WO2014051067A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2014051067A1
WO2014051067A1 PCT/JP2013/076296 JP2013076296W WO2014051067A1 WO 2014051067 A1 WO2014051067 A1 WO 2014051067A1 JP 2013076296 W JP2013076296 W JP 2013076296W WO 2014051067 A1 WO2014051067 A1 WO 2014051067A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
mass
polymer
negative electrode
Prior art date
Application number
PCT/JP2013/076296
Other languages
English (en)
French (fr)
Inventor
拓己 杉本
郁也 召田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020147030177A priority Critical patent/KR102060429B1/ko
Priority to CN201380027027.3A priority patent/CN104396060B/zh
Priority to JP2014538635A priority patent/JP6168063B2/ja
Publication of WO2014051067A1 publication Critical patent/WO2014051067A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery, and more particularly to a lithium ion secondary battery capable of increasing the capacity.
  • portable terminals such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants) have been widely used.
  • a secondary battery used for the power source of these portable terminals a nickel hydrogen secondary battery, a lithium ion secondary battery, and the like are frequently used.
  • Mobile terminals are required to have more comfortable portability, and are rapidly becoming smaller, thinner, lighter, and higher in performance. As a result, mobile terminals are used in various places.
  • batteries are required to be smaller, thinner, lighter, and higher performance, as with mobile terminals.
  • the binder for fixing the active material on the current collector and the conductive material for ensuring conductivity It is required to reduce materials such as.
  • Patent Document 1 For the purpose of increasing the capacity of lithium ion secondary batteries, a negative electrode for lithium ion secondary batteries using an alloy-based active material containing Si or the like has been developed (for example, Patent Document 1). Along with the increase in capacity, the voltage during charging and discharging is also increasing, and electrolytes composed of ethylene carbonate, propylene carbonate, etc. cannot withstand high voltages and may decompose, so combined with fluorine electrolyte additives It has also been done.
  • a fluorine-containing polymer such as polyvinylidene fluoride (PVdF) has been used as a binder for forming the electrode layer. Since the fluorine-containing polymer is not dissolved in the electrolytic solution, stable binding properties are expected, but fluorine-containing polymers such as PVdF are hard and difficult to bend. For this reason, depending on the shape and size of the battery, when only the fluorine-containing polymer is used when the electrode is wound and then crushed and formed into a predetermined shape, cracks may occur in the electrode layer.
  • PVdF polyvinylidene fluoride
  • Patent Document 2 a fluorine-containing polymer and nitrile rubber are used in combination as a binder for forming an electrode layer of a lithium ion secondary battery.
  • the active material density relatively decreases, so that a sufficient battery capacity may not be obtained.
  • the degree of swelling of the electrode layer with respect to the electrolytic solution also increases, and the peel strength particularly at the time of a high potential cycle is lowered, and the cycle characteristics may be deteriorated.
  • Patent Document 3 a fluorine-containing polymer and a crosslinked acrylate polymer are used in combination as a binder.
  • the cross-linked acrylate polymer since the cross-linked acrylate polymer is used, swelling of the electrode layer with respect to the electrolytic solution is suppressed.
  • the cross-linked acrylate polymer since the cross-linked acrylate polymer is present in the form of particles, the dispersibility becomes insufficient. Cycle characteristics may deteriorate.
  • an object of the present invention is to provide a high-capacity lithium ion secondary battery that is flexible, does not generate cracks in the electrode layer when bent, and has excellent high potential cycle characteristics.
  • the present inventors have used a nitrile group-containing acrylic polymer as a binder for the positive electrode, and the swelling degree of the nitrile group-containing acrylic polymer with respect to the nonaqueous electrolyte solution and By setting the THF-insoluble content in a specific range, the nitrile group-containing acrylic polymer dissolves in the dispersion medium of the positive electrode slurry composition but does not dissolve in the electrolyte solution having a similar solubility parameter (SP value). It was found that it can be swollen in an appropriate range.
  • SP value solubility parameter
  • the capacity can be increased, and as a binder for the positive electrode, the nitrile group-containing material can be used.
  • acrylic polymer and fluorine-containing polymer in combination, it is flexible, there is no generation of cracks in the electrode layer when bent, and an electrode with a high active material density can be obtained.
  • output characteristics and high potential cycle characteristics It was found that an excellent high-capacity lithium ion secondary battery can be obtained. The present invention has been completed based on these findings.
  • the gist of the present invention is as follows.
  • a lithium ion secondary battery comprising a negative electrode, a positive electrode and a non-aqueous electrolyte,
  • the negative electrode includes an alloy-based active material
  • the positive electrode includes a positive electrode active material, a positive electrode binder and a conductive material
  • the positive electrode binder includes a nitrile group-containing acrylic polymer and a fluorine-containing polymer,
  • the degree of swelling of the nitrile group-containing acrylic polymer with respect to the non-aqueous electrolyte is 3 times or less, and the THF-insoluble content is 30% by mass or less.
  • the conductive material has a particle size of 5 to 40 nm. Lithium ion secondary battery.
  • the content ratio of the nitrile group-containing acrylic polymer is 50 to 5% by mass and the content ratio of the fluorine-containing polymer is 50 to 95% by mass.
  • an alloy-based active material is used for the negative electrode in order to improve capacity
  • a conductive material powder finely divided is used for the positive electrode
  • a fluorine-containing polymer and a nitrile group-containing acrylic polymer are used as a binder.
  • the lithium ion secondary battery according to the present invention includes a negative electrode, a positive electrode, and a non-aqueous electrolyte.
  • the negative electrode includes an alloy-based active material
  • the positive electrode includes a positive electrode active material, a positive electrode binder, and a conductive material.
  • the positive electrode binder includes a nitrile group-containing acrylic polymer and a fluorine-containing polymer.
  • the swelling degree of the nitrile group-containing acrylic polymer with respect to the nonaqueous electrolytic solution is 3 times or less, and the THF insoluble content is 30% by mass or less.
  • the particle diameter of the positive electrode conductive material is 5 to 40 nm.
  • the negative electrode includes a current collector and a negative electrode active material layer laminated on the current collector.
  • the negative electrode active material layer contains, as the negative electrode active material (a), an alloy-based active material (a1) and, if necessary, other carbon-based active materials (a2).
  • the negative electrode active material is a substance that delivers electrons (lithium ions) in the negative electrode.
  • an alloy-based active material (a1) is used, and a carbon-based active material (a2) can be used as necessary.
  • the negative electrode active material preferably includes an alloy-based active material and a carbon-based active material.
  • An alloy-based active material includes an element into which lithium can be inserted, and has a theoretical electric capacity of 500 mAh / g or more when lithium is inserted (the upper limit of the theoretical electric capacity) Is not particularly limited, but can be, for example, 5000 mAh / g or less.), Specifically, a single metal forming a lithium alloy and an alloy thereof, and oxides and sulfides thereof Nitride, silicide, carbide, phosphide and the like are used.
  • Examples of simple metals and alloys that form lithium alloys include Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, and Zn.
  • the compound to contain is mentioned.
  • silicon (Si), tin (Sn) or lead (Pb) simple metals, alloys containing these atoms, or compounds of these metals are preferable.
  • a Si simple metal capable of inserting and extracting lithium at a low potential is more preferable.
  • the alloy-based active material may further contain one or more nonmetallic elements.
  • SiOC, SiO x , and SiC that can insert and desorb lithium at a low potential are preferable, and SiOC SiO x is more preferred.
  • SiOC can be obtained by firing a polymer material containing silicon.
  • the range of 0.8 ⁇ x ⁇ 3 and 2 ⁇ y ⁇ 4 is preferably used in view of the balance between capacity and cycle characteristics.
  • Lithium alloy-forming elemental metal and its oxides, sulfides, nitrides, silicides, carbides and phosphides include lithium-insertable element oxides, sulfides, nitrides, silicides and carbides And phosphides, and oxides are particularly preferable.
  • an oxide such as tin oxide, manganese oxide, titanium oxide, niobium oxide, vanadium oxide, or a lithium-containing metal composite oxide containing a metal element selected from the group consisting of Si, Sn, Pb, and Ti atoms is preferable.
  • a lithium titanium composite oxide represented by Li x Ti y M z O 4 (0.7 ⁇ x ⁇ 1.5, 1.5 ⁇ y ⁇ 2.3, 0 ⁇ z ⁇ 1.6, M includes Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb), among which Li 4/3 Ti 5/3 O 4 , Li 1 Ti 2 O 4 and Li 4/5 Ti 11/5 O 4 are preferred.
  • active materials containing silicon are preferable. By using an active material containing silicon, the electric capacity of the secondary battery can be increased. Furthermore, among the active materials containing silicon, SiO x C y , SiO x , and SiC are more preferable. In an active material containing a combination of silicon and carbon, it is assumed that Si (silicon) is inserted at a high potential, and Li is inserted into and desorbed from C (carbon) at a low potential. Since the shrinkage is suppressed, the effect of the present invention is more easily obtained.
  • the alloy-based active material is preferably a particle-sized one.
  • the shape of the particles is spherical, a higher density electrode can be formed during electrode molding.
  • the volume average particle diameter is preferably 0.1 to 50 ⁇ m, more preferably 0.5 to 20 ⁇ m, and particularly preferably 1 to 10 ⁇ m.
  • the volume average particle diameter of the alloy-based active material is within this range, the slurry composition used for producing the negative electrode can be easily produced.
  • the volume average particle diameter in this invention can be calculated
  • the tap density of the alloy-based active material is not particularly limited, but is preferably 0.6 g / cm 3 or more.
  • the specific surface area of alloy-formable active material is preferably 3.0 ⁇ 20.0m 2 / g, more preferably 3.5 ⁇ 15.0m 2 / g, particularly preferably 4.0 ⁇ 10.0 m 2 / g.
  • the “BET specific surface area” means a BET specific surface area determined by a nitrogen adsorption method, and is a value measured according to ASTM D3037-81.
  • the carbon-based active material refers to an active material having carbon as a main skeleton into which lithium can be inserted, and specifically includes a carbonaceous material and a graphite material.
  • the carbonaceous material is generally a carbon material having a low graphitization degree (that is, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or less.
  • the minimum of the temperature of the said heat processing is not specifically limited, For example, it can be 500 degreeC or more.
  • the graphite material is a graphite material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher.
  • the upper limit of the said processing temperature is not specifically limited, For example, it can be 5000 degrees C or less.
  • Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon.
  • graphitizable carbon examples include carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
  • MCMB is carbon fine particles obtained by separating and extracting mesophase spherules produced in the process of heating pitches at around 400 ° C.
  • the mesophase pitch-based carbon fiber is a carbon fiber using as a raw material mesophase pitch obtained by growing and coalescing the mesophase microspheres.
  • Pyrolytic vapor-grown carbon fibers are (1) a method for pyrolyzing acrylic polymer fibers, (2) a method for spinning by spinning a pitch, and (3) using nanoparticles such as iron as a catalyst. It is a carbon fiber obtained by a catalytic vapor deposition (catalytic CVD) method in which hydrocarbon is vapor-phase pyrolyzed.
  • catalytic CVD catalytic vapor deposition
  • non-graphitizable carbon examples include phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic carbon, furfuryl alcohol resin fired bodies (PFA), and hard carbon.
  • Examples of the graphite material include natural graphite and artificial graphite.
  • Examples of artificial graphite include artificial graphite heat-treated at 2800 ° C or higher, graphitized MCMB heat-treated at 2000 ° C or higher, graphitized mesophase pitch carbon fiber heat-treated at 2000 ° C or higher. It is done.
  • a graphite material is preferable.
  • the density of the negative electrode active material layer is 1.6 g / cm 3 or more (the upper limit of the density is not particularly limited, but 2.2 g / cm 3) or less.) Can be easily produced. If the negative electrode has a negative electrode active material layer in which the density of the negative electrode active material layer is in the above range, the effect of the present invention is remarkably exhibited.
  • the carbon-based active material is preferably a particle-sized one.
  • the shape of the particles is spherical, a higher density electrode can be formed during electrode molding.
  • the carbon-based active material is a particle
  • the volume-average particle size of the carbon-based active material is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m, and particularly preferably 1 to 30 ⁇ m.
  • the volume average particle diameter of the carbon-based active material is within this range, it becomes easy to prepare a slurry composition used for manufacturing the negative electrode.
  • the tap density of the carbon-based active material is not particularly limited, but is preferably 0.6 g / cm 3 or more.
  • the specific surface area of the carbon-based active material preferably 3.0 ⁇ 20.0m 2 / g, more preferably 3.5 ⁇ 15.0m 2 / g, particularly preferably 4.0 ⁇ 10.0m 2 / g is there.
  • the specific surface area can be measured by, for example, the BET method.
  • the negative electrode active material one type of alloy-based active material may be used alone, or two or more types may be used in combination at any ratio. Moreover, the active material which combined the alloy type active material and the carbon type active material can be mentioned as a preferable aspect of a negative electrode active material.
  • the mixing method is not particularly limited, and conventionally known dry mixing and wet mixing may be mentioned. .
  • the alloy-based active material (a1) and the carbon-based active material (a2) are used in combination, the alloy-based active material (a1) with respect to 100 parts by mass of the carbon-based active material (a2). Is preferably contained in an amount of 1 to 50 parts by mass.
  • a battery having a larger capacity than the negative electrode obtained using only the conventional carbon-based active material can be obtained, and the adhesion strength of the negative electrode can be increased. It is possible to prevent deterioration and cycle characteristics. If it is a negative electrode which has a negative electrode active material layer which uses an alloy type active material (a1) and a carbon type active material (a2) together in the said range, the effect of this invention will show up notably.
  • the negative electrode binder is a component that binds the electrode active material to the surface of the current collector in the negative electrode, has excellent performance of holding the negative electrode active material, and adheres to the current collector. It is preferable to use one having a high value.
  • a polymer is used as the binder material.
  • a polymer, a homopolymer, or a copolymer may be used as a binder material.
  • the polymer for the binder for the negative electrode is not particularly limited, and examples thereof include polymer compounds such as fluoropolymers, diene polymers, acrylate polymers, polyimides, polyamides, polyurethanes, among others, fluoropolymers.
  • a diene polymer or an acrylate polymer is preferable, a withstand voltage can be increased, and an energy density of an electrochemical element can be increased, and a diene polymer or an acrylate polymer is more preferable, and the strength of the electrode is improved. Diene polymers are particularly preferred.
  • the diene polymer is a polymer including a structural unit formed by polymerizing a conjugated diene monomer (hereinafter sometimes referred to as “conjugated diene monomer unit”). Examples include diene homopolymers; copolymers of different types of conjugated dienes; copolymers obtained by polymerizing monomer mixtures containing conjugated dienes, or hydrogenated products thereof.
  • Examples of the conjugated diene include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, and 2-chloro- Examples include 1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and 2,4-hexadiene. Among these, 1,3-butadiene and 2-methyl-1,3-butadiene are preferable.
  • a conjugated diene may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the conjugated diene monomer unit in the diene polymer is preferably 20% by mass to 60% by mass, and preferably 30% by mass to 55% by mass.
  • the diene polymer includes a structural unit formed by polymerizing a nitrile group-containing monomer (hereinafter sometimes referred to as “nitrile group-containing monomer unit”). Also good.
  • nitrile group-containing monomer include ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile, and the like. Among them, acrylonitrile is preferable.
  • the proportion of the nitrile group-containing monomer unit in the diene polymer is preferably in the range of 5 to 40% by mass, more preferably 5 to 30% by mass.
  • a nitrile group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the diene polymer may contain a structural unit formed by polymerizing another monomer in addition to the monomer unit.
  • Other monomers include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid; styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene.
  • Styrene monomers such as chloromethylstyrene, hydroxymethylstyrene, ⁇ -methylstyrene and divinylbenzene; olefins such as ethylene and propylene; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; Amide monomers such as acrylamide, N-methylolacrylamide, acrylamide-2-methylpropanesulfonic acid; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; methyl vinyl ketone, ethyl vinyl ketone Butyl vinyl ketone, hexyl vinyl ketone, such as isopropenyl vinyl ketone; N- vinylpyrrolidone, vinylpyridine, and a heterocyclic containing vinyl compounds such as vinyl imidazole.
  • the said other monomer may be used individually by 1 type, respectively, and may be used combining two or more types by arbitrary ratios.
  • the acrylate polymer is represented by the general formula (1): CH 2 ⁇ CR 1 —COOR 2 (wherein R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group or a cycloalkyl group). It is a polymer containing a monomer unit formed by polymerizing a monomer derived from a compound (hereinafter sometimes referred to as “(meth) acrylate monomer unit”).
  • the monomer constituting the (meth) acrylate ester monomer unit include ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, Acrylic acid esters such as n-amyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate; ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n methacrylate Methacryl such as butyl, isobutyl methacrylate, t-butyl methacrylate, n-amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, lauryl me
  • acrylate esters are preferable, and n-butyl acrylate and 2-ethylhexyl acrylate are particularly preferable in that the strength of the obtained electrode can be improved.
  • the ratio of the (meth) acrylic acid ester monomer unit in the acrylate polymer is usually 50% by mass or more, preferably 70% by mass or more.
  • the acrylate polymer preferably contains a nitrile group-containing monomer unit in addition to the (meth) acrylic acid ester monomer unit.
  • the nitrile group-containing monomer include acrylonitrile and methacrylonitrile. Among them, acrylonitrile is preferable in that the binding strength between the current collector and the electrode mixture layer is increased and the electrode strength can be improved.
  • the ratio of the nitrile group-containing monomer unit in the acrylate polymer is preferably in the range of 5 to 35% by mass, more preferably 10 to 30% by mass.
  • the acrylate polymer may be a monomer unit formed by polymerizing a copolymerizable carboxylic acid group-containing monomer (hereinafter referred to as “carboxylic acid group-containing monomer unit”). May be written.)).
  • carboxylic acid group-containing monomer include monobasic acid-containing monomers such as acrylic acid and methacrylic acid; dibasic acid-containing monomers such as maleic acid, fumaric acid, and itaconic acid.
  • a dibasic acid-containing monomer is preferable, and itaconic acid is particularly preferable in terms of enhancing the binding property with the current collector and improving the electrode strength.
  • the proportion of the carboxylic acid group-containing monomer unit in the acrylate polymer is preferably in the range of 1 to 50% by mass, more preferably 1 to 20% by mass, and particularly preferably 1 to 10% by mass.
  • the acrylate polymer may contain a structural unit obtained by polymerizing another copolymerizable monomer in addition to the above monomer.
  • the other monomers include carboxylic acid esters having two or more carbon-carbon double bonds such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate; perfluorooctylethyl acrylate and perfluoro Unsaturated esters containing fluorine in the side chain such as octylethyl methacrylate; styrene, chlorostyrene, vinyltoluene, t-butylstyrene, vinylbenzoic acid, methyl vinylbenzoate, vinylnaphthalene, chloromethylstyrene, hydroxymethylstyrene, Styrene monomers such as ⁇ -methylstyrene and divinylbenzene; Amide monomers such as acrylamide, N-methylolacrylamide
  • Heterocycle-containing vinyl compounds such as allyl glycidyl ether; glycidyl esters such as glycidyl acrylate and glycidyl methacrylate.
  • the content ratio of these copolymerizable other monomer units in the acrylate polymer may be appropriately adjusted depending on the purpose of use.
  • binders for negative electrodes include polyethylene, polypropylene, polyisobutylene, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polyvinyl alcohol, polyvinyl isobutyl ether, poly Vinyl polymers such as acrylonitrile, polymethacrylonitrile, polymethyl methacrylate, polymethyl acrylate, polyethyl methacrylate, polyallyl acetate, and polystyrene; main chains such as polyoxymethylene, polyoxyethylene, polycyclic thioether, and polydimethylsiloxane An ether polymer containing a hetero atom in the polycondensate ester polymer such as polylactone, polycyclic anhydride, polyethylene terephthalate, polycarbonate; nylon 6, nylon 66, poly- - phenylene isophthalamide, poly -p- phenylene
  • the shape of the binder for the negative electrode is not particularly limited, but it has good adhesion to the current collector, and since it can suppress deterioration of the capacity of the created electrode and repeated charge / discharge, it is particulate. It is preferable that The particulate binder is not particularly limited as long as it retains and exists in the state of being dispersed in a dispersion medium. However, it is preferable that the particulate binder can be present in a state of retaining the particle shape even in the negative electrode active material layer. In the present invention, the “state in which the particle state is maintained” does not have to be a state in which the particle shape is completely maintained, and may be in a state in which the particle shape is maintained to some extent. Examples of the particulate binder include those in which the binder particles such as latex are dispersed in water, and powders obtained by drying such a dispersion.
  • the glass transition temperature (Tg) of the binder for negative electrode is preferably 50 ° C. or lower, more preferably ⁇ 40 to 0 ° C.
  • Tg glass transition temperature
  • the number average particle diameter is not particularly limited, but is usually 0.01 to 1 ⁇ m, preferably 0.03 to 0.8 ⁇ m, more preferably. 0.05 to 0.5 ⁇ m.
  • the number average particle diameter of the binder is within this range, excellent adhesion can be imparted to the negative electrode active material layer even with a small amount of use.
  • the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameter of 100 binder particles randomly selected in a transmission electron micrograph. The shape of the particles can be either spherical or irregular. These binders can be used alone or in combination of two or more.
  • the amount of the binder for the negative electrode is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. is there. When the amount of the binder is within this range, sufficient adhesion between the obtained negative electrode active material layer and the current collector can be secured, the capacity of the electrochemical device can be increased, and the internal resistance can be decreased.
  • the conductive material negative electrode active material layer may contain a conductive material.
  • the particle diameter of the conductive material contained in the negative electrode active material layer is a number average particle diameter of 5 to 40 nm, preferably 10 to 38 nm, more preferably 15 to 36 nm.
  • conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube can be used.
  • the content of the conductive material is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material.
  • the negative electrode active material layer may further contain, as an optional component, a reinforcing material, a leveling agent, an electrolytic solution additive having a function of inhibiting electrolytic decomposition, and the like.
  • a reinforcing material such as aluminum, copper, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium
  • the reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • a reinforcing material By using a reinforcing material, a tough and flexible negative electrode can be obtained, and excellent long-term cycle characteristics can be exhibited.
  • the content of the reinforcing material is usually 0.01 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material. By including the reinforcing material in the above range, high capacity and high load characteristics can be exhibited.
  • leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants.
  • surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants.
  • the electrolytic solution additive vinylene carbonate used in the electrolytic solution can be used.
  • the content of the electrolytic solution additive is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material.
  • the obtained secondary battery is excellent in cycle characteristics and high temperature characteristics.
  • Other additives include nanoparticles such as fumed silica and fumed alumina. By mixing the nanoparticles, the thixotropy of the slurry composition adjusted when producing the negative electrode can be controlled, and the leveling property of the negative electrode active material layer obtained thereby can be improved.
  • the content of the nanoparticles is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the negative electrode active material.
  • thickener examples include cellulose compounds such as carboxymethylcellulose, carboxyethylcellulose, hydroxyethylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, and hydroxyethylmethylcellulose (ammonium salts and alkali metal salts thereof). Salt), oxidized starch, phosphate starch, casein, various modified starches, polyethylene oxide, polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, polysulfonic acid, polycarboxylic acid, acrylic acid or methacrylic acid copolymer (these Ammonium salts and alkali metal salts (including salts such as sodium salts and lithium salts) Rukoto can.
  • cellulose compounds such as carboxymethylcellulose, carboxyethylcellulose, hydroxyethylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, and hydroxyethylmethylcellulose (
  • cellulose compounds including salts such as ammonium salts and alkali metal salts thereof
  • polysulfonic acid from the viewpoint of excellent stability of the slurry when producing the negative electrode and the suppression of swelling of the obtained negative electrode
  • acrylic acid or methacrylic acid copolymer including salts such as ammonium salts and alkali metal salts thereof
  • acrylic acid or methacrylic acid copolymers are copolymerizable components other than acrylic acid and methacrylic acid, such as methyl acrylate and methyl methacrylate.
  • the content of the thickener is preferably 0.05 to 10 parts by mass, more preferably 0.08 to 3 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the slurry composition for a lithium ion secondary battery negative electrode includes the negative electrode active material (a), the binder for negative electrode (b), the conductive material (c), and the like. Are mixed in a dispersion medium.
  • a dispersion medium either water or an organic solvent can be used.
  • organic solvents examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene, xylene and ethylbenzene; ketones such as acetone, ethyl methyl ketone, diisopropyl ketone, cyclohexanone, methylcyclohexanone and ethylcyclohexanone.
  • Chlorinated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; Esters such as ethyl acetate, butyl acetate, ⁇ -butyrolactone and ⁇ -caprolactone; Alkyl nitriles such as acetonitrile and propionitrile; Tetrahydrofuran and Ethylene Ethers such as glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether; N- Amides such as methylpyrrolidone and N, N-dimethylformamide can be mentioned.
  • dispersion media may be used alone or in combination of two or more as a mixed solvent.
  • a dispersion medium having excellent dispersibility of each component and having a low boiling point and high volatility is preferable because it can be removed in a short time and at a low temperature.
  • acetone, toluene, cyclohexanone, cyclopentane, tetrahydrofuran, cyclohexane, xylene, water, N-methylpyrrolidone, or a mixed solvent thereof is preferable.
  • the mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type. Further, a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, and a planetary kneader can be used.
  • a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, and a planetary kneader can be used.
  • Lithium ion secondary battery negative electrode A lithium ion secondary battery negative electrode is obtained by applying and drying the above-described slurry composition for a lithium ion secondary battery negative electrode on a current collector.
  • the method for producing a negative electrode for a lithium ion secondary battery includes a step of forming a negative electrode active material layer by applying and drying the slurry composition for a negative electrode on one or both sides of a current collector.
  • the method for applying the negative electrode slurry composition onto the current collector is not particularly limited.
  • Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying time is usually 5 to 30 minutes, and the drying temperature is usually 40 to 180 ° C.
  • the porosity of the negative electrode active material layer is increased by pressure treatment using a die press or a roll press. It is preferable to have a lowering step.
  • the porosity of the negative electrode active material layer is preferably 5 to 30%, more preferably 7 to 20%. If the porosity of the negative electrode active material layer is too high, charging efficiency and discharging efficiency may be deteriorated. If the porosity is too low, it is difficult to obtain a high volume capacity, and the negative electrode active material layer is likely to be peeled off from the current collector, which may cause defects. Further, when a curable polymer is used as the binder, it is preferably cured.
  • the thickness of the negative electrode active material layer in the negative electrode of the lithium ion secondary battery is usually 5 to 300 ⁇ m, preferably 30 to 250 ⁇ m. When the thickness of the negative electrode active material layer is in the above range, it is possible to obtain a secondary battery that exhibits high load characteristics and cycle characteristics.
  • the content ratio of the negative electrode active material in the negative electrode active material layer is preferably 85 to 99% by mass, more preferably 88 to 97% by mass.
  • the content ratio of the negative electrode active material in the negative electrode active material layer is in the above range, it is possible to obtain a secondary battery that exhibits flexibility and binding properties while exhibiting high capacity.
  • the density of the negative electrode active material layer is preferably 1.6 ⁇ 1.9g / cm 3, more preferably 1.65 ⁇ 1.85g / cm 3. When the density of the negative electrode active material layer is within the above range, a high-capacity secondary battery can be obtained.
  • the current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material, but is preferably a metal material because of its heat resistance, for example, iron, copper, aluminum, nickel, stainless steel. Examples include steel, titanium, tantalum, gold, and platinum. Among these, copper is particularly preferable as the current collector used for the negative electrode of the lithium ion secondary battery.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable.
  • the current collector may be used after roughening in advance in order to increase the adhesive strength with the negative electrode active material layer.
  • Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • a primer layer or the like may be formed on the current collector surface in order to increase the adhesive strength or conductivity of the negative electrode active material layer.
  • the positive electrode includes a current collector and a positive electrode active material layer laminated on the current collector.
  • the positive electrode active material layer includes a positive electrode active material (A), a positive electrode binder (B), and a conductive material (C), and includes other components as necessary.
  • Positive electrode active material As the positive electrode active material, an active material capable of inserting and removing lithium ions is used. Such a positive electrode active material is roughly classified into an inorganic compound and an organic compound.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like.
  • Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
  • Transition metal oxides include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O. 5 , V 6 O 13 and the like. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle characteristics and capacity.
  • lithium-containing composite metal oxide examples include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
  • lithium-containing composite metal oxide having a layered structure examples include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), and Co—Ni—Mn lithium composite oxide (Li (Co Mn Ni) O 2 ), lithium-excess layered compound (Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 ), Ni—Mn—Al lithium composite oxide, Ni—Co—Al lithium composite oxide, etc. It is done.
  • the lithium-containing composite metal oxide having a spinel structure examples include Li [Mn 3/2 M 1/2 ] O 4 in which lithium manganate (LiMn 2 O 4 ) or a part of Mn is substituted with another transition metal. (Where M is Cr, Fe, Co, Ni, Cu, etc.).
  • lithium-containing composite metal oxide having an olivine structure examples include Li X MPO 4 (wherein M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti).
  • the positive electrode active material made of an organic compound for example, a conductive polymer such as polyacetylene or poly-p-phenylene can be used. Further, an iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. Further, those compounds obtained by partial element substitution of these compounds may be used.
  • the positive electrode active material for a lithium ion secondary battery may be a mixture of the above inorganic compound and organic compound.
  • the volume average particle diameter of the positive electrode active material is usually 1 to 50 ⁇ m, preferably 2 to 30 ⁇ m.
  • the average particle diameter of the positive electrode active material is in the above range, the amount of the positive electrode binder in the positive electrode active material layer can be reduced, and the decrease in the capacity of the battery can be suppressed.
  • a slurry containing a positive electrode active material and a positive electrode binder (hereinafter sometimes referred to as “positive electrode slurry composition”) is usually prepared.
  • This positive electrode slurry composition can be easily prepared to have a viscosity suitable for application, and a uniform positive electrode active material layer can be obtained.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is preferably 90 to 99.9% by mass, more preferably 95 to 99% by mass.
  • Binder for positive electrode contains a nitrile group-containing acrylic polymer (B1) and a fluorine-containing polymer (B2).
  • Nitrile group-containing acrylic polymer The nitrile group-containing acrylic polymer is a polymer containing a nitrile group-containing monomer unit and a (meth) acrylic acid ester monomer unit.
  • a nitrile group-containing monomer unit is a structural unit formed by polymerizing a nitrile group-containing monomer, and a (meth) acrylate monomer unit is a (meth) acrylate monomer Refers to a structural unit formed by polymerizing.
  • the nitrile group-containing acrylic polymer (B1) contains a nitrile group-containing monomer unit, preferably a (meth) acrylic acid ester monomer unit, and, if necessary, an ethylenically unsaturated acid monomer unit. And monomer units derived from other monomers such as crosslinkable monomers. These monomer units are structural units formed by polymerizing the monomers.
  • the content ratio of each monomer is usually the same as the content ratio of each monomer unit in the nitrile group-containing acrylic polymer.
  • nitrile group-containing monomer examples include acrylonitrile and methacrylonitrile.
  • acrylonitrile is preferable because it can improve the adhesion to the current collector and the electrode strength.
  • the content ratio of the nitrile group-containing monomer unit in the nitrile group-containing acrylic polymer (B1) is preferably in the range of 5 to 35% by mass, more preferably 10 to 30% by mass, and particularly preferably 15 to 25% by mass. is there.
  • the amount of the nitrile group-containing monomer unit is within this range, the adhesion to the current collector is excellent, and the strength of the obtained electrode is improved.
  • the (meth) acrylic acid ester monomer unit has the general formula (1): CH 2 ⁇ CR 1 —COOR 2 (wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group or a cycloalkyl group). It is a structural unit formed by polymerizing a monomer derived from the compound represented by
  • Specific examples of the compound represented by the general formula (1) include ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, n-amyl acrylate, Acrylates such as isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate; ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, meta Methacrylates such as isobutyl acrylate, t-butyl methacrylate, n-amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl
  • (Meth) acrylic acid ester monomer may be used alone or in combination of two or more at any ratio. Therefore, the nitrile group-containing acrylic polymer (B1) may contain only one type of (meth) acrylic acid ester monomer, or may contain two or more types in combination at any ratio.
  • the content ratio of the (meth) acrylic acid ester monomer unit in the nitrile group-containing acrylic polymer (B1) is preferably 35 to 85% by mass, more preferably 45 to 75% by mass, and particularly preferably 50 to 70% by mass. %.
  • the electrode active material is highly flexible and the swellability is suppressed in the electrolytic solution. Moreover, heat resistance is high and the internal resistance of the obtained electrode for electrochemical devices can be reduced.
  • the nitrile group-containing acrylic polymer may contain an ethylenically unsaturated acid monomer unit in addition to the monomer unit having the nitrile group and the (meth) acrylic acid ester monomer unit.
  • the ethylenically unsaturated acid monomer unit is a structural unit formed by polymerizing an ethylenically unsaturated acid monomer.
  • the ethylenically unsaturated acid monomer is an ethylenically unsaturated monomer having an acid group such as a carboxyl group, a sulfonic acid group, or a phosphinyl group, and is not limited to a specific monomer.
  • ethylenically unsaturated acid monomer examples include an ethylenically unsaturated carboxylic acid monomer, an ethylenically unsaturated sulfonic acid monomer, and an ethylenically unsaturated phosphoric acid monomer.
  • ethylenically unsaturated carboxylic acid monomer examples include ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof, and derivatives thereof.
  • ethylenically unsaturated monocarboxylic acids examples include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of derivatives of ethylenically unsaturated monocarboxylic acids include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, And ⁇ -diaminoacrylic acid.
  • ethylenically unsaturated dicarboxylic acids examples include maleic acid, fumaric acid, and itaconic acid.
  • acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • Examples of derivatives of ethylenically unsaturated dicarboxylic acids include methyl maleate such as methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid; and diphenyl maleate, nonyl maleate And maleate esters such as decyl maleate, dodecyl maleate, octadecyl maleate and fluoroalkyl maleate.
  • ethylenically unsaturated sulfonic acid monomer examples include vinyl sulfonic acid, methyl vinyl sulfonic acid, styrene sulfonic acid, (meth) acryl sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamide- 2-hydroxypropanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid and the like.
  • ethylenically unsaturated phosphoric acid monomer examples include (meth) acrylic acid-3-chloro-2-propyl phosphate, (meth) acrylic acid-2-ethyl phosphate, 3-allyloxy-2-hydroxypropane Such as phosphoric acid.
  • alkali metal salts or ammonium salts of the above ethylenically unsaturated acid monomers can be used.
  • the above ethylenically unsaturated acid monomers may be used alone or in combination of two or more at any ratio. Therefore, the nitrile group-containing acrylic polymer (B1) may contain only one type of ethylenically unsaturated acid monomer, or may contain two or more types in combination at any ratio.
  • the ethylenically unsaturated acid monomer may be an ethylenically unsaturated carboxylic acid monomer or an ethylenically unsaturated sulfonic acid.
  • the monomer is used alone or in combination with an ethylenically unsaturated carboxylic acid monomer and an ethylenically unsaturated sulfonic acid monomer.
  • the ethylenically unsaturated carboxylic acid monomer and the ethylenically unsaturated sulfonic acid are preferred.
  • a combination with a monomer is more preferred.
  • ethylenically unsaturated carboxylic acid monomers from the viewpoint of expressing good dispersibility in the nitrile group-containing acrylic polymer (B1), ethylenically unsaturated monocarboxylic acid is preferable, and acrylic acid is more preferable.
  • methacrylic acid particularly preferably methacrylic acid.
  • 2-acrylamido-2-hydroxypropanesulfonic acid 2-acrylamido-2-hydroxypropanesulfonic acid
  • 2-nitrile group-containing acrylic polymer (B1) is preferably used from the viewpoint of exhibiting good dispersibility.
  • Acrylamide-2-methylpropanesulfonic acid more preferably 2-acrylamido-2-methylpropanesulfonic acid.
  • the content of the ethylenically unsaturated acid monomer unit in the nitrile group-containing acrylic polymer (B1) is preferably 10 to 30% by mass, more preferably 12 to 28% by mass, and particularly preferably 14 to 26% by mass. It is a range.
  • the ethylenically unsaturated carboxylic acid in the nitrile group-containing acrylic polymer (B1)
  • the content ratio of the acid monomer is preferably 10 to 30% by mass, more preferably 12 to 28% by mass, and the content ratio of the ethylenically unsaturated sulfonic acid monomer is preferably 0.1 to 10% by mass. %.
  • the nitrile group-containing acrylic polymer (B1) may contain a conjugated diene monomer unit in addition to the monomer unit having the nitrile group and the (meth) acrylate monomer unit.
  • the conjugated diene monomer unit is a structural unit formed by polymerizing a conjugated diene monomer and / or a structural unit formed by polymerizing a conjugated diene monomer and hydrogenating it.
  • conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, chloroprene, and the like. 1,3-butadiene and isoprene Is preferred, and 1,3-butadiene is more preferred.
  • the said conjugated diene monomer may be used individually by 1 type, and may combine 2 or more types by arbitrary ratios. Therefore, the nitrile group-containing acrylic polymer (B1) may contain only one type of conjugated diene monomer unit, or may contain two or more types in combination at any ratio.
  • the content ratio of the conjugated diene monomer unit (content ratio including the hydrogenated monomer unit) in the nitrile group-containing acrylic polymer (B1) is preferably 20 to 98% by mass, more preferably 20 to 80% by mass. %, Particularly preferably in the range of 20 to 70% by mass.
  • the nitrile group-containing acrylic polymer (B1) further includes a crosslinkable monomer unit within a range that does not affect the THF-insoluble content of the nitrile group-containing acrylic polymer (B1). May be included.
  • the crosslinkable monomer unit is a structural unit capable of forming a crosslinked structure during or after polymerization by heating or energy irradiation of the crosslinkable monomer.
  • a monomer having thermal crosslinkability can be usually mentioned. More specifically, a monofunctional monomer having a heat-crosslinkable crosslinkable group and one olefinic double bond per molecule, and a polyfunctional having two or more olefinic double bonds per molecule. Ionic monomers.
  • thermally crosslinkable groups contained in the monofunctional monomer include epoxy groups, N-methylolamide groups, oxetanyl groups, oxazoline groups, and combinations thereof.
  • an epoxy group is more preferable in terms of easy adjustment of crosslinking and crosslinking density.
  • crosslinkable monomer having an epoxy group as a thermally crosslinkable group and having an olefinic double bond examples include vinyl glycidyl ether, allyl glycidyl ether, butenyl glycidyl ether, o-allylphenyl glycidyl.
  • Unsaturated glycidyl ethers such as ether; butadiene monoepoxide, chloroprene monoepoxide, 4,5-epoxy-2-pentene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5,9-cyclododecadiene Monoepoxides of dienes or polyenes such as; alkenyl epoxides such as 3,4-epoxy-1-butene, 1,2-epoxy-5-hexene, 1,2-epoxy-9-decene; and glycidyl acrylate, glycidyl methacrylate Glycidyl crotonate Unsaturated carboxylic acids such as glycidyl-4-heptenoate, glycidyl sorbate, glycidyl linoleate, glycidyl-4-methyl-3-pentenoate, glycidyl ester of
  • crosslinkable monomer having an N-methylolamide group as a thermally crosslinkable group and having an olefinic double bond have a methylol group such as N-methylol (meth) acrylamide (meta ) Acrylamides.
  • crosslinkable monomer having an oxetanyl group as a thermally crosslinkable group and having an olefinic double bond examples include 3-((meth) acryloyloxymethyl) oxetane, 3-((meth) Acryloyloxymethyl) -2-trifluoromethyloxetane, 3-((meth) acryloyloxymethyl) -2-phenyloxetane, 2-((meth) acryloyloxymethyl) oxetane, and 2-((meth) acryloyloxymethyl) ) -4-Trifluoromethyloxetane.
  • crosslinkable monomer having an oxazoline group as a heat crosslinkable group and having an olefinic double bond examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2- Oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, and 2-isopropenyl-5-ethyl-2-oxazoline.
  • multifunctional monomers having two or more olefinic double bonds include allyl (meth) acrylate, ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, Tetraethylene glycol di (meth) acrylate, trimethylolpropane-tri (meth) acrylate, dipropylene glycol diallyl ether, polyglycol diallyl ether, triethylene glycol divinyl ether, hydroquinone diallyl ether, tetraallyloxyethane, trimethylolpropane-diallyl Ethers, allyl or vinyl ethers of polyfunctional alcohols other than those mentioned above, triallylamine, methylene bisacrylamide, and divinylbenzene.
  • crosslinkable monomer in particular, allyl (meth) acrylate, ethylene di (meth) acrylate, allyl glycidyl ether, and glycidyl methacrylate can be preferably used.
  • the above crosslinkable monomers may be used alone or in combination of two or more at any ratio. Therefore, the nitrile group-containing acrylic polymer (B1) may contain only one type of crosslinkable unsaturated acid monomer, or may contain two or more types in combination at any ratio.
  • the content ratio is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and particularly preferably 0.8%. It is 5% by mass or more, preferably 5% by mass or less, more preferably 4% by mass or less, and particularly preferably 2% by mass or less.
  • the dispersibility of a nitrile group containing acrylic polymer (B1) can be made favorable by making the ratio of a crosslinkable monomer unit below the upper limit of the said range. Therefore, by setting the content ratio of the crosslinkable monomer unit within the above range, both the degree of swelling and the dispersibility can be improved.
  • the nitrile group-containing acrylic polymer (B1) may contain an aromatic vinyl monomer unit, an ethylenically unsaturated carboxylic acid amide monomer unit, and the like.
  • aromatic vinyl monomers examples include styrene, ⁇ -methyl styrene, vinyl toluene, chlorostyrene, hydroxymethyl styrene and the like.
  • Examples of the ethylenically unsaturated carboxylic acid amide monomer include (meth) acrylamide, N-methoxymethyl (meth) acrylamide and the like.
  • the dispersibility of the nitrile group-containing acrylic polymer (B1) when slurried is high and a highly uniform active material layer can be formed, and the resistance of the positive electrode active material layer can be reduced. Can be reduced.
  • These monomer units may be contained in a proportion of 10% by mass or less.
  • the content ratio of each monomer is usually each monomer unit in the nitrile group-containing acrylic polymer (for example, (meth) acrylic acid ester monomer unit, ethylenically unsaturated acid monomer unit, The content ratio of the conjugated diene monomer unit and the crosslinkable monomer unit) is the same.
  • the degree of swelling of the nitrile group-containing acrylic polymer (B1) with respect to the non-aqueous electrolyte is 1.0 to 3 times, in order to avoid the volume of the polymer from changing significantly in the electrolyte, preferably It is 1.0 to 2.8 times, more preferably 1.0 to 2.6 times.
  • the nonaqueous electrolytic solution is an electrolytic solution constituting the lithium ion secondary battery of the present invention.
  • the degree of swelling with respect to the nonaqueous electrolytic solution can be controlled by, for example, the content ratio of each monomer unit described above. Specifically, it increases when the content ratio of the nitrile group-containing monomer unit is increased. Moreover, it decreases when the content of the ethylenically unsaturated monomer unit is increased.
  • the tetrahydrofuran (THF) insoluble amount of the nitrile group-containing acrylic polymer (B1) is 30% by mass or less, preferably 25% by mass or less, in order to appropriately dissolve the polymer in the slurry dispersion medium. More preferably, it is in the range of 20% by mass or less.
  • the THF-insoluble matter is an indicator of the amount of gel, and if the amount of THF-insoluble matter is large, it exists in the form of particles in a slurry using an organic solvent such as N-methylpyrrolidone (hereinafter sometimes referred to as NMP). The dispersibility in a slurry may be impaired.
  • the THF-insoluble content can be controlled by the polymerization reaction temperature, the monomer addition time, the polymerization initiator amount, and the like. Specifically, the amount of insoluble matter is reduced by increasing the polymerization reaction temperature, increasing the polymerization initiator, and the chain transfer agent.
  • the electrolyte solution and the organic solvent that is the slurry dispersion medium have close solubility parameters (SP values)
  • SP values solubility parameters
  • the swelling degree of the polymer used as the binder with respect to the electrolyte solution is within an appropriate range, the slurry dispersion medium In some organic solvents, such a polymer may not be dissolved (the amount of insoluble THF is excessive). On the contrary, if such a polymer is easily dissolved in an organic solvent, the degree of swelling of the polymer with respect to the electrolytic solution may be reduced. In some cases, the degree of swelling and the amount insoluble in THF are both within the appropriate range.
  • the production method of the nitrile group-containing acrylic polymer (B1) is not particularly limited, as described above, the monomer mixture containing the monomer constituting the nitrile group-containing acrylic polymer (B1) is emulsion-polymerized, If necessary, it can be obtained by hydrogenation.
  • the method for emulsion polymerization is not particularly limited, and a conventionally known emulsion polymerization method may be employed.
  • the mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.
  • the method of hydrogenation is not specifically limited, A well-known method should just be employ
  • Examples of the polymerization initiator used for emulsion polymerization include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide Organic peroxides such as oxide and t-butylperoxyisobutyrate; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl azobisisobutyrate, etc. Et That.
  • inorganic peroxides can be preferably used.
  • These polymerization initiators can be used alone or in combination of two or more.
  • the peroxide initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite.
  • the amount of the polymerization initiator used is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the total amount of the monomer mixture used for the polymerization.
  • a chain transfer agent used during emulsion polymerization.
  • the chain transfer agent include alkyl mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-stearyl mercaptan; dimethylxanthogen disulfide, diisopropylxanthogendi Xanthogen compounds such as sulfide; thiuram compounds such as terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram monosulfide; phenols such as 2,6-di-t-butyl-4-methylphenol and st
  • alkyl mercaptans are preferable, and t-dodecyl mercaptan can be more preferably used.
  • chain transfer agents can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is preferably 0.05 to 2 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the monomer mixture.
  • a surfactant may be used during emulsion polymerization.
  • the surfactant may be any of an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • Specific examples of the anionic surfactant include sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecyl sulfate, ammonium dodecyl sulfate, sodium octyl sulfate, sodium decyl sulfate, sodium tetradecyl sulfate, sodium hexadecyl sulfate, sodium octadecyl sulfate and the like.
  • alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, sodium lauryl benzene sulfonate, sodium hexadecyl benzene sulfonate
  • fats such as sodium lauryl sulfonate, sodium dodecyl sulfonate, sodium tetradecyl sulfonate Group sulfonates; and the like.
  • the amount of the surfactant used is preferably 0.5 to 10 parts by mass, more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the monomer mixture.
  • seed latex refers to a dispersion of fine particles that becomes the nucleus of the reaction during emulsion polymerization.
  • the fine particles often have a particle size of 100 nm or less.
  • the fine particles are not particularly limited, and general-purpose polymers such as diene polymers are used. According to the seed polymerization method, copolymer particles having a relatively uniform particle diameter can be obtained.
  • the polymerization temperature for carrying out the polymerization reaction is not particularly limited, but is usually 0 to 100 ° C., preferably 40 to 80 ° C. Emulsion polymerization is performed in such a temperature range, and the polymerization reaction is stopped at a predetermined polymerization conversion rate by adding a polymerization terminator or cooling the polymerization system.
  • the polymerization conversion rate for stopping the polymerization reaction is preferably 93% by mass or more, more preferably 95% by mass or more.
  • the amount of THF insolubles in the copolymer obtained can be appropriately adjusted by adjusting the polymerization temperature to the above range.
  • the dispersion medium (latex )
  • the dispersion medium may be replaced, or the dispersion medium may be evaporated to obtain a particulate copolymer in powder form.
  • nitrile group-containing acrylic polymer (B1) In the dispersion of the nitrile group-containing acrylic polymer (B1), known dispersants, thickeners, anti-aging agents, antifoaming agents, antiseptics, antibacterial agents, anti-blistering agents, pH adjusting agents, and the like are necessary. Can also be added.
  • a fluorine-containing polymer (B2) is used as the binder for the fluorine-containing polymer positive electrode.
  • the positive electrode binder contains a fluorine-containing polymer, the stability of the slurry is improved, and the swelling of the binder with respect to the electrolytic solution is suppressed, and the cycle characteristics are improved.
  • the positive electrode binder contains a nitrile group-containing acrylic polymer in addition to the fluorine-containing polymer, cycle characteristics at a high potential are further improved.
  • the fluorine-containing polymer (B2) is a polymer containing a fluorine-containing monomer unit.
  • the fluorine-containing monomer unit is a structural unit formed by polymerizing a fluorine-containing monomer.
  • the fluorine-containing polymer is a homopolymer of a fluorine-containing monomer, a copolymer of a fluorine-containing monomer and another fluorine-containing monomer copolymerizable therewith, a fluorine-containing monomer Copolymer of copolymer and monomer copolymerizable therewith, copolymerization of fluorine-containing monomer and other fluorine-containing monomer copolymerizable therewith and monomer copolymerizable therewith Coalescence is mentioned.
  • fluorine-containing monomer examples include vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, vinyl trifluoride chloride, vinyl fluoride, and perfluoroalkyl vinyl ether, and vinylidene fluoride is preferable.
  • the proportion of the fluorine-containing monomer unit in the fluorine-containing polymer is usually 70% by mass or more, preferably 80% by mass or more.
  • Monomers copolymerizable with fluorine-containing monomers include 1-olefins such as ethylene, propylene, 1-butene; styrene, ⁇ -methylstyrene, pt-butylstyrene, vinyltoluene, chlorostyrene, etc.
  • Aromatic vinyl compounds such as (meth) acrylonitrile (abbreviations for acrylonitrile and methacrylonitrile; hereinafter the same); methyl (meth) acrylate, butyl (meth) acrylate, 2- (meth) acrylic acid 2- (Meth) acrylic acid ester compounds such as ethylhexyl; (meth) acrylamide compounds such as (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide; (meth) acrylic acid, itaconic acid, fumar Acid, crotonic acid, maleic acid, etc.
  • unsaturated nitrile compounds such as (meth) acrylonitrile (abbreviations for acrylonitrile and methacrylonitrile; hereinafter the same); methyl (meth) acrylate, butyl (meth) acrylate, 2- (meth) acrylic acid 2- (Meth) acrylic acid ester compounds such as ethyl
  • Xyl group-containing vinyl compounds epoxy group-containing unsaturated compounds such as allyl glycidyl ether and glycidyl (meth) acrylate; amino group-containing unsaturated compounds such as dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate; Sulphonic acid group-containing unsaturated compounds such as styrene sulfonic acid, vinyl sulfonic acid and (meth) allyl sulfonic acid; Sulfuric acid group-containing unsaturated compounds such as 3-allyloxy-2-hydroxypropanesulfuric acid; (meth) acrylic acid-3- And phosphate group-containing unsaturated compounds such as propyl-2-propyl phosphate and 3-allyloxy-2-hydroxypropane phosphate.
  • epoxy group-containing unsaturated compounds such as allyl glycidyl ether and glycidyl (meth) acrylate
  • the ratio of the monomer unit copolymerizable with the fluorine-containing monomer in the fluorine-containing polymer (B2) is usually 30% by mass or less, preferably 20% by mass or less.
  • a polymer containing vinylidene fluoride as a fluorine-containing monomer specifically, a homopolymer of vinylidene fluoride, or other fluorine copolymerizable with vinylidene fluoride.
  • a copolymer with a monomer and a copolymer of vinylidene fluoride with another fluorine-containing monomer copolymerizable therewith and a monomer copolymerizable therewith.
  • a homopolymer of vinylidene fluoride (polyvinylidene fluoride), a vinylidene fluoride-hexafluoropropylene copolymer, and polyvinyl fluoride are preferable, and polyvinylidene fluoride is more preferable.
  • the fluorine-containing polymer (B2) may be one kind alone, or two or more kinds may be used in combination. It is particularly preferable to use a low molecular weight substance and a high molecular weight substance in combination. Specifically, a fluorine-containing polymer having a melt viscosity of less than 35 kpoise measured at ASTM D3835 / 232 ° C. 100 sec ⁇ 1 has a low molecular weight, and a polymer having a molecular weight of 35 kpoise or higher has a high molecular weight. preferable.
  • examples of the high molecular weight polyvinylidene fluoride include KYNAR HSV900 manufactured by Arkema, Solef 6020, Solef 6010, Solef 1015, Solef 5130, KF7208 manufactured by Kureha.
  • examples of the low molecular weight polyvinylidene fluoride include KYNAR710 720 740 760 760A manufactured by Arkema, Solef 6008 manufactured by Solvay, and KF1120 manufactured by Kureha.
  • the weight ratio of the low molecular weight body to the high molecular weight body of the fluorine-containing polymer is: Preferably, it is 30/70 to 70/30.
  • the weight-average molecular weight in terms of polystyrene by gel permeation chromatography of the fluorine-containing polymer (B2) is preferably 100,000 to 2,000,000, more preferably 200,000 to 1,500,000, particularly Preferably, it is 400,000 to 1,000,000.
  • the weight average molecular weight of the fluorine-containing polymer (B2) By setting the weight average molecular weight of the fluorine-containing polymer (B2) within the above range, detachment (powder off) of the positive electrode active material and conductive material in the positive electrode active material layer is suppressed, and viscosity adjustment of the positive electrode slurry is possible. It becomes easy.
  • the glass transition temperature (Tg) of the fluorine-containing polymer (B2) is preferably 0 ° C. or lower, more preferably ⁇ 20 ° C. or lower, particularly preferably ⁇ 30 ° C. or lower.
  • the lower limit of Tg of the fluorine-containing polymer (B2) is not particularly limited, but is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 40 ° C. or higher.
  • Tg of a fluorine-containing polymer (B2) exists in the said range, detachment
  • the Tg of the fluorine-containing polymer (B2) can be adjusted by combining various monomers. Tg can be measured based on JIS K 7121; 1987 using a differential scanning calorimeter.
  • the melting point (Tm) of the fluorine-containing polymer (B2) is preferably 190 ° C. or less, more preferably 150 to 180 ° C., and further preferably 160 to 170 ° C.
  • Tm of the fluorine-containing polymer (B2) can be adjusted by combining various monomers or controlling the polymerization temperature. Tm can be measured based on JIS K 7121; 1987 using a differential scanning calorimeter.
  • the production method of the fluorine-containing polymer (B2) is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used. Among these, the suspension polymerization method and the emulsion polymerization method are preferable, and the emulsion polymerization method is more preferable.
  • productivity of the fluorine-containing polymer (B2) can be improved, and a fluorine-containing polymer (B2) having a desired average particle diameter can be obtained. it can.
  • any reaction such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • polymerization initiators used for polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
  • Organic peroxides, azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile, ammonium persulfate, potassium persulfate, and the like.
  • the fluorine-containing polymer (B2) is used in the state of a dispersion liquid or a dissolved solution dispersed in a dispersion medium.
  • the dispersion medium is not particularly limited as long as it can uniformly disperse or dissolve the fluorine-containing polymer (B2), and water or an organic solvent can be used.
  • organic solvents examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene, xylene and ethylbenzene; ketones such as acetone, ethyl methyl ketone, diisopropyl ketone, cyclohexanone, methylcyclohexanone and ethylcyclohexanone.
  • Chlorinated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; Esters such as ethyl acetate, butyl acetate, ⁇ -butyrolactone and ⁇ -caprolactone; Alkyl nitriles such as acetonitrile and propionitrile; Tetrahydrofuran and ethylene glycol Ethers such as diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether; Amides such as tilpyrrolidone and N, N-dimethylformamide may be mentioned.
  • These dispersion media may be used alone or in combination of two or more as a mixed solvent.
  • a mixed solvent since it is industrially used at the time of electrode slurry preparation, it is difficult to volatilize in production, and as a result, volatilization of the electrode slurry can be suppressed, and the smoothness of the resulting positive electrode is improved.
  • N-methylpyrrolidone, cyclohexanone, toluene and the like are preferable.
  • the solid content concentration of the dispersion containing the fluorine-containing polymer is usually 1 to 25% by mass from the viewpoint of handleability. 3 to 20% by mass is preferable, and 5 to 15% by mass is more preferable.
  • the viscosity when the fluorine-containing polymer (B2) is dissolved in N-methylpyrrolidone (hereinafter sometimes referred to as “NMP”) so as to form an 8% solution is preferably 10 to 5000 mPa ⁇ s. More preferably, it is 100 to 2000 mPa ⁇ s.
  • NMP N-methylpyrrolidone
  • the 8% NMP solution viscosity of the fluorine-containing polymer (B2) is obtained by dissolving the fluorine-containing polymer (B2) in NMP so as to be an 8% solution. It can be measured based on JIS K 7117-1;
  • the binder for the positive electrode contains the nitrile group-containing acrylic polymer (B1) and the fluorine-containing polymer (B2) described above.
  • the positive electrode binder contains a nitrile group-containing acrylic polymer (B1) and a fluorine-containing polymer (B2), so that the positive electrode with excellent bending properties of the wound body, initial capacity, output characteristics, high potential cycle A lithium secondary ion battery having excellent characteristics can be obtained.
  • the proportion of the nitrile group-containing acrylic polymer (B1) is preferably 5 to 50% by mass, more preferably 5 to 40% by mass, and particularly preferably 5 to 30% with respect to 100% by mass of the total amount of the binder for the positive electrode. % By mass.
  • the proportion of the fluorine-containing polymer (B2) is 50 to 95% by mass, preferably 60 to 90% by mass, and more preferably 70 to 85% by mass with respect to 100% by mass of the total amount of the binder for positive electrode.
  • the binder for positive electrode may contain other polymers that can be used as a binder, if necessary, in addition to the above-mentioned nitrile group-containing acrylic polymer (B1) and fluorine-containing polymer (B2). .
  • other polymers that may be used in combination include resins such as polyacrylic acid derivatives and polyacrylonitrile derivatives, and soft heavy polymers such as acrylate soft polymers, diene soft polymers, olefin soft polymers, and vinyl soft polymers. Coalescence is mentioned. These may be used alone or in combination of two or more.
  • the other polymer is contained in an amount of 30% by mass or less, further 0.1 to 20% by mass, particularly 0.2 to 10% by mass with respect to 100% by mass of the total amount of the binder for the positive electrode. May be.
  • the amount of the binder for the positive electrode is preferably in the range of 0.5 to 2 parts by mass, more preferably 1 to 2 parts by mass, and particularly preferably 1.5 to 2 parts by mass with respect to 100 parts by mass of the positive electrode active material. It is. When the amount of the binder for the positive electrode is within such a range, sufficient adhesion between the obtained positive electrode active material layer and the current collector can be secured, the capacity of the lithium secondary battery can be increased, and the internal resistance can be decreased. it can.
  • the conductive material positive electrode contains a conductive material.
  • the particle diameter of the conductive material contained in the positive electrode is 5 to 40 nm, preferably 10 to 38 nm, more preferably 15 to 36 nm in terms of number average particle diameter. If the particle size of the conductive material in the positive electrode is too small, aggregation tends to occur and uniform dispersion becomes difficult. As a result, the internal resistance of the positive electrode active material layer increases and the capacity tends to be difficult to improve. However, by using the positive electrode binder described above, the atomized conductive material can be uniformly dispersed, and the capacity can be improved.
  • the number average particle size of the conductive material is obtained by ultrasonically dispersing the conductive material in water at 0.01% by mass, and then measuring a dynamic light scattering particle size / particle size distribution measuring device (for example, Nikkiso Co., Ltd., particle size distribution measurement). It can be determined by measuring using a device Nanotrac Wave-EX150).
  • the specific surface area (BET type) of the conductive material in the positive electrode is preferably 400 m 2 / g or less, more preferably 300 m 2 / g or less, and particularly preferably 200 m 2 / g or less. If the specific surface area of the conductive material is too large, aggregation tends to occur and uniform dispersion becomes difficult. As a result, the internal resistance of the positive electrode active material layer increases and it is difficult to improve the capacity.
  • a conductive material one type of conductive material having the above-described specific surface area may be used alone, or two or more types of conductive materials having different specific surface areas may be used together with the BET specific surface area of the conductive material after mixing. May be used in combination so as to have a size within the above-described range.
  • conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube can be used as in the negative electrode.
  • the content of the conductive material is preferably 1 to 3 parts by mass, more preferably 1.2 to 2.8 parts by mass, and particularly preferably 1.5 to 2.5 parts by mass with respect to 100 parts by mass of the total amount of the positive electrode active material. Part by mass.
  • the content of the conductive material is too small, the internal resistance of the positive electrode increases and it may be difficult to increase the capacity. Moreover, when there is too much content of an electrically conductive material, it will become difficult to make the electrode high-density, and initial capacity may fall.
  • positive electrode components or the positive electrode may further contain, as an optional component, a reinforcing material, a leveling agent, an electrolytic solution additive having a function of suppressing electrolytic decomposition, etc. Furthermore, the thickener etc. which are contained in the slurry prepared at the time of positive electrode manufacture may remain
  • the slurry composition for a lithium ion secondary battery positive electrode includes the positive electrode active material (A), the positive electrode binder (B), the conductive material (C), and the like. Obtained by mixing these additives in a dispersion medium.
  • a dispersion medium either water or an organic solvent can be used.
  • organic solvents examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene, xylene and ethylbenzene; ketones such as acetone, ethyl methyl ketone, diisopropyl ketone, cyclohexanone, methylcyclohexanone and ethylcyclohexanone.
  • Chlorinated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; Esters such as ethyl acetate, butyl acetate, ⁇ -butyrolactone and ⁇ -caprolactone; Alkyl nitriles such as acetonitrile and propionitrile; Tetrahydrofuran and Ethylene Ethers such as glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether; N- Amides such as methylpyrrolidone and N, N-dimethylformamide are exemplified.
  • These dispersion media may be used alone or in combination of two or more as a mixed solvent.
  • a dispersion medium having excellent dispersibility of non-conductive particles and having a low boiling point and high volatility is preferable because it can be removed at a low temperature in a short time.
  • acetone, toluene, cyclohexanone, cyclopentane, tetrahydrofuran, cyclohexane, xylene, water, N-methylpyrrolidone, or a mixed solvent thereof is preferable.
  • the mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type. Further, a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, and a planetary kneader can be used.
  • a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, and a planetary kneader can be used.
  • Lithium ion secondary battery positive electrode A lithium ion secondary battery positive electrode is obtained by applying the slurry composition for a lithium ion secondary battery positive electrode described above to a current collector and drying it.
  • the method for producing a positive electrode for a lithium ion secondary battery includes a step of forming the positive electrode active material layer by applying and drying the slurry composition for positive electrode on one or both sides of the current collector.
  • the method for applying the positive electrode slurry composition onto the current collector is not particularly limited. Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying time is usually 5 to 30 minutes, and the drying temperature is usually 40 to 180 ° C.
  • the positive electrode slurry composition is applied onto a current collector, dried, and then subjected to pressure treatment using a die press or a roll press to increase the porosity of the positive electrode active material layer. It is preferable to have a lowering step.
  • the porosity of the positive electrode active material layer is preferably 5 to 30%, more preferably 7 to 20%. If the porosity of the positive electrode active material layer is too high, charging efficiency and discharging efficiency may be deteriorated.
  • the porosity of the positive electrode active material layer is too low, it is difficult to obtain a high volume capacity, and the positive electrode active material layer is likely to be peeled off from the current collector, and a defect may be easily generated. Further, when a curable polymer is used as the positive electrode binder, it is preferably cured.
  • the thickness of the positive electrode active material layer in the lithium ion secondary battery positive electrode is usually 5 to 300 ⁇ m, preferably 30 to 250 ⁇ m. When the thickness of the positive electrode active material layer is in the above range, a secondary battery having high load characteristics and cycle characteristics can be obtained.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is preferably 85 to 99% by mass, more preferably 88 to 97% by mass.
  • the content ratio of the positive electrode active material in the positive electrode active material layer is within the above range, it is possible to obtain a secondary battery that exhibits flexibility and binding properties while exhibiting high capacity.
  • the density of the positive electrode active material layer is preferably 3.0 to 4.0 g / cm 3 , and more preferably 3.4 to 4.0 g / cm 3 . When the density of the positive electrode active material layer is in the above range, a high-capacity secondary battery can be obtained.
  • the current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material, but is preferably a metal material because of its heat resistance, for example, iron, copper, aluminum, nickel, stainless steel. Examples include steel, titanium, tantalum, gold, and platinum. Among these, aluminum is particularly preferable as the current collector used for the positive electrode of the lithium ion secondary battery.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable.
  • the current collector may be used after being roughened. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • a primer layer or the like may be formed on the current collector surface in order to increase the adhesive strength or conductivity of the positive electrode active material layer.
  • the lithium ion secondary battery according to the present invention includes the above-described negative electrode and positive electrode, has a non-aqueous electrolyte, and usually includes a separator.
  • Nonaqueous Electrolytic Solution is not particularly limited, and a nonaqueous electrolytic solution obtained by dissolving a lithium salt as a supporting electrolyte in a nonaqueous solvent can be used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. These can be used alone or in admixture of two or more.
  • the amount of the supporting electrolyte is usually 1% by mass or more, preferably 5% by mass or more, and usually 30% by mass or less, preferably 20% by mass or less, with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the battery are degraded.
  • the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • Alkyl carbonates such as carbonate (BC) and methyl ethyl carbonate (MEC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane; tetrahydrofuran; sulfolane and dimethyl sulfoxide Sulfur-containing compounds are used.
  • dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable because high ion conductivity is easily obtained and the use temperature range is wide. These can be used alone or in admixture of two or more.
  • Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution, and an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N.
  • an additive containing an additive in the electrolytic solution in addition to carbonate compounds such as vinylene carbonate (VC), fluorine-containing carbonates such as fluoroethylene carbonate and ethyl methyl sulfone are preferable.
  • fluorine electrolyte additives such as fluorine-containing carbonate have a high withstand voltage. As the capacity increases, the voltage during charging and discharging is also increasing, and electrolytes made of ethylene carbonate, propylene carbonate, etc. cannot withstand high voltages and may decompose, so the above fluorine electrolyte additives Is preferably blended into the electrolyte.
  • the separator separator is a porous substrate having pores
  • usable separators include (a) a porous separator having pores, and (b) a porous material having a polymer coating layer formed on one or both sides.
  • the separator include (c) a porous separator on which a porous resin coat layer containing an inorganic ceramic powder is formed.
  • Non-limiting examples of these include solids such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers.
  • polymer films for polymer electrolytes or gel polymer electrolytes separators coated with a gelled polymer coating layer, or separators coated with a porous membrane layer made of a dispersant for inorganic fillers or inorganic fillers.
  • the manufacturing method of the lithium ion secondary battery of this invention is not specifically limited.
  • the above-described negative electrode and positive electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery and placed in the battery container, and the electrolyte is injected into the battery container and sealed.
  • an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate and the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a laminated cell type, a coin type, a button type, a sheet type, a cylindrical type, a square shape, a flat type, a wound type pouch cell, and the like.
  • the electrode layer is flexible and the electrode layer does not crack when bent, it can be preferably applied to the production of a wound pouch cell.
  • a film punched to 16 mm ⁇ was dipped in 20 g of a non-aqueous electrolyte and completely swollen at 60 ° C. for 72 hours. Thereafter, the swollen film was taken out, and the surface non-aqueous electrolyte was gently wiped, and the weight was measured (weight is assumed to be “B”).
  • the sheet-like positive electrode and the sheet-like negative electrode were wound using a core having a diameter of 20 mm with a separator interposed therebetween to obtain a wound body.
  • a separator a polypropylene microporous film having a thickness of 20 ⁇ m was used.
  • the wound body was compressed from one direction at a speed of 10 mm / second until a thickness of 4.5 mm was reached.
  • the wound body was disassembled after compression, the positive electrode was observed, and evaluation was performed according to the following evaluation criteria.
  • the obtained nonaqueous electrolyte battery was subjected to constant current charging at 140 mA until the battery voltage was 4.2 V in a 25 ° C. environment, and constant voltage charging was performed until the charging current was 14 mA at 4.2 V. Subsequently, constant current discharge was performed at 140 mA until the battery voltage reached 3 V, and the initial capacity was obtained.
  • the initial capacity at this time was evaluated according to the following evaluation criteria. A ... 700 mAh or more B ... 697 mAh or more but less than 700 mAh C ... 694 mAh or more but less than 697 mAh D ... 690 mAh or more but less than 694 mAh E ... less than 690 mAh
  • the negative electrode active material, the positive electrode active material used for the positive electrode, the positive electrode binder, and the conductive material are as follows.
  • the particle diameter of the active material described below means the volume average particle diameter
  • the particle diameter of the conductive material means the number average particle diameter.
  • Gr / SiOx Mixture of 90 parts of spherical artificial graphite (particle diameter: 12 ⁇ m) and 10 parts of alloy-based active material SiOx (particle diameter: 10 ⁇ m)
  • Gr / SiOC 90 parts of spherical artificial graphite (particle diameter: 12 ⁇ m) and alloy system Mixture with 10 parts of active material SiOC (volume average particle size: 10 ⁇ m)
  • Gr spherical artificial graphite (particle size: 12 ⁇ m)
  • LCO lithium cobalt oxide (LiCoO 2 ) (particle diameter: 12 ⁇ m)
  • LNM Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 (particle diameter: 15 ⁇ m)
  • Nitrile group-containing acrylic polymers (B1-1) to (B1-11) were prepared as follows.
  • the polymerization conversion rate determined from the solid content concentration was 96%. Further, 500 parts of N-methylpyrrolidone was added to 100 parts of this aqueous dispersion, and after evaporating all of water and residual monomers under reduced pressure, 81 parts of N-methylpyrrolidone was evaporated to obtain a polymer (B1-1). An 8% by mass NMP solution was obtained. The obtained polymer (B1-1) had a nonaqueous electrolyte swelling degree of 1.7 times and a THF-insoluble matter content of 10% or less.
  • a 400 milliliter (total solid content 48 grams) solution prepared by adjusting the total solid content of the polymer to 12% by mass with water was charged into a 1 liter autoclave equipped with a stirrer, and nitrogen gas was added for 10 minutes. After removing the dissolved oxygen in the polymer by flowing, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 ml of water to which nitric acid of 4 times moles of Pd had been added and added. After the inside of the system was replaced twice with hydrogen gas, the autoclave contents were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “first-stage hydrogenation reaction”) for 6 hours. ) At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 60 ml of water added with 4-fold mol of nitric acid with respect to Pd and added. After the inside of the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. while being pressurized with hydrogen gas up to 3 MPa, and the hydrogenation reaction (referred to as “second stage hydrogenation reaction”) was performed for 6 hours. )
  • the contents are returned to room temperature, the inside of the system is set to a nitrogen atmosphere, and then concentrated using an evaporator until the solid content concentration becomes 40%, and an aqueous dispersion of the nitrile group-containing acrylic polymer (B1-12) Got.
  • 320 parts of N-methylpyrrolidone was added to 100 parts of this aqueous dispersion, water and residual monomers were all evaporated under reduced pressure, and N-methylpyrrolidone was added to obtain 8 parts by mass of the polymer (B1-12).
  • % NMP solution was obtained.
  • the obtained polymer (B1-12) had a nonaqueous electrolyte swelling degree of 2.9 times and a THF insoluble content of 10% or less.
  • the iodine value of the nitrile group-containing acrylic polymer (B1-12) was 10 mg / 100 mg.
  • Example 1 [Production of slurry composition for positive electrode and positive electrode] 100 parts of lithium cobaltate LCO (LiCoO 2 ) (particle diameter: 12 ⁇ m) as the positive electrode active material, and acetylene black (AB35, Denka Black powder manufactured by Denki Kagaku Kogyo Co., Ltd.) as the positive electrode conductive material: particle diameter 35 nm, specific surface area 68 m 2 / G) 2.0 parts, 1.6 parts of a mixed polyvinylidene fluoride (1: 1 mixture of KYNAR HSV900 and KYNAR720 made by Arkema) as a fluorine-containing polymer for the positive electrode binder, and a nitrile group-containing acrylic polymer As a solid composition, 0.4 part of solid B and an appropriate amount of NMP were stirred with a planetary mixer to prepare a positive electrode slurry composition.
  • LiCoO 2 lithium cobaltate LCO
  • AB35 Denka Black powder manufactured by Denki Kagaku Kogyo Co
  • An aluminum foil having a thickness of 15 ⁇ m was prepared as a current collector.
  • the positive electrode slurry composition was applied to both sides of an aluminum foil so that the coating amount after drying was 25 mg / cm 2 , dried at 60 ° C. for 20 minutes, 120 ° C. for 20 minutes, and then heated at 150 ° C. for 2 hours. Thus, a positive electrode raw material was obtained.
  • This positive electrode original fabric was rolled by a roll press to produce a sheet-like positive electrode comprising a positive electrode active material layer having a density of 3.9 g / cm 3 and an aluminum foil. This was cut into a width of 4.8 mm and a length of 50 cm, and an aluminum lead was connected.
  • slurry composition for negative electrode and negative electrode 90 parts of spherical artificial graphite (particle diameter: 12 ⁇ m) and 10 parts of SiOx (particle diameter: 10 ⁇ m) as the negative electrode active material, 1 part of styrene butadiene rubber (particle diameter: 180 nm, glass transition temperature: ⁇ 40 ° C.) as the binder, As a thickener, 1 part of carboxymethylcellulose and an appropriate amount of water were stirred with a planetary mixer to prepare a slurry composition for a negative electrode.
  • a copper foil having a thickness of 15 ⁇ m was prepared as a current collector.
  • the negative electrode slurry composition was applied to both sides of the copper foil so that the coating amount after drying was 10 mg / cm 2 , dried at 60 ° C. for 20 minutes, 120 ° C. for 20 minutes, and then heat-treated at 150 ° C. for 2 hours. Thus, a negative electrode raw material was obtained.
  • This negative electrode original fabric was rolled with a roll press to prepare a sheet-like negative electrode comprising a negative electrode active material layer having a density of 1.8 g / cm 3 and a copper foil. This was cut into a width of 5.0 mm and a length of 52 cm, and a nickel lead was connected.
  • the obtained sheet-like positive electrode and sheet-like negative electrode were wound using a core having a diameter of 20 mm with a separator interposed therebetween to obtain a wound body.
  • a separator a polypropylene microporous film having a thickness of 20 ⁇ m was used.
  • the wound body was compressed from one direction at a speed of 10 mm / second until a thickness of 4.5 mm was reached.
  • the ratio of the major axis to the minor axis of the substantially ellipse is 7.7.
  • the electrode plate group was housed together with 3.2 g of a non-aqueous electrolyte in a predetermined aluminum laminate case. And after connecting a negative electrode lead and a positive electrode lead to a predetermined location, the opening part of the case was sealed with heat, and the nonaqueous electrolyte battery was completed.
  • This battery is a pouch having a width of 35 mm, a height of 48 mm, and a thickness of 5 mm, and the nominal capacity of the battery is 700 mAh.
  • Table 2 shows the initial capacity, output characteristics, and high potential cycle characteristics of the obtained battery.
  • Example 2 Example 1 except that the negative electrode active material was changed to Gr / SiOC (a mixture of 90 parts of spherical artificial graphite (particle diameter: 12 ⁇ m) and 10 parts of alloy-based active material SiOC (volume average particle diameter: 10 ⁇ m)). Same as above. The results are shown in Table 2.
  • Example 3 Except that the positive electrode conductive material was changed to acetylene black (AB23, acetylene black (Denka Black powder product manufactured by Denki Kagaku Kogyo Co., Ltd .: particle diameter 23 nm, specific surface area 133 m 2 / g), the same as Example 1. Is shown in Table 2.
  • Example 4 The same procedure as in Example 1 was conducted except that the positive electrode active material was changed to LNM (Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 (particle diameter: 15 ⁇ m)). The results are shown in Table 2.
  • Nitrile group-containing acrylic polymers (B1-2) to (B1-9) are used in place of the nitrile group-containing acrylic polymer (B1-1) in the positive electrode binder, and the blending amounts are as shown in Table 2.
  • the procedure was the same as Example 1 except that the change was made. The results are shown in Table 2.
  • Example 13 The same procedure as in Example 1 was conducted except that high molecular weight polyvinylidene fluoride was used instead of the mixed polyvinylidene fluoride in the positive electrode binder. The results are shown in Table 2.
  • Example 14 The same procedure as in Example 1 was conducted except that low molecular weight polyvinylidene fluoride was used instead of the mixed polyvinylidene fluoride in the positive electrode binder. The results are shown in Table 2.
  • Example 15 As the positive electrode conductive material, 1.8 parts of acetylene black (Denka black powdered product manufactured by Denki Kagaku Kogyo Co., Ltd .: particle diameter 23 nm, specific surface area 133 m 2 / g) and HiPCO (Unimid Corporation carbon nanotube: particle diameter 26 nm, specific surface area) 700 m 2 / g) Same as Example 1 except that the mixture was changed to 0.2 parts. The results are shown in Table 2.
  • acetylene black Denki Kagaku Kogyo Co., Ltd .: particle diameter 23 nm, specific surface area 133 m 2 / g
  • HiPCO Unimid Corporation carbon nanotube: particle diameter 26 nm, specific surface area
  • Example 16 Example 1 was repeated except that the nitrile group-containing acrylic polymer (B1-12) was used instead of the nitrile group-containing acrylic polymer (B1-1) of the positive electrode binder. The results are shown in Table 2.
  • Example 17 [Production of slurry composition for negative electrode] Disperse polyacrylic acid (manufactured by Aldrich, viscosity average molecular weight 1.25 million) and an appropriate amount of water so as to form a 10% aqueous solution, and then add lithium hydroxide to reach pH 7. An aqueous solution of lithium polyacrylate was prepared.
  • As a negative electrode active material 90 parts of spherical artificial graphite (particle diameter: 12 ⁇ m) and 10 parts of SiOx (particle diameter: 10 ⁇ m), an aqueous solution of the above polyacrylic acid lithium salt in an amount corresponding to 1 part in solid content, was stirred with a planetary mixer to prepare a slurry composition for a negative electrode.
  • the negative electrode slurry composition was the same as Example 1 except that the negative electrode slurry composition was changed to the above negative electrode slurry composition. The results are shown in Table 2.
  • Example 1 The negative electrode active material was the same as that of Example 1 except that only the spherical artificial graphite (particle diameter: 12 ⁇ m) was changed. The results are shown in Table 2.
  • Example 2 The same procedure as in Example 1 was conducted except that the positive electrode conductive material was changed to acetylene black (AB48, acetylene black (Denka Black powder product manufactured by Denki Kagaku Kogyo Co., Ltd .: particle diameter 48 nm, specific surface area 39 m 2 / g). Is shown in Table 2.
  • acetylene black AB48, acetylene black (Denka Black powder product manufactured by Denki Kagaku Kogyo Co., Ltd .: particle diameter 48 nm, specific surface area 39 m 2 / g).
  • Example 3 (Comparative Example 3) Example 1 was repeated except that 2 parts of the nitrile group-containing acrylic polymer (B1-1) was used without using the fluorine-containing polymer of the positive electrode binder. The results are shown in Table 2.
  • Example 4 The same procedure as in Example 1 was conducted except that 2 parts of mixed polyvinylidene fluoride was used without using the nitrile group-containing acrylic polymer of the positive electrode binder. The results are shown in Table 2.
  • Example 5 (Comparative Examples 5 and 6) The same as Example 1 except that the nitrile group-containing acrylic polymer (B1-10) or (B1-11) was used instead of the nitrile group-containing acrylic polymer (B1-1) in the positive electrode binder. did. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 【課題】柔軟であり、屈曲時に電極層のクラック発生がなく高電位サイクル特性に優れた高容量のリチウムイオン二次電池を提供すること。 【解決手段】本発明に係るリチウムイオン二次電池は、 負極、正極及び非水電解液を備え、 前記負極が、合金系活物質を含み、 前記正極が、正極活物質、正極用結着剤および導電材を含み、 前記正極用結着剤が、ニトリル基含有アクリル重合体及びフッ素含有重合体を含み、 前記ニトリル基含有アクリル重合体の非水電解液に対する膨潤度が3倍以下で、THF不溶解分量が30質量%以下であり、 前記導電材の粒子径が5~40nmである、ことを特徴としている。

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池に関し、さらに詳しくは高容量化を可能にしうるリチウムイオン二次電池に関する。
 近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、ニッケル水素二次電池、リチウムイオン二次電池などが多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化、高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。
 また、電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化、高性能化が要求されている。また、電池の高容量化のために活物質層中における活物質の配合量を増加するため、活物質を集電体上に固定するための結着材や導電性を確保するための導電材などの材料を減らすことが要求されている。
 リチウムイオン二次電池の高容量化を目的とし、Si等を含有する合金系活物質を用いたリチウムイオン二次電池用負極が開発されている(例えば特許文献1)。高容量化に伴い、充放電時の電圧も高くなりつつあり、エチレンカーボネートやプロピレンカーボネートなどからなる電解液では高電圧に耐えられず、分解することがあるため、フッ素系電解液添加剤を併用することも行われている。
 一方、正極では、電極層を形成するための結着剤としては、ポリフッ化ビニリデン(PVdF)などのフッ素含有重合体が使用されてきた。フッ素含有重合体は、電解液に溶解しないため、安定した結着性が期待されるが、PVdFなどのフッ素含有重合体は硬く、曲げ難いという性質がある。このため、電池の形状や大きさによっては、電極を捲回した後、押しつぶし所定形状に成形する際に、フッ素含有重合体のみを用いた場合には、電極層にクラックが生じることがある。
 さらに、高容量化を達成するため、特に正極において導電材であるカーボンブラック等を細粒化することが検討されている。しかし、フッ素含有重合体を単独で結着剤として使用した場合には、細粒化した導電材が凝集し、分散性が不十分になり、導電性が上がらず、容量の向上が図れないことがあった。
特許第4025995号 特許第3598153号 特許第4929573号
 リチウムイオン二次電池について、高容量化を達成するため、正極において、結着剤としてフッ素含有重合体を使用すると電極層にクラックが生じるといった問題があった。また、正極に用いる結着剤として、フッ素含有重合体とニトリルゴムとを併用すること、フッ素含有重合体と架橋アクリレート系重合体とを併用することが検討されている。
 例えば、特許文献2では、リチウムイオン二次電池の電極層を形成するための結着剤として、フッ素含有重合体とニトリルゴムとを併用している。しかしながら、結着剤量が多くなることにより、相対的に活物質密度は低下するため、充分な電池容量が得られないことがある。また、結着剤量が多くなるため、電解液に対する電極層の膨潤度も高くなり、特に高電位サイクル時の剥離強度が低下し、サイクル特性が劣化することがある。
 また、特許文献3では、結着剤としてフッ素含有重合体と架橋アクリレート系重合体とを併用している。しかしながら、架橋アクリレート系重合体を使用するため、電極層の電解液に対する膨潤は抑制されるものの、架橋アクリレート系重合体が粒子状で存在するため、分散性が不十分となり、この結果、高電位サイクル特性が低下することがある。
 したがって、本発明の目的は、柔軟であり、屈曲時に電極層のクラック発生がなく高電位サイクル特性に優れた高容量のリチウムイオン二次電池を提供することにある。
 本発明者らは前記の課題を解決すべく鋭意検討した結果、正極用結着剤としてニトリル基含有アクリル重合体を使用し、かつ、ニトリル基含有アクリル重合体の非水電解液に対する膨潤度とTHF不溶解分量とを特定範囲にすることにより、ニトリル基含有アクリル重合体が正極用スラリー組成物の分散媒には溶解しつつも、溶解パラメーター(SP値)の近い電解液には溶解せずに適切な範囲で膨潤させることができることを見出した。そして、負極用活物質として合金系活物質、正極に細粒化された導電材粉末を使用することにより、高容量化を図ることができ、また、正極用結着剤として、かかるニトリル基含有アクリル重合体とフッ素含有重合体と併用することにより、柔軟であり、屈曲時に電極層のクラック発生がなく、しかも活物質密度の高い電極が得られること、さらに、出力特性や高電位サイクル特性に優れた高容量のリチウムイオン二次電池が得られることが分かった。これらの知見に基づいて本発明を完成するに至った。
 本発明の要旨は以下のとおりである。
(1)負極、正極及び非水電解液を備えるリチウムイオン二次電池であって、
 前記負極が、合金系活物質を含み、
 前記正極が、正極活物質、正極用結着剤および導電材を含み、
 前記正極用結着剤が、ニトリル基含有アクリル重合体及びフッ素含有重合体を含み、
 前記ニトリル基含有アクリル重合体の非水電解液に対する膨潤度が3倍以下で、THF不溶解分量が30質量%以下であり、
 前記導電材の粒子径が5~40nmである、
 リチウムイオン二次電池。
(2)前記正極活物質100質量部に対し、導電材が1~3質量部、正極用結着剤が0.5~2質量部含まれる、(1)に記載のリチウムイオン二次電池。
(3)前記正極用結着剤における、ニトリル基含有アクリル重合体の含有割合が50~5質量%、フッ素含有重合体の含有割合が50~95質量%である(1)または(2)に記載のリチウムイオン二次電池。
(4)前記フッ素含有重合体が、ポリフッ化ビニリデンである(1)~(3)のいずれかに記載のリチウムイオン二次電池。
(5)前記ニトリル基含有アクリル重合体が、エチレン性不飽和酸単量体単位を含む、(1)~(4)のいずれかに記載のリチウムイオン二次電池。
(6)前記ニトリル基含有アクリル重合体におけるエチレン性不飽和酸単量体単位の含有割合が10~30質量%である、(5)に記載のリチウムイオン二次電池。
(7)捲回型パウチセルである、(1)~(6)のいずれかに記載のリチウムイオン二次電池。
 本発明によれば、容量向上のために負極に合金系活物質を用い、また正極に細粒化された導電材粉末を使用し、結着剤としてフッ素含有重合体およびニトリル基含有アクリル重合体を併用することにより、柔軟であり、屈曲時に電極層のクラック発生がないことに加えて、活物質密度の高い電極が得られる。また、優れた出力特性や高電位サイクル特性に加えて、初期容量も高いリチウムイオン二次電池を提供することができる。
 以下、本発明をさらに詳細に説明する。本発明に係るリチウムイオン二次電池は、負極、正極及び非水電解液を備える。負極は、合金系活物質を含み、正極は、正極活物質、正極用結着剤および導電材を含む。正極用結着剤は、ニトリル基含有アクリル重合体及びフッ素含有重合体を含む。ニトリル基含有アクリル重合体の非水電解液に対する膨潤度は、3倍以下で、THF不溶解分量が30質量%以下である。正極の導電材の粒子径は、5~40nmである。以下、負極、正極及び非水電解液のそれぞれをさらに具体的に説明する。
(負極)
 負極は、集電体と、前記集電体上に積層される負極活物質層とからなる。負極活物質層は、負極活物質(a)として、合金系活物質(a1)を含有し、必要に応じその他の炭素系活物質(a2)を含有し、また通常は負極用結着剤(b)、導電材(c)等を含有する。
(a)負極活物質
 負極活物質は、負極内で電子(リチウムイオン)の受け渡しをする物質である。負極活物質としては、合金系活物質(a1)が用いられ、また必要に応じ炭素系活物質(a2)を用いることができる。負極活物質は、合金系活物質と炭素系活物質とを含むことが好ましく、合金系活物質と炭素系活物質とを併用することで、合金系活物質のみを用いて得られる負極よりも容量の大きい電池を得ることができ、かつ負極の密着強度の低下、サイクル特性の低下といった問題も解決することができる。
(a1)合金系活物質
 合金系活物質とは、リチウムの挿入可能な元素を構造に含み、リチウムが挿入された場合の重量あたりの理論電気容量が500mAh/g以上(当該理論電気容量の上限は、特に限定されないが、例えば5000mAh/g以下とすることができる。)である活物質をいい、具体的には、リチウム合金を形成する単体金属およびその合金、及びそれらの酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が用いられる。
 リチウム合金を形成する単体金属及び合金としては、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn等の金属や該金属を含有する化合物が挙げられる。それらの中でもケイ素(Si)、スズ(Sn)または鉛(Pb)の単体金属若しくはこれら原子を含む合金、または、それらの金属の化合物が好ましい。さらに、これらの中でも、低電位でリチウムの挿入脱離が可能なSiの単体金属がより好ましい。
 合金系活物質は、さらに、一つ以上の非金属元素を含有していてもよい。具体的には、例えばSiC、SiO(以下、「SiOC」と呼ぶ)(0<x≦3、0<y≦5)、Si、SiO、SiO(x=0.01以上2未満)、SnO(0<x≦2)、LiSiO、LiSnO等が挙げられ、中でも低電位でリチウムの挿入脱離が可能なSiOC、SiO、及びSiCが好ましく、SiOC、SiOがより好ましい。例えば、SiOCは、ケイ素を含む高分子材料を焼成して得ることができる。SiOCの中でも、容量とサイクル特性の兼ね合いから、0.8≦x≦3、2≦y≦4の範囲が好ましく用いられる。
 リチウム合金を形成する単体金属およびその合金の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物としては、リチウムの挿入可能な元素の酸化物、硫化物、窒化物、珪化物、炭化物、燐化物等が挙げられ、中でも酸化物が特に好ましい。具体的には酸化スズ、酸化マンガン、酸化チタン、酸化ニオブ、酸化バナジウム等の酸化物、Si、Sn、PbおよびTi原子よりなる群から選ばれる金属元素を含むリチウム含有金属複合酸化物が好ましい。
 リチウム含有金属複合酸化物としては、更にLiTiで示されるリチウムチタン複合酸化物(0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、ZnおよびNb)が挙げられ、中でもLi4/3Ti5/3、LiTi、Li4/5Ti11/5が好ましい。
 これらの合金系活物質の中でもケイ素を含む活物質が好ましい。ケイ素を含む活物質を用いることにより、二次電池の電気容量を大きくすることが可能となる。さらに、ケイ素を含む活物質の中でも、SiO、SiO、及びSiCがさらに好ましい。ケイ素および炭素を組み合わせて含む活物質においては、高電位でSi(ケイ素)、低電位ではC(炭素)へのLiの挿入脱離が起こると推測され、他の合金系活物質よりも膨張・収縮が抑制されるため、本発明の効果がより得られ易い。
 合金系活物質は、粒子状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時に、より高密度な電極が形成できる。合金系活物質が粒子である場合、その体積平均粒子径は、好ましくは0.1~50μm、より好ましくは0.5~20μm、特に好ましくは1~10μmである。合金系活物質の体積平均粒子径がこの範囲内であれば、負極を製造するために用いるスラリー組成物の作製が容易となる。なお、本発明における体積平均粒子径は、レーザー回折で粒径分布を測定することにより求めることができる。
 合金系活物質のタップ密度は、特に制限されないが、0.6g/cm以上のものが好適に用いられる。
 合金系活物質の比表面積(BET式)は、好ましくは3.0~20.0m/g、より好ましくは3.5~15.0m/g、特に好ましくは4.0~10.0m/gである。合金系活物質の比表面積が上記範囲にあることで、合金系活物質表面の活性点が増えるため、リチウムイオン二次電池の出力特性に優れる。なお、本発明において、「BET比表面積」とは、窒素吸着法によるBET比表面積のことをいい、ASTM D3037-81に準じて、測定される値である。
(a2)炭素系活物質
 炭素系活物質とは、リチウムが挿入可能な炭素を主骨格とする活物質をいい、具体的には、炭素質材料と黒鉛質材料が挙げられる。炭素質材料とは、一般的に炭素前駆体を2000℃以下で熱処理して炭素化させた黒鉛化度の低い(すなわち、結晶性の低い)炭素材料である。前記熱処理の温度の下限は、特に限定されないが、例えば500℃以上とすることができる。黒鉛質材料とは、易黒鉛性炭素を2000℃以上で熱処理することによって得られた黒鉛に近い高い結晶性を有する黒鉛質材料である。前記処理温度の上限は、特に限定されないが、例えば5000℃以下とすることができる。
 炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 易黒鉛性炭素としては、例えば、石油や石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。MCMBとはピッチ類を400℃前後で加熱する過程で生成したメソフェーズ小球体を分離抽出した炭素微粒子である。メソフェーズピッチ系炭素繊維とは、前記メソフェーズ小球体が成長、合体して得られるメソフェーズピッチを原料とする炭素繊維である。熱分解気相成長炭素繊維とは、(1)アクリル高分子繊維などを熱分解する方法、(2)ピッチを紡糸して熱分解する方法、(3)鉄などのナノ粒子を触媒として用いて炭化水素を気相熱分解する触媒気相成長(触媒CVD)法により得られた炭素繊維である。
 難黒鉛性炭素としては、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
 黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 前記の炭素系活物質の中でも、黒鉛質材料が好ましい。黒鉛質材料を用いることで、負極活物質層の密度を上げやすくなり、負極活物質層の密度が1.6g/cm以上(当該密度の上限は、特に限定されないが、2.2g/cm以下とすることができる。)である負極の作製が容易となる。負極活物質層の密度が前記範囲である負極活物質層を有する負極であれば、本発明の効果が顕著に現れる。
 炭素系活物質は、粒子状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時に、より高密度な電極が形成できる。炭素系活物質が粒子である場合、炭素系活物質の体積平均粒子径は、好ましくは0.1~100μm、より好ましくは0.5~50μm、特に好ましくは1~30μmである。炭素系活物質の体積平均粒子径がこの範囲内であれば、負極を製造するために用いるスラリー組成物の作製が容易となる。
 炭素系活物質のタップ密度は、特に制限されないが、0.6g/cm以上のものが好適に用いられる。
 炭素系活物質の比表面積は、好ましくは3.0~20.0m/g、より好ましくは3.5~15.0m/g、特に好ましくは4.0~10.0m/gである。炭素系活物質の比表面積が上記範囲にあることで、炭素系活物質表面の活性点が増えるため、リチウムイオン二次電池の出力特性に優れる。比表面積は例えばBET法により測定できる。
 負極活物質は、合金系活物質1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、負極活物質の好ましい態様として、合金系活物質及び炭素系活物質を組み合わせた活物質を挙げることができる。負極活物質(a)として合金系活物質(a1)と炭素系活物質(a2)とを併用する場合、その混合方法としては、特に限定されず、従来公知の乾式混合や湿式混合が挙げられる。
 負極活物質(a)において、合金系活物質(a1)と炭素系活物質(a2)とを併用する場合、炭素系活物質(a2)100質量部に対して、合金系活物質(a1)を1~50質量部含むことが好ましい。合金系活物質と炭素系活物質とを上記範囲で混合することにより、従来の炭素系活物質のみを用いて得られる負極よりも容量の大きい電池を得ることができ、かつ負極の密着強度の低下やサイクル特性の低下を防ぐことができる。合金系活物質(a1)と炭素系活物質(a2)とを前記範囲で併用する負極活物質層を有する負極であれば、本発明の効果が顕著に現れる。
(b)負極用結着剤
 負極用結着剤は、負極において電極活物質を集電体の表面に結着させる成分であり、負極活物質を保持する性能に優れ、集電体に対する密着性が高いものを用いることが好ましい。通常、結着剤の材料としては重合体を用いる。結着剤の材料としての重合体、単独重合体でもよく、共重合体でもよい。負極用結着剤の重合体としては、特に限定はされないが、例えば、フッ素重合体、ジエン重合体、アクリレート重合体、ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられ、中でも、フッ素重合体、ジエン重合体またはアクリレート重合体が好ましく、耐電圧を高くでき、かつ電気化学素子のエネルギー密度を高くすることができる点でジエン重合体またはアクリレート重合体がより好ましく、電極の強度を向上させる点でジエン重合体が特に好ましい。
 ジエン重合体は、共役ジエン単量体を重合して形成される構造単位(以下、「共役ジエン単量体単位」と記すことがある。)を含む重合体であり、具体的には、共役ジエンの単独重合体;異なる種類の共役ジエン同士の共重合体;共役ジエンを含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物などが挙げられる。前記共役ジエンとしては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、および2,4-ヘキサジエンなどが挙げられる。これらの中でも、1,3-ブタジエン、2-メチル-1,3-ブタジエンが好ましい。なお、共役ジエンは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ジエン重合体における共役ジエン単量体単位の割合は、好ましくは20質量%以上60質量%以下、好ましくは30質量%以上55質量%以下である。
  前記ジエン重合体は、共役ジエンの他に、ニトリル基含有単量体を重合して形成される構造単位(以下、「ニトリル基含有単量体単位」と記すことがある。)を含んでいてもよい。ニトリル基含有単量体の具体例としては、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-エチルアクリロニトリル等のα,β-不飽和ニトリル化合物などが挙げられ、中でもアクリロニトリルが好ましい。 ジエン重合体におけるニトリル基含有単量体単位の割合は、好ましくは5~40質量%、より好ましくは5~30質量%の範囲である。ニトリル基含有単量体単位の量を上記範囲とすることで、得られる電極強度がより向上する。なお、ニトリル基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
  また、前記ジエン重合体には、上記単量体単位の他に、他の単量体を重合して形成される構造単位を含んでいてもよい。他の単量体としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン単量体;エチレン、プロピレン等のオレフィン類;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド単量体;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。なお、前記他の単量体は、それぞれ、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 アクリレート重合体は、一般式(1):CH=CR-COOR(式中、Rは水素原子またはメチル基を、Rはアルキル基またはシクロアルキル基を表す。)で表される化合物由来の単量体を重合して形成される単量体単位(以下、「(メタ)アクリル酸エステル単量体単位」と記すことがある。)を含む重合体である。(メタ)アクリル酸エステル単量体単位を構成する単量体の具体例としては、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸n-アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリルなどのアクリル酸エステル;メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸n-アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリルなどのメタクリル酸エステル等が挙げられる。これらの中でも、アクリル酸エステルが好ましく、アクリル酸n-ブチルおよびアクリル酸2-エチルヘキシルが、得られる電極の強度を向上できる点で、特に好ましい。アクリレート重合体中の(メタ)アクリル酸エステル単量体単位の割合は、通常50質量%以上、好ましくは70質量%以上である。前記(メタ)アクリル酸エステル単量体単位の割合が前記範囲であるアクリレート重合体を用いると、耐熱性が高く、かつ得られる電極の内部抵抗を小さくできる。
  前記アクリレート重合体は、(メタ)アクリル酸エステル単量体単位の他に、ニトリル基含有単量体単位を含んでいることが好ましい。ニトリル基含有単量体としては、アクリロニトリルやメタクリロニトリルなどが挙げられ、中でもアクリロニトリルが、集電体と電極合剤層との結着性が高まり、電極強度が向上できる点で好ましい。アクリレート重合体におけるニトリル基含有単量体単位の割合は、好ましくは5~35質量%、より好ましくは10~30質量%の範囲である。ニトリル基含有単量体単位の量を上記範囲とすることで、得られる電極強度がより向上する。
 前記アクリレート重合体には、上記単量体単位の他に、共重合可能なカルボン酸基含有単量体を重合して形成される単量体単位(以下、「カルボン酸基含有単量体単位」と記すことがある。)を含んでいてもよい。カルボン酸基含有単量体の具体例としては、アクリル酸、メタクリル酸などの一塩基酸含有単量体;マレイン酸、フマル酸、イタコン酸などの二塩基酸含有単量体が挙げられる。なかでも、二塩基酸含有単量体が好ましく、集電体との結着性を高め、電極強度を向上できる点で、イタコン酸が特に好ましい。これらの一塩基酸含有単量体、二塩基酸含有単量体は、それぞれ単独でまたは2種以上を組み合わせて使用できる。アクリレート重合体中のカルボン酸基含有単量体単位の割合は、好ましくは1~50質量%、より好ましくは1~20質量%、特に好ましくは1~10質量%の範囲である。カルボン酸基含有単量体単位の量を上記範囲とすることで、得られる電極の強度がより向上する。
  さらに、前記アクリレート重合体には、上記単量体の他に、共重合可能な他の単量体を重合して得られる構造単位を含んでいてもよい。前記他の単量体としては、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;パーフルオロオクチルエチルアクリレートやパーフルオロオクチルエチルメタクリレートなどの側鎖にフッ素を含有する不飽和エステル類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン単量体;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系単量体;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;アリルグリシジルエーテルなどのグリシジルエーテル類;グリシジルアクリレート、グリシジルメタクリレートなどのグリシジルエステル類などが挙げられる。アクリレート重合体におけるこれらの共重合可能な他の単量体単位の含有割合は、利用目的によって適宜調整されればよい。
 また上記の他にも負極用結着剤としては、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルイソブチルエーテル、ポリアクリロニトリル、ポリメタアクリロニトリル、ポリメタクリル酸メチル、ポリアクリル酸メチル、ポリメタクリル酸エチル、ポリ酢酸アリル、ポリスチレンなどのビニル重合体;ポリオキシメチレン、ポリオキシエチレン、ポリ環状チオエーテル、ポリジメチルシロキサンなど主鎖にヘテロ原子を含むエーテル重合体;ポリラクトン、ポリ環状無水物、ポリエチレンテレフタレート、ポリカーボネートなどの縮合エステル重合体;ナイロン6、ナイロン66、ポリ-m-フェニレンイソフタラミド、ポリ-p-フェニレンテレフタラミド、ポリピロメリットイミドなどの縮合アミド重合体、後述する増粘剤などが挙げられる。
 負極用結着剤の形状は、特に制限はないが、集電体との密着性が良く、また、作成した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができるため、粒子状であることが好ましい。粒子状結着剤は、分散媒に分散させた状態において粒子形状を保持・存在するものであればよいが、負極活物質層においても粒子形状を保持した状態で存在できるものが好ましい。本発明において、「粒子状態を保持した状態」とは、完全に粒子形状を保持した状態である必要はなく、その粒子形状をある程度保持した状態であればよい。粒子状結着剤としては、例えば、ラテックスのごとき結着剤の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。
 負極用結着剤のガラス転移温度(Tg)は、好ましくは50℃以下、さらに好ましくは-40~0℃である。結着剤のガラス転移温度(Tg)がこの範囲にあると、少量の使用量で密着性に優れ、電極強度が強く、柔軟性に富み、電極形成時のプレス工程により電極密度を容易に高めることができる。
 負極用結着剤が粒子状結着剤である場合、その個数平均粒子径は、格別な限定はないが、通常は0.01~1μm、好ましくは0.03~0.8μm、より好ましくは0.05~0.5μmである。結着剤の個数平均粒子径がこの範囲であるときは、少量の使用でも優れた密着力を負極活物質層に与えることができる。ここで、個数平均粒子径は、透過型電子顕微鏡写真で無作為に選んだ結着剤粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。粒子の形状は球形、異形、どちらでもかまわない。これらの結着剤は単独でまたは二種類以上を組み合わせて用いることができる。
 負極用結着剤の量は、負極活物質100質量部に対して、通常は0.1~50質量部、好ましくは0.5~20質量部、より好ましくは1~10質量部の範囲である。結着剤の量がこの範囲にあると、得られる負極活物質層と集電体との密着性が充分に確保でき、電気化学素子の容量を高く、且つ内部抵抗を低くすることができる。
(c)導電材
 負極活物質層は、導電材を含有してもよい。負極活物質層に含まれる導電材の粒子径は、個数平均粒子径で、5~40nm、好ましくは10~38nm、より好ましくは15~36nmである。導電材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンを使用することができる。導電材を含有することにより、負極活物質同士の電気的接触を向上させることができ、リチウムイオン二次電池に用いる場合に放電レート特性を改善することができる。導電材の含有量は、負極活物質の総量100質量部に対して、好ましくは1~20質量部、より好ましくは1~10質量部である。
その他の負極成分
 また、負極活物質層にはさらに、任意の成分としては、補強材、レベリング剤、電解液分解抑制等の機能を有する電解液添加剤等が含まれていてもよく、さらに、負極製造時に調整するスラリーに含まれる増粘剤等が残留していてもよい。
 補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより強靭で柔軟な負極を得ることができ、優れた長期サイクル特性を示すことができる。補強材の含有量は、負極活物質の総量100質量部に対して通常0.01~20質量部、好ましくは1~10質量部である。補強材が上記範囲含まれることにより、高い容量と高い負荷特性を示すことができる。
 レベリング剤としては、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を混合することにより、塗工時に発生するはじきを防止したり、負極活物質層の平滑性を向上させることができる。レベリング剤の含有量は、負極活物質の総量100質量部に対して、好ましくは0.01~10質量部である。レベリング剤が上記範囲含まれることにより、負極作製時の生産性、平滑性及び電池特性に優れる。
 電解液添加剤としては、電解液に使用されるビニレンカーボネートなどを用いることができる。電解液添加剤の含有量は、負極活物質の総量100質量部に対して、好ましくは0.01~10質量部である。電解液添加剤の含有量が、上記範囲であることにより、得られる二次電池のサイクル特性及び高温特性に優れる。その他の添加剤としては、フュームドシリカやフュームドアルミナなどのナノ微粒子が挙げられる。ナノ微粒子を混合することにより負極を製造する際に調整するスラリー組成物のチキソ性をコントロールすることができ、さらにそれにより得られる負極活物質層のレベリング性を向上させることができる。ナノ微粒子の含有量は、負極活物質の総量100質量部に対して、好ましくは0.01~10質量部である。負極用スラリー組成物にナノ微粒子を上記比率となるように用いると、スラリー安定性、生産性に優れ、高い電池特性を示す。
 増粘剤としては、例えば、セルロースポリマーとしては、カルボキシメチルセルロース、カルボキシエチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロースなどのセルロース化合物(これらのアンモニウム塩やアルカリ金属塩などの塩類を含む)、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、ポリエチレンオキサイド、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリスルホン酸、ポリカルボン酸、アクリル酸またはメタクリル酸共重合体(これらのアンモニウム塩やアルカリ金属塩(ナトリウム塩やリチウム塩)などの塩類を含む)などをあげることができる。これらは2種類以上で併用して用いることができる。
 これらの中でも、負極を作製する際のスラリーの安定性に優れるといった観点、および得られる負極の膨らみ抑制の観点から、セルロース化合物(これらのアンモニウム塩やアルカリ金属塩などの塩類を含む)、ポリスルホン酸、ポリカルボン酸、アクリル酸またはメタクリル酸共重合体(これらのアンモニウム塩やアルカリ金属塩などの塩類を含む)が好ましい。このとき、アクリル酸またはメタクリル酸共重合体(これらのアンモニウム塩やアルカリ金属塩などの塩類を含む)は、アクリル酸、メタクリル酸以外の共重合可能な成分、例えばアクリル酸メチル、メタクリル酸メチル等を共重合して用いることが可能であり、各種特性を制御できる観点で好ましく、さらには該共重合体と前記セルロース化合物の併用した場合には、負極用スラリー組成物の粘度安定性も向上させることができる観点で好ましい。
 増粘剤の含有量は、負極活物質100質量部に対して0.05~10質量部であることが好ましく、0.08~3質量部であることがさらに好ましい。
リチウムイオン二次電池負極用スラリー組成物の製造方法
 リチウムイオン二次電池負極用スラリー組成物は、上述した負極活物質(a)、負極用結着剤(b)、導電材(c)、その他の任意成分を分散媒中で混合して得られる。分散媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;アセトン、エチルメチルケトン、ジイソプロピルケトン、シクロヘキサノン、メチルシクロヘキサノン、エチルシクロヘキサノンなどのケトン類;メチレンクロライド、クロロホルム、四塩化炭素など塩素系脂肪族炭化水素;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアルキルニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミドなどのアミド類が挙げられる。
 これらの分散媒は、単独で使用しても、2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、各成分の分散性に優れ、沸点が低く揮発性の高い分散媒が、短時間でかつ低温で除去できるので好ましい。具体的には、アセトン、トルエン、シクロヘキサノン、シクロペンタン、テトラヒドロフラン、シクロヘキサン、キシレン、水、若しくはN-メチルピロリドン、またはこれらの混合溶媒が好ましい。
 混合方法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、および遊星式混練機などの分散混練装置を使用した方法が挙げられる。
リチウムイオン二次電池負極
 リチウムイオン二次電池負極は、上述したリチウムイオン二次電池負極用スラリー組成物を集電体に塗布、乾燥してなる。
 リチウムイオン二次電池負極の製造方法は、上記負極用スラリー組成物を、集電体の片面または両面に、塗布、乾燥して、負極活物質層を形成する工程を含む。
 負極用スラリー組成物を集電体上に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。
 乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥時間は通常5~30分であり、乾燥温度は通常40~180℃である。
 リチウムイオン二次電池負極を製造するに際して、集電体上に上記負極用スラリー組成物を塗布、乾燥後、金型プレスやロールプレスなどを用い、加圧処理により負極活物質層の空隙率を低くする工程を有することが好ましい。負極活物質層の空隙率は、好ましくは5~30%、より好ましくは7~20%である。負極活物質層の空隙率が高すぎると充電効率や放電効率が悪化する場合がある。空隙率が低すぎると、高い体積容量が得難く、負極活物質層が集電体から剥がれ易く不良を発生し易くなる場合がある。さらに、結着剤として硬化性の重合体を用いる場合は、硬化させることが好ましい。
 リチウムイオン二次電池負極における負極活物質層の厚みは、通常5~300μmであり、好ましくは30~250μmである。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性共に高い特性を示す二次電池を得ることができる。
 負極活物質層における負極活物質の含有割合は、好ましくは85~99質量%、より好ましくは88~97質量%である。負極活物質層における負極活物質の含有割合が上記範囲であることにより、高い容量を示しながらも柔軟性、結着性を示す二次電池を得ることができる。
 負極活物質層の密度は、好ましくは1.6~1.9g/cmであり、より好ましくは1.65~1.85g/cmである。負極活物質層の密度が上記範囲であることにより、高容量の二次電池を得ることができる。
 集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、リチウムイオン二次電池負極に用いる集電体としては銅が特に好ましい。
 集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。
 集電体は、負極活物質層との接着強度を高めるため、予め粗面化処理して使用してもよい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、負極活物質層の接着強度や導電性を高めるために、集電体表面にプライマー層などを形成してもよい。
(正極)
 正極は、集電体と、前記集電体上に積層される正極活物質層とからなる。正極活物質層は、正極活物質(A)、正極用結着剤(B)および導電材(C)を含み、必要に応じその他の成分を含む。
(A)正極活物質
 正極活物質は、リチウムイオンを挿入及び脱離可能な活物質が用いられ、このような正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。
 上記の遷移金属としては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が使用される。
 遷移金属酸化物としては、MnO、MnO、V、V13、TiO、Cu、非晶質VO-P、MoO、V、V13等が挙げられ、中でもサイクル特性と容量からMnO、V、V13、TiOが好ましい。
 遷移金属硫化物としては、TiS、TiS、非晶質MoS、FeS等が挙げられる。
 リチウム含有複合金属酸化物としては、例えば、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
 層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム複合酸化物(Li(Co Mn Ni)O2)、リチウム過剰層状化合物(Li[Ni0.17Li0.2Co0.07Mn0.56]O2)、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物等が挙げられる。
 スピネル構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn)やMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。
 オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、LiMPO(式中、Mは、Mn,Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B及びMoから選ばれる少なくとも1種、0≦X≦2)で表されるオリビン型燐酸リチウム化合物が挙げられる。
 これらの中でも、サイクル特性と初期容量が優れることから、リチウム含有コバルト酸化物(LiCoO)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム複合酸化物(Li(Co Mn Ni)O2)、リチウム過剰層状化合物(Li[Ni0.17Li0.2Co0.07Mn0.56]O2)、スピネル構造を有するリチウム含有複合金属酸化物(LiNi0.5Mn1.5O4)が好ましく、リチウム含有コバルト酸化物(LiCoO)、リチウム過剰層状化合物(Li[Ni0.17Li0.2Co0.07Mn0.56]O2)がより好ましい。
 有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子を用いることもできる。
 また、電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。
 さらに、これら化合物を、部分的に元素置換したものを用いてもよい。
 リチウムイオン二次電池用の正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。
 正極活物質の体積平均粒子径は、通常1~50μm、好ましくは2~30μmである。正極活物質の平均粒子径が上記範囲にあることにより、正極活物質層における正極用結着剤の量を少なくすることができ、電池の容量の低下を抑制できる。また、正極活物質層を形成するためには、通常、正極活物質及び正極用結着剤を含むスラリー(以下、「正極用スラリー組成物」と記載することがある。)を用意するが、この正極用スラリー組成物を、塗布するのに適正な粘度に調製することが容易になり、均一な正極活物質層を得ることができる。
 正極活物質層における正極活物質の含有割合は、好ましくは90~99.9質量%、より好ましくは95~99質量%である。正極活物質層における正極活物質の含有量を、上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示すことができる。
(B)正極用結着剤
 正極用結着剤(B)は、ニトリル基含有アクリル重合体(B1)及びフッ素含有重合体(B2)を含む。
(B1)ニトリル基含有アクリル重合体
 ニトリル基含有アクリル重合体は、ニトリル基含有単量体単位及び(メタ)アクリル酸エステル単量体単位を含む重合体である。ニトリル基含有単量体単位は、ニトリル基含有単量体を重合して形成される構造単位のことをいい、(メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体を重合して形成される構造単位のことをいう。ニトリル基含有アクリル重合体(B1)は、ニトリル基含有単量体単位を含み、好ましくは(メタ)アクリル酸エステル単量体単位を含み、さらに必要に応じ、エチレン性不飽和酸単量体単位および、架橋性単量体などのその他の単量体から導かれる単量体単位を含む。これらの単量体単位は、当該単量体を重合して形成される構造単位である。ここで、各単量体の含有割合は、通常、ニトリル基含有アクリル重合体における各単量体単位の含有割合と同様とする。
 ニトリル基含有単量体の具体例としては、アクリロニトリルやメタアクリロニトリルなどが挙げられ、中でもアクリロニトリルが、集電体との密着性を高め、電極強度を向上できる点で好ましい。
 ニトリル基含有アクリル重合体(B1)におけるニトリル基含有単量体単位の含有割合は、好ましくは5~35質量%、さらに好ましくは10~30質量%、特に好ましくは15~25質量%の範囲である。ニトリル基含有単量体単位の量がこの範囲であると、集電体との密着性に優れ、得られる電極の強度が向上する。
 (メタ)アクリル酸エステル単量体単位は、一般式(1):CH=CR-COOR(式中、Rは水素原子またはメチル基を、Rはアルキル基またはシクロアルキル基を表す。)で表される化合物由来の単量体を重合して形成される構造単位である。
 一般式(1)で表される化合物の具体例としては、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸n-アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリルなどのアクリレート;メタアクリル酸エチル、メタアクリル酸プロピル、メタアクリル酸イソプロピル、メタアクリル酸n-ブチル、メタアクリル酸イソブチル、メタアクリル酸t-ブチル、メタアクリル酸n-アミル、メタアクリル酸イソアミル、メタアクリル酸n-ヘキシル、メタアクリル酸2-エチルヘキシル、メタアクリル酸ラウリル、メタアクリル酸ステアリルなどのメタアクリレートが挙げられる。これらの中でも、アクリレートが好ましく、アクリル酸n-ブチルおよびアクリル酸2-エチルヘキシルが、得られる電極の強度を向上できる点で、特に好ましい。
 (メタ)アクリル酸エステル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせてもよい。したがって、ニトリル基含有アクリル重合体(B1)は、(メタ)アクリル酸エステル単量体を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 ニトリル基含有アクリル重合体(B1)中の(メタ)アクリル酸エステル単量体単位の含有割合は、好ましくは35~85質量%、より好ましくは45~75質量%、特に好ましくは50~70質量%である。(メタ)アクリル酸エステル単量体単位の含有割合が前記範囲であるニトリル基含有アクリル重合体(B1)を用いると、電極活物質の柔軟性が高く、電解液に膨潤性が抑制される。また、耐熱性が高く、かつ得られる電気化学素子用電極の内部抵抗を小さくできる。
 ニトリル基含有アクリル重合体は、上記ニトリル基を有する単量体単位及び(メタ)アクリル酸エステル単量体単位に加えて、エチレン性不飽和酸単量体単位を含んでいてもよい。
 エチレン性不飽和酸単量体単位は、エチレン性不飽和酸単量体を重合して形成される構造単位である。エチレン性不飽和酸単量体は、カルボキシル基、スルホン酸基、ホスフィニル基等の酸基を有するエチレン性不飽和単量体であり、特定の単量体に限定されない。エチレン性不飽和酸単量体の具体例は、エチレン性不飽和カルボン酸単量体、エチレン性不飽和スルホン酸単量体、エチレン性不飽和リン酸単量体等である。
 エチレン性不飽和カルボン酸単量体の具体例としては、エチレン性不飽和モノカルボン酸及びその誘導体、エチレン性不飽和ジカルボン酸及びその酸無水物並びにそれらの誘導体が挙げられる。
 エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、及びクロトン酸が挙げられる。
 エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、及びβ-ジアミノアクリル酸が挙げられる。
 エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、及びイタコン酸が挙げられる。
 エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、及びジメチル無水マレイン酸が挙げられる。
 エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等のマレイン酸メチルアリル;並びにマレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルが挙げられる。
 エチレン性不飽和スルホン酸単量体の具体例は、ビニルスルホン酸、メチルビニルスルホン酸、スチレンスルホン酸、(メタ)アクリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-ヒドロキシプロパンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等である。
 エチレン性不飽和リン酸単量体の具体例は、(メタ)アクリル酸-3-クロロ-2-リン酸プロピル、(メタ)アクリル酸-2-リン酸エチル、3-アリロキシ-2-ヒドロキシプロパンリン酸等である。
 また、上記エチレン性不飽和酸単量体のアルカリ金属塩またはアンモニウム塩も用いることができる。
 上記エチレン性不飽和酸単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせてもよい。したがって、ニトリル基含有アクリル重合体(B1)は、エチレン性不飽和酸単量体を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 これらの中でも、ニトリル基含有アクリル重合体(B1)の分散性を向上するという観点から、エチレン性不飽和酸単量体としては、エチレン性不飽和カルボン酸単量体またはエチレン性不飽和スルホン酸単量体を単独で用いるか、エチレン性不飽和カルボン酸単量体およびエチレン性不飽和スルホン酸単量体との併用が好ましく、エチレン性不飽和カルボン酸単量体とエチレン性不飽和スルホン酸単量体との併用がより好ましい。
 エチレン性不飽和カルボン酸単量体の中でも、ニトリル基含有アクリル重合体(B1)に良好な分散性を発現させるという観点から、好ましくはエチレン性不飽和モノカルボン酸であり、より好ましくはアクリル酸やメタクリル酸であり、特に好ましくはメタクリル酸である。
 また、エチレン性不飽和スルホン酸単量体の中でも、ニトリル基含有アクリル重合体(B1)に良好な分散性を発現させるという観点から、好ましくは2-アクリルアミド-2-ヒドロキシプロパンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸であり、より好ましくは2-アクリルアミド-2-メチルプロパンスルホン酸である。
 ニトリル基含有アクリル重合体(B1)におけるエチレン性不飽和酸単量体単位の含有割合は、好ましくは10~30質量%、より好ましくは12~28質量%、特に好ましくは14~26質量%の範囲である。エチレン性不飽和酸単量体として、エチレン性不飽和カルボン酸単量体とエチレン性不飽和スルホン酸単量体とを併用する場合、ニトリル基含有アクリル重合体(B1)におけるエチレン性不飽和カルボン酸単量体の含有割合は、好ましくは10~30質量%、さらに好ましくは12~28質量%であり、エチレン性不飽和スルホン酸単量体の含有割合は、好ましくは0.1~10質量%である。
 エチレン性不飽和酸単量体単位の含有割合を上記範囲とすることで、スラリー化した際のニトリル基含有アクリル重合体(B1)の分散性が高く、均一性の高い正極活物質層を形成でき、また正極の抵抗を低減できる。
 ニトリル基含有アクリル重合体(B1)は、上記ニトリル基を有する単量体単位及び(メタ)アクリル酸エステル単量体単位に加えて、共役ジエン単量体単位を含んでいてもよい。共役ジエン単量体単位は、共役ジエン単量体を重合して形成される構造単位および/又は共役ジエン単量体を重合し、それを水素化することにより形成される構造単位である。
 共役ジエン単量体の具体例としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレンなどが挙げられ、1,3-ブタジエンおよびイソプレンが好ましく、1,3-ブタジエンがより好ましい。上記共役ジエン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせてもよい。したがって、ニトリル基含有アクリル重合体(B1)は、共役ジエン単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 ニトリル基含有アクリル重合体(B1)における共役ジエン単量体単位の含有割合(水素化された単量体単位を含む含有割合)は、好ましくは20~98質量%、より好ましくは20~80質量%、特に好ましくは20~70質量%の範囲である。
 ニトリル基含有アクリル重合体(B1)は、上記各単量体単位に加え、ニトリル基含有アクリル重合体(B1)のTHF不溶解分量に影響を与えない範囲で、さらに架橋性単量体単位を含んでいてもよい。架橋性単量体単位は、架橋性単量体を加熱またはエネルギー照射により、重合中または重合後に架橋構造を形成しうる構造単位である。架橋性単量体の例としては、通常は、熱架橋性を有する単量体を挙げることができる。より具体的には、熱架橋性の架橋性基及び1分子あたり1つのオレフィン性二重結合を有する単官能性単量体、及び1分子あたり2つ以上のオレフィン性二重結合を有する多官能性単量体が挙げられる。
 単官能性単量体に含まれる熱架橋性の架橋性基の例としては、エポキシ基、N-メチロールアミド基、オキセタニル基、オキサゾリン基、及びこれらの組み合わせが挙げられる。これらの中でも、エポキシ基が、架橋及び架橋密度の調節が容易な点でより好ましい。
 熱架橋性の架橋性基としてエポキシ基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、ビニルグリシジルエーテル、アリルグリシジルエーテル、ブテニルグリシジルエーテル、o-アリルフェニルグリシジルエーテルなどの不飽和グリシジルエーテル;ブタジエンモノエポキシド、クロロプレンモノエポキシド、4,5-エポキシ-2-ペンテン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5,9-シクロドデカジエンなどのジエンまたはポリエンのモノエポキシド;3,4-エポキシ-1-ブテン、1,2-エポキシ-5-ヘキセン、1,2-エポキシ-9-デセンなどのアルケニルエポキシド;並びにグリシジルアクリレート、グリシジルメタアクリレート、グリシジルクロトネート、グリシジル-4-ヘプテノエート、グリシジルソルベート、グリシジルリノレート、グリシジル-4-メチル-3-ペンテノエート、3-シクロヘキセンカルボン酸のグリシジルエステル、4-メチル-3-シクロヘキセンカルボン酸のグリシジルエステルなどの不飽和カルボン酸のグリシジルエステル類が挙げられる。
 熱架橋性の架橋性基としてN-メチロールアミド基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、N-メチロール(メタ)アクリルアミドなどのメチロール基を有する(メタ)アクリルアミド類が挙げられる。
 熱架橋性の架橋性基としてオキセタニル基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、3-((メタ)アクリロイルオキシメチル)オキセタン、3-((メタ)アクリロイルオキシメチル)-2-トリフロロメチルオキセタン、3-((メタ)アクリロイルオキシメチル)-2-フェニルオキセタン、2-((メタ)アクリロイルオキシメチル)オキセタン、及び2-((メタ)アクリロイルオキシメチル)-4-トリフロロメチルオキセタンが挙げられる。
 熱架橋性の架橋性基としてオキサゾリン基を有し、且つオレフィン性二重結合を有する架橋性単量体の例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、及び2-イソプロペニル-5-エチル-2-オキサゾリンが挙げられる。
 2つ以上のオレフィン性二重結合を有する多官能性単量体の例としては、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパン-トリ(メタ)アクリレート、ジプロピレングリコールジアリルエーテル、ポリグリコールジアリルエーテル、トリエチレングリコールジビニルエーテル、ヒドロキノンジアリルエーテル、テトラアリルオキシエタン、トリメチロールプロパン-ジアリルエーテル、前記以外の多官能性アルコールのアリルまたはビニルエーテル、トリアリルアミン、メチレンビスアクリルアミド、及びジビニルベンゼンが挙げられる。
 架橋性単量体としては、特に、アリル(メタ)アクリレート、エチレンジ(メタ)アクリレート、アリルグリシジルエーテル、及びグリシジルメタアクリレートを好ましく用いることができる。
 上記架橋性単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせてもよい。したがって、ニトリル基含有アクリル重合体(B1)は、架橋性不飽和酸単量体を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
 ニトリル基含有アクリル重合体(B1)に架橋性単量体単位が含まれる場合、その含有割合は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、特に好ましくは0.5質量%以上であり、好ましくは5質量%以下、より好ましくは4質量%以下、特に好ましくは2質量%以下である。架橋性単量体単位の含有割合を前記範囲の下限値以上とすることにより、ニトリル基含有アクリル重合体(B1)の重量平均分子量を高め、膨潤度が過度に上昇することを防止しうる。一方、架橋性単量体単位の比率を前記範囲の上限値以下とすることにより、ニトリル基含有アクリル重合体(B1)の分散性を良好にすることができる。したがって、架橋性単量体単位の含有割合を前記範囲内とすることにより、膨潤度及び分散性の両方を良好なものとすることができる。
 また、ニトリル基含有アクリル重合体(B1)には、上記に加えて、芳香族ビニル単量体単位、エチレン性不飽和カルボン酸アミド単量体単位などが含まれていても良い。
 芳香族ビニル単量体の例としては、スチレン、α-メチルスチレン、ビニルトルエン、クロロスチレン、ヒドロキシメチルスチレンなどを挙げることができる。
 エチレン性不飽和カルボン酸アミド単量体の例としては、(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミドなどが挙げられる。
 これらの単量体単位を含むことで、スラリー化した際のニトリル基含有アクリル重合体(B1)の分散性が高く、均一性の高い活物質層を形成でき、また正極活物質層の抵抗を低減できる。これらの単量体単位は、10質量%以下の割合で含まれていてもよい。
 ここで、各単量体の含有割合は、通常、ニトリル基含有アクリル重合体における各単量体単位(例えば、(メタ)アクリル酸エステル単量体単位、エチレン性不飽和酸単量体単位、共役ジエン単量体単位及び架橋性単量体単位)の含有割合と同様にする。
 次に、ニトリル基含有アクリル重合体(B1)の非水電解液に対する膨潤度、およびニトリル基含有アクリル重合体(B1)のテトラヒドロフラン(THF)不溶解分量について説明する。
 ニトリル基含有アクリル重合体(B1)の非水電解液に対する膨潤度は、かかる重合体の体積が電解液中で著しく変化することを避けるため、1.0倍以上3倍以下であり、好ましくは1.0倍以上2.8倍以下、さらに好ましくは1.0倍以上2.6倍以下である。ここで、非水電解液は、本願発明のリチウムイオン二次電池を構成する電解液である。非水電解液に対するニトリル基含有アクリル重合体(B1)の膨潤度を上記範囲とすることで、充放電サイクルを繰り返しても、正極活物質層の集電体に対する密着性が維持され、サイクル特性が向上する。非水電解液に対する膨潤度は、例えば、前述した各単量体単位の含有割合により制御することができる。具体的には、ニトリル基含有単量体単位の含有割合を増やすと増大する。また、エチレン性不飽和単量体単位の含有割合を増やすと減少する。
 また、ニトリル基含有アクリル重合体(B1)のテトラヒドロフラン(THF)不溶解分量は、かかる重合体をスラリー分散媒に適度に溶解させるため、30質量%以下であり、好ましくは25質量%以下であり、さらに好ましくは20質量%以下の範囲にある。THF不溶解分は、ゲル量の指標であり、THF不溶解分量が多いと、N-メチルピロリドン(以下、NMPと記載することがある)などの有機溶剤を用いたスラリー中において粒子状で存在する可能性が高くなり、スラリー中での分散性が損なわれることがある。THF不溶解分量は、後述するように、重合反応温度、単量体の添加時間、重合開始剤量等により制御することができる。具体的には、重合反応温度を上げる、重合開始剤、連鎖移動剤を多くするなどの方法で不溶解分量が減少する。
 電解液とスラリー分散媒である有機溶剤とは、溶解パラメーター(SP値)が近いため、結着剤として使用される重合体の電解液に対する膨潤度を適切な範囲内とすると、スラリー分散媒である有機溶剤にはかかる重合体が溶解しない(THF不溶解分量が過多となる)場合があり、反対に、かかる重合体が有機溶剤に溶解しやすくすると、該重合体の電解液に対する膨潤度が適切な範囲外となってしまう場合があるが、本発明では、これらの膨潤度およびTHF不溶解分量が、共に、適切な範囲内にある。
 ニトリル基含有アクリル重合体(B1)の製法は特に限定はされないが、上述したように、ニトリル基含有アクリル重合体(B1)を構成する単量体を含む単量体混合物を、乳化重合し、必要に応じて水素化することにより得ることができる。乳化重合の方法としては、特に限定されず、従来公知の乳化重合法を採用すればよい。混合方法は特に限定されず、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。また、水素化の方法は特に限定されず、公知の方法を採用すればよい。
 乳化重合に使用する重合開始剤としては、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物等が挙げられる。
 これらのなかでも、無機過酸化物が好ましく使用できる。これらの重合開始剤は、それぞれ単独でまたは2種類以上を組み合わせて使用することができる。また、過酸化物開始剤は、重亜硫酸ナトリウム等の還元剤と組み合わせて、レドックス系重合開始剤として使用することもできる。
 重合開始剤の使用量は、重合に使用する単量体混合物の全量100質量部に対して、好ましくは0.05~5質量部、より好ましくは0.1~2質量部である。上記範囲で、重合開始剤を使用することで、得られるニトリル基含有アクリル重合体のTHF不溶分量を適切に調節し得る。
 得られる共重合体のTHF不溶分量を調節するために、乳化重合時に連鎖移動剤を使用することが好ましい。連鎖移動剤としては、たとえば、n-ヘキシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ステアリルメルカプタン等のアルキルメルカプタン;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物;ターピノレンや、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のフェノール系化合物;アリルアルコール等のアリル化合物;ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物;チオグリコール酸、チオリンゴ酸、2-エチルヘキシルチオグリコレート、ジフェニルエチレン、α-メチルスチレンダイマーなどが挙げられる。
 これらのなかでも、アルキルメルカプタンが好ましく、t-ドデシルメルカプタンがより好ましく使用できる。これらの連鎖移動剤は、単独または2種以上組み合わせて使用することができる。
 連鎖移動剤の使用量は、単量体混合物100質量部に対して、好ましくは0.05~2質量部、より好ましくは0.1~1質量部である。
 乳化重合時に、界面活性剤を使用してもよい。界面活性剤は、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤のいずれであってもよい。アニオン性界面活性剤の具体例としては、ナトリウムラウリルサルフェート、アンモニウムラウリルサルフェート、ナトリウムドデシルサルフェート、アンモニウムドデシルサルフェート、ナトリウムオクチルサルフェート、ナトリウムデシルサルフェート、ナトリウムテトラデシルサルフェート、ナトリウムヘキサデシルサルフェート、ナトリウムオクタデシルサルフェートなどの高級アルコールの硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム、ラウリルベンゼンスルホン酸ナトリウム、ヘキサデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩;ラウリルスルホン酸ナトリウム、ドデシルスルホン酸ナトリウム、テトラデシルスルホン酸ナトリウムなどの脂肪族スルホン酸塩;などが挙げられる。
 界面活性剤の使用量は、単量体混合物100質量部に対して、好ましくは0.5~10質量部、より好ましくは1~5質量部である。
 さらに乳化重合の際に、水酸化ナトリウム、アンモニアなどのpH調整剤;分散剤、キレート剤、酸素捕捉剤、ビルダー、粒子径調節のためのシードラテックスなどの各種添加剤を適宜使用することができる。特にシードラテックスを用いた乳化重合が好ましい。シードラテックスとは、乳化重合の際に反応の核となる微小粒子の分散液をいう。微小粒子は粒径が100nm以下であることが多い。微小粒子は特に限定はされず、ジエン重合体などの汎用の重合体が用いられる。シード重合法によれば、比較的粒径の揃った共重合体粒子が得られる。
 重合反応を行う際の重合温度は、特に限定されないが、通常、0~100℃、好ましくは40~80℃とする。このような温度範囲で乳化重合し、所定の重合転化率で、重合停止剤を添加したり、重合系を冷却したりして、重合反応を停止する。重合反応を停止する重合転化率は、好ましくは93質量%以上、より好ましくは95質量%以上である。また、重合温度を上記範囲とすることにより、得られる共重合体のTHF不溶分量を適切に調節し得る。
 重合反応、必要に応じて水素化反応を停止した後、所望により、未反応単量体を除去し、pHや固形分濃度を調整して、共重合体が分散媒に分散された形態(ラテックス)でニトリル基含有アクリル重合体(B1)が得られる。その後、必要に応じ、分散媒を置換してもよく、また分散媒を蒸発し、粒子状共重合体を粉末形状で得てもよい。
 ニトリル基含有アクリル重合体(B1)の分散液には、公知の分散剤、増粘剤、老化防止剤、消泡剤、防腐剤、抗菌剤、ブリスター防止剤、pH調整剤などを必要に応じて添加することもできる。
(B2)フッ素含有重合体
 正極用結着剤には、上記ニトリル基含有アクリル重合体(B1)に加えて、フッ素含有重合体(B2)を用いる。正極用結着剤が、フッ素含有重合体を含むことで、スラリーの安定性が向上し、また電解液に対する結着剤の膨潤を抑制し、サイクル特性が向上する。さらに、正極用結着剤が、フッ素含有重合体に加えてニトリル基含有アクリル重合体を含むことで、高電位でのサイクル特性がより向上する。
 フッ素含有重合体(B2)は、フッ素含有単量体単位を含む重合体である。フッ素含有単量体単位は、フッ素含有単量体を重合して形成される構造単位である。フッ素含有重合体は、具体的には、フッ素含有単量体の単独重合体、フッ素含有単量体とこれと共重合可能な他のフッ素含有単量体との共重合体、フッ素含有単量体とこれと共重合可能な単量体との共重合体、フッ素含有単量体とこれと共重合可能な他のフッ素含有単量体とこれらと共重合可能な単量体との共重合体が挙げられる。
 フッ素含有単量体としては、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、三フッ化塩化ビニル、フッ化ビニル、パーフルオロアルキルビニルエーテルなどが挙げられるが、フッ化ビニリデンが好ましい。
 フッ素含有重合体における、フッ素含有単量体単位の割合は、通常70質量%以上、好ましくは80質量%以上である。
 フッ素含有単量体と共重合可能な単量体としては、エチレン、プロピレン、1-ブテンなどの1-オレフィン;スチレン、α-メチルスチレン、p-t-ブチルスチレン、ビニルトルエン、クロロスチレンなどの芳香族ビニル化合物;(メタ)アクリロニトリル(アクリロニトリルおよびメタクリロニトリルの略記。以後同様。)などの不飽和ニトリル化合物;(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどの(メタ)アクリル酸エステル化合物;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミドなどの(メタ)アクリルアミド化合物;(メタ)アクリル酸、イタコン酸、フマル酸、クロトン酸、マレイン酸などのカルボキシル基含有ビニル化合物; アリルグリシジルエーテル、(メタ)アクリル酸グリシジルなどのエポキシ基含有不飽和化合物;(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチルなどのアミノ基含有不飽和化合物;スチレンスルホン酸、ビニルスルホン酸、(メタ)アリルスルホン酸などのスルホン酸基含有不飽和化合物;3-アリロキシ-2-ヒドロキシプロパン硫酸などの硫酸基含有不飽和化合物;(メタ)アクリル酸-3-クロロ-2-燐酸プロピル、3-アリロキシ-2-ヒドロキシプロパン燐酸などの燐酸基含有不飽和化合物などが挙げられる。
 フッ素含有重合体(B2)における、フッ素含有単量体と共重合可能な単量体単位の割合は、通常30質量%以下、好ましくは20質量%以下である。
 フッ素含有重合体(B2)の中でも、フッ素含有単量体としてフッ化ビニリデンを含む重合体、具体的には、フッ化ビニリデンの単独重合体、フッ化ビニリデンとこれと共重合可能な他のフッ素含有単量体との共重合体、フッ化ビニリデンとこれと共重合可能な他のフッ素含有単量体とこれらと共重合可能な単量体との共重合体が好ましい。
 上記のようなフッ素含有重合体の中でも、フッ化ビニリデンの単独重合体(ポリフッ化ビニリデン)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ポリフッ化ビニルが好ましく、ポリフッ化ビニリデンがより好ましい。
 フッ素含有重合体(B2)は、一種単独であってもよく、また2種以上を併用してもよい。特に低分子量体と高分子量体とを併用することが好ましい。具体的には、ASTM D3835 /232℃100sec-1で測定されるフッ素含有重合体の溶融粘度が35kpoise未満であるものを低分子量、35kpoise以上であるものを高分子量とし、両者を併用することが好ましい。
 例えば、高分子量のポリフッ化ビニリデンとして、アルケマ社製KYNAR HSV900、ソルベイ社製Solef6020、Solef6010、Solef1015、Solef5130 クレハ社製KF7208が挙げられる。また、低分子量のポリフッ化ビニリデンとして、例えば、アルケマ社製KYNAR710 720 740 760 760A、ソルベイ社製Solef6008、クレハ社製KF1120が挙げられる。
 フッ素含有重合体(B2)として、高分子量体と低分子量体とを組み合わせて用いる場合、フッ素含有重合体の低分子量体と高分子量体との重量比(低分子量体/高分子量体)は、好ましくは、30/70~70/30である。
 低分子量体と高分子量体とをかかる範囲の比率で併用することにより、正極活物質同士の結着性や集電体と活物質との結着性、スラリーの均一性をより有効に保つことができる。
 フッ素含有重合体(B2)のゲル・パーミエーション・クロマトグラフィによるポリスチレン換算値の重量平均分子量は、好ましくは100,000~2,000,000、より好ましくは200,000~1,500,000、特に好ましくは400,000~1,000,000である。
 フッ素含有重合体(B2)の重量平均分子量を上記範囲とすることで、正極活物質層における正極活物質、導電材などの脱離(粉落ち)が抑制され、また正極用スラリーの粘度調整が容易になる。
 フッ素含有重合体(B2)のガラス転移温度(Tg)は、好ましくは0℃以下、より好ましくは-20℃以下、特に好ましくは-30℃以下である。フッ素含有重合体(B2)のTgの下限は特に限定されないが、好ましくは-50℃以上、より好ましくは-40℃以上である。フッ素含有重合体(B2)のTgが上記範囲にあることにより、正極活物質層における正極活物質、導電材などの脱離(粉落ち)が抑制できる。また、フッ素含有重合体(B2)のTgは、様々な単量体を組み合わせることによって調整可能である。なお、Tgは示差走査熱量分析計を用いて、JIS K 7121;1987に基づいて測定できる。
 フッ素含有重合体(B2)の融点(Tm)は、好ましくは190℃以下、より好ましくは150~180℃、さらに好ましくは160~170℃である。フッ素含有重合体(B2)のTmが上記範囲にあることにより、柔軟性と密着強度に優れる電極を得ることが出来る。また、フッ素含有重合体(B2)のTmは、様々な単量体を組み合わせること、もしくは重合温度を制御することなどによって調整可能である。なお、Tmは示差走査熱量分析計を用いて、JIS K 7121;1987に基づいて測定できる。
 フッ素含有重合体(B2)の製造方法は特に限定はされず、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。これらの中でも、懸濁重合法や乳化重合法が好ましく、乳化重合法がより好ましい。乳化重合法によりフッ素含有重合体(B2)を製造することで、フッ素含有重合体(B2)の生産性を向上できると共に、所望の平均粒径を有するフッ素含有重合体(B2)を得ることができる。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどが挙げられる。
 フッ素含有重合体(B2)は、分散媒に分散された分散液または溶解された溶液の状態で使用される。分散媒としては、フッ素含有重合体(B2)を均一に分散または溶解し得るものであれば、特に制限されず、水や有機溶媒を用いることができる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;アセトン、エチルメチルケトン、ジイソプロピルケトン、シクロヘキサノン、メチルシクロヘキサノン、エチルシクロヘキサノンなどのケトン類;メチレンクロライド、クロロホルム、四塩化炭素など塩素脂肪族炭化水素;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアルキルニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミドなどのアミド類が挙げられる。
 これらの分散媒は、単独で使用しても、これらを2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、電極スラリー作製時に工業上使用されていること、製造上揮発しにくいこと、その結果、電極スラリーの揮発を抑えられ、得られる正極の平滑性が向上することから、水、若しくはN-メチルピロリドン、シクロヘキサノンやトルエン等が好ましい。
 フッ素含有重合体(B2)が分散媒に粒子状で分散している場合において、フッ素含有重合体を含む分散液の固形分濃度は、取扱い性の観点から、通常1~25質量%であり、3~20質量%が好ましく、5~15質量%がさらに好ましい。
 また、フッ素含有重合体(B2)を8%溶液となるようにN-メチルピロリドン(以下、「NMP」と記すことがある。)に溶解させた時の粘度は、好ましくは10~5000mPa・s、より好ましくは100~2000mPa・sである。フッ素含有重合体(B2)の8%NMP溶液粘度を上記範囲とすることで、正極用スラリー組成物の製造時に正極用スラリー組成物を塗工しやすい粘度に調整することが容易である。フッ素含有重合体(B2)の8%NMP溶液粘度は、フッ素含有重合体(B2)を8%溶液となるようにNMPに溶解させ、これに対し25℃、60rpmで、B型粘度計(東機産業製 RB-80L)を用いて、JIS K 7117-1;1999に基づいて測定できる。
 正極用結着剤は、上記したニトリル基含有アクリル重合体(B1)及びフッ素含有重合体(B2)を含む。正極用結着剤がニトリル基含有アクリル重合体(B1)とフッ素含有重合体(B2)を含むことで、捲回体の折り曲げ性の優れた正極電極や、初期容量、出力特性、高電位サイクル特性の優れたリチウム二次イオン電池が得られる。正極用結着剤の全量100質量%に対して、ニトリル基含有アクリル重合体(B1)の割合は、好ましくは5~50質量%、さらに好ましくは5~40質量%、特に好ましくは5~30質量%である。かかる割合でニトリル基含有アクリル重合体を含むことにより、内部抵抗の増加や初期容量の低下を生じさせることなく、高電位サイクル特性に優れた高容量なリチウムイオン二次電池を得ることができる。
 正極用結着剤の全量100質量%に対して、フッ素含有重合体(B2)割合は、50~95質量%、好ましくは60~90質量%、さらに好ましくは70~85質量%である。
 正極用結着剤は、上記したニトリル基含有アクリル重合体(B1)及びフッ素含有重合体(B2)に加え、必要に応じ、結着剤として使用可能なその他の重合体を含んでいてもよい。併用してもよいその他の重合体としては、たとえば、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂や、アクリレート軟質重合体、ジエン軟質重合体、オレフィン軟質重合体、ビニル軟質重合体等の軟質重合体が挙げられる。これらは単独で使用しても、これらを2種以上併用してもよい。前記その他の重合体は、正極用結着剤の全量100質量%に対して、30質量%以下、さらには0.1~20質量%、特に0.2~10質量%の割合で含まれていてもよい。
 正極用結着剤の量は、正極活物質100質量部に対して、好ましくは0.5~2質量部、より好ましくは1~2質量部、特に好ましくは1.5~2質量部の範囲である。正極用結着剤の量がかかる範囲にあると、得られる正極活物質層と集電体との密着性が充分に確保でき、リチウム二次電池の容量を高く且つ内部抵抗を低くすることができる。
(C)導電材
 正極は、導電材を含有する。正極に含まれる導電材の粒子径は、個数平均粒子径で、5~40nm、好ましくは10~38nm、より好ましくは15~36nmである。正極における導電材の粒子径が小さすぎると、凝集しやすくなり、均一分散が困難になる結果、正極活物質層の内部抵抗が増大し、容量の向上が困難になる傾向にある。しかし、上述した正極用結着剤を使用することで、微粒化された導電材を均一に分散することが可能になり、容量向上が図られる。また、導電材の粒子径が大きすぎると、正極活物質間に存在することが困難になり、正極活物質層の内部抵抗が増大し、容量の向上が困難になる。導電材の個数平均粒子径は、導電材を水中に0.01質量%で超音波分散させた後、動的光散乱式粒子径・粒度分布測定装置(例えば、日機装株式会社製、粒度分布測定装置 Nanotrac Wave-EX150)を使用して測定することにより求めることができる。
 また、正極における導電材の比表面積(BET式)は、好ましくは400m/g以下、より好ましくは300m/g以下、特に好ましくは200m/g以下である。導電材の比表面積が大きすぎると、凝集しやすくなり、均一分散が困難になる結果、正極活物質層の内部抵抗が増大し、容量の向上が困難になる。なお、導電材としては、上述した比表面積を有する1種類の導電材を単独で用いてもよいし、互いに異なる比表面積を有する2種類以上の導電材を、混合後の導電材のBET比表面積が上述した範囲内の大きさになるように組み合わせて用いてもよい。
 導電材としては、負極と同様に、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンを使用することができる。導電材を含有することにより、正極用スラリー製造時の安定性が向上し、また正極活物質層における正極活物質同士の電気的接触を向上させることができ、高容量化が図られる。導電材の含有量は、正極活物質の総量100質量部に対して、好ましくは1~3質量部、より好ましくは1.2~2.8質量部、特に好ましくは1.5~2.5質量部である。導電材の含有量が少なすぎると、正極における内部抵抗が増大し、高容量化が困難になる場合がある。また導電材の含有量が多すぎると、電極の高密度化が困難になり、初期容量が低下する場合がある。
その他の正極成分
 また、正極にはさらに、任意の成分として、前記負極と同様に、補強材、レベリング剤、電解液分解抑制等の機能を有する電解液添加剤等が含まれていてもよく、さらに、正極製造時に調製するスラリーに含まれる増粘剤等が残留していてもよい。
リチウムイオン二次電池正極用スラリー組成物の製造方法
 リチウムイオン二次電池正極用スラリー組成物は、上述した正極活物質(A)、正極用結着剤(B)、導電材(C)、その他の添加剤を分散媒中で混合して得られる。分散媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;アセトン、エチルメチルケトン、ジイソプロピルケトン、シクロヘキサノン、メチルシクロヘキサノン、エチルシクロヘキサノンなどのケトン類;メチレンクロライド、クロロホルム、四塩化炭素など塩素系脂肪族炭化水素;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアルキルニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミドなどのアミド類があげられる。
 これらの分散媒は、単独で使用しても、これらを2種以上混合して混合溶媒として使用してもよい。これらの中でも特に、非導電性粒子の分散性にすぐれ、沸点が低く揮発性の高い分散媒が、短時間でかつ低温で除去できるので好ましい。具体的には、アセトン、トルエン、シクロヘキサノン、シクロペンタン、テトラヒドロフラン、シクロヘキサン、キシレン、水、若しくはN-メチルピロリドン、またはこれらの混合溶媒が好ましい。
 混合法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、および遊星式混練機などの分散混練装置を使用した方法が挙げられる。
リチウムイオン二次電池正極
 リチウムイオン二次電池正極は、上述したリチウムイオン二次電池正極用スラリー組成物を集電体に塗布、乾燥してなる。
 リチウムイオン二次電池正極の製造方法は、上記正極用スラリー組成物を、集電体の片面または両面に、塗布、乾燥して、正極活物質層を形成する工程を含む。
 上記正極用スラリー組成物を集電体上に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。
 乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥時間は通常5~30分であり、乾燥温度は通常40~180℃である。
 リチウムイオン二次電池正極を製造するに際して、集電体上に上記正極用スラリー組成物を塗布、乾燥後、金型プレスやロールプレスなどを用い、加圧処理により正極活物質層の空隙率を低くする工程を有することが好ましい。正極活物質層の空隙率は、好ましくは5~30%、より好ましくは7~20%である。正極活物質層の空隙率が高すぎると充電効率や放電効率が悪化する場合がある。一方、正極活物質層の空隙率が低すぎると、高い体積容量が得難く、正極活物質層が集電体から剥がれ易く不良を発生し易くなる場合がある。さらに、正極用結着剤として硬化性の重合体を用いる場合は、硬化させることが好ましい。
 リチウムイオン二次電池正極における正極活物質層の厚みは、通常5~300μmであり、好ましくは30~250μmである。正極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性が共に高い二次電池を得ることができる。
 正極活物質層における正極活物質の含有割合は、好ましくは85~99質量%、より好ましくは88~97質量%である。正極活物質層における正極活物質の含有割合が上記範囲であることにより、高い容量を示しながらも柔軟性、結着性を示す二次電池を得ることができる。
 正極活物質層の密度は、好ましくは3.0~4.0g/cmであり、より好ましくは3.4~4.0g/cmである。正極活物質層の密度が上記範囲であることにより、高容量の二次電池を得ることができる。
 集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、リチウムイオン二次電池正極に用いる集電体としてはアルミニウムが特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、正極活物質層との接着強度を高めるため、予め粗面化処理して使用してもよい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、正極活物質層の接着強度や導電性を高めるために、集電体表面にプライマー層などを形成してもよい。
(リチウムイオン二次電池)
 本発明に係るリチウムイオン二次電池は、上記した負極および正極を備え、非水電解液を有し、通常はセパレータを含む。
非水電解液
 非水電解液は、特に限定されず、非水系の溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiは好適に用いられる。これらは、単独、または2種以上を混合して用いることができる。支持電解質の量は、電解液に対して、通常1質量%以上、好ましくは5質量%以上、また通常は30質量%以下、好ましくは20質量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し電池の充電特性、放電特性が低下する。
 電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されないが、通常、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびメチルエチルカーボネート(MEC)などのアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類、1,2-ジメトキシエタン、およびテトラヒドロフランなどのエーテル類;スルホラン、およびジメチルスルホキシドなどの含硫黄化合物類;が用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネートが好ましい。これらは、単独、または2種以上を混合して用いることができる。
 上記以外の電解液としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、硫化リチウム、LiI、LiNなどの無機固体電解質を挙げることができる。
 また、電解液には添加剤を含有させて用いることも可能である。添加剤としてはビニレンカーボネート(VC)などのカーボネート系の化合物の他に、フルオロエチレンカーボネート等の含フッ素カーボネート、エチルメチルスルフォンが好ましい。これらの中でも、含フッ素カーボネートのようなフッ素系電解液添加剤は、耐電圧が高い。高容量化に伴い、充放電時の電圧も高くなりつつあり、エチレンカーボネートやプロピレンカーボネートなどからなる電解液では高電圧に耐えられず、分解することがあるため、上記のフッ素系電解液添加剤を電解液に配合することが好ましい。
セパレータ
 セパレータは気孔部を有する多孔性基材であって、使用可能なセパレータとしては、(a)気孔部を有する多孔性セパレータ、(b)片面または両面に高分子コート層が形成された多孔性セパレータ、または(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレータが挙げられる。これらの非制限的な例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレータ、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム、ゲル化高分子コート層がコートされたセパレータ、または無機フィラー、無機フィラー用分散剤からなる多孔膜層がコートされたセパレータなどがある。
リチウムイオン二次電池の製造方法
 本発明のリチウムイオン二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する。さらに必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をすることもできる。電池の形状は、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型、捲回型パウチセルなどいずれであってもよい。特に、本発明によれば、電極層が柔軟であり、屈曲時に電極層のクラック発生がないため、捲回型パウチセルの製造に好ましく適用できる。
 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。なお、本実施例における部および%は、特記しない限り質量基準である。実施例および比較例において、各種物性は以下のように評価した。
(非水電解液膨潤度の測定)
 ニトリル基含有アクリル重合体の8%のN-メチルピロリドン(NMP)溶液を乾燥後の厚みが100μmになるようにテフロンシャーレに流しこみ、重合体フィルムを作成した。得られたフィルムを16mmφに打ち抜き重量を測定した(重量を「A」とする)。エチレンカーボネートとエチルメチルカーボネートとの3対7重量比の混合物に5%のフルオロエチレンカーボネートを混合し、1mol/リットルの濃度になるように六フッ化リン酸リチウム(LiPF)を溶解し、非水電解液を用意した。非水電解液20gに16mmφに打ち抜いたフィルムを浸漬させ、60℃で72時間かけ、完全に膨潤させた。その後、膨潤フィルムを取り出し、表面の非水電解液を軽くふき取り重量を測定した(重量を「B」とする)。これらの値より非水電解液膨潤度(=B/A)を求めた。非水電解液膨潤度が大きい程、非水電解液中での変形が大きくなることを示す。
(THF不溶解分量の測定)
 ニトリル基含有アクリル重合体の8%のNMP溶液を乾燥後の厚みが100μmになるようにテフロンシャーレに流しこみ、重合体フィルムを作成した。得られたフィルムを16mmφに打ち抜き重量を測定した(重量を「C」とする)。テトラヒドロフラン20gに16mmφに打ち抜いたフィルムを浸漬させ、25℃で24時間かけ、可溶分を完全に溶解させた。その後、不溶分である残留固形物を取り出し、赤外線乾燥機でテトラヒドロフランを完全に揮発させた後、重量を測定した(重量を「D」とする)。これらの値よりTHF不溶解分量(=D/C×100)を求めた。THF不溶解分量が小さい程、重合体分子間の架橋が少ないことを示す。
(捲回体の折り曲げ特性)
 シート状正極およびシート状負極を、セパレータを介在させて直径20mmの芯を用いて捲回し、捲回体を得た。セパレータとしては、厚さ20μmのポリプロピレン製微多孔膜を用いた。捲回体は、10mm/秒のスピードで厚さ4.5mmになるまで一方向から圧縮した。圧縮後に捲回体を解体し、正極電極を観察し、下記評価基準に従って、評価を行った。
A…割れなし
B…微小割れ
C…電極からの剥がれ
(初期容量)
 得られた非水電解質電池を、25℃環境下で、140mAで電池電圧が4.2Vになるまで定電流充電し、4.2Vで充電電流が14mAになるまで定電圧充電を行った。続いて、140mAで電池電圧が3Vになるまで定電流放電を行い、初期容量とした。この時の初期容量を以下の評価基準に従い評価を行った。
A…700mAh以上
B…697mAh以上700mAh未満
C…694mAh以上697mAh未満
D…690mAh以上694mAh未満
E…690mAh未満
(出力特性)
 初期容量を測定した非水電解質電池を、25℃環境下で、140mAで電池電圧が4.2Vになるまで定電流充電し、4.2Vで充電電流が14mAになるまで定電圧充電を行った。続いて、1400mAで電池電圧が3Vになるまで定電流放電を行い、2C容量とした。(2C容量)/(初期容量)×100の値を出力特性とし、下記の評価基準に従い評価を行った。
A…90%以上
B…87%以上90%未満
C…84%以上87%未満
D…80%以上84%未満
E…80%未満
(高電位サイクル特性)
 出力特性を評価した非水電解質電池について、25℃環境下で、600mAで電池電圧が4.4Vになるまで充電し、600mAで電池電圧が3Vになるまで放電する操作を100回繰り返した。そして、一回目の放電容量に対する100回目の放電容量の比を求め、以下の基準に従い評価した。
A…80%以上
B…77%以上80%未満
C…74%以上77%未満
D…70%以上74%未満
E…70%未満
 また、負極活物質、および正極に用いた正極活物質、正極用結着剤および導電材は以下のとおりである。ここで、以下に記載の、活物質の粒子径は体積平均粒子径を意味し、導電材の粒子径は個数平均粒子径を意味する。
(負極活物質a)
Gr/SiOx:球状人造黒鉛(粒子径:12μm)90部と合金系活物質SiOx(粒子径:10μm)10部との混合物
Gr/SiOC:球状人造黒鉛(粒子径:12μm)90部と合金系活物質SiOC(体積平均粒子径:10μm)10部との混合物
Gr:球状人造黒鉛(粒子径:12μm)
(正極活物質A)
LCO:コバルト酸リチウム(LiCoO)(粒子径:12μm)
LNM:Li[Ni0.17Li0.2Co0.07Mn0.56]O2(粒子径:15μm)
(正極導電材C)
AB23:アセチレンブラック(電気化学工業社製デンカブラック粉状品:粒子径23nm、比表面積133m/g)
AB35:アセチレンブラック(電気化学工業社製デンカブラック粉状品:粒子径35nm、比表面積68m/g)
AB48:アセチレンブラック(電気化学工業社製デンカブラック粉状品:粒子径48nm、比表面積39m/g)
AB23+HiPCO:アセチレンブラック(電気化学工業社製デンカブラック粉状品:粒子径23nm、比表面積133m/g)1.8部と、HiPCO(Unidym社製カーボンナノチューブ:粒子径26nm、比表面積700m/g)0.2部の混合物(混合後の比表面積190m/g)
(正極用結着剤B)
 ニトリル基含有アクリル重合体(B1-1)~(B1-11)を以下のように調製した。
(調製例1)
 ニトリル基含有アクリル重合体(B1-1)の製造
 撹拌機付きのオートクレーブに、イオン交換水164部、2-エチルヘキシルアクリレート(2EHA)59.5部、メタクリル酸(MAA)20部、アクリロニトリル(AN)20部、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)0.5部、重合開始剤として過硫酸カリウム0.3部、乳化剤としてラウリル硫酸ナトリウム1.6部を入れ、十分に撹拝した後、70℃で3時間、80℃で2時間加温して重合を行い、ニトリル基含有アクリル重合体(B1-1)の水分散液を得た。なお、固形分濃度から求めた重合転化率は96%であった。また、この水分散液100部にN-メチルピロリドン500部を加え、減圧下に水、残留モノマーをすべて蒸発させたのち、N-メチルピロリドンを81部蒸発させて、重合体(B1-1)の8質量%のNMP溶液を得た。得られた重合体(B1-1)の非水電解液膨潤度は1.7倍、THF不溶解分量は10%以下であった。
(調製例2~11)
 ニトリル基含有アクリル重合体(B1-2)~(B1-11)の製造
 単量体の仕込み量、種類を表1のように変更した他は、調製例1と同様とした。なお、表1において、ANはアクリロニトリル、2EHAは2-エチルヘキシルアクリレート、MAAはメタクリル酸、AAはアクリル酸、AMPSは2-アクリルアミド-2-メチルプロパンスルホン酸、Stはスチレン、AMAはアリルメタクリレートを指す。得られた重合体(B1-1)~(B1-11)の非水電解液膨潤度、THF不溶解分量を表1に示す。
(調製例12)
 ニトリル基含有アクリル重合体(B1-12)の製造
撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、アクリロニトリル20部、およびブチルアクリレート(BA)35部をこの順で入れ、ボトル内を窒素で置換した後、1,3-ブタジエン(BD)45部を圧入し、過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、ニトリル基含有単量体単位、アクリル酸エステル単量体単位、共役ジエン単量体単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 前記重合体に対して水を用いて全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して重合体中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加した水180mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第一段階の水素添加反応」という)させた。このとき、重合体のヨウ素価は35mg/100mgであった。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(「第二段階の水素添加反応」という)させた。
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してニトリル基含有アクリル重合体(B1-12)の水分散液を得た。また、この水分散液100部にN-メチルピロリドン320部を加え、減圧下に水、残留モノマーをすべて蒸発させた後、N-メチルピロリドンを加えて、重合体(B1-12)の8質量%NMP溶液を得た。得られた重合体(B1-12)の非水電解液膨潤度は2.9倍、THF不溶解分量は10%以下であった。なお、ニトリル基含有アクリル重合体(B1-12)のヨウ素価は10mg/100mgであった。
Figure JPOXMLDOC01-appb-T000001
 フッ素含有重合体(B2)は、以下のものを用いた。
混合PVdF:ポリフッ化ビニリデン(アルケマ社製KYNAR HSV900と同社製KYNAR720との1:1(重量比)混合物)
 なお、KYNAR HSV900のASTM D3835 /232℃100sec-1で測定される溶融粘度は50kpoiseであり、KYNAR720の溶融粘度は9kpoiseである。
高分子量PVdF: KYNAR HSV900
低分子量PVdF: KYNAR720
(実施例1)
〔正極用スラリー組成物および正極の製造〕
 正極活物質としてコバルト酸リチウムLCO(LiCoO)(粒子径:12μm)100部と、正極導電材としてアセチレンブラック(AB35,電気化学工業社製デンカブラック粉状品:粒子径35nm、比表面積68m/g)2.0部と、正極用結着剤のフッ素含有重合体として混合ポリフッ化ビニリデン(アルケマ社製KYNAR HSV900とKYNAR720との1:1混合物)1.6部およびニトリル基含有アクリル重合体として重合体B1-1を固形分相当量で0.4部と、適量のNMPとをプラネタリーミキサーにて攪拌し、正極用スラリー組成物を調製した。
 集電体として、厚さ15μmのアルミ箔を準備した。上記正極用スラリー組成物をアルミ箔の両面に乾燥後の塗布量が25mg/cmになるように塗布し、60℃で20分、120℃で20分間乾燥後、150℃、2時間加熱処理して正極原反を得た。この正極原反をロールプレスで圧延し、密度が3.9g/cmの正極活物質層とアルミ箔とからなるシート状正極を作製した。これを幅4.8mm、長さ50cmに切断し、アルミニウムリードを接続した。
〔負極用スラリー組成物および負極の製造〕
 負極活物質として球状人造黒鉛(粒子径:12μm)90部とSiOx(粒子径:10μm)10部、結着剤としてスチレンブタジエンゴム(粒子径:180nm、ガラス転移温度:-40℃)1部、増粘剤としてカルボキシメチルセルロース1部と適量の水とをプラネタリーミキサーにて攪拌し、負極用スラリー組成物を調製した。
 集電体として、厚さ15μmの銅箔を準備した。上記負極用スラリー組成物を銅箔の両面に乾燥後の塗布量が10mg/cmになるように塗布し、60℃で20分、120℃で20分間乾燥後、150℃、2時間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延し、密度が1.8g/cmの負極活物質層と銅箔とからなるシート状負極を作製した。これを幅5.0mm、長さ52cmに切断し、ニッケルリードを接続した。
 得られたシート状正極およびシート状負極を、セパレータを介在させて直径20mmの芯を用いて捲回し、捲回体を得た。セパレータとしては、厚さ20μmのポリプロピレン製微多孔膜を用いた。捲回体は、10mm/秒のスピードで厚さ4.5mmになるまで一方向から圧縮した。前記略楕円の短径に対する長径の比は7.7である。
 また、エチレンカーボネートとエチルメチルカーボネートが3対7(重量比)の混合物に5質量%のフルオロエチレンカーボネートを混合し、1mol/リットルの濃度になるように六フッ化リン酸リチウム(LiPF)を溶解し、ビニレンカーボネート2容積%を添加し、非水電解質を用意した。
 前記極板群は、所定のアルミラミネート製ケース内に3.2gの非水電解質とともに収容した。そして、負極リードおよび正極リードを所定の箇所に接続したのち、ケースの開口部を熱で封口し、非水電解質電池を完成した。この電池は、幅35mm、高さ48mm、厚さ5mmのパウチ形であり、電池の公称容量は700mAhである。得られた電池の初期容量、出力特性、高電位サイクル特性を表2に示す。
(実施例2)
 負極活物質を、Gr/SiOC(球状人造黒鉛(粒子径:12μm)90部と合金系活物質SiOC(体積平均粒子径:10μm)10部との混合物)に変更した以外は、実施例1と同様とした。結果を表2に示す。
(実施例3)
 正極導電材を、アセチレンブラック(AB23,アセチレンブラック(電気化学工業社製デンカブラック粉状品:粒子径23nm、比表面積133m/g)に変更した以外は、実施例1と同様とした。結果を表2に示す。
(実施例4)
 正極活物質を、LNM(Li[Ni0.17Li0.2Co0.07Mn0.56]O2(粒子径:15μm))に変更した以外は、実施例1と同様とした。結果を表2に示す。
(実施例5~12)
 正極用結着剤のニトリル基含有アクリル重合体(B1-1)に代えて、ニトリル基含有アクリル重合体(B1-2)~(B1-9)を用い、配合量を表2に記載のように変更した以外は、実施例1と同様とした。結果を表2に示す。
(実施例13)
 正極用結着剤の混合ポリフッ化ビニリデンに代えて、高分子量ポリフッ化ビニリデンを用いた以外は、実施例1と同様とした。結果を表2に示す。
(実施例14)
 正極用結着剤の混合ポリフッ化ビニリデンに代えて、低分子量ポリフッ化ビニリデンを用いた以外は、実施例1と同様とした。結果を表2に示す。
 (実施例15)
 正極導電材を、アセチレンブラック(電気化学工業社製デンカブラック粉状品:粒子径23nm、比表面積133m/g)1.8部と、HiPCO(Unidym社製カーボンナノチューブ:粒子径26nm、比表面積700m/g)0.2部の混合物に変更した以外は、実施例1と同様とした。結果を表2に示す。
 (実施例16)
 正極用結着剤のニトリル基含有アクリル重合体(B1-1)に代えて、ニトリル基含有アクリル重合体(B1-12)を用いた以外は、実施例1と同様とした。結果を表2に示す。
 (実施例17)
 〔負極用スラリー組成物の製造〕
 ディスパーに、ポリアクリル酸(アルドリッチ社製、粘度平均分子量125万)と、適量の水を、10%水溶液となるように加えて溶解し、その後、水酸化リチウムを加えて、pH7となるように調整して、ポリアクリル酸リチウム塩の水溶液を得た。
 負極活物質として球状人造黒鉛(粒子径:12μm)90部とSiOx(粒子径:10μm)10部、上記ポリアクリル酸リチウム塩の水溶液を固形分相当量で1部となる量、適量の水とをプラネタリーミキサーにて攪拌し、負極用スラリー組成物を調製した。
 負極用スラリー組成物として、上記負極用スラリー組成物に変更した以外は、実施例1と同様とした。結果を表2に示す。
(比較例1)
 負極活物質を、球状人造黒鉛(粒子径:12μm)のみに変更した以外は、実施例1と同様とした。結果を表2に示す。
(比較例2)
 正極導電材を、アセチレンブラック(AB48,アセチレンブラック(電気化学工業社製デンカブラック粉状品:粒子径48nm、比表面積39m/g)に変更した以外は、実施例1と同様とした。結果を表2に示す。
(比較例3)
 正極用結着剤のフッ素含有重合体を用いずに、ニトリル基含有アクリル重合体(B1-1)を2部用いた以外は、実施例1と同様とした。結果を表2に示す。
(比較例4)
 正極用結着剤のニトリル基含有アクリル重合体を用いずに、混合ポリフッ化ビニリデンを2部用いた以外は、実施例1と同様とした。結果を表2に示す。
(比較例5、6)
 正極用結着剤のニトリル基含有アクリル重合体(B1-1)に代えて、ニトリル基含有アクリル重合体(B1-10)または(B1-11)を用いた以外は、実施例1と同様とした。結果を表2に示す。
(比較例7)
 正極用結着剤のニトリル基含有アクリル重合体(B1-1)に代えて、変性アクリルゴム重合体(商品名:日本ゼオン(株)製、BM500B、膨潤度2.7倍、不溶分量80%)を用いた以外は、実施例1と同様とした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1および2から、本発明の要件を充足する実施例については、全ての評価項目についてバランス良く良好な結果が得られた。これに対し、負極活物質に合金系活物質を用いていない比較例1では初期容量が著しく劣る結果となり、正極導電材の個数平均粒子径が特定の範囲を超えて大きい導電材を用いた比較例2では全ての評価項目について劣る結果となり特に初期容量や出力特性は著しく劣る結果となった。ニトリル基含有アクリル重合体とフッ素含有重合体とを併用していない比較例3および4では、ほぼ全ての評価項目で劣った結果となり、特に初期容量や出力特性が非常に劣る結果となった。さらに、膨潤度やTHF不溶解量が本発明の要件を満たさない比較例5および6では、ほぼ全ての評価項目で劣った結果となり、特に高電位サイクル特性が非常に劣る結果となった。ニトリル基含有アクリル重合体の代わりに変性アクリルゴム微粒子を用いた比較例7では、高電位サイクル特性が非常に劣る結果となった。

Claims (7)

  1.  負極、正極及び非水電解液を備えるリチウムイオン二次電池であって、
     前記負極が、合金系活物質を含み、
     前記正極が、正極活物質、正極用結着剤および導電材を含み、
     前記正極用結着剤が、ニトリル基含有アクリル重合体及びフッ素含有重合体を含み、
     前記ニトリル基含有アクリル重合体の非水電解液に対する膨潤度が3倍以下で、THF不溶解分量が30質量%以下であり、
     前記導電材の粒子径が5~40nmである、
     リチウムイオン二次電池。
  2.  前記正極活物質100質量部に対し、導電材が1~3質量部、正極用結着剤が0.5~2質量部含まれる、請求項1に記載のリチウムイオン二次電池。
  3.  前記正極用結着剤における、ニトリル基含有アクリル重合体の含有割合が50~5質量%、フッ素含有重合体の含有割合が50~95質量%である請求項1または2に記載のリチウムイオン二次電池。
  4.  前記フッ素含有重合体が、ポリフッ化ビニリデンである請求項1~3のいずれかに記載のリチウムイオン二次電池。
  5.  前記ニトリル基含有アクリル重合体が、エチレン性不飽和酸単量体単位を含む、請求項1~4のいずれかに記載のリチウムイオン二次電池。
  6.  前記ニトリル基含有アクリル重合体におけるエチレン性不飽和酸単量体単位の含有割合が10~30質量%である、請求項5に記載のリチウムイオン二次電池。
  7.  捲回型パウチセルである、請求項1~6のいずれかに記載のリチウムイオン二次電池。
     
PCT/JP2013/076296 2012-09-28 2013-09-27 リチウムイオン二次電池 WO2014051067A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147030177A KR102060429B1 (ko) 2012-09-28 2013-09-27 리튬 이온 이차 전지
CN201380027027.3A CN104396060B (zh) 2012-09-28 2013-09-27 锂离子二次电池
JP2014538635A JP6168063B2 (ja) 2012-09-28 2013-09-27 リチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-216932 2012-09-28
JP2012216932 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014051067A1 true WO2014051067A1 (ja) 2014-04-03

Family

ID=50388460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076296 WO2014051067A1 (ja) 2012-09-28 2013-09-27 リチウムイオン二次電池

Country Status (4)

Country Link
JP (1) JP6168063B2 (ja)
KR (1) KR102060429B1 (ja)
CN (1) CN104396060B (ja)
WO (1) WO2014051067A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163302A1 (ja) * 2014-04-21 2015-10-29 和光純薬工業株式会社 リチウム電池用結着剤
JP2016018654A (ja) * 2014-07-08 2016-02-01 株式会社日立製作所 リチウムイオン二次電池
JP2016039142A (ja) * 2014-08-05 2016-03-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池用正極組成物、リチウム二次電池用正極及びリチウム二次電池
WO2016148304A1 (ja) * 2015-03-18 2016-09-22 日本ゼオン株式会社 二次電池正極バインダー組成物、二次電池正極用スラリー組成物、二次電池用正極および二次電池
JP2016171074A (ja) * 2015-03-13 2016-09-23 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2016171028A1 (ja) * 2015-04-22 2016-10-27 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途
WO2017029813A1 (ja) * 2015-08-20 2017-02-23 日本ゼオン株式会社 非水系二次電池用バインダー組成物、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
WO2017038067A1 (ja) * 2015-08-31 2017-03-09 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池
TWI636614B (zh) * 2015-09-30 2018-09-21 蕭鎮能 碳披覆矽/碳化矽複合活性材料的製備方法
WO2018180101A1 (ja) * 2017-03-28 2018-10-04 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池、並びに、非水系二次電池用電極の製造方法
JP2019021612A (ja) * 2017-07-18 2019-02-07 Tdk株式会社 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
CN109461884A (zh) * 2018-12-08 2019-03-12 广东维都利新能源有限公司 一种能够在高温下工作并保存的锂电池
CN109923711A (zh) * 2017-02-03 2019-06-21 富士胶片和光纯药株式会社 锂电池用粘结剂组合物
WO2019216275A1 (ja) * 2018-05-08 2019-11-14 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
WO2020047153A1 (en) * 2018-08-31 2020-03-05 A123 Systems Llc Polymer binder additives for electrodes
WO2020111201A1 (ja) * 2018-11-28 2020-06-04 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
CN111430643A (zh) * 2019-01-10 2020-07-17 三星Sdi株式会社 隔板及其制备方法以及包括其的可再充电锂电池
JP2020145129A (ja) * 2019-03-08 2020-09-10 株式会社エンビジョンAescエナジーデバイス 電池
EP3324468B1 (en) * 2015-07-14 2021-05-19 Zeon Corporation Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2022024940A1 (ja) * 2020-07-31 2022-02-03 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
CN115676797A (zh) * 2022-11-21 2023-02-03 楚能新能源股份有限公司 一种磷酸锰铁锂材料、制备方法及其应用
JP7490567B2 (ja) 2018-11-28 2024-05-27 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11831018B2 (en) * 2016-06-29 2023-11-28 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR102183660B1 (ko) * 2017-07-26 2020-11-26 주식회사 엘지화학 리튬-황 이차전지의 양극 제조용 바인더 및 이를 사용한 양극의 제조방법
CN111095611B (zh) * 2017-11-24 2023-05-02 株式会社Lg新能源 用于二次电池的正极浆料组合物以及使用该组合物制备的用于二次电池的正极和二次电池
WO2019181871A1 (ja) * 2018-03-23 2019-09-26 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
WO2019230075A1 (ja) * 2018-05-31 2019-12-05 株式会社クレハ 非水電解質二次電池用樹脂組成物、ならびにこれを用いた非水電解質二次電池用セパレータ、電極合剤層用樹脂組成物、非水電解質二次電池用電極、および非水電解質二次電池
CN109473661A (zh) * 2018-12-24 2019-03-15 湖北融通高科先进材料有限公司 锂离子电池正极浆料及其制备方法
CN114094181B (zh) * 2020-08-25 2024-05-14 深圳市比亚迪锂电池有限公司 一种锂离子电解液、制备方法以及锂离子电池
CN114388804A (zh) * 2021-12-29 2022-04-22 东莞新能源科技有限公司 一种电化学装置和电子装置
WO2023230895A1 (zh) * 2022-05-31 2023-12-07 宁德时代新能源科技股份有限公司 粘结剂组合物、二次电池、电池模块、电池包及用电装置
CN115124638A (zh) * 2022-08-30 2022-09-30 宁德时代新能源科技股份有限公司 含氟聚合物、其制备方法和用途,粘结剂组合物、二次电池、电池模块、电池包及用电装置
CN118044001A (zh) * 2022-06-22 2024-05-14 宁德时代新能源科技股份有限公司 粘结剂及其制备方法、正极浆料、正极极片、二次电池、电池模块、电池包和用电装置
CN115498190A (zh) * 2022-10-26 2022-12-20 楚能新能源股份有限公司 磷酸铁锂正极浆料用分散剂、磷酸铁锂正极浆料及其制备方法和锂离子电池
CN115785849A (zh) * 2022-12-18 2023-03-14 四川大学 一种聚合物微纳粘结剂及其制备和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317722A (ja) * 2002-04-26 2003-11-07 Kureha Chem Ind Co Ltd 非水系二次電池電極用バインダー組成物、電極合剤組成物、電極および二次電池
JP2007128871A (ja) * 2005-10-07 2007-05-24 Hitachi Chem Co Ltd 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、これを用いた非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
JP2007220635A (ja) * 2006-02-20 2007-08-30 Sony Corp 電極及び電池
JP2012054147A (ja) * 2010-09-02 2012-03-15 Sony Corp 非水電解質電池用負極および非水電解質電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539448B2 (ja) * 1995-04-19 2004-07-07 日本ゼオン株式会社 非水二次電池
WO2004095613A1 (ja) * 2003-04-24 2004-11-04 Zeon Corporation リチウムイオン二次電池電極用バインダー
JP5446762B2 (ja) * 2009-11-17 2014-03-19 Jsr株式会社 電気化学デバイス電極用バインダー組成物、電気化学デバイス電極用スラリー、電気化学デバイス電極、及び電気化学デバイス
JP2012174569A (ja) * 2011-02-23 2012-09-10 Hitachi Maxell Energy Ltd 正極合剤層形成用スラリーの調製方法および非水電解液二次電池の製造方法
JP4849286B1 (ja) * 2011-06-06 2012-01-11 Jsr株式会社 正極用バインダー組成物
CN102746813A (zh) * 2012-07-03 2012-10-24 张倩 锂离子电池用水性粘合剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317722A (ja) * 2002-04-26 2003-11-07 Kureha Chem Ind Co Ltd 非水系二次電池電極用バインダー組成物、電極合剤組成物、電極および二次電池
JP2007128871A (ja) * 2005-10-07 2007-05-24 Hitachi Chem Co Ltd 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、これを用いた非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
JP2007220635A (ja) * 2006-02-20 2007-08-30 Sony Corp 電極及び電池
JP2012054147A (ja) * 2010-09-02 2012-03-15 Sony Corp 非水電解質電池用負極および非水電解質電池

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163302A1 (ja) * 2014-04-21 2015-10-29 和光純薬工業株式会社 リチウム電池用結着剤
CN111253513A (zh) * 2014-04-21 2020-06-09 富士胶片和光纯药株式会社 锂电池用粘结剂在制造包含含有硅的活性物质的锂电池用电极中的用途
CN106233514A (zh) * 2014-04-21 2016-12-14 和光纯药工业株式会社 锂电池用粘结剂
US10854881B2 (en) 2014-04-21 2020-12-01 Tokyo University Of Science Foundation Binder for lithium cell
TWI635646B (zh) * 2014-04-21 2018-09-11 日商富士軟片和光純藥股份有限公司 鋰電池用結著劑
JP2016018654A (ja) * 2014-07-08 2016-02-01 株式会社日立製作所 リチウムイオン二次電池
JP2016039142A (ja) * 2014-08-05 2016-03-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池用正極組成物、リチウム二次電池用正極及びリチウム二次電池
JP2016171074A (ja) * 2015-03-13 2016-09-23 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2016148304A1 (ja) * 2015-03-18 2016-09-22 日本ゼオン株式会社 二次電池正極バインダー組成物、二次電池正極用スラリー組成物、二次電池用正極および二次電池
JPWO2016148304A1 (ja) * 2015-03-18 2017-12-28 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池用正極および二次電池
JPWO2016171028A1 (ja) * 2015-04-22 2018-02-08 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途
WO2016171028A1 (ja) * 2015-04-22 2016-10-27 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその用途
EP3920285A1 (en) * 2015-07-14 2021-12-08 Zeon Corporation Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
EP3324468B1 (en) * 2015-07-14 2021-05-19 Zeon Corporation Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JPWO2017029813A1 (ja) * 2015-08-20 2018-06-07 日本ゼオン株式会社 非水系二次電池用バインダー組成物、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
WO2017029813A1 (ja) * 2015-08-20 2017-02-23 日本ゼオン株式会社 非水系二次電池用バインダー組成物、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
US10535854B2 (en) 2015-08-20 2020-01-14 Zeon Corporation Binder composition for non-aqueous secondary battery, composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
WO2017038067A1 (ja) * 2015-08-31 2017-03-09 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層、及び非水系二次電池
TWI636614B (zh) * 2015-09-30 2018-09-21 蕭鎮能 碳披覆矽/碳化矽複合活性材料的製備方法
CN109923711A (zh) * 2017-02-03 2019-06-21 富士胶片和光纯药株式会社 锂电池用粘结剂组合物
JPWO2018180101A1 (ja) * 2017-03-28 2020-02-06 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池、並びに、非水系二次電池用電極の製造方法
EP3605677A4 (en) * 2017-03-28 2020-12-30 Zeon Corporation COMPOSITION OF BINDER FOR NON-AQUEOUS ACCUMULATOR ELECTRODES, COMPOSITION OF PASTE FOR NON-AQUEOUS ACCUMULATOR ELECTRODES, ELECTRODE FOR NON-AQUEOUS ACCUMULATORS, NON-AQUEOUS ACCUMULATOR, AND PROCESS FOR THE PRODUCTION OF ELECTRODE FOR NON-AQUEOUS ACCUMULATORS
US11469420B2 (en) 2017-03-28 2022-10-11 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, non-aqueous secondary battery, and method of producing non-aqueous secondary battery electrode
JP7095683B2 (ja) 2017-03-28 2022-07-05 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池、並びに、非水系二次電池用電極の製造方法
WO2018180101A1 (ja) * 2017-03-28 2018-10-04 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池、並びに、非水系二次電池用電極の製造方法
JP2019021612A (ja) * 2017-07-18 2019-02-07 Tdk株式会社 リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
US10985399B2 (en) 2017-07-18 2021-04-20 Tdk Corporation Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
WO2019216275A1 (ja) * 2018-05-08 2019-11-14 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JPWO2019216275A1 (ja) * 2018-05-08 2021-05-13 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP7337049B2 (ja) 2018-05-08 2023-09-01 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
WO2020047153A1 (en) * 2018-08-31 2020-03-05 A123 Systems Llc Polymer binder additives for electrodes
WO2020111201A1 (ja) * 2018-11-28 2020-06-04 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP7490567B2 (ja) 2018-11-28 2024-05-27 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
CN109461884A (zh) * 2018-12-08 2019-03-12 广东维都利新能源有限公司 一种能够在高温下工作并保存的锂电池
CN111430643B (zh) * 2019-01-10 2022-08-23 三星Sdi株式会社 隔板及其制备方法以及包括其的可再充电锂电池
CN111430643A (zh) * 2019-01-10 2020-07-17 三星Sdi株式会社 隔板及其制备方法以及包括其的可再充电锂电池
WO2020184360A1 (ja) * 2019-03-08 2020-09-17 株式会社エンビジョンAescエナジーデバイス 電池
JP7252014B2 (ja) 2019-03-08 2023-04-04 株式会社エンビジョンAescジャパン 電池
JP2020145129A (ja) * 2019-03-08 2020-09-10 株式会社エンビジョンAescエナジーデバイス 電池
WO2022024940A1 (ja) * 2020-07-31 2022-02-03 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
CN115676797A (zh) * 2022-11-21 2023-02-03 楚能新能源股份有限公司 一种磷酸锰铁锂材料、制备方法及其应用
CN115676797B (zh) * 2022-11-21 2023-09-29 楚能新能源股份有限公司 一种磷酸锰铁锂材料、制备方法及其应用

Also Published As

Publication number Publication date
KR20150063958A (ko) 2015-06-10
KR102060429B1 (ko) 2019-12-30
JP6168063B2 (ja) 2017-07-26
CN104396060B (zh) 2017-05-31
CN104396060A (zh) 2015-03-04
JPWO2014051067A1 (ja) 2016-08-25

Similar Documents

Publication Publication Date Title
JP6168063B2 (ja) リチウムイオン二次電池
JP6417943B2 (ja) リチウムイオン二次電池正極用スラリー
JP6287856B2 (ja) リチウムイオン二次電池
JP6070570B2 (ja) リチウムイオン二次電池用電極、リチウムイオン二次電池及びスラリー組成物、並びにリチウムイオン二次電池用電極の製造方法
JP6119750B2 (ja) 負極スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
JP5991321B2 (ja) 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池
JP5673545B2 (ja) リチウムイオン二次電池負極及びリチウムイオン二次電池
JP5967098B2 (ja) 導電性接着剤組成物、接着剤層付集電体および電気化学素子電極
JP6011608B2 (ja) 二次電池負極用バインダー組成物、二次電池用負極、二次電池負極用スラリー組成物、製造方法及び二次電池
JP6168051B2 (ja) リチウムイオン二次電池
WO2012111564A1 (ja) 二次電池負極用スラリー、二次電池用負極及びその製造方法、並びに二次電池
WO2014057993A1 (ja) 二次電池用正極の製造方法、二次電池及び二次電池用積層体の製造方法
JP6168059B2 (ja) リチウムイオン二次電池負極用スラリー組成物
JP6111895B2 (ja) リチウムイオン二次電池負極用スラリー組成物、二次電池用負極および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147030177

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014538635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840440

Country of ref document: EP

Kind code of ref document: A1