts are expressed, hereafter referred to as guide RNAs (gRNAs), from the human U6 polymerase III promoter.
  • gRNAs are directly transcribed by the cell. This aspect advantageously avoids reconstituting the RNA processing machinery employed by bacterial CRISPR systems (Fig. 1A and Fig. 3B) (see references (4, 7-9)).
  • a method is provided for altering genomic DNA using a U6 transcription initiating with G and a PAM (protospacer-adjacent motif) sequence -NGG following the 20 bp crRNA target.
  • the target genomic site is in the form of GN 2 oGG (See Fig. 3C).
  • a GFP reporter assay (Fig. IB) in 293T cells was developed similar to one previously described (see reference (10)) to test the functionality of the genome engineering methods described herein.
  • a stable cell line was established bearing a genomically integrated GFP coding sequence disrupted by the insertion of a stop codon and a 68bp genomic fragment from the AAVS l locus that renders the expressed protein fragment non-fluorescent.
  • Homologous recombination (HR) using an appropriate repair donor can restore the normal GFP sequence, which allows one to quantify the resulting GFP + cells by flow activated cell sorting (FACS).
  • FACS flow activated cell sorting
  • a method is provided of homologous recombination (HR).
  • RNA-mediated editing process was notably rapid, with the first detectable GFP + cells appearing -20 hours post transfection compared to -40 hours for the AAVS l TALENs.
  • a native locus was modified.
  • gRNAs were used to target the AAVS l locus located in the PPP1R12C gene on chromosome 19, which is ubiquitously expressed across most tissues (Fig. 2A) in 293Ts, K562s, and PGP1 human iPS cells (see reference (12)) and analyzed the results by next-generation sequencing of the targeted locus.
  • Figure 2 is directed to RNA-guided genome editing of the native AAVS l locus in multiple cell types.
  • Tl (red) and T2 (green) gRNAs target sequences in an intron of the PPP1R12C gene within the chromosome 19 AAVS l locus.
  • PCR assay three days post transfection demonstrates that only cells expressing the donor, Cas9 and T2 gRNA exhibit successful HR events.
  • successful HR was confirmed by Sanger sequencing of the PCR amplicon showing that the expected DNA bases at both the genome-donor and donor-insert boundaries are present.
  • Figure 2F successfully targeted clones of 293T cells were selected with puromycin for 2 weeks. Microscope images of two representative GFP+ clones is shown (scale bar is 100 microns).
  • HR is used to integrate either a dsDNA donor construct (see reference (13)) or an oligo donor into the native AAVS l locus (Fig. 2C, Fig. 12).
  • HR-mediated integration was confirmed using both approaches by PCR (Fig. 2D, Fig. 12) and Sanger sequencing (Fig. 2E).
  • 293T or iPS clones were readily derived from the pool of modified cells using puromycin selection over two weeks (Fig. 2F, Fig. 12).
  • an RNA-guided genome editing system which can readily be adapted to modify other genomic sites by simply modifying the sequence of the gRNA expression vector to match a compatible sequence in the locus of interest.
  • 190,000 specifically gRNA-targetable sequences targeting about 40.5% exons of genes in the human genome were generated. These target sequences were incorporated into a 200bp format compatible with multiplex synthesis on DNA arrays (see reference (14)) (Fig. 13).
  • a ready genome -wide reference of potential target sites in the human genome and a methodology for multiplex gRNA synthesis is provided.
  • methods are provided for multiplexing genomic alterations in a cell by using one or more or a plurality of RNA/enzyme systems described herein to alter the genome of a cell at a plurality of locations.
  • target sites perfectly match the PAM sequence NGG and the 8- 12 base "seed sequence" at the 3 ' end of the gRNA.
  • perfect match is not required of the remaining 8- 12 bases.
  • Cas9 will function with single mismatches at the 5' end.
  • the target locus 's underlying chromatin structure and epigenetic state may affect efficiency of Cas9 function.
  • Cas9 homologs having higher specificity are included as useful enzymes.
  • CRISPR-targetable sequences include those having different PAM requirements (see reference (9)), or directed evolution.
  • inactivating one of the Cas9 nuclease domains increases the ratio of HR to NHEJ and may reduce toxicity (Fig. 3 A, Fig. 5) (4, 5), while inactivating both domains may enable Cas9 to function as a retargetable DNA binding protein.
  • Embodiments of the present disclosure have broad utility in synthetic biology (see references (21, 22)), the direct and multiplexed perturbation of gene networks (see references (13, 23)), and targeted ex vivo (see references (24-26)) and in vivo gene therapy (see reference (27)).
  • a "re-engineerable organism” is provided as a model system for biological discovery and in vivo screening.
  • a "re-engineerable mouse” bearing an inducible Cas9 transgene is provided, and localized delivery (using adeno- associated viruses, for example) of libraries of gRNAs targeting multiple genes or regulatory elements allow one to screen for mutations that result in the onset of tumors in the target tissue type.
  • Use of Cas9 homologs or nuclease-null variants bearing effector domains (such as activators) allow one to multiplex activate or repress genes in vivo.
  • DNA-arrays enables multiplex synthesis of defined gRNA libraries (refer Fig. 13); and (b) gRNAs being small in size (refer Fig. 3b) are packaged and delivered using a multitude of non- viral or viral delivery methods.
  • the lower toxicities observed with "nickases” for genome engineering applications is achieved by inactivating one of the Cas9 nuclease domains, either the nicking of the DNA strand base-paired with the RNA or nicking its complement. Inactivating both domains allows Cas9 to function as a retargetable DNA binding protein.
  • the Cas9 retargetable DNA binding protein is attached
  • nuclease domains such as Fokl to enable 'highly specific' genome editing contingent upon dimerization of adjacent gRNA-Cas9 complexes
  • the transcriptional activation and repression components can employ CRISPR systems naturally or synthetically orthogonal, such that the gRNAs only bind to the activator or repressor class of Cas. This allows a large set of gRNAs to tune multiple targets.
  • the use of gRNAs provide the ability to multiplex than mRNAs in part due to the smaller size - 100 vs. 2000 nucleotide lengths respectively. This is particularly valuable when nucleic acid delivery is size limited, as in viral packaging. This enables multiple instances of cleavage, nicking, activation, or repression - or combinations thereof.
  • the ability to easily target multiple regulatory targets allows the coarse-or- fine-tuning or regulatory networks without being constrained to the natural regulatory circuits downstream of specific regulatory factors (e.g. the 4 mRNAs used in reprogramming fibroblasts into IPSCs). Examples of multiplexing applications include:
  • Multiplex cis-regulatory element (CRE signals for transcription, splicing, translation, RNA and protein folding, degradation, etc.) mutations in a single cell (or a collection of cells) can be used for efficiently studying the complex sets of regulatory interaction that can occur in normal development or pathological, synthetic or pharmaceutical scenarios.
  • the CREs are (or can be made) somewhat orthogonal (i.e. low cross talk) so that many can be tested in one setting— e.g. in an expensive animal embryo time series.
  • One exemplary application is with RNA fluorescent in situ sequencing (FISSeq).
  • CRE mutations and/or epigenetic activation or repression of CREs can be used to alter or reprogram iPSCs or ESCs or other stem cells or non-stem cells to any cell type or combination of cell types for use in organs-on-chips or other cell and organ cultures for purposes of testing pharmaceuticals (small molecules, proteins, RNAs, cells, animal, plant or microbial cells, aerosols and other delivery methods), transplantation strategies, personalization strategies, etc.
  • Repetitive elements or endogenous viral elements can be targeted with engineered Cas + gRNA systems in microbes, plants, animals, or human cells to reduce deleterious transposition or to aid in sequencing or other analytic genomic/transcriptomic/proteomic/diagnostic tools (in which nearly identical copies can be problematic).
  • embodiments of the present disclosure utilize short RNA to identify foreign nucleic acids for activity by a nuclease in a eukaryotic cell.
  • a eukaryotic cell is altered to include within its genome nucleic acids encoding one or more short RNA and one or more nucleases which are activated by the binding of a short RNA to a target DNA sequence.
  • exemplary short RNA / enzyme systems may be identified within bacteria or archaea, such as (CRISPR)/CRISPR- associated (Cas) systems that use short RNA to direct degradation of foreign nucleic acids.
  • CRISPR (“clustered regularly interspaced short palindromic repeats") defense involves acquisition and integration of new targeting "spacers” from invading virus or plasmid DNA into the CRISPR locus, expression and processing of short guiding CRISPR RNAs (crRNAs) consisting of spacer- repeat units, and cleavage of nucleic acids (most commonly DNA) complementary to the spacer.
  • spacers new targeting "spacers” from invading virus or plasmid DNA into the CRISPR locus
  • crRNAs short guiding CRISPR RNAs
  • nucleic acids most commonly DNA
  • Type II Three classes of CRISPR systems are generally known and are referred to as Type I, Type II or Type III).
  • a particular useful enzyme according to the present disclosure to cleave dsDNA is the single effector enzyme, Cas9, common to Type II. (See reference (7)).
  • the Type II effector system consists of a long pre-crRNA transcribed from the spacer-containing CRISPR locus, the multifunctional Cas9 protein, and a tracrRNA important for gRNA processing.
  • the tracrRNAs hybridize to the repeat regions separating the spacers of the pre-crRNA, initiating dsRNA cleavage by endogenous RNase III, which is followed by a second cleavage event within each spacer by Cas9, producing mature crRNAs that remain associated with the tracrRNA and Cas9.
  • eukaryotic cells of the present disclosure are engineered to avoid use of RNase III and the crRNA processing in general. See reference (2).
  • the enzyme of the present disclosure such as Cas9 unwinds the DNA duplex and searches for sequences matching the crRNA to cleave.
  • Target recognition occurs upon detection of complementarity between a "protospacer” sequence in the target DNA and the remaining spacer sequence in the crRNA.
  • Cas9 cuts the DNA only if a correct protospacer-adjacent motif (PAM) is also present at the 3' end.
  • PAM protospacer-adjacent motif
  • different protospacer-adjacent motif can be utilized.
  • the S. pyogenes system requires an NGG sequence, where N can be any nucleotide.
  • S. thermophilus Type II systems require NGGNG (see reference (3)) and NNAGAAW (see reference (4)), respectively, while different S. mutans systems tolerate NGG or NAAR (see reference (5)).
  • DSB formation also occurs towards the 3 ' end of the protospacer. If one of the two nuclease domains is inactivated, Cas9 will function as a nickase in vitro (see reference (2)) and in human cells (see Figure 5).
  • the specificity of gRNA-directed Cas9 cleavage is used as a mechanism for genome engineering in a eukaryotic cell.
  • hybridization of the gRNA need not be 100 percent in order for the enzyme to recognize the gRNA/DNA hybrid and affect cleavage.
  • Some off-target activity could occur.
  • the S. pyogenes system tolerates mismatches in the first 6 bases out of the 20bp mature spacer sequence in vitro.
  • greater stringency may be beneficial in vivo when potential off-target sites matching (last 14 bp) NGG exist within the human reference genome for the gRNAs.
  • the effect of mismatches and enzyme activity in general are described in references (9), (2), (10), and (4).
  • specificity may be improved.
  • AT-rich target sequences may have fewer off- target sites. Carefully choosing target sites to avoid pseudo-sites with at least 14bp matching sequences elsewhere in the genome may improve specificity.
  • the use of a Cas9 variant requiring a longer PAM sequence may reduce the frequency of off-target sites.
  • Directed evolution may improve Cas9 specificity to a level sufficient to completely preclude off-target activity, ideally requiring a perfect 20bp gRNA match with a minimal PAM. Accordingly, modification to the Cas9 protein is a representative embodiment of the present disclosure. As such, novel methods permitting many rounds of evolution in a short timeframe (see reference (11) and envisioned. CRISPR systems useful in the present disclosure are described in references (12, 13).
  • the Cas9 gene sequence was human codon optimized and assembled by hierarchical fusion PCR assembly of 9 500bp gBlocks ordered from IDT.
  • Fig. 3A for the engineered type II CRISPR system for human cells shows the expression format and full sequence of the cas9 gene insert.
  • the RuvC-like and HNH motifs, and the C-terminus SV40 NLS are respectively highlighted by blue, brown and orange colors.
  • Cas9_D 10A was similarly constructed. The resulting full-length products were cloned into the pcDNA3.3-TOPO vector (Invitrogen).
  • Fig. 3B shows the U6 promoter based expression scheme for the guide RNAs and predicted RNA transcript secondary structure. The use of the U6 promoter constrains the 1 st position in the RNA transcript to be a 'G' and thus all genomic sites of the form GN 2 oGG can be targeted using this approach.
  • Fig. 3C shows the 7 gRNAs used.
  • the vectors for the HR reporter assay involving a broken GFP were constructed by fusion PCR assembly of the GFP sequence bearing the stop codon and 68bp AAVS l fragment (or mutants thereof; see Fig. 6), or 58bp fragments from the DNMT3a and DNMT3b genomic loci (see Fig. 8) assembled into the EGIP lentivector from Addgene (plasmid #26777). These lentivectors were then used to establish the GFP reporter stable lines.
  • TALENs used in this study were constructed using the protocols described in (14). All DNA reagents developed in this study are available at Addgene.
  • HEK 293T cells were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen) high glucose supplemented with 10% fetal bovine serum (FBS, Invitrogen), penicillin/streptomycin (pen/strep, Invitrogen), and non-essential amino acids (NEAA, Invitrogen). All cells were maintained at 37°C and 5% CO 2 in a humidified incubator.
  • DMEM Dulbecco's modified Eagle's medium
  • FBS fetal bovine serum
  • pen/streptomycin penicillin/streptomycin
  • NEAA non-essential amino acids
  • PGP1 iPS cells were cultured in Rho kinase (ROCK) inhibitor (Calbiochem) 2h before nucleofection.
  • ROCK Rho kinase
  • Cells were harvest using TrypLE Express (Invitrogen) and 2* 10 6 cells were resuspended in P3 reagent (Lonza) with ⁇ g Cas9 plasmid, ⁇ g gRNA and/or ⁇ g DNA donor plasmid, and nucleofected according to manufacturer's instruction (Lonza).
  • Cells were subsequently plated on an mTeSRl -coated plate in mTeSRl medium supplemented with ROCK inhibitor for the first 24h.
  • the targeting efficiency was assessed as follows. Cells were harvested 3 days after nucleofection and the genomic DNA of ⁇ 1 X 10 6 cells was extracted using prepGEM (ZyGEM). PCR was conducted to amplify the targeting region with genomic DNA derived from the cells and amplicons were deep sequenced by MiSeq Personal Sequencer (Illumina) with coverage >200,000 reads. The sequencing data was analyzed to estimate NHEJ efficiencies.
  • the reference AAVS 1 sequence analyzed is:
  • the PCR primers for amplifying the targeting regions in the human genome are:
  • a set of gRNA gene sequences that maximally target specific locations in human exons but minimally target other locations in the genome were determined as follows. According to one aspect, maximally efficient targeting by a gRNA is achieved by 23nt sequences, the 5 '-most 20nt of which exactly complement a desired location, while the three 3 '-most bases must be of the form NGG. Additionally, the 5 '-most nt must be a G to establish a pol-III transcription start site.
  • mispairing of the six 5'-most nt of a 20bp gRNA against its genomic target does not abrogate Cas9-mediated cleavage so long as the last 14nt pairs properly, but mispairing of the eight 5 '-most nt along with pairing of the last 12 nt does, while the case of the seven 5-most nt mispairs and 13 3' pairs was not tested.
  • one condition was that the case of the seven 5 '-most mispairs is, like the case of six, permissive of cleavage, so that pairing of the 3 '-most 13nt is sufficient for cleavage.
  • Coding exon locations in this BED file comprised a set of 346089 mappings of RefSeq mRNA accessions to the hgl9 genome. However, some RefSeq mRNA accessions mapped to multiple genomic locations (probable gene duplications), and many accessions mapped to subsets of the same set of exon locations (multiple isoforms of the same genes).
  • RefSeq mRNA mappings were clustered so that any two RefSeq accessions (including the gene duplicates distinguished in (ii)) that overlap a merged exon region are counted as a single gene cluster, the 189864 exonic specific CRISPR sites target 17104 out of 18872 gene clusters (-90.6% of all gene clusters) at a multiplicity of ⁇ 1 1.1 per targeted gene cluster.
  • the database can be refined by correlating performance with factors, such as base composition and secondary structure of both gRNAs and genomic targets (20, 21), and the epigenetic state of these targets in human cell lines for which this information is available (22).
  • factors such as base composition and secondary structure of both gRNAs and genomic targets (20, 21), and the epigenetic state of these targets in human cell lines for which this information is available (22).
  • the target sequences were incorporated into a 200bp format that is compatible for multiplex synthesis on DNA arrays (23, 24).
  • the method allows for targeted retrieval of a specific or pools of gRNA sequences from the DNA array based oligonucleotide pool and its rapid cloning into a common expression vector (Fig. 13 A). Specifically, a 12k oligonucleotide pool from CustomArray Inc. was synthesized. Furthermore, gRNAs of choice from this library (Fig. 13B) were successfully retrieved. We observed an error rate of -4 mutations per 1 OOObp of synthesized DNA.
  • RNA-guided genome editing requires both Cas9 and guide RNA for successful targeting
  • Each of the lines was then targeted by one of the following 4 reagents: a GFP-ZFN pair that can target all cell types since its targeted sequence was in the flanking GFP fragments and hence present in along cell lines; a AAVS 1 TALEN that could potentially target only the wt-AAVS 1 fragment since the mutations in the other two lines should render the left TALEN unable to bind their sites; the Tl gRNA which can also potentially target only the wt-AAVS 1 fragment, since its target site is also disrupted in the two mutant lines; and finally the T2 gRNA which should be able to target all 3 cell lines since, unlike the Tl gRNA, its target site is unaltered among the 3 lines.
  • RNA-guided genome editing is target sequence specific, and demonstrates similar targeting efficiencies as ZFNs or TALENs Similar to the GFP reporter assay described in Fig. IB, two 293T stable lines each bearing a distinct GFP reporter construct were developed. These are distinguished by the sequence of the fragment insert (as indicated in Figure 8). One line harbored a 58bp fragment from the DNMT3a gene while the other line bore a homologous 58bp fragment from the DNMT3b gene. The sequence differences are highlighted in red.
  • PGP1 Human iPS cells
  • DPBs double-strand breaks
  • Panel 1 Deletion rate detected at targeting region. Red dash lines: boundary of Tl RNA targeting site; green dash lines: boundary of T2 RNA targeting site. The deletion incidence at each nucleotide position was plotted in black lines and the deletion rate as the percentage of reads carrying deletions was calculated.
  • Panel 2 Insertion rate detected at targeting region. Red dash lines: boundary of Tl RNA targeting site; green dash lines: boundary of T2 RNA targeting site.
  • K562 cells were nucleated with constructs indicated in the left panel of Figure 10. 4 days after nucleofection, NHEJ rate was measured by assessing genomic deletion and insertion rate at DSBs by deep sequencing.
  • Panel 1 Deletion rate detected at targeting region. Red dash lines: boundary of Tl RNA targeting site; green dash lines: boundary of T2 RNA targeting site. The deletion incidence at each nucleotide position was plotted in black lines and the deletion rate as the percentage of reads carrying deletions was calculated.
  • Panel 2 Insertion rate detected at targeting region. Red dash lines: boundary of Tl RNA targeting site; green dash lines: boundary of T2 RNA targeting site.
  • 293T cells were transfected with constructs indicated in the left panel of Figure 11. 4 days after nucleofection, NHEJ rate was measured by assessing genomic deletion and insertion rate at DSBs by deep sequencing.
  • Panel 1 Deletion rate detected at targeting region. Red dash lines: boundary of Tl RNA targeting site; green dash lines: boundary of T2 RNA targeting site. The deletion incidence at each nucleotide position was plotted in black lines and the deletion rate as the percentage of reads carrying deletions was calculated.
  • Panel 2 Insertion rate detected at targeting region. Red dash lines: boundary of Tl RNA targeting site; green dash lines: boundary of T2 RNA targeting site.
  • the incidence of insertion at the genomic location where the first insertion junction was detected was plotted in black lines and the insertion rate as the percentage of reads carrying insertions was calculated.
  • Panel 3 Deletion size distribution. The frequencies of different size deletions among the whole NHEJ population was plotted.
  • Panel 4 insertion size distribution. The frequencies of different sizes insertions among the whole NHEJ population was plotted. 293T targeting by both gRNAs is efficient (10-24%) and sequence specific (as shown by the shift in position of the NHEJ deletion distributions).
  • PCR screen (with reference to Figure 2C) confirmed that 21/24 randomly picked 293T clones were successfully targeted.
  • FIG 12B similar PCR screen confirmed 3/7 randomly picked PGPl-iPS clones were also successfully targeted.
  • short 90mer oligos could also effect robust targeting at the endogenous AAVS 1 locus (shown here for K562 cells).
  • a resource of about 190k bioinformatically computed unique gRNA sites targeting -40.5% of all exons of genes in the human genome was generated.
  • the gRNA target sites were incorporated into a 200bp format that is compatible for multiplex synthesis on DNA arrays.
  • the design allows for (i) targeted retrieval of a specific or pools of gRNA targets from the DNA array oligonucleotide pool (through 3 sequential rounds of nested PCR as indicated in the figure schematic); and (ii) rapid cloning into a common expression vector which upon linearization using an Aflll site serves as a recipient for Gibson assembly mediated incorporation of the gRNA insert fragment.
  • the method was used to accomplish targeted retrieval of 10 unique gRNAs from a 12k oligonucleotide pool synthesized by CustomArray Inc.
  • the CRISPR-Cas system has an adaptive immune defense system in bacteria and functions to 'cleave' invading nucleic acids.
  • the CRISPR-CAS system is engineered to function in human cells, and to 'cleave' genomic DNA. This is achieved by a short guide RNA directing a Cas9 protein (which has nuclease function) to a target sequence complementary to the spacer in the guide RNA.
  • the ability to 'cleave' DNA enables a host of applications related to genome editing, and also targeted genome regulation.
  • the Cas9 protein was mutated to make it nuclease-null by introducing mutations that are predicted to abrogate coupling to Mg2+ (known to be important for the nuclease functions of the RuvC-like and HNH-like domains): specifically, combinations of D10A, D839A, H840A and N863A mutations were introduced.
  • the thus generated Cas9 nuclease-null protein (as confirmed by its ability to not cut DNA by sequencing analysis) and hereafter referred to as Cas9R-H-, was then coupled to a transcriptional activation domain, here VP64, enabling the CRISPR-cas system to function as a RNA guided transcription factor (see Figure 14).
  • the Cas9R-H-+VP64 fusion enables RNA- guided transcriptional activation at the two reporters shown. Specifically, both FACS analysis and immunofluorescence imaging demonstrates that the protein enables gRNA sequence specific targeting of the corresponding reporters, and furthermore, the resulting transcription activation as assayed by expression of a dTomato fluorescent protein was at levels similar to those induced by a convention TALE-VP64 fusion protein.
  • Flexibility of the gRNA scaffold sequence to designer sequence insertions was determined by systematically assaying for a range of the random sequence insertions on the 5', middle and 3' portions of the gRNA: specifically, lbp, 5bp, lObp, 20bp, and 40bp inserts were made in the gRNA sequence at the 5', middle, and 3' ends of the gRNA (the exact positions of the insertion are highlighted in 'red' in Figure 15). This gRNA was then tested for functionality by its ability to induce HR in a GFP reporter assay (as described herein). It is evident that gRNAs are flexible to sequence insertions on the 5' and 3' ends (as measured by retained HR inducing activity).
  • aspects of the present disclosure are directed to tagging of small-molecule responsive RNA aptamers that may trigger onset of gRNA activity, or gRNA visualization. Additionally, aspects of the present disclosure are directed to tethering of ssDNA donors to gRNAs via hybridization, thus enabling coupling of genomic target cutting and immediate physical localization of repair template which can promote homologous recombination rates over error- prone non-homologous end-joining.
  • the following references identified in the Examples section by number are hereby incorporated by reference in their entireties for all purposes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
PCT/US2013/075317 2012-12-17 2013-12-16 Rna-guided human genome engineering Ceased WO2014099744A1 (en)

Priority Applications (45)

Application Number Priority Date Filing Date Title
NZ709429A NZ709429B2 (en) 2012-12-17 2013-12-16 Rna-guided human genome engineering
EP19173061.3A EP3553174B1 (en) 2012-12-17 2013-12-16 Rna-guided human genome engineering
ES13863815T ES2741951T3 (es) 2012-12-17 2013-12-16 Modificación por ingeniería genética del genoma humano guiada por ARN
DK13863815.0T DK2931891T3 (da) 2012-12-17 2013-12-16 Rna-styret modificering af menneskelige genomer
IL239326A IL239326B2 (en) 2012-12-17 2013-12-16 RNA-guided human genome engineering
RU2015129018A RU2699523C2 (ru) 2012-12-17 2013-12-16 Рнк-направляемая инженерия генома человека
US14/653,144 US9970024B2 (en) 2012-12-17 2013-12-16 RNA-guided human genome engineering
CN202510930975.2A CN121022900A (zh) 2012-12-17 2013-12-16 Rna-引导的人类基因组工程化
SG11201504621RA SG11201504621RA (en) 2012-12-17 2013-12-16 Rna-guided human genome engineering
BR112015014425-0A BR112015014425B1 (pt) 2012-12-17 2013-12-16 Método in vitro ou ex vivo para alterar uma célula eucariótica, sistema de edição de genoma guiado por rna e célula eucariótica que contém o dito sistema de edição
MX2015007743A MX383326B (es) 2012-12-17 2013-12-16 Ingeniería del genoma humano guiada por ácido ribonucleico
HK15112584.0A HK1212376B (en) 2012-12-17 2013-12-16 Rna-guided human genome engineering
EP13863815.0A EP2931891B1 (en) 2012-12-17 2013-12-16 Rna-guided human genome engineering
KR1020157018831A KR20150095861A (ko) 2012-12-17 2013-12-16 Rna-가이드된 인간 게놈 조작
EP23197923.8A EP4282970A3 (en) 2012-12-17 2013-12-16 Rna-guided human genome engineering
JP2015549528A JP6700788B2 (ja) 2012-12-17 2013-12-16 Rna誘導性ヒトゲノム改変
IL308158A IL308158A (en) 2012-12-17 2013-12-16 Rna-guided human genome engineering
CN201380073208.XA CN105121641B (zh) 2012-12-17 2013-12-16 Rna-引导的人类基因组工程化
EP24193191.4A EP4481048A3 (en) 2012-12-17 2013-12-16 Rna-guided human genome engineering
CA2895155A CA2895155C (en) 2012-12-17 2013-12-16 Rna-guided human genome engineering
KR1020227034121A KR20220139433A (ko) 2012-12-17 2013-12-16 Rna-가이드된 인간 게놈 조작
AU2013363194A AU2013363194B2 (en) 2012-12-17 2013-12-16 RNA-guided human genome engineering
US14/319,255 US9260723B2 (en) 2012-12-17 2014-06-30 RNA-guided human genome engineering
US14/318,933 US20140342456A1 (en) 2012-12-17 2014-06-30 RNA-Guided Human Genome Engineering
US14/319,100 US9023649B2 (en) 2012-12-17 2014-06-30 RNA-guided human genome engineering
US14/319,171 US10717990B2 (en) 2012-12-17 2014-06-30 RNA-guided human genome engineering
US14/681,510 US20170044569A9 (en) 2012-12-17 2015-04-08 RNA-Guided Human Genome Engineering
US14/701,912 US20150232833A1 (en) 2012-12-17 2015-05-01 RNA-Guided Human Genome Engineering
ZA2015/04739A ZA201504739B (en) 2012-12-17 2015-07-01 Rna-guided human genome engineering
US14/790,147 US10273501B2 (en) 2012-12-17 2015-07-02 RNA-guided human genome engineering
US15/042,573 US11236359B2 (en) 2012-12-17 2016-02-12 RNA-guided human genome engineering
US15/042,515 US10435708B2 (en) 2012-12-17 2016-02-12 RNA-guided human genome engineering
US16/397,213 US11365429B2 (en) 2012-12-17 2019-04-29 RNA-guided human genome engineering
US16/397,423 US11359211B2 (en) 2012-12-17 2019-04-29 RNA-guided human genome engineering
US16/439,840 US11535863B2 (en) 2012-12-17 2019-06-13 RNA-guided human genome engineering
AU2019216665A AU2019216665B2 (en) 2012-12-17 2019-08-15 RNA-guided human genome engineering
US16/884,327 US20200308599A1 (en) 2012-12-17 2020-05-27 RNA-Guided Human Genome Engineering
US17/186,139 US20210222193A1 (en) 2012-12-17 2021-02-26 RNA-Guided Human Genome Engineering
AU2021204024A AU2021204024B2 (en) 2012-12-17 2021-06-17 RNA-guided human genome engineering
AU2021204023A AU2021204023B2 (en) 2012-12-17 2021-06-17 RNA-guided human genome engineering
US17/672,744 US11512325B2 (en) 2012-12-17 2022-02-16 RNA-guided human genome engineering
US18/296,579 US12018272B2 (en) 2012-12-17 2023-04-06 RNA-guided human genome engineering
AU2024201441A AU2024201441A1 (en) 2012-12-17 2024-03-05 RNA-guided human genome engineering
US18/619,354 US20240279677A1 (en) 2012-12-17 2024-03-28 RNA-Guided Human Genome Engineering
US18/663,233 US20240294939A1 (en) 2012-12-17 2024-05-14 RNA-Guided Human Genome Engineering

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261738355P 2012-12-17 2012-12-17
US61/738,355 2012-12-17
US201361779169P 2013-03-13 2013-03-13
US61/779,169 2013-03-13

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US14/653,144 A-371-Of-International US9970024B2 (en) 2012-12-17 2013-12-16 RNA-guided human genome engineering
US14/319,171 Continuation US10717990B2 (en) 2012-12-17 2014-06-30 RNA-guided human genome engineering
US14/318,933 Continuation US20140342456A1 (en) 2012-12-17 2014-06-30 RNA-Guided Human Genome Engineering
US14/319,255 Continuation US9260723B2 (en) 2012-12-17 2014-06-30 RNA-guided human genome engineering
US14/319,100 Continuation US9023649B2 (en) 2012-12-17 2014-06-30 RNA-guided human genome engineering
US14/790,147 Continuation US10273501B2 (en) 2012-12-17 2015-07-02 RNA-guided human genome engineering

Publications (1)

Publication Number Publication Date
WO2014099744A1 true WO2014099744A1 (en) 2014-06-26

Family

ID=50979072

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2013/075326 Ceased WO2014099750A2 (en) 2012-12-17 2013-12-16 Rna-guided human genome engineering
PCT/US2013/075317 Ceased WO2014099744A1 (en) 2012-12-17 2013-12-16 Rna-guided human genome engineering

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2013/075326 Ceased WO2014099750A2 (en) 2012-12-17 2013-12-16 Rna-guided human genome engineering

Country Status (16)

Country Link
US (19) US9970024B2 (enExample)
EP (4) EP4282970A3 (enExample)
JP (5) JP6700788B2 (enExample)
KR (2) KR20150095861A (enExample)
CN (2) CN105121641B (enExample)
AU (5) AU2013363194B2 (enExample)
CA (2) CA3081054A1 (enExample)
DK (2) DK3553174T3 (enExample)
ES (2) ES3036759T3 (enExample)
IL (2) IL239326B2 (enExample)
MX (3) MX383326B (enExample)
MY (1) MY170059A (enExample)
RU (2) RU2766685C2 (enExample)
SG (3) SG10201912991WA (enExample)
WO (2) WO2014099750A2 (enExample)
ZA (2) ZA201504739B (enExample)

Cited By (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865406B2 (en) 2012-12-12 2014-10-21 The Broad Institute Inc. Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation
US8871445B2 (en) 2012-12-12 2014-10-28 The Broad Institute Inc. CRISPR-Cas component systems, methods and compositions for sequence manipulation
US8889356B2 (en) 2012-12-12 2014-11-18 The Broad Institute Inc. CRISPR-Cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
US8906616B2 (en) 2012-12-12 2014-12-09 The Broad Institute Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
US8945839B2 (en) 2012-12-12 2015-02-03 The Broad Institute Inc. CRISPR-Cas systems and methods for altering expression of gene products
US8993233B2 (en) 2012-12-12 2015-03-31 The Broad Institute Inc. Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains
EP2784162B1 (en) 2012-12-12 2015-04-08 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
EP2800811A4 (en) * 2012-05-25 2015-09-23 Univ California METHODS AND COMPOSITIONS FOR RNA-TARGETED TARGET DNA MODIFICATION AND RNA-TIED TRANSCRIPTION MODULATION
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9228208B2 (en) 2013-12-11 2016-01-05 Regeneron Pharmaceuticals, Inc. Methods and compositions for the targeted modification of a genome
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
WO2016011080A2 (en) 2014-07-14 2016-01-21 The Regents Of The University Of California Crispr/cas transcriptional modulation
US9260752B1 (en) 2013-03-14 2016-02-16 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
WO2016028843A2 (en) 2014-08-19 2016-02-25 President And Fellows Of Harvard College Rna-guided systems for probing and mapping of nucleic acids
WO2016036754A1 (en) 2014-09-02 2016-03-10 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification
JP2016512048A (ja) * 2013-03-15 2016-04-25 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ CRISPR/Casシステムを使用した植物ゲノム操作
JP2016512264A (ja) * 2013-03-15 2016-04-25 ザ ジェネラル ホスピタル コーポレイション 特定のゲノム遺伝子座へのゲノムおよびエピゲノム調節タンパク質のrna誘導型標的化
US9322006B2 (en) 2011-07-22 2016-04-26 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
CN105695485A (zh) * 2014-11-27 2016-06-22 中国科学院上海生命科学研究院 一种用于丝状真菌Crispr-Cas系统的Cas9编码基因及其应用
JP2016521975A (ja) * 2013-05-15 2016-07-28 サンガモ バイオサイエンシーズ, インコーポレイテッド 遺伝的状態の処置のための方法および組成物
US9487802B2 (en) 2014-05-30 2016-11-08 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods to treat latent viral infections
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
EP2928496A4 (en) * 2012-12-06 2017-03-01 Sigma-Aldrich Co. LLC Crispr-based genome modification and regulation
WO2017040348A1 (en) 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
EP3003392A4 (en) * 2013-06-04 2017-05-03 President and Fellows of Harvard College Rna-guideded transcriptional regulation
WO2017037304A3 (en) * 2016-07-28 2017-06-01 Dsm Ip Assets B.V. An assembly system for a eukaryotic cell
WO2017165655A1 (en) * 2016-03-23 2017-09-28 Dana-Farber Cancer Institute, Inc. Methods for enhancing the efficiency of gene editing
US20170306306A1 (en) * 2014-10-24 2017-10-26 Life Technologies Corporation Compositions and Methods for Enhancing Homologous Recombination
US9834786B2 (en) 2012-04-25 2017-12-05 Regeneron Pharmaceuticals, Inc. Nuclease-mediated targeting with large targeting vectors
JP2017537645A (ja) * 2014-12-19 2017-12-21 アプライズ バイオ, インコーポレイテッド 細胞の選択された部分集団中の複数エピトープを識別するための方法
US9856497B2 (en) 2016-01-11 2018-01-02 The Board Of Trustee Of The Leland Stanford Junior University Chimeric proteins and methods of regulating gene expression
US9885026B2 (en) 2011-12-30 2018-02-06 Caribou Biosciences, Inc. Modified cascade ribonucleoproteins and uses thereof
US9888673B2 (en) 2014-12-10 2018-02-13 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
WO2018071892A1 (en) 2016-10-14 2018-04-19 Joung J Keith Epigenetically regulated site-specific nucleases
US9982278B2 (en) 2014-02-11 2018-05-29 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
EP3331906A1 (en) * 2015-08-06 2018-06-13 Dana-Farber Cancer Institute, Inc. Tunable endogenous protein degradation
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
US10017760B2 (en) 2016-06-24 2018-07-10 Inscripta, Inc. Methods for generating barcoded combinatorial libraries
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
WO2018195545A2 (en) 2017-04-21 2018-10-25 The General Hospital Corporation Variants of cpf1 (cas12a) with altered pam specificity
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10117911B2 (en) 2015-05-29 2018-11-06 Agenovir Corporation Compositions and methods to treat herpes simplex virus infections
WO2018218206A1 (en) 2017-05-25 2018-11-29 The General Hospital Corporation Bipartite base editor (bbe) architectures and type-ii-c-cas9 zinc finger editing
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10166255B2 (en) 2015-07-31 2019-01-01 Regents Of The University Of Minnesota Intracellular genomic transplant and methods of therapy
US10190137B2 (en) 2013-11-07 2019-01-29 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
CN109415756A (zh) * 2016-04-28 2019-03-01 延世大学校产学协力团 用于以高通量方式体内评估rna引导的核酸酶的活性的方法
EP3352795A4 (en) * 2015-09-21 2019-03-13 The Regents of The University of California COMPOSITIONS AND METHODS OF TARGET NUCLEIC ACID MODIFICATION
EP3344771A4 (en) * 2015-08-31 2019-03-20 Agilent Technologies, Inc. COMPOUNDS AND METHODS FOR CRISPR / CAS-BASED GENOME EDITATION THROUGH HOMOLOGOUS RECOMBINATION
EP3441468A3 (en) * 2013-10-17 2019-04-03 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
US10266851B2 (en) 2016-06-02 2019-04-23 Sigma-Aldrich Co. Llc Using programmable DNA binding proteins to enhance targeted genome modification
EP2931891B1 (en) 2012-12-17 2019-05-15 President and Fellows of Harvard College Rna-guided human genome engineering
US10337001B2 (en) 2014-12-03 2019-07-02 Agilent Technologies, Inc. Guide RNA with chemical modifications
US10336807B2 (en) 2016-01-11 2019-07-02 The Board Of Trustees Of The Leland Stanford Junior University Chimeric proteins and methods of immunotherapy
US10377998B2 (en) 2013-12-12 2019-08-13 The Broad Institute, Inc. CRISPR-CAS systems and methods for altering expression of gene products, structural information and inducible modular CAS enzymes
US10385359B2 (en) 2013-04-16 2019-08-20 Regeneron Pharmaceuticals, Inc. Targeted modification of rat genome
US10428310B2 (en) 2014-10-15 2019-10-01 Regeneron Pharmaceuticals, Inc. Methods and compositions for generating or maintaining pluripotent cells
US10428319B2 (en) 2017-06-09 2019-10-01 Editas Medicine, Inc. Engineered Cas9 nucleases
US10457960B2 (en) 2014-11-21 2019-10-29 Regeneron Pharmaceuticals, Inc. Methods and compositions for targeted genetic modification using paired guide RNAs
US10494621B2 (en) 2015-06-18 2019-12-03 The Broad Institute, Inc. Crispr enzyme mutations reducing off-target effects
US10526589B2 (en) 2013-03-15 2020-01-07 The General Hospital Corporation Multiplex guide RNAs
US10544405B2 (en) 2013-01-16 2020-01-28 Emory University Cas9-nucleic acid complexes and uses related thereto
US10550372B2 (en) 2013-12-12 2020-02-04 The Broad Institute, Inc. Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems
US10577630B2 (en) 2013-06-17 2020-03-03 The Broad Institute, Inc. Delivery and use of the CRISPR-Cas systems, vectors and compositions for hepatic targeting and therapy
US10640789B2 (en) 2013-06-04 2020-05-05 President And Fellows Of Harvard College RNA-guided transcriptional regulation
US10696986B2 (en) 2014-12-12 2020-06-30 The Board Institute, Inc. Protected guide RNAS (PGRNAS)
US10711285B2 (en) 2013-06-17 2020-07-14 The Broad Institute, Inc. Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation
WO2020163396A1 (en) 2019-02-04 2020-08-13 The General Hospital Corporation Adenine dna base editor variants with reduced off-target rna editing
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
US10781444B2 (en) 2013-06-17 2020-09-22 The Broad Institute, Inc. Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof
US10851380B2 (en) 2012-10-23 2020-12-01 Toolgen Incorporated Methods for cleaving a target DNA using a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein
US10851357B2 (en) 2013-12-12 2020-12-01 The Broad Institute, Inc. Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders
US10912797B2 (en) 2016-10-18 2021-02-09 Intima Bioscience, Inc. Tumor infiltrating lymphocytes and methods of therapy
US10930367B2 (en) 2012-12-12 2021-02-23 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for Cas enzymes or CRISPR-Cas systems for target sequences and conveying results thereof
US10946108B2 (en) 2013-06-17 2021-03-16 The Broad Institute, Inc. Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using viral components
US11008588B2 (en) 2013-06-17 2021-05-18 The Broad Institute, Inc. Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation
US11021719B2 (en) 2017-07-31 2021-06-01 Regeneron Pharmaceuticals, Inc. Methods and compositions for assessing CRISPER/Cas-mediated disruption or excision and CRISPR/Cas-induced recombination with an exogenous donor nucleic acid in vivo
WO2021105191A1 (en) 2019-11-29 2021-06-03 Basf Se Increasing resistance against fungal infections in plants
US11028388B2 (en) 2014-03-05 2021-06-08 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa
US11041173B2 (en) 2012-12-12 2021-06-22 The Broad Institute, Inc. Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
WO2021122528A1 (en) 2019-12-20 2021-06-24 Basf Se Decreasing toxicity of terpenes and increasing the production potential in micro-organisms
WO2021122687A1 (en) 2019-12-19 2021-06-24 Basf Se Increasing space-time-yield, carbon-conversion-efficiency and carbon substrate flexibility in the production of fine chemicals
US11046952B2 (en) * 2015-03-16 2021-06-29 The Broad Institute, Inc. Encoding of DNA vector identity via iterative hybridization detection of a barcode transcript
US20210207165A1 (en) * 2013-03-15 2021-07-08 Sigma-Aldrich Co. Llc Crispr-based genome modification and regulation
US11098325B2 (en) 2017-06-30 2021-08-24 Intima Bioscience, Inc. Adeno-associated viral vectors for gene therapy
US11111521B2 (en) 2011-12-22 2021-09-07 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11130999B2 (en) 2017-07-31 2021-09-28 Regeneron Pharmaceuticals, Inc. Cas-ready mouse embryonic stem cells and mice and uses thereof
WO2021202938A1 (en) 2020-04-03 2021-10-07 Creyon Bio, Inc. Oligonucleotide-based machine learning
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11149267B2 (en) 2013-10-28 2021-10-19 The Broad Institute, Inc. Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof
US11155795B2 (en) 2013-12-12 2021-10-26 The Broad Institute, Inc. CRISPR-Cas systems, crystal structure and uses thereof
US11180793B2 (en) 2015-04-24 2021-11-23 Editas Medicine, Inc. Evaluation of Cas9 molecule/guide RNA molecule complexes
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US11242525B2 (en) 2014-03-26 2022-02-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating sickle cell disease
US11248240B2 (en) * 2015-01-29 2022-02-15 Meiogenix Method for inducing targeted meiotic recombinations
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11299767B2 (en) 2013-03-12 2022-04-12 President And Fellows Of Harvard College Method for generating a three-dimensional nucleic acid containing matrix
US11306309B2 (en) 2015-04-06 2022-04-19 The Board Of Trustees Of The Leland Stanford Junior University Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11311609B2 (en) 2017-02-08 2022-04-26 Dana-Farber Cancer Institute, Inc. Regulating chimeric antigen receptors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
EP3998344A1 (en) * 2014-10-09 2022-05-18 Life Technologies Corporation Crispr oligonucleotides and gene editing
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11384360B2 (en) 2012-06-19 2022-07-12 Regents Of The University Of Minnesota Gene targeting in plants using DNA viruses
US11390884B2 (en) 2015-05-11 2022-07-19 Editas Medicine, Inc. Optimized CRISPR/cas9 systems and methods for gene editing in stem cells
US11407985B2 (en) 2013-12-12 2022-08-09 The Broad Institute, Inc. Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for genome editing
US11434491B2 (en) 2018-04-19 2022-09-06 The Regents Of The University Of California Compositions and methods for gene editing
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11466271B2 (en) 2017-02-06 2022-10-11 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
WO2022216857A1 (en) * 2021-04-07 2022-10-13 Century Therapeutics, Inc. Gene transfer vectors and methods of engineering cells
US11499151B2 (en) 2017-04-28 2022-11-15 Editas Medicine, Inc. Methods and systems for analyzing guide RNA molecules
US11512311B2 (en) 2016-03-25 2022-11-29 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency
US11512341B1 (en) 2011-01-31 2022-11-29 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US11535871B2 (en) * 2015-05-14 2022-12-27 University Of Southern California Optimized gene editing utilizing a recombinant endonuclease system
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542554B2 (en) 2015-11-03 2023-01-03 President And Fellows Of Harvard College Method and apparatus for volumetric imaging
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560585B2 (en) 2011-01-31 2023-01-24 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11566263B2 (en) 2016-08-02 2023-01-31 Editas Medicine, Inc. Compositions and methods for treating CEP290 associated disease
US11578312B2 (en) 2015-06-18 2023-02-14 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
EP4198124A1 (en) 2021-12-15 2023-06-21 Versitech Limited Engineered cas9-nucleases and method of use thereof
US11713485B2 (en) 2016-04-25 2023-08-01 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11851690B2 (en) 2017-03-14 2023-12-26 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
US11884915B2 (en) 2021-09-10 2024-01-30 Agilent Technologies, Inc. Guide RNAs with chemical modification for prime editing
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11911415B2 (en) 2015-06-09 2024-02-27 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for improving transplantation
US11920128B2 (en) 2013-09-18 2024-03-05 Kymab Limited Methods, cells and organisms
US11963982B2 (en) 2017-05-10 2024-04-23 Editas Medicine, Inc. CRISPR/RNA-guided nuclease systems and methods
US12031132B2 (en) 2018-03-14 2024-07-09 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US12058986B2 (en) 2017-04-20 2024-08-13 Egenesis, Inc. Method for generating a genetically modified pig with inactivated porcine endogenous retrovirus (PERV) elements
US12070022B2 (en) 2014-04-28 2024-08-27 Recombinetics, Inc. Methods for making genetic edits
US12098425B2 (en) 2018-10-10 2024-09-24 Readcoor, Llc Three-dimensional spatial molecular indexing
US12110545B2 (en) 2017-01-06 2024-10-08 Editas Medicine, Inc. Methods of assessing nuclease cleavage
US12152240B2 (en) 2014-10-24 2024-11-26 Ospedale San Raffaele S.R.L. Permanent epigenetic gene silencing
US12157760B2 (en) 2018-05-23 2024-12-03 The Broad Institute, Inc. Base editors and uses thereof
US12201699B2 (en) 2014-10-10 2025-01-21 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
US12203136B2 (en) 2020-08-17 2025-01-21 Readcoor, Llc Methods and systems for spatial mapping of genetic variants
US12214054B2 (en) 2015-11-30 2025-02-04 Duke University Therapeutic targets for the correction of the human dystrophin gene by gene editing and methods of use
US12215345B2 (en) 2013-03-19 2025-02-04 Duke University Compositions and methods for the induction and tuning of gene expression
US12215366B2 (en) 2015-02-09 2025-02-04 Duke University Compositions and methods for epigenome editing
US12214056B2 (en) 2016-07-19 2025-02-04 Duke University Therapeutic applications of CPF1-based genome editing
WO2025027165A1 (en) 2023-08-01 2025-02-06 Basf Plant Science Company Gmbh Increased resistance by expression of an ics protein
WO2025027166A1 (en) 2023-08-01 2025-02-06 Basf Plant Science Company Gmbh Increased resistance by expression of msbp1 protein
US12251450B2 (en) 2013-12-12 2025-03-18 The Broad Institute, Inc. Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for HBV and viral diseases and disorders
US12281338B2 (en) 2018-10-29 2025-04-22 The Broad Institute, Inc. Nucleobase editors comprising GeoCas9 and uses thereof
US12286727B2 (en) 2016-12-19 2025-04-29 Editas Medicine, Inc. Assessing nuclease cleavage
US12331347B2 (en) 2014-07-11 2025-06-17 President And Fellows Of Harvard College Methods for high-throughput labelling and detection of biological features in situ using microscopy
US12338436B2 (en) 2018-06-29 2025-06-24 Editas Medicine, Inc. Synthetic guide molecules, compositions and methods relating thereto
US12342801B2 (en) 2016-05-20 2025-07-01 Regeneron Pharmaceuticals, Inc. Methods for producing antigen-binding proteins against foreign antigens
US12351837B2 (en) 2019-01-23 2025-07-08 The Broad Institute, Inc. Supernegatively charged proteins and uses thereof
WO2025162985A1 (en) 2024-01-30 2025-08-07 Basf Plant Science Company Gmbh Increased plant disease resistance by expression of a glycine-rich protein
US12390514B2 (en) 2017-03-09 2025-08-19 President And Fellows Of Harvard College Cancer vaccine
US12390538B2 (en) 2023-05-15 2025-08-19 Nchroma Bio, Inc. Compositions and methods for epigenetic regulation of HBV gene expression
US12406749B2 (en) 2017-12-15 2025-09-02 The Broad Institute, Inc. Systems and methods for predicting repair outcomes in genetic engineering
US12421506B2 (en) 2013-12-12 2025-09-23 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation
US12428631B2 (en) 2016-04-13 2025-09-30 Duke University CRISPR/Cas9-based repressors for silencing gene targets in vivo and methods of use
US12435320B2 (en) 2014-12-24 2025-10-07 The Broad Institute, Inc. CRISPR having or associated with destabilization domains
US12435330B2 (en) 2019-10-10 2025-10-07 The Broad Institute, Inc. Methods and compositions for prime editing RNA
US12454687B2 (en) 2012-12-12 2025-10-28 The Broad Institute, Inc. Functional genomics using CRISPR-Cas systems, compositions, methods, knock out libraries and applications thereof
US12460231B2 (en) 2014-04-02 2025-11-04 Editas Medicine, Inc. Crispr/CAS-related methods and compositions for treating primary open angle glaucoma
US12467086B2 (en) 2011-10-14 2025-11-11 President And Fellows Of Harvard College Sequencing by structure assembly
US12473543B2 (en) 2019-04-17 2025-11-18 The Broad Institute, Inc. Adenine base editors with reduced off-target effects

Families Citing this family (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027558A2 (en) 2006-08-31 2008-03-06 Codon Devices, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
EP2637780B1 (en) 2010-11-12 2022-02-09 Gen9, Inc. Protein arrays and methods of using and making the same
AU2011338841B2 (en) 2010-11-12 2017-02-16 Gen9, Inc. Methods and devices for nucleic acids synthesis
BR112013024337A2 (pt) 2011-03-23 2017-09-26 Du Pont locus de traço transgênico complexo em uma planta, planta ou semente, método para produzir em uma planta um locus de traço transgênico complexo e construto de expressão
AU2012300401B2 (en) 2011-08-26 2018-02-08 Ginkgo Bioworks, Inc. Compositions and methods for high fidelity assembly of nucleic acids
US9637739B2 (en) * 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
US9150853B2 (en) 2012-03-21 2015-10-06 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
EP2841601B1 (en) 2012-04-24 2019-03-06 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
US20150191719A1 (en) 2012-06-25 2015-07-09 Gen9, Inc. Methods for Nucleic Acid Assembly and High Throughput Sequencing
JP6475172B2 (ja) 2013-02-20 2019-02-27 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. ラットの遺伝子組換え
EP2981617B1 (en) 2013-04-04 2023-07-05 President and Fellows of Harvard College Therapeutic uses of genome editing with crispr/cas systems
US9873907B2 (en) 2013-05-29 2018-01-23 Agilent Technologies, Inc. Method for fragmenting genomic DNA using CAS9
EP3019595A4 (en) 2013-07-09 2016-11-30 THERAPEUTIC USES OF A GENERIC CHANGE WITH CRISPR / CAS SYSTEMS
SG10201800213VA (en) * 2013-07-10 2018-02-27 Harvard College Orthogonal cas9 proteins for rna-guided gene regulation and editing
WO2015021426A1 (en) * 2013-08-09 2015-02-12 Sage Labs, Inc. A crispr/cas system-based novel fusion protein and its application in genome editing
EP3611268A1 (en) 2013-08-22 2020-02-19 E. I. du Pont de Nemours and Company Plant genome modification using guide rna/cas endonuclease systems and methods of use
AU2014312123A1 (en) 2013-08-29 2016-03-17 Temple University Of The Commonwealth System Of Higher Education Methods and compositions for RNA-guided treatment of HIV infection
WO2015066119A1 (en) 2013-10-30 2015-05-07 North Carolina State University Compositions and methods related to a type-ii crispr-cas system in lactobacillus buchneri
US10787684B2 (en) * 2013-11-19 2020-09-29 President And Fellows Of Harvard College Large gene excision and insertion
ES2975317T3 (es) 2013-12-11 2024-07-04 Regeneron Pharma Métodos y composiciones para la modificación dirigida de un genoma
US10787654B2 (en) 2014-01-24 2020-09-29 North Carolina State University Methods and compositions for sequence guiding Cas9 targeting
CN106460003A (zh) 2014-04-08 2017-02-22 北卡罗来纳州立大学 用于使用crispr相关基因rna引导阻遏转录的方法和组合物
BR112016028564A2 (pt) 2014-06-06 2018-01-30 Regeneron Pharma método para modificar um locus-alvo em uma célula.
MX384887B (es) 2014-06-23 2025-03-14 Regeneron Pharma Ensamblaje de adn mediado por nucleasa.
SG10201911411YA (en) 2014-06-26 2020-02-27 Regeneron Pharma Methods and compositions for targeted genetic modifications and methods of use
WO2016007347A1 (en) 2014-07-11 2016-01-14 E. I. Du Pont De Nemours And Company Compositions and methods for producing plants resistant to glyphosate herbicide
US9970030B2 (en) * 2014-08-27 2018-05-15 Caribou Biosciences, Inc. Methods for increasing CAS9-mediated engineering efficiency
WO2016033298A1 (en) 2014-08-28 2016-03-03 North Carolina State University Novel cas9 proteins and guiding features for dna targeting and genome editing
US20170298450A1 (en) * 2014-09-10 2017-10-19 The Regents Of The University Of California Reconstruction of ancestral cells by enzymatic recording
WO2016040030A1 (en) 2014-09-12 2016-03-17 E. I. Du Pont De Nemours And Company Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use
CA2965509C (en) 2014-10-24 2023-03-14 Avectas Limited Delivery across cell plasma membranes
WO2016073955A2 (en) 2014-11-06 2016-05-12 President And Fellows Of Harvard College Cells lacking b2m surface expression and methods for allogeneic administration of such cells
GB201421096D0 (en) 2014-11-27 2015-01-14 Imp Innovations Ltd Genome editing methods
BR112017013104A2 (pt) 2014-12-19 2018-05-15 Regeneron Pharma métodos para modificar um locus genômico alvo em uma célula, para intensificar a recombinação homóloga em um locus genômico alvo em uma célula e para produzir uma geração f0 de um animal não humano.
US10196613B2 (en) 2014-12-19 2019-02-05 Regeneron Pharmaceuticals, Inc. Stem cells for modeling type 2 diabetes
WO2016114972A1 (en) 2015-01-12 2016-07-21 The Regents Of The University Of California Heterodimeric cas9 and methods of use thereof
WO2016123243A1 (en) 2015-01-28 2016-08-04 The Regents Of The University Of California Methods and compositions for labeling a single-stranded target nucleic acid
US10450576B2 (en) 2015-03-27 2019-10-22 E I Du Pont De Nemours And Company Soybean U6 small nuclear RNA gene promoters and their use in constitutive expression of small RNA genes in plants
HK1254190A1 (zh) 2015-05-08 2019-07-12 President And Fellows Of Harvard College 通用供体干细胞和相关方法
CA3000155A1 (en) 2015-05-29 2016-12-08 Agenovir Corporation Compositions and methods for cell targeted hpv treatment
EP3303607A4 (en) 2015-05-29 2018-10-10 North Carolina State University Methods for screening bacteria, archaea, algae, and yeast using crispr nucleic acids
KR102553518B1 (ko) 2015-06-01 2023-07-07 템플 유니버시티-오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 Hiv 감염의 rna-가이드된 치료를 위한 방법 및 조성물
EP3303634B1 (en) 2015-06-03 2023-08-30 The Regents of The University of California Cas9 variants and methods of use thereof
US20180296537A1 (en) 2015-06-05 2018-10-18 Novartis Ag Methods and compositions for diagnosing, treating, and monitoring treatment of shank3 deficiency associated disorders
CN107922918B (zh) 2015-06-15 2022-10-21 北卡罗来纳州立大学 用于有效递送核酸和基于rna的抗微生物剂的方法和组合物
US9790490B2 (en) 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
AU2016279062A1 (en) 2015-06-18 2019-03-28 Omar O. Abudayyeh Novel CRISPR enzymes and systems
CA2990699A1 (en) 2015-06-29 2017-01-05 Ionis Pharmaceuticals, Inc. Modified crispr rna and modified single crispr rna and uses thereof
EP3322804B1 (en) 2015-07-15 2021-09-01 Rutgers, The State University of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
WO2017040786A1 (en) * 2015-09-04 2017-03-09 Massachusetts Institute Of Technology Multilayer genetic safety kill circuits based on single cas9 protein and multiple engineered grna in mammalian cells
WO2017049129A2 (en) * 2015-09-18 2017-03-23 President And Fellows Of Harvard College Methods of making guide rna
WO2017058751A1 (en) 2015-09-28 2017-04-06 North Carolina State University Methods and compositions for sequence specific antimicrobials
IL297017A (en) 2015-10-08 2022-12-01 Harvard College Multiplexed genome editing
WO2017074962A1 (en) * 2015-10-30 2017-05-04 Brandeis University Modified cas9 compositions and methods of use
BR112018009515A2 (pt) * 2015-11-11 2018-11-06 Univ Minnesota sistema e métodos de biocontenção/biocontrole
US11905521B2 (en) 2015-11-17 2024-02-20 The Chinese University Of Hong Kong Methods and systems for targeted gene manipulation
US11001622B2 (en) 2015-11-19 2021-05-11 The Brigham And Women's Hospital, Inc. Method of treating autoimmune disease with lymphocyte antigen CD5-like (CD5L) protein
WO2017112620A1 (en) 2015-12-22 2017-06-29 North Carolina State University Methods and compositions for delivery of crispr based antimicrobials
US11827899B2 (en) 2015-12-30 2023-11-28 Avectas Limited Vector-free delivery of gene editing proteins and compositions to cells and tissues
CN105624187A (zh) * 2016-02-17 2016-06-01 天津大学 酿酒酵母基因组定点突变的方法
EP3417061B1 (en) 2016-02-18 2022-10-26 The Regents of the University of California Methods and compositions for gene editing in stem cells
US10538750B2 (en) 2016-02-29 2020-01-21 Agilent Technologies, Inc. Methods and compositions for blocking off-target nucleic acids from cleavage by CRISPR proteins
CN109414414A (zh) 2016-03-16 2019-03-01 戴维·格拉德斯通研究所 用于治疗肥胖症和/或糖尿病以及用于鉴定候选治疗剂的方法和组合物
KR102424476B1 (ko) 2016-04-19 2022-07-25 더 브로드 인스티튜트, 인코퍼레이티드 신규한 crispr 효소 및 시스템
US11286478B2 (en) 2016-04-19 2022-03-29 The Broad Institute, Inc. Cpf1 complexes with reduced indel activity
US12043856B2 (en) * 2016-05-24 2024-07-23 The Translational Genomics Research Institute Molecular tagging methods and sequencing libraries
WO2018022930A1 (en) * 2016-07-27 2018-02-01 The Board Of Trustees Of The Leland Stanford Junior University Immolative cell-penetrating complexes for nucleic acid delivery
BR112019001783A2 (pt) 2016-07-29 2019-05-07 Regeneron Pharmaceuticals, Inc. mamífero não humano, e, métodos para produzir o mamífero não humano e de triagem de um composto.
US10960085B2 (en) 2016-09-07 2021-03-30 Sangamo Therapeutics, Inc. Modulation of liver genes
US20190225974A1 (en) 2016-09-23 2019-07-25 BASF Agricultural Solutions Seed US LLC Targeted genome optimization in plants
CN110023494A (zh) 2016-09-30 2019-07-16 加利福尼亚大学董事会 Rna指导的核酸修饰酶及其使用方法
US10669539B2 (en) 2016-10-06 2020-06-02 Pioneer Biolabs, Llc Methods and compositions for generating CRISPR guide RNA libraries
WO2018089386A1 (en) 2016-11-11 2018-05-17 The Broad Institute, Inc. Modulation of intestinal epithelial cell differentiation, maintenance and/or function through t cell action
EP4520828A3 (en) 2016-11-15 2025-07-09 The Schepens Eye Research Institute, Inc. Compositions and methods for the treatment of aberrant angiogenesis
JP7317706B2 (ja) 2016-12-14 2023-07-31 リガンダル インコーポレイテッド 核酸およびタンパク質ペイロード送達のための方法および組成物
AU2017381598B2 (en) 2016-12-22 2023-12-21 Avectas Limited Vector-free intracellular delivery by reversible permeabilisation
JP7219972B2 (ja) 2017-01-05 2023-02-09 ラトガース,ザ ステート ユニバーシティ オブ ニュー ジャージー Dna二本鎖切断に非依存的な標的化遺伝子編集プラットフォームおよびその用途
KR102712656B1 (ko) 2017-01-23 2024-10-04 리제너론 파마슈티칼스 인코포레이티드 Hsd17b13 변종 및 이것의 용도
US12331319B2 (en) 2017-04-12 2025-06-17 The Broad Institute, Inc. Respiratory and sweat gland ionocytes
US11913015B2 (en) 2017-04-17 2024-02-27 University Of Maryland, College Park Embryonic cell cultures and methods of using the same
US12208140B2 (en) 2017-04-21 2025-01-28 The Broad Institute, Inc. Targeted delivery to beta cells
WO2018204777A2 (en) 2017-05-05 2018-11-08 The Broad Institute, Inc. Methods for identification and modification of lncrna associated with target genotypes and phenotypes
WO2018209014A1 (en) 2017-05-10 2018-11-15 Regents Of The University Of Minnesota Programmable transcription factors and methods
JP7227162B2 (ja) 2017-06-06 2023-02-21 ザイマージェン インコーポレイテッド 真菌株を改良するためのhtpゲノム操作プラットフォーム
JP2020524490A (ja) 2017-06-06 2020-08-20 ザイマージェン インコーポレイテッド Escherichia Coliを改良するためのHTPゲノム操作プラットフォーム
JP7161730B2 (ja) * 2017-06-07 2022-10-27 国立大学法人 東京大学 顆粒状角膜変性症に対する遺伝子治療薬
KR102720855B1 (ko) 2017-06-15 2024-10-25 더 리전트 오브 더 유니버시티 오브 캘리포니아 표적화된 비-바이러스 dna 삽입
ES3027661T3 (en) 2017-06-21 2025-06-16 Prokidney Immunoprivileged bioactive renal cells for the treatment of kidney disease
RU2019143568A (ru) 2017-07-31 2021-09-02 Регенерон Фармасьютикалс, Инк. Способы и композиции для оценки crispr/cas-индуцированной рекомбинации с экзогенной донорной нуклеиновой кислотой in vivo
KR20250107976A (ko) 2017-09-29 2025-07-14 인텔리아 테라퓨틱스, 인크. 지질 나노파티클을 이용한 mRNA 전달의 체외 방법
WO2019067872A1 (en) 2017-09-29 2019-04-04 Intellia Therapeutics, Inc. COMPOSITIONS AND METHODS FOR EDITING THE TTR GENE AND TREATING AMYLOID DOSE ATTR
SG11202002562QA (en) 2017-09-29 2020-04-29 Intellia Therapeutics Inc Polynucleotides, compositions, and methods for genome editing
MY204993A (en) 2017-09-29 2024-09-26 Intellia Therapeutics Inc Formulations
EP3585162B1 (en) 2017-09-29 2023-08-30 Regeneron Pharmaceuticals, Inc. Rodents comprising a humanized ttr locus and methods of use
KR102503130B1 (ko) 2017-10-27 2023-02-24 더 리전트 오브 더 유니버시티 오브 캘리포니아 내인성 t 세포 수용체의 표적화된 대체
JP7416700B2 (ja) 2017-11-14 2024-01-17 ザ スキーペンズ アイ リサーチ インスティチュート インコーポレイテッド 増殖性硝子体網膜症および上皮間葉転換と関連付けられる状態の治療のためのrunx1阻害の方法
MX2020007466A (es) 2018-01-12 2020-11-12 Basf Se Gen subyacente al qtl de la cantidad de espiguillas por espiga en trigo en el cromosoma 7a.
US20190233816A1 (en) 2018-01-26 2019-08-01 Massachusetts Institute Of Technology Structure-guided chemical modification of guide rna and its applications
US12084676B2 (en) 2018-02-23 2024-09-10 Pioneer Hi-Bred International, Inc. Cas9 orthologs
CN111885915B (zh) 2018-03-19 2023-04-28 瑞泽恩制药公司 使用crispr/cas系统对动物进行转录调制
US12133884B2 (en) 2018-05-11 2024-11-05 Beam Therapeutics Inc. Methods of substituting pathogenic amino acids using programmable base editor systems
KR20210045360A (ko) 2018-05-16 2021-04-26 신테고 코포레이션 가이드 rna 설계 및 사용을 위한 방법 및 시스템
EP3802779A1 (en) 2018-06-01 2021-04-14 Avectas Limited Cell engineering platform
US20210285009A1 (en) 2018-07-13 2021-09-16 The Regents Of The University Of California Retrotransposon-based delivery vehicle and methods of use thereof
CA3111432A1 (en) 2018-07-31 2020-02-06 The Broad Institute, Inc. Novel crispr enzymes and systems
CA3113190A1 (en) 2018-07-31 2020-02-06 Intellia Therapeutics, Inc. Compositions and methods for hydroxyacid oxidase 1 (hao1) gene editing for treating primary hyperoxaluria type 1 (ph1)
WO2020037490A1 (en) * 2018-08-21 2020-02-27 Institute Of Hematology And Blood Diseases Hospital, Cams & Pumc Method of genome editing in mammalian stem cell
EP3841205A4 (en) 2018-08-22 2022-08-17 The Regents of The University of California Variant type v crispr/cas effector polypeptides and methods of use thereof
BR112021005718A2 (pt) 2018-09-28 2021-06-22 Intellia Therapeutics, Inc. composições e métodos para edição de genes de lactato desidrogenase (ldha)
US12264330B2 (en) 2018-10-01 2025-04-01 North Carolina State University Recombinant type I CRISPR-Cas system and uses thereof for killing target cells
US12264313B2 (en) 2018-10-01 2025-04-01 North Carolina State University Recombinant type I CRISPR-Cas system and uses thereof for genome modification and alteration of expression
US12203123B2 (en) 2018-10-01 2025-01-21 North Carolina State University Recombinant type I CRISPR-Cas system and uses thereof for screening for variant cells
EP3861120A4 (en) 2018-10-01 2023-08-16 North Carolina State University Recombinant type i crispr-cas system
AU2019362879A1 (en) 2018-10-16 2021-05-27 Intellia Therapeutics, Inc. Compositions and methods for immunotherapy
US11407995B1 (en) 2018-10-26 2022-08-09 Inari Agriculture Technology, Inc. RNA-guided nucleases and DNA binding proteins
JP2022513408A (ja) 2018-10-31 2022-02-07 ザイマージェン インコーポレイテッド Dnaライブラリーの多重化決定論的アセンブリー
US20220010321A1 (en) * 2018-11-01 2022-01-13 Keygene N.V. Dual guide rna for crispr/cas genome editing in plants cells
US11434477B1 (en) 2018-11-02 2022-09-06 Inari Agriculture Technology, Inc. RNA-guided nucleases and DNA binding proteins
CA3117730A1 (en) 2018-11-09 2020-05-14 Inari Agriculture, Inc. Rna-guided nucleases and dna binding proteins
KR20200071198A (ko) 2018-12-10 2020-06-19 네오이뮨텍, 인코퍼레이티드 Nrf2 발현 조절 기반 T 세포 항암면역치료법
AU2019398351A1 (en) 2018-12-14 2021-06-03 Pioneer Hi-Bred International, Inc. Novel CRISPR-Cas systems for genome editing
KR20210105914A (ko) 2018-12-20 2021-08-27 리제너론 파마슈티칼스 인코포레이티드 뉴클레아제-매개 반복부 팽창
US20220106584A1 (en) 2019-01-14 2022-04-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kits for generating and selecting a variant of a binding protein with increased binding affinity and/or specificity
US12460230B2 (en) 2019-02-10 2025-11-04 The J. David Gladstone Institutes Modified mitochondrion and methods of use thereof
CN113811607A (zh) 2019-03-07 2021-12-17 加利福尼亚大学董事会 CRISPR-Cas效应子多肽和其使用方法
CA3129871A1 (en) 2019-03-08 2020-09-17 Zymergen Inc. Iterative genome editing in microbes
US11053515B2 (en) 2019-03-08 2021-07-06 Zymergen Inc. Pooled genome editing in microbes
IL286359B2 (en) 2019-03-18 2024-06-01 Regeneron Pharma Crispr/cas dropout screening platform to reveal genetic vulnerabilities associated with tau aggregation
KR20240126075A (ko) 2019-03-18 2024-08-20 리제너론 파마슈티칼스 인코포레이티드 타우 시딩 또는 응집의 유전적 변형제를 식별하기 위한 CRISPR/Cas 스크리닝 플랫폼
KR20220004648A (ko) 2019-03-28 2022-01-11 인텔리아 테라퓨틱스, 인크. Ttr 가이드 rna, 및 rna-가이드 dna 결합제를 암호화하는 폴리뉴클레오티드를 포함하는 조성물 및 방법
CN113874004A (zh) 2019-03-28 2021-12-31 因特利亚治疗公司 用于ttr基因编辑和治疗attr淀粉样变性的包括皮质类固醇的组合物和方法或其用途
BR112021019224A2 (pt) 2019-03-28 2021-11-30 Intellia Therapeutics Inc Polinucleotídeos, composições e métodos para expressão de polipeptídeo
CN118064502A (zh) 2019-04-03 2024-05-24 瑞泽恩制药公司 用于将抗体编码序列插入到安全港基因座中的方法和组合物
ES2923629T3 (es) 2019-04-04 2022-09-29 Regeneron Pharma Métodos para la introducción sin cicatrices de modificaciones dirigidas en vectores de direccionamiento
AU2020253532B2 (en) 2019-04-04 2024-06-20 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized coagulation factor 12 locus
WO2020247452A1 (en) 2019-06-04 2020-12-10 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus with a beta-slip mutation and methods of use
SG11202111256XA (en) 2019-06-07 2021-11-29 Regeneron Pharma Non-human animals comprising a humanized albumin locus
CA3137765A1 (en) 2019-06-14 2020-12-17 Regeneron Pharmaceuticals, Inc. Models of tauopathy
AU2020337919A1 (en) 2019-08-27 2022-03-24 Vertex Pharmaceuticals Incorporated Compositions and methods for treatment of disorders associated with repetitive DNA
WO2021050940A1 (en) 2019-09-13 2021-03-18 Regeneron Pharmaceuticals, Inc. Transcription modulation in animals using crispr/cas systems delivered by lipid nanoparticles
AU2020348879A1 (en) 2019-09-20 2022-04-14 Massachusetts Institute Of Technology Novel type VI CRISPR enzymes and systems
EP4053284A4 (en) * 2019-11-01 2024-03-06 Suzhou Qi Biodesign biotechnology Company Limited METHOD FOR TARGETED MODIFICATION OF PLANT GENOME SEQUENCE
EP4054651A1 (en) 2019-11-08 2022-09-14 Regeneron Pharmaceuticals, Inc. Crispr and aav strategies for x-linked juvenile retinoschisis therapy
WO2021108363A1 (en) 2019-11-25 2021-06-03 Regeneron Pharmaceuticals, Inc. Crispr/cas-mediated upregulation of humanized ttr allele
US11060141B1 (en) 2019-12-23 2021-07-13 Stilla Technologies Multiplex drop-off digital polymerase chain reaction methods
CN115362256A (zh) * 2020-02-07 2022-11-18 因特利亚治疗公司 用于激肽释放酶(klkb1)基因编辑的组合物和方法
WO2021178556A1 (en) 2020-03-04 2021-09-10 Regeneron Pharmaceuticals, Inc. Methods and compositions for sensitization of tumor cells to immune therapy
WO2021191678A1 (en) 2020-03-23 2021-09-30 Avectas Limited Engineering of dendritic cells for generation of vaccines against sars-cov-2
EP4125348A1 (en) 2020-03-23 2023-02-08 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use
JP2023522848A (ja) 2020-04-08 2023-06-01 アストラゼネカ・アクチエボラーグ 改善された部位特異的改変のための組成物及び方法
JP2023524666A (ja) 2020-04-28 2023-06-13 インテリア セラピューティクス,インコーポレイテッド インビトロ細胞送達の方法
WO2022008935A1 (en) 2020-07-10 2022-01-13 Horizon Discovery Limited Method for producing genetically modified cells
TW202218686A (zh) 2020-09-09 2022-05-16 美商維泰克斯製藥公司 用於治療杜興氏肌肉失養症(duchenne muscular dystrophy)之組合物及方法
US10894812B1 (en) 2020-09-30 2021-01-19 Alpine Roads, Inc. Recombinant milk proteins
EP4222167A1 (en) 2020-09-30 2023-08-09 Nobell Foods, Inc. Recombinant milk proteins and food compositions comprising the same
US10947552B1 (en) 2020-09-30 2021-03-16 Alpine Roads, Inc. Recombinant fusion proteins for producing milk proteins in plants
EP4232583A1 (en) 2020-10-21 2023-08-30 Massachusetts Institute of Technology Systems, methods, and compositions for site-specific genetic engineering using programmable addition via site-specific targeting elements (paste)
US20230414648A1 (en) 2020-11-06 2023-12-28 Vertex Pharmaceuticals Incorporated Compositions and Methods for Treatment of DM1 with SLUCAS9 and SACAS9
US20240002839A1 (en) 2020-12-02 2024-01-04 Decibel Therapeutics, Inc. Crispr sam biosensor cell lines and methods of use thereof
AU2021396403A1 (en) 2020-12-11 2023-06-29 Intellia Therapeutics, Inc. Compositions and methods for reducing mhc class ii in a cell
AU2021409732A1 (en) 2020-12-23 2023-07-20 Intellia Therapeutics, Inc. Compositions and methods for reducing hla-a in a cell
KR20230135068A (ko) 2020-12-23 2023-09-22 인텔리아 테라퓨틱스, 인크. 세포에서 ciita를 유전적으로 변형시키기 위한 조성물및 방법
EP4274893B1 (en) 2021-01-05 2025-01-01 Revvity Discovery Limited Method for producing genetically modified cells
JP2024505084A (ja) 2021-02-01 2024-02-02 アヴェクタス リミテッド 送達プラットフォーム
JP2024505672A (ja) 2021-02-08 2024-02-07 インテリア セラピューティクス,インコーポレイテッド 免疫療法のためのナチュラルキラー細胞受容体2b4組成物及び方法
WO2022170193A2 (en) 2021-02-08 2022-08-11 Intellia Therapeutics, Inc. T-cell immunoglobulin and mucin domain 3 (tim3) compositions and methods for immunotherapy
EP4288088A2 (en) 2021-02-08 2023-12-13 Intellia Therapeutics, Inc. Lymphocyte activation gene 3 (lag3) compositions and methods for immunotherapy
EP4298221A1 (en) 2021-02-26 2024-01-03 Vertex Pharmaceuticals Incorporated Compositions and methods for treatment of myotonic dystrophy type 1 with crispr/slucas9
EP4298222A1 (en) 2021-02-26 2024-01-03 Vertex Pharmaceuticals Incorporated Compositions and methods for treatment of myotonic dystrophy type 1 with crispr/sacas9
JP2024513087A (ja) 2021-04-07 2024-03-21 アストラゼネカ・アクチエボラーグ 部位特異的改変のための組成物及び方法
WO2022221697A1 (en) 2021-04-17 2022-10-20 Intellia Therapeutics, Inc. Lipid nanoparticle compositions
TW202309034A (zh) 2021-04-17 2023-03-01 美商英特利亞醫療公司 Dna依賴性蛋白質激酶抑制劑以及其組合物及用途
AU2022258732A1 (en) 2021-04-17 2023-11-30 Intellia Therapeutics, Inc. Lipid nanoparticle compositions
WO2022229851A1 (en) 2021-04-26 2022-11-03 Crispr Therapeutics Ag Compositions and methods for using slucas9 scaffold sequences
WO2022234519A1 (en) 2021-05-05 2022-11-10 Crispr Therapeutics Ag Compositions and methods for using sacas9 scaffold sequences
CA3218511A1 (en) 2021-05-10 2022-11-17 Sqz Biotechnologies Company Methods for delivering genome editing molecules to the nucleus or cytosol of a cell and uses thereof
WO2022251644A1 (en) 2021-05-28 2022-12-01 Lyell Immunopharma, Inc. Nr4a3-deficient immune cells and uses thereof
JP2024520676A (ja) 2021-06-02 2024-05-24 ライエル・イミュノファーマ・インコーポレイテッド Nr4a3欠損免疫細胞及びその使用
WO2023018637A1 (en) 2021-08-09 2023-02-16 Vertex Pharmaceuticals Incorporated Gene editing of regulatory elements
JP2024534114A (ja) 2021-08-24 2024-09-18 インテリア セラピューティクス,インコーポレイテッド 細胞療法用のプログラム細胞死タンパク質1(pd1)組成物及び方法
WO2023039444A2 (en) 2021-09-08 2023-03-16 Vertex Pharmaceuticals Incorporated Precise excisions of portions of exon 51 for treatment of duchenne muscular dystrophy
WO2023052508A2 (en) 2021-09-30 2023-04-06 Astrazeneca Ab Use of inhibitors to increase efficiency of crispr/cas insertions
CA3232968A1 (en) 2021-10-14 2023-04-20 Jasper Williams Immune cells having co-expressed shrnas and logic gate systems
CN118119702A (zh) 2021-10-14 2024-05-31 隆萨销售股份有限公司 用于细胞外囊泡产生的经修饰的生产者细胞
CN118251491A (zh) 2021-10-28 2024-06-25 瑞泽恩制药公司 用于敲除C5的CRISPR/Cas相关方法及组合物
EP4426828A1 (en) 2021-11-01 2024-09-11 Tome Biosciences, Inc. Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo
CN118369110A (zh) 2021-11-03 2024-07-19 英特利亚治疗股份有限公司 用于免疫疗法的cd38组合物和方法
CA3237303A1 (en) 2021-11-03 2023-05-11 Intellia Therapeutics, Inc. Polynucleotides, compositions, and methods for genome editing
WO2023081756A1 (en) 2021-11-03 2023-05-11 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Precise genome editing using retrons
CA3238939A1 (en) 2021-12-08 2023-06-15 Gaurang Patel Mutant myocilin disease model and uses thereof
CA3244180A1 (en) 2021-12-22 2023-06-29 Tome Biosciences Inc CO-ADMINISTRATION OF A GENE EDITOR CONSTRUCTION AND A PATTERN DONOR
EP4457342A1 (en) 2021-12-29 2024-11-06 Bristol-Myers Squibb Company Generation of landing pad cell lines
WO2023141602A2 (en) 2022-01-21 2023-07-27 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
US20250230412A1 (en) 2022-02-01 2025-07-17 President And Fellows Of Harvard College Methods and compositions for treating cancer
TW202332767A (zh) 2022-02-02 2023-08-16 美商雷傑納榮製藥公司 用於治療龐貝氏症之抗TfR:GAA及抗CD63:GAA插入
EP4490291A1 (en) 2022-03-08 2025-01-15 Vertex Pharmaceuticals Incorporated Precise excisions of portions of exons for treatment of duchenne muscular dystrophy
WO2023172927A1 (en) 2022-03-08 2023-09-14 Vertex Pharmaceuticals Incorporated Precise excisions of portions of exon 44, 50, and 53 for treatment of duchenne muscular dystrophy
WO2023205744A1 (en) 2022-04-20 2023-10-26 Tome Biosciences, Inc. Programmable gene insertion compositions
EP4514981A2 (en) 2022-04-29 2025-03-05 Regeneron Pharmaceuticals, Inc. Identification of tissue-specific extragenic safe harbors for gene therapy approaches
CA3256953A1 (en) 2022-05-09 2023-11-16 Regeneron Pharma VECTORS AND METHODS FOR IN VIVO ANTIBODY PRODUCTION
EP4525892A1 (en) 2022-05-19 2025-03-26 Lyell Immunopharma, Inc. Polynucleotides targeting nr4a3 and uses thereof
WO2023225670A2 (en) 2022-05-20 2023-11-23 Tome Biosciences, Inc. Ex vivo programmable gene insertion
JP2025521154A (ja) 2022-05-31 2025-07-08 リジェネロン・ファーマシューティカルズ・インコーポレイテッド C9orf72反復伸長疾患のためのcrispr干渉療法
WO2023235725A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr-based therapeutics for c9orf72 repeat expansion disease
WO2024020352A1 (en) 2022-07-18 2024-01-25 Vertex Pharmaceuticals Incorporated Tandem guide rnas (tg-rnas) and their use in genome editing
MA71557A (fr) 2022-07-18 2025-05-30 Renagade Therapeutics Management Inc. Composants d'édition génique, systèmes et procédés d'utilisation
WO2024020587A2 (en) 2022-07-22 2024-01-25 Tome Biosciences, Inc. Pleiopluripotent stem cell programmable gene insertion
JP2025528052A (ja) 2022-07-29 2025-08-26 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 脳及び筋肉へのトランスフェリン受容体(tfr)媒介送達のための組成物及び方法
CA3261296A1 (en) 2022-08-05 2024-02-08 Regeneron Pharma TDP-43 VARIANTS RESISTANT TO AGGREGATION
WO2024044723A1 (en) 2022-08-25 2024-02-29 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
WO2024064952A1 (en) 2022-09-23 2024-03-28 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells overexpressing c-jun
WO2024064958A1 (en) 2022-09-23 2024-03-28 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells
CN120265314A (zh) 2022-09-28 2025-07-04 瑞泽恩制药公司 抗体抗性修饰受体以增强基于细胞的疗法
WO2024077174A1 (en) 2022-10-05 2024-04-11 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells
CN120693347A (zh) 2022-11-04 2025-09-23 瑞泽恩制药公司 钙电压门控通道辅助亚基γ1(CACNG1)结合蛋白和CACNG1介导的向骨骼肌的递送
JP2025537750A (ja) 2022-11-10 2025-11-20 セイル バイオメディシンズ インコーポレイテッド 脂質ナノ粒子または脂質再構成天然メッセンジャーパックを含むrna組成物
EP4619438A2 (en) 2022-11-14 2025-09-24 Regeneron Pharmaceuticals, Inc. Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes
WO2024137766A2 (en) 2022-12-21 2024-06-27 Intellia Therapeutics, Inc. Compositions and methods for proprotein convertase subtilisin kexin 9 (pcsk9) editing
WO2024138194A1 (en) 2022-12-22 2024-06-27 Tome Biosciences, Inc. Platforms, compositions, and methods for in vivo programmable gene insertion
US20250339384A1 (en) 2023-01-27 2025-11-06 Regeneron Pharmaceuticals, Inc. Modified rhabdovirus glycoproteins and uses thereof
WO2024186890A1 (en) 2023-03-06 2024-09-12 Intellia Therapeutics, Inc. Compositions and methods for hepatitis b virus (hbv) genome editing
TW202503051A (zh) 2023-03-07 2025-01-16 美商英特利亞醫療公司 用於免疫療法之cish組合物及方法
WO2024201368A1 (en) 2023-03-29 2024-10-03 Astrazeneca Ab Use of inhibitors to increase efficiency of crispr/cas insertions
WO2024234006A1 (en) 2023-05-11 2024-11-14 Tome Biosciences, Inc. Systems, compositions, and methods for targeting liver sinusodial endothelial cells (lsecs)
TW202502729A (zh) 2023-05-19 2025-01-16 美商英特利亞醫療公司 可電離胺脂質
WO2024259309A1 (en) 2023-06-15 2024-12-19 Regeneron Pharmaceuticals, Inc. Gene therapy for hearing disorders
WO2025006963A1 (en) 2023-06-30 2025-01-02 Regeneron Pharmaceuticals, Inc. Methods and compositions for increasing homology-directed repair
WO2025029657A2 (en) 2023-07-28 2025-02-06 Regeneron Pharmaceuticals, Inc. Anti-tfr:gaa and anti-cd63:gaa insertion for treatment of pompe disease
WO2025029654A2 (en) 2023-07-28 2025-02-06 Regeneron Pharmaceuticals, Inc. Use of bgh-sv40l tandem polya to enhance transgene expression during unidirectional gene insertion
US20250049896A1 (en) 2023-07-28 2025-02-13 Regeneron Pharmaceuticals, Inc. Anti-tfr:acid sphingomyelinase for treatment of acid sphingomyelinase deficiency
WO2025038642A1 (en) 2023-08-14 2025-02-20 Intellia Therapeutics, Inc. Compositions and methods for genetically modifying cd70
WO2025038646A1 (en) 2023-08-14 2025-02-20 Intellia Therapeutics, Inc. Cd70 car-t compositions and methods for cell-based therapy
WO2025038637A1 (en) 2023-08-14 2025-02-20 Intellia Therapeutics, Inc. Compositions and methods for genetically modifying transforming growth factor beta receptor type 2 (tgfβr2)
WO2025038750A2 (en) 2023-08-14 2025-02-20 President And Fellows Of Harvard College Methods and compositions for treating cancer
WO2025038648A1 (en) 2023-08-14 2025-02-20 Intellia Therapeutics, Inc. Compositions and methods for genetically modifying transforming growth factor beta receptor type 2 (tgfβr2)
WO2025049481A1 (en) 2023-08-28 2025-03-06 Intellia Therapeutics, Inc. Methods of editing an hla-a gene in vitro
WO2025049524A1 (en) 2023-08-28 2025-03-06 Regeneron Pharmaceuticals, Inc. Cxcr4 antibody-resistant modified receptors
WO2025049959A2 (en) 2023-09-01 2025-03-06 Renagade Therapeutics Management Inc. Gene editing systems, compositions, and methods for treatment of vexas syndrome
WO2025050069A1 (en) 2023-09-01 2025-03-06 Tome Biosciences, Inc. Programmable gene insertion using engineered integration enzymes
WO2025078978A1 (en) 2023-10-09 2025-04-17 Avectas Limited Transfection of cells via reversible permeabilization
WO2025081042A1 (en) 2023-10-12 2025-04-17 Renagade Therapeutics Management Inc. Nickase-retron template-based precision editing system and methods of use
WO2025111340A1 (en) * 2023-11-20 2025-05-30 William Marsh Rice University Engineered extrachromosomal nucleic acids and methods of use thereof
WO2025149984A2 (en) 2024-01-12 2025-07-17 Avectas Limited Delivery platform with flow-through system (fts)
WO2025149983A2 (en) 2024-01-12 2025-07-17 Avectas Limited Delivery platform with integrated non-viral transfection and cell processing
WO2025155753A2 (en) 2024-01-17 2025-07-24 Renagade Therapeutics Management Inc. Improved gene editing system, guides, and methods
WO2025174765A1 (en) 2024-02-12 2025-08-21 Renagade Therapeutics Management Inc. Lipid nanoparticles comprising coding rna molecules for use in gene editing and as vaccines and therapeutic agents
WO2025184567A1 (en) 2024-03-01 2025-09-04 Regeneron Pharmaceuticals, Inc. Methods and compositions for re-dosing aav using anti-cd40 antagonistic antibody to suppress host anti-aav antibody response
WO2025202473A1 (en) 2024-03-28 2025-10-02 Revvity Discovery Limited A nucleic acid deaminase, a base editor and uses thereof
WO2025217398A1 (en) 2024-04-10 2025-10-16 Lyell Immunopharma, Inc. Methods for culturing cells with improved culture medium
WO2025224107A1 (en) 2024-04-22 2025-10-30 Basecamp Research Ltd Method and compositions for detecting off-target editing
WO2025224182A2 (en) 2024-04-23 2025-10-30 Basecamp Research Ltd Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo
WO2025235388A1 (en) 2024-05-06 2025-11-13 Regeneron Pharmaceuticals, Inc. Transgene genomic identification by nuclease-mediated long read sequencing
WO2025240946A1 (en) 2024-05-17 2025-11-20 Intellia Therapeutics, Inc. Lipid nanoparticles and lipid nanoparticle compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100076057A1 (en) * 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
WO2013142578A1 (en) * 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039784A (en) 1997-03-12 2000-03-21 Hoeganaes Corporation Iron-based powder compositions containing green strength enhancing lubricants
WO1999045132A1 (en) 1998-03-02 1999-09-10 Massachusetts Institute Of Technology Poly zinc finger proteins with improved linkers
US7090976B2 (en) 1999-11-10 2006-08-15 Rigel Pharmaceuticals, Inc. Methods and compositions comprising Renilla GFP
US6203986B1 (en) 1998-10-22 2001-03-20 Robert H. Singer Visualization of RNA in living cells
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
EP3222715A1 (en) 2003-08-08 2017-09-27 Sangamo BioSciences, Inc. Methods and compositions for targeted cleavage and recombination
US20050220796A1 (en) 2004-03-31 2005-10-06 Dynan William S Compositions and methods for modulating DNA repair
US20050233994A1 (en) * 2004-04-16 2005-10-20 Ajamete Kaykas Methods and vectors for expressing siRNA
EP2325332B1 (en) 2005-08-26 2012-10-31 DuPont Nutrition Biosciences ApS Use of CRISPR associated genes (CAS)
NZ579002A (en) 2007-03-02 2012-03-30 Danisco Cultures with improved phage resistance
WO2010011961A2 (en) 2008-07-25 2010-01-28 University Of Georgia Research Foundation, Inc. Prokaryotic rnai-like system and methods of use
WO2010054108A2 (en) 2008-11-06 2010-05-14 University Of Georgia Research Foundation, Inc. Cas6 polypeptides and methods of use
JP5429302B2 (ja) 2009-03-31 2014-02-26 新日鐵住金株式会社 管ねじ継手
US8889394B2 (en) 2009-09-07 2014-11-18 Empire Technology Development Llc Multiple domain proteins
US10087431B2 (en) 2010-03-10 2018-10-02 The Regents Of The University Of California Methods of generating nucleic acid fragments
EA024121B9 (ru) 2010-05-10 2017-01-30 Дзе Реджентс Ов Дзе Юниверсити Ов Калифорния Композиции эндорибонуклеаз и способы их использования
CA2798988C (en) 2010-05-17 2020-03-10 Sangamo Biosciences, Inc. Tal-effector (tale) dna-binding polypeptides and uses thereof
CA2805442C (en) 2010-07-21 2020-05-12 Sangamo Biosciences, Inc. Methods and compositions for modification of an hla locus
WO2012164565A1 (en) 2011-06-01 2012-12-06 Yeda Research And Development Co. Ltd. Compositions and methods for downregulating prokaryotic genes
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
CN104284669A (zh) 2012-02-24 2015-01-14 弗雷德哈钦森癌症研究中心 治疗血红蛋白病的组合物和方法
BR112014021104B1 (pt) 2012-02-29 2023-03-28 Sangamo Biosciences, Inc Proteína de fusão de ocorrência não natural compreendendo um domínio de ligação de dna de dedo de zinco manipulado que se liga a um gene htt, seu uso, método in vitro de modificação da expressão de um gene htt em uma célula, e método de geração de um sistema modelo para o estudo da doença de huntington
WO2013141680A1 (en) 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
FI3597749T3 (fi) 2012-05-25 2023-10-09 Univ California Menetelmiä ja koostumuksia rna-ohjattua kohde-dna-modifikaatiota varten ja rna-ohjattua transkription modulaatiota varten
EP2880171B1 (en) 2012-08-03 2018-10-03 The Regents of The University of California Methods and compositions for controlling gene expression by rna processing
KR101656236B1 (ko) * 2012-10-23 2016-09-12 주식회사 툴젠 표적 DNA에 특이적인 가이드 RNA 및 Cas 단백질을 암호화하는 핵산 또는 Cas 단백질을 포함하는, 표적 DNA를 절단하기 위한 조성물 및 이의 용도
PT3363902T (pt) * 2012-12-06 2019-12-19 Sigma Aldrich Co Llc Modificação e regulação de genoma baseadas em crispr
ES2576126T3 (es) 2012-12-12 2016-07-05 The Broad Institute, Inc. Modificación por tecnología genética y optimización de sistemas, métodos y composiciones enzimáticas mejorados para la manipulación de secuencias
US20140310830A1 (en) 2012-12-12 2014-10-16 Feng Zhang CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes
EP2931898B1 (en) * 2012-12-12 2016-03-09 The Broad Institute, Inc. Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains
KR20150105956A (ko) 2012-12-12 2015-09-18 더 브로드 인스티튜트, 인코퍼레이티드 서열 조작 및 치료적 적용을 위한 시스템, 방법 및 조성물의 전달, 유전자 조작 및 최적화
EP4234696A3 (en) * 2012-12-12 2023-09-06 The Broad Institute Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
EP2932421A1 (en) 2012-12-12 2015-10-21 The Broad Institute, Inc. Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
PT2784162E (pt) 2012-12-12 2015-08-27 Broad Inst Inc Engenharia de sistemas, métodos e composições guia otimizadas para a manipulação de sequências
EP4282970A3 (en) * 2012-12-17 2024-01-17 President and Fellows of Harvard College Rna-guided human genome engineering
AU2014235794A1 (en) 2013-03-14 2015-10-22 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US20140356956A1 (en) * 2013-06-04 2014-12-04 President And Fellows Of Harvard College RNA-Guided Transcriptional Regulation
RU2690935C2 (ru) * 2013-06-04 2019-06-06 Президент Энд Фэллоуз Оф Харвард Коллидж Направляемая рнк регуляция транскрипции
CN105492611A (zh) 2013-06-17 2016-04-13 布罗德研究所有限公司 用于序列操纵的优化的crispr-cas双切口酶系统、方法以及组合物
CA2917638C (en) * 2013-07-09 2024-09-10 Harvard College RNA MULTIPLEX GUIDED GENOMIC ENGINEERING
SG10201800213VA (en) * 2013-07-10 2018-02-27 Harvard College Orthogonal cas9 proteins for rna-guided gene regulation and editing
US11306328B2 (en) 2013-07-26 2022-04-19 President And Fellows Of Harvard College Genome engineering
US10787684B2 (en) * 2013-11-19 2020-09-29 President And Fellows Of Harvard College Large gene excision and insertion
EP3080259B1 (en) * 2013-12-12 2023-02-01 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation
AU2015204784B2 (en) * 2014-01-08 2021-01-28 President And Fellows Of Harvard College RNA-guided gene drives
IL297017A (en) * 2015-10-08 2022-12-01 Harvard College Multiplexed genome editing
WO2017139264A1 (en) * 2016-02-09 2017-08-17 President And Fellows Of Harvard College Dna-guided gene editing and regulation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100076057A1 (en) * 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
WO2013142578A1 (en) * 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HATOUM-ASLAN ET AL.: "Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 108, no. 52, December 2011 (2011-12-01), pages 21218 - 21222, XP055250498 *
JINEK ET AL.: "A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity.", SCIENCE, vol. 337, no. 6096, 17 August 2012 (2012-08-17), pages 816 - 821, XP055229606 *
JINEK ET AL.: "RNA-programmed genome editing in human cells.", ELIFE, vol. 2, 2013, pages E00471., XP055245475, Retrieved from the Internet <URL:http//:elife.elifesciences.org/content/2/e00471> [retrieved on 20140306] *
RHO ET AL.: "Diverse CRISPRs Evolving in Human Microbiomes.", PLOS GENETICS., vol. 8, no. 6, June 2012 (2012-06-01), pages 1 - 12, XP055255388 *

Cited By (486)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11708599B2 (en) 2011-01-31 2023-07-25 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US11566278B2 (en) 2011-01-31 2023-01-31 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US11667956B2 (en) 2011-01-31 2023-06-06 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US11692214B2 (en) 2011-01-31 2023-07-04 Roche Sequencing Solutions, Inc. Barcoded beads and method for making the same by split-pool synthesis
US12065690B2 (en) 2011-01-31 2024-08-20 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US11634752B2 (en) 2011-01-31 2023-04-25 Roche Sequencing Solutions, Inc. Kit for split-pool barcoding target molecules that are in or on cells or cell organelles
US11560585B2 (en) 2011-01-31 2023-01-24 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US12110536B2 (en) 2011-01-31 2024-10-08 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US12129512B2 (en) 2011-01-31 2024-10-29 Roche Sequencing Solutions, Inc. Composition comprising cell origination barcodes for the analysis of both protein and nucleic acid from the same cell
US11732290B2 (en) 2011-01-31 2023-08-22 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US11781171B1 (en) 2011-01-31 2023-10-10 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US12173353B1 (en) 2011-01-31 2024-12-24 Roche Sequencing Solutions, Inc. Composition comprising cell origination barcodes for the analysis of both genomic DNA and CDNA from the same cell
US11939624B2 (en) 2011-01-31 2024-03-26 Roche Sequencing Solutions, Inc. Method for labeling ligation products with cell-specific barcodes II
US12129513B1 (en) 2011-01-31 2024-10-29 Roche Sequencing Solutions, Inc. Method for barcoding
US11932903B2 (en) 2011-01-31 2024-03-19 Roche Sequencing Solutions, Inc. Kit for split-pool barcoding target molecules that are in or on cells or cell organelles
US11932902B2 (en) 2011-01-31 2024-03-19 Roche Sequencing Solutions, Inc. Barcoded beads and method for making the same by split-pool synthesis
US11512341B1 (en) 2011-01-31 2022-11-29 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US11926864B1 (en) 2011-01-31 2024-03-12 Roche Sequencing Solutions, Inc. Method for labeling ligation products with cell-specific barcodes I
US11859240B2 (en) 2011-01-31 2024-01-02 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9322006B2 (en) 2011-07-22 2016-04-26 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12467086B2 (en) 2011-10-14 2025-11-11 President And Fellows Of Harvard College Sequencing by structure assembly
US11293051B2 (en) 2011-12-22 2022-04-05 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11639518B2 (en) 2011-12-22 2023-05-02 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11111521B2 (en) 2011-12-22 2021-09-07 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11549136B2 (en) 2011-12-22 2023-01-10 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11293052B2 (en) 2011-12-22 2022-04-05 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11566277B2 (en) 2011-12-22 2023-01-31 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11566276B2 (en) 2011-12-22 2023-01-31 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11976318B2 (en) 2011-12-22 2024-05-07 President And Fellows Of Harvard College Compositions and methods for analyte detection
US11939604B2 (en) 2011-12-30 2024-03-26 Caribou Biosciences, Inc. Modified cascade ribonucleoproteins and uses thereof
US10954498B2 (en) 2011-12-30 2021-03-23 Caribou Biosciences, Inc. Modified cascade ribonucleoproteins and uses thereof
US10435678B2 (en) 2011-12-30 2019-10-08 Caribou Biosciences, Inc. Modified cascade ribonucleoproteins and uses thereof
US9885026B2 (en) 2011-12-30 2018-02-06 Caribou Biosciences, Inc. Modified cascade ribonucleoproteins and uses thereof
US10711257B2 (en) 2011-12-30 2020-07-14 Caribou Biosciences, Inc. Modified cascade ribonucleoproteins and uses thereof
US10301646B2 (en) 2012-04-25 2019-05-28 Regeneron Pharmaceuticals, Inc. Nuclease-mediated targeting with large targeting vectors
US9834786B2 (en) 2012-04-25 2017-12-05 Regeneron Pharmaceuticals, Inc. Nuclease-mediated targeting with large targeting vectors
US10988780B2 (en) 2012-05-25 2021-04-27 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11001863B2 (en) 2012-05-25 2021-05-11 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10487341B2 (en) 2012-05-25 2019-11-26 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10513712B2 (en) 2012-05-25 2019-12-24 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10428352B2 (en) 2012-05-25 2019-10-01 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10421980B2 (en) 2012-05-25 2019-09-24 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10519467B2 (en) 2012-05-25 2019-12-31 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10415061B2 (en) 2012-05-25 2019-09-17 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10407697B2 (en) 2012-05-25 2019-09-10 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10400253B2 (en) 2012-05-25 2019-09-03 The Regents Of The University Of California Methods and compositions or RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10385360B2 (en) 2012-05-25 2019-08-20 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10526619B2 (en) 2012-05-25 2020-01-07 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11634730B2 (en) 2012-05-25 2023-04-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
EP2800811B1 (en) 2012-05-25 2017-05-10 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
US11242543B2 (en) 2012-05-25 2022-02-08 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
AU2013266968B2 (en) * 2012-05-25 2017-06-29 Emmanuelle CHARPENTIER Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11674159B2 (en) 2012-05-25 2023-06-13 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11274318B2 (en) 2012-05-25 2022-03-15 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11293034B2 (en) 2012-05-25 2022-04-05 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10533190B2 (en) 2012-05-25 2020-01-14 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
EP3597749B1 (en) 2012-05-25 2023-07-26 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
US11332761B2 (en) 2012-05-25 2022-05-17 The Regenis of Wie University of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
EP3597749A1 (en) * 2012-05-25 2020-01-22 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
EP3241902A1 (en) * 2012-05-25 2017-11-08 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
US10550407B2 (en) 2012-05-25 2020-02-04 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10358659B2 (en) 2012-05-25 2019-07-23 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10358658B2 (en) 2012-05-25 2019-07-23 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10351878B2 (en) 2012-05-25 2019-07-16 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10563227B2 (en) 2012-05-25 2020-02-18 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11028412B2 (en) 2012-05-25 2021-06-08 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11186849B2 (en) 2012-05-25 2021-11-30 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11814645B2 (en) 2012-05-25 2023-11-14 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11008589B2 (en) 2012-05-25 2021-05-18 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
EP3241902B1 (en) 2012-05-25 2018-02-28 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
US11008590B2 (en) 2012-05-25 2021-05-18 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10227611B2 (en) 2012-05-25 2019-03-12 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11401532B2 (en) 2012-05-25 2022-08-02 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10988782B2 (en) 2012-05-25 2021-04-27 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10443076B2 (en) 2012-05-25 2019-10-15 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10982231B2 (en) 2012-05-25 2021-04-20 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11473108B2 (en) 2012-05-25 2022-10-18 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10000772B2 (en) 2012-05-25 2018-06-19 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10982230B2 (en) 2012-05-25 2021-04-20 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10337029B2 (en) 2012-05-25 2019-07-02 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11549127B2 (en) 2012-05-25 2023-01-10 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10570419B2 (en) 2012-05-25 2020-02-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10308961B2 (en) 2012-05-25 2019-06-04 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10301651B2 (en) 2012-05-25 2019-05-28 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US12123015B2 (en) 2012-05-25 2024-10-22 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10900054B2 (en) 2012-05-25 2021-01-26 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10577631B2 (en) 2012-05-25 2020-03-03 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10793878B1 (en) 2012-05-25 2020-10-06 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10774344B1 (en) 2012-05-25 2020-09-15 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10113167B2 (en) 2012-05-25 2018-10-30 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10266850B2 (en) 2012-05-25 2019-04-23 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10752920B2 (en) 2012-05-25 2020-08-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US12215343B2 (en) 2012-05-25 2025-02-04 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10597680B2 (en) 2012-05-25 2020-03-24 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
EP3401400A1 (en) * 2012-05-25 2018-11-14 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
EP3401400B1 (en) 2012-05-25 2019-04-03 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
EP2800811A4 (en) * 2012-05-25 2015-09-23 Univ California METHODS AND COMPOSITIONS FOR RNA-TARGETED TARGET DNA MODIFICATION AND RNA-TIED TRANSCRIPTION MODULATION
US10612045B2 (en) 2012-05-25 2020-04-07 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US12180504B2 (en) 2012-05-25 2024-12-31 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US12180503B2 (en) 2012-05-25 2024-12-31 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
AU2017225060B2 (en) * 2012-05-25 2019-01-17 Emmanuelle CHARPENTIER Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11970711B2 (en) 2012-05-25 2024-04-30 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10626419B2 (en) 2012-05-25 2020-04-21 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10676759B2 (en) 2012-05-25 2020-06-09 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10669560B2 (en) 2012-05-25 2020-06-02 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10640791B2 (en) 2012-05-25 2020-05-05 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11479794B2 (en) 2012-05-25 2022-10-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11384360B2 (en) 2012-06-19 2022-07-12 Regents Of The University Of Minnesota Gene targeting in plants using DNA viruses
US10851380B2 (en) 2012-10-23 2020-12-01 Toolgen Incorporated Methods for cleaving a target DNA using a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein
US12473559B2 (en) 2012-10-23 2025-11-18 Toolgen Incorporated Cas9/RNA complexes for inducing modifications of target endogenous nucleic acid sequences in nucleuses of eukaryotic cells
EP3138909A1 (en) * 2012-12-06 2017-03-08 Sigma-Aldrich Co. LLC Crispr-based genome modification and regulation
EP3360964A1 (en) * 2012-12-06 2018-08-15 Sigma Aldrich Co. LLC Crispr-based genome modification and regulation
US10731181B2 (en) 2012-12-06 2020-08-04 Sigma, Aldrich Co. LLC CRISPR-based genome modification and regulation
EP3138911A1 (en) * 2012-12-06 2017-03-08 Sigma-Aldrich Co. LLC Crispr-based genome modification and regulation
US10745716B2 (en) 2012-12-06 2020-08-18 Sigma-Aldrich Co. Llc CRISPR-based genome modification and regulation
EP3138910A1 (en) * 2012-12-06 2017-03-08 Sigma-Aldrich Co. LLC Crispr-based genome modification and regulation
EP3138912A1 (en) * 2012-12-06 2017-03-08 Sigma-Aldrich Co. LLC Crispr-based genome modification and regulation
EP3135765A1 (en) * 2012-12-06 2017-03-01 Sigma-Aldrich Co. LLC Crispr-based genome modification and regulation
EP2928496A4 (en) * 2012-12-06 2017-03-01 Sigma-Aldrich Co. LLC Crispr-based genome modification and regulation
EP3363902A1 (en) * 2012-12-06 2018-08-22 Sigma Aldrich Co. LLC Crispr-based genome modification and regulation
EP3141604A1 (en) * 2012-12-06 2017-03-15 Sigma-Aldrich Co. LLC Crispr-based genome modification and regulation
EP3611263A1 (en) * 2012-12-06 2020-02-19 Sigma Aldrich Co. LLC Crispr-based genome modification and regulation
US12454687B2 (en) 2012-12-12 2025-10-28 The Broad Institute, Inc. Functional genomics using CRISPR-Cas systems, compositions, methods, knock out libraries and applications thereof
US9840713B2 (en) 2012-12-12 2017-12-12 The Broad Institute Inc. CRISPR-Cas component systems, methods and compositions for sequence manipulation
US12252707B2 (en) 2012-12-12 2025-03-18 The Broad Institute, Inc. Delivery, Engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
US8906616B2 (en) 2012-12-12 2014-12-09 The Broad Institute Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
US10930367B2 (en) 2012-12-12 2021-02-23 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for Cas enzymes or CRISPR-Cas systems for target sequences and conveying results thereof
US8945839B2 (en) 2012-12-12 2015-02-03 The Broad Institute Inc. CRISPR-Cas systems and methods for altering expression of gene products
US8871445B2 (en) 2012-12-12 2014-10-28 The Broad Institute Inc. CRISPR-Cas component systems, methods and compositions for sequence manipulation
US8895308B1 (en) 2012-12-12 2014-11-25 The Broad Institute Inc. Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation
EP2784162B1 (en) 2012-12-12 2015-04-08 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
US8993233B2 (en) 2012-12-12 2015-03-31 The Broad Institute Inc. Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains
US11041173B2 (en) 2012-12-12 2021-06-22 The Broad Institute, Inc. Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
US8889418B2 (en) 2012-12-12 2014-11-18 The Broad Institute Inc. Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation
US9822372B2 (en) 2012-12-12 2017-11-21 The Broad Institute Inc. CRISPR-Cas component systems, methods and compositions for sequence manipulation
EP2764103B1 (en) 2012-12-12 2015-08-19 The Broad Institute, Inc. Crispr-cas systems and methods for altering expression of gene products
US8999641B2 (en) 2012-12-12 2015-04-07 The Broad Institute Inc. Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains
EP2896697B1 (en) 2012-12-12 2015-09-02 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
EP2825654B1 (en) 2012-12-12 2017-04-26 The Broad Institute, Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
US8932814B2 (en) 2012-12-12 2015-01-13 The Broad Institute Inc. CRISPR-Cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
US8865406B2 (en) 2012-12-12 2014-10-21 The Broad Institute Inc. Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation
US8889356B2 (en) 2012-12-12 2014-11-18 The Broad Institute Inc. CRISPR-Cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
US11512325B2 (en) 2012-12-17 2022-11-29 President And Fellows Of Harvard College RNA-guided human genome engineering
US11535863B2 (en) 2012-12-17 2022-12-27 President And Fellows Of Harvard College RNA-guided human genome engineering
EP2931891B1 (en) 2012-12-17 2019-05-15 President and Fellows of Harvard College Rna-guided human genome engineering
US11359211B2 (en) 2012-12-17 2022-06-14 President And Fellows Of Harvard College RNA-guided human genome engineering
US11236359B2 (en) 2012-12-17 2022-02-01 President And Fellows Of Harvard College RNA-guided human genome engineering
US11365429B2 (en) 2012-12-17 2022-06-21 President And Fellows Of Harvard College RNA-guided human genome engineering
JP2021048882A (ja) * 2012-12-17 2021-04-01 プレジデント アンド フェローズ オブ ハーバード カレッジ Rna誘導性ヒトゲノム改変
US12018272B2 (en) 2012-12-17 2024-06-25 President And Fellows Of Harvard College RNA-guided human genome engineering
US11312945B2 (en) 2013-01-16 2022-04-26 Emory University CAS9-nucleic acid complexes and uses related thereto
US10544405B2 (en) 2013-01-16 2020-01-28 Emory University Cas9-nucleic acid complexes and uses related thereto
US12264358B2 (en) 2013-03-12 2025-04-01 President And Fellows Of Harvard College Method of selectively sequencing amplicons in a biological sample
US11299767B2 (en) 2013-03-12 2022-04-12 President And Fellows Of Harvard College Method for generating a three-dimensional nucleic acid containing matrix
US11312953B2 (en) 2013-03-14 2022-04-26 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US9909122B2 (en) 2013-03-14 2018-03-06 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US10125361B2 (en) 2013-03-14 2018-11-13 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US9809814B1 (en) 2013-03-14 2017-11-07 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US9803194B2 (en) 2013-03-14 2017-10-31 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US9725714B2 (en) 2013-03-14 2017-08-08 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US9410198B2 (en) 2013-03-14 2016-08-09 Caribou Biosciences, Inc. Compostions and methods of nucleic acid-targeting nucleic acids
US9260752B1 (en) 2013-03-14 2016-02-16 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US11168338B2 (en) 2013-03-15 2021-11-09 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
JP7126588B2 (ja) 2013-03-15 2022-08-26 ザ ジェネラル ホスピタル コーポレイション RNA誘導型FokIヌクレアーゼ(RFN)を用いたRNA誘導型ゲノム編集の特異性の増大
US10415059B2 (en) 2013-03-15 2019-09-17 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US12065668B2 (en) 2013-03-15 2024-08-20 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US10526589B2 (en) 2013-03-15 2020-01-07 The General Hospital Corporation Multiplex guide RNAs
US11920152B2 (en) 2013-03-15 2024-03-05 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
JP2016512264A (ja) * 2013-03-15 2016-04-25 ザ ジェネラル ホスピタル コーポレイション 特定のゲノム遺伝子座へのゲノムおよびエピゲノム調節タンパク質のrna誘導型標的化
US10378027B2 (en) 2013-03-15 2019-08-13 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US10844403B2 (en) 2013-03-15 2020-11-24 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US10544433B2 (en) 2013-03-15 2020-01-28 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US9885033B2 (en) 2013-03-15 2018-02-06 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
JP2016517276A (ja) * 2013-03-15 2016-06-16 ザ ジェネラル ホスピタル コーポレイション RNA誘導型FokIヌクレアーゼ(RFN)を用いたRNA誘導型ゲノム編集の特異性の増大
JP2019205470A (ja) * 2013-03-15 2019-12-05 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ CRISPR/Casシステムを使用した植物ゲノム操作
US10119133B2 (en) 2013-03-15 2018-11-06 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
JP2016512048A (ja) * 2013-03-15 2016-04-25 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ CRISPR/Casシステムを使用した植物ゲノム操作
US10138476B2 (en) 2013-03-15 2018-11-27 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
JP2020031637A (ja) * 2013-03-15 2020-03-05 ザ ジェネラル ホスピタル コーポレイション 特定のゲノム遺伝子座へのゲノムおよびエピゲノム調節タンパク質のrna誘導型標的化
US20210207165A1 (en) * 2013-03-15 2021-07-08 Sigma-Aldrich Co. Llc Crispr-based genome modification and regulation
JP2020039350A (ja) * 2013-03-15 2020-03-19 ザ ジェネラル ホスピタル コーポレイション RNA誘導型FokIヌクレアーゼ(RFN)を用いたRNA誘導型ゲノム編集の特異性の増大
JP2021118726A (ja) * 2013-03-15 2021-08-12 ザ ジェネラル ホスピタル コーポレイション RNA誘導型FokIヌクレアーゼ(RFN)を用いたRNA誘導型ゲノム編集の特異性の増大
US11098326B2 (en) 2013-03-15 2021-08-24 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US11634731B2 (en) 2013-03-15 2023-04-25 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US9567603B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
JP2024012446A (ja) * 2013-03-15 2024-01-30 ザ ジェネラル ホスピタル コーポレイション 短縮ガイドRNA(tru-gRNA)を用いたRNA誘導型ゲノム編集の特異性の増大
US9738908B2 (en) 2013-03-15 2017-08-22 System Biosciences, Llc CRISPR/Cas systems for genomic modification and gene modulation
US10202619B2 (en) 2013-03-15 2019-02-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
US9567604B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US12215345B2 (en) 2013-03-19 2025-02-04 Duke University Compositions and methods for the induction and tuning of gene expression
US10385359B2 (en) 2013-04-16 2019-08-20 Regeneron Pharmaceuticals, Inc. Targeted modification of rat genome
US12037596B2 (en) 2013-04-16 2024-07-16 Regeneron Pharmaceuticals, Inc. Targeted modification of rat genome
US10975390B2 (en) 2013-04-16 2021-04-13 Regeneron Pharmaceuticals, Inc. Targeted modification of rat genome
US10196652B2 (en) 2013-05-15 2019-02-05 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a genetic condition
US10196651B2 (en) 2013-05-15 2019-02-05 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a genetic condition
JP2016521975A (ja) * 2013-05-15 2016-07-28 サンガモ バイオサイエンシーズ, インコーポレイテッド 遺伝的状態の処置のための方法および組成物
EP4159243A1 (en) * 2013-06-04 2023-04-05 President and Fellows of Harvard College Rna-guided transcriptional regulation
EP3003392A4 (en) * 2013-06-04 2017-05-03 President and Fellows of Harvard College Rna-guideded transcriptional regulation
AU2014274939B2 (en) * 2013-06-04 2020-03-19 President And Fellows Of Harvard College RNA-guideded transcriptional regulation
US11981917B2 (en) 2013-06-04 2024-05-14 President And Fellows Of Harvard College RNA-guided transcriptional regulation
JP2019122384A (ja) * 2013-06-04 2019-07-25 プレジデント アンド フェローズ オブ ハーバード カレッジ Rna誘導性転写制御
US10640789B2 (en) 2013-06-04 2020-05-05 President And Fellows Of Harvard College RNA-guided transcriptional regulation
US10767194B2 (en) 2013-06-04 2020-09-08 President And Fellows Of Harvard College RNA-guided transcriptional regulation
JP7036511B2 (ja) 2013-06-04 2022-03-15 プレジデント アンド フェローズ オブ ハーバード カレッジ Rna誘導性転写制御
US11597949B2 (en) 2013-06-17 2023-03-07 The Broad Institute, Inc. Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation
US10711285B2 (en) 2013-06-17 2020-07-14 The Broad Institute, Inc. Optimized CRISPR-Cas double nickase systems, methods and compositions for sequence manipulation
US10946108B2 (en) 2013-06-17 2021-03-16 The Broad Institute, Inc. Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for targeting disorders and diseases using viral components
US10577630B2 (en) 2013-06-17 2020-03-03 The Broad Institute, Inc. Delivery and use of the CRISPR-Cas systems, vectors and compositions for hepatic targeting and therapy
US12441995B2 (en) 2013-06-17 2025-10-14 The Broad Institute, Inc. Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof
US12018275B2 (en) 2013-06-17 2024-06-25 The Broad Institute, Inc. Delivery and use of the CRISPR-CAS systems, vectors and compositions for hepatic targeting and therapy
US10781444B2 (en) 2013-06-17 2020-09-22 The Broad Institute, Inc. Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof
US11008588B2 (en) 2013-06-17 2021-05-18 The Broad Institute, Inc. Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US12473573B2 (en) 2013-09-06 2025-11-18 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US11920128B2 (en) 2013-09-18 2024-03-05 Kymab Limited Methods, cells and organisms
US10494648B2 (en) 2013-10-17 2019-12-03 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
AU2020213379B2 (en) * 2013-10-17 2022-08-18 Sangamo Therapeutics, Inc. Delivery Methods And Compositions For Nuclease-Mediated Genome Engineering
EP3441468A3 (en) * 2013-10-17 2019-04-03 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
US11149267B2 (en) 2013-10-28 2021-10-19 The Broad Institute, Inc. Functional genomics using CRISPR-Cas systems, compositions, methods, screens and applications thereof
US10190137B2 (en) 2013-11-07 2019-01-29 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US10640788B2 (en) 2013-11-07 2020-05-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAs
US11390887B2 (en) 2013-11-07 2022-07-19 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US9546384B2 (en) 2013-12-11 2017-01-17 Regeneron Pharmaceuticals, Inc. Methods and compositions for the targeted modification of a mouse genome
US11820997B2 (en) 2013-12-11 2023-11-21 Regeneron Pharmaceuticals, Inc. Methods and compositions for the targeted modification of a genome
US10208317B2 (en) 2013-12-11 2019-02-19 Regeneron Pharmaceuticals, Inc. Methods and compositions for the targeted modification of a mouse embryonic stem cell genome
US9228208B2 (en) 2013-12-11 2016-01-05 Regeneron Pharmaceuticals, Inc. Methods and compositions for the targeted modification of a genome
US10711280B2 (en) 2013-12-11 2020-07-14 Regeneron Pharmaceuticals, Inc. Methods and compositions for the targeted modification of a mouse ES cell genome
US12215365B2 (en) 2013-12-12 2025-02-04 President And Fellows Of Harvard College Cas variants for gene editing
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
US12258595B2 (en) 2013-12-12 2025-03-25 The Broad Institute, Inc. Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems
US10550372B2 (en) 2013-12-12 2020-02-04 The Broad Institute, Inc. Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems
US11591581B2 (en) 2013-12-12 2023-02-28 The Broad Institute, Inc. Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders
US10851357B2 (en) 2013-12-12 2020-12-01 The Broad Institute, Inc. Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders
US11597919B2 (en) 2013-12-12 2023-03-07 The Broad Institute Inc. Systems, methods and compositions for sequence manipulation with optimized functional CRISPR-Cas systems
US11407985B2 (en) 2013-12-12 2022-08-09 The Broad Institute, Inc. Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for genome editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US12410435B2 (en) 2013-12-12 2025-09-09 The Broad Institute, Inc. Compositions and methods of use of CRISPR-Cas systems in nucleotide repeat disorders
US10377998B2 (en) 2013-12-12 2019-08-13 The Broad Institute, Inc. CRISPR-CAS systems and methods for altering expression of gene products, structural information and inducible modular CAS enzymes
US11155795B2 (en) 2013-12-12 2021-10-26 The Broad Institute, Inc. CRISPR-Cas systems, crystal structure and uses thereof
US12251450B2 (en) 2013-12-12 2025-03-18 The Broad Institute, Inc. Delivery, use and therapeutic applications of the CRISPR-Cas systems and compositions for HBV and viral diseases and disorders
US11149259B2 (en) 2013-12-12 2021-10-19 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products, structural information and inducible modular Cas enzymes
US12421506B2 (en) 2013-12-12 2025-09-23 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions with new architectures for sequence manipulation
US10731180B2 (en) 2014-02-11 2020-08-04 The Regents Of The University Of Colorado CRISPR enabled multiplexed genome engineering
US10364442B2 (en) 2014-02-11 2019-07-30 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US11639511B2 (en) 2014-02-11 2023-05-02 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US10435715B2 (en) 2014-02-11 2019-10-08 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US10240167B2 (en) 2014-02-11 2019-03-26 Inscripta, Inc. CRISPR enabled multiplexed genome engineering
US10669559B2 (en) 2014-02-11 2020-06-02 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US10465207B2 (en) 2014-02-11 2019-11-05 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US11078498B2 (en) 2014-02-11 2021-08-03 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US10711284B2 (en) 2014-02-11 2020-07-14 The Regents Of The University Of Colorado CRISPR enabled multiplexed genome engineering
US11702677B2 (en) 2014-02-11 2023-07-18 The Regents Of The University Of Colorado CRISPR enabled multiplexed genome engineering
US10351877B2 (en) 2014-02-11 2019-07-16 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US10266849B2 (en) 2014-02-11 2019-04-23 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US9982278B2 (en) 2014-02-11 2018-05-29 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
US11795479B2 (en) 2014-02-11 2023-10-24 The Regents Of The University Of Colorado CRISPR enabled multiplexed genome engineering
US11345933B2 (en) 2014-02-11 2022-05-31 The Regents Of The University Of Colorado CRISPR enabled multiplexed genome engineering
US11028388B2 (en) 2014-03-05 2021-06-08 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US10253312B2 (en) 2014-03-10 2019-04-09 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating Leber's Congenital Amaurosis 10 (LCA10)
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
US11268086B2 (en) 2014-03-10 2022-03-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating Leber's Congenital Amaurosis 10 (LCA10)
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US12234449B2 (en) 2014-03-10 2025-02-25 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for treating Leber's congenital amaurosis 10 (LCA10)
US11242525B2 (en) 2014-03-26 2022-02-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating sickle cell disease
US12460231B2 (en) 2014-04-02 2025-11-04 Editas Medicine, Inc. Crispr/CAS-related methods and compositions for treating primary open angle glaucoma
US12070022B2 (en) 2014-04-28 2024-08-27 Recombinetics, Inc. Methods for making genetic edits
US9487802B2 (en) 2014-05-30 2016-11-08 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods to treat latent viral infections
US10066241B2 (en) 2014-05-30 2018-09-04 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods of delivering treatments for latent viral infections
US12331347B2 (en) 2014-07-11 2025-06-17 President And Fellows Of Harvard College Methods for high-throughput labelling and detection of biological features in situ using microscopy
US11254933B2 (en) 2014-07-14 2022-02-22 The Regents Of The University Of California CRISPR/Cas transcriptional modulation
EP3169776A4 (en) * 2014-07-14 2018-07-04 The Regents of The University of California Crispr/cas transcriptional modulation
WO2016011080A2 (en) 2014-07-14 2016-01-21 The Regents Of The University Of California Crispr/cas transcriptional modulation
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US12398406B2 (en) 2014-07-30 2025-08-26 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
WO2016028843A2 (en) 2014-08-19 2016-02-25 President And Fellows Of Harvard College Rna-guided systems for probing and mapping of nucleic acids
WO2016036754A1 (en) 2014-09-02 2016-03-10 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification
EP3998344A1 (en) * 2014-10-09 2022-05-18 Life Technologies Corporation Crispr oligonucleotides and gene editing
US12201699B2 (en) 2014-10-10 2025-01-21 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
US10428310B2 (en) 2014-10-15 2019-10-01 Regeneron Pharmaceuticals, Inc. Methods and compositions for generating or maintaining pluripotent cells
US12152240B2 (en) 2014-10-24 2024-11-26 Ospedale San Raffaele S.R.L. Permanent epigenetic gene silencing
US20170306306A1 (en) * 2014-10-24 2017-10-26 Life Technologies Corporation Compositions and Methods for Enhancing Homologous Recombination
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
US11697828B2 (en) 2014-11-21 2023-07-11 Regeneran Pharmaceuticals, Inc. Methods and compositions for targeted genetic modification using paired guide RNAs
US10457960B2 (en) 2014-11-21 2019-10-29 Regeneron Pharmaceuticals, Inc. Methods and compositions for targeted genetic modification using paired guide RNAs
CN105695485B (zh) * 2014-11-27 2020-02-21 中国科学院上海生命科学研究院 一种用于丝状真菌Crispr-Cas系统的Cas9编码基因及其应用
CN105695485A (zh) * 2014-11-27 2016-06-22 中国科学院上海生命科学研究院 一种用于丝状真菌Crispr-Cas系统的Cas9编码基因及其应用
US10337001B2 (en) 2014-12-03 2019-07-02 Agilent Technologies, Inc. Guide RNA with chemical modifications
US10900034B2 (en) 2014-12-03 2021-01-26 Agilent Technologies, Inc. Guide RNA with chemical modifications
US10278372B2 (en) 2014-12-10 2019-05-07 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
US10993419B2 (en) 2014-12-10 2021-05-04 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
US9888673B2 (en) 2014-12-10 2018-02-13 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
US12465029B2 (en) 2014-12-10 2025-11-11 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
US11234418B2 (en) 2014-12-10 2022-02-01 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
US11624078B2 (en) 2014-12-12 2023-04-11 The Broad Institute, Inc. Protected guide RNAS (pgRNAS)
US10696986B2 (en) 2014-12-12 2020-06-30 The Board Institute, Inc. Protected guide RNAS (PGRNAS)
JP2021010388A (ja) * 2014-12-19 2021-02-04 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 細胞の選択された部分集団中の複数エピトープを識別するための方法
JP7196143B2 (ja) 2014-12-19 2022-12-26 エフ.ホフマン-ラ ロシュ アーゲー 細胞の選択された部分集団中の複数エピトープを識別するための方法
JP2017537645A (ja) * 2014-12-19 2017-12-21 アプライズ バイオ, インコーポレイテッド 細胞の選択された部分集団中の複数エピトープを識別するための方法
US12435320B2 (en) 2014-12-24 2025-10-07 The Broad Institute, Inc. CRISPR having or associated with destabilization domains
US11248240B2 (en) * 2015-01-29 2022-02-15 Meiogenix Method for inducing targeted meiotic recombinations
US12215366B2 (en) 2015-02-09 2025-02-04 Duke University Compositions and methods for epigenome editing
US11046952B2 (en) * 2015-03-16 2021-06-29 The Broad Institute, Inc. Encoding of DNA vector identity via iterative hybridization detection of a barcode transcript
US11535846B2 (en) 2015-04-06 2022-12-27 The Board Of Trustees Of The Leland Stanford Junior University Chemically modified guide RNAS for CRISPR/Cas-mediated gene regulation
US11306309B2 (en) 2015-04-06 2022-04-19 The Board Of Trustees Of The Leland Stanford Junior University Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation
US11851652B2 (en) 2015-04-06 2023-12-26 The Board Of Trustees Of The Leland Stanford Junior Compositions comprising chemically modified guide RNAs for CRISPR/Cas-mediated editing of HBB
US11180793B2 (en) 2015-04-24 2021-11-23 Editas Medicine, Inc. Evaluation of Cas9 molecule/guide RNA molecule complexes
US11390884B2 (en) 2015-05-11 2022-07-19 Editas Medicine, Inc. Optimized CRISPR/cas9 systems and methods for gene editing in stem cells
US11535871B2 (en) * 2015-05-14 2022-12-27 University Of Southern California Optimized gene editing utilizing a recombinant endonuclease system
US10117911B2 (en) 2015-05-29 2018-11-06 Agenovir Corporation Compositions and methods to treat herpes simplex virus infections
US11911415B2 (en) 2015-06-09 2024-02-27 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for improving transplantation
US11578312B2 (en) 2015-06-18 2023-02-14 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation
US10494621B2 (en) 2015-06-18 2019-12-03 The Broad Institute, Inc. Crispr enzyme mutations reducing off-target effects
US12123032B2 (en) 2015-06-18 2024-10-22 The Broad Institute, Inc. CRISPR enzyme mutations reducing off-target effects
US12168789B2 (en) 2015-06-18 2024-12-17 The Broad Institute, Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of CAS9 orthologs and variants for sequence manipulation
US10876100B2 (en) 2015-06-18 2020-12-29 The Broad Institute, Inc. Crispr enzyme mutations reducing off-target effects
US11583556B2 (en) 2015-07-31 2023-02-21 Regents Of The University Of Minnesota Modified cells and methods of therapy
US11266692B2 (en) 2015-07-31 2022-03-08 Regents Of The University Of Minnesota Intracellular genomic transplant and methods of therapy
US11925664B2 (en) 2015-07-31 2024-03-12 Intima Bioscience, Inc. Intracellular genomic transplant and methods of therapy
US11903966B2 (en) 2015-07-31 2024-02-20 Regents Of The University Of Minnesota Intracellular genomic transplant and methods of therapy
US10166255B2 (en) 2015-07-31 2019-01-01 Regents Of The University Of Minnesota Intracellular genomic transplant and methods of therapy
US10406177B2 (en) 2015-07-31 2019-09-10 Regents Of The University Of Minnesota Modified cells and methods of therapy
US11642374B2 (en) 2015-07-31 2023-05-09 Intima Bioscience, Inc. Intracellular genomic transplant and methods of therapy
US11147837B2 (en) 2015-07-31 2021-10-19 Regents Of The University Of Minnesota Modified cells and methods of therapy
US11642375B2 (en) 2015-07-31 2023-05-09 Intima Bioscience, Inc. Intracellular genomic transplant and methods of therapy
US11046954B2 (en) 2015-08-06 2021-06-29 Dana-Farber Cancer Institute, Inc. Targeted protein degradation to attenuate adoptive T-cell therapy associated adverse inflammatory responses
US11293023B2 (en) 2015-08-06 2022-04-05 Dana-Farber Cancer Institute, Inc. Tunable endogenous protein degradation
EP3331906A1 (en) * 2015-08-06 2018-06-13 Dana-Farber Cancer Institute, Inc. Tunable endogenous protein degradation
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US10633642B2 (en) 2015-08-28 2020-04-28 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
WO2017040348A1 (en) 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
US10526591B2 (en) 2015-08-28 2020-01-07 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US10093910B2 (en) 2015-08-28 2018-10-09 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
EP4036236A1 (en) 2015-08-28 2022-08-03 The General Hospital Corporation Engineered crispr-cas9 nucleases
US11060078B2 (en) 2015-08-28 2021-07-13 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
EP3344771A4 (en) * 2015-08-31 2019-03-20 Agilent Technologies, Inc. COMPOUNDS AND METHODS FOR CRISPR / CAS-BASED GENOME EDITATION THROUGH HOMOLOGOUS RECOMBINATION
EP3352795A4 (en) * 2015-09-21 2019-03-13 The Regents of The University of California COMPOSITIONS AND METHODS OF TARGET NUCLEIC ACID MODIFICATION
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US12344869B2 (en) 2015-10-23 2025-07-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11542554B2 (en) 2015-11-03 2023-01-03 President And Fellows Of Harvard College Method and apparatus for volumetric imaging
US12214054B2 (en) 2015-11-30 2025-02-04 Duke University Therapeutic targets for the correction of the human dystrophin gene by gene editing and methods of use
US10457961B2 (en) 2016-01-11 2019-10-29 The Board Of Trustees Of The Leland Stanford Junior University Chimeric proteins and methods of regulating gene expression
US11773411B2 (en) 2016-01-11 2023-10-03 The Board Of Trustees Of The Leland Stanford Junior University Chimeric proteins and methods of regulating gene expression
US10336807B2 (en) 2016-01-11 2019-07-02 The Board Of Trustees Of The Leland Stanford Junior University Chimeric proteins and methods of immunotherapy
US9856497B2 (en) 2016-01-11 2018-01-02 The Board Of Trustee Of The Leland Stanford Junior University Chimeric proteins and methods of regulating gene expression
US11111287B2 (en) 2016-01-11 2021-09-07 The Board Of Trustees Of The Leland Stanford Junior University Chimeric proteins and methods of immunotherapy
WO2017165655A1 (en) * 2016-03-23 2017-09-28 Dana-Farber Cancer Institute, Inc. Methods for enhancing the efficiency of gene editing
US11421218B2 (en) 2016-03-23 2022-08-23 Dana-Farber Cancer Institute, Inc. Methods for enhancing the efficiency of gene editing
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11512311B2 (en) 2016-03-25 2022-11-29 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency
US12049651B2 (en) 2016-04-13 2024-07-30 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US12428631B2 (en) 2016-04-13 2025-09-30 Duke University CRISPR/Cas9-based repressors for silencing gene targets in vivo and methods of use
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US11713485B2 (en) 2016-04-25 2023-08-01 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
EP3450570A4 (en) * 2016-04-28 2019-11-20 Industry-Academic Cooperation Foundation Yonsei University METHOD FOR IN VIVO ASSESSMENT OF THE ACTIVITY OF RNA-CONTROLLED NUCLEASE AT A HIGH-BY-STEP
CN109415756B (zh) * 2016-04-28 2022-08-09 延世大学校产学协力团 用于以高通量方式体内评估rna引导的核酸酶的活性的方法
CN109415756A (zh) * 2016-04-28 2019-03-01 延世大学校产学协力团 用于以高通量方式体内评估rna引导的核酸酶的活性的方法
US12342801B2 (en) 2016-05-20 2025-07-01 Regeneron Pharmaceuticals, Inc. Methods for producing antigen-binding proteins against foreign antigens
US12275952B2 (en) 2016-06-02 2025-04-15 Sigma-Aldrich Co. Llc Using programmable DNA binding proteins to enhance targeted genome modification
US10266851B2 (en) 2016-06-02 2019-04-23 Sigma-Aldrich Co. Llc Using programmable DNA binding proteins to enhance targeted genome modification
US12084675B2 (en) 2016-06-02 2024-09-10 Sigma-Aldrich Co. Llc Using programmable DNA binding proteins to enhance targeted genome modification
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
US11584928B2 (en) 2016-06-24 2023-02-21 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
US10287575B2 (en) 2016-06-24 2019-05-14 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
US10294473B2 (en) 2016-06-24 2019-05-21 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
US10017760B2 (en) 2016-06-24 2018-07-10 Inscripta, Inc. Methods for generating barcoded combinatorial libraries
US12214056B2 (en) 2016-07-19 2025-02-04 Duke University Therapeutic applications of CPF1-based genome editing
WO2017037304A3 (en) * 2016-07-28 2017-06-01 Dsm Ip Assets B.V. An assembly system for a eukaryotic cell
US11149268B2 (en) 2016-07-28 2021-10-19 Dsm Ip Assets B.V. Assembly system for a eukaryotic cell
US11566263B2 (en) 2016-08-02 2023-01-31 Editas Medicine, Inc. Compositions and methods for treating CEP290 associated disease
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
WO2018071892A1 (en) 2016-10-14 2018-04-19 Joung J Keith Epigenetically regulated site-specific nucleases
US10912797B2 (en) 2016-10-18 2021-02-09 Intima Bioscience, Inc. Tumor infiltrating lymphocytes and methods of therapy
US11154574B2 (en) 2016-10-18 2021-10-26 Regents Of The University Of Minnesota Tumor infiltrating lymphocytes and methods of therapy
US12286727B2 (en) 2016-12-19 2025-04-29 Editas Medicine, Inc. Assessing nuclease cleavage
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US12110545B2 (en) 2017-01-06 2024-10-08 Editas Medicine, Inc. Methods of assessing nuclease cleavage
US11466271B2 (en) 2017-02-06 2022-10-11 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
US11311609B2 (en) 2017-02-08 2022-04-26 Dana-Farber Cancer Institute, Inc. Regulating chimeric antigen receptors
US12390514B2 (en) 2017-03-09 2025-08-19 President And Fellows Of Harvard College Cancer vaccine
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US12435331B2 (en) 2017-03-10 2025-10-07 President And Fellows Of Harvard College Cytosine to guanine base editor
US11851690B2 (en) 2017-03-14 2023-12-26 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US12058986B2 (en) 2017-04-20 2024-08-13 Egenesis, Inc. Method for generating a genetically modified pig with inactivated porcine endogenous retrovirus (PERV) elements
EP4481049A2 (en) 2017-04-21 2024-12-25 The General Hospital Corporation Variants of cpf1 (cas12a) with altered pam specificity
WO2018195545A2 (en) 2017-04-21 2018-10-25 The General Hospital Corporation Variants of cpf1 (cas12a) with altered pam specificity
US11499151B2 (en) 2017-04-28 2022-11-15 Editas Medicine, Inc. Methods and systems for analyzing guide RNA molecules
US11963982B2 (en) 2017-05-10 2024-04-23 Editas Medicine, Inc. CRISPR/RNA-guided nuclease systems and methods
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
WO2018218206A1 (en) 2017-05-25 2018-11-29 The General Hospital Corporation Bipartite base editor (bbe) architectures and type-ii-c-cas9 zinc finger editing
WO2018218166A1 (en) 2017-05-25 2018-11-29 The General Hospital Corporation Using split deaminases to limit unwanted off-target base editor deamination
US10428319B2 (en) 2017-06-09 2019-10-01 Editas Medicine, Inc. Engineered Cas9 nucleases
US11098297B2 (en) 2017-06-09 2021-08-24 Editas Medicine, Inc. Engineered Cas9 nucleases
US12297466B2 (en) 2017-06-09 2025-05-13 Editas Medicine, Inc. Engineered Cas9 nucleases
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
US12180502B2 (en) 2017-06-23 2024-12-31 Inscripta, Inc. Nucleic acid-guided nucleases
US12195749B2 (en) 2017-06-23 2025-01-14 Inscripta, Inc. Nucleic acid-guided nucleases
US10337028B2 (en) 2017-06-23 2019-07-02 Inscripta, Inc. Nucleic acid-guided nucleases
US11697826B2 (en) 2017-06-23 2023-07-11 Inscripta, Inc. Nucleic acid-guided nucleases
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
US10626416B2 (en) 2017-06-23 2020-04-21 Inscripta, Inc. Nucleic acid-guided nucleases
US10435714B2 (en) 2017-06-23 2019-10-08 Inscripta, Inc. Nucleic acid-guided nucleases
US11098325B2 (en) 2017-06-30 2021-08-24 Intima Bioscience, Inc. Adeno-associated viral vectors for gene therapy
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
US12359218B2 (en) 2017-07-28 2025-07-15 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11130999B2 (en) 2017-07-31 2021-09-28 Regeneron Pharmaceuticals, Inc. Cas-ready mouse embryonic stem cells and mice and uses thereof
US11021719B2 (en) 2017-07-31 2021-06-01 Regeneron Pharmaceuticals, Inc. Methods and compositions for assessing CRISPER/Cas-mediated disruption or excision and CRISPR/Cas-induced recombination with an exogenous donor nucleic acid in vivo
US11866794B2 (en) 2017-07-31 2024-01-09 Regeneron Pharmaceuticals, Inc. Cas-ready mouse embryonic stem cells and mice and uses thereof
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US12406749B2 (en) 2017-12-15 2025-09-02 The Broad Institute, Inc. Systems and methods for predicting repair outcomes in genetic engineering
US12031132B2 (en) 2018-03-14 2024-07-09 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US11434491B2 (en) 2018-04-19 2022-09-06 The Regents Of The University Of California Compositions and methods for gene editing
US12157760B2 (en) 2018-05-23 2024-12-03 The Broad Institute, Inc. Base editors and uses thereof
US12338436B2 (en) 2018-06-29 2025-06-24 Editas Medicine, Inc. Synthetic guide molecules, compositions and methods relating thereto
US12098425B2 (en) 2018-10-10 2024-09-24 Readcoor, Llc Three-dimensional spatial molecular indexing
US12281338B2 (en) 2018-10-29 2025-04-22 The Broad Institute, Inc. Nucleobase editors comprising GeoCas9 and uses thereof
US12351837B2 (en) 2019-01-23 2025-07-08 The Broad Institute, Inc. Supernegatively charged proteins and uses thereof
WO2020163396A1 (en) 2019-02-04 2020-08-13 The General Hospital Corporation Adenine dna base editor variants with reduced off-target rna editing
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US12281303B2 (en) 2019-03-19 2025-04-22 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US12473543B2 (en) 2019-04-17 2025-11-18 The Broad Institute, Inc. Adenine base editors with reduced off-target effects
US12435330B2 (en) 2019-10-10 2025-10-07 The Broad Institute, Inc. Methods and compositions for prime editing RNA
WO2021105191A1 (en) 2019-11-29 2021-06-03 Basf Se Increasing resistance against fungal infections in plants
WO2021122687A1 (en) 2019-12-19 2021-06-24 Basf Se Increasing space-time-yield, carbon-conversion-efficiency and carbon substrate flexibility in the production of fine chemicals
WO2021122528A1 (en) 2019-12-20 2021-06-24 Basf Se Decreasing toxicity of terpenes and increasing the production potential in micro-organisms
WO2021202938A1 (en) 2020-04-03 2021-10-07 Creyon Bio, Inc. Oligonucleotide-based machine learning
US12057197B2 (en) 2020-04-03 2024-08-06 Creyon Bio, Inc. Oligonucleotide-based machine learning
US12400739B2 (en) 2020-04-03 2025-08-26 Creyon Bio, Inc. Oligonucleotide-based machine learning
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12203136B2 (en) 2020-08-17 2025-01-21 Readcoor, Llc Methods and systems for spatial mapping of genetic variants
WO2022216857A1 (en) * 2021-04-07 2022-10-13 Century Therapeutics, Inc. Gene transfer vectors and methods of engineering cells
US11884915B2 (en) 2021-09-10 2024-01-30 Agilent Technologies, Inc. Guide RNAs with chemical modification for prime editing
EP4198124A1 (en) 2021-12-15 2023-06-21 Versitech Limited Engineered cas9-nucleases and method of use thereof
US12390538B2 (en) 2023-05-15 2025-08-19 Nchroma Bio, Inc. Compositions and methods for epigenetic regulation of HBV gene expression
WO2025027166A1 (en) 2023-08-01 2025-02-06 Basf Plant Science Company Gmbh Increased resistance by expression of msbp1 protein
WO2025027165A1 (en) 2023-08-01 2025-02-06 Basf Plant Science Company Gmbh Increased resistance by expression of an ics protein
WO2025162985A1 (en) 2024-01-30 2025-08-07 Basf Plant Science Company Gmbh Increased plant disease resistance by expression of a glycine-rich protein

Also Published As

Publication number Publication date
BR112015014425A2 (pt) 2017-10-10
US10435708B2 (en) 2019-10-08
AU2019216665A1 (en) 2019-09-05
JP6700788B2 (ja) 2020-05-27
EP2931891B1 (en) 2019-05-15
MX2021006741A (es) 2021-07-15
US20150232833A1 (en) 2015-08-20
EP2931891A1 (en) 2015-10-21
RU2766685C2 (ru) 2022-03-15
IL239326B2 (en) 2025-02-01
RU2015129018A (ru) 2017-01-23
RU2699523C2 (ru) 2019-09-05
AU2019216665B2 (en) 2021-03-25
ZA201504739B (en) 2023-12-20
CN105121641B (zh) 2025-11-11
CA2895155A1 (en) 2014-06-26
EP4282970A2 (en) 2023-11-29
US20170044569A9 (en) 2017-02-16
US20140342458A1 (en) 2014-11-20
US20190249194A1 (en) 2019-08-15
JP2021048882A (ja) 2021-04-01
US20230295653A1 (en) 2023-09-21
US20160032274A1 (en) 2016-02-04
JP2019076097A (ja) 2019-05-23
CA3081054A1 (en) 2014-06-26
WO2014099750A3 (en) 2014-10-23
IL239326A0 (en) 2015-07-30
US9023649B2 (en) 2015-05-05
EP4481048A3 (en) 2025-02-26
US20150259704A1 (en) 2015-09-17
NZ709429A (en) 2021-01-29
KR20150095861A (ko) 2015-08-21
US20160160210A1 (en) 2016-06-09
AU2013363194A1 (en) 2015-07-16
US20140356958A1 (en) 2014-12-04
CN105121641A (zh) 2015-12-02
US20160002670A1 (en) 2016-01-07
JP7749631B2 (ja) 2025-10-06
MX2021006742A (es) 2021-07-15
MY170059A (en) 2019-07-02
ES2741951T3 (es) 2020-02-12
AU2024201441A1 (en) 2024-03-21
WO2014099750A2 (en) 2014-06-26
AU2021204023B2 (en) 2023-03-16
SG10201704932UA (en) 2017-07-28
KR20220139433A (ko) 2022-10-14
US20140342457A1 (en) 2014-11-20
US9260723B2 (en) 2016-02-16
US11535863B2 (en) 2022-12-27
JP2016501036A (ja) 2016-01-18
US20200048656A1 (en) 2020-02-13
DK2931891T3 (da) 2019-08-19
US11512325B2 (en) 2022-11-29
US20240279677A1 (en) 2024-08-22
HK1212376A1 (en) 2016-06-10
ES3036759T3 (en) 2025-09-24
US20190249193A1 (en) 2019-08-15
ZA202306380B (en) 2025-08-27
EP2931891A4 (en) 2016-07-13
AU2021204023A1 (en) 2021-07-08
EP3553174A1 (en) 2019-10-16
US20240294939A1 (en) 2024-09-05
DK3553174T3 (da) 2025-08-04
US20160304907A1 (en) 2016-10-20
US11359211B2 (en) 2022-06-14
SG10201912991WA (en) 2020-03-30
US20210222193A1 (en) 2021-07-22
US20220177913A1 (en) 2022-06-09
RU2019127316A (ru) 2019-10-08
US10273501B2 (en) 2019-04-30
US20200308599A1 (en) 2020-10-01
EP4481048A2 (en) 2024-12-25
AU2021204024B2 (en) 2023-12-14
US11236359B2 (en) 2022-02-01
CA2895155C (en) 2021-07-06
US12018272B2 (en) 2024-06-25
US9970024B2 (en) 2018-05-15
IL239326B1 (en) 2024-10-01
SG11201504621RA (en) 2015-07-30
MX383326B (es) 2025-03-13
AU2013363194B2 (en) 2019-05-16
JP2025175149A (ja) 2025-11-28
US20140342456A1 (en) 2014-11-20
US11365429B2 (en) 2022-06-21
US10717990B2 (en) 2020-07-21
RU2019127316A3 (enExample) 2020-07-06
AU2021204024A1 (en) 2021-07-08
MX2015007743A (es) 2015-12-07
EP4282970A3 (en) 2024-01-17
CN121022900A (zh) 2025-11-28
EP3553174B1 (en) 2025-04-30
IL308158A (en) 2023-12-01
JP2023168564A (ja) 2023-11-24

Similar Documents

Publication Publication Date Title
US12018272B2 (en) RNA-guided human genome engineering
HK40103974A (en) Rna-guided human genome engineering
HK40116830A (en) Rna-guided human genome engineering
HK40014881B (en) Rna-guided human genome engineering
HK40014881A (en) Rna-guided human genome engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 239326

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2895155

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/007743

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015549528

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14653144

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015014425

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20157018831

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013863815

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013363194

Country of ref document: AU

Date of ref document: 20131216

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015129018

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015014425

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150617