WO2014083842A1 - 歯科用硬化性組成物及び歯科用フロアブルコンポジットレジン - Google Patents

歯科用硬化性組成物及び歯科用フロアブルコンポジットレジン Download PDF

Info

Publication number
WO2014083842A1
WO2014083842A1 PCT/JP2013/006945 JP2013006945W WO2014083842A1 WO 2014083842 A1 WO2014083842 A1 WO 2014083842A1 JP 2013006945 W JP2013006945 W JP 2013006945W WO 2014083842 A1 WO2014083842 A1 WO 2014083842A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
curable composition
inorganic
inorganic particles
dental
Prior art date
Application number
PCT/JP2013/006945
Other languages
English (en)
French (fr)
Inventor
剛大 亀谷
石野 博重
晶子 辻
Original Assignee
クラレノリタケデンタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレノリタケデンタル株式会社 filed Critical クラレノリタケデンタル株式会社
Priority to JP2014549826A priority Critical patent/JP6224616B2/ja
Priority to EP13857989.1A priority patent/EP2926796B8/en
Priority to ES13857989T priority patent/ES2750228T3/es
Priority to CN201380062443.7A priority patent/CN104797232B/zh
Priority to US14/648,536 priority patent/US9855196B2/en
Publication of WO2014083842A1 publication Critical patent/WO2014083842A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • A61K6/16Refractive index
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/02Protective casings, e.g. boxes for instruments; Bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/50Implements for filling root canals; Methods or instruments for medication of tooth nerve channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • A61K6/17Particle size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/20Protective coatings for natural or artificial teeth, e.g. sealings, dye coatings or varnish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/71Fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/831Preparations for artificial teeth, for filling teeth or for capping teeth comprising non-metallic elements or compounds thereof, e.g. carbon
    • A61K6/836Glass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a dental curable composition that can be suitably used as a dental material capable of substituting part or all of a natural tooth in the field of dentistry, in particular, as a dental floorable composite resin.
  • a dental curable composition composed of a polymerizable monomer, a filler, and a polymerization initiator is called a composite resin, and is the most frequently used dental material today as a material for repairing tooth defects and caries. It has become.
  • the composite resin is required to have sufficient mechanical strength that can be replaced with natural teeth, polishability and lubrication durability to obtain a gloss equivalent to that of natural teeth, etc. In the previous paste state, it is required to have a shapeability and operability suitable for filling the cavity using a dental instrument.
  • a flowable composite resin called “floorable composite resin” having high fluidity before polymerization and curing has been developed.
  • the flowable composite resin is used to perform treatment by directly filling the cavity with the paste from a needle having a hole having a smaller diameter than the cavity, attached to the tip of a container (syringe) containing the paste. . Since the filling operation can be performed simply by pouring the paste from the syringe into the cavity, the treatment time is shortened, so that the flowable composite resin has been used more frequently in the clinical field.
  • a dental curable composition In order for a dental curable composition to function as a flowable composite resin, in addition to the mechanical strength, abrasiveness, and lubrication durability of a cured product, which is required for ordinary composite resins, the unique flow of paste flowable composite resin That is, the consistency suitable for discharging from the needle at the tip of the syringe, and the shapeability and operability of the paste discharged from the needle are required. It is the filler contained in the dental curable composition that most affects these required properties. However, these required characteristics are interrelated. In other words, if the filler is changed to improve one characteristic, the other characteristics deteriorate. Therefore, it is difficult to satisfy all the required characteristics at a high level at the same time, and various studies have been made so far. Yes.
  • Patent Document 1 discloses a dental curable composition mainly using a flowable composite resin.
  • the dental curable composition comprises a polymerizable monomer, amorphous inorganic particles having an average particle diameter of 1.0 to 5.0 ⁇ m treated with a silane coupling agent having a specific structure, and a silane coupling having a specific structure. 2 types of inorganic fine particles with an average particle size of 0.01 to 0.10 ⁇ m treated with an agent are blended, and the paste has good shapeability and consistency and excellent cured product mechanical strength. .
  • the dental curable composition of Patent Document 1 has room for improvement in abrasiveness and lubricity durability.
  • Patent Documents 2 to 4 disclose dental materials / dental compositions that are a combination of two types of fillers having different surface-treated particle diameters that can be used in composite resins.
  • Patent Documents 2 to 4 do not have a description of a flowable composite resin, and at least those studied in the examples do not have fluidity of a paste suitable for the flowable composite resin. There was room for improvement in durability and smoothness durability.
  • the present invention provides a cured product having excellent mechanical strength, abrasiveness and lubrication durability, suitable consistency for discharging the paste from the needle at the tip of the syringe, and good formability after discharging from the needle.
  • Another object of the present invention is to provide a dental curable composition suitable for a flowable composite resin having operability.
  • the present invention relates to a polymerizable monomer (A), Formula (1) (wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrolyzable group, R 3 represents a hydrocarbon group having 1 to 6 carbon atoms, p is 2 or 3, and q is 8)
  • a dental curable composition containing: 92.5 to 98% by weight and 2 to 7.5% by weight, respectively, of the amorphous inorganic particles (B) and the inorganic ultrafine particles (C) in the total amount of the inorganic particles, The consistency of the
  • the refractive index after polymerization of the polymerizable monomer (A) is 1.52 to 1.58, and the amorphous inorganic particles (B) Has a refractive index of 1.52 to 1.58, and the inorganic ultrafine particles (C) have a refractive index of 1.43 to 1.50.
  • the content of the polymerizable monomer (A) is preferably 25 to 50 parts by weight with respect to 100 parts by weight of the total amount of inorganic particles.
  • the inorganic ultrafine particles (C) are aggregated to form aggregated particles, and the average particle diameter of the aggregated particles is 1 to 10 ⁇ m.
  • the present invention is also a dental flowable composite resin comprising the dental curable composition described above.
  • the present invention is also a package including a container containing the dental floorable composite resin and a needle tip attached to the tip of the container.
  • the cured product is excellent in mechanical strength, abrasiveness and lubrication durability, and the paste has an appropriate consistency for discharging from the needle at the tip of the syringe, and after discharging from the needle. Good shapeability and operability. Therefore, it is suitable for a flowable composite resin.
  • low flow type is a type in which the consistency is set low and the formability is increased in accordance with the practice of the dental material field.
  • high flow type is a type in which the consistency is set high and the formability is slightly lowered to ensure fluidity.
  • the polymerizable monomer (A), the amorphous inorganic particles (B) and the inorganic ultrafine particles (C), which are essential components of the dental curable composition of the present invention will be described.
  • Polymerizable monomer (A) As the polymerizable monomer (A) used in the present invention, a known polymerizable monomer is used without any limitation.
  • a polymerizable monomer (A) can be used individually by 1 type or in mixture of 2 or more types.
  • the refractive index after polymerization of the polymerizable monomer (A) is preferably 1.52 to 1.58 because it is easy to approximate the refractive index of the amorphous inorganic particles (B). 1.525 to 1.58 is more preferred, and 1.53 to 1.58 is even more preferred.
  • the refractive index means a refractive index measured using an Abbe refractometer at 25 ° C.
  • the refractive index after polymerization of the polymerizable monomer (A) refers to the refractive index of the polymer of the polymerizable monomer (A).
  • the refractive index of the polymer is generally slightly higher than that of the polymerizable monomer.
  • one type of polymerizable monomer may be selected, or several types of polymerizable monomers having different refractive indexes may be mixed at an appropriate blending ratio.
  • radically polymerizable monomers are preferably used.
  • the radical polymerizable monomer in the polymerizable monomer (A) include ⁇ -cyanoacrylic acid, (meth) acrylic acid, ⁇ -halogenated acrylic acid, crotonic acid, cinnamic acid, sorbic acid, maleic acid.
  • esters such as acid and itaconic acid, (meth) acrylamide, (meth) acrylamide derivatives, vinyl esters, vinyl ethers, mono-N-vinyl derivatives, and styrene derivatives.
  • (meth) acrylic acid esters and (meth) acrylamide derivatives are preferable, and (meth) acrylic acid esters are more preferable.
  • the notation (meth) acryl is used to include both methacryl and acryl.
  • (II) Bifunctional (meth) acrylates Ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol Di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2,2-bis [4- [3- (meth) acryloyloxy-2-hydroxypropoxy] phenyl] propane (commonly known as Bis-GMA), 2,2-bis [4- (meth) acryloyloxyethoxyphenyl] propane, 2,2-bis [4- (meth) acryloyloxypolyethoxyphenyl] propane, 1,2-bis [3- (meth) acryloyloxy -2-Hydroxypropoxy] ethane, pentae Examples include rititol di (meth)
  • polymerizable monomer (A) used in the present invention among the polymerizable monomers described above, from the viewpoint of the refractive index after polymerization and the handleability of the paste, triethylene glycol di (meth) acrylate, Neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2,2-bis [4- [3- (meth) acryloyloxy- 2-hydroxypropoxy] phenyl] propane, 2,2-bis [4- (meth) acryloyloxypolyethoxyphenyl] propane, [2,2,4-trimethylhexamethylenebis (2-carbamoyloxyethyl)] dimethacrylate, N, N ′-(2,2,4-trimethylhexamethylene) bis [2- (aminocarboxy) propyl Pan-1,3-diol] tetra
  • the polymerizable monomer (A) from the viewpoint of easy adjustment of the refractive index after polymerization and the handleability of the paste, when the total of the polymerizable monomers (A) is 100 parts by weight, 40-85 parts by weight of 2,2-bis [4- (meth) acryloyloxypolyethoxyphenyl] propane, triethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di 10 to 50 parts by weight of at least one selected from the group consisting of (meth) acrylate and 1,10-decandiol di (meth) acrylate, and 2,2-bis [4- [3- (meth) acryloyl Oxy-2-hydroxypropoxy] phenyl] propane, [2,2,4-trimethylhexamethylenebis (2-carbamoyloxyethyl)] 0 to at least one selected from the group consisting of methacrylate
  • the content of the polymerizable monomer (A) is preferably 25 to 50 parts by weight, more preferably 28 to 47 parts by weight, with respect to 100 parts by weight of the total amount of inorganic particles, and 30 to 45 parts by weight. More preferably, it is a part.
  • the blending amount is less than 25 parts by weight, the consistency of the paste becomes too low to be used as a flowable composite resin, and the discharge force when discharging from the syringe through the needle becomes too high, making it impossible to extrude. There is.
  • the blending amount is more than 50 parts by weight, the amount of inorganic particles becomes insufficient, and a dental curable composition that provides sufficient mechanical strength may not be obtained.
  • the total amount of inorganic particles refers to amorphous inorganic particles (B), inorganic ultrafine particles (C), and particles of inorganic materials other than arbitrarily added amorphous inorganic particles (B) and inorganic ultrafine particles (C). Say the total amount of.
  • the polymerizable monomer (A) has a viscosity of 20 to 400 mPa ⁇ s at 40 ° C. from the viewpoint of obtaining the operability of a flowable composite resin suitable for direct filling. It is preferably 40 to 200 mPa ⁇ s.
  • the viscosity of the entire polymerizable monomer can be expressed by the weighted average viscosity of the polymerizable monomer, and the average viscosity is 20 to 400 mPa ⁇ s at 40 ° C. s is preferable, and 40 to 200 mPa ⁇ s is more preferable.
  • the viscosity of the polymerizable monomer (A) can be measured using, for example, a cone plate viscometer (eg, TV-30 viscometer manufactured by Toki Sangyo Co., Ltd.).
  • Amorphous inorganic particles (B) used in the present invention are amorphous inorganic particles surface-treated with a silane coupling agent (a) having a long alkyl chain represented by the following formula (1), and an average particle diameter thereof: Is 0.1 to 0.3 ⁇ m.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a hydrolyzable group
  • R 3 is a hydrocarbon group having 1 to 6 carbon atoms
  • p is 2 or 3
  • q is an integer of 8 to 13 is there.
  • the inorganic particles (B) are indefinite.
  • the cured product When the average particle diameter of the amorphous inorganic particles is less than 0.1 ⁇ m, the cured product has sufficient abrasiveness, but the consistency of the paste tends to be low, and the consistency of 25 to 55 suitable as a flowable composite resin. The paste cannot be obtained. Further, it is difficult to increase the filler content, and the mechanical strength is lowered. When the average particle diameter is larger than 0.3 ⁇ m, sufficient mechanical strength can be obtained, but the abrasiveness is lowered. In particular, the long-term abrasiveness, that is, lubrication durability, which is important in clinical practice, deteriorates early when it is larger than 0.3 ⁇ m.
  • the average particle size of the amorphous inorganic particles (B) is preferably 0.12 to 0.25 ⁇ m, preferably 0.15 to 0.2 ⁇ m is more preferable.
  • the average particle diameter of an amorphous inorganic particle (B) can be calculated
  • SALD-2100 manufactured by Shimadzu Corporation
  • the surface of an inorganic particle is treated with a silane coupling agent, the surface of the inorganic particle is hydrophobized and the affinity with the polymerizable monomer is improved, so the content of the inorganic particle in the composition It is known that can be increased.
  • the surface of the amorphous inorganic particles (B) having an average particle diameter of 0.1 to 0.3 ⁇ m using a silane coupling agent having a short alkyl chain for example, a silane coupling agent (b) described later
  • the content of the amorphous inorganic particles (B) can be increased, but when the amorphous inorganic particles (B) after the treatment are contained to the extent that sufficient strength is expressed, the consistency is increased. Only a paste of 20 or less can be obtained, and a consistency (25 to 55) suitable for a flowable composite resin that can be directly filled into teeth cannot be obtained.
  • the amorphous inorganic particles (B) having an average particle diameter of 0.1 to 0.3 ⁇ m are subjected to a surface treatment using a silane coupling agent (a) having a long alkyl chain, the amorphous inorganic particles ( B) The hydrophobicity of the surface becomes very high, and the affinity with the polymerizable monomer (A) becomes higher.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrolyzable group
  • R 3 represents a hydrocarbon group having 1 to 6 carbon atoms.
  • P is 2 or 3
  • q is an integer of 8 to 13.
  • the hydrolyzable group represented by R 2 include an alkoxy group such as a methoxy group, an ethoxy group and a butoxy group, a chlorine atom or an isocyanate group, and a hydrocarbon having 1 to 6 carbon atoms represented by R 3.
  • the group include an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and an alkynyl group having 2 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms may be linear, branched or cyclic, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Examples include isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, n-hexyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group.
  • the alkenyl group having 2 to 6 carbon atoms may be linear, branched or cyclic, and examples thereof include a vinyl group, an allyl group, a methylvinyl group, a butenyl group, a pentenyl group, a hexenyl group, Examples include a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.
  • the alkynyl group having 2 to 6 carbon atoms may be linear, branched or cyclic, and examples thereof include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl and 1-methyl-2.
  • silane coupling agent (a) represented by the general formula (1) include 8-methacryloyloxyoctyltrimethoxysilane, 9-methacryloyloxynonyltrimethoxysilane, 10-methacryloyloxydecyltrimethoxysilane, 11-methacryloyloxyundecyltrimethoxysilane, 11-methacryloyloxyundecyldichloromethylsilane, 11-methacryloyloxyundecyltrichlorosilane, 11-methacryloyloxyundecyldimethoxymethylsilane, 12-methacryloyloxidedecyltrimethoxysilane, 13- Examples thereof include methacryloyloxytridecyltrimethoxysilane, and these can be used alone or in combination of two or more.
  • an amorphous inorganic particle (B) having an average particle size of 0.1 to 0.3 ⁇ m is more contained in the composition, and a paste having a consistency of 25 to 55 suitable as a flowable composite resin is obtained.
  • 8-methacryloyloxyoctyltrimethoxysilane, 9-methacryloyloxynonyltrimethoxysilane, 10-methacryloyloxydecyltrimethoxysilane, and 11-methacryloyloxyundecyltrimethoxysilane are preferable, and 11-methacryloyl Oxyundecyltrimethoxysilane is more preferred.
  • the surface treatment method of the inorganic particles with the silane coupling agent is not particularly limited as long as the silane coupling agent is adsorbed on the surface of the inorganic particles.
  • the silane coupling is performed while stirring the inorganic particles in the mixing tank.
  • a method of spraying a solution obtained by diluting an agent with a solvent and heating and drying in a tank for a certain time while continuing stirring, a method of stirring and mixing inorganic particles and a silane coupling agent in a solvent, and a method of heating and drying, etc. Can be mentioned.
  • the treatment amount of the amorphous inorganic particles (B) with the silane coupling agent (a) is preferably 0.5 to 15 parts by weight with respect to 100 parts by weight of the amorphous inorganic particles (B) before the treatment. Part by weight is more preferred. When the amount is less than 0.5 part by weight, the surface treatment is not sufficiently performed, and only inorganic particles having low hydrophobicity may be obtained. When the amount is more than 15 parts by weight, the surplus silane coupling agent becomes an oligomer, which may inhibit the surface treatment.
  • the refractive index of the amorphous inorganic particles (B) is preferably 1.52 to 1.58.
  • the refractive index of the amorphous inorganic particles (B) is more preferably 1.525 to 1.58, since the refractive index difference from the polymer of the polymerizable monomer (A) is easily reduced, and 1.53 to 1 .58 is more preferred.
  • the difference between the refractive index after polymerization of the polymerizable monomer (A) and the refractive index of the amorphous inorganic particles (B) is 0.03 or less in absolute value. At this time, transparency is particularly excellent.
  • the amorphous inorganic particles (B) can be used without any limitation as long as they are amorphous inorganic particles having an average particle diameter of 0.1 to 0.3 ⁇ m.
  • the inorganic particles include various glasses [mainly composed of silica, and if necessary, oxides such as heavy metals, boron, and aluminum.
  • dental glass powders such as E glass, barium glass (GM27884, 8235, manufactured by Schott, E2000, E3000, manufactured by ESSTECH), lanthanum glass ceramics (GM31684, manufactured by Shot), various ceramics, silica-titania And composite oxides such as silica-zirconia, kaolin, clay minerals (such as montmorillonite), mica, ytterbium fluoride, and yttrium fluoride. These can be used alone or in admixture of two or more.
  • inorganic particles inorganic particles containing silica as a main component are preferably used as the amorphous inorganic particles (B) of the dental curable composition of the present invention.
  • inorganic ultrafine particles (C) The inorganic ultrafine particles (C) used in the present invention are represented by the same silane coupling agent (b) as the silane coupling agent (a) except that q in the formula (1) is an integer of 1 to 6.
  • the inorganic ultrafine particles surface-treated with (1) have an average particle diameter of 5 to 50 nm.
  • the average particle size is preferably 10 to 40 nm.
  • the average particle diameter of the inorganic ultrafine particles (C) can be measured as an average value of the particle diameters of 100 ultrafine particles randomly selected by taking an electron micrograph of the ultrafine particles. When the ultrafine particles are non-spherical, the particle diameter is defined as the arithmetic average of the longest and shortest lengths of the ultrafine particles.
  • the amorphous inorganic particles (B) having an average particle size of 0.1 to 0.3 ⁇ m are treated with a silane coupling agent (a) having a long alkyl chain, and the irregular curable composition is used.
  • a silane coupling agent (a) having a long alkyl chain By further increasing the hydrophobicity of the surface of the regular inorganic particles (B), the filler content can be increased, and a high mechanical strength of the cured product and an appropriate consistency of the paste can be obtained.
  • the use of the amorphous inorganic particles (B) alone did not provide sufficient formability and operability for use as a flowable composite resin.
  • the inorganic ultrafine particles (C) further treated with a specific silane coupling agent were used as a paste property modifier for the composition to impart moderate thixotropy.
  • a paste-like composition having formability and operability suitable for use as a flowable composite resin while maintaining a consistency suitable for the flowable composite resin.
  • the inorganic ultrafine particles (C) need to exhibit the effect as a thickener in a small amount. is there.
  • the amorphous inorganic particles (B) are surface-treated using the silane coupling agent (a), the hydrophobicity becomes high, and the amorphous inorganic particles subjected to the polymerizable monomer or the specific surface treatment described above are used. Due to having the same degree of hydrophobicity as (B), they easily become familiar with them, so that a small amount of addition cannot give an appropriate formability.
  • the surface of the inorganic ultrafine particles (C) is treated with the silane coupling agent (b) so as to have an appropriate hydrophobicity, so that an appropriate formability can be added to the composition even with a small amount of addition. It was possible to prepare a composition having excellent shape retention.
  • the silane coupling agent (b) has the same structure as the silane coupling agent (a) except that q in the formula (1) is an integer of 1 to 6, and R 1 and R in the formula (1) 2, R in a range of 3 and p defined, R 1 of R 1, R 2, R 3 and p are each, silane coupling agent of the silane coupling agent (b) (a), R 2, R 3 And p may be the same or different.
  • silane coupling agent (b) examples include methacryloyloxymethyltrimethoxysilane, 2-methacryloyloxyethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 4-methacryloyloxybutyltrimethoxysilane, and 5-methacryloyl.
  • examples thereof include oxypentyltrimethoxysilane and 6-methacryloyloxyhexyltrimethoxysilane, and these can be used alone or in combination of two or more.
  • methacryloyloxymethyltrimethoxysilane, 2-methacryloyloxyethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 4-methacryloyloxybutyltrimethoxysilane are provided from the viewpoint of imparting an appropriate form retention.
  • 3-methacryloyloxypropyltrimethoxysilane is more preferable.
  • inorganic ultrafine particles used for dental curable compositions and the like are used without any limitation.
  • inorganic oxide particles such as silica, alumina, titania, zirconia, or composite oxide particles made of these, particles of calcium phosphate, hydroxyapatite, yttrium fluoride, ytterbium fluoride, barium titanate, potassium titanate, etc. Is mentioned.
  • particles of silica, alumina, titania, silica / alumina composite oxide, silica / zirconia composite oxide produced by a flame pyrolysis method such as those manufactured by Nippon Aerosil Co., Ltd., trade names: Aerosil, Aerosil 130, Aerosil 380, Aerosil OX-50, Aerocide AluC, Aerocide TiO 2 P25, Aerocide TiO 2 P25S, VP Zirconium Oxide 3-YSZ, VP Zirconium Oxide 3-YSZ PH.
  • the shape of the inorganic ultrafine particles (C) is not particularly limited, and can be appropriately selected and used.
  • the inorganic ultrafine particles (C) can also be suitably used in the form of aggregated particles formed by aggregation of inorganic ultrafine particles (C).
  • the dental curable composition has an average secondary particle size of inorganic ultrafine particles (C) having an average (primary) particle size of 5 to 50 nm as primary particles.
  • the average particle diameter of the aggregated particles can be determined by a laser diffraction scattering method. Specifically, for example, it can be measured with a laser diffraction particle size distribution measuring apparatus (SALD-2100: manufactured by Shimadzu Corporation) using a 0.2% aqueous sodium hexametaphosphate solution as a dispersion medium.
  • SALD-2100 laser diffraction particle size distribution measuring apparatus
  • the average particle diameter of the inorganic ultrafine particles (C) is preferably 5 to 35 nm, and more preferably 7 to 20 nm.
  • the average particle diameter of the aggregate of the inorganic ultrafine particles (C) is preferably 1 to 10 ⁇ m, more preferably 1 to 8 ⁇ m, and further preferably 1.2 to 5 ⁇ m. When the average particle diameter is smaller than 1 ⁇ m, the function of adjusting transmitted light is weakened.
  • the blending amount must be increased, and the light diffusibility and transparency of the cured product may be lowered.
  • the average particle size is larger than 10 ⁇ m, the refraction and scattering of light increases, and the transparency of the cured product may be reduced, and the aggregate has an average primary particle size of 5 to 50 nm.
  • the polishing property especially easy polishing property
  • inorganic ultrafine particles exist as aggregates, but 10 mg of inorganic ultrafine powder is added to 300 mL of water (dispersion medium) to which water or a surfactant such as sodium hexametaphosphate of 5 wt% or less is added.
  • water dispersion medium
  • a surfactant such as sodium hexametaphosphate of 5 wt% or less
  • the aggregated particles in the present invention are those in which particles that are hardly dispersed even under such conditions are firmly aggregated.
  • the inorganic ultrafine particles that are in contact with each other are heated to near the temperature just before the inorganic ultrafine particles melt.
  • a method of heating to such an extent that it is slightly fused is preferably used.
  • an aggregated form may be prepared before heating. Examples of the method include a method in which inorganic ultrafine particles are put into a suitable container and pressurized, or once dispersed in a solvent, and then the solvent is removed by a method such as spray drying.
  • silica sol, alumina sol, titania sol, zirconia sol, etc. produced by a wet method are used, and this is dried by a method such as freeze drying or spray drying, Aggregated particles in which the particles are firmly aggregated can be easily obtained by heat treatment as necessary.
  • the shape of the inorganic ultrafine particles is not particularly limited, and can be appropriately selected and used. Also, commercially available aggregates of inorganic ultrafine particles can be used as they are, and examples thereof include silica microbead P500 (manufactured by JGC Catalysts & Chemicals Co., Ltd.) and silica microbead P1500 (manufactured by JGC Catalysts & Chemicals Co., Ltd.). .
  • the specific surface area and pore volume of the agglomerated particles of the inorganic ultrafine particles (C) are not particularly limited, but the specific surface area is 50 to 400 m 2 / g because of easy light diffusibility and transparency of the cured product.
  • the pore volume is preferably 0.05 to 1.5 mL / g, the specific surface area is 50 to 300 m 2 / g, and the pore volume is 0.1 to 1.0 mL / g. More preferably, the specific surface area is 80 to 250 m 2 / g, and the pore volume is particularly preferably 0.15 to 0.5 mL / g.
  • the inorganic ultrafine particles (C) used in the present invention preferably have a refractive index of 1.43 to 1.50.
  • the refractive index of the inorganic ultrafine particles (C) is less than 1.43, the difference in refractive index between the polymer of the polymerizable monomer (A) and the amorphous inorganic particles (B) becomes too large. If the refractive index is greater than 1.50, the difference in refractive index between the polymer of the polymerizable monomer (A) and the amorphous inorganic particles (B) becomes small. Therefore, sufficient light diffusibility may not be obtained.
  • the refractive index of the inorganic ultrafine particles (C) is preferably 1.43 to 1.48 because the difference in refractive index between the polymer of the polymerizable monomer (A) and the amorphous inorganic particles (B) can be easily increased. 1.43-1.46 are more preferable.
  • the refractive index of the aggregated particles is preferably within the above range.
  • the refractive index after polymerization of the polymerizable monomer (A) and the refractive index of the inorganic ultrafine particles (C) (if the inorganic ultrafine particles (C) form aggregated particles, the refractive index of the aggregated particles)
  • the difference ⁇ (A) ⁇ (C) ⁇ is preferably 0.05 or more. At this time, the light diffusibility is particularly excellent.
  • Light diffusivity is the property that when light enters a translucent material such as a dental composite material, the light is refracted / reflected by the filler inside the material and diffused in various directions.
  • the reflected diffused light to be observed has a color tone that reflects the color tone of the dental composite material and its background color. Therefore, if the light diffusibility is high, the background color of the restoration or the contour of the restoration and the natural tooth It is considered that the effect of blurring is great, and therefore, the color tone compatibility with natural teeth is enhanced.
  • a diffusivity D defined by the following formula (2) has been proposed.
  • I the luminous intensity of the light transmitted through the sample
  • I 0 , I 20 and I 70 represent the luminous intensity in the direction of zero degree, 20 degrees and 70 degrees with respect to the direction perpendicular to the sample plate (light incident direction) ( Represents the intensity of light)
  • the diffusivity D can achieve a value of 0.01 to 0.5.
  • the value of the diffusivity D is less than 0.01, the light diffusibility of the dental curable composition becomes insufficient, and it is difficult to achieve harmony with natural teeth. It is too strong to obtain sufficient transparency. Therefore, the dental curable composition of the present invention can also have high light diffusibility that can be harmonized with natural teeth.
  • the value of the diffusivity D is preferably 0.02 to 0.45, more preferably 0.03 to 0.42, from the viewpoint of harmony with natural teeth.
  • the diffusivity D can be set within these preferable ranges by adjusting the refractive index difference. As a tendency, the smaller the refractive index difference, the smaller the diffusivity D.
  • the treatment amount of the inorganic ultrafine particles (C) with the silane coupling agent (b) may be appropriately adjusted in consideration of the average particle size of the inorganic particles used, etc., but the inorganic ultrafine particles (C) 100% before treatment
  • the amount is preferably 1 to 20 parts by weight with respect to parts.
  • each of the inorganic ultrafine particles (C) serving as primary particles may be treated with the silane coupling agent (b), or the aggregated particles May be treated with a silane coupling agent (b).
  • amorphous inorganic particles (B) are contained in an amount of 92.5 to 98% by weight, and inorganic ultrafine particles (C) in an amount of 2 to 7.5% by weight.
  • the content of amorphous inorganic particles (B) is less than 92.5% by weight (when the content of inorganic ultrafine particles (C) is more than 7.5% by weight)
  • the paste has a consistency suitable for a flowable composite resin. Cannot be obtained.
  • the discharge force when discharging from the syringe through the needle may become too high to be pushed out.
  • the mechanical strength may decrease.
  • the paste When the content of the amorphous inorganic particles (B) is more than 98% by weight (when the content of the inorganic ultrafine particles (C) is less than 2% by weight), the paste has low formability and is easy to sag. A paste with good operability cannot be obtained as a resin. In addition, the mechanical strength may decrease.
  • the consistency of the dental curable composition of the present invention is 25 to 55 so that it can be used particularly as a flowable composite resin.
  • the consistency used in the present specification was calculated by calculating the arithmetic average of both when the major axis and minor axis of the paste were measured after lapse of 120 seconds after crushing 0.5 mL of the paste with a load of 40 g at 25 ° C. It is a value.
  • the consistency is preferably 27 to 45, more preferably 29 to 40.
  • it is less than 25 the consistency of the paste becomes too low, the ejection force when ejecting from the syringe through the needle is increased, and the ejection properties are deteriorated.
  • it is larger than 55 it becomes a paste that tends to sag, and a paste with good operability cannot be obtained as a flowable composite resin.
  • the dental curable composition of the present invention may contain other inorganic particles other than the amorphous inorganic particles (B) and the inorganic ultrafine particles (C) as long as the effects of the present invention are not impaired.
  • the dental curable composition of the present invention may contain a polymerization initiator in order to facilitate polymerization and curing.
  • a polymerization initiator a known polymerization initiator can be used, and is usually selected in consideration of the polymerizability of the polymerizable monomer and the polymerization conditions.
  • a redox polymerization initiator such as an organic peroxide / amine system or an organic peroxide / amine / sulfinic acid (or salt thereof) system is preferably used.
  • a redox polymerization initiator it is necessary to take a packaging form in which an oxidizing agent and a reducing agent are separately packaged, and to mix them both immediately before use.
  • the oxidizing agent include organic peroxides such as diacyl peroxides, peroxyesters, peroxycarbonates, dialkyl peroxides, peroxyketals, ketone peroxides, and hydroperoxides. .
  • examples of diacyl peroxides include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, m-toluoyl peroxide, lauroyl peroxide, and the like.
  • examples of peroxyesters include t-butyl peroxybenzoate, bis-t-butyl peroxyisophthalate, t-butyl peroxy-2-ethylhexanoate, and the like.
  • examples of peroxycarbonates include t-butyl peroxyisopropyl carbonate.
  • dialkyl peroxides examples include dicumyl peroxide, di-t-butyl peroxide, and 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane.
  • peroxyketals examples include 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane.
  • ketone peroxides examples include methyl ethyl ketone peroxide.
  • hydroperoxides include t-butyl hydroperoxide.
  • a tertiary amine is usually used as the reducing agent.
  • oxidation-reduction initiators such as cumene hydroperoxide / thiourea, ascorbic acid / Cu 2+ salt, organic sulfinic acid (or its salt) / amine / inorganic peroxide, tributylborane Organic sulfinic acid and the like are also preferably used.
  • oxidation-reduction initiators such as ⁇ -diketone / tertiary amine, ⁇ -diketone / aldehyde, ⁇ -diketone / mercaptan are preferable.
  • the photopolymerization initiator include ⁇ -diketone / reducing agent, ketal / reducing agent, and thioxanthone / reducing agent.
  • ⁇ -diketones include camphorquinone, benzyl, 2,3-pentanedione and the like.
  • ketals include benzyl dimethyl ketal and benzyl diethyl ketal.
  • Examples of thioxanthone include 2-chlorothioxanthone and 2,4-diethylthioxanthone.
  • Examples of reducing agents include Michler's ketone, etc .; 2- (dimethylamino) ethyl methacrylate, N, N-bis [(meth) acryloyloxyethyl] -N-methylamine, ethyl N, N-dimethylaminobenzoate, 4- Such as butyl dimethylaminobenzoate, butoxyethyl 4-dimethylaminobenzoate, N-methyldiethanolamine, 4-dimethylaminobenzophenone, N, N-bis (2-hydroxyethyl) -p-toluidine, dimethylaminophenanthol, etc.
  • aldehydes such as citronellal, lauryl aldehyde, phthaldialdehyde, dimethylaminobenzaldehyde, terephthalaldehyde; 2-mercaptobenzoxazole, decanethiol, 3-mercaptopropyltrimethoxysilane, 4-mercaptoacetate Enon, it may be mentioned a compound having a thiosalicylic acid, thiol group such as thio benzoic acid.
  • An ⁇ -diketone / organic peroxide / reducing agent system obtained by adding an organic peroxide to these oxidation-reduction systems is also preferably used.
  • benzoin alkyl ether In the case of performing photopolymerization by ultraviolet irradiation, benzoin alkyl ether, benzyl dimethyl ketal and the like are suitable. Furthermore, an acyl phosphine oxide-based or bisacyl phosphine oxide-based photopolymerization initiator is also preferably used.
  • acylphosphine oxide examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,3,5,6- Examples thereof include tetramethylbenzoyldiphenylphosphine oxide, benzoyldi- (2,6-dimethylphenyl) phosphonate, and 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide.
  • bisacylphosphine oxide examples include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- ( 2,6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis -(2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis (2,4,6 -Trimethylbenzoyl) phenyl Such as scan fin oxide, and the like.
  • these (bis) acylphosphine oxides may contain a water-soluble substituent.
  • These (bis) acylphosphine oxide photopolymerization initiators can be used alone or in combination with reducing agents such as various amines, aldehydes, mercaptans, and sulfinates. The above visible light photopolymerization initiator can also be suitably used in combination.
  • the above polymerization initiators can be used alone or in appropriate combination of two or more.
  • the total content of the polymerization initiator is 0.1 to 10 parts by weight with respect to 100 parts by weight of the total amount of polymerizable monomers.
  • the amount is preferably 0.2 to 5.0 parts by weight.
  • the dental curable composition of the present invention may contain additives such as a polymerization inhibitor, an ultraviolet absorber, a fluorescent agent, and a pigment in addition to the polymerizable monomer and inorganic particles.
  • polymerization inhibitor examples include 3,5-di-butyl-4-hydroxytoluene, hydroquinone, dibutylhydroquinone, dibutylhydroquinone monomethyl ether, 2,6-t-butylphenol, 4-methoxyphenol, and the like. You may mix
  • the dental curable composition of the present invention is not particularly limited as long as it contains a polymerizable monomer (A), a predetermined amount of amorphous inorganic particles (B), and inorganic ultrafine particles (C). Can be easily produced in a state according to the application (1 paste state, 2 paste state, powder-liquid state, molded state).
  • a polymerization initiation function having both a chemical polymerization function or a chemical polymerization property and a photopolymerization property, it takes a packaging form in which a composition containing an oxidizing agent and a composition containing a reducing agent are separately packaged. It is necessary to mix the two immediately before use.
  • the cured product is excellent in mechanical strength, abrasiveness and lubrication durability, and the paste has an appropriate consistency for discharging from the needle at the tip of the syringe, and after discharging from the needle.
  • Good shapeability and operability. Therefore, the dental curable composition of the present invention is suitably used as a substitute for a part or the whole of a natural tooth in the field of dentistry, and is optimal for a flowable composite resin. Therefore, in dental filling treatment, discharge from a small-diameter needle attached to the tip of a container (syringe-type container) containing the dental curable composition of the present invention is possible, and the syringe to the cavity is possible. Direct filling is possible. Therefore, since the filling operation can be performed only by pouring from the syringe into the cavity, the treatment time can be shortened.
  • the dental curable composition of the present invention is provided as a dental flowable composite resin, for example, it is provided as a package including a container containing the flowable composite resin and a needle tip attached to the tip of the container.
  • the container includes, for example, a cylindrical syringe and a plunger suitable for insertion from the rear end of the syringe.
  • the inner diameter of the needle included in the needle tip is usually 0.3 to 0.9 mm.
  • the flowable composite resin is a two-pack type, for example, the container is composed of two syringes connected in parallel and two plungers connected in parallel.
  • a static mixer may be provided.
  • the average particle size of the inorganic particles B was determined as a volume median particle size by obtaining a particle size distribution by a laser diffraction scattering method.
  • the volume median particle size means a particle size at which the cumulative volume frequency calculated by the volume fraction is 50% calculated from the smaller particle size.
  • Measuring machine SALD-2100 type (manufactured by Shimadzu Corporation)
  • Analysis software Light transmission type centrifugal sedimentation method Dispersion: 0.2% sodium hexametaphosphate Dispersion condition: Add 15 mg of sample to 20 mL of the dispersion, and disperse with an ultrasonic disperser for 30 minutes to prepare a sample dispersion To do.
  • Measurement conditions The sample dispersion is measured, and the ratio of the number of particles having a volume-median particle size and a particle size of 0.01 to 100 ⁇ m is determined.
  • Refractive index Using an Abbe refractometer, measurement was performed at 25 ° C. by an immersion method using di-iodomethane, 1-bromonaphthalene, methyl salicylate, dimethylformamide, 1-pentanol, etc. dissolved in sulfur as a liquid using sodium D-line as a light source.
  • Average particle size of inorganic ultrafine particles C Based on an electron micrograph of 100 or more inorganic ultrafine particles, image analysis was performed using image analysis software (Mac-View; manufactured by Mountec Co., Ltd.), and the volume average particle size was calculated. When the inorganic ultrafine particles C were aggregated particles, the particle diameter of the aggregated particles was determined by the same method as the average particle diameter of the inorganic particles B.
  • Production example 1 of inorganic particles 100 g of barium glass “GM27884 NanoFine180 (average particle size 0.18 ⁇ m, refractive index 1.53)” (manufactured by Schott), 11 g of 11-methacryloyloxyundecyltrimethoxysilane, and 200 mL of toluene were placed in a three-necked flask for 2 hours at room temperature. And stirred. Toluene was distilled off under reduced pressure, followed by vacuum drying at 40 ° C. for 16 hours and further heating at 90 ° C. for 3 hours to provide inorganic particles (b-1) having an average particle diameter of 0.18 ⁇ m provided with a surface treatment layer Got.
  • GM27884 NanoFine180 average particle size 0.18 ⁇ m, refractive index 1.53
  • Production example 2 of inorganic particles 100 g of barium glass “GM27884 NanoFine180 (average particle size 0.18 ⁇ m, refractive index: 1.53)” (manufactured by Schott), 11 g of 8-methacryloyloxyoctyltrimethoxysilane, and 200 mL of toluene were placed in a three-necked flask for 2 hours at room temperature. And stirred. Toluene was distilled off under reduced pressure, followed by vacuum drying at 40 ° C. for 16 hours, and further heating at 90 ° C. for 3 hours to provide inorganic particles (b-2) having an average particle diameter of 0.18 ⁇ m provided with a surface treatment layer Got.
  • GM27884 NanoFine180 average particle size 0.18 ⁇ m, refractive index: 1.53
  • Production example 3 of inorganic particles 100 g of barium glass “GM27884 NanoFine180 (average particle size 0.18 ⁇ m, refractive index 1.53)” (manufactured by Schott), 11 g of 13-methacryloyloxytridecyltrimethoxysilane, and 200 mL of toluene were placed in a three-necked flask for 2 hours at room temperature. And stirred. Toluene was distilled off under reduced pressure, followed by vacuum drying at 40 ° C. for 16 hours, and further heating at 90 ° C. for 3 hours to provide inorganic particles (b-3) having an average particle diameter of 0.18 ⁇ m provided with a surface treatment layer Got.
  • GM27884 NanoFine180 average particle size 0.18 ⁇ m, refractive index 1.53
  • Production example 4 of inorganic particles 100 g of barium glass “GM27884 (average particle size 0.10 ⁇ m, refractive index 1.53)” (manufactured by Schott), 11 g of 13-methacryloyloxytridecyltrimethoxysilane, and 200 mL of toluene were placed in a three-necked flask for 2 hours at room temperature. And stirred. Toluene was distilled off under reduced pressure, followed by vacuum drying at 40 ° C. for 16 hours and further heating at 90 ° C. for 3 hours to provide inorganic particles (b-4) having an average particle diameter of 0.10 ⁇ m provided with a surface treatment layer Got.
  • GM27884 average particle size 0.10 ⁇ m, refractive index 1.53
  • Inorganic particle production example 5 100 g of barium glass “GM27884 UF0.4 (average particle size 0.4 ⁇ m, refractive index 1.53)” (manufactured by Schott), 7.0 g of 11-methacryloyloxyundecyltrimethoxysilane, and 200 mL of toluene were placed in a three-necked flask. Stir for 2 hours at room temperature. Toluene was distilled off under reduced pressure, followed by vacuum drying at 40 ° C. for 16 hours and further heating at 90 ° C. for 3 hours to provide inorganic particles (b-5) having an average particle diameter of 0.4 ⁇ m provided with a surface treatment layer Got.
  • GM27884 UF0.4 average particle size 0.4 ⁇ m, refractive index 1.53
  • Production example 6 of inorganic particles 100 g of barium glass “GM27884 NanoFine180 (average particle size 0.18 ⁇ m, refractive index 1.53)” (manufactured by Schott), 11 g of 3-methacryloyloxypropyltrimethoxysilane, and 200 mL of toluene were placed in a three-necked flask for 2 hours at room temperature. Stir. Toluene was distilled off under reduced pressure, followed by vacuum drying at 40 ° C. for 16 hours and further heating at 90 ° C. for 3 hours to provide inorganic particles (b-6) having an average particle size of 0.18 ⁇ m provided with a surface treatment layer Got.
  • GM27884 NanoFine180 average particle size 0.18 ⁇ m, refractive index 1.53
  • Inorganic particle production example 7 Agglomerated silica “silica microbead P-500 (average particle size of ultrafine particles 12 nm, aggregated average particle size 2 ⁇ m)” (manufactured by JGC Catalysts & Chemicals Co., Ltd.) 100 g, 20 g of 3-methacryloxypropyltrimethoxysilane, and toluene 200 mL And stirred at room temperature for 2 hours. Toluene was distilled off under reduced pressure, followed by vacuum drying at 40 ° C. for 16 hours, and further heating at 90 ° C.
  • Inorganic particle production example 8 Silica sol Snowtex ST-20 (average particle size 14 nm) manufactured by Nissan Chemical Co., Ltd. was subjected to micro mist dryer “MDL-050” under the conditions of an inlet temperature of 200 ° C., an internal temperature of 80 ° C., an air flow rate of 30 mL / min, and a liquid flow rate of 15 mL / min. (Fujisaki Electric Co., Ltd.) was used for predrying by spray drying. The obtained spherical powder was fired in an electric furnace set at 400 ° C. for 1 hour to obtain a fired powder.
  • MDL-050 micro mist dryer
  • Production example 9 of inorganic particles 100 g of inorganic ultrafine particle Aerosil 130 (refractive index 1.45 manufactured by Nippon Aerosil Co., Ltd.) having an average particle size of 20 nm, 40 g of 3-methacryloxypropyltrimethoxysilane, and 200 mL of toluene are placed in a three-necked flask and stirred at room temperature for 2 hours. did. Toluene was distilled off under reduced pressure, followed by vacuum drying at 40 ° C. for 16 hours and further heating at 90 ° C. for 3 hours to obtain inorganic ultrafine particles (c-3) provided with a surface treatment layer.
  • Inorganic particle production example 10 100 g of fine particle inorganic filler having an average particle diameter of 40 nm (refractive index: 1.45, manufactured by Nippon Aerosil Co., Ltd., trade name: Aerosil OX-50), 40 g of 3-methacryloyloxypropyltrimethoxysilane, and 600 mL of toluene are placed in a three-necked flask for 20 minutes. , Vigorously stirred at 30 ° C. Toluene was distilled off at 30 ° C. under reduced pressure, followed by vacuum drying at 40 ° C. for 16 hours to obtain inorganic particles (c-4) provided with a surface treatment layer.
  • inorganic particles c-4 provided with a surface treatment layer.
  • Production example 11 of inorganic particles 100 g of a fine inorganic filler having an average particle diameter of 7 nm (refractive index: 1.45, manufactured by Nippon Aerosil Co., Ltd., trade name: Aerosil 380), 40 g of 3-methacryloyloxypropyltrimethoxysilane, and 600 mL of toluene are placed in a three-necked flask for 30 minutes for 30 minutes. Stir vigorously at °C. Toluene was distilled off at 30 ° C. under reduced pressure, followed by vacuum drying at 40 ° C. for 16 hours to obtain inorganic particles (c-5) provided with a surface treatment layer.
  • a fine inorganic filler having an average particle diameter of 7 nm reffractive index: 1.45, manufactured by Nippon Aerosil Co., Ltd., trade name: Aerosil 380
  • 40 g of 3-methacryloyloxypropyltrimethoxysilane 600 mL of to
  • Production example 12 of inorganic particles Aggregated silica “Silica microbead P-500 (ultrafine particle average particle size 12 nm, aggregate average particle size 2 ⁇ m, refractive index 1.44)” (manufactured by JGC Catalysts & Chemicals) 100 g, 11-methacryloyloxyundecyltrimethoxysilane 7 0.0 g and 200 mL of toluene were placed in a three-necked flask and stirred at room temperature for 2 hours. Toluene was distilled off under reduced pressure, followed by vacuum drying at 40 ° C. for 16 hours and further heating at 90 ° C. for 3 hours to obtain inorganic particles (c-6) provided with a surface treatment layer.
  • Silica “Silica microbead P-500 (ultrafine particle average particle size 12 nm, aggregate average particle size 2 ⁇ m, refractive index 1.44)” manufactured by JGC Catalysts & Chemical
  • Inorganic Particle Production Example 13 (Method for producing organic-inorganic composite filler) To 32 g of a polymerizable monomer mixture consisting of 70 parts by weight of triethylene glycol dimethacrylate, 10 parts by weight of Bis-GMA, 20 parts by weight of neopentyl glycol dimethacrylate and 0.5 part by weight of benzoyl peroxide, the above ultrafine filler (c- 5) 68 g was mixed and kneaded until uniform. An organic-inorganic composite filler (c-7) having an average particle diameter of 2 ⁇ m and a refractive index of 1.47 was obtained by crushing and classifying the composition obtained by heating at 100 ° C. for 24 hours in a nitrogen atmosphere and curing. )
  • D2.6E 2,2-bis (4-methacryloyloxypolyethoxyphenyl) propane 3G: triethylene glycol dimethacrylate
  • Bis-GMA 2,2-bis [4- (3-methacryloyloxy) -2-hydroxypropoxyphenyl ]
  • Propane DD 1,10-decanediol dimethacrylate
  • NPG neopentylglycol dimethacrylate
  • HD 1,6-hexanediol dimethacrylate
  • UDMA [2,2,4-trimethylhexamethylenebis (2-carbamoyloxyethyl)] Dimethacrylate
  • U-4TH N, N ′-(2,2,4-trimethylhexamethylene) bis [2- (aminocarboxy) propane-1,3-diol] tetramethacrylate
  • the obtained polymerizable monomer composition was mixed and kneaded with amorphous inorganic particles (B) and inorganic ultrafine particles (C), and the resulting mixture was vacuum degassed.
  • Examples shown in Tables 1 to 4 The paste-like dental curable compositions of 1 to 23 and Comparative Examples 1 to 6 were prepared. The following characteristics evaluation test was implemented about the prepared dental curable composition. The results are shown in Tables 1 to 4.
  • Test Example 1 (Abrasiveness) The prepared dental curable composition was filled into a Teflon mold (diameter 10 mm, thickness 2.0 mm). The upper and lower surfaces were pressed against each other with a slide glass, and were cured by light irradiation for 10 seconds only with a visible light irradiator for dental technicians (Pencure 2000, manufactured by Morita). A test piece was taken out from the Teflon mold, and a clean smooth surface was polished with # 600 polishing paper under dry conditions.
  • Volvere RX manufactured by NSK
  • silicon point brown manufactured by Matsukaze
  • silicon point blue manufactured by Matsukaze
  • the gloss of the polished surface was measured using a gloss meter (VG-2000, Nippon Denshoku Co., Ltd., measurement angle 60 degrees), and the ratio (glossiness) when the mirror was 100 was shown.
  • a glossiness of 65 or more is preferred, and 70 or more is more preferred.
  • Test example 2 (sliding durability)
  • the prepared dental curable composition was filled into a Teflon mold (diameter 10 mm, thickness 2.0 mm).
  • the upper and lower surfaces were pressed against each other with a slide glass, and were cured by light irradiation for 10 seconds only with a visible light irradiator for dental technicians (Pencure 2000, manufactured by Morita).
  • a test piece was taken out from the Teflon mold, and a clean smooth surface was polished in order of # 1500 polishing paper, # 2000 polishing paper, and # 3000 polishing paper in the order of dryness, and finally polished with a diamond paste until the glossiness was 90. .
  • Test Example 3 The prepared dental curable composition was degassed in vacuum, then filled in a syringe, and allowed to stand at 25 ° C. for 2 hours as a consistency test sample.
  • a 0.5 mL sample was weighed and left to rise in the center of a glass plate (5 cm ⁇ 5 cm) in a constant temperature room at 25 ° C. (humidity 40%).
  • a 40 g glass plate (5 cm ⁇ 5 cm) was placed thereon, and the major axis and minor axis of the sample after 120 seconds were measured through the glass plate, and the arithmetic average of the two was calculated to obtain the consistency.
  • the major axis of the sample is the longest diameter among the diameters passing through the center of the sample
  • the minor axis of the sample is the diameter perpendicular to the major axis of the sample among the diameters passing through the center of the sample.
  • Test Example 4 (Discharge force) For measurement of the discharge force, a storage container comprising a polyolefin resin syringe (inner diameter 8 mm ⁇ length 63 mm clear film Majesty LV container) and a cylindrical plunger fitted into the syringe from the rear end side of the syringe, And a needle tip (20G ⁇ 1/2 ”needle portion inner diameter 0.65 mm ⁇ length 19 mm needle portion was 8.5 mm from the tip and bent 45 degrees) was used on the tip side of the syringe.
  • the storage container is made of an environmental light impermeable member.
  • the discharge force force required to extrude the paste from the syringe
  • the storage container was set up vertically, the crosshead equipped with a jig for compressive strength test was lowered at 4 mm / min, and the paste was discharged while applying a load, and the maximum load at that time was defined as the discharge force.
  • the discharge force was measured at 25 ° C.
  • Test Example 5 (Shaping property) A circle with a diameter of 4 mm is drawn in advance on a 30 mm ⁇ 30 mm square glass plate, and 0.03 g of paste is discharged into the circle using the storage container and needle tip used in the above discharge force evaluation.
  • the glass plate was placed horizontally in a 37 ° C. incubator, left in that state for 30 seconds, and the shape of the paste was visually observed.
  • the shape of the discharge was evaluated according to the following evaluation criteria. .
  • the shapeability is 2 to 4 as acceptable products.
  • evaluation 2 or 3 is preferable, and 3 is more preferable.
  • evaluation 3 or 4 is preferable, and 4 is more preferable.
  • Test Example 6 (operability) When carrying out the above-mentioned formability test, the tip of the needle is placed 1 to 2 cm above the glass plate, and after the paste is discharged, the needle tip is pulled up and attached to the paste on the glass plate and the needle tip. The state of the paste was visually confirmed, and the operability of the paste was evaluated according to the following evaluation criteria.
  • Test example 7 (bending strength)
  • the prepared dental curable composition (paste) is vacuum degassed and then filled into a stainless steel mold (dimensions 2 mm ⁇ 2 mm ⁇ 25 mm), and the top and bottom are pressed with a slide glass, and a visible light irradiator for dental technicians ( Pencure 2000 (manufactured by Morita Co., Ltd.) was cured by irradiating both sides with light at 10 points for 1 point and 5 points on each side.
  • cured material was produced for every one, and after taking out from a metal mold
  • the bending strength was measured under the conditions of a distance between fulcrums of 20 mm and a crosshead speed of 1 mm / min. The average value was calculated as the bending strength. In addition, the case where bending strength is 130 Mpa or more is set as a pass.
  • Test Example 8 (Diffusion degree) The prepared dental curable composition was filled into a Teflon mold (diameter 20 mm ⁇ thickness 0.5 mm). The upper and lower surfaces were pressed against each other with a slide glass, and light irradiation was performed for 1 minute at a time using the ⁇ light II (halogen light irradiator; manufactured by Morita), and cured. After taking the cured product out of the mold, the luminous intensity distribution of the transmitted light was measured using a three-dimensional goniophotometer (GP-200 manufactured by Murakami Color Research Laboratory). The diffusivity was calculated according to the above equation (2).
  • ⁇ light II halogen light irradiator
  • Test Example 9 (Surface hardness: Vickers hardness) An appropriate amount of the prepared dental curable composition is placed on a slide glass, and the upper and lower surfaces are pressed with a slide glass using a 1 mm gauge (manufactured by Mitutoyo Co., Ltd.). 2000, manufactured by Morita Co., Ltd.) and cured by irradiation with light for 10 seconds to produce a disk having a diameter of 10 mm and a thickness of 1 mm. A clean smooth surface was polished with # 1500 abrasive paper under dry conditions, and finally mirror-polished with diamond paste. The Vickers hardness of the test piece prepared here was measured by applying a load at 200 g for 10 seconds using a micro hardness tester (manufactured by HM-221 Mitutoyo Corporation). The surface hardness is 25 or more.
  • Test Example 10 (Viscosity of polymerizable monomer) The viscosity of the mixture of polymerizable monomers was measured at a sample volume of 0.6 mL and 40 ° C. using a TV-30 viscometer (manufactured by Toki Sangyo Co., Ltd.) with a 0.8 ° ⁇ R24 cone rotor. did. After preheating for 1 minute, the measurement was started, and the value after 5 minutes was taken as the viscosity.
  • the dental curable compositions of the present invention have high initial hardness and bending strength, excellent abrasiveness, and smooth durability (glossiness after toothbrush abrasion test). It can be seen that it is expensive.
  • Examples 1 to 8 and 12 to 23 it is also found that the light diffusibility is high and the color tone compatibility is excellent. It can be seen that Examples 1 to 8 are particularly excellent in formability and have particularly excellent performance as a low flow type. Further, it can be seen that Examples 13 to 16 have particularly excellent performance as a high flow type having a particularly low discharge force and excellent fluidity.
  • the dental curable composition of the present invention is suitably used as a substitute for a part or the whole of a natural tooth in the field of dentistry, and is optimal for a flowable composite resin.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Dentistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dental Preparations (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

 本発明は、硬化物が、機械的強度、研磨性及び滑沢耐久性に優れ、ペーストが、シリンジ先端のニードルから吐出するための適度な稠度と、ニードルから吐出後の良好な賦形性及び操作性を有する、フロアブルコンポジットレジンに好適な歯科用硬化性組成物を提供する。本発明は、重合性単量体(A)、特定構造のシランカップリング剤で表面処理された平均粒子径0.1~0.3μmの不定形無機粒子(B)、及び特定構造のシランカップリング剤で表面処理された平均粒子径5~50nmの無機超微粒子(C)を含有する歯科用硬化性組成物であって、前記不定形無機粒子(B)及び前記無機超微粒子(C)を無機粒子の全量中にそれぞれ92.5~98重量%及び2~7.5重量%含有し、稠度が25~55である歯科用硬化性組成物である。

Description

歯科用硬化性組成物及び歯科用フロアブルコンポジットレジン
 本発明は、歯科医療の分野において、天然歯の一部分又は全体を代替し得る歯科材料、特に歯科用フロアブルコンポジットレジンとして好適に使用できる歯科用硬化性組成物に関する。
 重合性単量体、フィラー及び重合開始剤から構成される歯科用硬化性組成物は、コンポジットレジンと呼ばれ、歯の欠損部や虫歯を修復するための材料として今日最も多用される歯科材料となっている。コンポジットレジンには、重合硬化後の硬化物においては、天然歯と置換可能な十分な機械的強度、天然歯と同等の光沢を得るための研磨性及び滑沢耐久性等が要求され、重合硬化前のペースト状態では、歯科用インスツルメントを用いて窩洞への充填操作をするのに適した賦形性及び操作性等があることが要求されている。
 近年では、さらにフロアブルコンポジットレジンと呼ばれる重合硬化前の流動性の高いコンポジットレジンが開発されている。フロアブルコンポジットレジンは、ペーストを収容している容器(シリンジ)の先端に装着した、窩洞よりも口径の小さな孔を有するニードルから、窩洞に直接ペーストを充填し治療を行うのに用いられるものである。シリンジから窩洞にペーストを流しこむだけで充填操作ができることから、処置時間が短縮されるため、フロアブルコンポジットレジンは臨床現場でより多く使用されるようになってきている。
 歯科用硬化性組成物がフロアブルコンポジットレジンとして機能するには、通常のコンポジットレジンに要求される硬化物の機械的強度、研磨性及び滑沢耐久性に加えて、ペーストのフロアブルコンポジットレジン独特の流動性、すなわち、シリンジ先端のニードルから吐出するのに適した稠度、ニードルから吐出したペーストの賦形性及び操作性が要求される。これらの要求特性に最も影響を与えるのは、歯科用硬化性組成物に含有されるフィラーである。しかしながら、これらの要求特性は、相互に関係するものである。つまり、1つの特性を向上させようとフィラーを変更すると、他の特性が低下するものであり、そのため、すべての要求特性を高いレベルで同時に満たすことは難しく、これまでに種々の検討がなされている。
 例えば、特許文献1には、フロアブルコンポジットレジンを主用途とした歯科用硬化性組成物が開示されている。当該歯科用硬化性組成物は、重合性単量体に、特定構造のシランカップリング剤で処理した平均粒子径1.0~5.0μmの不定形の無機粒子、及び特定構造のシランカップリング剤で処理した平均粒子径0.01~0.10μmの無機微粒子の2種のフィラーを配合したものであり、ペーストの賦形性及び稠度が良好で硬化物の機械的強度に優れるものである。しかしながら本発明者らの検討では、特許文献1の歯科用硬化性組成物は、研磨性及び滑沢耐久性に改善の余地があることがわかった。
 また、コンポジットレジンに使用可能な、表面処理した粒子径の異なる2種類のフィラーを組み合わせた歯科材料/歯科用組成物が、特許文献2~4に開示されている。しかしながら、特許文献2~4には、フロアブルコンポジットレジンを意図した記載はなく、少なくともそれらの実施例で検討されたものは、フロアブルコンポジットレジンに適したペーストの流動性を有していなかったり、研磨性、滑沢耐久性等に改善の余地のあるものであった。
国際公開2008/093596号 特表2002-518309号公報 国際公開2002/05752号 国際公開2011/074222号
 そこで本発明は、硬化物が、機械的強度、研磨性及び滑沢耐久性に優れ、ペーストが、シリンジ先端のニードルから吐出するための適度な稠度と、ニードルから吐出後の良好な賦形性及び操作性を有する、フロアブルコンポジットレジンに好適な歯科用硬化性組成物を提供することを目的とする。
 本発明は、重合性単量体(A)、
 式(1)(式中、Rは水素原子又はメチル基、Rは加水分解可能な基、Rは炭素数1~6の炭化水素基を示し、pは2又は3、qは8~13の整数である)で表されるシランカップリング剤(a)で表面処理された平均粒子径0.1~0.3μmの不定形無機粒子(B)、及び
 前記式(1)中のqが1~6の整数である以外はシランカップリング剤(a)と同様に表されるシランカップリング剤(b)で表面処理された平均粒子径5~50nmの無機超微粒子(C)を含有する歯科用硬化性組成物であって、
 前記不定形無機粒子(B)及び前記無機超微粒子(C)を無機粒子の全量中にそれぞれ92.5~98重量%及び2~7.5重量%含有し、
 歯科用硬化性組成物の稠度が25~55である、
歯科用硬化性組成物である。
Figure JPOXMLDOC01-appb-C000001
 本発明の歯科用硬化性組成物の好ましい一実施態様では、前記重合性単量体(A)の重合後の屈折率が1.52~1.58であり、前記不定形無機粒子(B)の屈折率が1.52~1.58であり、かつ前記無機超微粒子(C)の屈折率が1.43~1.50である。
 本発明の歯科用硬化性組成物においては、前記重合性単量体(A)の含有量が、無機粒子の全量100重量部に対して25~50重量部であることが好ましい。
 本発明の歯科用硬化性組成物の好ましい一実施態様では、前記無機超微粒子(C)が凝集して凝集粒子を形成しており、当該凝集粒子の平均粒子径が1~10μmである。
 本発明はまた、上記の歯科用硬化性組成物を含む歯科用フロアブルコンポジットレジンである。
 本発明はまた、上記の歯科用フロアブルコンポジットレジンを含有する容器と、前記容器の先端に装着されるニードルチップとを含むパッケージである。
 本発明の歯科用硬化性組成物は、硬化物が、機械的強度、研磨性及び滑沢耐久性に優れ、ペーストが、シリンジ先端のニードルから吐出するための適度な稠度と、ニードルから吐出後の良好な賦形性及び操作性を有する。よってフロアブルコンポジットレジンに好適である。
 歯科用硬化性組成物を用いた従来のコンポジットレジンは、該組成物が高い粘性を有するため、該組成物を収容している容器から直接歯の窩洞に充填することはできず、通常は、該組成物を容器から適量取り出した後、歯科用インスツルメント等の歯科充填用器材を用いて窩洞に詰め、窩洞に適合するように賦形し、硬化させることにより歯の充填治療を行うものである。これに対し、近年開発されたコンポジットレジンは、該組成物を収容している容器(シリンジ)の先端に装着した、窩洞よりも口径の小さな孔を有するニードルから、窩洞に直接該組成物を充填して賦形し、硬化させることにより歯の充填治療を行うものである。本明細書では、後者を「フロアブルコンポジットレジン」と称する。
 また、フロアブルコンポジットレジンとしては、稠度によって2つのタイプが汎用されており、本明細書では、歯科材料分野の慣習にならい、稠度を低めに設定し賦形性を高めたタイプを「ローフロー」タイプと称し、稠度を高めに設定しやや賦形性を低めて流動性を確保したタイプを「ハイフロー」タイプと称する。
 まず、本発明の歯科用硬化性組成物の必須成分である重合性単量体(A)、不定形無機粒子(B)及び無機超微粒子(C)について説明する。
重合性単量体(A)
 本発明で用いられる重合性単量体(A)は、公知の重合性単量体がなんら制限なく用いられる。重合性単量体(A)は、1種単独で又は2種以上の混合物として用いることができる。重合性単量体(A)の重合後の屈折率は、不定形無機粒子(B)の屈折率と近似させることが容易であることから、1.52~1.58であることが好ましく、1.525~1.58がより好ましく、1.53~1.58がさらに好ましい。なお、本明細書において屈折率とは、25℃でアッベ屈折計を用いて測定される屈折率のことをいう。また、重合性単量体(A)の重合後の屈折率とは、重合性単量体(A)の重合体の屈折率のことをいう。重合性単量体(A)において、重合後に所望の屈折率を得るためには、一般的に重合性単量体よりもその重合体の方が屈折率がわずかに高くなる傾向を考慮に入れつつ、1種類の重合性単量体を選択するか、屈折率の異なる数種類の重合性単量体を、適当な配合比で混合すればよい。
 上記重合性単量体(A)の中でも、ラジカル重合性単量体が好適に用いられる。重合性単量体(A)におけるラジカル重合性単量体の具体例としては、α-シアノアクリル酸、(メタ)アクリル酸、α-ハロゲン化アクリル酸、クロトン酸、桂皮酸、ソルビン酸、マレイン酸、イタコン酸などのエステル類、(メタ)アクリルアミド、(メタ)アクリルアミド誘導体、ビニルエステル類、ビニルエーテル類、モノ-N-ビニル誘導体、スチレン誘導体などが挙げられる。これらの中では、(メタ)アクリル酸エステル及び(メタ)アクリルアミド誘導体が好ましく、(メタ)アクリル酸エステルがより好ましい。なお、本発明において(メタ)アクリルとの表記は、メタクリルとアクリルの両者を包含する意味で用いられる。
 (メタ)アクリル酸エステル系及び(メタ)アクリルアミド誘導体系の重合性単量体の例を以下に示す。
(I)一官能性(メタ)アクリレート及び一官能性(メタ)アクリルアミド誘導体
 メチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ラウリル(メタ)アクリレート、2,3-ジブロモプロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、プロピレングリコールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、エリトリトールモノ(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-(ジヒドロキシエチル)(メタ)アクリルアミド、(メタ)アクリロイルオキシドデシルピリジニウムブロマイド、(メタ)アクリロイルオキシドデシルピリジニウムクロライド、(メタ)アクリロイルオキシヘキサデシルピリジニウムクロライド、(メタ)アクリロイルオキシデシルアンモニウムクロライド等が挙げられる。
(II)二官能性(メタ)アクリレート
 エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2,2-ビス[4-〔3-(メタ)アクリロイルオキシ-2-ヒドロキシプロポキシ〕フェニル]プロパン(通称Bis-GMA)、2,2-ビス〔4-(メタ)アクリロイルオキシエトキシフェニル〕プロパン、2,2-ビス〔4-(メタ)アクリロイルオキシポリエトキシフェニル〕プロパン、1,2-ビス〔3-(メタ)アクリロイルオキシ-2-ヒドロキシプロポキシ〕エタン、ペンタエリトリトールジ(メタ)アクリレート、[2,2,4-トリメチルヘキサメチレンビス(2-カルバモイルオキシエチル)]ジメタクリレート(通称UDMA)等が挙げられる。
(III)三官能性以上の(メタ)アクリレート
 トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、N,N’-(2,2,4-トリメチルヘキサメチレン)ビス〔2-(アミノカルボキシ)プロパン-1,3-ジオール〕テトラメタクリレート、1,7-ジアクリロイルオキシ-2,2,6,6-テトラアクリロイルオキシメチル-4-オキシヘプタン等が挙げられる。
 本発明で用いられる重合性単量体(A)としては、上記記載の重合性単量体の中でも、重合後の屈折率及びペーストの取扱い性の観点より、トリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2,2-ビス[4-〔3-(メタ)アクリロイルオキシ-2-ヒドロキシプロポキシ〕フェニル]プロパン、2,2-ビス〔4-(メタ)アクリロイルオキシポリエトキシフェニル〕プロパン、[2,2,4-トリメチルヘキサメチレンビス(2-カルバモイルオキシエチル)]ジメタクリレート、N,N’-(2,2,4-トリメチルヘキサメチレン)ビス〔2-(アミノカルボキシ)プロパン-1,3-ジオール〕テトラメタクリレートが好ましく用いられる。
 さらに、重合性単量体(A)としては、重合後の屈折率及びペーストの取扱い性の調整し易さの点より、重合性単量体(A)の合計を100重量部とした時、2,2-ビス〔4-(メタ)アクリロイルオキシポリエトキシフェニル〕プロパンを40~85重量部、トリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、及び1,10-デカンジオールジ(メタ)アクリレートからなる群より選択される少なくとも1種を10~50重量部、並びに2,2-ビス[4-〔3-(メタ)アクリロイルオキシ-2-ヒドロキシプロポキシ〕フェニル]プロパン、[2,2,4-トリメチルヘキサメチレンビス(2-カルバモイルオキシエチル)]ジメタクリレート、及びN,N’-(2,2,4-トリメチルヘキサメチレン)ビス〔2-(アミノカルボキシ)プロパン-1,3-ジオール〕テトラメタクリレートからなる群より選択される少なくとも1種を0~25重量部含有することが好ましい。
 重合性単量体(A)の含有量は、無機粒子の全量100重量部に対して25~50重量部であることが好ましく、28~47重量部であることがより好ましく、30~45重量部であることがさらに好ましい。配合量が25重量部未満の場合には、フロアブルコンポジットレジンとして使用するには、ペーストの稠度が低くなりすぎて、シリンジからニードルを通じて吐出する際の吐出力が高くなりすぎて、押し出せなくなるおそれがある。配合量が50重量部より多い場合には、無機粒子の量が不十分になり、十分な機械的強度を与える歯科用硬化性組成物が得られないおそれがある。なお、無機粒子の全量とは、不定形無機粒子(B)、無機超微粒子(C)、及び任意に添加される不定形無機粒子(B)及び無機超微粒子(C)以外の無機材料の粒子の合計量のことを言う。
 また、本発明においては、直接充填を行うのに好適なフロアブルコンポジットレジンの操作性を得るという観点から、重合性単量体(A)の粘度が40℃において20~400mPa・sであることが好ましく、40~200mPa・sであることがより好ましい。なお、重合性単量体を2種以上用いる場合は、重合性単量体全体の粘度は、重合性単量体の加重平均粘度により表すことができ、平均粘度として40℃において20~400mPa・sが好ましく、40~200mPa・sがより好ましい。重合性単量体(A)の粘度は、例えば、コーンプレート型粘度計(例、東機産業社製、TV-30型粘度計)を用いて測定することができる。
不定形無機粒子(B)
 本発明に用いられる不定形無機粒子(B)は、下記式(1)で表されるアルキル鎖の長いシランカップリング剤(a)で表面処理された不定形無機粒子であり、その平均粒子径は、0.1~0.3μmである。
Figure JPOXMLDOC01-appb-C000002
 式中、Rは水素原子又はメチル基、Rは加水分解可能な基、Rは炭素数1~6の炭化水素基を示し、pは2又は3、qは8~13の整数である。
 球状無機粒子の場合は、不定形無機粒子と比較して、比表面積が低下するため、重合性単量体との結合性が弱まり、機械的強度が低下する。そこで本発明では、無機粒子(B)は不定形である。
 不定形無機粒子の平均粒子径が0.1μm未満の場合には、硬化物の研磨性は十分なものになるものの、ペーストの稠度が低くなりやすく、フロアブルコンポジットレジンとして好適な稠度25~55のペーストを得られなくなる。またフィラー含有量を高くすることが難しく、機械的強度が低下する。平均粒子径が0.3μmより大きい場合には、十分な機械的強度が得られるものの、研磨性が低下する。特に、臨床において重要となる長期間における研磨性、すなわち滑沢耐久性については、0.3μmより大きい場合には、早期に低下してしまう。さらに、臨床現場では、硬化物の光沢を得るために、長時間(1歯に対して1分間以上)研磨することは、処置時間が長くなるため好まれないところ、平均粒子径が0.3μmより大きい場合には、初期の光沢を得るための研磨性が低下し、長い処置時間が必要となる。硬化物の機械的強度、研磨性及び滑沢耐久性、ペーストの操作性の観点から、不定形無機粒子(B)の平均粒子径は、0.12~0.25μmが好ましく、0.15~0.2μmがより好ましい。なお、不定形無機粒子(B)の平均粒子径は、レーザー回折散乱法により、求めることができる。具体的に例えば、レーザー回折式粒度分布測定装置(SALD-2100:島津製作所製)により、0.2%ヘキサメタリン酸ナトリウム水溶液を分散媒に用いて測定することができる。
 一般的にシランカップリング剤を用いて無機粒子の表面を処理すると、無機粒子の表面が疎水化され、重合性単量体との親和性が向上するため、組成物中における無機粒子の含有量を増加させることができることが知られている。しかし、平均粒子径が0.1~0.3μmの不定形無機粒子(B)に対して、アルキル鎖の短いシランカップリング剤(例えば、後述のシランカップリング剤(b))を用いて表面処理を行った場合、不定形無機粒子(B)の含有量を増加させることはできるものの、十分な強度が発現する程度に前記処理後の不定形無機粒子(B)を含有させると、稠度が20以下のペーストしか得られず、歯へ直接充填可能となるフロアブルコンポジットレジンに適した稠度(25~55)が得られない。しかしながら、平均粒子径が0.1~0.3μmの不定形無機粒子(B)に対して、アルキル鎖の長いシランカップリング剤(a)を用いて表面処理を行うと、不定形無機粒子(B)表面の疎水性が非常に高くなり、重合性単量体(A)との親和性がより高くなる。その結果、稠度25~55を維持したまま、不定形無機粒子(B)の含有量を高くすることが可能となって、機械的強度の高いフロアブルコンポジットレジンを得ることができ、また、表面硬度が向上することにより研磨性も向上する。
 上記一般式(1)で表わされるシランカップリング剤(a)において、Rは水素原子又はメチル基、Rは加水分解可能な基、Rは炭素数1~6の炭化水素基を示し、pは2又は3、qは8~13の整数である。Rで示される加水分解可能な基としては例えば、メトキシ基、エトキシ基、ブトキシ基等のアルコキシ基や、塩素原子又はイソシアネート基が挙げられ、Rで示される炭素数1~6の炭化水素基としては、例えば、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基等が挙げられる。
 炭素数1~6のアルキル基は、直鎖状、分岐鎖状、環状のいずれであってもよく、例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、n-ヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基が挙げられる。
 炭素数2~6のアルケニル基は、直鎖状、分岐鎖状、環状のいずれであってもよく、例としては、ビニル基、アリル基、メチルビニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基が挙げられる。
 炭素数2~6のアルキニル基は、直鎖状、分岐鎖状、環状のいずれであってもよく、例としては、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、1-メチル-2-プロピニル、2-ブチニル、3-ブチニル、1-ペンチニル、1-エチル-2-プロピニル、2-ペンチニル、3-ペンチニル、1-メチル-2-ブチニル、4-ペンチニル、1-メチル-3-ブチニル、2-メチル-3-ブチニル、1-ヘキシニル、2-ヘキシニル、1-エチル-2-ブチニル、3-ヘキシニル、1-メチル-2-ペンチニル、1-メチル-3-ペンチニル、4-メチル-1-ペンチニル、3-メチル-1-ペンチニル、5-ヘキシニル、1-エチル-3-ブチニルが挙げられる。
 上記一般式(1)で表されるシランカップリング剤(a)の具体例としては、8-メタクリロイルオキシオクチルトリメトキシシラン、9-メタクリロイルオキシノニルトリメトキシシラン、10-メタクリロイルオキシデシルトリメトキシシラン、11-メタクリロイルオキシウンデシルトリメトキシシラン、11-メタクリロイルオキシウンデシルジクロロメチルシラン、11-メタクリロイルオキシウンデシルトリクロロシラン、11-メタクリロイルオキシウンデシルジメトキシメチルシラン、12-メタクリロイルオキシドデシルトリメトキシシラン、13-メタクリロイルオキシトリデシルトリメトキシシラン等が挙げられ、これらは単独で又は2種以上を適宜組合せて用いることができる。これらの中では、平均粒子径が0.1~0.3μmの不定形無機粒子(B)を組成物中により多く含有させることと、フロアブルコンポジットレジンとして好適な稠度25~55のペーストを得ることを両立しやすいという観点から、8-メタクリロイルオキシオクチルトリメトキシシラン、9-メタクリロイルオキシノニルトリメトキシシラン、10-メタクリロイルオキシデシルトリメトキシシラン、11-メタクリロイルオキシウンデシルトリメトキシシランが好ましく、11-メタクリロイルオキシウンデシルトリメトキシシランがより好ましい。
 無機粒子のシランカップリング剤による表面処理の方法としては、シランカップリング剤が無機粒子表面に吸着する方法であれば特に限定されず、例えば、無機粒子を混合槽で攪拌しつつ、シランカップリング剤を溶媒にて希釈した溶液を噴霧し、攪拌を続けながら槽内で一定時間加熱乾燥する方法や、無機粒子及びシランカップリング剤を溶媒中で攪拌混合させた後、加熱乾燥する方法等が挙げられる。
 不定形無機粒子(B)におけるシランカップリング剤(a)による処理量は、処理前の不定形無機粒子(B)100重量部に対して、0.5~15重量部が好ましく、1~13重量部がより好ましい。0.5重量部より少ない場合は、表面処理が十分に行われず、疎水性の低い無機粒子しか得ることができなくなるおそれがある。15重量部より多い場合は、余剰のシランカップリング剤がオリゴマーとなり、表面処理を阻害するおそれがある。
 不定形無機粒子(B)の屈折率は1.52~1.58であることが好ましい。屈折率が1.52より小さい場合、並びに、屈折率が1.58より大きい場合は、重合性単量体(A)の重合体との屈折率差が大きくなりやすく、硬化物は白く不透明なものになり、天然歯に近似する透明性が得られないおそれがある。不定形無機粒子(B)の屈折率は、重合性単量体(A)の重合体との屈折率差を小さくしやすいことから1.525~1.58がより好ましく、1.53~1.58がさらに好ましい。また、重合性単量体(A)の重合後の屈折率と不定形無機粒子(B)の屈折率の差が、絶対値で0.03以下であることが好ましい。このとき、透明性が特に優れたものとなる。
 不定形無機粒子(B)は、平均粒子径が0.1~0.3μmである不定形無機粒子であればなんら制限なく用いられる。当該無機粒子としては、各種ガラス類〔シリカを主成分とし、必要に応じ、重金属、ホウ素、アルミニウム等の酸化物を含有する。例えば、Eガラス、バリウムガラス(GM27884、8235、ショット社製、E2000、E3000、ESSTECH社製)、ランタンガラスセラミックス(GM31684、ショット社製)等の歯科用ガラス粉末〕、各種セラミック類、シリカ-チタニア及びシリカ-ジルコニア等の複合酸化物、カオリン、粘土鉱物(モンモリロナイト等)、マイカ、フッ化イッテルビウム、フッ化イットリウム等が挙げられる。これらは、それぞれ単独で又は2種以上を混合して用いることができる。なお、上記の無機粒子の中でも、シリカを主成分として含む無機粒子を、本発明の歯科用硬化性組成物の不定形無機粒子(B)として用いることが好ましい。
無機超微粒子(C)
 本発明に用いられる無機超微粒子(C)は、前記式(1)中のqが1~6の整数である以外はシランカップリング剤(a)と同様に表されるシランカップリング剤(b)で表面処理された無機超微粒子であり、その平均粒子径が5~50nmである。
 平均粒子径としては、10~40nmが好ましい。なお、無機超微粒子(C)の平均粒子径は、超微粒子の電子顕微鏡写真を撮影し、無作為に選択した100個の超微粒子の粒子径の平均値として測定できる。なお、超微粒子が非球状である場合には、粒子径は、超微粒子の最長と最短の長さの算術平均をもって粒子径とする。
 本発明の歯科用硬化性組成物では、アルキル鎖の長いシランカップリング剤(a)を用いて平均粒子径が0.1~0.3μmである不定形無機粒子(B)を処理し、不定形無機粒子(B)表面の疎水性をより高めることで、フィラー含有量を高くすることが可能となり、硬化物の高い機械的強度と、ペーストの適度な稠度が得られる。しかし、不定形無機粒子(B)の使用のみでは、フロアブルコンポジットレジンとして使用するには賦形性と操作性が充分ではなかった。そこで、本発明では、さらに特定のシランカップリング剤で処理された無機超微粒子(C)を組成物のペースト性状調整剤として用い、適度なチクソトロピー性を付与した。それにより、フロアブルコンポジットレジンに適した稠度を維持したまま、フロアブルコンポジットレジンとして使用するのに適した賦形性及び操作性のペースト性状の組成物を得ることが可能となった。
 本発明では不定形無機粒子(B)を多量に含有させて高研磨性及び滑沢耐久性を達成することから、無機超微粒子(C)は少量で増粘剤としての効果を発揮させる必要がある。不定形無機粒子(B)をシランカップリング剤(a)を用いて表面処理した場合には、疎水性が高くなり、重合性単量体や前述の特定の表面処理を行った不定形無機粒子(B)と同程度の疎水性を有することに起因して、これらと容易に馴染んでしまうため、少量の添加では適度な賦形性を与えることができない。一方、表面処理されていない無機超微粒子(C)を用いた場合は、重合性単量体及び無機超微粒子(C)との親和性が著しく損なわれるため、長時間放置後に無機超微粒子(C)が分離、沈降してしまい、安定な組成物を得ることが困難となる。
 そこで、本発明ではシランカップリング剤(b)を用いて無機超微粒子(C)の表面を処理することで適度な疎水性を持たせることにより、少量の添加でも組成物に適度な賦形性を付与し、形態保持性に優れた組成物を調製することが可能となった。
 シランカップリング剤(b)は前記式(1)中のqが1~6の整数である以外はシランカップリング剤(a)と同様の構造を有し、式(1)のR、R、Rおよびpの定義の範囲内で、シランカップリング剤(b)のR、R、Rおよびpはそれぞれ、シランカップリング剤(a)のR、R、Rおよびpと同一でも異なっていてもよい。シランカップリング剤(b)の具体例としては、メタクリロイルオキシメチルトリメトキシシラン、2-メタクリロイルオキシエチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、4-メタクリロイルオキシブチルトリメトキシシラン、5-メタクリロイルオキシペンチルトリメトキシシラン、6-メタクリロイルオキシヘキシルトリメトキシシラン等が挙げられ、これらは単独で又は2種以上を適宜組合せて用いることができる。これらの中では、適度な形態保持性を付与するという観点から、メタクリロイルオキシメチルトリメトキシシラン、2-メタクリロイルオキシエチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、4-メタクリロイルオキシブチルトリメトキシシランが好ましく、3-メタクリロイルオキシプロピルトリメトキシシランがより好ましい。
 無機超微粒子(C)としては、歯科用硬化性組成物等に使用される公知の無機超微粒子が何ら制限なく使用される。好ましくは、シリカ、アルミナ、チタニア、ジルコニア等の無機酸化物粒子、又はこれらからなる複合酸化物粒子、燐酸カルシウム、ハイドロキシアパタイト、フッ化イットリウム、フッ化イッテルビウム、チタン酸バリウム、チタン酸カリウム等の粒子が挙げられる。好ましくは、火炎熱分解法で作製されるシリカ、アルミナ、チタニア、シリカ/アルミナ複合酸化物、シリカ/ジルコニア複合酸化物の粒子であり、例えば、日本アエロジル社製、商品名:アエロジル、アエロジル130、アエロジル380、アエロジルOX-50、アエロキサイドAluC、アエロキサイドTiOP25、アエロキサイドTiOP25S、VP Zirconium Oxide 3-YSZ、VP Zirconium Oxide 3-YSZ PHが挙げられる。また、無機超微粒子(C)の形状は特に限定されず、適宜選択して使用することができる。
 また本発明において、無機超微粒子(C)は、無機超微粒子(C)が凝集して形成された凝集粒子の形態でも好適に用いることができる。なかでも、該凝集粒子の粒子径が1~10μmの範囲にある場合には、機械的強度に優れ、審美性に優れる歯科用硬化性組成物を得ることができる。よって、本発明の別の好ましい実施態様の一つとして、歯科用硬化性組成物が、平均(一次)粒子径が5~50nmの無機超微粒子(C)を一次粒子とする平均二次粒子径が1~10μmである凝集粒子を含有する。凝集粒子の平均粒子径は、レーザー回折散乱法により、求めることができる。具体的に例えば、レーザー回折式粒度分布測定装置(SALD-2100:島津製作所製)により、0.2%ヘキサメタリン酸ナトリウム水溶液を分散媒に用いて測定することができる。
 無機超微粒子(C)が凝集粒子を形成する場合、光の屈折、散乱のサイトとなる重合性単量体(A)との界面を多くしやすいこと、及び適度な強度の凝集体を得やすいことから、無機超微粒子(C)の平均粒子径は、5~35nmが好ましく、7~20nmがより好ましい。無機超微粒子(C)の凝集体の平均粒子径は、好適には1~10μmであるが、1~8μmがより好ましく、1.2~5μmがさらに好ましい。平均粒子径が1μmよりも小さい場合には、透過光の調整機能が弱くなり、そのため配合量を増やさなければならず、硬化物の光拡散性と透明性が低下するおそれがある。一方、平均粒子径が10μmより大きい場合には、光の屈折や散乱が大きくなり、硬化物の透明性が低下するおそれがあり、また、平均一次粒子径が5~50nmの凝集体であっても、研磨性(特に易研磨性)が低下するおそれがある。
 通常、市販の無機超微粒子は凝集体として存在しているが、水もしくは5重量%以下のヘキサメタ燐酸ナトリウムなどの界面活性剤を添加した水(分散媒)300mLに無機超微粒子粉体10mgを添加し、30分間、出力40W、周波数39KHzの超音波強度で分散処理するとメーカー表示の粒子径まで分散される程度の弱い凝集力しか有しない。しかしながら、本発明における凝集粒子は、かかる条件でもほとんど分散されない粒子同士が強固に凝集したものである。
 市販の無機超微粒子から、強固に凝集した凝集粒子を作製する方法として、凝集力をさらに高めるために、その無機超微粒子が融解する直前の温度付近まで加熱して、接触した無機超微粒子同士がわずかに融着する程度に加熱する方法が好適に用いられる。またこの場合、凝集粒子の形状をコントロールするため、加熱前に凝集した形態を作っておいてもよい。その方法として例えば、無機超微粒子を適当な容器に入れて加圧したり、一度溶剤に分散させた後、噴霧乾燥などの方法で溶剤を除去する方法が挙げられる。
 またさらに、無機超微粒子の凝集体の好適な別の作製方法として、湿式法で作製されたシリカゾル、アルミナゾル、チタニアゾル、ジルコニアゾル等を用い、これを凍結乾燥や噴霧乾燥等の方法で乾燥し、必要に応じて加熱処理することで容易に、粒子同士が強固に凝集した凝集粒子を得ることが出来る。ゾルの具体例としては、日本触媒社製、商品名=シーホスター、日揮触媒化成社製、商品名=OSCAL、QUEEN TITANIC、日産化学社製、商品名=スノーテックス、アルミナゾル、セルナックス、ナノユース等が挙げられる。該無機超微粒子の形状は特に限定されず、適宜選択して使用することができる。また、市販されている無機超微粒子の凝集体をそのまま使用することもでき、その例として、シリカマイクロビードP500(日揮触媒化成社製)、シリカマイクロビードP1500(日揮触媒化成社製)が挙げられる。
 無機超微粒子(C)の凝集粒子の比表面積と細孔容積は、特に制限はないが、硬化物の光拡散性及び透明性の得やすさから、比表面積が50~400m/gであり、かつ細孔容積が0.05~1.5mL/gであることが好ましく、比表面積50~300m/gであり、かつ細孔容積が0.1~1.0mL/gであることがより好ましく、比表面積80~250m/gであり、かつ細孔容積が0.15~0.5mL/gであることが特に好ましい。
 本発明で用いられる無機超微粒子(C)は、屈折率が1.43~1.50であることが好ましい。無機超微粒子(C)の屈折率が1.43未満の場合には、重合性単量体(A)の重合体及び不定形無機粒子(B)との屈折率差が大きくなりすぎるため、十分な透明性が得られないおそれがあり、屈折率が1.50より大きい場合には、重合性単量体(A)の重合体及び不定形無機粒子(B)との屈折率差が小さくなりすぎるため十分な光拡散性が得られないおそれがある。無機超微粒子(C)の屈折率は、重合性単量体(A)の重合体及び不定形無機粒子(B)との屈折率差を大きくしやすいことから1.43~1.48が好ましく、1.43~1.46がより好ましい。なお、無機超微粒子(C)が凝集粒子を形成している場合は、凝集粒子の屈折率が上記の範囲内にあることが好ましい。また、重合性単量体(A)の重合後の屈折率と無機超微粒子(C)の屈折率(無機超微粒子(C)が凝集粒子を形成している場合は、凝集粒子の屈折率)の差{(A)-(C)}が0.05以上であることが好ましい。このとき、光拡散性が特に優れたものとなる。
 光拡散性とは、歯科用複合材料のような半透明の材料に光が入射した場合に、光が材料内部の充填材によって屈折/反射されて様々な方向へ光が拡散される性質であり、観察される反射拡散光は歯科用複合材料の色調やその背景色を反映した色調を有することになるため、光拡散性が高ければ、修復物の背景色や修復物と天然歯との輪郭をぼかす効果も大きく、従って、天然歯との色調適合性が高くなると考えられる。この光拡散性の指標としては、下記式(2)で定義される拡散度Dが提案されている。
D=(I20/cos20°+I70/cos70°)/(2I) (2)
(式中、Iは試料を透過した光の光度を表し、I、I20及びI70は試料板に垂直な方向(光の入射方向)に対する、零度、20度、70度方向の光度(光の強さ)をそれぞれ表す。)
 これら光度(光の強さ)の測定は、変角光度計あるいはゴニオフォトメーターを用いて測定することができる。この拡散度Dの値が高いほど硬化物の光拡散性が高いことを意味する。
 本発明の歯科用硬化性組成物によれば、この拡散度Dが、0.01~0.5という値を達成することも可能である。拡散度Dの値は、0.01より小さいと、歯科用硬化性組成物の光拡散性が不十分となり、天然歯との調和が得られにくく、0.5より大きいと、光拡散性が強すぎて十分な透明性が得られないものである。従って、本発明の歯科用硬化性組成物は、天然歯との調和が得られる高い光拡散性を有することも可能である。この拡散度Dの値としては、天然歯との調和という観点から、0.02~0.45が好ましく、0.03~0.42がより好ましい。本発明の歯科用硬化性組成物は、前記屈折率差を調整することにより、拡散度Dをこれらの好ましい範囲にすることも可能である。傾向として、屈折率差が小さいほど、拡散度Dが小さくなる。
 無機超微粒子(C)におけるシランカップリング剤(b)による処理量は、使用する無機粒子の平均粒子径等を考慮して適宜調整すれば良いが、処理前の無機超微粒子(C)100重量部に対して、1~20重量部が好ましい。無機超微粒子(C)が凝集粒子を形成している場合には、一次粒子となる無機超微粒子(C)のそれぞれが、シランカップリング剤(b)により処理されていてもよいし、凝集粒子がシランカップリング剤(b)により処理されていてもよい。
 無機粒子の全量中、不定形無機粒子(B)は、92.5~98重量%、無機超微粒子(C)は、2~7.5重量%含有される。不定形無機粒子(B)の含有量が92.5重量%より少ない時(無機超微粒子(C)の含有量が7.5重量%より多い時)は、フロアブルコンポジットレジンに適した稠度のペーストが得られなくなる。また、シリンジからニードルを通じて吐出する際の吐出力が高くなりすぎて、押し出せなくなる場合がある。また、機械的強度が低下する場合がある。不定形無機粒子(B)の含有量が98重量%より多い時(無機超微粒子(C)の含有量が2重量%より少ない時)は、賦形性が低く、垂れやすいペーストとなり、フロアブルコンポジットレジンとして操作性の良いペーストが得られなくなる。また、機械的強度が低下する場合がある。
 本発明の歯科用硬化性組成物の稠度は、特にフロアブルコンポジットレジンとして使用可能なように、25~55である。なお、本明細書で用いる稠度とは、25℃で、ペースト0.5mLを40gの荷重で押しつぶし、120秒経過後にペーストの長径と短径を測定した際の、その両者の算術平均を算出した値のことである。稠度は、27~45であることが好ましく、29~40であることがさらに好ましい。25より小さい時は、ペーストの稠度が低くなりすぎて、シリンジからニードルを通じて吐出する際の吐出力が高くなり、吐出性が悪くなる。一方、55より大きい時は、垂れやすいペーストとなりフロアブルコンポジットレジンとして操作性の良いペーストを得られなくなる。
 本発明の歯科用硬化性組成物は、前記不定形無機粒子(B)及び無機超微粒子(C)以外の他の無機粒子を本発明の効果を損なわない範囲で含有してもよい。
 本発明の歯科用硬化性組成物は、重合硬化を容易にするために、重合開始剤を含有していてもよい。重合開始剤としては、公知の重合開始剤を使用することができ、通常、重合性単量体の重合性と重合条件を考慮して選択する。
 常温重合を行う場合には、例えば、有機過酸化物/アミン系、有機過酸化物/アミン/スルフィン酸(又はその塩)系等のレドックス系の重合開始剤が好適に用いられる。レドックス系の重合開始剤を使用する場合、酸化剤と還元剤が別々に包装された包装形態をとり、使用する直前に両者を混合する必要がある。酸化剤としては、ジアシルパーオキサイド類、パーオキシエステル類、パーオキシカーボネート類、ジアルキルパーオキサイド類、パーオキシケタール類、ケトンパーオキサイド類、ハイドロパーオキサイド類などの有機過酸化物を挙げることができる。具体的には、ジアシルパーオキサイド類としては、例えば、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、m-トルオイルパーオキサイド、ラウロイルパーオキサイド等が挙げられる。パーオキシエステル類としては、例えば、t-ブチルパーオキシベンゾエート、ビス-t-ブチルパーオキシイソフタレート、t-ブチルパーオキシ-2-エチルヘキサノエート等が挙げられる。パーオキシカーボネート類としては、例えば、t-ブチルパーオキシイソプロピルカーボネートが挙げられる。ジアルキルパーオキサイド類としては、例えば、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサンが挙げられる。パーオキシケタール類としては、例えば、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサンが挙げられる。ケトンパーオキサイド類としては、例えば、メチルエチルケトンパーオキサイドが挙げられる。ハイドロパーオキサイド類としては、例えば、t-ブチルハイドロパーオキサイドが挙げられる。還元剤としては、通常第三級アミンが用いられ、例えば、N,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン、N,N-ジメチル-m-トルイジン、N,N-ジエチル-p-トルイジン、N,N-ジメチル-3,5-ジメチルアニリン、N,N-ジメチル-3,4-ジメチルアニリン、N,N-ジメチル-4-エチルアニリン、N,N-ジメチル-4-i-プロピルアニリン、N,N-ジメチル-4-t-ブチルアニリン、N,N-ジメチル-3,5-ジ-t-ブチルアニリン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-3,5-ジメチルアニリン、N,N-ビス(2-ヒドロキシエチル)-3,4-ジメチルアニリン、N,N-ビス(2-ヒドロキシエチル)-4-エチルアニリン、N,N-ビス(2-ヒドロキシエチル)-4-i-プロピルアニリン、N,N-ビス(2-ヒドロキシエチル)-4-t-ブチルアニリン、N,N-ビス(2-ヒドロキシエチル)-3,5-ジ-i-プロピルアニリン、N,N-ビス(2-ヒドロキシエチル)-3,5-ジt-ブチルアニリン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸n-ブトキシエチル、4-ジメチルアミノ安息香酸(2-メタクリロイルオキシ)エチル、トリメチルアミン、トリエチルアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、N-n-ブチルジエタノールアミン、N-ラウリルジエタノールアミン、トリエタノールアミン、(2-ジメチルアミノ)エチルメタクリレート、N-メチルジエタノールアミンジメタクリレート、N-エチルジエタノールアミンジメタクリレート、トリエタノールアミンモノメタクリレート、トリエタノールアミンジメタクリレート、トリエタノールアミントリメタクリレート等が挙げられる。上記の他、クメンヒドロパーオキサイド/チオ尿素系、アスコルビン酸/Cu2+塩系、有機スルフィン酸(又はその塩)/アミン/無機過酸化物系等の酸化-還元系開始剤の他、トリブチルボラン、有機スルフィン酸なども好適に用いられる。
 可視光線照射による光重合を行う場合には、α-ジケトン/第3級アミン、α-ジケトン/アルデヒド、α-ジケトン/メルカプタン等の酸化-還元系開始剤が好ましい。光重合開始剤としては、例えば、α-ジケトン/還元剤、ケタール/還元剤、チオキサントン/還元剤等が挙げられる。α-ジケトンの例としては、カンファーキノン、ベンジル、2,3-ペンタンジオンなどが挙げられる。ケタールの例としては、ベンジルジメチルケタール、ベンジルジエチルケタール等が挙げられる。チオキサントンの例としては、2-クロロチオキサントン、2,4-ジエチルチオキサントン等が挙げられる。還元剤の例としては、ミヒラーケトン等;2-(ジメチルアミノ)エチルメタクリレート、N,N-ビス〔(メタ)アクリロイルオキシエチル〕-N-メチルアミン、N,N-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸ブチル、4-ジメチルアミノ安息香酸ブトキシエチル、N-メチルジエタノールアミン、4-ジメチルアミノベンゾフェノン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、ジメチルアミノフェナントール等の第三級アミン;シトロネラール、ラウリルアルデヒド、フタルジアルデヒド、ジメチルアミノベンズアルデヒド、テレフタルアルデヒド等のアルデヒド類;2-メルカプトベンゾオキサゾール、デカンチオール、3-メルカプトプロピルトリメトキシシラン、4-メルカプトアセトフェノン、チオサリチル酸、チオ安息香酸等のチオール基を有する化合物等をあげることができる。これらの酸化-還元系に有機過酸化物を添加したα-ジケトン/有機過酸化物/還元剤の系も好適に用いられる。
 紫外線照射による光重合を行う場合には、ベンゾインアルキルエーテル、ベンジルジメチルケタール等が好適である。さらに、アシルフォスフィンオキサイド系やビスアシルフォスフィンオキサイド系の光重合開始剤も好適に用いられる。かかるアシルフォスフィンオキサイドとしては、例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルホスフィンオキサイド、ベンゾイルジ-(2,6-ジメチルフェニル)ホスホネート、2,4,6-トリメチルベンゾイルエトキシフェニルホスフィンオキサイドが挙げられる。前記ビスアシルフォスフィンオキサイドとしては、例えば、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイドなどが挙げられる。さらに、これらの(ビス)アシルフォスフィンオキサイドは、水溶性の置換基を含有しても構わない。これら(ビス)アシルフォスフィンオキサイド系の光重合開始剤は、単独もしくは各種アミン類、アルデヒド類又はメルカプタン類、スルフィン酸塩等の還元剤と併用することもできる。上記可視光線の光重合開始剤とも好適に併用することができる。
 上記重合開始剤は単独で又は2種以上を適宜組合せて用いることができ、重合開始剤の総含有量は、重合性単量体全量100重量部に対して、0.1~10重量部が好ましく、0.2~5.0重量部がより好ましい。
 本発明の歯科用硬化性組成物には、重合性単量体、無機粒子以外に、重合禁止剤、紫外線吸収剤、蛍光剤、顔料等の添加剤を配合してもよい。
 重合禁止剤としては、例えば、3,5-ジ-ブチル-4-ヒドロキシトルエン、ハイドロキノン、ジブチルハイドロキノン、ジブチルハイドロキノンモノメチルエーテル、2,6-t-ブチルフェノール、4-メトキシフェノール等が挙げられ、これらを1種又は2種以上配合しても良い。
 本発明の歯科用硬化性組成物は、重合性単量体(A)と所定量の不定形無機粒子(B)及び無機超微粒子(C)を含有していれば特に限定はなく、当業者に公知の方法により、用途に応じた状態(1ペースト状態、2ペースト状態、粉-液状態、成型された状態)で容易に製造することができる。なお、化学重合性の機能もしくは化学重合性及び光重合性をあわせ持つ重合開始機能を使用する場合は、酸化剤を含む組成物と還元剤を含む組成物が別々に包装された包装形態をとり、使用する直前に両者を混合する必要がある。
 本発明の歯科用硬化性組成物は、硬化物が、機械的強度、研磨性及び滑沢耐久性に優れ、ペーストが、シリンジ先端のニードルから吐出するための適度な稠度と、ニードルから吐出後の良好な賦形性及び操作性を有する。よって、本発明の歯科用硬化性組成物は、歯科医療の分野において、天然歯の一部分又は全体を代替し得るものとして好適に用いられるものであり、フロアブルコンポジットレジンに最適である。よって、歯科の充填治療において、本発明の歯科用硬化性組成物を収容している容器(シリンジ型容器)の先端に装着した口径の小さなニードルからの吐出が可能であり、シリンジから窩洞への直接充填が可能となる。よって、シリンジから窩洞に流し込むだけで充填操作ができることから処置時間の短縮化も可能となる。
 本発明の歯科用硬化性組成物を歯科用フロアブルコンポジットレジンとして提供する際には、例えば、フロアブルコンポジットレジンを含有する容器と、前記容器の先端に装着されるニードルチップとを含むパッケージとして提供される。前記の容器は、例えば筒状のシリンジと、当該シリンジの後端から挿入するのに適したプランジャーから構成される。ニードルチップが有するニードルの内径は、通常、0.3~0.9mmである。フロアブルコンポジットレジンが2剤型であった場合には、例えば、前記の容器は、並列に連結された2つのシリンジ及び並列に連結された2つのプランジャーから構成され、両シリンジの先端部にはスタティックミキサーが備えられていてもよい。
 以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。
〔無機粒子Bの平均粒子径〕
 無機粒子Bの平均粒子径は、レーザー回折散乱法により粒度分布を求め、体積中位粒径として求めた。なお、体積中位粒径とは、体積分率で計算した累積体積頻度が粒径の小さい方から計算して50%になる粒径を意味する。
測定機:SALD-2100型(島津製作所製)
解析ソフト:光透過式遠心沈降法
分散液:0.2%ヘキサメタリン酸ナトリウム
分散条件:前記分散液20mLに試料15mgを添加し、超音波分散機にて30分間分散させて、試料分散液を調製する。
測定条件:前記試料分散液を測定し、体積中位粒径及び0.01~100μmの粒子径を有する粒子数の割合を求める。
〔屈折率〕
 アッベ屈折計を用い、ナトリウムのD線を光源として、イオウの溶解したジヨードメタン、1-ブロモナフタレン、サリチル酸メチル、ジメチルホルムアミド、1-ペンタノール等を液体として液浸法で25℃にて測定した。
〔無機超微粒子Cの平均粒子径〕
 無機超微粒子100個以上の電子顕微鏡写真をもとに画像解析ソフト(Mac-View;マウンテック社製)を用いて画像解析を行った後に体積平均粒子径として算出した。無機超微粒子Cが凝集粒子である場合には、凝集粒子の粒子径は、無機粒子Bの平均粒子径と同じ方法により求めた。
無機粒子の製造例1
 バリウムガラス「GM27884NanoFine180(平均粒子径0.18μm 屈折率1.53)」(ショット社製)100g、11-メタクリロイルオキシウンデシルトリメトキシシラン11g、及びトルエン200mLを三口フラスコに入れ、2時間、室温下で攪拌した。トルエンを減圧下で留去した後、40℃で16時間真空乾燥を行い、さらに90℃で3時間加熱し、表面処理層が設けられた平均粒子径0.18μmの無機粒子(b-1)を得た。
無機粒子の製造例2
 バリウムガラス「GM27884NanoFine180(平均粒子径0.18μm 屈折率:1.53)」(ショット社製)100g、8-メタクリロイルオキシオクチルトリメトキシシラン11g、及びトルエン200mLを三口フラスコに入れ、2時間、室温下で攪拌した。トルエンを減圧下で留去した後、40℃で16時間真空乾燥を行い、さらに90℃で3時間加熱し、表面処理層が設けられた平均粒子径0.18μmの無機粒子(b-2)を得た。
無機粒子の製造例3
 バリウムガラス「GM27884NanoFine180(平均粒子径0.18μm 屈折率1.53)」(ショット社製)100g、13-メタクリロイルオキシトリデシルトリメトキシシラン11g、及びトルエン200mLを三口フラスコに入れ、2時間、室温下で攪拌した。トルエンを減圧下で留去した後、40℃で16時間真空乾燥を行い、さらに90℃で3時間加熱し、表面処理層が設けられた平均粒子径0.18μmの無機粒子(b-3)を得た。
無機粒子の製造例4
 バリウムガラス「GM27884(平均粒子径0.10μm 屈折率1.53)」(ショット社製)100g、13-メタクリロイルオキシトリデシルトリメトキシシラン11g、及びトルエン200mLを三口フラスコに入れ、2時間、室温下で攪拌した。トルエンを減圧下で留去した後、40℃で16時間真空乾燥を行い、さらに90℃で3時間加熱し、表面処理層が設けられた平均粒子径0.10μmの無機粒子(b-4)を得た。
無機粒子の製造例5
 バリウムガラス「GM27884 UF0.4(平均粒子径0.4μm 屈折率1.53)」(ショット社製)100g、11-メタクリロイルオキシウンデシルトリメトキシシラン7.0g、及びトルエン200mLを三口フラスコに入れ、2時間、室温下で攪拌した。トルエンを減圧下で留去した後、40℃で16時間真空乾燥を行い、さらに90℃で3時間加熱し、表面処理層が設けられた平均粒子径0.4μmの無機粒子(b-5)を得た。
無機粒子の製造例6
 バリウムガラス「GM27884NanoFine180(平均粒子径0.18μm 屈折率1.53)」(ショット社製)100g、3-メタクリロイルオキシプロピルトリメトキシシラン11g、及びトルエン200mLを三口フラスコに入れ、2時間、室温下で攪拌した。トルエンを減圧下で留去した後、40℃で16時間真空乾燥を行い、さらに90℃で3時間加熱し、表面処理層が設けられた平均粒子径0.18μmの無機粒子(b-6)を得た。
無機粒子の製造例7
 凝集シリカ「シリカマイクロビード P-500(超微粒子平均粒子径12nm、凝集体平均粒子径2μm)」(日揮触媒化成社製)100g、3-メタクリロキシプロピルトリメトキシシラン20g、及びトルエン200mLを三口フラスコに入れ、2時間、室温下で攪拌した。トルエンを減圧下で留去した後、40℃で16時間真空乾燥を行い、さらに90℃で3時間加熱し、平均粒子径1.6μm、屈折率1.44、比表面積99m/g、細孔容積0.19mL/gのシラン処理無機粒子(c-1)を得た。
無機粒子の製造例8
 日産化学製シリカゾル スノーテックスST-20(平均粒子径14nm)を、入口温度200℃、内部温度80℃、エアー流量30mL/min、液流量15mL/minの条件下で、マイクロミストドライヤー「MDL-050」(藤崎電機(株)社製)を使用して、噴霧乾燥によって予備乾燥させた。得られた球状粉末を、400℃に設定した電気炉で1時間焼成し、焼成粉末を得た。得られた粉末100g、3-メタクリロキシプロピルトリメトキシシラン20g、及びトルエン200mLを三口フラスコに入れ、2時間、室温下で攪拌した。トルエンを減圧下で留去した後、40℃で16時間真空乾燥を行い、さらに90℃で3時間加熱し、平均粒子径4.9μm、屈折率1.45、比表面積110m/g、細孔容積0.17mL/gのシラン処理無機粒子(c-2)を得た。
無機粒子の製造例9
 平均粒子径が20nmの無機超微粒子アエロジル130(屈折率1.45 日本アエロジル社製)100g、3-メタクリロキシプロピルトリメトキシシラン40g、及びトルエン200mLを三口フラスコに入れ、2時間、室温下で攪拌した。トルエンを減圧下で留去した後、40℃で16時間真空乾燥を行い、さらに90℃で3時間加熱し、表面処理層が設けられた無機超微粒子(c-3)を得た。
無機粒子の製造例10
 平均粒子径40nmの微粒子無機フィラー(屈折率1.45 日本アエロジル社製、商品名:アエロジルOX-50)100g、3-メタクリロイルオキシプロピルトリメトキシシラン40g、及びトルエン600mLを三口フラスコに入れ、20分間、30℃で激しく攪拌した。トルエンを30℃、減圧下で留去した後、40℃で16時間真空乾燥を行い、表面処理層が設けられた無機粒子(c-4)を得た。
無機粒子の製造例11
 平均粒子径7nmの微粒子無機フィラー(屈折率1.45 日本アエロジル社製、商品名:アエロジル380)100g、3-メタクリロイルオキシプロピルトリメトキシシラン40g、及びトルエン600mLを三口フラスコに入れ、20分間、30℃で激しく攪拌した。トルエンを30℃、減圧下で留去した後、40℃で16時間真空乾燥を行い、表面処理層が設けられた無機粒子(c-5)を得た。
無機粒子の製造例12
 凝集シリカ「シリカマイクロビード P-500(超微粒子平均粒子径12nm、凝集体平均粒子径2μm、屈折率1.44)」(日揮触媒化成社製)100g、11-メタクリロイルオキシウンデシルトリメトキシシラン7.0g、及びトルエン200mLを三口フラスコに入れ、2時間、室温下で攪拌した。トルエンを減圧下で留去した後、40℃で16時間真空乾燥を行い、さらに90℃で3時間加熱し、表面処理層が設けられた無機粒子(c-6)を得た。
無機粒子の製造例13(有機無機複合フィラーの製造方法)
 トリエチレングリコールジメタクリレート70重量部、Bis-GMA10重量部、ネオペンチルグリコールジメタクリレート20重量部、過酸化ベンゾイル0.5重量部からなる重合性単量体混合物32gに、上記超微粒子フィラー(c-5)68gを配合し均一になるまで練和した。得られた組成物を窒素雰囲気下、100℃にて24時間加熱して硬化させたものを粉砕及び分級することにより、平均粒子径2μm、屈折率1.47の有機無機複合フィラー(c-7)を得た。
実施例1~23及び比較例1~6の調製方法
 表1~4に示す重合性単量体総量100重量部に対してカンファーキノン0.20重量部、N,N-ジメチルアミノ安息香酸エチル0.30重量部、トリメチルジフェニルホスフィンオキシド0.25重量部、ジブチルヒドロキシトルエン(BHT)0.05重量部を混合し、重合性単量体組成物を得た。なお、表中の重合性単量体の略号は以下の通りである。
 D2.6E:2,2-ビス(4-メタクリロイルオキシポリエトキシフェニル)プロパン
 3G:トリエチレングリコールジメタクリレート
 Bis-GMA:2,2-ビス〔4-(3-メタクリロイルオキシ)-2-ヒドロキシプロポキシフェニル〕プロパン
 DD:1,10-デカンジオールジメタクリレート
 NPG:ネオペンチルグリコールジメタクリレート
 HD:1,6-ヘキサンジオールジメタクリレート
 UDMA:[2,2,4-トリメチルヘキサメチレンビス(2-カルバモイルオキシエチル)]ジメタクリレート
 U-4TH:N,N’-(2,2,4-トリメチルヘキサメチレン)ビス〔2-(アミノカルボキシ)プロパン-1,3-ジオール〕テトラメタクリレート
 得られた重合性単量体組成物に、不定形無機粒子(B)、無機超微粒子(C)を混合練和して均一にしたものを真空脱泡し、表1~4に示す実施例1~23及び比較例1~6のペースト状の歯科用硬化性組成物を調製した。調製した歯科用硬化性組成物について以下の特性評価試験を実施した。結果を表1~4に示す。
試験例1(研磨性)
 調製した歯科用硬化性組成物をテフロン型(直径10mm、厚み2.0mm)に充填した。上下面をスライドガラスで圧接し、上側からのみ歯科技工用可視光線照射器(ペンキュア2000、モリタ社製)で、10秒間光照射して硬化させた。テフロン型から試験片を取り出し、綺麗な平滑面を#600研磨紙にて乾燥条件下で研磨した。さらに、技工用エンジンとしてVolvere RX(NSK社製)を使用し、注水条件下、シリコンポイント茶色(松風社製)を用いて回転速度約5000rpmで10秒間研磨し、続けてシリコンポイント青色(松風社製)を用いて回転速度約5000rpmで10秒間研磨した。その後、この研磨面の光沢を光沢度計(日本電色社製VG-2000、測定角度60度)を用いて測定し、鏡を100とした時の割合(光沢度)で示した。光沢度65以上が好適とされ、70以上がさらに好適とされる。
試験例2(滑沢耐久性)
 調製した歯科用硬化性組成物をテフロン型(直径10mm、厚み2.0mm)に充填した。上下面をスライドガラスで圧接し、上側からのみ歯科技工用可視光線照射器(ペンキュア2000、モリタ社製)で、10秒間光照射して硬化させた。テフロン型から試験片を取り出し、綺麗な平滑面を#1500研磨紙、#2000研磨紙、#3000研磨紙の順に乾燥条件下で研磨し、最後にダイヤモンドペーストで光沢度が90となるまで研磨した。ここで作製した試験片を、歯ブラシ磨耗試験{歯ブラシ:ビットウィーンライオン(硬さふつう)、歯磨き粉:デンタークリアーMAX(ライオン社製)、荷重250g、試験溶液:蒸留水/歯磨き粉=90/10wt%(50mL)、磨耗回数4万回}した後の試験片の光沢度を測定した。残存光沢度が60以上であれば、滑沢耐久性が好適とされ、残存光沢度が65以上であればさらに好適とされる。
試験例3(稠度)
 調製した歯科用硬化性組成物を真空脱泡後、シリンジに充填し、25℃に2時間静置した試料を稠度試験試料とした。0.5mLの試料を量り取り、25℃の恒温室内(湿度40%)でガラス板(5cm×5cm)の中心に盛り上げる様に静置した。その上に40gのガラス板(5cm×5cm)を載せ、120秒経過後の試料の長径と短径をガラス板越しに測定し、その両者の算術平均を算出し、稠度とした。なお、試料の長径とは、試料の中心を通る直径のうち最も長いものを、試料の短径とは、試料の中心を通る直径のうち試料の長径に直交するもののことである。
試験例4(吐出力)
 吐出力の測定には、ポリオレフィン系樹脂製のシリンジ(内径8mm×長さ63mmクリアフィルマジェスティLV用容器)と、シリンジ後端側からシリンジに嵌め込まれた円筒状のプランジャーとからなる収納容器、及び前記シリンジの先端側に装着されたニードルチップ(20G×1/2” ニードル部内径0.65mm×長さ19mm ニードル部は先端より8.5mmで45度に屈曲している)を用いた。収納容器は環境光非透過性の部材で構成されている。
 調製した歯科用硬化性組成物(ペースト)を真空脱泡後、シリンジに1.5ml充填し、シリンジ先端部にニードルチップを装着し、プランジャーを押すことにより、ニードルチップ先端からペーストを吐出させた。このときの吐出力(シリンジよりペーストを押出しするのに要する力)を万能試験機(島津製作所社製、商品コード「AGI-100」)を用いて測定した。収納容器を鉛直に立て、圧縮強度試験用の治具を装着したクロスヘッドを4mm/分で降下させて、ペーストに荷重負荷を与えながら吐出し、そのときの最大荷重を吐出力とした。吐出力の測定は25℃で行った。吐出力が35N未満の場合は、容易に吐出可能で吐出性が良く、35N~50Nでは吐出が可能であるが、吐出性は悪く、50Nより大きいと、吐出しにくく吐出性は非常に悪い。
試験例5(賦形性)
 30mm×30mmの正方形のガラス板上に予め直径4mmの円を描いておき、上記の吐出力評価で使用した収納容器とニードルチップを使用して、その円内にペースト0.03gを吐出し、ガラス板を37℃の恒温器内で水平におき、その状態で30秒間静置してペーストの形状を目視で観察し、以下の評価基準に従って、吐出物の形状(賦形性)を評価した。なお、賦形性が2から4を合格品とする。さらに、ペーストがやや固めのローフロータイプでは、評価2又は3が好ましく、3がより好ましい。ペーストがやや柔らかめのハイフロータイプでは、評価3又は4が好ましく、4がより好ましい。
〔賦形性の評価基準〕
1:半球状を形成せず、押し出した形状を維持する
2:半球状を形成しつつも、押し出した形状が若干残る
3:半球を形成し、そのままの形状を維持する
4:半球を形成するが、高さが僅かに低くなる
5:半球を形成しないか、半球を形成しても直ぐにつぶれる
試験例6(操作性)
 上記の賦形性試験を実施する時、ニードル先端をガラス板より1~2cm上方にし、ペーストを吐出後、ニードル先端部を上方に引き上げた時の、ガラス板上のペーストとニードル先端部に付着したペーストの状態を目視で確認し、以下の評価基準に従って、ペーストの操作性を評価した。
〔操作性の評価基準〕
1:ペーストがニードル先端部から直ぐに離れ、ガラス板上のペーストも半球状を形成する
2:ペーストがニードル先端部に1cm程ついた後離れ、ガラス板上のペーストが若干角を形成する
3:ペーストがニードル先端部に2~3cmついた後離れ、ガラス板上のペーストが角を形成する
4:ペーストがニードル先端部に4cm以上ついた後離れ、ガラス板上のペーストが角を形成する
試験例7(曲げ強さ)
 調製した歯科用硬化性組成物(ペースト)を真空脱泡後、ステンレス製の金型(寸法2mm×2mm×25mm)に充填し、上下をスライドガラスで圧接し、歯科技工用可視光線照射器(ペンキュア2000、モリタ社製)で1点10秒、片面を5点ずつ、両面に光を照射して硬化させた。各実施例及び比較例について、硬化物を5本ずつ作製し、硬化物は、金型から取り出した後、37℃の蒸留水中に24時間保管した。万能試験機(島津製作所社製、商品コード「AGI-100」)を用いて、支点間距離20mm、クロスヘッドスピード1mm/分の条件下で曲げ強さを測定し、各試験片の測定値の平均値を算出し、曲げ強さとした。なお、曲げ強さが130MPa以上である場合を合格とする。
試験例8(拡散度)
 調製した歯科用硬化性組成物をテフロン製の金型(直径20mm×厚さ0.5mm)に充填した。上下面をスライドガラスで圧接し、αライトII(ハロゲン光照射器;モリタ製)を用いて、表裏1分間ずつ光照射を行い、硬化させた。硬化物を金型から取り出したのち、三次元変角光度計(村上色彩技術研究所製GP-200)を用いて、透過光の光度分布を測定した。拡散度は、前述の式(2)に従って計算した。
試験例9(表面硬度:ビッカース硬度)
 調製した歯科用硬化性組成物を、スライドガラスの上に適量載せ、1mmのゲージ(ミツトヨ社製)を用いて上下面をスライドガラスで圧接し、上側からのみ歯科技工用可視光線照射器(ペンキュア2000、モリタ社製)で、10秒間光照射して硬化させ、直径10mm×厚さ1mmの円盤を作製した。綺麗な平滑面を#1500研磨紙で乾燥条件下で研磨し、最後にダイヤモンドペーストで鏡面研磨した。ここで作製した試験片を、微小硬さ試験機(HM-221 ミツトヨ社製)を用いて、200gで10秒間荷重をかけて、ビッカース硬度を測定した。表面硬度は、25以上である場合を合格とする。
試験例10(重合性単量体の粘度)
 重合性単量体の混合物の粘度は、TV-30型粘度計(東機産業社製)を用いて、0.8°×R24のコーンロータで、サンプル量0.6mL、40℃にて測定した。1分間のプレヒートを行った後、測定を開始し、5分後の値をその粘度とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表に示すように、本発明の歯科用硬化性組成物(実施例1~23)は、初期硬度及び曲げ強度が高く、研磨性に優れ、滑沢耐久性(歯ブラシ摩耗試験後の光沢度)も高いことがわかる。また、実施例1~8、12~23においては、光拡散性も高く、色調適合性に優れていることもわかる。実施例1~8は、賦形性が特に優れ、ローフロータイプとして特に優れた性能を有していることが分る。また、実施例13~16は、吐出力が特に低く、流動性に優れるハイフロータイプとして特に優れた性能を有していることが分る。
 本発明の歯科用硬化性組成物は、歯科医療の分野において、天然歯の一部分又は全体を代替し得るものとして好適に用いられるものであり、フロアブルコンポジットレジンに最適である。

Claims (6)

  1.  重合性単量体(A)、
     式(1)(式中、Rは水素原子又はメチル基、Rは加水分解可能な基、Rは炭素数1~6の炭化水素基を示し、pは2又は3、qは8~13の整数である)で表されるシランカップリング剤(a)で表面処理された平均粒子径0.1~0.3μmの不定形無機粒子(B)、及び
     前記式(1)中のqが1~6の整数である以外はシランカップリング剤(a)と同様に表されるシランカップリング剤(b)で表面処理された平均粒子径5~50nmの無機超微粒子(C)を含有する歯科用硬化性組成物であって、
     前記不定形無機粒子(B)及び前記無機超微粒子(C)を無機粒子の全量中にそれぞれ92.5~98重量%及び2~7.5重量%含有し、
     歯科用硬化性組成物の稠度が25~55である、
    歯科用硬化性組成物。
    Figure JPOXMLDOC01-appb-C000003
  2.  前記重合性単量体(A)の重合後の屈折率が1.52~1.58であり、前記不定形無機粒子(B)の屈折率が1.52~1.58であり、かつ前記無機超微粒子(C)の屈折率が1.43~1.50である請求項1に記載の歯科用硬化性組成物。
  3.  前記重合性単量体(A)の含有量が無機粒子の全量100重量部に対して25~50重量部である請求項1に記載の歯科用硬化性組成物。
  4.  前記無機超微粒子(C)が凝集して凝集粒子を形成しており、当該凝集粒子の平均粒子径が1~10μmである請求項1に記載の歯科用硬化性組成物。
  5.  請求項1~4のいずれかに記載の歯科用硬化性組成物を含む歯科用フロアブルコンポジットレジン。
  6.  請求項5に記載の歯科用フロアブルコンポジットレジンを含有する容器と、前記容器の先端に装着されるニードルチップとを含むパッケージ。
PCT/JP2013/006945 2012-11-30 2013-11-26 歯科用硬化性組成物及び歯科用フロアブルコンポジットレジン WO2014083842A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014549826A JP6224616B2 (ja) 2012-11-30 2013-11-26 歯科用硬化性組成物及び歯科用フロアブルコンポジットレジン
EP13857989.1A EP2926796B8 (en) 2012-11-30 2013-11-26 Dental curable composition and dental flowable composite resin
ES13857989T ES2750228T3 (es) 2012-11-30 2013-11-26 Composición curable dental y resina compuesta fluida dental
CN201380062443.7A CN104797232B (zh) 2012-11-30 2013-11-26 牙科用固化性组合物和牙科用流动复合树脂
US14/648,536 US9855196B2 (en) 2012-11-30 2013-11-26 Dental curable composition and dental flowable composite resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012262884 2012-11-30
JP2012-262884 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014083842A1 true WO2014083842A1 (ja) 2014-06-05

Family

ID=50827503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006945 WO2014083842A1 (ja) 2012-11-30 2013-11-26 歯科用硬化性組成物及び歯科用フロアブルコンポジットレジン

Country Status (6)

Country Link
US (1) US9855196B2 (ja)
EP (1) EP2926796B8 (ja)
JP (1) JP6224616B2 (ja)
CN (1) CN104797232B (ja)
ES (1) ES2750228T3 (ja)
WO (1) WO2014083842A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008211A (ja) * 2014-06-26 2016-01-18 クラレノリタケデンタル株式会社 歯科用修復材組成物
EP3011949A1 (de) * 2014-10-23 2016-04-27 VOCO GmbH Härtbares dentalmaterial
WO2016152659A1 (ja) * 2015-03-20 2016-09-29 株式会社ジーシー 歯科用硬化性組成物及びその製造方法
WO2018074600A1 (ja) * 2016-10-21 2018-04-26 クラレノリタケデンタル株式会社 分包型の歯科用セメント
WO2018074594A1 (ja) * 2016-10-21 2018-04-26 クラレノリタケデンタル株式会社 自己接着性歯科用コンポジットレジン
JP2018172293A (ja) * 2017-03-31 2018-11-08 株式会社ジーシー 歯科用接着剤及びその製造方法
WO2019107534A1 (ja) * 2017-12-01 2019-06-06 クラレノリタケデンタル株式会社 歯科用修復材組成物
WO2019131881A1 (ja) * 2017-12-27 2019-07-04 クラレノリタケデンタル株式会社 自己接着性歯科用コンポジットレジン
WO2020031444A1 (ja) * 2018-08-08 2020-02-13 株式会社ジーシー 歯科用硬化性組成物
WO2020138363A1 (ja) * 2018-12-27 2020-07-02 クラレノリタケデンタル株式会社 歯科用硬化性組成物及びその製造方法
WO2023248838A1 (ja) * 2022-06-21 2023-12-28 株式会社ジーシー 3次元造形用組成物、及び歯科用造形物の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2739920C (en) 2008-10-07 2017-12-12 Ross Technology Corporation Spill-resistant surfaces having hydrophobic and oleophobic borders
MX2012010669A (es) * 2010-03-15 2013-02-07 Ross Technology Corp Destacadores y metodos para producir supreficies hidrofobas.
WO2012115986A1 (en) 2011-02-21 2012-08-30 Ross Technology Corporation Superhydrophobic and oleophobic coatings with low voc binder systems
EP2791255B1 (en) 2011-12-15 2017-11-01 Ross Technology Corporation Composition and coating for superhydrophobic performance
CN110325167A (zh) * 2017-02-27 2019-10-11 株式会社Gc 齿科用硬化性组成物
JP7114090B2 (ja) * 2017-04-18 2022-08-08 株式会社トクヤマデンタル 硬化性組成物
JP7022749B2 (ja) * 2017-06-28 2022-02-18 クラレノリタケデンタル株式会社 2ペースト型歯科用硬化性組成物
JP7077329B2 (ja) * 2017-09-26 2022-05-30 クラレノリタケデンタル株式会社 歯科用ミルブランクおよびその製造方法
WO2021132707A1 (ja) * 2019-12-27 2021-07-01 クラレノリタケデンタル株式会社 歯科用ペースト状組成物およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005752A1 (fr) 2000-07-19 2002-01-24 Tokuyama Corporation Materiau photopolymerisable pour protheses dentaires
JP2002518309A (ja) 1998-06-19 2002-06-25 カー コーポレイション 最適粒径をもつ混成複合材
AU2008211424A1 (en) * 2007-02-01 2008-08-07 Kuraray Medical Inc. Curable composition for dental purposes
WO2011074222A1 (ja) 2009-12-18 2011-06-23 クラレメディカル株式会社 歯科用硬化性組成物及びそれを用いたコンポジットレジン
JP2011190254A (ja) * 2010-02-22 2011-09-29 Kuraray Medical Inc 歯科用硬化性組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007370A2 (en) * 2006-07-11 2008-01-17 Nanopass Technologies Ltd. Dual chamber injector intergrated with micro-needles

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518309A (ja) 1998-06-19 2002-06-25 カー コーポレイション 最適粒径をもつ混成複合材
WO2002005752A1 (fr) 2000-07-19 2002-01-24 Tokuyama Corporation Materiau photopolymerisable pour protheses dentaires
CN101600412A (zh) * 2007-02-01 2009-12-09 日本可乐丽医疗器材株式会社 牙科用固化性组合物
CA2676801A1 (en) * 2007-02-01 2008-08-07 Kuraray Medical Inc. Curable composition for dental purposes
WO2008093596A1 (ja) 2007-02-01 2008-08-07 Kuraray Medical Inc. 歯科用硬化性組成物
EP2123247A1 (en) * 2007-02-01 2009-11-25 Kuraray Medical Inc. Curable composition for dental purposes
AU2008211424A1 (en) * 2007-02-01 2008-08-07 Kuraray Medical Inc. Curable composition for dental purposes
US20100105802A1 (en) * 2007-02-01 2010-04-29 Kuraray Medical Inc. Curable composition for dental purposes
WO2011074222A1 (ja) 2009-12-18 2011-06-23 クラレメディカル株式会社 歯科用硬化性組成物及びそれを用いたコンポジットレジン
JP4782251B2 (ja) * 2009-12-18 2011-09-28 クラレメディカル株式会社 歯科用硬化性組成物及びそれを用いたコンポジットレジン
US20110257292A1 (en) * 2009-12-18 2011-10-20 Kuraray Medical Inc. Dental curable composition and composite resin using the same
EP2380551A1 (en) * 2009-12-18 2011-10-26 Kuraray Medical Inc. Curable composition for dental use, and composite resin comprising same
CN102341088A (zh) * 2009-12-18 2012-02-01 日本可乐丽医疗器材株式会社 牙科用固化性组合物及使用其而成的复合树脂
JP2011190254A (ja) * 2010-02-22 2011-09-29 Kuraray Medical Inc 歯科用硬化性組成物

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008211A (ja) * 2014-06-26 2016-01-18 クラレノリタケデンタル株式会社 歯科用修復材組成物
EP3011949A1 (de) * 2014-10-23 2016-04-27 VOCO GmbH Härtbares dentalmaterial
EP3272325A4 (en) * 2015-03-20 2018-12-12 GC Corporation Curable composition for dental use and method for manufacturing same
WO2016152659A1 (ja) * 2015-03-20 2016-09-29 株式会社ジーシー 歯科用硬化性組成物及びその製造方法
CN107405261A (zh) * 2015-03-20 2017-11-28 株式会社Gc 牙科用固化性组合物及其制造方法
JPWO2016152659A1 (ja) * 2015-03-20 2017-12-28 株式会社ジーシー 歯科用硬化性組成物及びその製造方法
US20180049953A1 (en) * 2015-03-20 2018-02-22 Gc Corporation Dental curable composition and method of manufacturing same
CN107405261B (zh) * 2015-03-20 2020-07-31 株式会社Gc 牙科用固化性组合物及其制造方法
US10441512B2 (en) 2015-03-20 2019-10-15 Gc Corporation Dental curable composition and method of manufacturing same
WO2018074594A1 (ja) * 2016-10-21 2018-04-26 クラレノリタケデンタル株式会社 自己接着性歯科用コンポジットレジン
WO2018074600A1 (ja) * 2016-10-21 2018-04-26 クラレノリタケデンタル株式会社 分包型の歯科用セメント
JP7128114B2 (ja) 2016-10-21 2022-08-30 クラレノリタケデンタル株式会社 分包型の歯科用セメント
JPWO2018074594A1 (ja) * 2016-10-21 2019-08-08 クラレノリタケデンタル株式会社 自己接着性歯科用コンポジットレジン
JPWO2018074600A1 (ja) * 2016-10-21 2019-08-29 クラレノリタケデンタル株式会社 分包型の歯科用セメント
JP7122970B2 (ja) 2016-10-21 2022-08-22 クラレノリタケデンタル株式会社 自己接着性歯科用コンポジットレジン
US11173100B2 (en) 2016-10-21 2021-11-16 Kuraray Noritake Dental Inc. Multi-part dental cement
US10987281B2 (en) 2016-10-21 2021-04-27 Kuraray Noritake Dental Inc. Self-adhesive dental composite resin
JP2018172293A (ja) * 2017-03-31 2018-11-08 株式会社ジーシー 歯科用接着剤及びその製造方法
WO2019107534A1 (ja) * 2017-12-01 2019-06-06 クラレノリタケデンタル株式会社 歯科用修復材組成物
JPWO2019131881A1 (ja) * 2017-12-27 2020-12-10 クラレノリタケデンタル株式会社 自己接着性歯科用コンポジットレジン
WO2019131881A1 (ja) * 2017-12-27 2019-07-04 クラレノリタケデンタル株式会社 自己接着性歯科用コンポジットレジン
JP7183185B2 (ja) 2017-12-27 2022-12-05 クラレノリタケデンタル株式会社 自己接着性歯科用コンポジットレジン
JPWO2020031444A1 (ja) * 2018-08-08 2020-08-20 株式会社ジーシー 歯科用硬化性組成物
WO2020031444A1 (ja) * 2018-08-08 2020-02-13 株式会社ジーシー 歯科用硬化性組成物
US11446214B2 (en) 2018-08-08 2022-09-20 Gc Corporation Curable dental composite
WO2020138363A1 (ja) * 2018-12-27 2020-07-02 クラレノリタケデンタル株式会社 歯科用硬化性組成物及びその製造方法
JPWO2020138363A1 (ja) * 2018-12-27 2021-11-04 クラレノリタケデンタル株式会社 歯科用硬化性組成物及びその製造方法
JP7288462B2 (ja) 2018-12-27 2023-06-07 クラレノリタケデンタル株式会社 歯科用硬化性組成物及びその製造方法
WO2023248838A1 (ja) * 2022-06-21 2023-12-28 株式会社ジーシー 3次元造形用組成物、及び歯科用造形物の製造方法

Also Published As

Publication number Publication date
EP2926796A4 (en) 2016-08-03
JPWO2014083842A1 (ja) 2017-01-05
JP6224616B2 (ja) 2017-11-01
EP2926796B8 (en) 2019-12-11
CN104797232B (zh) 2017-11-07
ES2750228T3 (es) 2020-03-25
US9855196B2 (en) 2018-01-02
EP2926796A1 (en) 2015-10-07
CN104797232A (zh) 2015-07-22
US20150320646A1 (en) 2015-11-12
EP2926796B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6224616B2 (ja) 歯科用硬化性組成物及び歯科用フロアブルコンポジットレジン
AU2008211424B2 (en) Curable composition for dental purposes
CN107405261B (zh) 牙科用固化性组合物及其制造方法
JP2732968B2 (ja) 歯科用充填組成物
EP3586814B1 (en) Dental curable composition
JP5191401B2 (ja) 歯科用組成物
JP6487793B2 (ja) 歯科用硬化性組成物
JP6841915B2 (ja) 歯科用硬化性組成物
JP3421072B2 (ja) 歯科用充填組成物
JP2003146824A (ja) 歯科用材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549826

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14648536

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013857989

Country of ref document: EP