WO2014061811A1 - 樹脂組成物、プリプレグ、積層板、金属箔張積層板及びプリント配線板 - Google Patents
樹脂組成物、プリプレグ、積層板、金属箔張積層板及びプリント配線板 Download PDFInfo
- Publication number
- WO2014061811A1 WO2014061811A1 PCT/JP2013/078388 JP2013078388W WO2014061811A1 WO 2014061811 A1 WO2014061811 A1 WO 2014061811A1 JP 2013078388 W JP2013078388 W JP 2013078388W WO 2014061811 A1 WO2014061811 A1 WO 2014061811A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- group
- epoxy
- resin composition
- mass
- Prior art date
Links
- 0 *c1c(cccc2)c2ccc1 Chemical compound *c1c(cccc2)c2ccc1 0.000 description 2
- HIDBROSJWZYGSZ-UHFFFAOYSA-N O=C(C=CC1=O)N1c1ccccc1 Chemical compound O=C(C=CC1=O)N1c1ccccc1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 description 2
- FUJPPPFNRAVKDZ-UHFFFAOYSA-N C(C1OC1)Oc1cc(cc(cc2)-c(c(cc(cc3)Oc4cc(cc(cc5)OC6OCC6)c5cc4)c3cc3)c3OCC3OC3)c2cc1 Chemical compound C(C1OC1)Oc1cc(cc(cc2)-c(c(cc(cc3)Oc4cc(cc(cc5)OC6OCC6)c5cc4)c3cc3)c3OCC3OC3)c2cc1 FUJPPPFNRAVKDZ-UHFFFAOYSA-N 0.000 description 1
- GOYXTYLAHHZWMU-IBBHUPRXSA-N C=C/C(/OCC1OC1)=C\c1cc(Oc(cc2)cc3c2ccc(Oc2cc(cc(cc4)OCC5OC5)c4cc2)c3)ccc1C=C Chemical compound C=C/C(/OCC1OC1)=C\c1cc(Oc(cc2)cc3c2ccc(Oc2cc(cc(cc4)OCC5OC5)c4cc2)c3)ccc1C=C GOYXTYLAHHZWMU-IBBHUPRXSA-N 0.000 description 1
- RFHJPRUPMRVOQN-UHFFFAOYSA-N OC1=C(C=CC=C2)C2=CCC1 Chemical compound OC1=C(C=CC=C2)C2=CCC1 RFHJPRUPMRVOQN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L73/00—Compositions of macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C08L59/00 - C08L71/00; Compositions of derivatives of such polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/24—Di-epoxy compounds carbocyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
- C08G59/4246—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/244—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/249—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
- C08L63/06—Triglycidylisocyanurates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/14—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
- B32B2307/3065—Flame resistant or retardant, fire resistant or retardant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
- C08G77/18—Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/48—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
- C08G77/50—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
- C08G77/52—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2373/00—Characterised by the use of macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C08J2359/00 - C08J2371/00; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2383/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
- C08J2383/04—Polysiloxanes
- C08J2383/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2463/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2473/00—Characterised by the use of macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C08J2459/00 - C08J2471/00; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/02—Flame or fire retardant/resistant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/206—Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/012—Flame-retardant; Preventing of inflammation
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/0162—Silicon containing polymer, e.g. silicone
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0209—Inorganic, non-metallic particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0275—Fibers and reinforcement materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0275—Fibers and reinforcement materials
- H05K2201/029—Woven fibrous reinforcement or textile
Definitions
- the present invention relates to a resin composition, a prepreg, a laminate, a metal foil-clad laminate, and a printed wiring board.
- Patent Documents 1 to 5 As another method, it is known that an organic filler having rubber elasticity is blended in a varnish containing an epoxy resin (Patent Documents 1 to 5).
- Patent Document 6 Furthermore, a method of using silicone rubber as rubber elastic powder is also known (Patent Document 6).
- Japanese Patent No. 3173332 Japanese Patent Laid-Open No. 8-48001 JP 2000-158589 A JP 2003-246849 A JP 2006-143973 A JP 2009-035728 A
- the present invention has been made in view of the above problems, and has a high flame retardancy, a high heat resistance, a low coefficient of thermal expansion, and a resin composition capable of realizing a cured product excellent in drill workability. It is an object to provide a product, a prepreg containing the resin composition, a laminate and a metal-clad laminate containing the prepreg, and a printed wiring board containing the resin composition.
- the present inventors have found that the above problems can be solved by using a resin composition containing a predetermined epoxy silicone resin, cyanate ester compound and / or phenol resin, and an inorganic filler, and have reached the present invention. Further, the present inventors have found that the above problem can be solved by using a resin composition containing a predetermined epoxy silicone resin, a predetermined BT resin, and an inorganic filler, and have reached the present invention.
- the present invention provides the following (1) to (26).
- a linear polysiloxane (a) having a carboxyl group and a cyclic epoxy compound (b) having an epoxy group, the epoxy group of the cyclic epoxy compound (b) with respect to the carboxyl group of the linear polysiloxane (a) An epoxy silicone resin (A) obtained by reacting to give 2 to 10 equivalents, Containing at least a cyanate ester compound (B) and / or a phenol resin (C), and an inorganic filler (D), Resin composition.
- the cyanate ester compound (B) is at least one selected from the group consisting of a naphthol aralkyl cyanate ester compound represented by the following formula (6) and a novolac cyanate ester compound represented by the following formula (7):
- the phenol resin (C) contains at least one selected from the group consisting of a naphthol aralkyl type phenol resin represented by the following formula (8) and a biphenyl aralkyl type phenol resin represented by the following formula (9): The resin composition according to any one of (4) to (4).
- each R 15 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
- Content of the epoxy silicone resin (A) is the epoxy silicone resin (A), the cyanate ester compound (B), the phenol resin (C), the non-halogen epoxy resin (E), and the maleimide compound. 5.
- the total content of the cyanate ester compound (B) and the phenol resin (C) is the epoxy silicone resin (A), the cyanate ester compound (B), the phenol resin (C), and the non-halogen epoxy. 8.
- the resin composition as described in any one of (3) to (7) above which is 10 to 50 parts by mass with respect to 100 parts by mass in total of the resin (E) and the maleimide compound (F).
- the content of the inorganic filler (D) is the epoxy silicone resin (A), the cyanate ester compound (B), the phenol resin (C), the non-halogen epoxy resin (E), and the maleimide compound.
- the content of the maleimide compound (F) is such that the epoxy silicone resin (A), the cyanate ester compound (B), the phenol resin (C), the non-halogen epoxy resin (E), the maleimide compound (F).
- the cyanate ester compound (B) is at least one selected from the group consisting of a naphthol aralkyl cyanate ester compound represented by the following formula (6) and a novolac cyanate ester compound represented by the following formula (7):
- each R 6 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
- each R 7 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
- each R 15 independently represents a hydrogen atom or a methyl group, and n represents an integer of 1 or more.
- the content of the epoxy silicone resin (A) is 5 to 50 parts by mass with respect to a total of 100 parts by mass of the epoxy silicone resin (A), the BT resin (G), and the non-halogen epoxy resin (E).
- the content of the inorganic filler (D) is 50 to 400 parts by mass with respect to a total of 100 parts by mass of the epoxy silicone resin (A), the BT resin (G), and the non-halogen epoxy resin (E).
- the resin composition according to any one of items (1) to (17), wherein the imidazole compound (H) comprises an imidazole compound represented by the following formula (17).
- Ar independently represents a phenyl group, a naphthalene group, a biphenyl group, an anthracene group or a hydroxyl group-modified group thereof, and R 16 represents a hydrogen atom, an alkyl group, or a hydroxyl group-modified group of an alkyl group. Or an aryl group.
- the imidazole compound (H) comprises 2,4,5-triphenylimidazole.
- the inorganic filler (D) contains one or more selected from the group consisting of boehmite and silicas.
- the non-halogen epoxy resin (E) is selected from the group consisting of phenol phenyl aralkyl novolac type epoxy resins, phenol biphenyl aralkyl type epoxy resins, naphthol aralkyl type epoxy resins, anthraquinone type epoxy resins, and polyoxynaphthylene type epoxy resins.
- a prepreg comprising: a base material; and the resin composition according to any one of items (1) to (21) impregnated or coated on the base material.
- a laminate comprising one or more layers comprising the prepreg as described in (22) or (23) above.
- a metal foil-clad laminate comprising the prepreg according to (22) or (23) above and a metal foil laminated on the prepreg.
- a resin composition capable of realizing a cured product having high flame retardancy, high heat resistance, low thermal expansion coefficient and excellent drillability, a prepreg containing the resin composition, It is possible to provide a laminate including the prepreg, a metal-clad laminate, and a printed wiring board including the resin composition.
- the resin composition of one embodiment of the present invention comprises a linear polysiloxane (a) having a carboxyl group and a cyclic epoxy compound (b) having an epoxy group, with respect to the carboxyl group of the linear polysiloxane (a).
- Epoxy silicone resin (A), cyanate ester compound (B) and / or phenol resin (C) obtained by reacting so that the epoxy group of the cyclic epoxy compound (b) is 2 to 10 equivalents, and inorganic At least a filler (D).
- the resin composition of another aspect of the present invention comprises a linear polysiloxane (a) having a carboxyl group and a cyclic epoxy compound (b) having an epoxy group as a carboxyl group of the linear polysiloxane (a).
- an epoxy silicone resin (A), a cyanate ester compound (B), and a maleimide compound (F) obtained by reacting so that the epoxy group of the cyclic epoxy compound (b) is 2 to 10 equivalents are pretreated. It contains at least a polymerized BT resin (G) and an inorganic filler (D).
- Epoxy silicone resin (A) The resin composition of this embodiment contains an epoxy silicone resin (A).
- the epoxy silicone resin (A) comprises a linear polysiloxane (a) having a carboxyl group and a cyclic epoxy compound (b) having an epoxy group, the cyclic epoxy with respect to the carboxyl group of the linear polysiloxane (a).
- the compound (b) is obtained by reacting so that the epoxy group is 2 to 10 equivalents.
- the silicone resin which does not have an epoxy group is inferior to affinity with other resin, it exists in the tendency for a moldability and heat resistance to fall.
- a silicone resin to which a cyclic epoxy compound is not bonded via a hemiester group has a tendency to reduce heat resistance because of a low degree of curing.
- Linear polysiloxane having a carboxyl group (a) The linear polysiloxane (a) having a carboxyl group is not particularly limited, but a linear polysiloxane having a carboxyl group at least at both ends is preferable.
- the carboxyl group is more preferably a hemiester group. Examples of the hemiester group include a group represented by the following formula. (R 3 represents a divalent linking group having 2 to 20 carbon atoms which may have a cyclic structure.)
- the divalent substituent of R 3 is not particularly limited, and examples thereof include aliphatic groups such as ethylene group and vinylene group, cyclohexylene group, methylcyclohexylene group, norbornylene group, and methylnorbornylene group. And an aromatic group such as a phenylene group.
- R 3 is preferably a cyclohexylene group and a methylcyclohexylene group from the standpoint of availability and various physical properties when cured.
- linear polysiloxane (a) which has a carboxyl group For example, the method of making the linear polysiloxane which has alcoholic hydroxyl group, and an acid anhydride react is mentioned.
- linear polysiloxane which has an alcoholic hydroxyl group For example, the linear polysiloxane which has the alcoholic hydroxyl group shown by following formula (1) at both ends is mentioned.
- each R 1 independently represents a methyl group or a phenyl group.
- R 1 is preferably a methyl group from the standpoint of availability and physical properties when cured.
- R 2 independently represents a divalent hydrocarbon group having 2 to 20 carbon atoms which may have an etheric oxygen atom inside.
- a divalent hydrocarbon group is not particularly limited.
- R 2 is preferably an alkylene group having 2 to 12 carbon atoms (more preferably a propylene group) or a divalent group represented by the following formula (2) because of the physical properties of the cured product and availability. It is. (In the above formula (2), l represents an integer of 1 to 3)
- n is an integer from 0 to 100, preferably an integer from 0 to 50, and more preferably an integer from 0 to 30.
- n is 100 or less, flame retardancy, heat resistance, and drill workability of the obtained cured product are further improved, and the thermal expansion coefficient tends to be further decreased.
- the linear polysiloxane having an alcoholic hydroxyl group represented by the formula (1) at both ends may be a resin having a molecular weight distribution.
- n represents the average (number average) number of repetitions.
- linear polysiloxane having an alcoholic hydroxyl group at both ends may be used alone or in combination of two or more.
- R 3 represents a divalent linking group having 2 to 20 carbon atoms which may have a cyclic structure.
- a divalent linking group is not particularly limited.
- an aliphatic group such as an ethylene group or a vinylene group
- an alicyclic ring such as a cyclohexylene group, a methylcyclohexylene group, a norbornylene group, or a methylnorbornylene group.
- Aromatic groups such as aromatic groups and phenylene groups.
- R 3 is preferably a cyclohexylene group and a methylcyclohexylene group from the viewpoint of availability and various physical properties when cured.
- the cyclic acid anhydride represented by the formula (3) is not particularly limited, and examples thereof include succinic anhydride, maleic anhydride, phthalic anhydride, hexahydrophthalic anhydride, methylated hexahydrophthalic anhydride, and nadic anhydride. , Hydrogenated nadic anhydride, trimellitic anhydride or pyromellitic anhydride.
- An acid anhydride may be used alone or in combination of two or more.
- the linear polysiloxane (a) having a carboxyl group may be a reaction product (hemiester) of a linear polysiloxane having an alcoholic hydroxyl group, an acid anhydride, and a dihydric alcohol.
- the linear polysiloxane (a) having a carboxyl group can be obtained by the presence of a dihydric alcohol during the reaction between the linear polysiloxane having an alcoholic hydroxyl group and the acid anhydride.
- Specific examples of the structure include a structure in which a hemiester group is bonded to a linear polysiloxane structure through a structure derived from a dihydric alcohol as shown in the following formula.
- R 3 is each independently a divalent linking group having 2 to 20 carbon atoms which may have a cyclic structure, and R 4 is 2 to 100 carbon atoms, preferably 2 to 20 carbon atoms. Valent hydrocarbon group.
- R 4 is a divalent hydrocarbon group having 2 to 100 carbon atoms, preferably 2 to 20 carbon atoms, and has a ring structure, ether bond, carbonyl bond, ester bond, amide bond, sulfone bond inside the hydrocarbon chain. Or you may have a sulfide bond.
- the terminal group in the hydrocarbon group to which the OH group is bonded is preferably an aliphatic carbon group such as methylene or methine or an alicyclic carbon group.
- the dihydric alcohol is not particularly limited.
- a bifunctional alcohol having both ends including a straight-chain bifunctional alcohol and a cycloaliphatic are preferred, and a straight-chain alkylene bifunctional alcohol having 2 to 14 carbon atoms and a cycloaliphatic having 3 to 14 carbon atoms are preferred.
- the bifunctional alcohol containing both terminals is more preferable, and hydrogenated bisphenol A or 1,6-hexanediol is more preferable.
- the dihydric alcohol may be used alone or in combination of two or more.
- the molar ratio of the amount of linear polysiloxane having an alcoholic hydroxyl group to the amount of dihydric alcohol used is not particularly limited, but is preferably 0.1 to 5, and more preferably 0.5 to 2.
- the proportion of the linear polysiloxane structure in the linear polysiloxane (a) is relatively low, and phase separation between the epoxy silicone resin (A) and other components can be further suppressed. , Transparency tends to be improved.
- the molar ratio is 0.1 or more, the proportion of the linear polysiloxane structure in the linear polysiloxane (a) is relatively high, and the brittleness of the resulting cured product is improved.
- the coloring of can also be suppressed.
- the molar ratio of the amount of linear polysiloxane having an alcoholic hydroxyl group to the amount of dihydric alcohol used is within the above range, so that the moldability of a cured product that can improve the compatibility of the resin composition, Flame retardancy, heat resistance, and drill workability are further improved, and the coefficient of thermal expansion tends to be further decreased.
- the amount of the acid anhydride used is preferably 0.01 to 2 equivalents of acid anhydride with respect to 1 equivalent of the total of the alcoholic hydroxyl group of the linear polysiloxane having an alcoholic hydroxyl group and the hydroxyl group of the dihydric alcohol which is an optional component. It is. A component having an alcoholic hydroxyl group may be used excessively from the viewpoint of controlling the curing rate when the thermosetting resin is used and controlling the crosslinking density.
- a linear polysiloxane (a) having a carboxyl group is obtained by a reaction between a linear polysiloxane having an alcoholic hydroxyl group, an acid anhydride, and a dihydric alcohol used as necessary.
- the linear polysiloxane (a) has a hemiester group having an ester group formed by a reaction between an acid anhydride and an alcoholic hydroxyl group, and a free carboxy group generated from the acid anhydride.
- a linear polysiloxane (a) having a carboxyl group is selectively formed.
- the mixture containing the linear polysiloxane (a) having a carboxyl group and the alcohol mixture can be used for the next reaction without separation.
- the reaction temperature for obtaining the linear polysiloxane (a) having a carboxyl group is not particularly limited, and is usually 80 ° C. to 200 ° C., preferably 100 ° C. to 150 ° C. When the reaction temperature is 80 ° C. or higher, the reaction time tends to be shorter. Moreover, when reaction temperature is 200 degrees C or less, it exists in the tendency which can suppress more side reactions like a polymerization reaction and a decomposition reaction. This reaction is preferably carried out until the acid anhydride disappears from the reaction system.
- the reaction for obtaining the linear polysiloxane (a) having a carboxyl group can be carried out without a solvent, but a solvent that does not participate in the reaction may be used for reasons such as increasing the stirring efficiency.
- a solvent which does not participate in reaction For example, aromatic hydrocarbon compounds, such as toluene, xylene, cumene; Linear hydrocarbon compounds, such as undecane and dodecane; Methyl isobutylkenton, cyclopentanone, cyclohexanone, etc. The ketone type compound of these is mentioned.
- Cyclic epoxy resin (b) Although it does not specifically limit as cyclic epoxy resin (b) used by the said reaction, For example, an alicyclic epoxy resin and a heterocyclic epoxy resin are mentioned.
- the cyclic epoxy resin (b) is preferably liquid at room temperature.
- the number of epoxy groups contained in the cyclic epoxy resin (b) is preferably 1 or more, more preferably 2 or more, and further preferably 2.
- the number of epoxy groups which the cyclic epoxy resin (b) has is preferably 10 or less.
- the alicyclic epoxy resin is not particularly limited as long as it is a known alicyclic compound having an epoxy group. Specifically, those described in known books and documents such as “Review Epoxy Resin” (Publishing / Editing: Epoxy Resin Technology Association, Issued: 2003) can be suitably used.
- an alicyclic epoxy resin represented by the following formula (5) (specifically, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate)
- alicyclic epoxy resins represented by the following formula (5) are preferable.
- the heat resistance tends to be superior, and the alicyclic epoxy resin may be used alone or in combination of two or more.
- R 5 represents a divalent hydrocarbon group having 1 to 20 carbon atoms which may have a single bond or an ester bondable oxygen atom.
- the cyclic epoxy resin which has isocyanuric rings such as a triglycidyl isocyanurate, is mentioned.
- the epoxy group of the cyclic epoxy resin (b) is 2 to 10 equivalents relative to the carboxyl group of the hemiester group of the linear polysiloxane (a).
- an epoxy silicone resin (A) can be obtained by making it react.
- the equivalent of the epoxy group to the carboxyl group is 2 to 10 equivalents, preferably 3 to 9 equivalents, more preferably 4 to 8 equivalents.
- the carboxyl group of the linear polysiloxane (a) reacts with the epoxy group of the cyclic epoxy resin (b) to form an ester bond.
- a hydroxyl group is formed.
- generated hydroxyl group, and an ether bond and a hydroxyl group can produce
- the reaction product of the linear polysiloxane (a) having an alcoholic hydroxyl group and the cyclic epoxy resin (b) is usually a mixture containing the epoxy silicone resin (A) and the cyclic epoxy resin (b).
- the epoxy silicone resin (A) and cyclic epoxy resin (b) in this reaction product may be separated or used as a mixture.
- the reaction conditions for the linear polysiloxane (a) having an alcoholic hydroxyl group and the cyclic epoxy resin (b) are not particularly limited because they are general reactions of carboxyl groups and epoxy groups. It can be carried out in a form preferable to the trader.
- the reaction temperature is usually 50 ° C. to 230 ° C., preferably 70 ° C. to 170 ° C.
- the reaction temperature is 50 ° C. or higher, the reaction time tends to be shorter.
- the epoxy equivalent of the epoxy silicone resin (A) is not particularly limited, but preferably from 50 to 1600 g / eq. And more preferably 150 to 800 g / eq. It is.
- an epoxy equivalent can be measured by the method as described in an Example.
- the number average molecular weight of the epoxy silicone resin (A) is not particularly limited, but is preferably 100 to 100,000, more preferably 100 to 10,000, from the viewpoints of handling properties, glass transition temperature, and curability. .
- the number average molecular weight can be measured by a conventional method using gel permeation chromatography.
- the viscosity at 25 ° C. of the epoxy silicone resin (A) is not particularly limited, but is preferably 5 to 1,000 mm 2 / S, more preferably 5 to 600 mm 2 / S from the viewpoint of handling properties.
- the viscosity at 25 ° C. can be measured by the method described in the examples.
- the content of the epoxy silicone resin (A) is as follows: component (A), component (B), component (C), non-halogen epoxy resin (E ) And the maleimide compound (F) in a total of 100 parts by mass, preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass, and still more preferably 15 to 35 parts by mass.
- the content of the epoxy silicone resin (A) in the resin composition of another aspect of the present invention is that of the component (A), the component (G), and the non-halogen epoxy resin (E) contained as an optional component.
- the total amount is 100 to 50 parts by mass, preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass, and still more preferably 15 to 35 parts by mass.
- Cyclone ester compound (B) When the resin composition contains the cyanate ester compound (B), the curability of the resin composition is further improved, and the chemical resistance and adhesiveness of the resulting cured product are further improved.
- a cyanate ester compound (B) For example, the naphthol aralkyl type cyanate ester shown by following formula (6), the novolak type cyanate ester shown by following formula (7), biphenyl aralkyl type cyanide Acid ester, bis (3,5-dimethyl 4-cyanatophenyl) methane, bis (4-cyanatophenyl) methane, 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,3,5- Tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-dicyanatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanaton
- each R 6 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
- n represents an integer of 1 or more.
- the upper limit is usually 10 and preferably 6)
- each R 7 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
- n represents an integer of 1 or more.
- the upper limit is usually 10 and preferably 7)
- the cyanate ester compound (B) may be used alone or in combination of two or more.
- the cyanate ester compound (B) is a naphthol aralkyl cyanate ester represented by the above formula (6), a novolak cyanate ester represented by the above formula (7), and a biphenyl aralkyl cyanate ester. 1 type selected from the group consisting of a naphthol aralkyl type cyanate ester represented by the above formula (6) and a novolak type cyanate ester represented by the above formula (7). More preferably, the above is included.
- a cyanate ester compound (B) By using such a cyanate ester compound (B), a cured product that is superior in flame retardancy, has higher curability, and has a lower thermal expansion coefficient tends to be obtained.
- the method for producing these cyanate ester compounds is not particularly limited, and a known method can be used as a method for synthesizing cyanate ester.
- the known method is not particularly limited.
- a method of reacting a phenol resin and cyanogen halide in an inert organic solvent in the presence of a basic compound, a salt of the phenol resin and the basic compound, water examples thereof include a method of forming in a solution to be contained, and then causing the obtained salt and cyanogen halide to undergo a two-phase interfacial reaction.
- the phenol resin used as a raw material for these cyanate ester compounds is not particularly limited, and examples thereof include naphthol aralkyl type phenol resins, novolac type phenol resins, and biphenyl aralkyl type phenol resins represented by the following formula (8).
- each R 8 independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable.
- n represents an integer of 1 or more.
- N The upper limit of is usually 10 and preferably 6.
- the naphthol aralkyl type phenol resin represented by the formula (8) can be obtained by condensing a naphthol aralkyl resin and cyanic acid.
- the naphthol aralkyl type phenolic resin is not particularly limited, but for example, naphthols such as ⁇ -naphthol and ⁇ -naphthol, p-xylylene glycol, ⁇ , ⁇ ′-dimethoxy-p-xylene, and 1 , 4-di (2-hydroxy-2-propyl) benzene and the like obtained by reaction with benzenes.
- the naphthol aralkyl cyanate ester compound can be selected from those obtained by condensing the naphthol aralkyl resin obtained as described above and cyanic acid.
- the ratio (CN / Ep) of the number of cyanate groups of the cyanate ester compound (B) to the total number of epoxy groups of the compound having an epoxy group in the resin composition is not particularly limited, but preferably 0.7 to 2.5. More preferably, it is 0.8 to 2.0, and further preferably 0.85 to 1.8. When the ratio (CN / Ep) is within the above range, the heat resistance and flame retardancy of the obtained cured product are further improved, and the water absorption tends to be further decreased.
- phenol resin (C) known ones can be used as appropriate, and the kind thereof is not particularly limited, and examples thereof include resins having two or more phenolic hydroxyl groups in one molecule.
- a phenol resin (C) for example, a cresol novolak type phenol resin, a phenol novolak resin, an alkylphenol novolak resin, a bisphenol A type novolak resin, a dicyclopentadiene type phenol resin, a zyloc type phenol resin, a terpene modified phenol
- resins polyvinylphenols, naphthol aralkyl type phenol resins represented by the above formula (8), biphenyl aralkyl type phenol resins represented by the following formula (9), naphthalene type phenol resins, aminotriazine novolac type phenol resins and the like.
- each R 8 independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable.
- n represents an integer of 1 or more.
- N The upper limit of is usually 10 and preferably 6.
- each R9 independently represents a hydrogen atom or a methyl group, and among these, represents a hydrogen atom.
- n represents an integer of 1 or more. The upper limit is usually 10 and preferably 7)
- Phenolic resin (C) may be used alone or in combination of two or more.
- the phenol resin (C) is a cresol novolak type phenol resin, an aminotriazine novolak type phenol resin, a naphthalene type phenol resin, a naphthol aralkyl type phenol resin represented by the above formula (8), and the above formula (9). It is preferable to include at least one selected from the group consisting of the biphenyl aralkyl type phenol resins shown, and a cresol novolac type phenol compound, a naphthol aralkyl type phenol resin represented by the above formula (8), and the above formula (9).
- biphenyl aralkyl type phenol resins and from naphthol aralkyl type phenol resins represented by the above formula (8) and biphenyl aralkyl type phenol resins represented by the above formula (9). It is further preferred to include at least one member selected from the group that.
- the ratio (OH / Ep) of the number of phenol groups of the phenol resin (C) to the total number of epoxy groups of the compound having an epoxy group is preferably It is 0.7 to 2.5, more preferably 0.8 to 2.0, and still more preferably 0.85 to 1.8.
- the ratio (OH / Ep) is 0.7 or more, the glass transition temperature of the obtained cured product tends to be further improved.
- this ratio (OH / Ep) is 2.5 or less, the flame retardancy of the resulting cured product tends to be further improved.
- the content of the cyanate ester compound (B) and the phenol resin (C) in the resin composition is the content of a simple substance when the cyanate ester compound (B) or the phenol resin (C) is used alone, In the case where both are used in combination, the content is the total content because both can function as a curing agent in the resin composition.
- the content of the component (B) and / or the component (C) is not particularly limited, but the component (A), the component (B), the component (C), and any
- the total content of the non-halogen epoxy resin (E) and the maleimide compound (F) contained as components is preferably 10 to 50 parts by mass, more preferably 15 to 45 parts by mass, The amount is preferably 20 to 40 parts by mass.
- the content of the component (B) and / or the component (C) that can be contained is not particularly limited, but as the component (A), the component (G), and an optional component It is preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass, and further preferably 10 to 35 parts by mass with respect to a total of 100 parts by mass of the non-halogen epoxy resin (E) contained. .
- the degree of cure, flame retardancy, glass transition temperature, and elastic modulus of the resulting cured product are further improved.
- the water absorption rate tends to decrease.
- Inorganic filler (D) When a resin composition contains an inorganic filler (D), the thermal expansion coefficient of the hardened
- the inorganic filler (D) is not particularly limited, and examples thereof include those usually used in the art.
- Examples thereof include silicas such as natural silica, fused silica, amorphous silica, and hollow silica; aluminum hydroxide, aluminum hydroxide heat treatment Products (heat treatment of aluminum hydroxide and reduced part of crystal water), metal hydrates such as boehmite and magnesium hydroxide; molybdenum compounds such as molybdenum oxide and zinc molybdate; zinc borate and stannic acid
- silicas such as natural silica, fused silica, amorphous silica, and hollow silica
- aluminum hydroxide aluminum hydroxide heat treatment Products (heat treatment of aluminum hydroxide and reduced part of crystal water), metal hydrates such as boehmite and magnesium hydroxide
- molybdenum compounds such as molybdenum oxide and zinc molybdate
- zinc borate and stannic acid examples thereof include zinc, alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined tal
- the inorganic filler (D) preferably contains at least one selected from the group consisting of silicas, boehmite, magnesium hydroxide, alumina, and talc, and is selected from the group consisting of boehmite and silicas. More preferably, one or more types are included.
- the inorganic filler (D) preferably contains a molybdenum compound or a molybdate compound coated with an inorganic oxide from the viewpoint of drill workability.
- the inorganic filler (D) may be used alone or in combination of two or more.
- the average particle diameter (D50) of the inorganic filler (D) is not particularly limited, but is preferably 0.2 to 5 ⁇ m, more preferably 0.3 to 4 ⁇ m, and further preferably 0.3 to 3 ⁇ m. is there.
- the average particle diameter (D50) of the inorganic filler (D) is within the above range, the dispersibility of the inorganic filler (D) in the resin composition tends to be further improved.
- the “average particle diameter (D50)” is a median diameter (median diameter), and the number or mass on the large side and the number or mass on the small side when the particle size distribution of the measured powder is divided into two. Is the particle size when 50% of the total powder is included.
- the average particle diameter (D50) of the inorganic filler (D) can generally be measured by a wet laser diffraction / scattering method.
- the content of the inorganic filler (D) is not particularly limited, but is contained as a component (A), a component (B), a component (C), and an optional component.
- the total amount of the non-halogen epoxy resin (E) and the maleimide compound (F) is 100 parts by mass, preferably 50 to 400 parts by mass, more preferably 80 to 300 parts by mass, and still more preferably 100 to 250 parts by mass. Part by mass.
- the content of the inorganic filler (D) is not particularly limited, but the component (A), the component (G), and a non-halogen epoxy resin contained as an optional component
- the amount is preferably 50 to 400 parts by weight, more preferably 80 to 300 parts by weight, and still more preferably 100 to 250 parts by weight with respect to 100 parts by weight as a total of (E).
- the obtained cured product tends to further improve the flame retardancy, formability, and drill workability.
- the resin composition includes a silane coupling agent and a wetting dispersant in addition to the inorganic filler (D). May be included.
- the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for inorganic surface treatment.
- ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ - Aminosilane-based coupling agents such as aminopropyltrimethoxysilane; epoxysilane-based coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane; vinylsilane-based coupling agents such as ⁇ -methacryloxypropyltrimethoxysilane; N— Cationic silane coupling agents such as ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride; phenylsilane coupling agents and the like.
- a silane coupling agent can be used alone or in combination of two or more.
- the wetting and dispersing agent is not particularly limited, and examples thereof include Disperbyk (registered trademark) -110, 111, 180, 161, BYK (registered trademark) -W996, W9010, W903, and the like manufactured by Big Chemie Japan. Can be mentioned. Moreover, the dispersion stabilizer currently used for coating materials can also be used.
- Non-halogen epoxy resin (E) The resin composition according to the first and second embodiments preferably further contains a non-halogen epoxy resin (E) (hereinafter also referred to as “component (E)”).
- component (E) a non-halogen epoxy resin
- the resin composition contains the non-halogen epoxy resin (E)
- curability is improved and generation of harmful substances at the time of disposal can be suppressed.
- the resin composition does not contain a compound containing phosphorus element.
- the non-halogen-based epoxy resin (E) is not particularly limited as long as it does not contain a halogen atom in the molecular structure.
- Polyoxynaphthylene type epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, trifunctional phenol type epoxy resin, 4 Epoxidize double bonds such as functional phenol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, aralkyl novolak type epoxy resin,
- the non-halogen epoxy resin (E) is a phenol phenyl aralkyl novolak epoxy resin represented by the following formula (10), a phenol biphenyl aralkyl epoxy resin represented by the following formula (11), and the following formula (12).
- the non-halogen epoxy resin (E) preferably contains one or more, and the anthraquinone type epoxy resin represented by the following formula (13) and the polyoxynaphthyl represented by the following formula (14) or the following formula (15) More preferably, at least one selected from the group consisting of a len-type epoxy resin is included.By using such a non-halogen epoxy resin (E), the thermal expansion coefficient and flame retardancy of the resulting cured product tend to be further reduced.
- the non-halogen epoxy resin (E) can be used alone or in combination of two or more.
- each R 10 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
- n represents an integer of 1 or more. The upper limit is usually 10 and preferably 7)
- each R 11 independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable.
- n represents an integer of 1 or more. The upper limit is usually 10 and preferably 7)
- each R 12 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
- n represents an integer of 1 or more. The upper limit is usually 10 and preferably 7)
- each R 13 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group.
- each R 14 independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aralkyl group.
- a product example of the polyoxynaphthylene type epoxy resin represented by the above formula (14) or formula (15) is not particularly limited.
- 7311-G4, EXA-7311-G4S, EXA-7311L, and HP-6000 are examples of the polyoxynaphthylene type epoxy resin represented by the above formula (14) or formula (15) is not particularly limited.
- 7311-G4, EXA-7311-G4S, EXA-7311L, and HP-6000 is not particularly limited.
- the content of the non-halogen epoxy resin (E) is not particularly limited, but is contained as the component (A), the component (B), the component (C), and an optional component.
- the total amount of the non-halogen epoxy resin (E) and the maleimide compound (F) is 100 parts by mass, preferably 5 to 60 parts by mass, more preferably 10 to 40 parts by mass, and even more preferably 15 parts by mass. ⁇ 40 parts by mass.
- the content of the non-halogen epoxy resin (E) is not particularly limited, but the component (A), the component (G), and a non-halogen-based resin contained as an optional component
- the amount is preferably 5 to 60 parts by mass, more preferably 10 to 40 parts by mass, and further preferably 15 to 40 parts by mass with respect to 100 parts by mass of the total amount of the epoxy resin (E).
- the content of the non-halogen epoxy resin (E) is within the above range, the degree of cure, flame retardancy, glass transition temperature, and elastic modulus of the resulting cured product are further improved, and the water absorption is further decreased. Tend to.
- the resin composition may be used in combination with a phosphorus-containing epoxy resin or a halogenated epoxy resin depending on the intended use.
- the phosphorus-containing epoxy resin is not particularly limited as long as it is a phosphorus atom-containing compound having two or more epoxy groups in one molecule.
- FX-289B, FX-305 (manufactured by Nippon Steel Chemical Co., Ltd.) Can be mentioned.
- the halogenated epoxy resin is not particularly limited as long as it is a halogen atom-containing compound having two or more epoxy groups in one molecule.
- brominated bisphenol A type epoxy resin brominated phenol novolac type epoxy resin, etc.
- examples include brominated epoxy resins.
- the maleimide compound (F) is not particularly limited as long as it is a compound having one or more maleimide groups in one molecule.
- Examples thereof include methane, bis (3,5-diethyl-4-maleimidophenyl) methane, and a maleimide compound represented by the following formula (16); a prepolymer of these maleimide compounds; or a prepolymer of a maleimide compound and an amine compound.
- each R 15 independently represents a hydrogen atom or a methyl group, and among them, a hydrogen atom is preferable.
- n represents an integer of 1 or more.
- the maleimide compound (F) may be used alone or in combination of two or more.
- maleimide compound (F) is bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis (3-ethyl-5-methyl-4).
- -Maleimidophenyl) It preferably contains at least one selected from the group consisting of methane and a maleimide compound represented by the following formula (16), more preferably a maleimide compound represented by the following formula (16).
- the content of the maleimide compound (F) is not particularly limited, but is contained as a component (A), a component (B) and a component (C), and an optional component.
- the total amount of non-halogen epoxy resin (E) and maleimide compound (F) is preferably 100 to 50 parts by weight, more preferably 10 to 40 parts by weight, still more preferably 10 to 35 parts by weight. is there.
- the content of the maleimide compound (F) is not particularly limited, but the component (A), the component (G), and a non-halogen epoxy resin contained as an optional component (
- the total amount of E) is preferably 3 to 50 parts by mass, more preferably 10 to 40 parts by mass, and still more preferably 10 to 35 parts by mass.
- the degree of cure, flame retardancy, glass transition temperature, and elastic modulus of the obtained cured product are further improved, and the water absorption rate tends to be further decreased. is there.
- the resin composition includes a BT resin (G) obtained by prepolymerizing a cyanate ester compound (B) and a maleimide compound (F) (hereinafter also referred to as “BT resin (G)”). By containing BT resin (G), it is more excellent in heat resistance.
- the BT resin (G) can be obtained by premixing the cyanate ester compound (B) and the maleimide compound (F) with or without solvent in a solvent.
- a solvent which can be used, For example, organic solvents, such as methyl ethyl ketone, N methyl pyrodrine, dimethylformamide, dimethylacetamide, toluene, xylene, are mentioned.
- the cyanate ester compound (B) used as a raw material for the BT resin (G) examples include the same ones as described above.
- the cyanate ester compound (B) used as a raw material for the BT resin (G) is a naphthol aralkyl-type cyanate ester compound represented by the above formula (6), or a novolak type cyanate represented by the above formula (7). It preferably contains at least one selected from the group consisting of esters and biphenylaralkyl type cyanate esters, and includes a naphthol aralkyl type cyanate ester compound represented by the above formula (6) and a novolak type represented by the above formula (7).
- cyanate ester compounds More preferably, it contains at least one selected from the group consisting of cyanate ester compounds.
- cyanate ester compound (B) flame retardancy and curability of the obtained cured product are further improved, and the thermal expansion coefficient tends to be further decreased.
- examples of the maleimide compound (F) used as a raw material for the BT resin (G) include the same ones as described above.
- the maleimide compound (F) used as a raw material for the BT resin (G) is bis (4-maleimidophenyl) methane, 2,2-bis ⁇ 4- (4-maleimidophenoxy) -phenyl ⁇ propane, bis ( It preferably contains at least one selected from the group consisting of 3-ethyl-5-methyl-4-maleimidophenyl) methane and a maleimide compound represented by the above formula (16), and is exemplified by the above formula (16). More preferably, it contains a maleimide compound. By using such a maleimide compound (F), it tends to be more excellent in heat resistance.
- the ratio of the maleimide compound (F) in the BT resin (G) is preferably 5 to 75% by mass, more preferably 10 to 70% by mass, even more preferably 100% by mass of the BT resin (G). 20 to 60% by mass.
- the ratio of the maleimide compound (F) in the BT resin (G) is within the above range, the glass transition temperature, flame retardancy, and curability of the obtained cured product tend to be further improved.
- the number average molecular weight of the BT resin (G) is preferably 100 to 100,000, more preferably 200 to 50,000, and further preferably 300 to 10,000. When the number average molecular weight of the BT resin (G) is within the above range, the handling property and curability of the resin composition and the glass transition temperature of the obtained cured product tend to be further improved.
- the content of the BT resin (G) is not particularly limited, but the component (A), the component (G), and the non-halogen epoxy resin (E) contained as an optional component
- the total amount is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass, and still more preferably 40 to 60 parts by mass.
- the degree of cure, flame retardancy, glass transition temperature, and elastic modulus of the obtained cured product are further improved, and the water absorption rate tends to be further decreased. is there.
- the production method of the BT resin (G) is not particularly limited, and a known method can be used.
- the cyanate ester compound (B) and the maleimide compound (F) are heated and mixed by a known method, The method of polymerizing is mentioned.
- the resin composition may further contain an imidazole compound (H).
- the imidazole compound (H) has a curing acceleration effect. Moreover, it exists in the tendency which the glass transition temperature of the hardened
- the imidazole compound (H) is not particularly limited, and examples thereof include an imidazole compound represented by the formula (17) and 2-ethyl-4-methylimidazole.
- each Ar independently represents a phenyl group, a naphthalene group, a biphenyl group, an anthracene group, or a hydroxyl group-modified product of a phenyl group, a naphthalene group, a biphenyl group, or an anthracene group
- R 16 represents A hydrogen atom, an alkyl group, a hydroxyl group-modified product of an alkyl group, or an aryl group.
- Ar is each independently a phenyl group, a naphthalene group, a biphenyl group, an anthracene group or a hydroxyl-modified product thereof. Among these, a phenyl group is preferable.
- R 16 is a hydrogen atom, an alkyl group or a hydroxyl group-modified product thereof, and an aryl group such as a phenyl group. Among these, it is preferable that both Ar and R 16 are phenyl groups.
- the imidazole compound (H) is not particularly limited, for example, 2,4,5-triphenylimidazole and 2-phenyl-4-methylimidazole are preferable. By using such an imidazole compound (H), curability is further improved and the glass transition temperature of the cured product tends to be further improved.
- the content of the imidazole compound is not particularly limited.
- the component (A), the component (B), the component (C), and a non-halogen-based component that is contained as an optional component The amount is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, still more preferably 0.1 to 100 parts by weight of the total of the epoxy resin (E) and the maleimide compound (F). ⁇ 3 parts by mass.
- the total of 100 parts by mass of the component (A), the component (G), and the non-halogen epoxy resin (E) contained as an optional component is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and still more preferably 0.1 to 3 parts by mass.
- the content of the imidazole compound is within the above range, the degree of cure, glass transition temperature, and elastic modulus of the obtained cured product are further improved, and the water absorption rate tends to be further decreased.
- the resin composition may contain other hardening accelerators other than the said imidazole compound as needed.
- a curing accelerator is not particularly limited, and examples thereof include organic compounds exemplified by benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert-butyl-di-perphthalate, and the like.
- the resin composition may contain silicone powder as necessary. Silicone powder acts as a flame retardant aid that delays the burning time and enhances the flame retardant effect. Moreover, it exists in the tendency which drill workability of the hardened
- the silicone powder is not particularly limited.
- a fine powder of polymethylsilsesquioxane in which siloxane bonds are crosslinked in a three-dimensional network addition polymerization of vinyl group-containing dimethylpolysiloxane and methylhydrogenpolysiloxane.
- the surface of the fine powder made by addition of vinyl group-containing dimethylpolysiloxane and methylhydrogenpolysiloxane was coated with polymethylsilsesquioxane in which the siloxane bonds were crosslinked in a three-dimensional network.
- those obtained by coating the surface of an inorganic carrier with polymethylsilsesquioxane in which siloxane bonds are crosslinked in a three-dimensional network were obtained by coating the surface of an inorganic carrier with polymethylsilsesquioxane in which siloxane bonds are crosslinked in a three-dimensional network.
- the average particle size (D50) of the silicone powder is not particularly limited, but the average particle size (D50) is preferably 1 to 15 ⁇ m in consideration of dispersibility.
- the average particle diameter (D50) of a silicone powder can be measured by the method similar to the measuring method of the average particle diameter (D50) of an inorganic filler (D).
- the content of the silicone powder contained as an optional component is not particularly limited, but is contained as the component (A), the component (B), the component (C), and the optional component.
- the total amount of non-halogen epoxy resin (E) and maleimide compound (F) is 100 parts by mass, preferably 3 to 120 parts by mass, more preferably 5 to 80 parts by mass, and still more preferably 10 parts. ⁇ 60.
- the non-halogen epoxy resin (E) contained as an optional component is preferably 3 to 120 parts by mass, more preferably 5 to 80 parts by mass, and still more preferably 10 to 60 parts by mass.
- the obtained cured product tends to have improved flame retardancy, drill workability, and moldability.
- the resin composition may contain a solvent, if necessary.
- the solvent By including the solvent, the viscosity at the time of preparing the resin composition is lowered, the handling property is improved, and the impregnation property of the resin composition to a substrate such as a glass cloth tends to be improved.
- the solvent is not particularly limited as long as it can dissolve the mixture of component (A), component (B) and / or component (C), or the mixture of component (A) and component (B).
- Specific examples thereof include ketones such as acetone, methyl ethyl ketone, and methyl cellosolve; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide; propylene glycol methyl ether and acetate thereof.
- a solvent can be used individually by 1 type or in combination of 2 or more types as appropriate.
- the production method of the resin composition is not particularly limited and can be prepared according to a conventional method.
- the component (A), the component (B), the component (D), and the like are sequentially blended in a solvent, and sufficiently
- the resin composition of this embodiment can be easily prepared by stirring. Thereby, the resin composition which contains a component (A), a component (B) and / or a component (C), a component (D), and the other arbitrary component mentioned above uniformly, or a component (A)
- the resin composition which contains a component (G), a component (D), and the other arbitrary component mentioned above uniformly is obtained.
- an organic solvent can be used as necessary. Although it does not specifically limit as an organic solvent, for example, the mixture of a component (A), a component (B) and / or a component (C), or a mixture of a component (A) and a component (G) is soluble. The thing is mentioned. Specific examples thereof include the same solvents as those that can be contained in the resin composition.
- stirring dispersion processing can be performed using the stirring tank which attached the stirrer which has suitable stirring ability.
- the above stirring, mixing, and kneading treatment can be appropriately performed using, for example, a known device such as a ball mill, a bead mill or the like, or a revolution / spinning type mixing device.
- the prepreg of this embodiment has a base material and a resin composition impregnated or coated on the base material.
- the prepreg according to this embodiment is excellent in flame retardancy, heat resistance, and drillability, and has a low coefficient of thermal expansion.
- the production method of the prepreg is not particularly limited, and may be a conventionally known method. For example, after impregnating or applying the resin composition to the substrate, the prepreg is heated in a dryer at 100 to 200 ° C. for 1 to 30 minutes. For example, a semi-cured (B stage) method may be used.
- the content of the resin composition (including the inorganic filler) is preferably 30 to 90% by mass, more preferably 35 to 80% by mass, and still more preferably 100% by mass of the prepreg. 40 to 75% by mass.
- the content of the resin composition is within the above range, the moldability and the coefficient of thermal expansion tend to be more excellent.
- the substrate is not particularly limited, and a known substrate used for various printed wiring board materials can be appropriately selected and used depending on the intended use and performance.
- a substrate include glass fibers such as E glass, D glass, S glass, Q glass, spherical glass, NE glass and T glass, and inorganic fibers other than glass such as quartz; polyparaphenylene terephthalamide.
- the base material contains one or more selected from the group consisting of E glass cloth, T glass cloth, S glass cloth, Q glass cloth, and organic fibers.
- the shape of the substrate is not particularly limited, and examples thereof include woven fabric, nonwoven fabric, roving, chopped strand mat, and surfacing mat.
- the woven fabric is not particularly limited.
- the woven fabric can be appropriately selected and used depending on the intended use and performance of plain woven fabric, Nanako woven fabric, twill woven fabric, etc., and these can be opened.
- a glass woven fabric that has been surface treated with a silane coupling agent or the like is preferably used.
- the thickness of the substrate is not particularly limited, but usually about 0.01 to 0.3 mm is preferably used.
- the base material is preferably a glass woven fabric having a thickness of 200 ⁇ m or less and a mass of 250 g / m 2 or less, and more preferably a glass woven fabric made of E-glass glass fibers.
- the laminated board of this embodiment contains 1 or more layers which consist of the said prepreg.
- the laminated board of this embodiment is excellent in flame retardancy, heat resistance, and drill workability, and has a low coefficient of thermal expansion.
- a laminated board can be obtained by combining and molding a prepreg and another layer. Although it does not specifically limit as another layer, For example, the wiring board for inner layers produced separately is mentioned.
- the metal foil-clad laminate of this embodiment includes the prepreg and a metal foil laminated on the prepreg.
- the metal foil-clad laminate of this embodiment is excellent in moldability, flame retardancy, heat resistance, and drillability, has a low coefficient of thermal expansion, and as a printed wiring board for a semiconductor package that requires such performance, It can be used particularly effectively.
- the metal foil-clad laminate of this embodiment can be obtained by laminating at least one or more of the prepregs described above, and laminating and molding the metal foil on one or both sides.
- one or a plurality of the prepregs described above are stacked, and a metal foil such as copper or aluminum is arranged on one or both sides as desired, and this is laminated and formed as necessary.
- the metal foil-clad laminate of this embodiment can be produced.
- the metal foil used here is not particularly limited as long as it is used for a printed wiring board material, but a known copper foil such as a rolled copper foil or an electrolytic copper foil is preferable.
- the thickness of the metal foil is not particularly limited, but is preferably 2 to 70 ⁇ m, more preferably 2 to 35 ⁇ m.
- the method for forming the metal foil-clad laminate and the molding conditions thereof are not particularly limited, and general techniques and conditions for a laminate for a printed wiring board and a multilayer board can be applied.
- a multi-stage press, a multi-stage vacuum press, a continuous molding machine, an autoclave molding machine, etc. can be used at the time of forming a metal foil-clad laminate.
- the molding temperature is 100 to 300 ° C.
- the molding pressure is 2 to 100 kgf / cm 2
- the heating time is 0.05 to 5 hours.
- post-curing can be performed at a temperature of 150 to 300 ° C., if necessary.
- it is also possible to make a metal foil-clad laminate by combining and forming the prepreg of this embodiment and a separately produced wiring board for the inner layer.
- the metal foil-clad laminate of this embodiment can be suitably used as a printed wiring board by having a metal foil having a predetermined wiring pattern.
- the printed wiring board of this embodiment includes an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes the resin composition according to the first or second embodiment.
- the printed wiring board according to the present embodiment is excellent in flame retardancy, heat resistance and drill workability, and has a low coefficient of thermal expansion.
- the insulating layer is not particularly limited as long as it is a layer containing the resin composition of the present embodiment, and examples thereof include the prepreg of the present embodiment.
- the conductor layer is not particularly limited, and examples thereof include a layer made of metal foil of a metal foil-clad laminate.
- the printed wiring board of this embodiment can be manufactured by the following method, for example.
- a metal foil-clad laminate such as a copper-clad laminate of this embodiment is prepared.
- An inner layer circuit is formed by etching the surface of the metal foil-clad laminate to produce an inner layer substrate.
- the inner layer circuit surface of the inner layer substrate is subjected to a surface treatment to increase the adhesive strength as necessary, then the required number of prepregs of the present embodiment are stacked on the inner layer circuit surface, and the outer layer circuit metal foil is further provided on the outer surface.
- a multilayer laminate is produced in which an insulating layer made of a cured material of the base material and the thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit.
- a plated metal film is formed on the wall surface of the hole to connect the inner layer circuit and the metal foil for the outer layer circuit. Etching is performed on the metal foil for forming an outer layer circuit, and a printed wiring board is manufactured.
- 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate (epoxy equivalent 130 g / eq.), which is the cyclic epoxy resin (b), is added to the linear polysiloxane (a) having a carboxyl group. 1491 parts by mass were put into a separable flask. At this time, the epoxy group of the cyclic epoxy compound (b) was 4.7 equivalents relative to the carboxyl group of the hemiester group of the linear polysiloxane (a) having a carboxyl group.
- reaction catalyst a 4% acetic acid solution of tetraethylammonium chloride was dropped into a 0.9 part by mass separable flask and reacted at a reaction temperature of 170 ° C. for 5 hours. After sampling and confirming that the carboxyl group disappeared by measuring the acid value, the resin in the reaction mixture was filtered using a 150 mesh wire net. In this way, 2450 parts by mass of epoxy silicone resin A1 was obtained. The epoxy equivalent of the obtained resin was 298 g / eq. The viscosity at room temperature (25 ° C.) was 4.8 Pa ⁇ s.
- the epoxy equivalent of the epoxy silicone resin A1 was measured by titration according to JIS K7236: 2001.
- the viscosity of the epoxy silicone resin A1 at room temperature (25 ° C.) was measured with a B-type viscometer according to JISZ8803.
- the same method was used as a measuring method of epoxy equivalent and viscosity.
- Epoxy silicone resin (A) Epoxy silicone resin A1: Epoxy silicone resin prepared in Synthesis Example 1 (epoxy equivalent: 298 g / eq., Viscosity at room temperature (25 ° C.): 4.8 Pa ⁇ s) Epoxy silicone resin A2: Epoxy silicone resin prepared in Synthesis Example 2 (epoxy equivalent: 249 g / eq., Softening point: 55 ° C., viscosity at 150 ° C .: 0.37 Pa ⁇ s)
- Cyanate ester compound B1 Cyanate ester compound prepared in Synthesis Example 3 (cyanate equivalent: 261 g / eq.)
- Cyanate ester compound B2 2,2-bis (4-cyanatephenyl) propane prepolymer (CA210, manufactured by Mitsubishi Gas Chemical Company, cyanate equivalent: 139 g / eq.)
- Cyanate ester compound B3 Novolak-type cyanate ester compound in which R 7 in formula (7) is all hydrogen atoms (Primerset (registered trademark) PT-30, manufactured by Lonza Japan KK, cyanate equivalent: 124 g / eq. )
- Phenolic resin (C) Phenol resin C1: Naphthalene type phenol resin (EPICLON EXB-9500, manufactured by DIC Corporation, hydroxyl equivalent: 153 g / eq.)
- Phenol resin C2 Biphenyl aralkyl type phenol resin in which R 9 in formula (9) is all hydrogen atoms (KAYAHARD (registered trademark) GPH-103, manufactured by Nippon Kayaku Co., Ltd., hydroxyl equivalent: 231 g / eq.)
- Phenol resin C4 aminotriazine novolac type phenol resin (PHENOLITE LA-3018-50P, manufactured by DIC Corporation, hydroxyl equivalent: 151
- Inorganic filler D1 Spherical fused silica (SC2500-SQ, particle size: 0.5 ⁇ m, manufactured by Admatechs)
- Non-halogen epoxy resin (E) Non-halogen epoxy resin E1: Phenol biphenyl aralkyl epoxy resin (NC-3000-FH, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 320 g / eq.) In which R 11 in formula (11) is all hydrogen atoms
- Maleimide compound F1 A maleimide compound in which R 15 in formula (16) is all hydrogen atoms and n is 2 to 3 (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.)
- Maleimide compound F2 bis (3-ethyl-5-methyl-4maleimidophenyl) methane (BMI-70, manufactured by KAI Kasei Co., Ltd.)
- BT resin (G) BT resin produced in Synthesis Example 4
- BT resin G2 BT resin produced in Synthesis Example 5
- Imidazole compound H 2-ethyl-4-methylimidazole (2E4MZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.)
- Imidazole compound H2 2,4,5-triphenylimidazole in which R 16 and Ar in the formula (17) are phenyl groups (manufactured by Wako Pure Chemical Industries, Ltd.)
- Silane coupling agent Silane coupling agent I1 Z-6040 (manufactured by Toray Dow Coating Co., Ltd., epoxysilane coupling agent)
- Wetting Dispersant Wetting Dispersant J1 (Disperbyk (registered trademark) -161, manufactured by Big Chemie Japan Co., Ltd.)
- Wetting and dispersing agent J2 (Disperbyk (registered trademark) -111, manufactured by Big Chemie Japan Co., Ltd.)
- Silicone powder Silicone powder K1 Silicone rubber powder whose surface is coated with a silicone resin (silicone composite powder KMP-600, manufactured by Shin-Etsu Chemical Co., Ltd.)
- Example 1 17 parts by mass of the epoxy silicone resin A1 obtained in Synthesis Example 1, and a phenol biphenyl aralkyl type epoxy resin (NC-3000-FH, epoxy equivalent: 320 g / eq.) In which R 11 in the above formula (11) is all hydrogen atoms.
- Naphthol aralkyl type phenolic resin (SN-495, manufactured by Nippon Steel Chemical Co., Ltd.), hydroxyl group equivalent: 32 parts by mass of Nippon Kayaku Co., Ltd., and R 8 in the above formula (8) is all hydrogen atoms 236 g / eq.), 36 parts by mass of bis (3-ethyl-5-methyl-4-maleimidophenyl) methane (BMI-70, manufactured by Kay Kasei Co., Ltd.), a silane coupling agent ( 5 parts by mass of Toray Dow Coating Co., Ltd., Wet Dispersant 1 (Disperbyk (registered trademark) -161, manufactured by Big Chemie Japan Co., Ltd.) 1 part by mass, 150 parts by mass of spherical fused silica (SC2500-SQ, particle size: 0.5 ⁇ m, manufactured by Admatex Co., Ltd.), 2-ethyl-4-methylimidazole (2E4MZ, manufactured by Shikoku Chemical
- This varnish was diluted with methyl ethyl ketone, impregnated on a T glass woven fabric having a thickness of 0.1 mm, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 46% by mass.
- Example 2 17 parts by mass of epoxy silicone resin A1 obtained in Synthesis Example 1, 27 parts by mass of polyoxynaphthylene type epoxy resin (HP-6000), and biphenylaralkyl type in which R 9 in the above formula (9) is all hydrogen atoms 18 parts by mass of phenol resin (KAYAHARD (registered trademark) GPH-103, manufactured by Nippon Kayaku Co., Ltd., hydroxyl equivalent: 231 g / eq.), Naphthalene type phenol resin (EPICLON EXB-9500, manufactured by DIC Corporation, hydroxyl group) 18 parts by weight of an equivalent: 153 g / eq.), 3 parts by weight of an aminotriazine novolac resin (PHENOLITE LA-3018-50P, hydroxyl equivalent: 151 g / eq., Manufactured by DIC Corporation), bis (3-ethyl-5 -Methyl-4-maleimidophenyl) methane (BMI-70
- This varnish was diluted with methyl ethyl ketone, impregnated on a T glass woven fabric having a thickness of 0.1 mm, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 46% by mass.
- Example 3 A prepreg was obtained in the same manner as in Example 2 except that 17 parts by mass of the epoxy silicone resin A2 obtained in Synthesis Example 2 was used instead of the epoxy silicone resin A1.
- Example 4 A prepreg was obtained in the same manner as in Example 2 except that 17 parts by mass of maleimide compound (BMI-2300) was used instead of bis (3-ethyl-5-methyl-4maleimidophenyl) methane (BMI-70).
- Example 5 17 parts by mass of epoxy silicone resin A1, 43 parts by mass of polyoxynaphthylene type epoxy resin (HP-6000), ⁇ -naphthol aralkyl type cyanate ester resin obtained in Synthesis Example 3 (cyanate equivalent: 261 g / eq. ), 40 parts by mass of silane coupling agent (Z6040), 1 part by mass of wetting dispersant 1 (Disperbyk (registered trademark) -161), 2 of wetting dispersant (Disperbyk (registered trademark) -111), big 2 parts by mass of Chemie Japan Co., Ltd.) and 200 parts by mass of spherical fused silica (SC2500-SQ) were mixed to obtain a varnish.
- silane coupling agent Z6040
- This varnish was diluted with methyl ethyl ketone, impregnated on a T glass woven fabric having a thickness of 0.1 mm, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 46% by mass.
- Example 6 Except for using 40 parts by mass of 2,2-bis (4-cyanatephenyl) propane prepolymer (CA210, cyanate equivalent weight 139, manufactured by Mitsubishi Gas Chemical Co., Ltd.) instead of ⁇ -naphthol aralkyl type cyanate resin A prepreg was obtained in the same manner as in Example 5.
- CA210 2,2-bis (4-cyanatephenyl) propane prepolymer
- ⁇ -naphthol aralkyl type cyanate resin A prepreg was obtained in the same manner as in Example 5.
- Example 7 Instead of ⁇ -naphthol aralkyl type cyanate ester resin, novolak type cyanate ester resin in which R 7 in formula (7) is all hydrogen atoms (Primaset PT-30, manufactured by Lonza Japan KK, cyanate equivalent: 124 g) / Eq.) A prepreg was obtained in the same manner as in Example 5 except that 40 parts by mass was used.
- Example 8 17 parts by mass of epoxy silicone resin A1 used in Example 1, 21 parts by mass of polyoxynaphthylene type epoxy resin (HP-6000), ⁇ -naphthol aralkyl type cyanate ester resin (cyanate) obtained in Synthesis Example 3
- This varnish was diluted with methyl ethyl ketone, impregnated on a T glass woven fabric having a thickness of 0.1 mm, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 46% by mass.
- Example 9 17 parts by mass of epoxy silicone resin A1 used in Example 1, 21 parts by mass of polyoxynaphthylene type epoxy resin (HP-6000), ⁇ -naphthol aralkyl type cyanate ester resin (cyanate) obtained in Synthesis Example 3
- This varnish was diluted with methyl ethyl ketone, impregnated on a T glass woven fabric having a thickness of 0.1 mm, and dried by heating at 140 ° C. for 3 minutes to obtain a prepreg having a resin content of 46% by mass.
- Example 10 A prepreg was obtained in the same manner as in Example 9 using 26 parts by mass of bis (3-ethyl-5-methyl-4maleimidophenyl) methane (BMI-70) instead of the maleimide compound (BMI-2300).
- Example 11 A prepreg was obtained in the same manner as in Example 9 except that 10 parts by mass of the epoxy silicone resin A1 and 28 parts by mass of the polyoxynaphthylene type epoxy resin (HP-6000) were used.
- Example 12 A prepreg was obtained in the same manner as in Example 9 except that 20 parts by mass of the epoxy silicone resin A1 and 18 parts by mass of the polyoxynaphthylene type epoxy resin (HP-6000) were used.
- Example 13 A prepreg was obtained in the same manner as in Example 9 except that 21 parts by mass of the phenol biphenyl aralkyl type epoxy resin (NC-3000-FH) used in Example 1 was used instead of the polyoxynaphthylene type epoxy resin.
- NC-3000-FH phenol biphenyl aralkyl type epoxy resin
- Example 14 A prepreg was obtained in the same manner as in Example 13 except that 17 parts by mass of the epoxy silicone resin A2 obtained in Synthesis Example 2 was used instead of the epoxy silicone resin A1.
- Example 15 Instead of the polyoxynaphthylene type epoxy resin, a phenol phenylaralkyl novolak type epoxy resin (NC-2000-L, epoxy equivalent: 226 g / eq., Nippon Kayaku (where R 10 in the above formula (10) is all hydrogen atoms) A prepreg was obtained in the same manner as in Example 9 except that 21 parts by mass of (manufactured) was used.
- NC-2000-L epoxy equivalent: 226 g / eq., Nippon Kayaku (where R 10 in the above formula (10) is all hydrogen atoms)
- Example 16 Further, a prepreg was obtained in the same manner as in Example 9 except that 0.01 parts by mass of 2-ethyl-4-methylimidazole (2E4MZ) was added.
- Example 17 A prepreg was obtained in the same manner as in Example 16 except that 17 parts by mass of the epoxy silicone resin A2 obtained in Synthesis Example 2 was used instead of the epoxy silicone resin A1.
- Example 18 The ⁇ -naphthol aralkyl-type cyanate ester resin (cyanate equivalent: 261 g / eq.) Obtained in Synthesis Example 3 was 18 parts by mass, and the maleimide compound (BMI-2300) was 13 parts by mass. A prepreg was obtained in the same manner as in Example 9 except that 31 parts by mass of BT resin G1 (BT resin) was added.
- BT resin G1 BT resin
- Example 19 A prepreg was prepared in the same manner as in Example 9 except that the ⁇ -naphthol aralkyl type cyanate ester resin and maleimide compound obtained in Synthesis Example 3 were not used and 62 parts by mass of BT resin G1 obtained in Synthesis Example 4 was used. Got.
- Example 20 A prepreg was obtained in the same manner as in Example 19 except that 17 parts by mass of the epoxy silicone resin A2 obtained in Synthesis Example 2 was used instead of the epoxy silicone resin A1.
- Example 21 A prepreg was prepared in the same manner as in Example 9 except that the ⁇ -naphthol aralkyl-type cyanate ester resin and maleimide compound obtained in Synthesis Example 3 were not used and 62 parts by mass of BT resin G2 obtained in Synthesis Example 5 was used. Got.
- Example 22 A prepreg was obtained in the same manner as in Example 21 except that 17 parts by mass of the epoxy silicone resin A2 obtained in Synthesis Example 2 was used instead of the epoxy silicone resin A1.
- Example 23 A prepreg was obtained in the same manner as in Example 19, except that 59 parts by mass of the BT resin G1 obtained in Synthesis Example 4 and 3 parts by mass of naphthol aralkyl type phenol resin (SN-495) were used.
- Example 24 19 parts by mass of polyoxynaphthylene type epoxy resin (HP-6000), 32 parts by mass of ⁇ -naphthol aralkyl cyanate ester resin (cyanate equivalent: 261 g / eq.), 32 parts by mass of maleimide compound (BMI-2300) 3 parts by weight of wet dispersant 2 (Disperbyk (registered trademark) -111), 250 parts by weight of spherical fused silica (SC2500-SQ), and a silicone rubber powder (silicone composite powder KMP-600 whose surface is coated with a silicone resin
- the prepreg was obtained in the same manner as in Example 8 except that the content was changed to 50 parts by mass.
- Example 25 A prepreg was obtained in the same manner as in Example 24 except that 17 parts by mass of the epoxy silicone resin A2 obtained in Synthesis Example 2 was used instead of the epoxy silicone resin A1.
- Example 26 A prepreg was obtained in the same manner as in Example 4 except that impregnation coating was performed on a Q glass woven fabric having a thickness of 0.1 mm instead of the T glass woven fabric.
- Example 27 A prepreg was obtained in the same manner as in Example 4 except that an organic woven fabric (Technola, manufactured by Teijin Techno Products Co., Ltd.) was impregnated and coated instead of the E glass woven fabric.
- an organic woven fabric (Technola, manufactured by Teijin Techno Products Co., Ltd.) was impregnated and coated instead of the E glass woven fabric.
- Example 28 A prepreg was obtained in the same manner as in Example 24 except that impregnation coating was performed on a Q glass woven fabric having a thickness of 0.1 mm instead of the T glass woven fabric.
- Example 29 A prepreg was obtained in the same manner as in Example 24 except that an organic woven fabric (Technola, manufactured by Teijin Techno Products Co., Ltd.) was impregnated and coated instead of the E glass woven fabric.
- an organic woven fabric (Technola, manufactured by Teijin Techno Products Co., Ltd.) was impregnated and coated instead of the E glass woven fabric.
- Tables 1 and 2 show the results of evaluating the moldability, heat resistance, and thermal expansion coefficient in the surface direction by the following methods using the obtained copper-clad laminate 1.
- Table 3 shows the results of evaluating drill workability by the following method using the obtained copper-clad laminate 2.
- Formability After removing the copper foil of the copper clad laminate by etching, the surface was observed. Formability was evaluated according to the following evaluation criteria based on the presence or absence of voids. ⁇ : No void ⁇ : There is a void
- the copper clad laminate was floated on the solder maintained at 260 ° C. or 288 ° C., and the time (min) until delamination (delamination) occurred was evaluated.
- Drilling workability The drilling workability was evaluated for Examples 1 to 3 and Comparative Examples 1 and 5. The results are shown in Table 3. In drilling workability evaluation, the number of broken drill bits and hole position accuracy were evaluated under the following drilling conditions. (Drilling conditions) Processing machine: ND-1 V212 manufactured by Hitachi Via Mechanics Co., Ltd. Number of layers: 4 copper-clad laminates Entry sheet: LE400 manufactured by Mitsubishi Gas Chemical Co., Ltd. Backup board: PS-1160D manufactured by Risho Kogyo Co., Ltd. Drill bit: Union Tool Co., Ltd. MD MC 0.18x3.3 L508A) Rotation speed: 200krpm Feeding speed: 2.0m / min Number of hits: 3000
- the number of broken bit holes is the number of statistical holes.
- the hole position accuracy is measured by measuring the amount of positional deviation between the hole position on the back surface of the bottom plate of the laminate and the designated coordinates, and measuring the total amount of positional deviation with respect to the machining hole per drill, An average value and a standard deviation ( ⁇ ) were calculated, and an average value of positional deviation amount + 3 ⁇ was calculated and indicated by the value of 3 ⁇ .
- the resin composition of the resin composition has industrial applicability as a material for a semiconductor plastic package that requires high flame retardancy, low thermal expansion coefficient, high heat resistance, high reliability, and drill workability. .
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Epoxy Resins (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
Abstract
Description
(1)
カルボキシル基を有する直鎖ポリシロキサン(a)とエポキシ基を有する環状エポキシ化合物(b)とを、前記直鎖ポリシロキサン(a)のカルボキシル基に対して前記環状エポキシ化合物(b)のエポキシ基が2~10当量となるように、反応させて得られるエポキシシリコーン樹脂(A)、
シアン酸エステル化合物(B)及び/又はフェノール樹脂(C)、並びに
無機充填材(D)、を少なくとも含有する、
樹脂組成物。
(2)
非ハロゲン系エポキシ樹脂(E)をさらに含有する、前項(1)に記載の樹脂組成物。
(3)
マレイミド化合物(F)をさらに含有する、前項(1)又は(2)に記載の樹脂組成物。
(4)
前記シアン酸エステル化合物(B)が、下記式(6)で示されるナフトールアラルキル型シアン酸エステル化合物及び下記式(7)で示されるノボラック型シアン酸エステル化合物からなる群より選ばれる1種以上を含む、前項(1)~(3)のいずれか1項に記載の樹脂組成物。
(5)
前記フェノール樹脂(C)が、下記式(8)で示されるナフトールアラルキル型フェノール樹脂及び下記式(9)で示されるビフェニルアラルキル型フェノール樹脂からなる群より選ばれる1種以上を含む、前項(1)~(4)のいずれか1項に記載の樹脂組成物。
(6)
前記マレイミド化合物(F)が、下記式(16)で示されるマレイミド化合物を含む、前項(3)~(5)のいずれかに記載の樹脂組成物。
(7)
前記エポキシシリコーン樹脂(A)の含有量が、前記エポキシシリコーン樹脂(A)、前記シアン酸エステル化合物(B)、前記フェノール樹脂(C)、前記非ハロゲン系エポキシ樹脂(E)、及び前記マレイミド化合物(F)の合計100質量部に対し、5~50質量部である、前項(3)~(6)のいずれか1項に記載の樹脂組成物。
(8)
前記シアン酸エステル化合物(B)及び前記フェノール樹脂(C)の合計含有量が、前記エポキシシリコーン樹脂(A)、前記シアン酸エステル化合物(B)、前記フェノール樹脂(C)、前記非ハロゲン系エポキシ樹脂(E)、及び前記マレイミド化合物(F)の合計100質量部に対し、10~50質量部である、前項(3)~(7)のいずれか1項に記載の樹脂組成物。
(9)
前記無機充填材(D)の含有量が、前記エポキシシリコーン樹脂(A)、前記シアン酸エステル化合物(B)、前記フェノール樹脂(C)、前記非ハロゲン系エポキシ樹脂(E)、及び前記マレイミド化合物(F)の合計100質量部に対し、50~400質量部である、前項(3)~(8)のいずれか1項に記載の樹脂組成物。
(10)
前記マレイミド化合物(F)の含有量が、前記エポキシシリコーン樹脂(A)、前記シアン酸エステル化合物(B)、前記フェノール樹脂(C)、前記非ハロゲン系エポキシ樹脂(E)、前記マレイミド化合物(F)の合計100質量部に対し、3~50質量部である、前項(3)~(9)のいずれか1項に記載の樹脂組成物。
(11)
カルボキシル基を有する直鎖ポリシロキサン(a)とエポキシ基を有する環状エポキシ化合物(b)とを、前記直鎖ポリシロキサン(a)のカルボキシル基に対して前記環状エポキシ化合物(b)のエポキシ基が2~10当量となるように、反応させて得られるエポキシシリコーン樹脂(A)、
シアン酸エステル化合物(B)とマレイミド化合物(F)とをプレポリマー化してなるBT樹脂(G)、並びに、
無機充填材(D)を少なくとも含有する、
樹脂組成物。
(12)
非ハロゲン系エポキシ樹脂(E)をさらに含有する、前項(11)に記載の樹脂組成物。
(13)
前記シアン酸エステル化合物(B)が、下記式(6)で示されるナフトールアラルキル型シアン酸エステル化合物及び下記式(7)で示されるノボラック型シアン酸エステル化合物からなる群より選ばれる1種以上を含む、前項(11)又は(12)に記載の樹脂組成物。
(14)
前記マレイミド化合物(F)が、下記式(16)で示されるマレイミド化合物を含む、前項(11)~(13)のいずれか1項に記載の樹脂組成物。
(15)
前記エポキシシリコーン樹脂(A)の含有量が、前記エポキシシリコーン樹脂(A)、前記BT樹脂(G)、及び前記非ハロゲン系エポキシ樹脂(E)の合計100質量部に対し、5~50質量部である、前項(12)~(14)のいずれか1項に記載の樹脂組成物。
(16)
前記BT樹脂(G)の含有量が、前記エポキシシリコーン樹脂(A)、前記BT樹脂(G)、及び前記非ハロゲン系エポキシ樹脂(E)の合計100質量部に対し、20~80質量部である、前項(12)~(15)のいずれか1項に記載の樹脂組成物。
(17)
前記無機充填材(D)の含有量が、前記エポキシシリコーン樹脂(A)、前記BT樹脂(G)、及び前記非ハロゲン系エポキシ樹脂(E)の合計100質量部に対し、50~400質量部である、前項(12)~(16)のいずれか1項に記載の樹脂組成物。
(18)
イミダゾール化合物(H)をさらに含み、
該イミダゾール化合物(H)が、下記式(17)で示されるイミダゾール化合物を含む、前項(1)~(17)のいずれか1項に記載の樹脂組成物。
(19)
前記イミダゾール化合物(H)が、2,4,5-トリフェニルイミダゾールを含む、前項(18)に記載の樹脂組成物。
(20)
前記無機充填材(D)が、ベーマイト及びシリカ類からなる群より選ばれる1種以上を含む、前項(1)~(19)のいずれかに記載の樹脂組成物。
(21)
前記非ハロゲン系エポキシ樹脂(E)が、フェノールフェニルアラルキルノボラック型エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、アントラキノン型エポキシ樹脂、及びポリオキシナフチレン型エポキシ樹脂からなる群より選ばれる1種以上である、前項(2)~(10)及び(12)~(20)のいずれか1項に記載の樹脂組成物。
(22)
基材と、該基材に含浸又は塗布された前項(1)~(21)のいずれか1項に記載の樹脂組成物と、を有する、プリプレグ。
(23)
前記基材が、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス、及び有機繊維からなる群より選ばれる一種以上である、前項(22)に記載のプリプレグ。
(24)
前項(22)又は(23)に記載のプリプレグからなる層を1層以上含む、積層板。
(25)
前項(22)又は(23)に記載のプリプレグと、該プリプレグ上に積層された金属箔と、を含む、金属箔張積層板。
(26)
絶縁層と、該絶縁層の表面に形成された導体層と、を含み、
前記絶縁層が、前項(1)~(21)のいずれか1項に記載の樹脂組成物を含む、プリント配線板。
本発明の一態様の樹脂組成物は、カルボキシル基を有する直鎖ポリシロキサン(a)とエポキシ基を有する環状エポキシ化合物(b)とを、前記直鎖ポリシロキサン(a)のカルボキシル基に対して前記環状エポキシ化合物(b)のエポキシ基が2~10当量となるように、反応させて得られるエポキシシリコーン樹脂(A)、シアン酸エステル化合物(B)及び/又はフェノール樹脂(C)、並びに無機充填材(D)、を少なくとも含有する。
本実施形態の樹脂組成物は、エポキシシリコーン樹脂(A)を含む。エポキシシリコーン樹脂(A)は、カルボキシル基を有する直鎖ポリシロキサン(a)とエポキシ基を有する環状エポキシ化合物(b)とを、前記直鎖ポリシロキサン(a)のカルボキシル基に対して前記環状エポキシ化合物(b)のエポキシ基が2~10当量となるように、反応させて得られるものである。このようなエポキシシリコーン樹脂(A)を含むことにより、樹脂組成物を用いて得られる硬化物の熱膨張率がより低下し、耐熱性も向上する。また、エポキシシリコーン樹脂(A)と、他の成分とを併用することにより、得られる硬化物の難燃性、耐熱性、及びドリル加工性がより向上し、熱膨張率がより低下する。
カルボキシル基を有する直鎖ポリシロキサン(a)は、特に限定されないが、少なくとも両末端にカルボキシル基を有する直鎖ポリシロキサンが好ましい。また、カルボキシル基は、ヘミエステル基であることがより好ましい。ヘミエステル基とは、例えば、下記式で示される基がある。
HO-R4-OH (4)
上記反応で使用する環状エポキシ樹脂(b)としては、特に限定されないが、例えば、脂環式エポキシ樹脂、及び複素環式エポキシ樹脂が挙げられる。なお、環状エポキシ樹脂(b)は、室温で液状であるものが好ましい。環状エポキシ樹脂(b)が有するエポキシ基の数は、好ましくは1以上であり、より好ましくは2以上であり、さらに好ましくは2である。また、環状エポキシ樹脂(b)が有するエポキシ基の数は、好ましくは10以下である。
直鎖ポリシロキサン(a)と環状エポキシ樹脂(b)とを、直鎖ポリシロキサン(a)のヘミエステル基のカルボキシル基に対して、環状エポキシ樹脂(b)のエポキシ基が2~10当量となるように、反応させることによりエポキシシリコーン樹脂(A)を得ることができる。ここで、カルボキシル基に対するエポキシ基の当量は、2~10当量であり、好ましくは3~9当量であり、より好ましくは4~8当量である。カルボキシル基に対するエポキシ基の当量が上記範囲内であることにより、エポキシシリコーン樹脂(A)のゲル化がより防止され、硬化物の脆性がより改善し、長期耐熱試験での着色がより防止される傾向にある。
樹脂組成物がシアン酸エステル化合物(B)を含むことにより、樹脂組成物の硬化性がより向上し、得られる硬化物の耐薬品性、接着性がより向上する。シアン酸エステル化合物(B)としては、特に限定されないが、例えば、下記式(6)で示されるナフトールアラルキル型シアン酸エステル、下記式(7)で示されるノボラック型シアン酸エステル、ビフェニルアラルキル型シアン酸エステル、ビス(3,5-ジメチル4-シアナトフェニル)メタン、ビス(4-シアナトフェニル)メタン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2、7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4、4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、及び2、2’-ビス(4-シアナトフェニル)プロパン;これらシアン酸エステル化合物のプレポリマー等が挙げられる。
樹脂組成物がフェノール樹脂(C)を含むことにより、樹脂組成物の硬化性がより向上し、硬化物の耐熱性がより向上する傾向にある。
樹脂組成物が無機充填材(D)を含むことにより、得られる硬化物の熱膨張率がより低下し、耐燃性がより向上する。無機充填材(D)は、特に限定されず当業界において通常用いられるものが挙げられ、例えば、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類;水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物;酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物;ホウ酸亜鉛、錫酸亜鉛、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(EガラスやDガラスなどのガラス微粉末類)、中空ガラス、球状ガラスなどが挙げられる。
第1及び第2の実施形態に係る樹脂組成物は、非ハロゲン系エポキシ樹脂(E)(以下「成分(E)」ともいう。)をさらに含有することが好ましい。樹脂組成物が非ハロゲン系エポキシ樹脂(E)を含むことにより、硬化性が向上し、また、廃棄時の有害物質の発生を抑制することができる。なお、同様の理由により、樹脂組成物は、リン元素を含む化合物を含まないほうが好ましい。
さらに、樹脂組成物は、求められる用途によりリン含有エポキシ樹脂やハロゲン化エポキシ樹脂も併用することができる。
樹脂組成物がマレイミド化合物(F)を含むことにより、耐熱性により優れる傾向にある。
樹脂組成物は、シアン酸エステル化合物(B)及びマレイミド化合物(F)をプレポリマー化してなるBT樹脂(G)(以下、「BT樹脂(G)」ともいう。)を含む。BT樹脂(G)を含むことにより、耐熱性により優れる。
樹脂組成物は、イミダゾール化合物(H)をさらに含んでもよい。イミダゾール化合物(H)は硬化促進の作用を有する。また、イミダゾール化合物(H)を用いることにより、得られる硬化物のガラス転移温度がより向上する傾向にある。
また、樹脂組成物は、必要に応じて、前記イミダゾール化合物以外の他の硬化促進剤を含んでもよい。このような硬化促進剤としては、特に限定されないが、例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート等で例示される有機過酸化物;アゾビスニトリル当のアゾ化合物;N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジンなどの第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコールなどのフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄などの有機金属塩;これら有機金属塩をフェノール、ビスフェノールなどの水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイドなどの有機錫化合物などが挙げられる。
樹脂組成物は、必要に応じて、シリコーンパウダーを含んでもよい。シリコーンパウダーは燃焼時間を遅らせ、難燃効果を高める難燃助剤としての作用がある。また、硬度が低いシリコーンパウダーを含むことにより、得られる硬化物のドリル加工性がより向上する傾向にある。
さらに、樹脂組成物は、必要に応じて、溶剤を含んでもよい。溶剤を含むことにより、樹脂組成物の調製時における粘度が下がり、ハンドリング性が向上するとともに、樹脂組成物のガラスクロス等の基材への含浸性がより向上する傾向にある。
樹脂組成物の製造方法としては、特に限定されず常法にしたがって調製することができ、例えば、成分(A)、成分(B)、及び成分(D)などを順次溶剤に配合し、十分に攪拌することで本実施形態の樹脂組成物を容易に調製することができる。これにより、成分(A)と、成分(B)及び/又は成分(C)と、成分(D)と、上述したその他の任意成分とを均一に含有する樹脂組成物、又は成分(A)と、成分(G)と、成分(D)と、上述したその他の任意成分とを均一に含有する樹脂組成物が得られる。
本実施形態のプリプレグは、基材と、該基材に含浸又は塗布された樹脂組成物と、を有する。本実施形態に係るプリプレグは、難燃性、耐熱性、及びドリル加工性に優れ、熱膨張率が低いものとなる。プリプレグの製造方法としては、特に限定されず従来公知の方法が挙げられ、例えば、樹脂組成物を基材に含浸又は塗布させた後、100~200℃の乾燥機中で1~30分加熱するなどして半硬化(Bステ-ジ化)させる方法が挙げられる。
本実施形態の積層板は、上記プリプレグからなる層を1層以上含む。本実施形態の積層板は、難燃性、耐熱性、及びドリル加工性に優れ、熱膨張率が低いものとなる。積層板は、プリプレグと、他層とを組み合わせて積層成形することにより、得ることができる。他層としては、特に限定されないが、例えば、別途作製した内層用の配線板が挙げられる。
本実施形態の金属箔張積層板は、上記プリプレグと、該プリプレグ上に積層された金属箔と、を含む。本実施形態の金属箔張積層板は、成形性、難燃性、耐熱性、及びドリル加工性に優れ、熱膨張率が低く、そのような性能が要求される半導体パッケージ用プリント配線板として、殊に有効に用いることができる。本実施形態の金属箔張積層板は、上述のプリプレグを少なくとも1枚以上重ね、その片面もしくは両面に金属箔を配して積層成形することにより、得ることができる。具体的には、前述のプリプレグを1枚あるいは複数枚以上を重ね、所望によりその片面もしくは両面に銅やアルミニウムなどの金属箔を配置した構成とし、これを必要に応じて積層成形することにより、本実施形態の金属箔張積層板を作製することができる。
本実施形態のプリント配線板は、絶縁層と、該絶縁層の表面に形成された導体層と、を含み、絶縁層が、第1又は第2の実施形態に係る樹脂組成物を含む。本実施形態に係るプリント配線板は、難燃性、耐熱性、及びドリル加工性に優れ、熱膨張率が低いものとなる。
ポリシロキサンとして、XF42-C3294(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製;一般式(1)において、R1がメチル基、nが8、R2が一般式(2)で示され、lの平均が1.5であるアルコール性水酸基を両末端に有する直鎖ポリジメチルシロキサン化合物:アルコール性水酸基当量480g/mol)887質量部、及び酸無水物成分としてヘキサヒドロ無水フタル酸285質量部を使用した。
ポリシロキサン(XF42-C3294)47質量部、アルコール化合物として水素化ビスフェノールA(アルコール性水酸基当量120g/mol)12質量部、酸無水物としてヘキサヒドロ無水フタル酸31質量部を使用した。ポリシロキサン/アルコール化合物のモル比は1であり、ポリシロキサンとアルコール化合物の合計1モルに対して、酸無水物は2モルである。
温度計、攪拌器、滴下漏斗及び還流冷却器を取りつけた反応器を予めブラインにより0~5℃に冷却しておき、そこへ塩化シアン7.47g(0.122mol)、35%塩酸9.75g(0.0935mol)、水76mL、及び塩化メチレン44mLを仕込んだ。
合成例3で作製したシアン酸エステル化合物B1(シアネート当量:261g/eq.)36質量部と、式(16)におけるR15がすべて水素原子であり、nが2~3であるマレイミド化合物(BMI-2300、大和化成工業(株)製)24質量部をジメチルアセトアミドに溶解し、150℃で攪拌しながら反応させ、BT樹脂G1を得た。
合成例3で作製したシアン酸エステル化合物B1(シアネート当量:261g/eq.)30質量部とマレイミド化合物(BMI-2300)30質量部をジメチルアセトアミドに溶解し、150℃で攪拌しながら反応させ、BT樹脂G2を得た。
以下、実施例及び比較例で用いた成分を列記する。
エポキシシリコーン樹脂A1:合成例1で作製したエポキシシリコーン樹脂(エポキシ当量:298g/eq.、室温(25℃)における粘度:4.8Pa・s)
エポキシシリコーン樹脂A2:合成例2で作製したエポキシシリコーン樹脂(エポキシ当量:249g/eq.、軟化点:55℃、150℃における粘度:0.37Pa・s)
シアン酸エステル化合物B1:合成例3で作製したシアン酸エステル化合物(シアネート当量:261g/eq.)
シアン酸エステル化合物B2:2,2-ビス(4-シアネートフェニル)プロパンのプレポリマー(CA210、三菱ガス化学(株)製、シアネート当量:139g/eq.)
シアン酸エステル化合物B3:式(7)におけるR7がすべて水素原子であるノボラック型シアン酸エステル化合物(プリマセット(登録商標)PT-30、ロンザジャパン(株)製、シアネート当量:124g/eq.)
フェノール樹脂C1:ナフタレン型フェノール樹脂(EPICLON EXB-9500、DIC(株)製、水酸基当量:153g/eq.)
フェノール樹脂C2:式(9)におけるR9がすべて水素原子であるビフェニルアラルキル型フェノール樹脂(KAYAHARD(登録商標) GPH-103、日本化薬(株)製、水酸基当量:231g/eq.)
フェノール樹脂C3:式(8)におけるR8がすべて水素原子であるナフトールアラルキル型フェノール樹脂(SN-495、新日鐵化学(株)製、水酸基当量:236g/eq.)
フェノール樹脂C4:アミノトリアジンノボラック型フェノール樹脂(PHENOLITE LA-3018-50P、DIC(株)製、水酸基当量:151g/eq.)
無機充填剤D1:球状溶融シリカ(SC2500-SQ、粒径:0.5μm、アドマテックス(株)製)
非ハロゲン系エポキシ樹脂E1:式(11)におけるR11がすべて水素原子であるフェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH、日本化薬(株)製、エポキシ当量:320g/eq.)
非ハロゲン系エポキシ樹脂E2:ポリオキシナフチレン型エポキシ樹脂(HP-6000、DIC(株)製、エポキシ当量:250g/eq.)
非ハロゲン系エポキシ樹脂E3:式(10)におけるR10がすべて水素原子であるフェノールフェニルアラルキルノボラック型エポキシ樹脂(NC-2000-L、日本化薬(株)製、エポキシ当量:226g/eq.)
マレイミド化合物F1:式(16)におけるR15がすべて水素原子であり、nが2~3であるマレイミド化合物(BMI-2300、大和化成工業(株)製)
マレイミド化合物F2:ビス(3-エチル-5-メチル-4マレイミドフェニル)メタン(BMI-70、ケイ・アイ化成(株)製)
BT樹脂G1:合成例4で作製したBT樹脂
BT樹脂G2:合成例5で作製したBT樹脂
イミダゾール化合物H1:2-エチル-4-メチルイミダゾール(2E4MZ、四国化成工業(株)製)
イミダゾール化合物H2:式(17)におけるR16及びArがフェニル基である2,4,5-トリフェニルイミダゾール(和光純薬工業(株)製)
シランカップリング剤I1:Z-6040(東レ・ダウコーティング(株)製、エポキシシラン系カップリング剤)
湿潤分散剤J1(Disperbyk(登録商標)-161、ビッグケミージャパン(株)製)
湿潤分散剤J2(Disperbyk(登録商標)-111、ビッグケミージャパン(株)製)
シリコーンパウダーK1:シリコーンレジンで表面を被覆したシリコーンゴムパウダー(シリコーン複合パウダーKMP-600、信越化学工業(株)製)
合成例1で得られたエポキシシリコーン樹脂A1を17質量部、上記式(11)におけるR11がすべて水素原子であるフェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH,エポキシ当量:320g/eq.、日本化薬(株)製)を32質量部、上記式(8)におけるR8がすべて水素原子であるナフトールアラルキル型フェノール樹脂(SN-495、新日鐵化学(株)製、水酸基当量:236g/eq.)を36質量部、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン(BMI-70、ケイ・アイ化成(株)製)を15質量部、シランカップリング剤(東レ・ダウコーティング(株)製)5質量部、湿潤分散剤1(Disperbyk(登録商標)-161、ビッグケミージャパン(株)製)を1質量部、球状溶融シリカ(SC2500-SQ、粒径:0.5μm、アドマテックス(株)製)を150質量部、2-エチル-4-メチルイミダゾール(2E4MZ、四国化成工業(株)製)0.02質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量46質量%のプリプレグを得た。
合成例1で得られたエポキシシリコーン樹脂A1を17質量部、ポリオキシナフチレン型エポキシ樹脂(HP-6000)を27質量部、上記式(9)におけるR9がすべて水素原子であるビフェニルアラルキル型フェノール樹脂(KAYAHARD(登録商標) GPH-103、日本化薬(株)製、水酸基当量:231g/eq.)を18質量部、ナフタレン型フェノール樹脂(EPICLON EXB-9500、DIC(株)製、水酸基当量:153g/eq.)を18質量部、アミノトリアジンノボラック樹脂(PHENOLITE LA-3018-50P、水酸基当量:151g/eq.、DIC(株)製)を3質量部、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン(BMI-70)を17質量部、シランカップリング剤(Z6040、東レ・ダウコーティング(株)製)を5質量部、湿潤分散剤1(Disperbyk(登録商標)-161)を1質量部、球状溶融シリカ(SC2500-SQ)を150質量部、イミダゾール(2E4MZ、四国化成工業(株)製)を0.02質量部混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量46質量%のプリプレグを得た。
エポキシシリコーン樹脂A1の代わりに合成例2で得られたエポキシシリコーン樹脂A2を17質量部使用した以外は実施例2と同様にしてプリプレグを得た。
ビス(3-エチル-5-メチル-4マレイミドフェニル)メタン(BMI-70)の代わりにマレイミド化合物(BMI-2300)を17質量部使用した以外は実施例2と同様にしてプリプレグを得た。
エポキシシリコーン樹脂A1を17質量部、ポリオキシナフチレン型エポキシ樹脂(HP-6000)を43質量部、合成例3で得られたα-ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:261g/eq.)を40質量部、シランカップリング剤(Z6040)を5質量部、湿潤分散剤1(Disperbyk(登録商標)-161)を1質量部、湿潤分散剤2(Disperbyk(登録商標)-111、ビッグケミージャパン(株)製)2質量部、球状溶融シリカ(SC2500-SQ)を200質量部混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量46質量%のプリプレグを得た。
α-ナフトールアラルキル型シアン酸エステル樹脂の代わりに2,2-ビス(4-シアネートフェニル)プロパンのプレポリマー(CA210、シアネート当量139、三菱ガス化学(株)製)を40質量部使用した以外は実施例5と同様にしてプリプレグを得た。
α-ナフトールアラルキル型シアン酸エステル樹脂の代わりに上記式(7)におけるR7がすべて水素原子であるノボラック型シアン酸エステル樹脂(プリマセットPT-30、ロンザジャパン(株)製、シアネート当量:124g/eq.)を40質量部使用した以外は実施例5と同様にしてプリプレグを得た。
実施例1で使用したエポキシシリコーン樹脂A1を17質量部、ポリオキシナフチレン型エポキシ樹脂(HP-6000)を21質量部、合成例3で得られたα-ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:261g/eq.)を36質量部、マレイミド化合物(BMI-2300)を26質量部、シランカップリング剤(Z6040)を5質量部、湿潤分散剤1(Disperbyk(登録商標)-161)を1質量部、湿潤分散剤2(Disperbyk(登録商標)-111)を2質量部、球状溶融シリカ(SC2500-SQ)を180質量部、シリコーンレジンで表面を被覆したシリコーンゴムパウダー(シリコーン複合パウダーKMP-600、信越化学工業(株)製)25質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量46質量%のプリプレグを得た。
実施例1で使用したエポキシシリコーン樹脂A1を17質量部、ポリオキシナフチレン型エポキシ樹脂(HP-6000)を21質量部、合成例3で得られたα-ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:261g/eq.)を36質量部、マレイミド化合物(BMI-2300)を26質量部、シランカップリング剤(Z6040)を5質量部、湿潤分散剤1(disperbyk-161)を1質量部、湿潤分散剤2(disperbyk-111)を2質量部、球状溶融シリカ(SC2500-SQ)を200質量部、上記式(17)におけるR16及びArがフェニル基である2,4,5-トリフェニルイミダゾール(和光純薬工業(株)製)を1質量部混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのTガラス織布に含浸塗工し、140℃で3分間加熱乾燥して、樹脂含有量46質量%のプリプレグを得た。
マレイミド化合物(BMI-2300)の代わりにビス(3-エチル-5-メチル-4マレイミドフェニル)メタン(BMI-70)を26質量部使用した実施例9と同様にしてプリプレグを得た。
エポキシシリコーン樹脂A1を10質量部、ポリオキシナフチレン型エポキシ樹脂(HP-6000)を28質量部とした以外は実施例9と同様にしてプリプレグを得た。
エポキシシリコーン樹脂A1を20質量部、ポリオキシナフチレン型エポキシ樹脂(HP-6000)を18質量部とした以外は実施例9と同様にしてプリプレグを得た。
ポリオキシナフチレン型エポキシ樹脂の代わりに実施例1で使用したフェノールビフェニルアラルキル型エポキシ樹脂(NC-3000-FH)を21質量部使用した以外は実施例9と同様にしてプリプレグを得た。
エポキシシリコーン樹脂A1の代わりに合成例2で得られたエポキシシリコーン樹脂A2を17質量部使用した以外は実施例13と同様にしてプリプレグを得た。
ポリオキシナフチレン型エポキシ樹脂の代わりに上記式(10)におけるR10がすべて水素原子であるフェノールフェニルアラルキルノボラック型エポキシ樹脂(NC-2000-L,エポキシ当量:226g/eq.、日本化薬(株)製)を21質量部使用した以外は実施例9と同様にしてプリプレグを得た。
さらに2-エチル-4-メチルイミダゾール(2E4MZ)を0.01質量部加えた以外は実施例9と同様にしてプリプレグを得た。
エポキシシリコーン樹脂A1の代わりに合成例2で得られたエポキシシリコーン樹脂A2を17質量部使用した以外は実施例16と同様にしてプリプレグを得た。
合成例3で得られたα-ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:261g/eq.)を18質量部、マレイミド化合物(BMI-2300)を13質量部とし、合成例4で得られたBT樹脂G1(BT樹脂)を31質量部加えた以外は実施例9と同様にしてプリプレグを得た。
合成例3で得られたα-ナフトールアラルキル型シアン酸エステル樹脂及びマレイミド化合物を使用せず、合成例4で得られたBT樹脂G1を62質量部使用した以外は実施例9と同様にしてプリプレグを得た。
エポキシシリコーン樹脂A1の代わりに合成例2で得られたエポキシシリコーン樹脂A2を17質量部使用した以外は実施例19と同様にしてプリプレグを得た。
合成例3で得られたα-ナフトールアラルキル型シアン酸エステル樹脂及びマレイミド化合物を使用せず、合成例5で得られたBT樹脂G2を62質量部使用した以外は実施例9と同様にしてプリプレグを得た。
エポキシシリコーン樹脂A1の代わりに合成例2で得られたエポキシシリコーン樹脂A2を17質量部使用した以外は実施例21と同様にしてプリプレグを得た。
合成例4で得られたBT樹脂G1を59質量部とし、さらにナフトールアラルキル型フェノール樹脂(SN-495)を3質量部使用した以外は実施例19と同様にしてプリプレグを得た。
ポリオキシナフチレン型エポキシ樹脂(HP-6000)を19質量部、α-ナフトールアラルキル型シアン酸エステル樹脂(シアネート当量:261g/eq.)を32質量部、マレイミド化合物(BMI-2300)を32質量部、湿潤分散剤2(Disperbyk(登録商標)-111)を3質量部、球状溶融シリカ(SC2500-SQ)を250質量部、シリコーンレジンで表面を被覆したシリコーンゴムパウダー(シリコーン複合パウダーKMP-600)を50質量部とした以外は実施例8と同様にしてプリプレグを得た。
エポキシシリコーン樹脂A1の代わりに合成例2で得られたエポキシシリコーン樹脂A2を17質量部使用した以外は実施例24と同様にしてプリプレグを得た。
Tガラス織布の代わりに厚さ0.1mmのQガラス織布に含浸塗工した以外は実施例4と同様にしてプリプレグを得た。
Eガラス織布の代わりに有機織布(テクノ-ラ、帝人テクノプロダクツ(株)製)に含浸塗工した以外は実施例4と同様にしてプリプレグを得た。
Tガラス織布の代わりに厚さ0.1mmのQガラス織布に含浸塗工した以外は実施例24と同様にしてプリプレグを得た。
Eガラス織布の代わりに有機織布(テクノ-ラ、帝人テクノプロダクツ(株)製)に含浸塗工した以外は実施例24と同様にしてプリプレグを得た。
エポキシシリコーン樹脂A1を使用せず、ポリオキシナフチレン型エポキシ樹脂(HP-6000)を44質量部にした以外は実施例2と同様にしてプリプレグを得た。
エポキシシリコーン樹脂A1を使用せず、ポリオキシナフチレン型エポキシ樹脂(HP-6000)を38質量部にした以外は実施例11と同様にしてプリプレグを得た。
エポキシシリコーン樹脂A1を使用せず、ポリオキシナフチレン型エポキシ樹脂(HP-6000)を38質量部にした以外は実施例19と同様にしてプリプレグを得た。
エポキシシリコーン樹脂A2を使用せず、ポリオキシナフチレン型エポキシ樹脂(HP-6000)を38質量部にした以外は実施例21と同様にしてプリプレグを得た。
球状溶融シリカを250質量部にした以外は比較例1と同様にしてプリプレグを得た。
実施例1~29及び比較例1~5で得られたプリプレグを、それぞれ2枚重ね、重ねられたプリプレグの上下に12μm厚の電解銅箔(3EC-III、三井金属鉱業(株)製)を配置し、圧力30kgf/cm2、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.2mmの銅張積層板1を得た。
成形性、耐熱性、面方向の熱膨張率、及びドリル加工性の評価は下記方法にて行った。
銅張積層板の銅箔をエッチングにより除去したのちに、表面を観察した。ボイドの有無に基づいて下記評価基準で成形性を評価した。
○:ボイドなし
×:ボイドあり
銅張積層板を260℃、又は、288℃に保たれた半田の上に浮かべ、デラミネーション(層間剥離)が発生するまでの時間(min)を評価した。
銅張積層板の銅箔をエッチングにより除去したのちに、熱機械分析装置(TAインスツルメント製)で40℃から340℃まで毎分10℃で昇温し、60℃から120℃での面方向の線膨張率(ppm/℃)を測定した。測定方向は積層板のガラスクロスの縦方向(Warp)とした。
実施例1~3、比較例1、5についてドリル加工性を評価した。結果を表3に示す。ドリル加工性評価は、ドリルビット折損ヒット数、孔位置精度を下記のドリル加工条件で評価した。
(ドリル加工条件)
加工機 :日立ビアメカニクス(株)製 ND-1 V212
重ね数 :銅張積層板4枚
エントリーシート :三菱瓦斯化学(株)製 LE400
バックアップボード:利昌工業(株)製 PS-1160D
ドリルビット :ユニオンツール(株)製 MD MC 0.18x3.3 L508A)
回転数 :200krpm
送り速度 :2.0m/min
ヒット数 :3000
Claims (26)
- カルボキシル基を有する直鎖ポリシロキサン(a)とエポキシ基を有する環状エポキシ化合物(b)とを、前記直鎖ポリシロキサン(a)のカルボキシル基に対して前記環状エポキシ化合物(b)のエポキシ基が2~10当量となるように、反応させて得られるエポキシシリコーン樹脂(A)、
シアン酸エステル化合物(B)及び/又はフェノール樹脂(C)、並びに
無機充填材(D)、を少なくとも含有する、
樹脂組成物。 - 非ハロゲン系エポキシ樹脂(E)をさらに含有する、請求項1に記載の樹脂組成物。
- マレイミド化合物(F)をさらに含有する、請求項1又は2に記載の樹脂組成物。
- 前記エポキシシリコーン樹脂(A)の含有量が、前記エポキシシリコーン樹脂(A)、前記シアン酸エステル化合物(B)、前記フェノール樹脂(C)、前記非ハロゲン系エポキシ樹脂(E)、及び前記マレイミド化合物(F)の合計100質量部に対し、5~50質量部である、請求項3~6のいずれか1項に記載の樹脂組成物。
- 前記シアン酸エステル化合物(B)及び前記フェノール樹脂(C)の合計含有量が、前記エポキシシリコーン樹脂(A)、前記シアン酸エステル化合物(B)、前記フェノール樹脂(C)、前記非ハロゲン系エポキシ樹脂(E)、及び前記マレイミド化合物(F)の合計100質量部に対し、10~50質量部である、請求項3~7のいずれか1項に記載の樹脂組成物。
- 前記無機充填材(D)の含有量が、前記エポキシシリコーン樹脂(A)、前記シアン酸エステル化合物(B)、前記フェノール樹脂(C)、前記非ハロゲン系エポキシ樹脂(E)、及び前記マレイミド化合物(F)の合計100質量部に対し、50~400質量部である、請求項3~8のいずれか1項に記載の樹脂組成物。
- 前記マレイミド化合物(F)の含有量が、前記エポキシシリコーン樹脂(A)、前記シアン酸エステル化合物(B)、前記フェノール樹脂(C)、前記非ハロゲン系エポキシ樹脂(E)、前記マレイミド化合物(F)の合計100質量部に対し、3~50質量部である、請求項3~9のいずれか1項に記載の樹脂組成物。
- カルボキシル基を有する直鎖ポリシロキサン(a)とエポキシ基を有する環状エポキシ化合物(b)とを、前記直鎖ポリシロキサン(a)のカルボキシル基に対して前記環状エポキシ化合物(b)のエポキシ基が2~10当量となるように、反応させて得られるエポキシシリコーン樹脂(A)、
シアン酸エステル化合物(B)とマレイミド化合物(F)とをプレポリマー化してなるBT樹脂(G)、並びに、
無機充填材(D)を少なくとも含有する、
樹脂組成物。 - 非ハロゲン系エポキシ樹脂(E)をさらに含有する、請求項11に記載の樹脂組成物。
- 前記エポキシシリコーン樹脂(A)の含有量が、前記エポキシシリコーン樹脂(A)、前記BT樹脂(G)、及び前記非ハロゲン系エポキシ樹脂(E)の合計100質量部に対し、5~50質量部である、請求項12~14のいずれか1項に記載の樹脂組成物。
- 前記BT樹脂(G)の含有量が、前記エポキシシリコーン樹脂(A)、前記BT樹脂(G)、及び前記非ハロゲン系エポキシ樹脂(E)の合計100質量部に対し、20~80質量部である、請求項12~15のいずれか1項に記載の樹脂組成物。
- 前記無機充填材(D)の含有量が、前記エポキシシリコーン樹脂(A)、前記BT樹脂(G)、及び前記非ハロゲン系エポキシ樹脂(E)の合計100質量部に対し、50~400質量部である、請求項12~16のいずれか1項に記載の樹脂組成物。
- 前記イミダゾール化合物(H)が、2,4,5-トリフェニルイミダゾールを含む、請求項18に記載の樹脂組成物。
- 前記無機充填材(D)が、ベーマイト及びシリカ類からなる群より選ばれる1種以上を含む、請求項1~19のいずれかに記載の樹脂組成物。
- 前記非ハロゲン系エポキシ樹脂(E)が、フェノールフェニルアラルキルノボラック型エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、アントラキノン型エポキシ樹脂、及びポリオキシナフチレン型エポキシ樹脂からなる群より選ばれる1種以上である、請求項2~10及び12~20のいずれか1項に記載の樹脂組成物。
- 基材と、該基材に含浸又は塗布された請求項1~21のいずれか1項に記載の樹脂組成物と、を有する、プリプレグ。
- 前記基材が、Eガラスクロス、Tガラスクロス、Sガラスクロス、Qガラスクロス、及び有機繊維からなる群より選ばれる一種以上である、請求項22に記載のプリプレグ。
- 請求項22又は23に記載のプリプレグからなる層を1層以上含む、積層板。
- 請求項22又は23に記載のプリプレグと、該プリプレグ上に積層された金属箔と、を含む、金属箔張積層板。
- 絶縁層と、該絶縁層の表面に形成された導体層と、を含み、
前記絶縁層が、請求項1~21のいずれか1項に記載の樹脂組成物を含む、プリント配線板。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380054571.7A CN104736589B (zh) | 2012-10-19 | 2013-10-18 | 树脂组合物、预浸料、层压板、覆金属箔层压板以及印刷电路板 |
US14/435,574 US10030141B2 (en) | 2012-10-19 | 2013-10-18 | Resin composition, pre-preg, laminate, metal foil-clad laminate, and printed wiring board |
KR1020157008591A KR102094567B1 (ko) | 2012-10-19 | 2013-10-18 | 수지 조성물, 프리프레그, 적층판, 금속박 피복 적층판 및 프린트 배선판 |
JP2014542205A JP6314829B2 (ja) | 2012-10-19 | 2013-10-18 | 樹脂組成物、プリプレグ、積層板、金属箔張積層板及びプリント配線板 |
EP13847148.7A EP2910587B1 (en) | 2012-10-19 | 2013-10-18 | Resin composition, prepreg, laminate plate, metallic foil clad laminate, and printed circuit board |
SG11201502604RA SG11201502604RA (en) | 2012-10-19 | 2013-10-18 | Resin composition, prepreg, laminate plate, metallic foil clad laminate, and printed circuit board |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012231631 | 2012-10-19 | ||
JP2012-231631 | 2012-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014061811A1 true WO2014061811A1 (ja) | 2014-04-24 |
Family
ID=50488366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/078388 WO2014061811A1 (ja) | 2012-10-19 | 2013-10-18 | 樹脂組成物、プリプレグ、積層板、金属箔張積層板及びプリント配線板 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10030141B2 (ja) |
EP (1) | EP2910587B1 (ja) |
JP (1) | JP6314829B2 (ja) |
KR (1) | KR102094567B1 (ja) |
CN (1) | CN104736589B (ja) |
SG (1) | SG11201502604RA (ja) |
TW (2) | TWI599616B (ja) |
WO (1) | WO2014061811A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014122339A (ja) * | 2012-11-26 | 2014-07-03 | Hitachi Chemical Co Ltd | 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板、及び実装基板、並びに熱硬化性樹脂組成物の製造方法 |
JP2015063585A (ja) * | 2013-09-24 | 2015-04-09 | 日立化成株式会社 | 熱硬化性樹脂組成物並びにそれを用いたプリプレグ、積層板、プリント配線板、及び実装基板 |
JP2015224305A (ja) * | 2014-05-28 | 2015-12-14 | 日立化成株式会社 | プリプレグ、積層板及び多層プリント配線板 |
CN106285450A (zh) * | 2016-08-30 | 2017-01-04 | 国网河南省电力公司南阳供电公司 | 一种带有绝缘防护层的电力检修折叠梯 |
JP2017071705A (ja) * | 2015-10-08 | 2017-04-13 | 日本化薬株式会社 | エポキシ樹脂混合物、エポキシ樹脂組成物およびその硬化物 |
KR101822803B1 (ko) | 2014-12-18 | 2018-01-29 | 미츠비시 가스 가가쿠 가부시키가이샤 | 시안산에스테르 화합물 및 그 제조 방법, 수지 조성물, 그리고, 경화물 |
JP2019014858A (ja) * | 2017-07-11 | 2019-01-31 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 |
JPWO2020129248A1 (ja) * | 2018-12-21 | 2021-12-02 | 昭和電工マテリアルズ株式会社 | 封止用樹脂組成物及び電子部品装置 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016066705A (ja) * | 2014-09-25 | 2016-04-28 | イビデン株式会社 | プリント配線板およびその製造方法 |
JP6413915B2 (ja) * | 2015-05-11 | 2018-10-31 | 信越化学工業株式会社 | 半導体封止用樹脂組成物及びその硬化物を備えた半導体装置 |
JP2017088656A (ja) | 2015-11-04 | 2017-05-25 | 信越化学工業株式会社 | 難燃性樹脂組成物、難燃性樹脂フィルム及び半導体装置とその製造方法 |
CN105199103B (zh) * | 2015-11-06 | 2017-08-22 | 苏州太湖电工新材料股份有限公司 | 一种含硅改性耐高温氰酸酯树脂、其制备方法及应用 |
CN106916180B (zh) * | 2015-12-25 | 2019-04-30 | 广东生益科技股份有限公司 | 多元酚化合物、制备方法及用途 |
CN108546493B (zh) * | 2016-07-31 | 2020-09-18 | 鹤山市欧克特电子科技有限公司 | 一种环氧树脂涂料及其应用 |
EP3733746A4 (en) * | 2017-12-27 | 2021-12-15 | Mitsubishi Gas Chemical Company, Inc. | RESIN COMPOSITION, PREPREG, LAMINATE, METAL FOIL LAMINATE, CIRCUIT BOARD AND MULTI-LAYER CIRCUIT BOARD |
US11702504B2 (en) * | 2018-08-09 | 2023-07-18 | Mitsubishi Gas Chemical Company, Inc. | Resin composition for printed wiring board, prepreg, laminate, metal foil-clad laminate, printed wiring board, and multilayer printed wiring board |
CN111378136B (zh) * | 2020-05-06 | 2022-02-08 | 苏州生益科技有限公司 | 活性酯树脂及其制备方法、热固性树脂组合物、半固化片、绝缘薄膜、层压板和印刷电路板 |
JP7131713B2 (ja) * | 2020-06-02 | 2022-09-06 | 住友ベークライト株式会社 | 摩擦材用フェノール樹脂組成物 |
GB202103456D0 (en) | 2021-03-12 | 2021-04-28 | Rolls Royce Plc | Phenolic triazine silicon polymer resin blends |
DE102022202324A1 (de) * | 2022-03-08 | 2023-09-14 | Siemens Aktiengesellschaft | Prepreg, Teilleiterisolation und elektrische rotierende Maschine mit Teilleiterisolation |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0366722A (ja) * | 1989-08-03 | 1991-03-22 | Hitachi Chem Co Ltd | 半導体封止用エポキシ樹脂組成物 |
JPH03197529A (ja) * | 1989-12-26 | 1991-08-28 | Hitachi Chem Co Ltd | 半導体封止用エポキシ樹脂成形材料 |
JPH05295088A (ja) * | 1992-04-16 | 1993-11-09 | Mitsubishi Gas Chem Co Inc | 積層板用樹脂組成物およびその積層板 |
JPH06228415A (ja) * | 1993-02-05 | 1994-08-16 | Mitsubishi Gas Chem Co Inc | 積層板用樹脂組成物と積層板 |
JPH0848001A (ja) | 1994-08-08 | 1996-02-20 | Matsushita Electric Works Ltd | 銅張積層板 |
JP2000158589A (ja) | 1998-11-30 | 2000-06-13 | Shin Kobe Electric Mach Co Ltd | 金属箔張り積層板の製造法 |
JP3173332B2 (ja) | 1995-03-13 | 2001-06-04 | 新神戸電機株式会社 | 金属箔張り積層板の製造法 |
JP2003105057A (ja) * | 2001-09-28 | 2003-04-09 | Toray Ind Inc | エポキシ樹脂組成物及び半導体装置 |
JP2003246849A (ja) | 2002-02-26 | 2003-09-05 | Shin Kobe Electric Mach Co Ltd | エポキシ樹脂組成物、ならびにそれを用いたプリプレグ、積層板及びプリント配線板 |
JP2003252960A (ja) * | 2002-03-05 | 2003-09-10 | Toray Ind Inc | エポキシ樹脂組成物及びそれを用いた樹脂封止型半導体装置 |
JP2006143973A (ja) | 2004-11-24 | 2006-06-08 | Matsushita Electric Works Ltd | エポキシ樹脂組成物、並びにプリプレグ、積層板、プリント配線板 |
JP2008266573A (ja) * | 2007-03-28 | 2008-11-06 | Sumitomo Bakelite Co Ltd | 半導体封止用エポキシ樹脂組成物及び半導体装置 |
JP2009035728A (ja) | 2007-07-12 | 2009-02-19 | Mitsubishi Gas Chem Co Inc | プリプレグ及び積層板 |
WO2011108524A1 (ja) * | 2010-03-02 | 2011-09-09 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、および積層板 |
WO2011132674A1 (ja) * | 2010-04-21 | 2011-10-27 | 三菱瓦斯化学株式会社 | 熱硬化性組成物 |
WO2011152402A1 (ja) * | 2010-06-02 | 2011-12-08 | 三菱瓦斯化学株式会社 | 樹脂組成物およびこれを用いたプリプレグ及び積層板 |
WO2012029690A1 (ja) * | 2010-08-31 | 2012-03-08 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、および積層板 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY159179A (en) * | 2004-03-16 | 2016-12-30 | Sumitomo Bakelite Co | Epoxy resin composition and semiconductor device. |
JP3173332U (ja) | 2011-11-17 | 2012-02-02 | 奇▲こう▼科技股▲ふん▼有限公司 | 含油軸受ファン構造 |
-
2013
- 2013-10-18 WO PCT/JP2013/078388 patent/WO2014061811A1/ja active Application Filing
- 2013-10-18 EP EP13847148.7A patent/EP2910587B1/en active Active
- 2013-10-18 JP JP2014542205A patent/JP6314829B2/ja active Active
- 2013-10-18 CN CN201380054571.7A patent/CN104736589B/zh active Active
- 2013-10-18 KR KR1020157008591A patent/KR102094567B1/ko active IP Right Grant
- 2013-10-18 SG SG11201502604RA patent/SG11201502604RA/en unknown
- 2013-10-18 US US14/435,574 patent/US10030141B2/en active Active
- 2013-10-21 TW TW102137950A patent/TWI599616B/zh active
- 2013-10-21 TW TW106113188A patent/TWI614312B/zh active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0366722A (ja) * | 1989-08-03 | 1991-03-22 | Hitachi Chem Co Ltd | 半導体封止用エポキシ樹脂組成物 |
JPH03197529A (ja) * | 1989-12-26 | 1991-08-28 | Hitachi Chem Co Ltd | 半導体封止用エポキシ樹脂成形材料 |
JPH05295088A (ja) * | 1992-04-16 | 1993-11-09 | Mitsubishi Gas Chem Co Inc | 積層板用樹脂組成物およびその積層板 |
JPH06228415A (ja) * | 1993-02-05 | 1994-08-16 | Mitsubishi Gas Chem Co Inc | 積層板用樹脂組成物と積層板 |
JPH0848001A (ja) | 1994-08-08 | 1996-02-20 | Matsushita Electric Works Ltd | 銅張積層板 |
JP3173332B2 (ja) | 1995-03-13 | 2001-06-04 | 新神戸電機株式会社 | 金属箔張り積層板の製造法 |
JP2000158589A (ja) | 1998-11-30 | 2000-06-13 | Shin Kobe Electric Mach Co Ltd | 金属箔張り積層板の製造法 |
JP2003105057A (ja) * | 2001-09-28 | 2003-04-09 | Toray Ind Inc | エポキシ樹脂組成物及び半導体装置 |
JP2003246849A (ja) | 2002-02-26 | 2003-09-05 | Shin Kobe Electric Mach Co Ltd | エポキシ樹脂組成物、ならびにそれを用いたプリプレグ、積層板及びプリント配線板 |
JP2003252960A (ja) * | 2002-03-05 | 2003-09-10 | Toray Ind Inc | エポキシ樹脂組成物及びそれを用いた樹脂封止型半導体装置 |
JP2006143973A (ja) | 2004-11-24 | 2006-06-08 | Matsushita Electric Works Ltd | エポキシ樹脂組成物、並びにプリプレグ、積層板、プリント配線板 |
JP2008266573A (ja) * | 2007-03-28 | 2008-11-06 | Sumitomo Bakelite Co Ltd | 半導体封止用エポキシ樹脂組成物及び半導体装置 |
JP2009035728A (ja) | 2007-07-12 | 2009-02-19 | Mitsubishi Gas Chem Co Inc | プリプレグ及び積層板 |
WO2011108524A1 (ja) * | 2010-03-02 | 2011-09-09 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、および積層板 |
WO2011132674A1 (ja) * | 2010-04-21 | 2011-10-27 | 三菱瓦斯化学株式会社 | 熱硬化性組成物 |
WO2011152402A1 (ja) * | 2010-06-02 | 2011-12-08 | 三菱瓦斯化学株式会社 | 樹脂組成物およびこれを用いたプリプレグ及び積層板 |
WO2012029690A1 (ja) * | 2010-08-31 | 2012-03-08 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、および積層板 |
Non-Patent Citations (1)
Title |
---|
"Sosetsu: Epokisi Jusi (Review of epoxy resin", 2003, THE JAPAN SOCIETY OF EPOXY RESIN TECHNOLOGY |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014122339A (ja) * | 2012-11-26 | 2014-07-03 | Hitachi Chemical Co Ltd | 熱硬化性樹脂組成物、プリプレグ、積層板、プリント配線板、及び実装基板、並びに熱硬化性樹脂組成物の製造方法 |
JP2015063585A (ja) * | 2013-09-24 | 2015-04-09 | 日立化成株式会社 | 熱硬化性樹脂組成物並びにそれを用いたプリプレグ、積層板、プリント配線板、及び実装基板 |
JP2015224305A (ja) * | 2014-05-28 | 2015-12-14 | 日立化成株式会社 | プリプレグ、積層板及び多層プリント配線板 |
KR101822803B1 (ko) | 2014-12-18 | 2018-01-29 | 미츠비시 가스 가가쿠 가부시키가이샤 | 시안산에스테르 화합물 및 그 제조 방법, 수지 조성물, 그리고, 경화물 |
JP2017071705A (ja) * | 2015-10-08 | 2017-04-13 | 日本化薬株式会社 | エポキシ樹脂混合物、エポキシ樹脂組成物およびその硬化物 |
CN106285450A (zh) * | 2016-08-30 | 2017-01-04 | 国网河南省电力公司南阳供电公司 | 一种带有绝缘防护层的电力检修折叠梯 |
JP2019014858A (ja) * | 2017-07-11 | 2019-01-31 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 |
JPWO2020129248A1 (ja) * | 2018-12-21 | 2021-12-02 | 昭和電工マテリアルズ株式会社 | 封止用樹脂組成物及び電子部品装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20150073965A (ko) | 2015-07-01 |
TWI614312B (zh) | 2018-02-11 |
KR102094567B1 (ko) | 2020-03-27 |
SG11201502604RA (en) | 2015-05-28 |
TW201422725A (zh) | 2014-06-16 |
TW201725244A (zh) | 2017-07-16 |
CN104736589B (zh) | 2017-05-24 |
JP6314829B2 (ja) | 2018-04-25 |
TWI599616B (zh) | 2017-09-21 |
EP2910587B1 (en) | 2019-07-17 |
EP2910587A1 (en) | 2015-08-26 |
EP2910587A4 (en) | 2016-06-22 |
CN104736589A (zh) | 2015-06-24 |
JPWO2014061811A1 (ja) | 2016-09-05 |
US10030141B2 (en) | 2018-07-24 |
US20150307708A1 (en) | 2015-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6314829B2 (ja) | 樹脂組成物、プリプレグ、積層板、金属箔張積層板及びプリント配線板 | |
JP5849948B2 (ja) | 樹脂組成物およびこれを用いたプリプレグ及び積層板 | |
JP6071117B2 (ja) | 樹脂組成物、プリプレグ、および積層板 | |
JP5024205B2 (ja) | プリプレグ及び積層板 | |
JP6314830B2 (ja) | 樹脂組成物、プリプレグ、積層板、及びプリント配線板 | |
TWI408052B (zh) | 預浸片及積層板 | |
JP6414799B2 (ja) | 樹脂組成物、プリプレグ、積層板、金属箔張積層板及びプリント配線板 | |
JP5999369B2 (ja) | 樹脂組成物ならびにこれを用いたプリプレグおよび積層板 | |
TWI596153B (zh) | Resin composition, prepreg and laminated board | |
JP6157121B2 (ja) | 樹脂組成物、プリプレグ、および積層板 | |
TWI658058B (zh) | Resin composition, pre-stain and laminate | |
JP5692062B2 (ja) | 樹脂溶液の保存方法、並びに、プリプレグ及び積層板の製造方法 | |
KR102376567B1 (ko) | 수지 조성물 및 그 제조 방법, 프리프레그, 레진 시트, 적층판, 금속박 피복 적층판, 그리고 프린트 배선판 | |
JP2015147869A (ja) | プリント配線板用樹脂組成物、プリプレグ、積層板及びプリント配線板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13847148 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014542205 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157008591 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14435574 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013847148 Country of ref document: EP |