WO2011074222A1 - 歯科用硬化性組成物及びそれを用いたコンポジットレジン - Google Patents

歯科用硬化性組成物及びそれを用いたコンポジットレジン Download PDF

Info

Publication number
WO2011074222A1
WO2011074222A1 PCT/JP2010/007203 JP2010007203W WO2011074222A1 WO 2011074222 A1 WO2011074222 A1 WO 2011074222A1 JP 2010007203 W JP2010007203 W JP 2010007203W WO 2011074222 A1 WO2011074222 A1 WO 2011074222A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic particles
refractive index
particles
curable composition
weight
Prior art date
Application number
PCT/JP2010/007203
Other languages
English (en)
French (fr)
Inventor
奥林正輝
北広敬
高畑裕祐
太田晶子
Original Assignee
クラレメディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレメディカル株式会社 filed Critical クラレメディカル株式会社
Priority to ES10837256.6T priority Critical patent/ES2593877T3/es
Priority to CN201080009824.5A priority patent/CN102341088B/zh
Priority to US13/141,381 priority patent/US8476338B2/en
Priority to EP10837256.6A priority patent/EP2380551B1/en
Priority to JP2011514947A priority patent/JP4782251B2/ja
Publication of WO2011074222A1 publication Critical patent/WO2011074222A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/60Preparations for dentistry comprising organic or organo-metallic additives
    • A61K6/69Medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • A61K6/16Refractive index
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • A61K6/17Particle size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/60Preparations for dentistry comprising organic or organo-metallic additives
    • A61K6/65Dyes
    • A61K6/66Photochromic dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/71Fillers
    • A61K6/76Fillers comprising silicon-containing compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/78Pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a dental curable composition that can be suitably used as a dental material that can replace a part or the whole of a natural tooth, particularly as a dental composite resin, in the field of dentistry.
  • a dental curable composition composed of a polymerizable monomer, a filler, and a polymerization initiator is called a composite resin, and is the most frequently used dental material today as a material for repairing tooth defects and caries. It has become.
  • Such a dental curable composition is required to have the following characteristics. That is, in the cured product after polymerization and curing, there are sufficient mechanical strength that can be replaced with natural teeth, hardness, abrasion resistance against engagement in the oral cavity, surface smoothness, and the like. Furthermore, in a paste state before polymerization and curing, it has moderate fluidity and shapeability, does not adhere to dental instruments, and is not sticky, making it easy for clinicians and dental technicians to handle (high handleability) ) Is desired.
  • the characteristics of such a dental curable composition are greatly influenced by the material, shape, particle diameter, content, and combination of fillers used at the same time.
  • an inorganic filler having an average particle diameter of more than 1 ⁇ m it is easy to increase the filling rate into the polymerizable monomer, and sufficient mechanical strength of the cured product and high paste operability can be obtained.
  • a dental curable composition is required to have a material close to natural teeth in harmony with natural teeth, that is, optical properties such as color tone, transparency, and light diffusibility.
  • optical properties such as color tone, transparency, and light diffusibility.
  • optical properties approximate to dentin and optical properties approximate to enamel that is, different color tone, transparency, and light diffusibility are required for each region.
  • the color tone and transparency can be adjusted by the blending amount of the pigment, but it is difficult to adjust the light diffusivity only by the blending amount of the pigment.
  • Patent Document 1 describes a dental paste containing at least about 55% by weight of porous non-pyrolytic silica and non-aggregated primary silica particles having an average diameter of about 200 nm at the maximum. Specifically, examples include a dental paste using non-aggregated silica particles having an average particle diameter of about 75 nm and non-pyrolytic silica obtained by agglomerating silica sol having an average particle diameter of about 75 nm as a filler. It is disclosed.
  • a refractive index difference between a polymerizable monomer and a polymerizable monomer after curing is 0.06 or less, and an inorganic filler having an average particle diameter of 0.01 to 1 ⁇ m is aggregated,
  • a dental composite material in which the value of the diffusivity D defined by the following formula (1) is 0.002 to 0.3 is described.
  • Patent Document 3 discloses an organic-inorganic composite filler having an average particle diameter of 1 to 20 ⁇ m and an absolute value of a difference between the polymerizable monomer and the refractive index of the polymerizable monomer after curing of 0.01 or more. And a dental curable composition having a diffusivity D value of 0.01 or more represented by the above formula (1) is described.
  • non-aggregated silica particles and porous non-pyrolytic silica particles obtained by agglomerating silica particles by spray drying are used. Have not been used at the same time, and it was not a material that can achieve both sufficient light diffusibility and transparency.
  • the dental composite material described in Patent Document 2 uses silica particles having an average particle diameter of 0.2 ⁇ m as primary particles, it is difficult to achieve both high transparency and diffusivity.
  • the basic constituent particles are loosely bonded, it is difficult to stably produce a dental composite material having a certain paste property. There was also a change, and it was not necessarily a dental composite material with good handleability, and there was room for improvement.
  • the dental curable composition described in Patent Document 3 uses an organic-inorganic composite filler having a difference in refractive index of the polymerizable monomer after curing of 0.01 or more and an average particle diameter of 1 to 20 ⁇ m.
  • paste operability is imparted to the composition, and polishing smoothness and light diffusibility are imparted to the cured product.
  • the organic-inorganic composite filler since the organic-inorganic composite filler is used, the content of the inorganic filler in the cured product is low, and the bond between the organic-inorganic composite filler and the polymerizable monomer as the matrix is weak, so that sufficient mechanical strength is obtained. There was room for improvement.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and the object of the present invention is to improve the mechanical strength and the polishing slip while improving both the light diffusibility and the transparency of the cured product.
  • An object of the present invention is to provide a dental curable composition that is excellent in bulkiness and has good handleability of paste.
  • Another object of the present invention is to provide a composite resin in which both the light diffusibility and transparency of a cured product are excellent, the mechanical strength and polishing lubricity are excellent, and the paste is easy to handle.
  • the present invention relates to a polymerizable monomer (A) having a refractive index after polymerization of 1.52 to 1.58, Inorganic particles (B) having a refractive index of 1.43 to 1.50, and inorganic particles (C) having a refractive index of 1.52 to 1.58
  • the inorganic particles (B) are aggregates of inorganic fine particles having an average primary particle diameter of 2 to 50 nm, and the blending amount of the inorganic particles (B) is 0.1.
  • a dental curable composition of ⁇ 10% by weight.
  • the average particle size of the inorganic particles (B) is preferably 1.0 to 20 ⁇ m.
  • the inorganic particles (B) preferably have a specific surface area of 50 to 400 m 2 / g and a pore volume of 0.05 to 1.5 mL / g.
  • the inorganic particles (C) preferably include non-aggregated inorganic particles (CI) having an average particle size of 0.1 to 1.0 ⁇ m.
  • the inorganic particles (C) are non-aggregated inorganic particles (CI) having an average particle size of 0.1 to 1.0 ⁇ m, silica-based fine particles having an average particle size of 2 to 50 nm, and at least one heavy metal And an inorganic particle (C-II) having an average particle diameter of 1 to 20 ⁇ m, and the weight ratio of the inorganic particles (CI) to the inorganic particles (C-II) is 1: 4 to 4: 1 is preferable.
  • the difference between the refractive index after polymerization of the polymerizable monomer (A) and the refractive index of the inorganic particles (C) is preferably 0.03 or less.
  • the difference between the refractive index after polymerization of the polymerizable monomer (A) and the refractive index of the inorganic particles (B) is preferably 0.05 or more.
  • the dental curable composition of the present invention comprises 8 to 40% by weight of the polymerizable monomer (A), 0.1 to 10% by weight of the inorganic particles (B), and the inorganic particles (C). It is preferable to contain 59.9 to 91.9% by weight. In one embodiment of the dental curable composition of the present invention, it further contains 1 to 10% by weight of inorganic ultrafine particles (D) having an average particle size of 5 to 50 nm.
  • the present invention is also a composite resin using the dental curable composition described above.
  • the dental curable composition of the present invention a cured product having good light diffusibility and high transparency can be obtained.
  • the dental curable composition of the present invention is excellent in aesthetics.
  • cured material which has high mechanical strength is obtained.
  • the dental curable composition of the present invention has a paste with good operability, has an appropriate fluidity and shapeability, is prevented from adhering to and sticking to dental instruments, and is a paste over time. Changes in properties are suppressed, and handling is excellent.
  • the dental curable composition of the present invention can be suitably used particularly as a composite resin, and the composite resin is excellent in mechanical strength and polishing lubricity while being excellent in both light diffusibility and transparency of the cured product. And a composite resin with excellent paste handling properties.
  • Polymerizable monomer (A) As the polymerizable monomer (A) used in the present invention, a known polymerizable monomer can be used without any limitation as long as the refractive index after polymerization is 1.52 to 1.58.
  • the refractive index after polymerization of the polymerizable monomer (A) is preferably 1.525 to 1.58 and is preferably 1.53 to 1.58 because the difference in refractive index from the inorganic particles (B) can be easily increased. More preferred.
  • the refractive index after polymerization of the polymerizable monomer (A) means the refractive index of the polymer of the polymerizable monomer (A).
  • the refractive index of the polymer is generally slightly higher than that of the polymerizable monomer.
  • one type of polymerizable monomer may be selected, or several types of polymerizable monomers having different refractive indexes may be mixed at an appropriate blending ratio.
  • radically polymerizable monomers are preferably used.
  • the radical polymerizable monomer in the polymerizable monomer (A) include ⁇ -cyanoacrylic acid, (meth) acrylic acid, ⁇ -halogenated acrylic acid, crotonic acid, cinnamic acid, sorbic acid, maleic acid.
  • esters such as acid and itaconic acid, (meth) acrylamide, (meth) acrylamide derivatives, vinyl esters, vinyl ethers, mono-N-vinyl derivatives, and styrene derivatives.
  • (meth) acrylic acid ester is preferable.
  • the notation of (meth) acryl is used to include both methacryl and acryl.
  • (meth) acrylic acid ester-based polymerizable monomers examples include (I) monofunctional (meth) acrylate methyl (meth) acrylate, isobutyl (meth) acrylate, benzyl (meth) acrylate, lauryl (meth) acrylate, 2- (N, N-dimethylamino) ethyl (meth) acrylate, 2,3-dibromopropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, propylene glycol mono (meth) acrylate, glycerin mono (meta) ) Acrylate, erythritol mono (meth) acrylate, N-methylol (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N- (dihydroxyethyl) (meth) (me
  • (II) Bifunctional (meth) acrylates Ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol Di (meth) acrylate, 1,10-decandiol di (meth) acrylate, bisphenol A diglycidyl (meth) acrylate (2,2-bis [4- [3- (meth) acryloyloxy-2-hydroxypropoxy] phenyl] Propane, commonly known as BisGMA), 2,2-bis [4- (meth) acryloyloxyethoxyphenyl] propane, 2,2-bis [4- (meth) acryloyloxypolyethoxyphenyl] propane, 1,2-bis [3 -(Meth) acryloyloki 2-hydroxypropoxy] ethane, pentaerythr
  • the curable composition of this invention contains the functional monomer which provides the adhesiveness with respect to these adherends as a polymerizable monomer. It may be preferable.
  • Examples of functional monomers include phosphate groups such as 2- (meth) acryloyloxyethyl dihydrogen phosphate, 10- (meth) acryloyloxydecyl dihydrogen phosphate, 2- (meth) acryloyloxyethylphenyl hydrogen phosphate, etc.
  • monomers having a carboxylic acid group such as 11- (meth) acryloyloxy-1,1-undecanedicarboxylic acid and 4- (meth) acryloyloxyethoxycarbonylphthalic acid are excellent for dental substances and base metals. It is preferable because it exhibits excellent adhesion.
  • Examples of functional monomers include 10-mercaptodecyl (meth) acrylate, 6- (4-vinylbenzyl-n-propyl) amino-1,3,5-triazine-2,4-dithione, A thiouracil derivative described in Japanese Patent No. 1473 and a compound having a sulfur element described in Japanese Patent Application Laid-Open No. 11-92461 are preferable because they exhibit excellent adhesion to noble metals.
  • a silane coupling agent such as ⁇ -methacryloxypropyltrimethoxysilane is effective for adhesion to ceramics, porcelain and dental composite resins.
  • the blending amount of the polymerizable monomer (A) is preferably 8 to 40% by weight, more preferably 15 to 35% by weight based on the total weight of the dental curable composition.
  • the blending amount is less than 8%, the paste may become too hard or may not be united, and a dental curable composition with sufficient operability may not be obtained.
  • the blending amount is more than 40% by weight, the amount of the inorganic filler becomes insufficient, and a dental curable composition that gives sufficient mechanical strength may not be obtained.
  • the inorganic particles (B) used in the present invention can be used without any limitation as long as they are aggregates of inorganic fine particles having a refractive index of 1.43 to 1.50 and an average primary particle diameter of 2 to 50 nm.
  • the refractive index of the inorganic particles (B) is less than 1.43, the difference in refractive index between the polymer of the polymerizable monomer (A) and the inorganic particles (C) becomes too large, and thus sufficient transparency.
  • the refractive index is greater than 1.50, the difference in refractive index between the polymer of the polymerizable monomer (A) and the inorganic particles (C) becomes too small, so that sufficient light diffusibility is obtained. I can't get it.
  • the refractive index of the inorganic particles (B) is preferably 1.43 to 1.48, since the refractive index difference between the polymer of the polymerizable monomer (A) and the inorganic particles (C) is easily increased. 43 to 1.46 are more preferable. Further, the difference ⁇ (A)-(B) ⁇ between the refractive index after polymerization of the polymerizable monomer (A) and the refractive index of the inorganic particles (B) is preferably 0.05 or more. At this time, the light diffusibility is particularly excellent.
  • the average primary particle diameter of the inorganic particles (B) is that it is easy to increase the interface with the polymerizable monomer (A) that becomes the site of light refraction and scattering, and it is easy to obtain an aggregate of moderate strength. 5 to 35 nm is preferable, and 7 to 20 nm is more preferable.
  • the average primary particle diameter of the inorganic particles (B) can be measured as an average value of the particle diameters of 100 primary particles randomly selected by taking an electron micrograph of the inorganic particles (B). When the primary particles are non-spherical, the particle diameter is defined as an arithmetic average of the longest and shortest lengths of the primary particles.
  • the average particle diameter of the inorganic particles (B) is not limited as long as the inorganic particles (B) are aggregates having the above-described refractive index and average primary particle diameter, but the light diffusibility and transparency of the cured product of the composition are not limited at all. Is preferably 1.0 to 20 ⁇ m, more preferably 2.0 to 15 ⁇ m, and particularly preferably 3 to 10 ⁇ m. When the average particle diameter is smaller than 1.0 ⁇ m, the function of adjusting transmitted light is weakened, and therefore the blending amount must be increased, and the light diffusibility and transparency of the cured product may be lowered.
  • the average particle size of an inorganic particle (B) can be calculated
  • SALD-2100 manufactured by Shimadzu Corporation
  • the specific surface area and pore volume of the inorganic particles (B) are not limited as long as the inorganic particles (B) are aggregates having the above-described refractive index and average primary particle diameter, but the light diffusibility and transparency of the cured product are not limited at all.
  • the specific surface area is preferably 50 to 400 m 2 / g, the pore volume is preferably 0.05 to 1.5 mL / g, and the specific surface area is 100 to 300 m 2 / g.
  • the volume is more preferably 0.1 to 1.0 mL / g, the specific surface area is 100 to 250 m 2 / g, and the pore volume is particularly preferably 0.15 to 0.5 mL / g.
  • the material of the inorganic particles (B) can be used without limitation as long as the inorganic particles (B) satisfy the above-described relationship between the refractive index and the average primary particle diameter.
  • flame pyrolysis silica for example, Aerosil OX-50, Aerosil Ar130, Aerosil Ar200, etc. from Nippon Aerosil Co., Ltd.
  • silica sol of wet method for example, Snowtex series manufactured by Nissan Chemical Co., Ltd. Cataloid series
  • silica particles produced by the sol-gel method, and the like can also be used. It is also possible to use a composite of other metal ions within a range satisfying the above-described refractive index.
  • metals are not particularly limited, but Al, Ti, Zr, Sr, Ba, La, Na, K, Ca, Mg, and the like can be used from the viewpoint of ease of refractive index adjustment and safety. Can be mentioned. These may be mixed as a soluble metal salt in silica sol in which silica particles are already dispersed, or may be mixed when synthesizing silica particles to form composite oxide particles.
  • the following general methods can be used without limitation, but are not particularly limited thereto.
  • the simplest agglomeration operation is to disperse the basic particles in a dispersion solvent and then remove the solvent by heating or decompression.
  • spray drying in which a dispersion of basic particles is made into a fine mist and sprayed into a drying chamber to obtain dried agglomerated particles.
  • the agglomerate becomes large, and thus operations such as crushing and pulverization are necessary.
  • the latter spray drying method is efficient because this step can be omitted. Examples of those manufactured by this spray drying method include silica micro beads manufactured by JGC Catalysts & Chemicals.
  • the inorganic particles (B) subjected to the agglomeration operation may be subjected to heat treatment as necessary for the purpose of adjusting the agglomeration force and removing moisture and organic substances. Since the optimum processing conditions (temperature, time) differ depending on the composition of the basic particles and the raw materials used, it cannot be specified unconditionally, but many compositions are 200 ° C. or higher and 800 ° C. or lower. When the firing temperature is lower than 200 ° C., moisture and organic matter are likely to remain, and it is difficult to obtain a cured product having sufficient transparency.
  • the firing temperature exceeds 800 ° C.
  • crystallization, fusion, and sintering of the constituent components often start, and there is a decrease in abrasiveness or transparency of the cured product of the composition using the inorganic particles (B). It causes a decrease and is not preferable.
  • More detailed firing conditions are such that a filler fired under several conditions in this temperature range is prepared, the crystal structure cannot be confirmed by powder X-ray diffraction analysis, and the composition containing the inorganic particles (B) Is determined by measuring the smoothness of the polished surface of the cured product and measuring the transparency.
  • the affinity with the polymerizable monomer (A) can be improved, or the polymerizable single amount
  • the refractive index of the inorganic particles (B) is that after the surface treatment.
  • the surface treatment agent examples include at least one organometallic compound selected from the group consisting of an organosilicon compound, an organotitanium compound, an organozirconium compound, and an organoaluminum compound.
  • organometallic compounds selected from the group consisting of an organosilicon compound, an organotitanium compound, an organozirconium compound, and an organoaluminum compound.
  • organosilicon compound examples include compounds represented by R 1 n SiX 4-n (wherein R 1 is a substituted or unsubstituted hydrocarbon group having 1 to 12 carbon atoms, and X is a carbon number) Represents an alkoxy group of 1 to 4, a hydroxyl group, a halogen atom or a hydrogen atom, and n is an integer of 0 to 3. When there are a plurality of R 1 and X, they may be the same or different. .
  • organic titanium compound examples include tetramethyl titanate, tetraisopropyl titanate, tetra n-butyl titanate, butyl titanate dimer, and tetra (2-ethylhexyl) titanate.
  • organic zirconium compound examples include zirconium isopropoxide, zirconium n-butoxide, zirconium acetylacetonate, zirconyl acetate and the like.
  • organic aluminum compound examples include aluminum acetylacetonate and aluminum organic acid salt chelate compound.
  • the blending amount of the inorganic particles (B) is 0.1 to 10% by weight based on the total weight of the dental curable composition, a cured product having appropriate light diffusibility and transparency can be obtained.
  • the blending amount is less than 0.1% by weight, the ratio of refraction and scattering sites in the cured product becomes too small, so that the diffused function of transmitted light is weakened and the transparency of the cured product is increased. A sufficient light diffusibility cannot be obtained.
  • the blending amount is more than 10% by weight, although light diffusibility can be obtained, the ratio of refraction and scattering sites in the cured product becomes too large, so that sufficient transparency cannot be obtained.
  • the blending amount is preferably 0.5 to 8.0% by weight, more preferably 1.0 to 7.0% by weight.
  • the inorganic particles (C) used in the present invention can be used without any limitation as long as the refractive index is 1.52 to 1.58. If the refractive index is less than 1.52, the difference in refractive index from the polymer of the polymerizable monomer (A) tends to be large, and the difference in refractive index from the inorganic particles (B) tends to be small. Light diffusion and transparency cannot be obtained. When the refractive index is greater than 1.58, the difference in refractive index between the polymer of the polymerizable monomer (A) and the inorganic particles (B) tends to be large, and the cured product becomes white and opaque, which is sufficient Transparency cannot be obtained.
  • the refractive index of the inorganic particles (C) is 1 because it is easy to reduce the refractive index difference from the polymer of the polymerizable monomer (A) and to increase the refractive index difference from the inorganic particles (B). .525 to 1.58 is preferable, and 1.53 to 1.58 is more preferable.
  • the difference between the refractive index after polymerization of the polymerizable monomer (A) and the refractive index of the inorganic particles (C) is preferably 0.03 or less in absolute value. At this time, transparency is particularly excellent.
  • the inorganic particles (C) are non-aggregated inorganic particles having an average particle size of 0.1 to 1.0 ⁇ m because the mechanical strength of the cured product of the composition, the abrasiveness, and the operability of the paste are easily obtained.
  • CI) is preferably included.
  • the average particle size is less than 0.1 ⁇ m, the hardened product has sufficient abrasiveness, but the paste is likely to be sticky, the filler content is difficult to increase, and the mechanical strength decreases. There is a fear.
  • the average particle size is larger than 1.0 ⁇ m, sufficient mechanical strength can be obtained, but the abrasiveness may be lowered.
  • the average particle diameter of the inorganic particles (CI) is more preferably 0.2 to 0.7 ⁇ m, and more preferably 0.2 to 0.4 ⁇ m. Further preferred.
  • the average particle diameter of the inorganic particles (CI) can be obtained by a laser diffraction scattering method. Specifically, for example, it can be measured with a laser diffraction particle size distribution measuring apparatus (SALD-2100: manufactured by Shimadzu Corporation) using a 0.2% aqueous sodium hexametaphosphate solution as a dispersion medium.
  • any non-aggregated inorganic particles having a refractive index of 1.52 to 1.58 and an average particle diameter of 0.1 to 1.0 ⁇ m can be used without any limitation.
  • the inorganic particles include various glasses [mainly composed of silica, and if necessary, oxides such as heavy metals, boron, and aluminum.
  • Dental ceramic powder various ceramics, composite oxides such as silica-titania and silica-zirconia, kaolin, clay minerals (montmorillonite, etc.), mica, ytterbium fluoride, yttrium fluoride, and the like. These can be used alone or in admixture of two or more.
  • inorganic particles inorganic particles containing silica as a main component are preferably used as the inorganic particles (CI) of the dental curable composition of the present invention.
  • the inorganic particles (C) have an average particle size in order to give better handleability of the paste while having sufficient abrasiveness and mechanical properties. It is preferable to contain an inorganic particle (C-II) having an average particle diameter of 1 to 20 ⁇ m, which is an aggregate containing silica-based fine particles of 2 to 50 nm and an oxide containing at least one kind of heavy metal.
  • the average particle diameter of the silica-based fine particles of the inorganic particles (C-II) is preferably 5 to 35 nm, more preferably 7 to 20 nm, because an aggregate having an appropriate strength can be easily obtained.
  • the average particle size of silica-based fine particles of inorganic particles can be measured by taking an electron micrograph of silica-based fine particles and measuring the average value of the particle size of 100 randomly selected silica-based fine particles.
  • the particle diameter is defined as the arithmetic average of the longest and shortest lengths of the silica-based fine particles.
  • the average particle diameter of the inorganic particles (C-II) is preferably 1.0 to 20 ⁇ m, more preferably 2.0 to 15 ⁇ m, and particularly preferably 3 to 10 ⁇ m.
  • the average particle size of the inorganic particles (C-II) can be obtained by a laser diffraction scattering method. Specifically, for example, it can be measured with a laser diffraction particle size distribution measuring apparatus (SALD-2100: manufactured by Shimadzu Corporation) using a 0.2% aqueous sodium hexametaphosphate solution as a dispersion medium.
  • SALD-2100 laser diffraction particle size distribution measuring apparatus
  • the weight ratio of the inorganic particles (CI) to the inorganic particles (C-II) is such that it is easy to obtain paste properties with better paste extension and stickiness, and easier to obtain pastes that are easier to fill.
  • 1: 4 to 4: 1 is preferable, and 1: 3 to 3: 1 is more preferable.
  • the inorganic particles (C-II) are aggregates containing silica-based fine particles having an average particle diameter of 2 to 50 nm and an oxide containing at least one heavy metal and having a refractive index of 1.52 to 1.58.
  • An average particle diameter of 1 to 20 ⁇ m can be used without any limitation.
  • commercially available silica sol for example, Snowtex series manufactured by Nissan Chemical Co., Ltd. and Cataloid series manufactured by JGC Catalysts & Chemicals Co., Ltd.
  • silica particles produced by the sol-gel method, and other heavy metal ions are combined. It is possible to use an agglomerate produced using the above.
  • the inorganic particles (C) are used in a dental curable composition in combination with the polymerizable monomer (A), the affinity with the polymerizable monomer (A) is improved, or the polymerizable monomer (A) is used.
  • a surface treatment method a method similar to that of the above-described inorganic particles (B) can be used without any limitation.
  • the refractive index of the inorganic particles (C) is that after the surface treatment.
  • the blending amount of the inorganic particles (C) is preferably 59.9 to 91.9% by weight, more preferably 64.9 to 84.9% by weight based on the total weight of the dental curable composition. If the blending amount is less than 59.9%, the amount of inorganic filler becomes insufficient, and a dental curable composition that provides sufficient mechanical strength may not be obtained. When the blending amount is more than 91.9% by weight, the paste may become too hard or may not be settled, and a dental curable composition with sufficient operability may not be obtained.
  • the dental curable composition of the present invention may contain inorganic ultrafine particles (D) in addition to inorganic particles (B) and inorganic particles (C) for the purpose of improving paste operability.
  • inorganic ultrafine particles (D) known inorganic ultrafine particles used for dental curable compositions are used without any limitation.
  • inorganic oxide particles such as silica, alumina, titania and zirconia, or composite oxide particles made of these, calcium phosphate, hydroxyapatite, yttrium fluoride, ytterbium fluoride and the like can be mentioned.
  • the silica is produced by flame pyrolysis are particles of alumina, titania, for example, Nippon Aerosil Co., Ltd., trade name: Aerosil, Aerokisaido AluC, Aerokisaido TiO 2 P25, Aerokisaido TiO 2 P25S, VP Zirconium Oxide 3-YSZ and VP Zirconium Oxide 3-YSZ PH.
  • the average particle diameter of the inorganic ultrafine particles (D) is preferably 5 to 50 nm, more preferably 10 to 40 nm.
  • the average particle diameter of the inorganic ultrafine particles (D) can be measured as an average value of the particle diameters of 100 ultrafine particles randomly selected by taking an electron micrograph of the ultrafine particles.
  • the particle diameter is defined as the arithmetic average of the longest and shortest lengths of the ultrafine particles.
  • the inorganic ultrafine particles (D) are used in the dental curable composition in combination with the polymerizable monomer (A) in the same manner as the inorganic particles (C),
  • the inorganic ultrafine particles (D) are surface treated with a surface treatment agent in advance. It is desirable to give it.
  • a surface treatment method a method similar to that of the above-described inorganic particles (B) can be used without any limitation.
  • the blending amount of the inorganic ultrafine particles (D) is preferably 1 to 10% by weight, more preferably 1 to 5% by weight based on the total weight of the dental curable composition.
  • the dental curable composition of the present invention preferably further contains a polymerization initiator in order to facilitate polymerization and curing.
  • a polymerization initiator it can select and use from the polymerization initiator currently used in the general industry, Among these, the polymerization initiator used for a dental use is used preferably.
  • polymerization initiators for photopolymerization and chemical polymerization are used singly or in appropriate combination of two or more.
  • Photopolymerization initiators include (bis) acylphosphine oxides, water-soluble acylphosphine oxides, thioxanthones or quaternary ammonium salts of thioxanthones, ketals, ⁇ -diketones, benzoin alkyl ether compounds, ⁇ - Examples include amino ketone compounds.
  • acylphosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2, 6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylmethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide, 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, benzoyldi -(2,6-dimethylphenyl) phosphonate and the like.
  • bisacylphosphine oxides include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2, 6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- ( 2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6- Trimethylbenzoyl) phenyl phosphite Oxide, and (2,5,6-trimethylbenz
  • the water-soluble acyl phosphine oxides used as the photopolymerization initiator preferably have an alkali metal ion, alkaline earth metal ion, pyridinium ion or ammonium ion in the acyl phosphine oxide molecule.
  • water-soluble acylphosphine oxides can be synthesized by the method disclosed in European Patent No. 0009348 or Japanese Patent Application Laid-Open No. 57-197289.
  • water-soluble acyl phosphine oxides include monomethyl acetyl phosphonate sodium, monomethyl (1-oxopropyl) phosphonate sodium, monomethyl benzoyl phosphonate sodium, monomethyl (1-oxobutyl) phospho Phosphonate sodium, monomethyl (2-methyl-1-oxopropyl) phosphonate sodium, acetyl phosphonate sodium, monomethyl acetyl phosphonate sodium, acetyl methyl phosphonate sodium, methyl 4- (hydroxy Methoxyphosphinyl) -4-oxobutanoate sodium salt, methyl-4-oxophosphonobutanoate mononatrium salt, acetyl phenyl phosphinate Sodium salt, (1-oxopropyl) pentylphosphinate sodium, methyl-4- (hydroxypentylphosphinyl) -4-oxobutanoate sodium salt, acetylp
  • acylphosphine oxides and water-soluble acylphosphine oxides 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylmethoxyphenylphosphine oxide, bis (2 , 4,6-Trimethylbenzoyl) phenylphosphine oxide and 2,4,6-trimethylbenzoylphenylphosphine oxide sodium salt are particularly preferred.
  • Examples of the thioxanthones or quaternary ammonium salts of thioxanthones used as the photopolymerization initiator include thioxanthone, 2-chlorothioxanthen-9-one, 2-hydroxy-3- (9-oxy-9H- Thioxanthen-4-yloxy) -N, N, N-trimethyl-propaneaminium chloride, 2-hydroxy-3- (1-methyl-9-oxy-9H-thioxanthen-4-yloxy) -N, N, N-trimethyl-propanaminium chloride, 2-hydroxy-3- (9-oxo-9H-thioxanthen-2-yloxy) -N, N, N-trimethyl-propanaminium chloride, 2-hydroxy-3- ( 3,4-Dimethyl-9-oxo-9H-thioxanthen-2-yloxy) -N, N, N-tri Tyl-1-propaneaminium chloride, 2-hydroxy-3- (3,4-dimethyl-9H-
  • thioxanthones or quaternary ammonium salts of thioxanthones a particularly preferred thioxanthone is 2-chlorothioxanthen-9-one, and a particularly preferred quaternary ammonium salt of thioxanthones is 2 -Hydroxy-3- (3,4-dimethyl-9H-thioxanthen-2-yloxy) -N, N, N-trimethyl-1-propaneaminium chloride.
  • ketals used as the photopolymerization initiator include benzyl dimethyl ketal and benzyl diethyl ketal.
  • Examples of the ⁇ -diketone used as the photopolymerization initiator include diacetyl, dibenzyl, camphorquinone, 2,3-pentadione, 2,3-octadione, 9,10-phenanthrenequinone, 4,4′- Examples thereof include oxybenzyl and acenaphthenequinone.
  • camphorquinone is particularly preferable from the viewpoint of having a maximum absorption wavelength in the visible light region.
  • photopolymerization initiators it is preferable to use at least one selected from the group consisting of (bis) acylphosphine oxides and salts thereof, and ⁇ -diketones.
  • a composition having excellent photocurability in the visible and near-ultraviolet regions and having sufficient photocurability can be obtained using any light source such as a halogen lamp, a light emitting diode (LED), or a xenon lamp.
  • an organic peroxide is preferably used as the chemical polymerization initiator.
  • the organic peroxide used for said chemical polymerization initiator is not specifically limited, A well-known thing can be used.
  • Typical organic peroxides include ketone peroxide, hydroperoxide, diacyl peroxide, dialkyl peroxide, peroxyketal, peroxyester, peroxydicarbonate, and the like.
  • hydroperoxide used as the chemical polymerization initiator examples include 2,5-dimethylhexane-2,5-dihydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide, and t-butyl hydroperoxide. It is done.
  • diacyl peroxide used as the chemical polymerization initiator examples include acetyl peroxide, isobutyryl peroxide, benzoyl peroxide, decanoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, and 2,4-dichlorobenzoyl. Examples thereof include peroxide and lauroyl peroxide.
  • dialkyl peroxide used as the chemical polymerization initiator examples include di-t-butyl peroxide, dicumyl peroxide, t-butyl cumyl peroxide, 2,5-dimethyl-2,5-di (t-butyl peroxide).
  • Examples of the peroxyketal used as the chemical polymerization initiator include 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis (t-butylperoxy) butane, 2,2-bis (t-butylperoxy) octane, 4,4-bis (t-butylperoxy) valeric acid-n-butyl ester, etc. Can be mentioned.
  • peroxyester used as the chemical polymerization initiator examples include ⁇ -cumyl peroxyneodecanoate, t-butylperoxyneodecanoate, t-butylperoxypivalate, 2,2,4-trimethylpentyl.
  • Peroxy-2-ethylhexanoate t-amylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, di-t-butylperoxyisophthalate, di-t- Examples include butyl peroxyhexahydroterephthalate, t-butylperoxy-3,3,5-trimethylhexanoate, t-butylperoxyacetate, t-butylperoxybenzoate, and t-butylperoxymaleic acid. It is done.
  • peroxydicarbonate used as the chemical polymerization initiator examples include di-3-methoxyperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, and diisopropyl. Examples thereof include peroxydicarbonate, di-n-propyl peroxydicarbonate, di-2-ethoxyethyl peroxydicarbonate and diallyl peroxydicarbonate.
  • diacyl peroxide is preferably used from the comprehensive balance of safety, storage stability, and radical generating ability, and benzoyl peroxide is particularly preferably used among them.
  • a polymerization initiator is 0 with respect to 100 weight part of polymerizable monomers (A). 0.01 to 10 parts by weight is preferable, and 0.1 to 5 parts by weight is more preferable. When the blending amount of the polymerization initiator is less than 0.01 parts by weight, the polymerization does not proceed sufficiently and there is a risk of lowering the mechanical strength, more preferably 0.1 parts by weight or more.
  • the amount of the polymerization initiator exceeds 10 parts by weight, if the polymerization performance of the polymerization initiator itself is low, sufficient mechanical strength may not be obtained, and further, precipitation from the composition may occur. Therefore, the amount is more preferably 5 parts by weight or less.
  • a polymerization accelerator is used.
  • the polymerization accelerator used in the present invention include amines, sulfinic acid and salts thereof, aldehydes, and thiol compounds.
  • Amines used as polymerization accelerators are classified into aliphatic amines and aromatic amines.
  • the aliphatic amine include primary aliphatic amines such as n-butylamine, n-hexylamine and n-octylamine; secondary aliphatic amines such as diisopropylamine, dibutylamine and N-methylethanolamine; N-methyldiethanolamine, N-ethyldiethanolamine, Nn-butyldiethanolamine, N-lauryldiethanolamine, 2- (dimethylamino) ethyl methacrylate, N-methyldiethanolamine dimethacrylate, N-ethyldiethanolamine dimethacrylate, triethanolamine monomethacrylate , Tertiary fats such as triethanolamine dimethacrylate, triethanolamine trimethacrylate, triethanolamine, trimethylamine, triethylamine, tributylamine Amine, and the like.
  • aromatic amine examples include N, N-bis (2-hydroxyethyl) -3,5-dimethylaniline, N, N-di (2-hydroxyethyl) -p-toluidine, and N, N-bis. (2-hydroxyethyl) -3,4-dimethylaniline, N, N-bis (2-hydroxyethyl) -4-ethylaniline, N, N-bis (2-hydroxyethyl) -4-isopropylaniline, N, N-bis (2-hydroxyethyl) -4-t-butylaniline, N, N-bis (2-hydroxyethyl) -3,5-di-isopropylaniline, N, N-bis (2-hydroxyethyl)- 3,5-di-t-butylaniline, N, N-dimethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethyl-m-toluidine, N, N-diethyl
  • At least one selected from the group consisting of dimethylaminobenzoic acid n-butoxyethyl ester and 4-N, N-dimethylaminobenzophenone is preferably used.
  • Examples of sulfinic acid and salts thereof used as a polymerization accelerator include p-toluenesulfinic acid, sodium p-toluenesulfinate, potassium p-toluenesulfinate, lithium p-toluenesulfinate, calcium p-toluenesulfinate, Benzenesulfinic acid, sodium benzenesulfinate, potassium benzenesulfinate, lithium benzenesulfinate, calcium benzenesulfinate, 2,4,6-trimethylbenzenesulfinic acid, sodium 2,4,6-trimethylbenzenesulfinate, 2,4 , 6-Trimethylbenzenesulfinate potassium, 2,4,6-trimethylbenzenesulfinate lithium, 2,4,6-trimethylbenzenesulfinate calcium, 2,4,6-triethylbenzene Rufinic acid, sodium 2,4,6-triethylbenzenesulfinate, potassium 2,
  • aldehydes used as polymerization accelerators include terephthalaldehyde and benzaldehyde derivatives.
  • the benzaldehyde derivative include dimethylaminobenzaldehyde, p-methyloxybenzaldehyde, p-ethyloxybenzaldehyde, pn-octyloxybenzaldehyde and the like.
  • pn-octyloxybenzaldehyde is preferably used from the viewpoint of curability.
  • Examples of the thiol compound used as a polymerization accelerator include 3-mercaptopropyltrimethoxysilane, 2-mercaptobenzoxazole, decanethiol, and thiobenzoic acid.
  • a polymerization accelerator is used with respect to 100 weight part of polymerizable monomers (A), It is preferable to contain 0.001 to 10 parts by weight, and more preferably 0.001 to 5 parts by weight.
  • the blending amount of the polymerization accelerator is less than 0.001 part by weight, the polymerization does not proceed sufficiently and the mechanical strength may be reduced, and more preferably 0.05 part by weight or more.
  • the blending amount of the polymerization accelerator exceeds 10 parts by weight, if the polymerization performance of the polymerization initiator itself is low, sufficient mechanical strength may not be obtained, and more preferably 5 wt. Or less.
  • the dental curable composition of the present invention includes a pH adjuster, an ultraviolet absorber, an antioxidant, a polymerization inhibitor, a colorant, an antibacterial agent, an X-ray contrast agent, a thickener, and a fluorescent agent, depending on the purpose. Etc. can be further added.
  • a fluoride ion sustained release filler such as fluoroaluminosilicate glass, calcium fluoride, sodium fluoride, sodium monofluorophosphate may be added.
  • a surfactant having antibacterial activity such as cetylpyridinium chloride, 12- (meth) acryloyl oxide decylpyridinium bromide, or photocatalytic titanium oxide can be added.
  • inorganic particles (C) having a refractive index in a specific range different from (B) are blended, a cured product having excellent balance of light diffusibility and transparency can be obtained. Further, by using such two kinds of inorganic particles, higher mechanical strength can be realized without impairing the polishing lubricity and lubrication durability.
  • the dental material using the dental curable composition of this invention will be excellent in aesthetics.
  • the dental curable composition of the present invention has good paste operability, moderate fluidity and shapeability, and is suppressed from sticking to and sticking to dental instruments. Is excellent.
  • the dental curable composition of the present invention is prepared according to a conventional method, for example, a dental composite resin such as a dental composite filling material, a crown material, and a bonding material, an orthodontic adhesive, and an adhesive agent for cavity application
  • dental adhesives such as tooth fissure sealants, denture base materials, denture basement mucosa preparation materials, fisher sealants, coating materials for tooth surfaces and dental prostheses, surface lubricants, dental manicures, etc. It can be suitably used as a dental material.
  • a cured product obtained by polymerizing and curing the dental curable composition of the present invention can be molded and used as an artificial tooth, a denture, a CAD / CAM resin block, or the like.
  • the dental curable composition of the present invention can be advantageously used as a dental composite resin, and the composite resin has both high light diffusibility and transparency and is extremely excellent in harmony with natural teeth. It becomes a composite resin having high mechanical strength of the cured product, polishing lubricity, and high handleability of the paste.
  • a laser diffraction particle size distribution analyzer (SALD-2100: manufactured by Shimadzu Corporation) was used for measuring the particle size of the produced powder.
  • a 0.2% sodium hexametaphosphate aqueous solution was used as the dispersion medium.
  • the particle size of silica sol and inorganic ultrafine particles was determined by taking an electron micrograph of the particles.
  • a test piece (2 mm ⁇ 2 mm ⁇ 30 mm) made of a cured product of the produced dental curable composition was prepared. After immersing the test piece in water at 37 ° C. for 24 hours, using a universal testing machine (Instron), the crosshead speed is set to 1 mm / min, and the distance between fulcrums is 20 mm by a three-point bending test method. The bending strength was measured.
  • the manufactured dental curable composition was filled in a stainless steel mold (thickness 1 mm, diameter 15 mm). The upper and lower surfaces were pressed against each other with a slide glass, and were cured by irradiating light from each side for 2 minutes with a visible light irradiator for dental technology (Morita, Alpha Light II). After the cured product was taken out of the mold, it was polished with No. 800 water-resistant abrasive paper, and this polished surface was buffed at 3000 rpm for 20 seconds using a technical polishing box (KAWL, EWL80). Pouseny Haydn (manufactured by Tokyo Teeth Co., Ltd.) was used as the abrasive. The gloss of this surface was shown as a ratio when a gloss meter (Nippon Denshoku Co., Ltd., VG-2000) was used and the mirror was 100%. The measurement angle was 60 degrees. A glossiness of 75% or more is preferred.
  • the refractive index of the produced powder is an immersion method using an Abbe refractometer, using sodium D-line as a light source, and dissolving sulfur-diiodomethane, 1-bromonaphthalene, methyl salicylate, dimethylformamide, 1-pentanol, etc. Measured with In addition, in the measurement of the refractive index of the polymer of the polymerizable monomer (A) used in each Example and Comparative Example, ⁇ is used as a polymerization initiator with respect to 100 parts by weight of the polymerizable monomer (A).
  • the manufactured dental curable composition was filled in a mold (diameter 30 mm ⁇ thickness 0.25 mm) made of Teflon (registered trademark). The upper and lower surfaces were pressed with a slide glass and cured by light irradiation for 1 minute each from both surfaces. After removing the cured product from the mold, the total light transmittance and turbidity were measured using a haze meter (NDH-5000 manufactured by Nippon Denshoku Industries Co., Ltd.). Turbidity is calculated
  • required by following formula (2). It means that the higher the total light transmittance and the higher the turbidity value, the higher the light diffusibility of the cured product. A total light transmittance of 80% or more and a turbidity of 70% or more are preferable. Turbidity (haze) diffuse transmittance / total light transmittance ⁇ 100 (%) (2)
  • Production of polymerizable monomer A-4 A polymerizable monomer A-4 was prepared in the same manner as in Production Example 1 except that 30 parts by weight of Bis-GMA, 40 parts by weight of UDMA, and 30 parts by weight of triethylene glycol dimethacrylate were used. Amer A-4 was prepared. The refractive index after polymerization of the polymerizable monomer A-4 was 1.53.
  • Production of polymerizable monomer A-5 Polymerizable monomer A-5 was prepared in the same manner as in Production Example 1 except that 80 parts by weight of neopentyl glycol dimethacrylate and 20 parts by weight of UDMA were used. Prepared. The refractive index after polymerization of the polymerizable monomer A-5 was 1.50.
  • inorganic particles B-1 A silica sol manufactured by Nissan Chemical Co., Ltd., Snowtex ST-20 (average particle size 10 to 20 nm) 1000 g was spread on a hollow enamel vat and fixed in a hot air dryer set at 90 ° C. After drying until, it was fired in an electric furnace set at 400 ° C. for 1 hour to obtain 200 g of a fired solid. The obtained baked solid was pulverized for 90 minutes with a vibration ball mill, and then 100 parts by weight of the obtained powder was surface-treated with 20 parts by weight of ⁇ -methacryloxypropyltrimethoxysilane (KBE503, manufactured by Shin-Etsu Chemical Co., Ltd.). Inorganic particles B-1 having an average particle diameter of 5.6 ⁇ m, a refractive index of 1.45, a specific surface area of 154 m 2 / g, and a pore volume of 0.27 mL / g were obtained.
  • Production of inorganic particles B-2 The same as Production Example 6 except that Nissan Chemical's silica sol, Snowtex ST-OL (average particle size 40-50 nm) was used and pulverized for 180 minutes with a vibration ball mill.
  • inorganic particles B-2 having an average particle diameter of 3.1 ⁇ m, a refractive index of 1.45, a specific surface area of 98 m 2 / g, and a pore volume of 0.13 mL / g were obtained.
  • inorganic particles B-3 As in Production Example 6, except that a silica sol manufactured by Nissan Chemical Co., Ltd., Snowtex ST-XS (average particle size 4 to 6 nm) was used and pulverized for 60 minutes with a vibration ball mill. Thus, inorganic particles B-3 having an average particle diameter of 14.8 ⁇ m, a refractive index of 1.45, a specific surface area of 290 m 2 / g and a pore volume of 0.9 mL / g were obtained.
  • silica sol manufactured by Nissan Chemical Co., Ltd., Snowtex ST-XS average particle size 4 to 6 nm
  • the solid after drying was put into an electric furnace set at 550 ° C., heat-treated for 1 hour, and then pulverized for 90 minutes by a vibration ball mill to obtain a refractive index of 1.48, an average particle diameter of 6.4 ⁇ m, a ratio A powder having a surface area of 175 m 2 / g and a pore volume of 0.2 mL / g was obtained. 100 parts by weight of the obtained powder was surface-treated with 20 parts by weight of ⁇ -methacryloxypropyltrimethoxysilane to obtain inorganic particles B-4.
  • inorganic particles B-6 A silica sol manufactured by Nissan Chemical Co., Ltd. and Snowtex ST-20 (average particle size 10-20 nm), inlet temperature 200 ° C., internal temperature 80 ° C., air flow rate 30 mL / min, liquid Using a micro mist dryer “MDL-050” (manufactured by Fujisaki Electric Co., Ltd.) under the condition of a flow rate of 15 mL / min, preliminary drying was performed by spray drying. The obtained spherical powder was fired in an electric furnace set at 400 ° C. for 1 hour to obtain a fired powder.
  • MDL-050 micro mist dryer
  • inorganic particles B-7 A silica sol manufactured by Nissan Chemical Co., Ltd. and Snowtex ST-20 (average particle size 10 to 20 nm) was diluted to 5 wt% with distilled water, and then the inlet temperature was 200 ° C and the inside Except for preliminary drying under conditions of a temperature of 80 ° C., an air flow rate of 55 mL / min, and a liquid flow rate of 15 mL / min, in the same manner as in Production Example 11, an average particle size of 1.5 ⁇ m, a refractive index of 1.45, a specific surface area of 106 m 2 / g Inorganic particles B-7 having a pore volume of 0.16 mL / g were obtained.
  • Inorganic particles C-1 Surface treatment was performed with 8 parts by weight of ⁇ -methacryloxypropyltrimethoxysilane with respect to 100 parts by weight of barium glass (8235UF 0.4 manufactured by Schott Corp., average particle diameter 0.4 ⁇ m) to obtain inorganic particles C-1.
  • the refractive index was 1.55.
  • Inorganic particles C-2 Surface treatment was performed with 4 parts by weight of ⁇ -methacryloxypropyltrimethoxysilane with respect to 100 parts by weight of barium glass (8235UF 0.7 manufactured by Schott, average particle diameter: 0.7 ⁇ m) to obtain inorganic particles C-2.
  • the refractive index was 1.55.
  • Inorganic particles C-3 Surface treatment was performed with 13 parts by weight of ⁇ -methacryloxypropyltrimethoxysilane with respect to 100 parts by weight of barium glass (GM27888NF180 manufactured by Schott Corp., average particle size: 0.2 ⁇ m) to obtain inorganic particles C-3.
  • the refractive index was 1.53.
  • Inorganic particles C-4 Lanthanum glass ceramics (GM31684 manufactured by Schott) was pulverized with a vibration ball mill for 12 hours, and 100 parts by weight of the obtained powder was surface-treated with 4 parts by weight of ⁇ -methacryloxypropyltrimethoxysilane to obtain an average particle diameter. Inorganic particles C-4 of 0.8 ⁇ m were obtained. The refractive index was 1.58.
  • Inorganic particles C-5 A refractive index of 1.53 was obtained in the same manner as in Production Example 9, except that 225 g of silica sol (Snowtex ST-20) manufactured by Nissan Chemical Co., Ltd. was used for 55 g of zirconium acetate (Aldrich zirconium acetate, Zr content: 15 to 16%). Inorganic particles C-5 having an average particle diameter of 6.2 ⁇ m, a specific surface area of 165 m 2 / g and a pore volume of 0.22 mL / g were obtained.
  • Inorganic particles C-6 A refractive index of 1.55 was obtained in the same manner as in Production Example 9 except that 225 g of silica sol (Snowtex ST-20) manufactured by Nissan Chemical Industries was used for 85 g of zirconium acetate (Zirconium acetate manufactured by Aldrich, Zr content: 15 to 16%). Inorganic particles C-6 having an average particle diameter of 6.3 ⁇ m, a specific surface area of 160 m 2 / g, and a pore volume of 0.21 mL / g were obtained.
  • inorganic ultrafine particles D-1 40 parts by weight of ⁇ -methacryloxypropyltrimethoxysilane with respect to 100 parts by weight of substantially spherical ultrafine particles Aerosil 130 (produced by Nippon Aerosil Co., Ltd.) having an average particle diameter of 20 nm. Was subjected to surface treatment to obtain inorganic ultrafine particles D-1.
  • the fired powder is cooled to room temperature in an electric furnace, and then surface-treated with 5 parts by weight of ⁇ -methacryloxypropyltrimethoxysilane with respect to 100 parts by weight of the powder, and agglomerated as particles for comparison with inorganic particles (C). Particle I was obtained.
  • Example 1 The above-prepared polymerizable monomer, inorganic particles, and, if necessary, inorganic ultrafine particles were mixed and kneaded in the blending amounts shown in Tables 1 to 4 to be uniform and vacuum degassed. To 32 and Comparative Examples 1 to 7 were obtained. The characteristics of these dental curable compositions were evaluated by the method described above. The results are shown in Tables 1-6.
  • the refractive index of the inorganic particles C-5 used instead of the inorganic particles (B) in Comparative Example 1 is larger than the refractive index range of the inorganic particles (B) of the present invention. Since the refractive index was close to that of A) and inorganic particles (C), the light diffusibility was greatly reduced as compared with the examples. Inorganic particles B-5 used in Comparative Example 2 were non-aggregated and large inorganic particles having an average particle diameter of 1.7 ⁇ m, and the abrasiveness was greatly reduced as compared with Examples. In Comparative Example 3, since the inorganic particles (B) were not used, the light diffusibility was greatly reduced as compared with the Example.
  • the blending amount of the inorganic particles B-1 used in Comparative Example 4 is larger than the range of the present invention, and the transparency is greatly lowered as compared with the Examples.
  • Aggregated particles II used in Comparative Example 5 were produced from 0.2 ⁇ m silica particles as primary particles, and had lower light diffusibility and a greater consistency change compared to Examples.
  • the agglomerated particles I used in Comparative Example 6 were loosely bonded between the basic constituent particles, and the amount of change in consistency was large. Since the polymerizable monomer (A) used in Comparative Example 7 had a refractive index after polymerization smaller than the range of the present invention and a large refractive index difference from the inorganic particles (C), the transparency was lowered.
  • the dental curable composition of the present invention is suitably used in the field of dentistry as a substitute for a part or the whole of a natural tooth.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Dental Preparations (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 本発明は、硬化物の光拡散性と透明性とが共に優れつつ、機械的強度及び研磨滑沢性にも優れ、かつペーストの取り扱い性が良好な歯科用硬化性組成物を提供するものである。本発明は、重合後の屈折率が1.52~1.58である重合性単量体(A)、屈折率が1.43~1.50である無機粒子(B)、及び屈折率が1.52~1.58である無機粒子(C)を含む歯科用硬化性組成物であって、前記無機粒子(B)が、平均一次粒子径が2~50nmの無機微粒子の凝集体であり、前記無機粒子(B)の配合量が0.1~10重量%である歯科用硬化性組成物である。

Description

歯科用硬化性組成物及びそれを用いたコンポジットレジン
 本発明は、歯科医療の分野において、天然歯の一部分又は全体を代替し得る歯科材料、特に歯科用コンポジットレジンとして好適に使用できる歯科用硬化性組成物に関する。
 重合性単量体、フィラー及び重合開始剤から構成される歯科用硬化性組成物は、コンポジットレジンと呼ばれ、歯の欠損部や虫歯を修復するための材料として今日最も多用される歯科材料となっている。このような歯科用硬化性組成物においては、以下のような特性が要求される。すなわち、重合硬化後の硬化物においては、天然歯と置換可能な十分な機械的強度、硬度、口腔内での噛み合わせに対する耐磨耗性、表面の滑沢性等である。またさらには、重合硬化前のペースト状態では、適度な流動性や付形性がある、歯科用インスツルメントに付着しない、べとつかない等、臨床医や歯科技工士が扱いやすい(取り扱い性が高い)ことが望まれている。
 このような歯科用硬化性組成物の特性は、それに用いられるフィラーの材質、形状、粒子径、含有量さらには同時に用いられるフィラーの組み合わせに大きく影響を受ける。たとえば平均粒子径が1μmより大きい無機フィラーを用いた場合には、重合性単量体中への充填率を上げやすく、硬化物の十分な機械的強度と、高いペーストの操作性が得られるものの、仕上げ研磨しても十分な光沢が得られにくく、仮に十分な光沢が得られたとしても光沢が長続きしないという問題がある。一方、平均粒子径が1μm以下の粒子径を有する無機超微粒子フィラーを用いると、硬化物の研磨滑沢性や口腔内での滑沢性の耐久性は改善されるが、該無機超微粒子フィラーを重合性単量体へ混練した際に、ペーストの粘度上昇が著しく、フィラーの含有量を上げることが困難となり、硬化物の機械的強度が低くなったり、重合前のペースト状組成物がベトついたりして操作性が悪くなるという問題がある。このような事情により、硬化物の機械的強度、研磨滑沢性、及びペーストの取り扱い性をバランスよく高めることは困難となっている。
 一方で、歯科用硬化性組成物には上記の特性の他に、天然歯との調和、すなわち色調や透明性、光拡散性といった光学特性が天然歯に近い材料が求められている。特に、近年、修復する部位によって、象牙質に近似した光学特性、エナメル質に近似した光学特性、すなわち、部位ごとに異なる色調、透明性、光拡散性が求められている。色調、透明性については、顔料の配合量によって調整することが可能であるが、光拡散性については顔料の配合量だけで調整することが困難であった。
 特許文献1には、多孔質の非熱分解法シリカと平均直径が最大で約200nmである非凝集一次シリカ粒子とを、少なくとも約55重量%含む歯科ペーストが記載されている。具体的に、実施例には、平均粒子径約75nmの非凝集シリカ粒子と、平均粒子径約75nmのシリカゾルをスプレードライにて凝集させた非熱分解法シリカとをフィラーとして用いた歯科ペーストが開示されている。
 特許文献2には、重合性単量体と、硬化後の重合性単量体との屈折率差が0.06以下であり、平均粒子径が0.01~1μmの無機フィラーを凝集後、熱処理し、基本構成粒子の間に緩く結合を生じさせて得られるフィラーと、硬化後の重合性単量体との屈折率差が0.06より大きく、平均粒子径が1μm以上のフィラーとを含み、下記式(1)で定義される拡散度Dの値が0.002~0.3である歯科用複合材料が記載されている。
D=(I20/cos20°+I70/cos70°)/(2I0)   (1)
(式中、Iは試料を透過した光の光度を表し、I0、I20及びI70は試料板に垂直な方向(光の入射方向)に対する、零度、20度、70度方向の光度(光の強さ)をそれぞれ表す。)その実施例では、屈折率が1.55、平均粒子径が0.7μmのバリウムボロアルミノシリケートガラスを凝集後、焼成し、基本構成粒子の間に緩く結合を生じさせたフィラーと、平均粒子径0.2μmの球状シリカを凝集後、焼成したフィラーを、重合性単量体に添加した歯科用複合材料が開示されている。
 特許文献3には、重合性単量体と、硬化後の重合性単量体の屈折率との差の絶対値が0.01以上である平均粒子径が1~20μmの有機無機複合フィラーとを含み、上記式(1)で示される拡散度Dの値が0.01以上である歯科用硬化性組成物が記載されている。
特表2005-517688公報 特開平9-255516公報 特開2002-138008号公報
 特許文献1に記載の歯科ペーストにおいては、非凝集シリカ粒子と、シリカ粒子をスプレードライして凝集させた多孔質の非熱分解法シリカ粒子が用いられているが、屈折率の異なる材料の粒子を同時に用いることはされておらず、十分な光拡散性と透明性を両立できる材料ではなかった。
 特許文献2に記載の歯科用複合材料は、平均粒子径0.2μmのシリカ粒子を一次粒子に用いているため、高い透明性と拡散度を両立することが困難であった。また、バリウムボロアルミノシリケートガラスのフィラーでは、基本構成粒子間を緩く結合しているため、一定のペースト性状を有する歯科用複合材料を安定に製造することが困難であり、経時的なペースト性状の変化も見られ、必ずしも取り扱い性の良好な歯科用複合材料ではなく、改善の余地があった。
 特許文献3に記載の歯科用硬化性組成物は、硬化後の重合性単量体の屈折率との差が0.01以上である平均粒子径が1~20μmの有機無機複合フィラーを用いることで、組成物にペースト操作性を付与し、また硬化物に研磨滑沢性、光拡散性を付与している。しかしながら、有機無機複合フィラーを用いているため、硬化物中の無機フィラー含有量が低く、また有機無機複合フィラーとマトリックスとなる重合性単量体との結合が弱く、十分な機械的強度が得られず、改善の余地があった。
 本発明は、従来技術が抱える上記の課題を解決すべくなされたものであって、その目的とするところは、硬化物の光拡散性と透明性とが共に優れつつ、機械的強度及び研磨滑沢性にも優れ、かつペーストの取り扱い性が良好な歯科用硬化性組成物を提供することにある。本発明はまた、硬化物の光拡散性と透明性とが共に優れつつ機械的強度及び研磨滑沢性にも優れ、かつペーストの取り扱い性が良好なコンポジットレジンを提供することを目的とする。
 本発明は、重合後の屈折率が1.52~1.58である重合性単量体(A)、
 屈折率が1.43~1.50である無機粒子(B)、及び
 屈折率が1.52~1.58である無機粒子(C)
を含む歯科用硬化性組成物であって、前記無機粒子(B)が、平均一次粒子径が2~50nmの無機微粒子の凝集体であり、前記無機粒子(B)の配合量が0.1~10重量%である歯科用硬化性組成物である。
 本発明において、前記無機粒子(B)の平均粒子径は1.0~20μmであることが好ましい。前記無機粒子(B)の比表面積が50~400m2/gであり、かつ細孔容積が0.05~1.5mL/gであることが好ましい。
 本発明において、前記無機粒子(C)が、平均粒子径が0.1~1.0μmの非凝集の無機粒子(C-I)を含むことが好ましい。前記無機粒子(C)が、平均粒子径が0.1~1.0μmの非凝集の無機粒子(C-I)、及び平均粒子径が2~50nmのシリカ系微粒子と、少なくとも1種の重金属を含む酸化物とを含む凝集体であって、平均粒子径が1~20μmの無機粒子(C-II)を含み、無機粒子(C-I)と無機粒子(C-II)の重量比が、1:4~4:1であることが好ましい。
 本発明において、前記重合性単量体(A)の重合後の屈折率と前記無機粒子(C)の屈折率の差が、0.03以下であることが好ましい。前記重合性単量体(A)の重合後の屈折率と前記無機粒子(B)の屈折率の差が、0.05以上であることが好ましい。
 本発明の歯科用硬化性組成物は、前記重合性単量体(A)を8~40重量%、前記無機粒子(B)を0.1~10重量%、及び前記無機粒子(C)を59.9~91.9重量%含むことが好ましい。本発明の歯科用硬化性組成物の一実施態様では、さらに平均粒子径が5~50nmの無機超微粒子(D)を1~10重量%含む。
 本発明はまた、上記の歯科用硬化性組成物を用いたコンポジットレジンである。
 本発明の歯科用硬化性組成物によれば、良好な光拡散性を有し、かつ高い透明性を有する硬化物が得られる。また、硬化物が高い研磨滑沢性と滑沢耐久性を有するため、本発明の歯科用硬化性組成物は、審美性に優れたものとなる。また、本発明の歯科用硬化性組成物によれば、高い機械的強度を有する硬化物が得られる。また、本発明の歯科用硬化性組成物は、ペーストの操作性が良好で適度な流動性や付形性を有し、歯科用インスツルメントへの付着、べとつきが抑制され、経時的なペースト性状の変化が抑制されており、取り扱い性に優れている。本発明の歯科用硬化性組成物は、特にコンポジットレジンとして好適に用いることができ、当該コンポジットレジンは、硬化物の光拡散性と透明性とが共に優れつつ機械的強度及び研磨滑沢性にも優れ、かつペーストの取り扱い性が良好なコンポジットレジンとなる。
重合性単量体(A)
 本発明で用いられる重合性単量体(A)は、その重合後の屈折率が1.52~1.58であれば、公知の重合性単量体がなんら制限なく用いられる。重合性単量体(A)の重合後の屈折率は、無機粒子(B)との屈折率差を大きくしやすいことから1.525~1.58が好ましく、1.53~1.58がより好ましい。なお、重合性単量体(A)の重合後の屈折率とは、重合性単量体(A)の重合体の屈折率のことをいう。重合性単量体(A)において、重合後に所望の屈折率を得るためには、一般的に重合性単量体よりもその重合体の方が屈折率がわずかに高くなる傾向を考慮に入れつつ、1種類の重合性単量体を選択するか、屈折率の異なる数種類の重合性単量体を、適当な配合比で混合すればよい。
 上記重合性単量体(A)の中でも、ラジカル重合性単量体が好適に用いられる。重合性単量体(A)におけるラジカル重合性単量体の具体例としては、α-シアノアクリル酸、(メタ)アクリル酸、α-ハロゲン化アクリル酸、クロトン酸、桂皮酸、ソルビン酸、マレイン酸、イタコン酸などのエステル類、(メタ)アクリルアミド、(メタ)アクリルアミド誘導体、ビニルエステル類、ビニルエーテル類、モノ-N-ビニル誘導体、スチレン誘導体などが挙げられる。これらの中では、(メタ)アクリル酸エステルが好ましい。なお、本発明において(メタ)アクリルの表記は、メタクリルとアクリルの両者を包含する意味で用いられる。
 (メタ)アクリル酸エステル系の重合性単量体の例を以下に示す。
(I)一官能性(メタ)アクリレート
 メチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ラウリル(メタ)アクリレート、2-(N,N-ジメチルアミノ)エチル(メタ)アクリレート、2,3-ジブロモプロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、プロピレングリコールモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、エリトリトールモノ(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-(ジヒドロキシエチル)(メタ)アクリルアミド、(メタ)アクリロイルオキシドデシルピリジニウムブロマイド、(メタ)アクリロイルオキシドデシルピリジニウムクロライド、(メタ)アクリロイルオキシヘキサデシルピリジニウムクロライド、(メタ)アクリロイルオキシデシルアンモニウムクロライド等が挙げられる。
(II)二官能性(メタ)アクリレート
 エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ビスフェノールAジグリシジル(メタ)アクリレート(2,2-ビス[4-〔3-(メタ)アクリロイルオキシ-2-ヒドロキシプロポキシ〕フェニル]プロパン、通称BisGMA)、2,2-ビス〔4-(メタ)アクリロイルオキシエトキシフェニル〕プロパン、2,2-ビス〔4-(メタ)アクリロイルオキシポリエトキシフェニル〕プロパン、1,2-ビス〔3-(メタ)アクリロイルオキシ-2-ヒドロキシプロポキシ〕エタン、ペンタエリトリトールジ(メタ)アクリレート、[2,2,4-トリメチルヘキサメチレンビス(2-カルバモイルオキシエチル)]ジメタクリレート(通称UDMA)等が挙げられる。
(III)三官能性以上の(メタ)アクリレート
 トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、N,N’-(2,2,4-トリメチルヘキサメチレン)ビス〔2-(アミノカルボキシ)プロパン-1,3-ジオール〕テトラメタクリレート、1,7-ジアクリロイルオキシ-2,2,6,6-テトラアクリロイルオキシメチル-4-オキシヘプタン等が挙げられる。
 なお、歯質、金属、セラミックスなどに対する接着性を向上させる場合、本発明の硬化性組成物には、これらの被着体に対する接着性を付与する機能性モノマーを重合性単量体として含有させることが好ましい場合がある。
 機能性モノマーとして、例えば、2-(メタ)アクリロイルオキシエチルジハイドロジェンホスフェート、10-(メタ)アクリロイルオキシデシルジハイドロジェンホスフェート、2-(メタ)アクリロイルオキシエチルフェニルハイドロジェンホスフェートなどのリン酸基を有するモノマー、及び11-(メタ)アクリロイルオキシ-1,1-ウンデカンジカルボン酸、4-(メタ)アクリロイルオキシエトキシカルボニルフタル酸などのカルボン酸基を有するモノマーは、歯質や卑金属に対して優れた接着性を呈するので好ましい。
 また、機能性モノマーとして、例えば、10-メルカプトデシル(メタ)アクリレート、6-(4-ビニルベンジル-n-プロピル)アミノ-1,3,5-トリアジン-2,4-ジチオン、特開平10-1473号公報に記載のチオウラシル誘導体や特開平11-92461号公報に記載の硫黄元素を有する化合物は、貴金属に対して優れた接着性を呈するので、好ましい。
 さらに、機能性モノマーとして、例えば、γ-メタクリロキシプロピルトリメトキシシランなどのシランカップリング剤は、セラミックス、陶材、歯科用コンポジットレジンへの接着に効果的である。
 重合性単量体(A)の配合量は、歯科用硬化性組成物の全重量において8~40重量%が好ましく、15~35重量%がより好ましい。配合量が8%未満の場合には、ペーストが固くなりすぎたり、まとまりがなくなったりすることがあり、十分な操作性の歯科用硬化性組成物が得られないおそれがある。配合量が40重量%より多い場合には、無機フィラー量が不十分になり、十分な機械的強度を与える歯科用硬化性組成物が得られないおそれがある。
無機粒子(B)
 本発明で用いられる無機粒子(B)は、屈折率が1.43~1.50であり、かつ平均一次粒子径が2~50nmの無機微粒子の凝集体であればなんら制限なく用いられる。無機粒子(B)の屈折率が1.43未満の場合には、重合性単量体(A)の重合体及び無機粒子(C)との屈折率差が大きくなりすぎるため、十分な透明性が得られず、屈折率が1.50より大きい場合には、重合性単量体(A)の重合体及び無機粒子(C)との屈折率差が小さくなりすぎるため十分な光拡散性が得られない。無機粒子(B)の屈折率は、重合性単量体(A)の重合体及び無機粒子(C)との屈折率差を大きくしやすいことから1.43~1.48が好ましく、1.43~1.46がより好ましい。また、重合性単量体(A)の重合後の屈折率と前記無機粒子(B)の屈折率の差{(A)-(B)}が0.05以上であることが好ましい。このとき、光拡散性が特に優れたものとなる。無機粒子(B)の平均一次粒子径は、光の屈折、散乱のサイトとなる重合性単量体(A)との界面を多くしやすいこと、及び適度な強度の凝集体を得やすいことから、5~35nmが好ましく、7~20nmがより好ましい。なお、無機粒子(B)の平均一次粒子径は、無機粒子(B)の電子顕微鏡写真を撮影し、無作為に選択した100個の一次粒子の粒子径の平均値として測定できる。なお、一次粒子が非球状である場合には、粒子径は、一次粒子の最長と最短の長さの算術平均をもって粒子径とする。
 無機粒子(B)の平均粒子径は、無機粒子(B)が前述した屈折率と平均一次粒子径を有する凝集体であればなんら制限されないが、組成物の硬化物の光拡散性と透明性の得やすさから、1.0~20μmが好ましく、2.0~15μmがより好ましく、3~10μmが特に好ましい。平均粒子径が1.0μmよりも小さい場合には、透過光の調整機能が弱くなり、そのため配合量を増やさなければならず、硬化物の光拡散性と透明性が低下するおそれがある。一方、平均粒子径が20μmより大きい場合には、光の屈折や散乱が大きくなり、硬化物の透明性が低下するおそれがあり、また、平均一次粒子径が2~50nmの凝集体であっても、研磨性(特に易研磨性)が低下するおそれがある。なお、無機粒子(B)の平均粒子径は、レーザー回折散乱法により、求めることができる。具体的に例えば、レーザー回折式粒度分布測定装置(SALD-2100:島津製作所製)により、0.2%ヘキサメタリン酸ナトリウム水溶液を分散媒に用いて測定することができる。
 無機粒子(B)の比表面積と細孔容積は、無機粒子(B)が前述した屈折率と平均一次粒子径を有する凝集体であればなんら制限されないが、硬化物の光拡散性及び透明性の得やすさから、比表面積が50~400m2/gであり、細孔容積が0.05~1.5mL/gであることが好ましく、比表面積100~300m2/gであり、細孔容積が0.1~1.0mL/gであることがより好ましく、比表面積100~250m2/gであり、細孔容積が0.15~0.5mL/gであることが特に好ましい。
 無機粒子(B)の材質としては、無機粒子(B)が前述した屈折率と平均一次粒子径の関係を満たしたものであれば制限なく用いることができる。例えば、火炎熱分解法のシリカ(例えば、日本アエロジル社のアエロジルOX-50、アエロジルAr130、アエロジルAr200等)、湿式法のシリカゾル(例えば、日産化学社製のスノーテックスシリーズや日揮触媒化成社製のカタロイドシリーズ)、ゾルゲル法によって作製されるシリカ粒子等も使用できる。また、前述した屈折率を満たす範囲で他の金属イオンを複合化したものを用いることも可能である。他の金属としては、特に限定されることはないが、屈折率調整のし易さ、安全性の点から、Al、Ti、Zr、Sr、Ba、La、Na、K、Ca、Mg等が挙げられる。これらは、シリカ粒子が既に分散したシリカゾルに、溶解性の金属塩として混合してもよく、また、シリカ粒子を合成する際に混合し、複合酸化物粒子としても良い。
 無機粒子(B)の製造方法としては、下記のような一般的手法を制限なく用いることができるが、特にこれらに限定されるものではない。凝集操作として最も簡単なものは、基本粒子を分散溶媒中に分散した後、加熱あるいは減圧等により、溶媒を除去することである。また、他の方法としては、基本粒子の分散液を微細な霧状にして乾燥室に噴射して乾燥された凝集粒子を得るいわゆる噴霧乾燥によって凝集させる方法も利用可能である。前者の凝集操作では、凝集塊は大きなものになるので、解砕、粉砕等の操作が必要になるが、後者の噴霧乾燥法ではこのステップを省略できるので効率的である。この噴霧乾燥法で製造されたものとしては、日揮触媒化成製シリカマイクロビード等が挙げられる。
 凝集操作を行った無機粒子(B)は、凝集力の調整や水分、有機物の除去を目的に必要に応じて熱処理を行ってもよい。基本粒子の組成や用いた原材料によってその最適処理条件(温度、時間)が異なるため、一概に規定することはできないが、多くの組成については200℃以上800℃以下である。焼成温度が200℃よりも低いと、水分や有機物が残存しやすく十分な透明性を有する硬化物が得られにくい。一方、焼成温度が800℃を超えると構成成分の結晶化や融着、焼結が始まる場合が多く、この無機粒子(B)を使用した組成物の硬化物の研磨性の低下や透明性の低下を招き、好ましくない。より詳細な焼成条件は、この温度範囲においていくつかの条件で焼成したフィラーを作製し、その粉末X線回折分析により結晶構造が確認できないこと、さらに、この無機粒子(B)を含有する組成物を作製し、その硬化物の研磨面の滑沢性を測定すること、透明性を測定することで決定される。すなわち、無機粒子(B)の加熱処理が不十分であると十分な透明性が得られにくく、熱処理が過剰であると硬化物の外観が不自然に不透明になるのみならず、硬化物研磨面の滑沢性が著しく低下する。この現象は、無機粒子(B)をあまりに高温で処理すると構成成分の一部が結晶化を始め、これに伴って無機粒子(B)の屈折率が上昇し、それを用いた組成物が天然歯と異なる不自然な白さを示すようになること、また、無機粒子(B)の硬度が上昇することにより、硬化物が削りにくくなって研磨性の低下を引き起こすことによるものと考えられる。
 無機粒子(B)は、重合性単量体(A)と組み合わせて歯科用硬化性組成物に用いることから、重合性単量体(A)との親和性を改善したり、重合性単量体(A)との化学結合性を高めて組成物の硬化物の機械的強度を向上させるために、無機粒子(B)に予め表面処理剤で表面処理を施しておくことが望ましい。なお、無機粒子(B)に表面処理を施した場合には、無機粒子(B)の屈折率は、表面処理後のものである。
 かかる表面処理剤としては、例えば、有機ケイ素化合物、有機チタン化合物、有機ジルコニウム化合物、及び有機アルミニウム化合物からなる群より選ばれる少なくとも1種の有機金属化合物等が挙げられる。有機金属化合物を2種以上使用する場合は、2種以上の有機金属化合物の混合物の表面処理層としてもよいし、複数の有機金属化合物層が積層した複層構造の表面処理層としてもよい。
 有機ケイ素化合物としては、R1 nSiX4-nで表される化合物が挙げられる(式中、R1は、炭素数1~12の置換又は無置換の炭化水素基であり、Xは炭素数1~4のアルコキシ基、ヒドロキシル基、ハロゲン原子又は水素原子を示し、nは、0~3の整数である。R1及びXが複数ある場合にはそれぞれ、同一でも異なっていてもよい。)。
 具体的には、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、ビニルトリクロロシラン、トリメチルブロモシラン、ジエチルシラン、ビニルトリアセトキシシラン、ω-(メタ)アクリロキシアルキルトリメトキシシラン((メタ)アクリロキシ基とケイ素原子との間の炭素数:3~12、例、γ-メタクリロキシプロピルトリメトキシシラン等)、ω-(メタ)アクリロキシアルキルトリエトキシシラン((メタ)アクリロキシ基とケイ素原子との間の炭素数:3~12、例、γ-メタクリロキシプロピルトリエトキシシラン等)等が挙げられる。
 この中でも、重合性単量体(A)と共重合し得る官能基を有するカップリング剤、例えばω-(メタ)アクリロキシアルキルトリメトキシシラン((メタ)アクリロキシ基とケイ素原子との間の炭素数:3~12)、ω-(メタ)アクリロキシアルキルトリエトキシシラン((メタ)アクリロキシ基とケイ素原子との間の炭素数:3~12)、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等が特に好ましく用いられる。
 有機チタン化合物としては、例えば、テトラメチルチタネート、テトライソプロピルチタネート、テトラn-ブチルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート等が挙げられる。
 有機ジルコニウム化合物としては、ジルコニウムイソプロポキシド、ジルコニウムn-ブトキシド、ジルコニウムアセチルアセトネート、ジルコニルアセテート等が挙げられる。
 有機アルミニウム化合物としては、例えば、アルミニウムアセチルアセトネート、アルミニウム有機酸塩キレート化合物等が挙げられる。
 無機粒子(B)の配合量は、歯科用硬化性組成物の全重量において0.1~10重量%であれば、適度な光拡散性と透明性を有する硬化物が得られる。配合量が0.1重量%未満の場合には、硬化物中での屈折、散乱のサイトの割合が少なくなりすぎるため、透過光の拡散機能が弱くなり、硬化物の透明性は高くなるものの、十分な光拡散性が得られない。配合量が10重量%より多い場合には、光拡散性は得られるものの、硬化物中での屈折、散乱のサイトの割合が多くなりすぎるため、十分な透明性が得られない。硬化物へバランスよく、光拡散性と高い透明性を付与するためには、配合量は0.5~8.0重量%が好ましく、1.0~7.0重量%がより好ましい。
無機粒子(C)
 本発明に用いられる無機粒子(C)は、屈折率が1.52~1.58であればなんら制限なく用いられる。屈折率が1.52より小さい場合は、重合性単量体(A)の重合体との屈折率差が大きくなりやすく、また無機粒子(B)との屈折率差が小さくなりやすいため、十分な光拡散性と透明性が得られない。屈折率が1.58より大きい場合は、重合性単量体(A)の重合体及び無機粒子(B)との屈折率差が大きくなりやすく、硬化物は白く不透明なものになり、十分な透明性が得られない。無機粒子(C)の屈折率は、重合性単量体(A)の重合体との屈折率差を小さくしやすいこと、及び無機粒子(B)との屈折率差を大きくしやすいことから1.525~1.58が好ましく、1.53~1.58がより好ましい。また、重合性単量体(A)の重合後の屈折率と前記無機粒子(C)の屈折率の差が、絶対値で0.03以下であることが好ましい。このとき、透明性が特に優れたものとなる。
 無機粒子(C)は、組成物の硬化物の機械的強度、研磨性、ペーストの操作性が得られやすいことから、平均粒子径が0.1~1.0μmである非凝集の無機粒子(C-I)を含むことが好ましい。平均粒子径が0.1μm未満の場合には、硬化物の研磨性は十分なものになるものの、ペーストにベタツキが生じやすく、またフィラー含有量を高くすることが難しく、機械的強度が低下するおそれがある。平均粒子径が1.0μmより大きい場合には、十分な機械的強度が得られるものの、研磨性が低下するおそれがある。硬化物の機械的強度、研磨性、ペーストの操作性の観点から、無機粒子(C-I)の平均粒子径は、0.2~0.7μmがより好ましく、0.2~0.4μmがさらに好ましい。なお、無機粒子(C-I)の平均粒子径は、レーザー回折散乱法により、求めることができる。具体的に例えば、レーザー回折式粒度分布測定装置(SALD-2100:島津製作所製)により、0.2%ヘキサメタリン酸ナトリウム水溶液を分散媒に用いて測定することができる。
 無機粒子(C-I)は、屈折率が1.52~1.58であり、平均粒子径が0.1~1.0μmである非凝集の無機粒子であればなんら制限なく用いられる。当該無機粒子としては、各種ガラス類〔シリカを主成分とし、必要に応じ、重金属、ホウ素、アルミニウム等の酸化物を含有する。例えば、Eガラス、ストロンチウム・ボロアルミノシリケートガラス(Ray-SorbT3000、キンブル社製;GM27884、8235、ショット社製)、バリウムシリケートガラス(Ray-SorbT2000、キンブル社製)、ランタンガラスセラミックス(GM31684、ショット社製)等の歯科用ガラス粉末〕、各種セラミック類、シリカ-チタニア及びシリカ-ジルコニア等の複合酸化物、カオリン、粘土鉱物(モンモリロナイト等)、マイカ、フッ化イッテルビウム、フッ化イットリウム等が挙げられる。これらは、それぞれ単独で又は2種以上を混合して用いることができる。なお、上記の無機粒子の中でも、シリカを主成分として含む無機粒子を、本発明の歯科用硬化性組成物の無機粒子(C-I)として用いることが好ましい。
 無機粒子(C)は、十分な研磨性、機械的物性を有しながら、さらに良好なペーストの取り扱い性を付与するために、上述の無機粒子(C-I)に加えて、平均粒子径が2~50nmのシリカ系微粒子と、少なくとも1種の重金属を含む酸化物とを含む凝集体であって、平均粒子径が1~20μmの無機粒子(C-II)を含むことが好ましい。無機粒子(C-II)のシリカ系微粒子の平均粒子径は、適度な強度の凝集体を得やすいことから、5~35nmが好ましく、7~20nmがより好ましい。なお、無機粒子(C-II)のシリカ系微粒子の平均粒子径は、シリカ系微粒子の電子顕微鏡写真を撮影し、無作為に選択した100個のシリカ系微粒子の粒子径の平均値として測定できる。なお、シリカ系微粒子が非球状である場合には、粒子径は、シリカ系微粒子の最長と最短の長さの算術平均をもって粒子径とする。
 無機粒子(C-II)の平均粒子径としては、1.0~20μmが好ましく、2.0~15μmがより好ましく、3~10μmが特に好ましい。平均粒子径が、1.0μm未満の場合には、比表面積が大きく、粒子径が小さいフィラーの配合量が増えることにより、操作性の向上効果が得られないおそれがある。20μmより大きい場合には、研磨性(特に易研磨性)低下するおそれがある。なお、無機粒子(C-II)の平均粒子径は、レーザー回折散乱法により、求めることができる。具体的に例えば、レーザー回折式粒度分布測定装置(SALD-2100:島津製作所製)により、0.2%ヘキサメタリン酸ナトリウム水溶液を分散媒に用いて測定することができる。
 無機粒子(C-I)と無機粒子(C-II)の重量比は、ペーストの延び、べたつき等がより良好なペースト性状の得られ易さ、充填操作のよりし易いペーストの得られ易さの観点から、1:4~4:1が好ましく、1:3~3:1がより好ましい。
 無機粒子(C-II)としては、平均粒子径2~50nmのシリカ系微粒子と少なくとも1種の重金属を含む酸化物とを含む凝集体であって、屈折率が1.52~1.58、平均粒子径が1~20μmであればなんら制限なく用いることができる。当該粒子としては、市販されているシリカゾル(例えば、日産化学社製のスノーテックスシリーズや日揮触媒化成社製のカタロイドシリーズ)、ゾルゲル法によって作製されるシリカ粒子等と他の重金属イオンを複合化したものを用いて製造される凝集体を用いることが可能である。重金属としては、特に限定されることはないが、屈折率調整のし易さ、安全性の点から、Al、Ti、Zr、Sr、Ba、La、Y、Yb等が挙げられる。これらは、シリカ系粒子が既に分散したシリカゾルに、溶解性の金属塩として混合してもよく、また、シリカ系粒子を合成する際に混合し、複合酸化物粒子としてもよい。また、複数のシリカ系微粒子を少なくともSiとZrとOとを含む複合酸化物で被覆して連結してなる鎖状又はネットワーク状無機粒子群の分散液より製造した凝集体を用いても良い。無機粒子(C-II)の凝集操作としては、前述の無機粒子(B)と同様の凝集操作をなんら制限なく用いることができる。
 前記無機粒子(C)は、重合性単量体(A)と組み合わせて歯科用硬化性組成物に用いることから、重合性単量体(A)との親和性を改善したり、重合性単量体(A)との化学結合性を高めて硬化物の機械的強度を向上させるために、無機粒子(C)に予め表面処理剤で表面処理を施しておくことが望ましい。表面処理方法としては、前述の無機粒子(B)と同様の方法をなんら制限なく用いることができる。なお、無機粒子(C)に表面処理を施した場合には、無機粒子(C)の屈折率は、表面処理後のものである。
 無機粒子(C)の配合量は、歯科用硬化性組成物の全重量において59.9~91.9重量%が好ましく、64.9~84.9重量%がより好ましい。配合量が59.9%未満の場合には、無機フィラー量が不十分になり、十分な機械的強度を与える歯科用硬化性組成物が得られないおそれがある。配合量が91.9重量%より多い場合には、ペーストが固くなりすぎたり、まとまりがなくなったりすることがあり、十分な操作性の歯科用硬化性組成物が得られないおそれがある。
無機超微粒子(D)
 本発明の歯科用硬化性組成物は、ペースト操作性などの向上を目的として、無機粒子(B)及び無機粒子(C)以外に、無機超微粒子(D)を含んでいてもよい。無機超微粒子(D)としては、歯科用硬化性組成物に使用される公知の無機超微粒子がなんら制限なく使用される。好ましくは、シリカ、アルミナ、チタニア、ジルコニア等の無機酸化物粒子、又はこれらからなる複合酸化物粒子、燐酸カルシウム、ハイドロキシアパタイト、フッ化イットリウム、フッ化イッテルビウム等が挙げられる。好ましくは、火炎熱分解法で作製されるシリカ、アルミナ、チタニア等の粒子であり、例えば、日本アエロジル(株)製、商品名:アエロジル、アエロキサイドAluC、アエロキサイドTiO2P25、アエロキサイドTiO2P25S、VP Zirconium Oxide 3-YSZ、VP Zirconium Oxide 3-YSZ PHが挙げられる。
 無機超微粒子(D)の平均粒子径としては、5~50nmが好ましく、10~40nmがより好ましい。なお、無機超微粒子(D)の平均粒子径は、超微粒子の電子顕微鏡写真を撮影し、無作為に選択した100個の超微粒子の粒子径の平均値として測定できる。なお、超微粒子が非球状である場合には、粒子径は、超微粒子の最長と最短の長さの算術平均をもって粒子径とする。
 前記無機超微粒子(D)は、無機粒子(C)と同様に、重合性単量体(A)と組み合わせて歯科用硬化性組成物に用いることから、重合性単量体(A)との親和性を改善したり、重合性単量体(A)との化学結合性を高めて硬化物の機械的強度を向上させるために、無機超微粒子(D)に予め表面処理剤で表面処理を施しておくことが望ましい。表面処理方法としては、前述の無機粒子(B)と同様の方法をなんら制限なく用いることができる。
 無機超微粒子(D)の配合量としては、歯科用硬化性組成物の全重量において1~10重量%が好ましく、1~5重量%がより好ましい。
 本発明の歯科用硬化性組成物は、重合硬化を容易にするために、重合開始剤をさらに含むことが好ましい。重合開始剤としては、一般工業界で使用されている重合開始剤から選択して使用でき、中でも歯科用途に用いられている重合開始剤が好ましく用いられる。特に、光重合及び化学重合の重合開始剤が、単独で又は2種以上適宜組み合わせて使用される。
 光重合開始剤としては、(ビス)アシルホスフィンオキサイド類、水溶性アシルホスフィンオキサイド類、チオキサントン類又はチオキサントン類の第4級アンモニウム塩、ケタール類、α-ジケトン類、ベンゾインアルキルエーテル化合物類、α-アミノケトン系化合物等が挙げられる。
 上記光重合開始剤として用いられる(ビス)アシルホスフィンオキサイド類のうち、アシルフォスフィンオキサイド類としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルエトキシフェニルホスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルホスフィンオキサイド、ベンゾイルジ-(2,6-ジメチルフェニル)ホスホネート等が挙げられる。ビスアシルフォスフィンオキサイド類としては、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、(2,5,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等が挙げられる。
 上記光重合開始剤として用いられる水溶性アシルフォスフィンオキサイド類は、アシルフォスフィンオキサイド分子内にアルカリ金属イオン、アルカリ土類金属イオン、ピリジニウムイオン又はアンモニウムイオンを有することが好ましい。例えば、水溶性アシルフォスフィンオキサイド類は、欧州特許第0009348号明細書又は特開昭57-197289号公報に開示されている方法により合成することができる。
 上記水溶性アシルフォスフィンオキサイド類の具体例としては、モノメチルアセチルフォスフォネート・ナトリウム、モノメチル(1-オキソプロピル)フォスフォネート・ナトリウム、モノメチルベンゾイルフォスフォネート・ナトリウム、モノメチル(1-オキソブチル)フォスフォネート・ナトリウム、モノメチル(2-メチル-1-オキソプロピル)フォスフォネート・ナトリウム、アセチルフォスフォネート・ナトリウム、モノメチルアセチルフォスフォネート・ナトリウム、アセチルメチルフォスフォネート・ナトリウム、メチル4-(ヒドロキシメトキシフォスフィニル)-4-オキソブタノエート・ナトリウム塩、メチル-4-オキソフォスフォノブタノエート・モノナトリウ厶塩、アセチルフェニールフォスフィネート・ナトリウム塩、(1-オキソプロピル)ペンチルフォスフィネート・ナトリウム、メチル-4-(ヒドロキシペンチルフォスフィニル)-4-オキソブタノエート・ナトリウム塩、アセチルペンチルフォスフィネート・ナトリウム、アセチルエチルフォスフィネート・ナトリウム、メチル(1,1-ジメチル)メチルフォスフィネート・ナトリウム、(1,1-ジエトキシエチル)メチルフォスフィネート・ナトリウム、(1,1-ジエトキシエチル)メチルフォスフィネート・ナトリウム、メチル-4-(ヒドロキシメチルフォスフィニル)-4-オキソブタノエート・リチウム塩、4-(ヒドロキシメチルフォスフィニル)-4-オキソブタノイックアシッド・ジリチウム塩、メチル(2-メチル-1,3-ジオキソラン-2-イル)フォスフィネート・ナトリウム塩、メチル(2-メチル-1,3-チアゾリディン-2-イル)フォスフォナイト・ナトリウム塩、(2-メチルパーヒドロ-1,3-ディアジン-2-イル)フォスフォナイト・ナトリウム塩、アセチルフォスフィネート・ナトリウム塩、(1,1-ジエトキシエチル)フォスフォナイト・ナトリウム塩、(1,1-ジエトキシエチル)メチルフォスフォナイト・ナトリウム塩、メチル(2-メチルオキサチオラン-2-イル)フォスフィネート・ナトリウム塩、メチル(2,4,5-トリメチル-1,3-ジオキソラン-2-イル)フォスフィネート・ナトリウム塩、メチル(1,1-プロポキシエチル)フォスフィネート・ナトリウム塩、(1-メトキシビニル)メチルフォスフィネート・ナトリウム塩、(1-エチルチオビニル)メチルフォスフィネート・ナトリウム塩、メチル(2-メチルパーヒドロ-1,3-ジアジン-2-イル)フォスフィネート・ナトリウム塩、メチル(2-メチルパーヒドロ-1,3-チアジン-2-イル)フォスフィネート・ナトリウム塩、メチル(2-メチル-1,3-ジアゾリジン-2-イル)フォスフィネート・ナトリウム塩、メチル(2-メチル-1,3-チアゾリジン-2-イル)フォスフィネート・ナトリウム塩、(2,2-ジシアノ-1-メチルエチニル)フォスフィネート・ナトリウム塩、アセチルメチルフォスフィネートオキシム・ナトリウ厶塩、アセチルメチルフォスフィネート-O-ベンジルオキシム・ナトリウム塩、1-[(N-エトキシイミノ)エチル]メチルフォスフィネート・ナトリウム塩、メチル(1-フェニルイミノエチル)フォスフィネート・ナトリウム塩、メチル(1-フェニルヒドラゾンエチル)フォスフィネート・ナトリウム塩、[1-(2,4-ジニトロフェニルヒドラゾノ)エチル]メチルフォスフィネート・ナトリウム塩、アセチルメチルフォスフィネートセミカルバゾン・ナトリウム塩、(1-シアノ-1-ヒドロキシエチル)メチルフォスフィネート・ナトリウム塩、(ジメトキシメチル)メチルフォスフィネート・ナトリウム塩、フォーミルメチルフォスフィネート・ナトリウム塩、(1,1-ジメトキシプロピル)メチルフォスフィネート・ナトリウム塩、メチル(1-オキソプロピル)フォスフィネート・ナトリウム塩、(1,1-ジメトキシプロピル)メチルフォスフィネート・ドデシルグアニジン塩、(1,1-ジメトキシプロピル)メチルフォスフィネート・イソプロピルアミン塩、アセチルメチルフォスフィネートチオセミカルバゾン・ナトリウム塩、1,3,5-トリブチル-4-メチルアミノ-1,2,4-トリアゾリウム(1,1-ジメトキシエチル)-メチルフォスフィネート、1-ブチル-4-ブチルアミノメチルアミノ-3,5-ジプロピル-1,2,4-トリアゾリウム(1,1-ジメトキシエチル)-メチルフォスフィネート、2,4,6-トリメチルベンゾイルフェニルフォスフィンオキサイドナトリウム塩、2,4,6-トリメチルベンゾイルフェニルフォスフィンオキサイドカリウム塩、2,4,6-トリメチルベンゾイルフェニルフォスフィンオキサイドのアンモニウム塩等が挙げられる。さらに、特開2000-159621号公報に記載されている化合物も挙げられる。
 これら(ビス)アシルフォスフィンオキサイド類及び水溶性アシルフォスフィンオキサイド類の中でも、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルメトキシフェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド及び2,4,6-トリメチルベンゾイルフェニルフォスフィンオキサイドナトリウム塩が特に好ましい。
 上記光重合開始剤として用いられるチオキサントン類又はチオキサントン類の第4級アンモニウム塩としては、例えば、チオキサントン、2-クロルチオキサンセン-9-オン、2-ヒドロキシ-3-(9-オキシ-9H-チオキサンテン-4-イルオキシ)-N,N,N-トリメチル-プロパンアミニウムクロライド、2-ヒドロキシ-3-(1-メチル-9-オキシ-9H-チオキサンテン-4-イルオキシ)-N,N,N-トリメチル-プロパンアミニウムクロライド、2-ヒドロキシ-3-(9-オキソ-9H-チオキサンテン-2-イルオキシ)-N,N,N-トリメチル-プロパンアミニウムクロライド、2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9H-チオキサンテン-2-イルオキシ)-N,N,N-トリメチル-1-プロパンアミニウムクロライド、2-ヒドロキシ-3-(3,4-ジメチル-9H-チオキサンテン-2-イルオキシ)-N,N,N-トリメチル-1-プロパンアミニウムクロライド、2-ヒドロキシ-3-(1,3,4-トリメチル-9-オキソ-9H-チオキサンテン-2-イルオキシ)-N,N,N-トリメチル-1-プロパンアミニウムクロライド等が使用できる。
 これらチオキサントン類又はチオキサントン類の第4級アンモニウム塩の中でも、特に好適なチオキサントン類は、2-クロルチオキサンセン-9-オンであり、特に好適なチオキサントン類の第4級アンモニウ厶塩は、2-ヒドロキシ-3-(3,4-ジメチル-9H-チオキサンテン-2-イルオキシ)-N,N,N-トリメチル-1-プロパンアミニウムクロライドである。
 上記光重合開始剤として用いられるケタール類の例としては、ベンジルジメチルケタール、ベンジルジエチルケタール等が挙げられる。
 上記光重合開始剤として用いられるα-ジケトン類としては、例えば、ジアセチル、ジベンジル、カンファーキノン、2,3-ペンタジオン、2,3-オクタジオン、9,10-フェナンスレンキノン、4,4’-オキシベンジル、アセナフテンキノン等が挙げられる。この中でも、可視光域に極大吸収波長を有している観点から、カンファーキノンが特に好ましい。
 上記光重合開始剤として用いられるベンゾインアルキルエーテル類の例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等が挙げられる。
 上記光重合開始剤として用いられるα-アミノケトン類の例としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等が挙げられる。
 これらの光重合開始剤の中でも、(ビス)アシルフォスフィンオキサイド類及びその塩、並びにα-ジケトン類からなる群から選択される少なくとも1種を用いることが好ましい。これにより、可視及び近紫外領域での光硬化性に優れ、ハロゲンランプ、発光ダイオード(LED)、キセノンランプのいずれの光源を用いても十分な光硬化性を示す組成物が得られる。
 本発明に用いられる重合開始剤のうち化学重合開始剤としては、有機過酸化物が好ましく用いられる。上記の化学重合開始剤に使用される有機過酸化物は特に限定されず、公知のものを使用することができる。代表的な有機過酸化物としては、ケトンパーオキサイド、ハイドロパーオキサイド、ジアシルパーオキサイド、ジアルキルパーオキサイド、パーオキシケタール、パーオキシエステル、パーオキシジカーボネート等が挙げられる。
 上記化学重合開始剤として用いられるケトンパーオキサイドとしては、メチルエチルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、メチルシクロヘキサノンパーオキサイド及びシクロヘキサノンパーオキサイド等が挙げられる。
 上記化学重合開始剤として用いられるハイドロパーオキサイドとしては、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド及びt-ブチルハイドロパーオキサイド等が挙げられる。
 上記化学重合開始剤として用いられるジアシルパーオキサイドとしては、アセチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド、デカノイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド及びラウロイルパーオキサイド等が挙げられる。
 上記化学重合開始剤として用いられるジアルキルパーオキサイドとしては、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン及び2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン等が挙げられる。
 上記化学重合開始剤として用いられるパーオキシケタールとしては、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)オクタン及び4,4-ビス(t-ブチルパーオキシ)バレリックアシッド-n-ブチルエステル等が挙げられる。
 上記化学重合開始剤として用いられるパーオキシエステルとしては、α-クミルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、2,2,4-トリメチルペンチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキシイソフタレート、ジ-t-ブチルパーオキシヘキサヒドロテレフタラート、t-ブチルパーオキシ-3,3,5-トリメチルヘキサノエート、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート及びt-ブチルパーオキシマレリックアシッド等が挙げられる。
 上記化学重合開始剤として用いられるパーオキシジカーボネートとしては、ジ-3-メトキシパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート及びジアリルパーオキシジカーボネート等が挙げられる。
 これらの有機過酸化物の中でも、安全性、保存安定性及びラジカル生成能力の総合的なバランスから、ジアシルパーオキサイドが好ましく用いられ、その中でもベンゾイルパーオキサイドが特に好ましく用いられる。
 本発明に用いられる重合開始剤の配合量は特に限定されないが、得られる組成物の硬化性等の観点からは、重合性単量体(A)100重量部に対して、重合開始剤を0.01~10重量部含有してなることが好ましく、0.1~5重量部含有してなることがより好ましい。重合開始剤の配合量が0.01重量部未満の場合、重合が十分に進行せず、機械的強度の低下を招くおそれがあり、より好適には0.1重量部以上である。一方、重合開始剤の配合量が10重量部を超える場合、重合開始剤自体の重合性能が低い場合には、十分な機械的強度が得られなくなるおそれがあり、さらには組成物からの析出を招くおそれがあるため、より好適には5重量部以下である。
 好ましい実施態様では、重合促進剤が用いられる。本発明に用いられる重合促進剤としては、アミン類、スルフィン酸及びその塩、アルデヒド類、チオール化合物等が挙げられる。
 重合促進剤として用いられるアミン類は、脂肪族アミン及び芳香族アミンに分けられる。脂肪族アミンとしては、例えば、n-ブチルアミン、n-ヘキシルアミン、n-オクチルアミン等の第1級脂肪族アミン;ジイソプロピルアミン、ジブチルアミン、N-メチルエタノールアミン等の第2級脂肪族アミン;N-メチルジエタノールアミン、N-エチルジエタノールアミン、N-n-ブチルジエタノールアミン、N-ラウリルジエタノールアミン、2-(ジメチルアミノ)エチルメタクリレート、N-メチルジエタノールアミンジメタクリレート、N-エチルジエタノールアミンジメタクリレート、トリエタノールアミンモノメタクリレート、トリエタノールアミンジメタクリレート、トリエタノールアミントリメタクリレート、トリエタノールアミン、トリメチルアミン、トリエチルアミン、トリブチルアミン等の第3級脂肪族アミン等が挙げられる。これらの中でも、組成物の硬化性及び保存安定性の観点から、第3級脂肪族アミンが好ましく、その中でもN-メチルジエタノールアミン及びトリエタノールアミンがより好ましく用いられる。
 また、芳香族アミンとしては、例えば、N,N-ビス(2-ヒドロキシエチル)-3,5-ジメチルアニリン、N,N-ジ(2-ヒドロキシエチル)-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-3,4-ジメチルアニリン、N,N-ビス(2-ヒドロキシエチル)-4-エチルアニリン、N,N-ビス(2-ヒドロキシエチル)-4-イソプロピルアニリン、N,N-ビス(2-ヒドロキシエチル)-4-t-ブチルアニリン、N,N-ビス(2-ヒドロキシエチル)-3,5-ジ-イソプロピルアニリン、N,N-ビス(2-ヒドロキシエチル)-3,5-ジ-t-ブチルアニリン、N,N-ジメチルアニリン、N,N-ジメチル-p-トルイジン、N,N-ジメチル-m-トルイジン、N,N-ジエチル-p-トルイジン、N,N-ジメチル-3,5-ジメチルアニリン、N,N-ジメチル-3,4-ジメチルアニリン、N,N-ジメチル-4-エチルアニリン、N,N-ジメチル-4-イソプロピルアニリン、N,N-ジメチル-4-t-ブチルアニリン、N,N-ジメチル-3,5-ジ-t-ブチルアニリン、4-N,N-ジメチルアミノ安息香酸エチルエステル、4-N,N-ジメチルアミノ安息香酸メチルエステル、N,N-ジメチルアミノ安息香酸n-ブトキシエチルエステル、4-N,N-ジメチルアミノ安息香酸2-(メタクリロイルオキシ)エチルエステル、4-N,N-ジメチルアミノベンゾフェノン、4-ジメチルアミノ安息香酸ブチル等が挙げられる。これらの中でも、組成物に優れた硬化性を付与できる観点から、N,N-ジ(2-ヒドロキシエチル)-p-トルイジン、4-N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸n-ブトキシエチルエステル及び4-N,N-ジメチルアミノベンゾフェノンからなる群から選択される少なくとも1種が好ましく用いられる。
 重合促進剤として用いられるスルフィン酸及びその塩としては、例えば、p-トルエンスルフィン酸、p-トルエンスルフィン酸ナトリウム、p-トルエンスルフィン酸カリウム、p-トルエンスルフィン酸リチウム、p-トルエンスルフィン酸カルシウム、ベンゼンスルフィン酸、ベンゼンスルフィン酸ナトリウム、ベンゼンスルフィン酸カリウム、ベンゼンスルフィン酸リチウム、ベンゼンスルフィン酸カルシウム、2,4,6-トリメチルベンゼンスルフィン酸、2,4,6-トリメチルベンゼンスルフィン酸ナトリウム、2,4,6-トリメチルベンゼンスルフィン酸カリウム、2,4,6-トリメチルベンゼンスルフィン酸リチウム、2,4,6-トリメチルベンゼンスルフィン酸カルシウム、2,4,6-トリエチルベンゼンスルフィン酸、2,4,6-トリエチルベンゼンスルフィン酸ナトリウム、2,4,6-トリエチルベンゼンスルフィン酸カリウム、2,4,6-トリエチルベンゼンスルフィン酸リチウム、2,4,6-トリエチルベンゼンスルフィン酸カルシウム、2,4,6-トリイソプロピルベンゼンスルフィン酸、2,4,6-トリイソプロピルベンゼンスルフィン酸ナトリウム、2,4,6-トリイソプロピルベンゼンスルフィン酸カリウム、2,4,6-トリイソプロピルベンゼンスルフィン酸リチウム、2,4,6-トリイソプロピルベンゼンスルフィン酸カルシウム等が挙げられ、ベンゼンスルフィン酸ナトリウム、p-トルエンスルフィン酸ナトリウム、2,4,6-トリイソプロピルベンゼンスルフィン酸ナトリウムが特に好ましい。
 重合促進剤として用いられるアルデヒド類としては、例えば、テレフタルアルデヒドやベンズアルデヒド誘導体等が挙げられる。ベンズアルデヒド誘導体としては、ジメチルアミノベンズアルデヒド、p-メチルオキシベンズアルデヒド、p-エチルオキシベンズアルデヒド、p-n-オクチルオキシベンズアルデヒド等が挙げられる。これらの中でも、硬化性の観点から、p-n-オクチルオキシベンズアルデヒドが好ましく用いられる。
 重合促進剤として用いられるチオール化合物としては、例えば、3-メルカプトプロピルトリメトキシシラン、2-メルカプトベンゾオキサゾール、デカンチオール、チオ安息香酸等が挙げられる。
 本発明に用いられる重合促進剤の配合量は特に限定されないが、得られる組成物の硬化性等の観点からは、重合性単量体(A)100重量部に対して、重合促進剤を、0.001~10重量部含有してなることが好ましく、0.001~5重量部含有してなることがより好ましい。重合促進剤の配合量が0.001重量部未満の場合、重合が十分に進行せず、機械的強度の低下を招くおそれがあり、より好適には、0.05重量部以上である。一方、重合促進剤の配合量が10重量部を超える場合には、重合開始剤自体の重合性能が低い場合には、十分な機械的強度が得られなくなるおそれがあり、より好適には5重量部以下である。
 本発明の歯科用硬化性組成物には、目的に応じて、pH調整剤、紫外線吸収剤、酸化防止剤、重合禁止剤、着色剤、抗菌剤、X線造影剤、増粘剤、蛍光剤等をさらに添加することも可能である。
 例えば、硬化後の表面からフッ素イオン徐放性を期待する場合、フルオロアルミノシリケートガラス、フッ化カルシウム、フッ化ナトリウム、モノフルオロリン酸ナトリウム等のフッ素イオン徐放性フィラーを添加することもできる。
 抗菌性を期待する場合は、例えば、セチルピリジニウムクロライド、12-(メタ)アクリロイルオキシドデシルピリジニウムブロマイド等の抗菌活性を有する界面活性剤や光触媒性酸化チタンを添加することができる。
 歯科用硬化性組成物に、重合後に特定の範囲の屈折率を示す重合性単量体(A)と、特定の範囲の平均一次粒子径と屈折率を有する無機粒子(B)と、無機粒子(B)とは異なる特定の範囲の屈折率を有する無機粒子(C)とが配合されている本発明によれば、光拡散性及び透明性がバランスよく優れる硬化物が得られる。また、このような2種の無機粒子を用いることにより、研磨滑沢性や滑沢耐久性を損なうことなく、より高い機械的強度を実現できる。また、硬化物が高い研磨滑沢性と滑沢耐久性を有するため、本発明の歯科用硬化性組成物を用いた歯科材料は、審美性に優れたものとなる。また、本発明の歯科用硬化性組成物は、ペーストの操作性が良好で適度な流動性や付形性を有し、歯科用インスツルメントへの付着、べとつきが抑制されており、取り扱い性に優れている。
 本発明の歯科用硬化性組成物は、常法に従い、例えば、歯科用複合充填材料、歯冠用材料、合着用材料等の歯科用コンポジットレジン、歯列矯正用接着材、窩洞塗布用接着材及び歯牙裂溝封鎖材等の歯科用接着材、義歯床用材料、義歯床用粘膜調整材、フィッシャーシーラント、歯面や歯科用補綴物へのコーティング材、表面滑沢材、歯科用マニキュア等の歯科材料として好適に用いることができる。また、本発明の歯科用硬化性組成物を重合硬化した硬化物を成型加工して、人工歯、義歯、CAD/CAM用レジンブロック等としても用いることができる。これらの中でも、本発明の歯科用硬化性組成物は、歯科用コンポジットレジンとして有利に用いることができ、当該コンポジットレジンは、光拡散性及び透明性が共に高く天然歯との調和に非常に優れ、硬化物の機械的強度、研磨滑沢性、及びペーストの取り扱い性が高いコンポジットレジンとなる。
 以下、実施例及び比較例を挙げて本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。実施例において用いられる試験方法、材料等を以下にまとめて示す。
〔粉末の粒子径の測定〕
 製造した粉末の粒子径の測定には、レーザー回折式粒度分布測定装置(SALD-2100:島津製作所製)を用いた。分散媒には、0.2%ヘキサメタリン酸ナトリウム水溶液を用いた。なお、シリカゾル及び無機超微粒子の粒子径については、粒子の電子顕微鏡写真を撮影して求めた。
〔細孔容積及び比表面積の測定〕
 細孔容積、比表面積は、日本ベル社製BELSORP-miniIIにより、N2ガス吸着法を用いて測定した。なお、比表面積については、BET法を用いて算出した。
〔操作性〕
 製造した歯科用硬化性組成物を4mmφ×4mmの穴に充填し、ペースト性状について充填操作のしやすさの観点から、以下の評価基準に従って操作性を評価した。
 5:付形性に特に優れ、ペーストの延びが良く、べたつくことなく充填操作に非常に優れる
 4:付形性に優れ、ペーストの延びが良く、べたつくことなく充填操作に優れる
 3:付形性を有し、ペーストの延びが十分で、べたつくことなく充填操作が容易である
 2:付形性、ペーストの延びのいずれかが不十分、もしくはペーストがべたつくことにより充填操作が困難である
 1:付形性、ペーストの延び、べたつきのいずれも実用には不十分で、充填操作が実用的でない
 なお、3、4、5が実使用レベルである。
〔ペースト性状の安定性〕
 製造した歯科用硬化性組成物のペーストをクリアフィルマジェスティ(クラレメディカル社製)の容器に充填後、25℃の恒温室内(湿度40%)で1時間静置した。静置したペーストをガラス板(5cm×5cm)の中心に盛り上げる様にして置いた後、ガラス板(5cm×5cm)を載せ、その上から1.0kgの荷重をかけ、30秒経過後のペーストの長径と短径をガラス板越しに測定し、その両者の算術平均を算出し、稠度とした。また、製造した歯科用硬化性組成物のペーストをクリアフィルマジェスティ(クラレメディカル社製)の容器に充填後、50℃の恒温器内(湿度40%)で1週間保管後、25℃の恒温室内(湿度40%)で1時間静置した後、上記と同様に稠度を測定した。25℃1時間静置後の稠度と50℃1週間静置後の稠度との差(変化量)を求めた。変化量±1.5mm以内を合格とした。
〔硬化物の曲げ強さ〕
 製造した歯科用硬化性組成物の硬化物からなる試験片(2mm×2mm×30mm)を作製した。試験片を37℃の水中に24時間浸漬した後、万能試験機(インストロン社製)を用いて、クロスヘッドスピードを1mm/minに設定して、支点間距離20mmで3点曲げ試験法により曲げ強さを測定した。
〔研磨性〕
 製造した歯科用硬化性組成物をステンレス製の金型(厚さ1mm、直径15mm)に充填した。上下面をスライドガラスで圧接し、両面から歯科技工用可視光線照射器(モリタ社製、アルファライトII)で、各2分間光照射して硬化させた。硬化物を金型から取り出した後、800番の耐水研磨紙で研磨し、この研磨面を、技工用ポリッシングボックス(KAVO社製、EWL80)を用いて3000rpmで20秒間バフ研磨した。研磨材にはポーセニーハイドン(東京歯材社製)を用いた。この面の光沢を、光沢度計(日本電色(株)製、VG-2000)を用い、鏡を100%としたときの割合で示した。測定の角度は、60度とした。光沢度75%以上が好適とされる。
〔屈折率〕
 製造した粉末の屈折率は、アッベ屈折計を用い、ナトリウムのD線を光源として、イオウの溶解したジヨードメタン、1-ブロモナフタレン、サリチル酸メチル、ジメチルホルムアミド、1-ペンタノール等を液体として液浸法で測定した。なお、各実施例及び比較例で用いた重合性単量体(A)の重合体の屈折率の測定には、重合性単量体(A)100重量部に対して、重合開始剤としてα-カンファーキノン0.5重量部、及び重合促進剤としてN,N-ジメチルアミノ安息香酸エチル1.0重量部を溶解させて脱泡した後、光重合させて得た硬化物を、5mm×10mm×20mmの直方体に成形したものを試験片として用いた。
〔硬化物の透明性〕
 歯科用硬化性組成物の硬化物の円盤状試験片(20mmφ×1.0mm)を作製した。分光測色計(ミノルタ社製、CM-3610d)を用いて、C光源測色視野2度で、試験片の背後に標準白板を置いて色度を測定した場合の明度(Lw)と、同じ試験片の背後に標準黒板を置いて色度を測定した場合の明度(Lb)を測定し、両者の差(ΔL=Lw-Lb)を算出して、透明度の指標とした。ΔLの値が大きいほど硬化物の透明度が高いことを意味する。透明度25以上が好適とされる。
〔全光線透過率及び濁度の測定〕
 製造した歯科用硬化性組成物をテフロン(登録商標)製の金型(直径30mmx厚さ0.25mm)に充填した。上下面をスライドガラスで圧接し、両面から各1分間光照射して硬化させた。硬化物を金型から取り出したのち、ヘイズメーター(日本電色工業社製NDH-5000)を用いて、全光線透過率及び濁度を測定した。濁度は下記式(2)にて求められる。全光線透過率が高く、濁度の値が高いほど硬化物の光拡散性が高いことを意味する。全光線透過率80%以上、濁度70%以上が好適とされる。
濁度(ヘイズ)=拡散透過率/全光線透過率×100 (%)   (2)
〔製造例1〕重合性単量体A-1の製造
 ビスフェノールAジグリシジルメタクリレート(Bis-GMA)65重量部、及びトリエチレングリコールジメタクリレート35重量部に、重合開始剤としてα-カンファーキノン0.5重量部、及び重合促進剤としてN,N-ジメチルアミノ安息香酸エチル1.0重量部を溶解させて、重合性単量体A-1を調製した。該重合性単量体A-1の重合後の屈折率は1.55であった。
〔製造例2〕重合性単量体A-2の製造
 Bis-GMA75重量部、及びトリエチレングリコールジメタクリレート25重量部を用いた以外は製造例1と同様にして、重合性単量体A-2を調製した。該重合性単量体A-2の重合後の屈折率は1.56であった。
〔製造例3〕重合性単量体A-3の製造
 Bis-GMA25重量部、[2,2,4-トリメチルヘキサメチレンビス(2-カルバモイルオキシエチル)]ジメタクリレート(UDMA)40重量部、及びトリエチレングリコールジメタクリレート35重量部を用いた以外は製造例1と同様にして、重合性単量体A-3を調製した。該重合性単量体A-3の重合後の屈折率は1.52であった。
〔製造例4〕重合性単量体A-4の製造
 Bis-GMA30重量部、UDMA40重量部、及びトリエチレングリコールジメタクリレート30重量部を用いた以外は製造例1と同様にして、重合性単量体A-4を調製した。該重合性単量体A-4の重合後の屈折率は1.53であった。
〔製造例5〕重合性単量体A-5の製造
 ネオペンチルグリコールジメタクリレート80重量部、及びUDMA20重量部を用いた以外は製造例1と同様にして、重合性単量体A-5を調製した。該重合性単量体A-5の重合後の屈折率は1.50であった。
〔製造例6〕無機粒子B-1の製造
 日産化学製シリカゾル、スノーテックスST-20(平均粒子径10~20nm)1000gをホーロー製バット上に広げ、90℃に設定した熱風乾燥機中に恒量になるまで乾燥後、400℃に設定した電気炉で1時間焼成し、200gの焼成固体を得た。得られた焼成固体を振動ボールミルにて90分間粉砕後、得られた粉末100重量部に対して、20重量部のγ-メタクリロキシプロピルトリメトシキシラン(信越化学社製、KBM503)で表面処理し、平均粒子径5.6μm、屈折率1.45、比表面積154m2/g、細孔容積0.27mL/gの無機粒子B-1を得た。
〔製造例7〕無機粒子B-2の製造
 日産化学製シリカゾル、スノーテックスST-OL(平均粒子径40~50nm)を用い、振動ボールミルにて180分間粉砕した以外は、製造例6と同様にして、平均粒子径3.1μm、屈折率1.45、比表面積98m2/g、細孔容積0.13mL/gの無機粒子B-2を得た。
〔製造例8〕無機粒子B-3の製造
 日産化学製シリカゾル、スノーテックスST-XS(平均粒子径4~6nm)を用い、振動ボールミルにて60分間粉砕した以外は、製造例6と同様にして、平均粒子径14.8μm、屈折率1.45、比表面積290m2/g、細孔容積0.9mL/gの無機粒子B-3を得た。
〔製造例9〕無機粒子B-4の製造
 酢酸ジルコニウム(アルドリッチ製ジルコニウムアセテート、Zr含有量15~16%)30gに、日産化学製シリカゾル(スノーテックスST-20)225gに希硝酸を添加してpH2.5に調整したpH調整シリカゾルを徐々に滴下し、混合ゾルを得た。得られたゾルをホーロー製バットに移した後、90℃の熱風乾燥機中で乾燥した。乾燥の終了した固体を550℃に設定した電気炉に投入して、1時間熱処理を行った後、振動ボールミルにて90分間粉砕して、屈折率1.48、平均粒子径6.4μm、比表面積175m2/g、細孔容積0.2mL/gの粉末を得た。得られた粉末100重量部に対して、20重量部のγ-メタクリロキシプロピルトリメトキシシランで表面処理し、無機粒子B-4を得た。
〔製造例10〕無機粒子B-5の製造
 平均粒子径1.7μmの溶融石英の粉末100重量部に対し、2重量部のγ-メタクリロイルオキシプロピルトリメトキシシランで表面処理し、屈折率1.46の無機粒子B-5を得た。
〔製造例11〕無機粒子B-6の製造
 日産化学製シリカゾル、及びスノーテックスST-20(平均粒子径10~20nm)を、入口温度200℃、内部温度80℃、エアー流量30mL/min、液流量15mL/minの条件下で、マイクロミストドライヤー「MDL-050」(藤崎電機(株))社製)を使用して、噴霧乾燥によって予備乾燥させた。得られた球状粉末を、400℃に設定した電気炉で1時間焼成し、焼成粉末を得た。得られた粉末100重量部に対して、20重量部のγ-メタクリロキシプロピルトリメトキシシラン(信越化学社製、KBM503)で表面処理し、平均粒子径4.9μm、屈折率1.45、比表面積110m2/g、細孔容積0.17mL/gの無機粒子B-6を得た。
〔製造例12〕無機粒子B-7の製造
 日産化学製シリカゾル、及びスノーテックスST-20(平均粒子径10~20nm)を蒸留水を用いて5wt%に希釈した後、入口温度200℃、内部温度80℃、エアー流量55mL/min、液流量15mL/minの条件で予備乾燥した以外は、製造例11と同様にして、平均粒子径1.5μm、屈折率1.45、比表面積106m2/g、細孔容積0.16mL/gの無機粒子B-7を得た。
〔製造例13〕無機粒子C-1
 バリウムガラス(ショット社製8235UF0.4、平均粒子径0.4μm)100重量部に対して、8重量部のγ-メタクリロキシプロピルトリメトキシシランで表面処理し、無機粒子C-1を得た。屈折率は1.55であった。
〔製造例14〕無機粒子C-2
 バリウムガラス(ショット社製8235UF0.7、平均粒子径0.7μm)100重量部に対して、4重量部のγ-メタクリロキシプロピルトリメトキシシランで表面処理し、無機粒子C-2を得た。屈折率は1.55であった。
〔製造例15〕無機粒子C-3
 バリウムガラス(ショット社製GM27884NF180、平均粒子径0.2μm)100重量部に対して、13重量部のγ-メタクリロキシプロピルトリメトキシシランで表面処理し、無機粒子C-3を得た。屈折率は1.53であった。
〔製造例16〕無機粒子C-4
 ランタンガラスセラミックス(ショット社製GM31684)を振動ボールミルにて12時間粉砕し、得られた粉末100重量部に対して、4重量部のγ-メタクリロキシプロピルトリメトキシシランで表面処理し、平均粒子径0.8μmの無機粒子C-4を得た。屈折率は1.58であった。
〔製造例17〕無機粒子C-5
 酢酸ジルコニウム(アルドリッチ製ジルコニウムアセテート、Zr含有量15~16%)55gに、日産化学製シリカゾル(スノーテックスST-20)225gを用いた以外は、製造例9と同様にして、屈折率1.53、平均粒子径6.2μm、比表面積165m2/g、細孔容積0.22mL/gの無機粒子C-5を得た。
〔製造例18〕無機粒子C-6
 酢酸ジルコニウム(アルドリッチ製ジルコニウムアセテート、Zr含有量15~16%)85gに、日産化学製シリカゾル(スノーテックス ST-20)225gを用いた以外は、製造例9と同様にして、屈折率1.55、平均粒子径6.3μm、比表面積160m2/g、細孔容積0.21mL/gの無機粒子C-6を得た。
〔製造例19〕無機超微粒子D-1の製造
 平均粒子径が20nmの略球状超微粒子アエロジル130(日本アエロジル社製)100重量部に対して、40重量部のγ-メタクリロキシプロピルトリメトキシシランで表面処理し、無機超微粒子D-1を得た。
〔製造例20〕無機超微粒子D-2の製造
 平均粒子径が40nmの略球状超微粒子アエロジルOX50(日本アエロジル社製)100重量部に対して、7重量部のγ-メタクリロキシプロピルトリメトキシシランで表面処理し、無機超微粒子D-2を得た。
〔製造例21〕無機超微粒子D-3の製造
 平均粒子径が20nmの略球状超微粒子アエロキサイドAluC(日本アエロジル社製)100重量部に対して、20重量部のγ-メタクリロイルオキシプロピルトリメトキシシランで表面処理し、無機超微粒子D-3を得た。
〔製造例22〕特開平9-255516記載の凝集粒子Iの製造
 バリウムガラス(ショット社8235、平均粒子径0.7μm、屈折率1.55)5重量部を蒸留水95重量部に分散したものをスプレードライヤー(大川原化工機製L8型)を用いて噴霧乾燥し、該バリウムガラスの凝集粉末を得た。この乾燥凝集粉末を電気炉に入れ、700℃で3時間焼成し、平均粒子径10μmの焼成凝集粒子を得た。焼成した粉末を電気炉内で室温まで冷却した後、粉末100重量部に対し、5重量部のγ-メタクリロキシプロピルトリメトキシシランで表面処理し、無機粒子(C)との比較用粒子として凝集粒子Iを得た。
〔製造例23〕特開平9-255516記載の凝集粒子IIの製造
 平均粒子径0.2μmの球状シリカ(日本触媒製シーホスター、屈折率1.46)を粉末100重量部に対して2重量部のポリビニルアルコール(クラレ製PVA117)の存在下に、スプレードライヤー(大川原化工機製L8型)を用いて噴霧乾燥により凝集化した。この凝集粉末は、平均粒子径19μm程度のほぼ球状の粒子であった。この凝集粉末を950℃で1時間焼成した後、さらに粉末100重量部に対して2重量部のγ-メタクリロキシプロピルトリメトキシシランで処理し、無機粒子(B)との比較用粒子として凝集粒子IIを得た。
〔実施例1~32及び比較例1~7〕
 上記で製造した重合性単量体、無機粒子、及び必要に応じ無機超微粒子を、表1~表4に示す配合量で混合練和して均一にしたものを真空脱泡し、実施例1~32及び比較例1~7の歯科用硬化性組成物を得た。これらの歯科用硬化性組成物の特性を前記の方法で評価した。結果を表1~6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例1~32の組成全てにおいて、高い透明性と光拡散性が達成された。さらにペースト操作性も良好であり、機械的強度、研磨性、及び稠度の変化量すなわちペースト性状の安定性も好適であった。
 比較例1で無機粒子(B)の代わりに用いた無機粒子C-5の屈折率は、本発明の無機粒子(B)の屈折率の範囲よりも大きいものであり、重合性単量体(A)及び無機粒子(C)と屈折率が近似したため、実施例と比較して光拡散性が大幅に低下した。比較例2で用いた無機粒子B-5は非凝集で平均粒子径が1.7μmと大きな無機粒子であり、実施例と比較して研磨性が大幅に低下した。比較例3では無機粒子(B)を用いていないため、実施例と比較して光拡散性が大幅に低下した。比較例4で用いた無機粒子B-1の配合量は本発明の範囲よりも大きいものであり、実施例と比較して透明性が大幅に低下した。比較例5で用いた凝集粒子IIは一次粒子として0.2μmのシリカ粒子から製造されており、実施例と比較して光拡散性が低く、稠度の変化量が大きいものとなった。比較例6で用いた凝集粒子Iは基本構成粒子間が緩く結合しており、稠度の変化量が大きいものとなった。比較例7で用いた重合性単量体(A)は、重合後の屈折率が本発明の範囲よりも小さく、無機粒子(C)との屈折率差が大きいため、透明性が低下した。
 本発明の歯科用硬化性組成物は、歯科医療の分野において、天然歯の一部分又は全体を代替し得るものとして好適に用いられるものである。

Claims (10)

  1.  重合後の屈折率が1.52~1.58である重合性単量体(A)、
     屈折率が1.43~1.50である無機粒子(B)、及び
     屈折率が1.52~1.58である無機粒子(C)
    を含む歯科用硬化性組成物であって、前記無機粒子(B)が、平均一次粒子径が2~50nmの無機微粒子の凝集体であり、前記無機粒子(B)の配合量が0.1~10重量%である歯科用硬化性組成物。
  2.  前記無機粒子(B)の平均粒子径が1.0~20μmである請求項1に記載の歯科用硬化性組成物。
  3.  前記無機粒子(B)の比表面積が50~400m2/gであり、かつ細孔容積が0.05~1.5mL/gである請求項1に記載の歯科用硬化性組成物。
  4.  前記無機粒子(C)が、平均粒子径が0.1~1.0μmの非凝集の無機粒子(C-I)を含む請求項1に記載の歯科用硬化性組成物。
  5.  前記無機粒子(C)が、平均粒子径が0.1~1.0μmの非凝集の無機粒子(C-I)、及び平均粒子径が2~50nmのシリカ系微粒子と、少なくとも1種の重金属を含む酸化物とを含む凝集体であって、平均粒子径が1~20μmの無機粒子(C-II)を含み、無機粒子(C-I)と無機粒子(C-II)の重量比が、1:4~4:1である請求項1に記載の歯科用硬化性組成物。
  6.  前記重合性単量体(A)の重合後の屈折率と前記無機粒子(C)の屈折率の差が、0.03以下である請求項1に記載の歯科用硬化性組成物。
  7.  前記重合性単量体(A)の重合後の屈折率と前記無機粒子(B)の屈折率の差が、0.05以上である請求項1に記載の歯科用硬化性組成物。
  8.  前記重合性単量体(A)を8~40重量%、前記無機粒子(B)を0.1~10重量%、及び前記無機粒子(C)を59.9~91.9重量%含む請求項1に記載の歯科用硬化性組成物。
  9.  さらに平均粒子径が5~50nmの無機超微粒子(D)を1~10重量%含む請求項1に記載の歯科用硬化性組成物。
  10.  請求項1に記載の歯科用硬化性組成物を用いたコンポジットレジン。
PCT/JP2010/007203 2009-12-18 2010-12-10 歯科用硬化性組成物及びそれを用いたコンポジットレジン WO2011074222A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES10837256.6T ES2593877T3 (es) 2009-12-18 2010-12-10 Composición endurecible para uso dental y resina compuesta que comprende a la misma
CN201080009824.5A CN102341088B (zh) 2009-12-18 2010-12-10 牙科用固化性组合物及使用其而成的复合树脂
US13/141,381 US8476338B2 (en) 2009-12-18 2010-12-10 Dental curable composition and composite resin using the same
EP10837256.6A EP2380551B1 (en) 2009-12-18 2010-12-10 Curable composition for dental use, and composite resin comprising same
JP2011514947A JP4782251B2 (ja) 2009-12-18 2010-12-10 歯科用硬化性組成物及びそれを用いたコンポジットレジン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-288115 2009-12-18
JP2009288115 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011074222A1 true WO2011074222A1 (ja) 2011-06-23

Family

ID=44166994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007203 WO2011074222A1 (ja) 2009-12-18 2010-12-10 歯科用硬化性組成物及びそれを用いたコンポジットレジン

Country Status (6)

Country Link
US (1) US8476338B2 (ja)
EP (1) EP2380551B1 (ja)
JP (1) JP4782251B2 (ja)
CN (1) CN102341088B (ja)
ES (1) ES2593877T3 (ja)
WO (1) WO2011074222A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176877A1 (ja) * 2011-06-24 2012-12-27 株式会社トクヤマデンタル 歯科用修復材
EP2623065A4 (en) * 2010-09-30 2014-04-02 Kuraray Noritake Dental Inc ROHLING FOR A DENTAL MILL
WO2014083842A1 (ja) 2012-11-30 2014-06-05 クラレノリタケデンタル株式会社 歯科用硬化性組成物及び歯科用フロアブルコンポジットレジン
JP2016153382A (ja) * 2015-02-20 2016-08-25 クラレノリタケデンタル株式会社 歯科用硬化性組成物
JP2017057171A (ja) * 2015-09-17 2017-03-23 株式会社松風 歯科用硬化性組成物
WO2021132707A1 (ja) * 2019-12-27 2021-07-01 クラレノリタケデンタル株式会社 歯科用ペースト状組成物およびその製造方法
WO2023127794A1 (ja) * 2021-12-27 2023-07-06 クラレノリタケデンタル株式会社 歯科用硬化性組成物及び基材と樹脂層を含む歯科用補綴物

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039169A1 (ja) * 2011-09-15 2013-03-21 株式会社トクヤマデンタル 有機無機複合フィラー、及びその製造方法
KR102138638B1 (ko) * 2012-04-27 2020-07-28 오사카 리서치 인스티튜트 오브 인더스트리얼 사이언스 앤드 테크놀러지 금속 산화물 분산체, 금속 산화물 분산체 함유 중합성 조성물, 및 이의 중합물
US9862813B2 (en) * 2013-09-06 2018-01-09 Joseph BRINGLEY Porous composite filler compositions
WO2015064090A1 (ja) * 2013-10-31 2015-05-07 クラレノリタケデンタル株式会社 歯科用色調調整材キット
WO2015125470A1 (ja) * 2014-02-20 2015-08-27 クラレノリタケデンタル株式会社 歯科用修復材組成物
CN103876944B (zh) * 2014-03-28 2016-05-25 北京固琦健康科技有限公司 一种牙科用窝沟封闭剂
DE102015220373A1 (de) 2014-10-23 2016-04-28 Voco Gmbh Härtbares Dentalmaterial
CN108601710A (zh) 2016-02-05 2018-09-28 3M创新有限公司 包含提供在可聚合树脂和填料之间的折射率差的纳米粒子的牙科用组合物
KR102246612B1 (ko) * 2016-12-01 2021-04-30 가부시키가이샤 도쿠야마 덴탈 경화성 조성물
JP6805046B2 (ja) * 2017-03-31 2020-12-23 株式会社ジーシー 歯科用接着剤及びその製造方法
US11065183B2 (en) * 2017-04-18 2021-07-20 Tokuyama Dental Corporation Curable composition
KR101974519B1 (ko) * 2017-06-20 2019-05-02 (주)메디클러스 광중합형 치과용 수복재 조성물 및 그 제조방법
CN108047729B (zh) * 2017-12-28 2021-01-12 武汉能斯特科技有限公司 一种基于大豆油的可见光固化树脂及其3d打印方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197289A (en) 1981-04-09 1982-12-03 Basf Ag Acylphosphine compound and use
EP0009348B1 (en) 1978-09-22 1983-07-20 Fbc Limited Pesticidally active salts and compositions containing them and processes for their manufacture and use
JPH09255516A (ja) 1996-03-25 1997-09-30 Kuraray Co Ltd 歯科用複合材料
JPH101473A (ja) 1996-04-18 1998-01-06 Tokuyama Corp チオウラシル誘導体
JPH1192461A (ja) 1997-09-19 1999-04-06 Tokuyama Corp ジスルフィド化合物および金属表面処理剤
JP2000159621A (ja) 1998-12-02 2000-06-13 Kuraray Co Ltd 歯科用光重合性組成物
JP2002138008A (ja) 2000-08-22 2002-05-14 Tokuyama Corp 歯科用硬化性組成物
JP2005517688A (ja) 2002-01-31 2005-06-16 スリーエム イノベイティブ プロパティズ カンパニー 歯科ペースト、歯科物品、および方法
JP2007302631A (ja) * 2006-05-12 2007-11-22 Tokuyama Corp 歯科用硬化性組成物
WO2008096753A1 (ja) * 2007-02-08 2008-08-14 Kuraray Medical Inc. 歯科用組成物
WO2009133911A1 (ja) * 2008-04-28 2009-11-05 クラレメディカル株式会社 歯科用組成物及びコンポジットレジン

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696809B2 (ja) * 1989-08-07 1994-11-30 株式会社クラレ 熱融着性複合繊維
JP3917204B2 (ja) * 1995-12-21 2007-05-23 株式会社クラレ 歯科用複合修復材料の選択方法
US5795497A (en) 1996-04-18 1998-08-18 Tokuyama Corporation Thiouracil derivatives and metal surface-treating agent comprising thereof
JP2001302429A (ja) * 2000-04-28 2001-10-31 Shiyoufuu:Kk 凝集物を含有する歯科用複合組成物
DE60135302D1 (de) 2000-08-22 2008-09-25 Tokuyama Corp Aushärtbare dentalzusammensetzung
JP4034958B2 (ja) * 2001-11-13 2008-01-16 触媒化成工業株式会社 歯科材料用無機粒子およびその製造方法
US7090721B2 (en) * 2004-05-17 2006-08-15 3M Innovative Properties Company Use of nanoparticles to adjust refractive index of dental compositions
CA2722661A1 (en) * 2008-04-28 2009-11-05 Kuraray Medical Inc. Dental composition and composite resin

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009348B1 (en) 1978-09-22 1983-07-20 Fbc Limited Pesticidally active salts and compositions containing them and processes for their manufacture and use
JPS57197289A (en) 1981-04-09 1982-12-03 Basf Ag Acylphosphine compound and use
JPH09255516A (ja) 1996-03-25 1997-09-30 Kuraray Co Ltd 歯科用複合材料
JPH101473A (ja) 1996-04-18 1998-01-06 Tokuyama Corp チオウラシル誘導体
JPH1192461A (ja) 1997-09-19 1999-04-06 Tokuyama Corp ジスルフィド化合物および金属表面処理剤
JP2000159621A (ja) 1998-12-02 2000-06-13 Kuraray Co Ltd 歯科用光重合性組成物
JP2002138008A (ja) 2000-08-22 2002-05-14 Tokuyama Corp 歯科用硬化性組成物
JP2005517688A (ja) 2002-01-31 2005-06-16 スリーエム イノベイティブ プロパティズ カンパニー 歯科ペースト、歯科物品、および方法
JP2007302631A (ja) * 2006-05-12 2007-11-22 Tokuyama Corp 歯科用硬化性組成物
WO2008096753A1 (ja) * 2007-02-08 2008-08-14 Kuraray Medical Inc. 歯科用組成物
WO2009133911A1 (ja) * 2008-04-28 2009-11-05 クラレメディカル株式会社 歯科用組成物及びコンポジットレジン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2380551A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2623065A4 (en) * 2010-09-30 2014-04-02 Kuraray Noritake Dental Inc ROHLING FOR A DENTAL MILL
US9089482B2 (en) 2010-09-30 2015-07-28 Kuraray Noritake Dental Inc. Dental mill blank
US9320684B2 (en) 2011-06-24 2016-04-26 Tokuyama Dental Corporation Dental restorative material
WO2012176877A1 (ja) * 2011-06-24 2012-12-27 株式会社トクヤマデンタル 歯科用修復材
JP5537735B2 (ja) * 2011-06-24 2014-07-02 株式会社トクヤマデンタル 歯科用修復材
EP2926796A4 (en) * 2012-11-30 2016-08-03 Kuraray Noritake Dental Inc POLYMERIZING DENTAL COMPOSITION AND FLUENT DENTAL COMPOSITE RESIN
WO2014083842A1 (ja) 2012-11-30 2014-06-05 クラレノリタケデンタル株式会社 歯科用硬化性組成物及び歯科用フロアブルコンポジットレジン
JPWO2014083842A1 (ja) * 2012-11-30 2017-01-05 クラレノリタケデンタル株式会社 歯科用硬化性組成物及び歯科用フロアブルコンポジットレジン
US9855196B2 (en) 2012-11-30 2018-01-02 Kuraray Noritake Dental Inc. Dental curable composition and dental flowable composite resin
JP2016153382A (ja) * 2015-02-20 2016-08-25 クラレノリタケデンタル株式会社 歯科用硬化性組成物
JP2017057171A (ja) * 2015-09-17 2017-03-23 株式会社松風 歯科用硬化性組成物
WO2021132707A1 (ja) * 2019-12-27 2021-07-01 クラレノリタケデンタル株式会社 歯科用ペースト状組成物およびその製造方法
WO2023127794A1 (ja) * 2021-12-27 2023-07-06 クラレノリタケデンタル株式会社 歯科用硬化性組成物及び基材と樹脂層を含む歯科用補綴物

Also Published As

Publication number Publication date
ES2593877T3 (es) 2016-12-13
JPWO2011074222A1 (ja) 2013-04-25
US20110257292A1 (en) 2011-10-20
US8476338B2 (en) 2013-07-02
CN102341088B (zh) 2014-02-19
CN102341088A (zh) 2012-02-01
EP2380551A1 (en) 2011-10-26
EP2380551A4 (en) 2014-04-02
JP4782251B2 (ja) 2011-09-28
EP2380551B1 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP4782251B2 (ja) 歯科用硬化性組成物及びそれを用いたコンポジットレジン
JP5148696B2 (ja) 歯科用組成物及びコンポジットレジン
JP5191534B2 (ja) 歯科用組成物及びコンポジットレジン
JP5661040B2 (ja) ジルコニア及びシリカナノ粒子を含む充填剤、並びにコンポジット材料
JP7204679B2 (ja) 歯科用接着剤組成物、その調製及び使用
JP5191535B2 (ja) 歯科用組成物及びコンポジットレジン
WO2012042911A1 (ja) 歯科用ミルブランク
JP5546791B2 (ja) 歯科用硬化性組成物及びコンポジットレジン
JP5431010B2 (ja) 歯科用組成物及びコンポジットレジン
JP2019026504A (ja) 複合酸化物粒子及び該複合酸化物粒子を含む歯科用複合材料
JP5389518B2 (ja) 歯科用組成物及びコンポジットレジン
JP5611083B2 (ja) 歯科用硬化性組成物及び歯科用修復材料
JP2016153382A (ja) 歯科用硬化性組成物
JP5546790B2 (ja) 歯科用組成物
JP2013035804A (ja) 重合収縮応力が小さい歯科用硬化性組成物および歯科用充填修復材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009824.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011514947

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13141381

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010837256

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010837256

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837256

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE