WO2022024940A1 - 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 - Google Patents

非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 Download PDF

Info

Publication number
WO2022024940A1
WO2022024940A1 PCT/JP2021/027409 JP2021027409W WO2022024940A1 WO 2022024940 A1 WO2022024940 A1 WO 2022024940A1 JP 2021027409 W JP2021027409 W JP 2021027409W WO 2022024940 A1 WO2022024940 A1 WO 2022024940A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
aqueous secondary
polymer
electrode
binder composition
Prior art date
Application number
PCT/JP2021/027409
Other languages
English (en)
French (fr)
Inventor
愛 増田
健矢 園部
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2022024940A1 publication Critical patent/WO2022024940A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, a non-aqueous secondary battery electrode, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium-ion secondary batteries (hereinafter, may be simply abbreviated as "secondary batteries") are small and lightweight, have high energy density, and can be repeatedly charged and discharged. Yes, it is used in a wide range of applications. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of non-aqueous secondary batteries.
  • the electrode for a secondary battery such as a lithium ion secondary battery usually includes a current collector and an electrode mixture layer formed on the current collector. Then, for the electrode mixture layer, for example, a slurry composition obtained by dispersing an electrode active material and a binder composition containing a binder in a dispersion medium is applied onto the current collector, and the electrode mixture layer is applied onto the current collector. It is formed by drying the coating film of the slurry composition and pressing the dried slurry composition (hereinafter, referred to as “slurry dried product”).
  • Patent Document 1 it is composed of a polymer having a block region made of an aromatic vinyl monomer unit and having a tetrahydrofuran insoluble content of 5% by mass or more and 50% by mass or less, and has a surface acid amount.
  • a binder composition containing a particulate polymer having a mass of 0.05 mmol / g or more and 0.90 mmol / g or less the viscosity stability of the slurry composition is enhanced, and the pressability and adhesiveness of the electrode mixture layer are enhanced.
  • Technology has been proposed.
  • the present invention is for a non-aqueous secondary battery capable of suppressing the peeling of the electrode mixture layer when immersed in the electrolytic solution and reducing the internal resistance of the non-aqueous secondary battery. It is an object of the present invention to provide a binder composition for a non-aqueous secondary battery electrode capable of forming an electrode and a slurry composition for a non-aqueous secondary battery electrode. Further, the present invention is for a non-aqueous secondary battery, which is less likely to cause peeling of the electrode mixture layer from the current collector when immersed in the electrolytic solution and can reduce the internal resistance of the non-aqueous secondary battery. It is intended to provide electrodes. Furthermore, it is an object of the present invention to provide a non-aqueous secondary battery having a low internal resistance.
  • the present inventor has conducted diligent studies for the purpose of solving the above problems.
  • the present inventor is made of a polymer having a block region made of an aromatic vinyl monomer unit and having a tetrahydrofuran insoluble amount within a predetermined range, and the volume average particle size is within a predetermined range.
  • a binder composition containing a particulate polymer it is possible to suppress the occurrence of peeling of the electrode mixture layer when immersed in the electrolytic solution, and it is possible to reduce the internal resistance of the non-aqueous secondary battery.
  • the present invention aims to advantageously solve the above problems, and the binder composition for a non-aqueous secondary battery electrode of the present invention has a block region composed of aromatic vinyl monomer units. It contains a particulate polymer composed of a polymer and water, the amount of the polyvinyl insoluble in tetrahydrofuran is more than 50% by mass and less than 100% by mass, and the volume average particle diameter of the particulate polymer is 0.10 ⁇ m. It is characterized in that it is 0.30 ⁇ m or less.
  • the particulate weight is composed of a polymer having a block region composed of aromatic vinyl monomer units and having a tetrahydrofuran insoluble content within the above range, and a volume average particle diameter within the above range. If a binder composition containing coalescence is used, it is possible to suppress the occurrence of peeling of the electrode mixture layer when immersed in the electrolytic solution, and it is possible to reduce the internal resistance of the non-aqueous secondary battery. Electrodes for secondary batteries can be formed.
  • the "monomer unit" of the polymer means "a repeating unit derived from the monomer contained in the polymer obtained by using the monomer".
  • the polymer has a block region composed of monomer units
  • the polymer has a portion in which only the monomer units are continuously bonded as a repeating unit. It means that.
  • the "volume average particle size” means "a particle size (D50) in which the cumulative volume calculated from the small diameter side in the particle size distribution (volume basis) measured by the laser diffraction method is 50%". do.
  • the "tetrahydrofuran insoluble amount" of the polymer can be measured by using the method described in the examples of the present specification.
  • the surface acid amount of the particulate polymer is preferably 0.05 mmol / g or more and 0.90 mmol / g or less.
  • the "surface acid amount" of the particulate polymer refers to the surface acid amount per 1 g of the solid content of the particulate polymer, and is measured by using the measuring method described in the examples of the present specification. be able to.
  • the polymer contains at least one of an aliphatic conjugated diene monomer unit and an alkylene structural unit. If the polymer contains an aliphatic conjugated diene monomer unit and / or an alkylene structural unit, the flexibility and strength of the electrode can be increased.
  • the present invention also aims to advantageously solve the above problems, and the slurry composition for a non-aqueous secondary battery electrode of the present invention comprises an electrode active material and the above-mentioned non-aqueous secondary battery electrode. It is characterized by containing any of the binder compositions for use. As described above, by using a slurry composition containing the electrode active material and any of the above-mentioned binder compositions, it is possible to suppress the occurrence of peeling of the electrode mixture layer when immersed in the electrolytic solution. It is possible to form an electrode for a non-aqueous secondary battery that can reduce the internal resistance of the non-aqueous secondary battery.
  • the present invention is intended to advantageously solve the above problems, and the electrode for a non-aqueous secondary battery of the present invention is formed by using the above-mentioned slurry composition for a non-aqueous secondary battery electrode. It is characterized in that it is provided with an electrode mixture layer. As described above, if the electrode mixture layer is formed by using the above-mentioned slurry composition, it is possible to suppress the occurrence of peeling of the electrode mixture layer when immersed in the electrolytic solution, and the non-aqueous secondary battery. Internal resistance can be reduced.
  • the present invention is intended to solve the above-mentioned problems advantageously, and the non-aqueous secondary battery of the present invention is characterized by including the above-mentioned electrode for the non-aqueous secondary battery.
  • the above-mentioned electrode for a non-aqueous secondary battery is used, a non-aqueous secondary battery having a low internal resistance can be obtained.
  • a non-aqueous secondary battery capable of suppressing the peeling of the electrode mixture layer when immersed in the electrolytic solution and reducing the internal resistance of the non-aqueous secondary battery. It is possible to provide a binder composition for a non-aqueous secondary battery electrode capable of forming an electrode and a slurry composition for a non-aqueous secondary battery electrode. Further, according to the present invention, the electrode mixture layer is less likely to peel off from the current collector when immersed in the electrolytic solution, and the internal resistance of the non-aqueous secondary battery can be reduced. Battery electrodes can be provided. Further, according to the present invention, it is possible to provide a non-aqueous secondary battery having a low internal resistance.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention can be used for preparing the slurry composition for a non-aqueous secondary battery electrode of the present invention.
  • the slurry composition for a non-aqueous secondary battery electrode of the present invention can be used for forming an electrode (non-aqueous secondary battery electrode) of a non-aqueous secondary battery such as a lithium ion secondary battery.
  • the electrode for a non-aqueous secondary battery of the present invention is characterized by comprising an electrode mixture layer formed from the slurry composition for a non-aqueous secondary battery electrode of the present invention.
  • the non-aqueous secondary battery of the present invention is characterized by comprising an electrode for a non-aqueous secondary battery prepared by using the slurry composition for the non-aqueous secondary battery electrode of the present invention.
  • the binder composition of the present invention contains a particulate polymer containing a polymer having a block region composed of aromatic vinyl monomer units, water as a dispersion medium, and optionally further contains other components. do. Further, in the binder composition of the present invention, the amount of the above-mentioned polymer insoluble in tetrahydrofuran (THF) is more than 50% by mass and less than 100% by mass, and the volume average particle size of the particle polymer is 0.10 ⁇ m or more and 0. It is characterized in that it is 30 ⁇ m or less.
  • THF tetrahydrofuran
  • Electrodes for non-aqueous secondary batteries can be formed.
  • the binder composition of the present invention can suppress the peeling of the electrode mixture layer in the electrolytic solution and reduce the internal resistance of the non-aqueous secondary battery. It is presumed to be as follows.
  • the binder composition of the present invention since the amount of tetrahydrofuran insoluble in the polymer forming the particulate polymer is as high as more than 50% by mass, the electrode mixture layer is formed by pressing or the like when forming the electrode mixture layer. It is possible to suppress the residual stress in the polymer. Therefore, when the electrode is immersed in the electrolytic solution, the residual stress due to the swelling of the polymer in the electrode mixture layer is released, and it is possible to suppress the peeling of the electrode mixture layer. Further, in the binder composition of the present invention, since the volume average particle diameter of the particulate polymer is 0.30 ⁇ m or less, the contact area with the components bound via the particulate polymer and the current collector is sufficient. Can be secured.
  • the peel strength of the electrode before immersion in the electrolytic solution can be increased, and peeling of the electrode mixture layer in the electrolytic solution can be suppressed.
  • the amount of tetrahydrofuran insoluble in the polymer forming the particulate polymer is less than 100% by mass, and the volume average particle diameter of the particulate polymer is 0.10 ⁇ m or more. It is possible to sufficiently secure the ion conductivity of the electrode mixture layer to be formed and reduce the internal resistance of the non-aqueous secondary battery.
  • the particulate polymer is a component that functions as a binder, and is contained in the electrode mixture layer in the electrode mixture layer formed on the current collector using the slurry composition containing the binder composition. The components such as substances are held so as not to be separated from the electrode mixture layer.
  • the particulate polymer is a water-insoluble particle formed by a predetermined polymer.
  • water-insoluble means that when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 25 ° C., the insoluble content is 90% by mass or more.
  • the polymer forming the particulate polymer is other than a block region composed of aromatic vinyl monomer units (hereinafter, may be abbreviated as “aromatic vinyl block region”) and an aromatic vinyl monomer unit. It is a copolymer having a polymer chain portion (hereinafter, may be abbreviated as “other region”) in which the repeating units of the above are connected, and the amount of polyvinyl chloride insoluble is more than 50% by mass and less than 100% by mass.
  • the aromatic vinyl block region and the other regions are adjacent to each other.
  • the polymer may have only one aromatic vinyl block region or may have a plurality of aromatic vinyl block regions.
  • the polymer may have only one other region or may have a plurality of other regions.
  • the aromatic vinyl block region is a region containing only an aromatic vinyl monomer unit as a repeating unit.
  • one aromatic vinyl block region may be composed of only one kind of aromatic vinyl monomer unit, or may be composed of a plurality of kinds of aromatic vinyl monomer units. It is preferably composed of only one aromatic vinyl monomer unit.
  • one aromatic vinyl block region may contain a coupling portion (that is, the aromatic vinyl monomer unit constituting one aromatic vinyl block region is interposed with the coupling portion. It may be continuous).
  • the types and proportions of the aromatic vinyl monomer units constituting the plurality of aromatic vinyl block regions may be the same or different, but they are the same. Is preferable.
  • Examples of the aromatic vinyl monomer capable of forming the aromatic vinyl monomer unit constituting the aromatic vinyl block region of the polymer include styrene, styrene sulfonic acid and a salt thereof, ⁇ -methylstyrene, and pt. -Includes butylstyrene, butoxystyrene, vinyltoluene, chlorostyrene, and aromatic monovinyl compounds such as vinylnaphthalene. Of these, styrene is preferable from the viewpoint of enhancing the peel strength of the electrode by allowing the aromatic vinyl block region of the polymer to interact well with the hydrophobic portion on the surface of the electrode active material. It should be noted that these can be used individually by 1 type or in combination of 2 or more types, but it is preferable to use 1 type alone.
  • the ratio of the aromatic vinyl monomer unit in the polymer is 10% by mass or more when the amount of all repeating units (monomer unit and structural unit) in the polymer is 100% by mass. It is preferably 20% by mass or more, more preferably 50% by mass or less, and even more preferably 40% by mass or less.
  • the ratio of the aromatic vinyl monomer unit to the polymer is 10% by mass or more, the strength of the formed electrode mixture layer can be increased. Further, when the ratio of the aromatic vinyl monomer unit to the polymer is 50% by mass or less, the flexibility of the electrode mixture layer can be ensured.
  • the proportion of the aromatic vinyl monomer unit in the polymer is usually the same as the proportion of the aromatic vinyl block region in the polymer.
  • the other region is a region containing only a repeating unit other than the aromatic vinyl monomer unit (hereinafter, may be abbreviated as “other repeating unit”) as the repeating unit.
  • one other region may be composed of one kind of other repeating unit, or may be composed of a plurality of kinds of other repeating units.
  • one other region may include a coupling site (that is, the other repeating units constituting the other region may be connected with the coupling site interposed therebetween). ..
  • other regions may have graft moieties and / or crosslinked structures.
  • the types and proportions of the other repeating units constituting the plurality of other regions may be the same or different from each other.
  • the other repeating unit constituting the other region of the polymer is not particularly limited, but for example, an aliphatic conjugated diene monomer unit and / or an alkylene structural unit is preferable from the viewpoint of increasing the flexibility and strength of the electrode. ..
  • examples of the aliphatic conjugated diene monomer capable of forming an aliphatic conjugated diene monomer unit include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and 1,3.
  • the ratio of the aliphatic conjugated diene monomer unit in the polymer is 50% by mass or more when the amount of all repeating units (monomer unit and structural unit) in the polymer is 100% by mass. It is preferably 60% by mass or more, more preferably 90% by mass or less, and further preferably 80% by mass or less.
  • the ratio of the aliphatic conjugated diene monomer unit to the polymer is not more than the above upper limit value, the strength of the formed electrode mixture layer can be increased. Further, when the ratio of the aliphatic conjugated diene monomer unit to the polymer is at least the above lower limit value, the flexibility of the electrode mixture layer can be ensured.
  • the aliphatic conjugated diene monomer unit in the polymer may be crosslinked (in other words, the polymer crosslinks the aliphatic conjugated diene monomer unit as the aliphatic conjugated diene monomer unit. It may include a structural unit made up of.) That is, even if the polymer forming the particulate polymer is a polymer obtained by cross-linking a polymer containing a block region composed of aromatic vinyl monomer units and an aliphatic conjugated diene monomer unit. good.
  • the structural unit formed by cross-linking the aliphatic conjugated diene monomer unit is obtained by cross-linking a polymer containing a block region composed of an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit. , Can be introduced into the polymer.
  • the cross-linking can be carried out without particular limitation by using a radical initiator such as a redox initiator formed by combining an oxidizing agent and a reducing agent.
  • the oxidizing agent include diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, 1,1,3,3-tetramethylbutylhydroperoxide, and di-t-butyl peroxide.
  • Isobutyryl peroxide benzoyl peroxide, t-butyl peroxide, p-menthan hydropoxide, t-butylcumyl peroxide, acetyl peroxide, octanoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, t-Butylperoxyisobutyrate, t-butylperoxy-2-ethylbutanoate (for example, manufactured by Azonobel, trade name: Trigonox 27), t-butylperoxy-2-ethylhexanoate (for example).
  • azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl azobisisobutyrate; and the like can be used.
  • cumene hydroperoxide as the oxidizing agent.
  • a compound containing a metal ion in a reduced state such as ferrous sulfate and ferrous naphthenate; a sulfonic acid compound such as sodium methanesulfonate; an amine compound such as dimethylaniline; sodium sulfite; Etc.
  • a compound containing a metal ion in a reduced state such as ferrous sulfate and ferrous naphthenate
  • a sulfonic acid compound such as sodium methanesulfonate
  • an amine compound such as dimethylaniline
  • sodium sulfite Etc.
  • ferrous sulfate as the reducing agent.
  • These oxidizing agents and reducing agents may be used alone or in combination of two or more.
  • a cross-linking agent such as a polyvinyl compound such as divinylbenzene; a polyallyl compound such as diallyl phthalate, triallyl trimellitate, or diethylene glycol bisallyl carbonate; various glycols such as ethylene glycol diacrylate; good.
  • Cross-linking can also be performed by irradiation with active energy rays such as ⁇ -rays.
  • the alkylene structure unit is a repeating unit composed only of an alkylene structure represented by the general formula: ⁇ C n H 2n ⁇ [where n is an integer of 2 or more].
  • the alkylene structural unit may be linear or branched, but the alkylene structural unit is preferably linear, that is, a linear alkylene structural unit. Further, it is preferable that the alkylene structural unit has 4 or more carbon atoms (that is, n in the above general formula is an integer of 4 or more).
  • the method for introducing the alkylene structural unit into the polymer is not particularly limited. For example, by hydrogenating a polymer containing a block region composed of an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit, the aliphatic conjugated diene monomer unit is converted into an alkylene structural unit.
  • the method of obtaining the polymer is preferable because the polymer can be easily produced.
  • Examples of the aliphatic conjugated diene monomer used in the above method include the above-mentioned conjugated diene compounds having 4 or more carbon atoms as the aliphatic conjugated diene monomer capable of forming an aliphatic conjugated diene monomer unit. , Isoprene and 1,3-butadiene are preferred, and 1,3-butadiene is more preferred. That is, the alkylene structural unit is preferably a structural unit (aliphatic conjugated diene hydride unit) obtained by hydrogenating an aliphatic conjugated diene monomer unit, and isoprene unit and / or 1,3-butadiene unit.
  • a structural unit (isoprene hydride unit and / or 1,3-butadiene hydride unit) obtained by hydrogenation, and even more preferably a 1,3-butadiene hydride unit.
  • selective hydrogenation of the aliphatic conjugated diene monomer unit can be carried out by using a known method such as an oil layer hydrogenation method or an aqueous layer hydrogenation method.
  • the total amount of the aliphatic conjugated diene monomer unit and the alkylene structural unit in the polymer is 100% by mass when the amount of all the repeating units (monomer unit and structural unit) in the polymer is 100% by mass. It is preferably 50% by mass or more, more preferably 60% by mass or more, preferably 90% by mass or less, and more preferably 80% by mass or less.
  • the ratio of the total ratio of the aliphatic conjugated diene monomer unit and the alkylene structural unit to the polymer is within the above range, the strength and flexibility of the formed electrode mixture layer can be increased.
  • other regions of the polymer may contain repeating units other than the above-mentioned aliphatic conjugated diene monomer unit and alkylene structural unit.
  • the other region of the polymer is an acidic group-containing monomer unit such as a carboxyl group-containing monomer unit, a sulfonic acid group-containing monomer unit, and a phosphoric acid group-containing monomer unit; an acrylonitrile unit.
  • other monomer units such as nitrile group-containing monomer units such as methacrylonitrile units; and (meth) acrylic acid ester monomer units such as acrylic acid alkyl ester units and methacrylic acid alkyl ester units. It may be included.
  • "(meth) acrylic acid” means acrylic acid and / or methacrylic acid.
  • the other region of the polymer contains an acidic group-containing monomer unit.
  • the acidic group contained in the acidic group-containing monomer unit may form a salt with an alkali metal, ammonia, or the like.
  • examples of the carboxyl group-containing monomer capable of forming a carboxyl group-containing monomer unit include monocarboxylic acids and derivatives thereof, dicarboxylic acids and acid anhydrides thereof, and derivatives thereof.
  • examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • examples of the monocarboxylic acid derivative include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid and the like.
  • examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • dicarboxylic acid derivative examples include methyl maleic acid, dimethyl maleic acid, phenyl maleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, butyl maleate, nonyl maleate, decyl maleate, dodecyl maleate, and octadecyl maleate.
  • Maleic acid monoesters such as fluoroalkyl maleic acid.
  • acid anhydride of the dicarboxylic acid examples include maleic anhydride, acrylic acid anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and citraconic anhydride.
  • carboxyl group-containing monomer an acid anhydride that produces a carboxyl group by hydrolysis can also be used.
  • carboxyl group-containing monomer a partial ester of an ethylenically unsaturated polycarboxylic acid such as butentricarboxylic acid or an ethylenically unsaturated polyvalent carboxylic acid such as monobutyl fumarate or mono2-hydroxypropyl maleate. Etc. can also be used.
  • sulfonic acid group-containing monomer examples include vinyl sulfonic acid (ethylene sulfonic acid), methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, and 3-allyloxy. -2-Hydroxypropanesulfonic acid can be mentioned.
  • (meth) allyl means allyl and / or metallyl.
  • examples of the phosphoric acid group-containing monomer capable of forming a phosphoric acid group-containing monomer unit include phosphoric acid-2- (meth) acryloyloxyethyl and methyl-2- (meth) acryloyloxyethyl phosphate. , Ethyl Phosphate- (meth) acryloyloxyethyl.
  • "(meth) acryloyl” means acryloyl and / or methacryloyl.
  • one type of the above-mentioned monomer may be used alone, or two or more types may be used in combination.
  • the acidic group-containing monomer capable of forming an acidic group-containing monomer unit methacrylic acid, itaconic acid, and acrylic acid are preferable, and methacrylic acid is more preferable.
  • the ratio of the acidic group-containing monomer unit in the polymer is the amount of all repeating units (monomer unit and structural unit) in the polymer.
  • it is 100% by mass, it is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, further preferably 1% by mass or more, and 20% by mass or less. It is preferably 10% by mass or less, and more preferably 10% by mass or less.
  • the other monomer units such as the acidic group-containing monomer unit, the nitrile group-containing monomer unit, and the (meth) acrylic acid ester monomer unit described above are not particularly limited, and graft polymerization is not particularly limited. It can be introduced into the polymer by using any polymerization method such as.
  • the polymer contains a graft portion and has a structure in which the polymer to be the graft portion is bonded to the polymer to be the trunk portion. Become.
  • the graft polymerization can be carried out by using a known graft polymerization method without particular limitation.
  • the graft polymerization can be carried out by using a radical initiator such as a redox initiator formed by combining an oxidizing agent and a reducing agent, for example.
  • a radical initiator such as a redox initiator formed by combining an oxidizing agent and a reducing agent, for example.
  • known addition methods such as batch addition, divided addition, and continuous addition can be used.
  • the oxidizing agent and the reducing agent the oxidizing agent and the reducing agent described above can be used for crosslinking a polymer containing a block region composed of an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit. Similar agents can be used.
  • cumene hydroperoxide and ferrous sulfate are preferably used as the oxidizing agent and the reducing agent, respectively.
  • graft polymerization is carried out using a redox initiator on a polymer containing a block region composed of an aromatic vinyl monomer unit and an aliphatic conjugated diene monomer unit, another graft polymerization is performed.
  • the introduction of the monomeric unit and the cross-linking of the aliphatic conjugated diene monomeric unit can proceed at the same time. It should be noted that the graft polymerization and the cross-linking may not proceed at the same time, and only the graft polymerization may be allowed to proceed by adjusting the type of radical initiator and the reaction conditions.
  • the amount of tetrahydrofuran insoluble in the polymer forming the particulate polymer needs to be more than 50% by mass and less than 100% by mass, preferably 55% by mass or more, and more preferably 60% by mass or more. It is preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the amount of the hydrophobic insoluble content of the polymer is within the above range, sufficient adhesive strength can be secured and the peel strength of the electrode before immersion can be enhanced. Further, when the amount of the hydrophobic insoluble content of the polymer is at least the above lower limit value, it is possible to suppress the residual stress during the formation of the electrode mixture layer and suppress the peeling of the electrode mixture layer in the electrolytic solution.
  • the amount of the hydrophobic insoluble content of the polymer is not more than the above upper limit value, the ion conductivity of the formed electrode mixture layer can be sufficiently ensured, and the internal resistance of the non-aqueous secondary battery can be reduced.
  • the amount of tetrahydrofuran insoluble in the polymer can be adjusted by changing the composition of the polymer and the production conditions. Specifically, for example, the amount of tetrahydrofuran insoluble in the polymer can be adjusted by introducing a crosslinked structure into the polymer or changing the type of polymerization initiator used during crosslinking and / or graft polymerization.
  • the particulate polymer used in the present invention needs to have a volume average particle diameter of 0.10 ⁇ m or more and 0.30 ⁇ m or less, and the volume average particle diameter of the particulate polymer is 0.11 ⁇ m or more. It is preferably 0.12 ⁇ m or more, more preferably 0.20 ⁇ m or less, more preferably 0.19 ⁇ m or less, and further preferably 0.18 ⁇ m or less.
  • the volume average particle diameter of the particulate polymer is at least the above lower limit value, it is possible to suppress an increase in the internal resistance of the non-aqueous secondary battery.
  • the volume average particle size of the particulate polymer can be adjusted, for example, by changing the amount (concentration) of the polymer in the premixture used for phase inversion emulsification in the emulsification step described later. Specifically, by reducing the amount (concentration) of the polymer in the premixture, the volume average particle size of the particulate polymer obtained through phase inversion emulsification can be reduced. Further, the volume average particle size of the particulate polymer can be adjusted by classifying a polymer having an arbitrary particle size distribution by a method such as centrifugation or filtration.
  • the surface acid content of the particulate polymer is preferably 0.05 mmol / g or more, more preferably 0.08 mmol / g or more, and further preferably 0.10 mmol / g or more. , 0.15 mmol / g or more is particularly preferable, 0.90 mmol / g or less is preferable, 0.70 mmol / g or less is more preferable, and 0.50 mmol / g or less is further preferable. It is preferably 0.45 mmol / g or less, and particularly preferably 0.45 mmol / g or less.
  • the amount of surface acid of the particulate polymer is within the above range, peeling of the electrode mixture layer in the electrolytic solution can be further suppressed.
  • the surface acid amount of the particulate polymer is equal to or higher than the above lower limit, the dispersion stability of the binder composition and the slurry composition prepared by using the binder composition is enhanced, and the electrode before immersion in the electrolytic solution is used. The peel strength can be further improved. Further, when the surface acid amount of the particulate polymer is not more than the above upper limit value, the internal resistance of the non-aqueous secondary battery can be further reduced.
  • the amount of surface acid in the particulate polymer can be adjusted by changing the type and amount of the monomer used in the production of the polymer used as the particulate polymer and the production conditions. Specifically, for example, the amount of surface acid can be increased by increasing the amount of an acidic group-containing monomer such as a monomer containing a carboxylic acid group.
  • the particulate polymer composed of the above-mentioned polymer is obtained by block-polymerizing a monomer such as the above-mentioned aromatic vinyl monomer or aliphatic conjugated diene monomer in an organic solvent to form an aromatic vinyl block region.
  • the grafting step may be performed before the emulsification step. That is, the particulate polymer is subjected to a step (graft step) of performing graft polymerization on the obtained block polymer to obtain a solution of a predetermined polymer after the block polymer solution preparation step, and then obtaining. It may be prepared by performing a step (emulsification step) of atomizing a predetermined polymer by adding water to the solution of the predetermined polymer and emulsifying the polymer.
  • the method of block polymerization in the block polymer solution preparation step is not particularly limited.
  • a second monomer component different from the first monomer component is added to a solution obtained by polymerizing the first monomer component to carry out polymerization, and if necessary, the monomer component is added.
  • a block polymer can be prepared by further repeating the addition and the polymerization.
  • the organic solvent used as the reaction solvent is not particularly limited, and can be appropriately selected depending on the type of the monomer and the like.
  • the block polymer obtained by block polymerization as described above is subjected to a coupling reaction using a coupling agent prior to the emulsification step described later. If the coupling reaction is carried out, for example, the ends of the diblock structures contained in the block polymer can be bound to each other with a coupling agent to be converted into a triblock structure.
  • the coupling agent that can be used for the above-mentioned coupling reaction is not particularly limited, and for example, a bifunctional coupling agent, a trifunctional coupling agent, a tetrafunctional coupling agent, and a cup with five or more functionalities. Ring agents can be mentioned.
  • the bifunctional coupling agent include bifunctional halogenated silanes such as dichlorosilane, monomethyldichlorosilane and dichlorodimethylsilane; bifunctional halogenated alkanes such as dichloroethane, dibromoethane, methylene chloride and dibromomethane; dichlorotin.
  • Bifunctional tin halides such as monomethyldichlorotin, dimethyldichlorotin, monoethyldichlorotin, diethyldichlorotin, monobutyldichlorotin, dibutyldichlorotin and the like;
  • the trifunctional coupling agent include trifunctional halogenated alkanes such as trichloroethane and trichloropropane; trifunctional halogenated silanes such as methyltrichlorosilane and ethyltrichlorosilane; methyltrimethoxysilane and phenyltrimethoxysilane.
  • Trifunctional alkoxysilanes such as phenyltriethoxysilane; may be mentioned.
  • the tetrafunctional coupling agent include tetrafunctional halogenated alkanes such as carbon tetrachloride, carbon tetrabromide and tetrachloroethane; tetrafunctional halogenated silanes such as tetrachlorosilane and tetrabromosilane; tetramethoxysilane, Examples thereof include tetrafunctional alkoxysilanes such as tetraethoxysilane; tetrafunctional tin halides such as tetrachlorotin and tetrabromotin;
  • the pentafunctional or higher functional coupling agent include 1,1,1,2,2-pentachloroethane, perchloroethane, pentachlorobenzene, perchlorobenzene, octabromodiphenyl ether,
  • the coupling agent is preferable as the coupling agent.
  • the coupling portion derived from the coupling agent is introduced into the polymer chain (for example, the triblock structure) constituting the block polymer.
  • the solution of the block polymer obtained after the above-mentioned block polymerization and the optional coupling reaction may be directly subjected to the emulsification step described later, but if necessary, the above-mentioned hydrogenation to the block polymer is added. After that, it can be subjected to an emulsification step.
  • the emulsification method in the emulsification step is not particularly limited, but for example, a method of inversion emulsification of a premixture of the block polymer solution obtained in the block polymer solution preparation step described above and the aqueous solution of the emulsifier is preferable.
  • phase inversion emulsification for example, known emulsifiers and emulsification dispersers can be used.
  • the emulsification disperser is not particularly limited, and for example, the product name "homogenizer” (manufactured by IKA), the product name "Polytron” (manufactured by Kinematica), and the product name "TK auto homomixer".
  • the conditions for the emulsification operation by the emulsification disperser are not particularly limited, and may be appropriately selected so as to obtain a desired dispersion state. Then, an aqueous dispersion of the block polymer in the form of particles can be obtained from the emulsion obtained after the phase inversion emulsification by, if necessary, removing an organic solvent by a known method or the like.
  • the volume average particle size of the obtained particulate polymer can be adjusted by changing the concentration of the block polymer in the premixture used for phase inversion emulsification.
  • the volume average particle size of the particulate polymer may be classified and adjusted by a method such as centrifugation or filtration.
  • the method of graft polymerization in the graft step is not particularly limited, but for example, in the presence of a monomer to be graft-polymerized, a radical initiator such as a redox initiator is used to simultaneously proceed with graft polymerization and cross-linking of the block polymer.
  • a radical initiator such as a redox initiator is used to simultaneously proceed with graft polymerization and cross-linking of the block polymer.
  • the method is preferred.
  • the reaction conditions can be adjusted according to the composition of the block polymer and the like. As described above, an aqueous dispersion of the particulate polymer can be obtained through the block polymer solution preparation step, the emulsification step, and optionally the graft step.
  • the dispersion medium of the binder composition of the present invention is not particularly limited as long as it contains water.
  • the binder composition of the present invention may contain only water as a dispersion medium, or the dispersion medium may be a mixture of water and an organic solvent (for example, esters, ketones, alcohols).
  • the binder composition of the present invention may contain one kind of organic solvent or may contain two or more kinds of organic solvents.
  • the binder composition of the present invention can contain components other than the above components (other components).
  • the binder composition may contain known particulate binders (eg, styrene-butadiene random copolymers, acrylic polymers, etc.) other than the particulate polymers described above.
  • the binder composition may also contain known additives. Examples of such known additives include antioxidants such as 2,6-di-tert-butyl-p-cresol, antifoaming agents, and dispersants.
  • one type may be used alone, or two or more types may be used in combination at any ratio.
  • the method for preparing the binder composition for a non-aqueous secondary battery electrode of the present invention is not particularly limited.
  • the aqueous dispersion containing the particulate polymer obtained by the method described above in the section of "Method for preparing particulate polymer" can be used as it is as a binder composition.
  • the above-mentioned other components may be added to the aqueous dispersion containing the particulate polymer and mixed by a known method to obtain a binder composition.
  • the liquid content (for example, water) contained in the aqueous dispersion can be used as it is as a dispersion medium for the binder composition. You may.
  • the slurry composition for a non-aqueous secondary battery electrode of the present invention is a composition used for forming an electrode mixture layer, and is an electrode active material and the above-mentioned binder composition for a non-aqueous secondary battery electrode of the present invention. And optionally further other components. That is, the slurry composition for a non-aqueous secondary battery electrode of the present invention usually contains an electrode active material, the above-mentioned particulate polymer, and a dispersion medium, and optionally further contains other components.
  • the slurry composition of the present invention contains the above-mentioned binder composition, when used for forming an electrode, the peel strength of the electrode before immersion in the electrolytic solution is improved and the electrode mixture layer in the electrolytic solution is used. It is possible to achieve suppression of peeling and reduce the internal resistance of the non-aqueous secondary battery using the electrode.
  • the slurry composition for a non-aqueous secondary battery electrode is a slurry composition for a negative electrode of a lithium ion secondary battery will be described as an example, but the present invention is not limited to the following example.
  • the electrode active material is a substance that transfers electrons at the electrode of a secondary battery.
  • the negative electrode active material for the lithium ion secondary battery a substance capable of storing and releasing lithium is usually used.
  • examples of the negative electrode active material for a lithium ion secondary battery include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material in which these are combined.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton into which lithium can be inserted (also referred to as “dope”), and examples of the carbon-based negative electrode active material include carbonaceous materials and graphite. Examples include quality materials.
  • Examples of the carbonaceous material include graphitic carbon having a structure close to an amorphous structure represented by easy-graphitable carbon and glassy carbon, and the like.
  • examples of the graphitic carbon include carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fiber, and pyrolysis vapor phase grown carbon fiber.
  • examples of the refractory carbon include a phenol resin fired body, a polyacrylonitrile-based carbon fiber, a pseudo-isotropic carbon, a furfuryl alcohol resin fired body (PFA), and hard carbon.
  • the graphitic material for example, natural graphite, artificial graphite and the like can be mentioned.
  • artificial graphite for example, artificial graphite obtained by heat-treating carbon containing easily graphitable carbon mainly at 2800 ° C. or higher, graphitized MCMB obtained by heat-treating MCMB at 2000 ° C. or higher, and mesophase-pitch carbon fiber at 2000 ° C. Examples thereof include graphitized mesophase pitch-based carbon fibers heat-treated as described above.
  • the metal-based negative electrode active material is an active material containing a metal, and usually contains an element into which lithium can be inserted in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh /.
  • the metal-based active material include a lithium metal and a simple substance metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn. , Sr, Zn, Ti, etc.) and their alloys, as well as their oxides, sulfides, nitrides, silides, carbides, phosphates and the like.
  • an active material containing silicon is preferable as the metal-based negative electrode active material. This is because the capacity of the lithium ion secondary battery can be increased by using the silicon-based negative electrode active material.
  • silicon-based negative electrode active material examples include silicon (Si), an alloy containing silicon, SiO, SiO x , and a composite of a Si-containing material obtained by coating or compounding a Si-containing material with conductive carbon and a conductive carbon. And so on.
  • silicon-based negative electrode active materials one type may be used alone, or two or more types may be used in combination.
  • the binder composition of the present invention containing the above-mentioned predetermined particulate polymer and a dispersion medium containing water can be used.
  • the content of the above-mentioned predetermined particulate polymer in the slurry composition may be, for example, 0.5 parts by mass or more and 15 parts by mass or less in terms of solid content per 100 parts by mass of the electrode active material. can.
  • the other components that can be blended in the slurry composition are not particularly limited, and examples thereof include the same components as the other components that can be blended in the binder composition of the present invention.
  • the slurry composition may further contain a conductive material such as carbon black.
  • a conductive material such as carbon black.
  • One of these components may be used alone, or two or more of these components may be used in combination at any ratio.
  • the above-mentioned slurry composition can be prepared by mixing each of the above-mentioned components by a known mixing method. Such mixing can be performed using, for example, a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, and a fill mix.
  • a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, and a fill mix.
  • the electrode of the present invention comprises an electrode mixture layer formed by using the above-mentioned slurry composition of the present invention, and is usually a current collector and an electrode mixture layer formed on the current collector. And have.
  • the electrode mixture layer is usually a layer obtained by drying the slurry composition of the present invention, and contains at least an electrode active material and a polymer derived from the particulate polymer, and is optionally other. Contains the ingredients of.
  • the polymer derived from the above-mentioned particulate polymer may have a particle shape (that is, the particulate polymer may be contained in the electrode mixture layer as it is. However, it may have any other shape.
  • the electrode of the present invention is produced by using the slurry composition of the present invention, it has excellent peel strength and peels off the electrode mixture layer from the current collector when immersed in the electrolytic solution. Is unlikely to occur. Further, if the electrode is used, the internal resistance of the non-aqueous secondary battery can be reduced.
  • the electrodes of the present invention are, for example, (1) a step of applying the slurry composition onto the current collector (coating step), and (2) drying the slurry composition coated on the current collector to produce a dried slurry. It can be manufactured through a step of forming (drying step) and (3) a step of pressing the dried slurry on the current collector (pressing step).
  • the method for applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as the coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method and the like can be used. At the time of application, the slurry composition may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the obtained electrode mixture layer.
  • the method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used, for example, a drying method using warm air, hot air, low humidity air, a vacuum drying method, infrared rays, an electron beam, or the like. A drying method by irradiation can be mentioned. By drying the slurry composition on the current collector in this way, a slurry dry product is formed on the current collector.
  • the method for pressing the slurry dried product on the current collector is not particularly limited, and can be performed using a known press device. Of these, a press with a press roll (roll press) is preferable from the viewpoint of efficiently pressing the dried slurry at high speed. By going through the pressing process, it is possible to increase the density of the electrode mixture layer and improve the adhesion between the electrode mixture layer and the current collector.
  • the non-aqueous secondary battery of the present invention comprises the electrode for the non-aqueous secondary battery of the present invention. More specifically, the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the electrode for the non-aqueous secondary battery of the present invention is used as at least one of the positive electrode and the negative electrode. It was. Since the non-aqueous secondary battery of the present invention includes the electrode for the non-aqueous secondary battery of the present invention, the internal resistance is small. Further, in the following, a case where the secondary battery is a lithium ion secondary battery will be described as an example, but the present invention is not limited to the following example.
  • the electrode for a secondary battery of the present invention is used as at least one of a positive electrode and a negative electrode. That is, the positive electrode of the lithium ion secondary battery may be the electrode of the present invention and the negative electrode may be another known negative electrode, and the negative electrode of the lithium ion secondary battery is the electrode of the present invention and the positive electrode is another known positive electrode. However, both the positive electrode and the negative electrode of the lithium ion secondary battery may be the electrodes of the present invention. As a known electrode other than the electrode for a secondary battery of the present invention, an electrode formed by forming an electrode mixture layer on a current collector using a known manufacturing method can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used in a lithium ion secondary battery.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily soluble in a solvent and show a high degree of dissociation.
  • One type of electrolyte may be used alone, or two or more types may be used in combination. Normally, the more the supporting electrolyte with a higher degree of dissociation is used, the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be adjusted by the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • dimethyl carbonate (DMC), ethylene carbonate (EC), and diethyl carbonate (DEC) are used.
  • Propylene carbonate (PC), butylene carbonate (BC), ethylmethyl carbonate (EMC) and other carbonates; ⁇ -butyrolactone, methyl formate and other esters; 1,2-dimethoxyethane, tetrahydrofuran and other ethers; Sulfur-containing compounds such as dimethylsulfoxide; and the like are preferably used.
  • a mixed solution of these solvents may be used.
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
  • the concentration of the electrolyte in the electrolytic solution can be appropriately adjusted.
  • a known additive may be added to the electrolytic solution.
  • the separator is not particularly limited, and for example, the separator described in JP-A-2012-204303 can be used. Among these, the film thickness of the entire separator can be reduced, and as a result, the ratio of the electrode active material in the secondary battery can be increased and the capacity per volume can be increased.
  • a microporous film made of a resin polyethylene, polypropylene, polybutene, polyvinyl chloride is preferable.
  • a positive electrode and a negative electrode are overlapped with each other via a separator, and if necessary, the positive electrode and the negative electrode are placed in a battery container by winding or folding according to the battery shape, and the battery container is used. It can be manufactured by injecting an electrolytic solution into the battery and sealing it. At least one of the positive electrode and the negative electrode is used as the electrode for the non-aqueous secondary battery of the present invention.
  • an overcurrent prevention element such as a fuse and a PTC element, an expanded metal, a lead plate, and the like may be provided, if necessary.
  • the shape of the secondary battery may be, for example, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, or the like.
  • the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
  • “%” and “part” representing quantities are based on mass unless otherwise specified.
  • the ratio of the monomer unit formed by polymerizing a certain monomer to the polymer is usually not specified unless otherwise specified. It is consistent with the ratio (preparation ratio) of the certain monomer to all the monomers used for the polymerization of the polymer.
  • THF insoluble amount The obtained aqueous dispersion of the particulate polymer was dried in an environment of 50% humidity and 23 to 25 ° C. to form a film having a thickness of about 0.3 mm. The formed film was cut into 3 mm squares and weighed precisely. The mass of the film piece obtained by cutting is defined as w0. This film piece was immersed in 100 g of tetrahydrofuran (THF) for 24 hours at 25 ° C. Then, the film piece pulled up from THF was vacuum-dried at 105 ° C. for 3 hours, and the mass w1 of the insoluble matter was measured. Then, the amount of THF insoluble (% by mass) was calculated according to the following formula.
  • THF insoluble amount (mass%) (w1 / w0) ⁇ 100 ⁇ Volume average particle size>
  • the volume average particle size (D50) of the particulate polymer was measured using a laser diffraction type particle size distribution measuring device (manufactured by Beckman Coulter, product name “LS-230”). Specifically, an aqueous dispersion in which the solid content concentration of the particulate polymer was adjusted to 0.1% by mass was measured by the above apparatus, and in the obtained particle size distribution (volume basis), the cumulative volume calculated from the small diameter side. The particle size at which is 50% was determined as the volume average particle size ( ⁇ m).
  • the aqueous dispersion of the obtained particulate polymer was diluted with a 0.3% aqueous solution of dodecylbenzenesulfonic acid to adjust the solid content concentration to 10%. Then, it was centrifuged at 7000 G for 30 minutes, and the light liquid was separated. The obtained light liquid was diluted with a 0.3% aqueous solution of dodecylbenzenesulfonic acid to adjust the solid content concentration to 10%. Then, it was centrifuged at 7000 G for 30 minutes, and the light liquid was separated. The obtained light liquid was diluted with a 0.3% aqueous solution of dodecylbenzenesulfonic acid to adjust the solid content concentration to 10%.
  • the prepared sample was centrifuged at 7000 G for 30 minutes, and the light liquid was separated.
  • the obtained light liquid was adjusted to pH 12.0 with a 5% aqueous sodium hydroxide solution.
  • a pH-adjusted sample was placed in a 100 mL beaker in an amount of 3.0 g in terms of solid content, and 3 g of an aqueous solution of Kao's Emargen 120 diluted to 0.2% and 1 g of an aqueous solution of Toray Dow Corning's SM5512 diluted to 1%. Was added.
  • the approximate straight lines L1, L2, and L3 are drawn by the least squares method, respectively.
  • A1 be the X coordinate of the intersection of the approximate straight line L1 and the approximate straight line L2
  • A2 be the X coordinate of the intersection of the approximate straight line L2 and the approximate straight line L3.
  • the amount of surface acid per 1 g of the particulate polymer is obtained as a value (mmol / g) converted into hydrochloric acid from the following formula (a).
  • (A) Amount of surface acid per 1 g of particulate polymer (A2-A1) /3.0 g ⁇ Peel strength>
  • the prepared negative electrode was vacuum dried at 100 ° C. for 10 hours, and then cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece.
  • This test piece was attached with cellophane tape to the surface of the negative electrode mixture layer with the surface of the negative electrode mixture layer facing down.
  • the cellophane tape specified in JIS Z1522 was used as the cellophane tape.
  • the cellophane tape was fixed to the test table.
  • the stress when one end of the current collector was pulled vertically upward at a pulling speed of 50 mm / min and peeled off was measured. This measurement was performed three times, the average value was obtained, and the average value was evaluated as the peel strength according to the following criteria. The larger the peel strength, the greater the binding force of the negative electrode mixture layer to the current collector before immersion in the electrolytic solution, that is, the greater the adhesion strength.
  • the prepared negative electrode was cut into a rectangle having a length of 400 ⁇ 600 mm, and vacuum dried at 100 ° C. for 10 hours.
  • Solvent, additive containing 2% by volume (solvent ratio) of vinylene carbonate
  • solvent containing 2% by volume (solvent ratio) of vinylene carbonate
  • the packaging material was closed by heat-sealing at a temperature of 150 ° C. to produce an observation sample.
  • the electrolytic solution After injecting the electrolytic solution, the mixture was allowed to stand for 120 hours, and after 120 hours, the area of the negative electrode mixture layer that had peeled off from the current collector, expanded and protruded from the current collector was measured from the back side of the electrode.
  • a digital microscope with image analysis software (KEYENCE, VHX-6000) was used for the measurement.
  • Area growth rates were calculated using the measurements and evaluated according to the following criteria: The smaller the area increase rate, the more difficult it is for the negative electrode mixture layer to peel off from the current collector even when immersed in the electrolytic solution.
  • the IV resistance of the produced lithium ion secondary battery was measured as follows. The lithium ion secondary battery is charged at a temperature of 25 ° C. at a charging rate of 0.1 C until the voltage reaches 4.2 V, and after resting for 10 minutes, CV discharge is performed at a discharge rate of 0.1 C to 3.0 V. A conditioning process was performed in which the operation of making the battery was repeated three times.
  • Example 1 ⁇ Preparation of binder composition for negative electrode of non-aqueous secondary battery> [Preparation of cyclohexane solution of block polymer]
  • cyclohexane 233.3 kg, N, N, N', N'-tetramethylethylenediamine (hereinafter referred to as "TMEDA") 54.2 mmol, and styrene as an aromatic vinyl monomer 30.0 kg.
  • TMEDA N, N, N', N'-tetramethylethylenediamine
  • styrene as an aromatic vinyl monomer 30.0 kg.
  • the polymerization conversion rate of styrene was 100%.
  • 70.0 kg of butadiene as an aliphatic conjugated diene monomer was continuously added to the pressure resistant reactor for 1 hour while controlling the temperature so as to maintain 50 to 60 ° C.
  • the polymerization reaction was continued for another hour.
  • the polymerization conversion of butadiene was 100%.
  • 722.6 mmol of dichlorodimethylsilane as a coupling agent was added to the pressure resistant reactor and the coupling reaction was carried out for 2 hours to form a styrene-butadiene coupling block copolymer.
  • emulsified solution obtained by inversion emulsifying the premixture was obtained.
  • cyclohexane in the obtained emulsion was distilled off under reduced pressure using a rotary evaporator.
  • the distilled emulsion was centrifuged at 7000 rpm for 10 minutes with a centrifuge (manufactured by Hitachi Koki Co., Ltd., product name "Himac CR21N"), and then concentrated by taking out the upper layer portion.
  • the upper layer portion was filtered with a wire mesh of 100 mesh to obtain an aqueous dispersion (block polymer latex) containing a particulate block polymer.
  • the slurry composition for a negative electrode was applied to the surface of an electrolytic copper foil having a thickness of 15 ⁇ m, which is a current collector, with a comma coater so that the coating amount was 11 ⁇ 0.5 mg / cm 2 . Then, the copper foil coated with the slurry composition for the negative electrode is conveyed at a rate of 400 mm / min in an oven at a temperature of 120 ° C. for 2 minutes and further in an oven at a temperature of 130 ° C. for 2 minutes to obtain copper. The slurry composition on the foil was dried to obtain a negative electrode raw fabric having a negative electrode mixture layer formed on the current collector.
  • the slurry composition for a positive electrode obtained in accordance with the above was applied with a comma coater on an aluminum foil having a thickness of 20 ⁇ m, which is a current collector, so that the coating amount was 20 ⁇ 0.5 mg / cm 2 . Further, the slurry composition on the aluminum foil is dried and collected by transporting the slurry composition on the aluminum foil at a speed of 200 mm / min in an oven having a temperature of 120 ° C. for 2 minutes and further in an oven having a temperature of 130 ° C. for 2 minutes. A positive electrode original fabric having a positive electrode mixture layer formed on it was obtained.
  • the positive electrode mixture layer side of the prepared positive electrode raw fabric was roll-pressed in an environment of a temperature of 25 ⁇ 3 ° C. to obtain a positive electrode having a positive electrode mixture layer density of 3.20 g / cm 3 .
  • a single-layer polypropylene separator (manufactured by Cellguard, trade name "# 2500") was prepared.
  • a single-layer laminated cell (equivalent to an initial design discharge capacity of 30 mAh) was prepared, placed in an aluminum packaging material, and vacuum dried at 60 ° C. for 10 hours.
  • Example 2 Except for the fact that when preparing the binder composition for the negative electrode of a non-aqueous secondary battery, the amounts of ferrous sulfate and cumene hydroperoxide were changed to 0.007 and 0.35 parts, respectively, and graft polymerization and cross-linking were performed.
  • a binder composition for a negative electrode, a slurry composition for a negative electrode, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were produced. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 At the time of preparing the binder composition for the negative electrode of a non-aqueous secondary battery, the dry matter containing the block polymer had a block polymer concentration of 0.25% (Example 3) and 0.8% (Example 4), respectively.
  • a binder composition for a negative electrode, a slurry composition for a negative electrode, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were produced in the same manner as in Example 1 except that they were dissolved in cyclohexane. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 Except for the fact that when preparing the binder composition for the negative electrode of a non-aqueous secondary battery, the amount of methacrylic acid was changed to 4 parts (Example 5) and 20 parts (Example 6), respectively, and graft polymerization and cross-linking were performed.
  • a binder composition for a negative electrode, a slurry composition for a negative electrode, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were produced in the same manner as in Example 1. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 When preparing the binder composition for the negative electrode of a non-aqueous secondary battery, the amounts of ferrous sulfate and cumene hydroperoxide were 0.006 parts and 0.3 parts (Example 7), respectively, and 0.012 parts. Binder composition for negative electrode, slurry composition for negative electrode, negative electrode, positive electrode, separator and the same as in Example 1 except that graft polymerization and cross-linking were carried out by changing to 0.6 part (Example 8). A lithium ion secondary battery was manufactured. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 9 In the same manner as in Example 1 except that a cyclohexane solution of the block polymer was prepared using 70.0 kg of isoprene instead of 70.0 kg of butadiene when preparing the binder composition for the negative electrode of the non-aqueous secondary battery. , Negative electrode binder composition, negative electrode slurry composition, negative electrode, positive electrode, separator and lithium ion secondary battery were prepared. Then, the evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • a non-aqueous secondary battery capable of suppressing the peeling of the electrode mixture layer when immersed in the electrolytic solution and reducing the internal resistance of the non-aqueous secondary battery. It is possible to provide a binder composition for a non-aqueous secondary battery electrode capable of forming an electrode and a slurry composition for a non-aqueous secondary battery electrode. Further, according to the present invention, the electrode mixture layer is less likely to peel off from the current collector when immersed in the electrolytic solution, and the internal resistance of the non-aqueous secondary battery can be reduced. Battery electrodes can be provided. Further, according to the present invention, it is possible to provide a non-aqueous secondary battery having a low internal resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、電解液に浸漬した際に電極合材層の剥離が発生するのを抑制することができると共に非水系二次電池の内部抵抗を低減させることができる非水系二次電池用電極を形成可能な非水系二次電池電極用バインダー組成物を提供する。本発明の非水系二次電池電極用バインダー組成物は、芳香族ビニル単量体単位からなるブロック領域を有する重合体からなる粒子状重合体と、水とを含み、重合体のテトラヒドロフラン不溶分量が50質量%超100質量%未満であり、粒子状重合体の体積平均粒子径が0.10μm以上0.30μm以下である。

Description

非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
 本発明は、非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および、非水系二次電池に関するものである。
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、非水系二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
 ここで、リチウムイオン二次電池などの二次電池用の電極は、通常、集電体と、集電体上に形成された電極合材層とを備えている。そして、電極合材層は、例えば、電極活物質と、結着材を含むバインダー組成物などとを分散媒に分散させてなるスラリー組成物を集電体上に塗布し、集電体上のスラリー組成物の塗膜を乾燥し、そして乾燥後のスラリー組成物(以下、「スラリー乾燥物」と称する。)をプレスすることにより形成される。
 そこで、近年では、二次電池の更なる性能向上を達成すべく、電極合材層の形成に用いられるバインダー組成物の改良が試みられている。
 具体的には、例えば特許文献1では、芳香族ビニル単量体単位からなるブロック領域を有し、且つ、テトラヒドロフラン不溶分量が5質量%以上50質量%以下である重合体からなり、表面酸量が0.05mmol/g以上0.90mmol/g以下である粒子状重合体を含むバインダー組成物を使用することにより、スラリー組成物の粘度安定性を高めると共に電極合材層のプレス性および接着性を高める技術が提案されている。
国際公開第2019/107229号
 しかし、上記従来のバインダー組成物を用いて作製した電極には、電解液に浸漬した際に集電体から電極合材層が剥がれてしまうことがあるという点において改善の余地があった。
 また、バインダー組成物を用いて作製した電極を備える二次電池には、内部抵抗を低減させることも求められていた。
 そこで、本発明は、電解液に浸漬した際に電極合材層の剥離が発生するのを抑制することができると共に非水系二次電池の内部抵抗を低減させることができる非水系二次電池用電極を形成可能な非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物を提供することを目的とする。
 また、本発明は、電解液に浸漬した際に集電体からの電極合材層の剥離が起こり難く、且つ、非水系二次電池の内部抵抗を低減させることができる非水系二次電池用電極を提供することを目的とする。
 更に、本発明は、内部抵抗の低い非水系二次電池を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、芳香族ビニル単量体単位からなるブロック領域を有し、且つ、テトラヒドロフラン不溶分量が所定の範囲内である重合体からなり、体積平均粒子径が所定の範囲内である粒子状重合体を含むバインダー組成物を用いれば、電解液に浸漬した際に電極合材層の剥離が発生するのを抑制することができると共に非水系二次電池の内部抵抗を低減させることができる非水系二次電池用電極を形成できることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用バインダー組成物は、芳香族ビニル単量体単位からなるブロック領域を有する重合体からなる粒子状重合体と、水とを含み、前記重合体のテトラヒドロフラン不溶分量が、50質量%超100質量%未満であり、前記粒子状重合体の体積平均粒子径が、0.10μm以上0.30μm以下であることを特徴とする。このように、芳香族ビニル単量体単位からなるブロック領域を有し、且つ、テトラヒドロフラン不溶分量が上述の範囲内である重合体からなり、体積平均粒子径が上述の範囲内である粒子状重合体を含むバインダー組成物を用いれば、電解液に浸漬した際に電極合材層の剥離が発生するのを抑制することができると共に非水系二次電池の内部抵抗を低減させることができる非水系二次電池用電極を形成できる。
 なお、本発明において、重合体の「単量体単位」とは、「その単量体を用いて得た重合体中に含まれる、当該単量体由来の繰り返し単位」を意味する。
 また、本発明において、重合体が「単量体単位からなるブロック領域を有する」とは、「その重合体中に、繰り返し単位として、その単量体単位のみが連なって結合した部分が存在する」ことを意味する。
 そして、本発明において、「体積平均粒子径」とは、「レーザー回折法で測定された粒度分布(体積基準)において小径側から計算した累積体積が50%となる粒子径(D50)」を意味する。また、本発明において、重合体の「テトラヒドロフラン不溶分量」は、本明細書の実施例に記載の方法を用いて測定することができる。
 ここで、本発明の非水系二次電池電極用バインダー組成物は、前記粒子状重合体の表面酸量が、0.05mmol/g以上0.90mmol/g以下であることが好ましい。粒子状重合体の表面酸量が上述の範囲内であれば、電解液に浸漬する前の電極のピール強度を高めることができると共に、非水系二次電池の内部抵抗を更に低減させることができる。
 なお、本発明において、粒子状重合体の「表面酸量」は、粒子状重合体の固形分1g当たりの表面酸量を指し、本明細書の実施例に記載の測定方法を用いて測定することができる。
 そして、本発明の非水系二次電池電極用バインダー組成物は、前記重合体が、脂肪族共役ジエン単量体単位およびアルキレン構造単位の少なくとも一方を含むことが好ましい。重合体が脂肪族共役ジエン単量体単位および/またはアルキレン構造単位を含めば、電極の柔軟性および強度を高めることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用スラリー組成物は、電極活物質と、上述した非水系二次電池電極用バインダー組成物の何れかとを含むことを特徴とする。このように、電極活物質と、上述したバインダー組成物の何れかとを含むスラリー組成物を用いれば、電解液に浸漬した際に電極合材層の剥離が発生するのを抑制することができると共に非水系二次電池の内部抵抗を低減させることができる非水系二次電池用電極を形成できる。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備えることを特徴とする。このように、上述したスラリー組成物を使用して電極合材層を形成すれば、電解液に浸漬した際の電極合材層の剥離の発生を抑制することができると共に、非水系二次電池の内部抵抗を低減させることができる。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、上述した非水系二次電池用電極を備えることを特徴とする。このように、上述した非水系二次電池用電極を使用すれば、内部抵抗の低い非水系二次電池を得ることができる。
 本発明によれば、電解液に浸漬した際に電極合材層の剥離が発生するのを抑制することができると共に非水系二次電池の内部抵抗を低減させることができる非水系二次電池用電極を形成可能な非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物を提供することができる。
 また、本発明によれば、電解液に浸漬した際に集電体からの電極合材層の剥離が起こり難く、且つ、非水系二次電池の内部抵抗を低減させることができる非水系二次電池用電極を提供することができる。
 更に、本発明によれば、内部抵抗の低い非水系二次電池を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池電極用バインダー組成物は、本発明の非水系二次電池電極用スラリー組成物の調製に用いることができる。そして、本発明の非水系二次電池電極用スラリー組成物は、リチウムイオン二次電池等の非水系二次電池の電極(非水系二次電池用電極)の形成に用いることができる。更に、本発明の非水系二次電池用電極は、本発明の非水系二次電池電極用スラリー組成物から形成される電極合材層を備えることを特徴とする。また、本発明の非水系二次電池は、本発明の非水系二次電池電極用スラリー組成物を用いて作製した非水系二次電池用電極を備えることを特徴とする。
(非水系二次電池電極用バインダー組成物)
 本発明のバインダー組成物は、芳香族ビニル単量体単位からなるブロック領域を有する重合体を含有する粒子状重合体と、分散媒としての水とを含み、任意に、その他の成分を更に含有する。
 また、本発明のバインダー組成物は、上述した重合体のテトラヒドロフラン(THF)不溶分量が50質量%超100質量%未満であり、且つ、粒子重合体の体積平均粒子径が0.10μm以上0.30μm以下であることを特徴とする。
 そして、本発明のバインダー組成物を用いれば、電解液に浸漬した際に電極合材層の剥離が発生するのを抑制することができると共に非水系二次電池の内部抵抗を低減させることができる非水系二次電池用電極を形成することができる。
 ここで、本発明のバインダー組成物を用いることで電解液中における電極合材層の剥離の抑制および非水系二次電池の内部抵抗の低減を達成することができる理由は、明らかではないが、以下の通りであると推察される。
 即ち、本発明のバインダー組成物では、粒子状重合体を形成する重合体のテトラヒドロフラン不溶分量が50質量%超と高いので、電極合材層を形成する際のプレス等によって電極合材層を構成する重合体中に応力が残留するのを抑制することができる。従って、電極を電解液に浸漬した際に電極合材層中の重合体が膨潤することで残留していた応力が開放されて電極合材層の剥離が起こるのを抑制することができる。また、本発明のバインダー組成物では、粒子状重合体の体積平均粒子径が0.30μm以下であるので、粒子状重合体を介して結着される成分や集電体との接触面積を十分に確保することができる。従って、電解液浸漬前の電極のピール強度を高めることができると共に、電解液中における電極合材層の剥離を抑制することができる。更に、本発明のバインダー組成物では、粒子状重合体を形成する重合体のテトラヒドロフラン不溶分量が100質量%未満であると共に粒子状重合体の体積平均粒子径が0.10μm以上であるので、形成される電極合材層のイオン電導性を十分に確保し、非水系二次電池の内部抵抗を低減させることができる。
<粒子状重合体>
 粒子状重合体は、結着材として機能する成分であり、バインダー組成物を含むスラリー組成物を使用して集電体上に形成した電極合材層において、電極合材層に含まれる電極活物質などの成分が電極合材層から脱離しないように保持する。
 そして、粒子状重合体は、所定の重合体により形成される非水溶性の粒子である。なお、本発明において、粒子が「非水溶性」であるとは、温度25℃において重合体0.5gを100gの水に溶解した際に、不溶分が90質量%以上となることをいう。
<<重合体>>
 粒子状重合体を形成する重合体は、芳香族ビニル単量体単位からなるブロック領域(以下、「芳香族ビニルブロック領域」と略記する場合がある。)と、芳香族ビニル単量体単位以外の繰り返し単位が連なった高分子鎖部分(以下、「その他の領域」と略記する場合がある。)とを有する共重合体であり、テトラヒドロフラン不溶分量が50質量%超100質量%未満である。重合体において、芳香族ビニルブロック領域とその他の領域は互いに隣接して存在する。また、重合体は、芳香族ビニルブロック領域を1つのみ有していてもよく、複数有していてもよい。同様に、重合体は、その他の領域を1つのみ有していてもよく、複数有していてもよい。
[芳香族ビニルブロック領域]
 芳香族ビニルブロック領域は、上述したように、繰り返し単位として、芳香族ビニル単量体単位のみを含む領域である。
 ここで、1つの芳香族ビニルブロック領域は、1種の芳香族ビニル単量体単位のみで構成されていてもよいし、複数種の芳香族ビニル単量体単位で構成されていてもよいが、1種の芳香族ビニル単量体単位のみで構成されていることが好ましい。
 また、1つの芳香族ビニルブロック領域には、カップリング部位が含まれていてもよい(すなわち、1つの芳香族ビニルブロック領域を構成する芳香族ビニル単量体単位は、カップリング部位が介在して連なっていてもよい)。
 そして、重合体が複数の芳香族ビニルブロック領域を有する場合、それら複数の芳香族ビニルブロック領域を構成する芳香族ビニル単量体単位の種類および割合は、同一でも異なっていてもよいが、同一であることが好ましい。
 重合体の芳香族ビニルブロック領域を構成する芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、例えば、スチレン、スチレンスルホン酸およびその塩、α-メチルスチレン、p-t-ブチルスチレン、ブトキシスチレン、ビニルトルエン、クロロスチレン、並びに、ビニルナフタレンなどの芳香族モノビニル化合物が挙げられる。中でも、重合体の芳香族ビニルブロック領域を電極活物質表面の疎水性部位と良好に相互作用させて電極のピール強度を高める観点からは、スチレンが好ましい。なお、これらは1種を単独で、または、2種以上を組み合わせて用いることができるが、1種を単独で用いることが好ましい。
 そして、重合体中の芳香族ビニル単量体単位の割合は、重合体中の全繰り返し単位(単量体単位および構造単位)の量を100質量%とした場合に、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、50質量%以下であることが好ましく、40質量%以下であることがより好ましい。重合体中に占める芳香族ビニル単量体単位の割合が10質量%以上であれば、形成される電極合材層の強度を高めることができる。また、重合体中に占める芳香族ビニル単量体単位の割合が50質量%以下であれば、電極合材層の柔軟性を確保することができる。
 なお、芳香族ビニル単量体単位が重合体中に占める割合は、通常、芳香族ビニルブロック領域が重合体中に占める割合と一致する。
[その他の領域]
 その他の領域は、上述したように、繰り返し単位として、芳香族ビニル単量体単位以外の繰り返し単位(以下、「その他の繰り返し単位」と略記する場合がある。)のみを含む領域である。
 ここで、1つのその他の領域は、1種のその他の繰り返し単位で構成されていてもよいし、複数種のその他の繰り返し単位で構成されていてもよい。
 また、1つのその他の領域には、カップリング部位が含まれていてもよい(すなわち、1つのその他の領域を構成するその他の繰り返し単位は、カップリング部位が介在して連なっていてもよい)。
 更に、その他の領域は、グラフト部分および/または架橋構造を有していてもよい。
 そして、重合体が複数のその他の領域を有する場合、それら複数のその他の領域を構成するその他の繰り返し単位の種類および割合は、互いに同一でも異なっていてもよい。
 重合体のその他の領域を構成するその他の繰り返し単位としては、特に限定されないが、例えば、電極の柔軟性および強度を高める観点から、脂肪族共役ジエン単量体単位および/またはアルキレン構造単位が好ましい。
 ここで、脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの炭素数4以上の共役ジエン化合物が挙げられる。これらは1種を単独で、または、2種以上を組み合わせて用いることができる。そしてこれらの中でも、電極のピール強度を高める観点から、イソプレンおよび1,3-ブタジエンが好ましく、1,3-ブタジエンがより好ましい。
 そして、重合体中の脂肪族共役ジエン単量体単位の割合は、重合体中の全繰り返し単位(単量体単位および構造単位)の量を100質量%とした場合に、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、90質量%以下であることが好ましく、80質量%以下であることがより好ましい。重合体中に占める脂肪族共役ジエン単量体単位の割合が上記上限値以下であれば、形成される電極合材層の強度を高めることができる。また、重合体中に占める脂肪族共役ジエン単量体単位の割合が上記下限値以上であれば、電極合材層の柔軟性を確保することができる。
 なお、重合体中の脂肪族共役ジエン単量体単位は、架橋されていてもよい(換言すると、重合体は、脂肪族共役ジエン単量体単位として、脂肪族共役ジエン単量体単位を架橋してなる構造単位を含んでいてもよい)。即ち、粒子状重合体を形成する重合体は、芳香族ビニル単量体単位からなるブロック領域と、脂肪族共役ジエン単量体単位とを含む重合体を架橋してなる重合体であってもよい。
 そして、脂肪族共役ジエン単量体単位を架橋してなる構造単位は、芳香族ビニル単量体単位からなるブロック領域と、脂肪族共役ジエン単量体単位とを含む重合体を架橋することにより、重合体に導入することができる。
 ここで、架橋は、特に限定されることなく、例えば酸化剤と還元剤とを組み合わせてなるレドックス開始剤などのラジカル開始剤を用いて行うことができる。そして、酸化剤としては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキサイド、p-メンタンハイドロパーオキサイド、t-ブチルクミルパーオキサイド、アセチルパーオキサイド、オクタノイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-2-エチルブタノエート(例えば、アクゾノーベル社製、商品名:トリゴノックス27)、t-ブチルパーオキシ-2-エチルヘキサノエート(例えば、日本油脂社製、商品名:パーブチルO)、t-ヘキシルパーオキシ-2-エチルヘキサノエート(例えば、日本油脂社製、商品名:パーヘキシルO)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(例えば、日本油脂社製、商品名:パーオクタO)、t-ブチルパーオキシ-ピバレート(例えば、日本油脂社製、商品名:パーブチルPV)、t-ヘキシルパーオキシ-ピバレート(例えば、日本油脂社製、商品名:パーヘキシルPV)等の有機過酸化物;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;および、アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;などを用いることができる。中でも、酸化剤としては、クメンハイドロパーオキサイドを用いることが好ましい。また、還元剤としては、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属イオンを含有する化合物;メタンスルホン酸ナトリウム等のスルホン酸化合物;ジメチルアニリン等のアミン化合物;亜硫酸ナトリウム;などを用いることができる。中でも、還元剤としては、硫酸第一鉄を用いることが好ましい。これらの酸化剤および還元剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、架橋は、ジビニルベンゼン等のポリビニル化合物;ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート等のポリアリル化合物;エチレングリコールジアクリレート等の各種グリコール;などの架橋剤の存在下で行ってもよい。また、架橋は、γ線などの活性エネルギー線の照射を用いて行うこともできる。
 また、アルキレン構造単位は、一般式:-Cn2n-[但し、nは2以上の整数]で表わされるアルキレン構造のみで構成される繰り返し単位である。
 ここで、アルキレン構造単位は、直鎖状であっても分岐状であってもよいが、アルキレン構造単位は直鎖状、即ち直鎖アルキレン構造単位であることが好ましい。また、アルキレン構造単位の炭素数は4以上である(即ち、上記一般式のnが4以上の整数である)ことが好ましい。
 なお、重合体へのアルキレン構造単位の導入方法は、特に限定はされない。例えば、芳香族ビニル単量体単位からなるブロック領域と、脂肪族共役ジエン単量体単位とを含む重合体に水素添加することで、脂肪族共役ジエン単量体単位をアルキレン構造単位に変換して重合体を得る方法が、重合体の製造が容易であり好ましい。
 上記の方法で用いる脂肪族共役ジエン単量体としては、脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体として上述した炭素数4以上の共役ジエン化合物が挙げられ、中でも、イソプレンおよび1,3-ブタジエンが好ましく、1,3-ブタジエンがより好ましい。即ち、アルキレン構造単位は、脂肪族共役ジエン単量体単位を水素化して得られる構造単位(脂肪族共役ジエン水素化物単位)であることが好ましく、イソプレン単位および/または1,3-ブタジエン単位を水素化して得られる構造単位(イソプレン水素化物単位および/または1,3-ブタジエン水素化物単位)であることがより好ましく、1,3-ブタジエン水素化物単位であることが更に好ましい。そして、脂肪族共役ジエン単量体単位の選択的な水素化は、油層水素化法や水層水素化法などの公知の方法を用いて行なうことができる。
 そして、重合体中の脂肪族共役ジエン単量体単位およびアルキレン構造単位の合計量は、重合体中の全繰り返し単位(単量体単位および構造単位)の量を100質量%とした場合に、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、90質量%以下であることが好ましく、80質量%以下であることがより好ましい。重合体中に占める脂肪族共役ジエン単量体単位およびアルキレン構造単位の合計の割合が上述した範囲内であれば、形成される電極合材層の強度および柔軟性を高めることができる。
 また、重合体のその他の領域は、上述した脂肪族共役ジエン単量体単位およびアルキレン構造単位以外の繰り返し単位を含んでいてもよい。具体的には、重合体のその他の領域は、カルボキシル基含有単量体単位、スルホン酸基含有単量体単位およびリン酸基含有単量体単位等の酸性基含有単量体単位;アクリロニトリル単位およびメタクリロニトリル単位等のニトリル基含有単量体単位;並びに、アクリル酸アルキルエステル単位およびメタクリル酸アルキルエステル単位等の(メタ)アクリル酸エステル単量体単位;などの他の単量体単位を含んでいてもよい。ここで、本発明において、「(メタ)アクリル酸」とは、アクリル酸および/またはメタクリル酸を意味する。
 中でも、粒子状重合体をスラリー組成物中で良好に分散させつつ、二次電池の低温サイクル特性を更に向上させる観点からは、重合体のその他の領域は、酸性基含有単量体単位を含むことが好ましい。
 なお、酸性基含有単量体単位が有する酸性基は、アルカリ金属やアンモニア等と塩を形成していてもよい。
 ここで、カルボキシル基含有単量体単位を形成し得るカルボキシル基含有単量体としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸ブチル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸モノエステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸、無水シトラコン酸などが挙げられる。
 また、カルボキシル基含有単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 更に、カルボキシル基含有単量体としては、ブテントリカルボン酸等のエチレン性不飽和多価カルボン酸や、フマル酸モノブチル、マレイン酸モノ2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸の部分エステルなども用いることができる。
 また、スルホン酸基含有単量体単位を形成し得るスルホン酸基含有単量体としては、例えば、ビニルスルホン酸(エチレンスルホン酸)、メチルビニルスルホン酸、(メタ)アリルスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸が挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリルおよび/またはメタリルを意味する。
 更に、リン酸基含有単量体単位を形成し得るリン酸基含有単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルが挙げられる。
 なお、本発明において、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
 ここで、上述した単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。そして、酸性基含有単量体単位を形成し得る酸性基含有単量体としては、メタクリル酸、イタコン酸、アクリル酸が好ましく、メタクリル酸がより好ましい。
 なお、重合体が酸性基含有単量体単位を有する場合、重合体中の酸性基含有単量体単位の割合は、重合体中の全繰り返し単位(単量体単位および構造単位)の量を100質量%とした場合に、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることが更に好ましく、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
 そして、上述した、酸性基含有単量体単位、ニトリル基含有単量体単位および(メタ)アクリル酸エステル単量体単位などの他の単量体単位は、特に限定されることなく、グラフト重合などの任意の重合方法を用いて重合体に導入することができる。なお、グラフト重合により他の単量体単位を導入した場合、重合体は、グラフト部分を含むこととなり、幹部分となる重合体に対してグラフト部分となる重合体が結合した構造を有することになる。
 ここで、グラフト重合は、特に限定されることなく、既知のグラフト重合方法を用いて行うことができる。具体的には、グラフト重合は、例えば酸化剤と還元剤とを組み合わせてなるレドックス開始剤などのラジカル開始剤を用いて行うことができる。なお、酸化剤と還元剤の添加方法としては、一括添加、分割添加、連続添加等の公知の添加方法を用いることができる。また、酸化剤および還元剤としては、芳香族ビニル単量体単位からなるブロック領域と、脂肪族共役ジエン単量体単位とを含む重合体の架橋に使用し得るものとして上述した酸化剤および還元剤と同様のものを用いることができる。中でも、酸化剤および還元剤としては、それぞれ、クメンハイドロパーオキサイドおよび硫酸第一鉄を用いることが好ましい。
 そして、芳香族ビニル単量体単位からなるブロック領域と、脂肪族共役ジエン単量体単位とを含む重合体に対してレドックス開始剤を用いてグラフト重合を行う場合には、グラフト重合による他の単量体単位の導入と、脂肪族共役ジエン単量体単位の架橋とを同時に進行させることができる。なお、グラフト重合と架橋は同時に進行させなくてもよく、ラジカル開始剤の種類や反応条件を調整してグラフト重合のみを進行させてもよい。
[テトラヒドロフラン不溶分量]
 粒子状重合体を形成する重合体のテトラヒドロフラン不溶分量は、50質量%超100質量%未満であることが必要であり、55質量%以上であることが好ましく、60質量%以上であることがより好ましく、95質量%以下であることが好ましく、90質量%以下であることがより好ましい。重合体のテトラヒドロフラン不溶分量が上記範囲内であれば、十分な接着力を確保して浸漬前の電極のピール強度を高めることができる。また、重合体のテトラヒドロフラン不溶分量が上記下限値以上であれば、電極合材層の形成時に応力が残留するのを抑制して、電解液中における電極合材層の剥離を抑制することができる。更に、重合体のテトラヒドロフラン不溶分量が上記上限値以下であれば、形成される電極合材層のイオン電導性を十分に確保し、非水系二次電池の内部抵抗を低減させることができる。
 なお、重合体のテトラヒドロフラン不溶分量は、重合体の組成や製造条件を変更することにより調整することができる。具体的には、例えば重合体への架橋構造の導入や、架橋および/またはグラフト重合時に使用する重合開始剤の種類を変更することにより重合体のテトラヒドロフラン不溶分量を調整することができる。
<<粒子径>>
 また、本発明に用いられる粒子状重合体は、体積平均粒子径が0.10μm以上0.30μm以下であることが必要であり、粒子状重合体の体積平均粒子径は、0.11μm以上であることが好ましく、0.12μm以上であることがより好ましく、0.20μm以下であることが好ましく、0.19μm以下であることがより好ましく、0.18μm以下であることが更に好ましい。粒子状重合体の体積平均粒子径が上記下限値以上であれば、非水系二次電池の内部抵抗が上昇するのを抑制することができる。また、粒子状重合体の体積平均粒子径が上記上限値以下であれば、粒子状重合体と電極活物質等との間の接触面積を十分に確保し、電極のピール強度を高めることができると共に電解液中における電極合材層の剥離を抑制することができる。
 なお、粒子状重合体の体積平均粒子径は、例えば、後述する乳化工程において、転相乳化に用いる予備混合物中の重合体の量(濃度)を変更することにより、調整することができる。具体的には、予備混合物中の重合体の量(濃度)を低減することによって、転相乳化を経て得られる粒子状重合体の体積平均粒子径を低下させることができる。また、粒子状重合体の体積平均粒子径は、任意の粒子径分布をもつ重合物を遠心分離やろ過などの方法により分級して調整することもできる。
<<表面酸量>>
 そして、粒子状重合体は、表面酸量が、0.05mmol/g以上であることが好ましく、0.08mmol/g以上であることがより好ましく、0.10mmol/g以上であることが更に好ましく、0.15mmol/g以上であることが特に好ましく、0.90mmol/g以下であることが好ましく、0.70mmol/g以下であることがより好ましく、0.50mmol/g以下であることが更に好ましく、0.45mmol/g以下であることが特に好ましい。粒子状重合体の表面酸量が上記範囲内であれば、電解液中における電極合材層の剥離を更に抑制することができる。また、粒子状重合体の表面酸量が上記下限値以上であれば、バインダー組成物およびバインダー組成物を用いて調製したスラリー組成物の分散安定性を高め、電解液に浸漬する前の電極のピール強度を更に向上させることができる。更に、粒子状重合体の表面酸量が上記上限値以下であれば、非水系二次電池の内部抵抗を更に低減させることができる。
 なお、粒子状重合体の表面酸量は、粒子状重合体として用いる重合体の製造に使用する単量体の種類および量や、製造条件を変更することにより調整することができる。具体的には、例えば、カルボン酸基を含有する単量体などの酸性基含有単量体の使用量を増加することにより、表面酸量を増大させることができる。
<<粒子状重合体の調製方法>>
 上述した重合体よりなる粒子状重合体は、例えば、有機溶媒中で上述した芳香族ビニル単量体や脂肪族共役ジエン単量体などの単量体をブロック重合して、芳香族ビニルブロック領域を有する重合体(ブロック重合体)の溶液を得る工程(ブロック重合体溶液調製工程)と、得られたブロック重合体の溶液に水を添加して乳化することでブロック重合体を粒子化する工程(乳化工程)と、任意に、粒子化したブロック重合体に対してグラフト重合を行う工程(グラフト工程)と、を経て調製することができる。
 なお、粒子状重合体の調製において、グラフト工程は、乳化工程の前に行ってもよい。即ち、粒子状重合体は、ブロック重合体溶液調製工程の後に、得られたブロック重合体に対してグラフト重合を行って所定の重合体の溶液を得る工程(グラフト工程)を行い、その後、得られた所定の重合体の溶液に水を添加して乳化することで所定の重合体を粒子化する工程(乳化工程)を行うことにより、調製してもよい。
[ブロック重合体溶液調製工程]
 ブロック重合体溶液調製工程におけるブロック重合の方法は、特に限定されない。例えば、第一の単量体成分を重合させた溶液に、第一の単量体成分とは異なる第二の単量体成分を加えて重合を行い、必要に応じて、単量体成分の添加と重合とを更に繰り返すことより、ブロック重合体を調製することができる。なお、反応溶媒として使用される有機溶媒も特に限定されず、単量体の種類等に応じて適宜選択することができる。
 ここで、上記のようにブロック重合して得られたブロック重合体を、後述する乳化工程に先んじて、カップリング剤を用いたカップリング反応に供することが好ましい。カップリング反応を行えば、例えば、ブロック重合体中に含まれるジブロック構造体同士の末端をカップリング剤により結合させて、トリブロック構造体に変換することができる。
 ここで、上記カップリング反応に使用し得るカップリング剤としては、特に限定されず、例えば、2官能のカップリング剤、3官能のカップリング剤、4官能のカップリング剤、5官能以上のカップリング剤が挙げられる。
 2官能のカップリング剤としては、例えば、ジクロロシラン、モノメチルジクロロシラン、ジクロロジメチルシラン等の2官能性ハロゲン化シラン;ジクロロエタン、ジブロモエタン、メチレンクロライド、ジブロモメタン等の2官能性ハロゲン化アルカン;ジクロロスズ、モノメチルジクロロスズ、ジメチルジクロロスズ、モノエチルジクロロスズ、ジエチルジクロロスズ、モノブチルジクロロスズ、ジブチルジクロロスズ等の2官能性ハロゲン化スズ;が挙げられる。
 3官能のカップリング剤としては、例えば、トリクロロエタン、トリクロロプロパンなどの3官能性ハロゲン化アルカン;メチルトリクロロシラン、エチルトリクロロシランなどの3官能性ハロゲン化シラン;メチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどの3官能性アルコキシシラン;が挙げられる。
 4官能のカップリング剤としては、例えば、四塩化炭素、四臭化炭素、テトラクロロエタンなどの4官能性ハロゲン化アルカン;テトラクロロシラン、テトラブロモシランなどの4官能性ハロゲン化シラン;テトラメトキシシラン、テトラエトキシシランなどの4官能性アルコキシシラン;テトラクロロスズ、テトラブロモスズなどの4官能性ハロゲン化スズ;が挙げられる。
 5官能以上のカップリング剤としては、例えば、1,1,1,2,2-ペンタクロロエタン、パークロロエタン、ペンタクロロベンゼン、パークロロベンゼン、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテルなどが挙げられる。
 これらは1種を単独で、または、2種以上を組み合わせて用いることができる。
 上述した中でも、カップリング剤としては、ジクロロジメチルシランが好ましい。なお、カップリング剤を用いたカップリング反応によれば、当該カップリング剤に由来するカップリング部位が、ブロック重合体を構成する高分子鎖(例えば、トリブロック構造体)に導入される。
 なお、上述したブロック重合および任意に行われるカップリング反応後に得られるブロック重合体の溶液は、そのまま後述する乳化工程に供してもよいが、必要に応じて、ブロック重合体に対し上述した水素添加を行った後に、乳化工程に供することもできる。
[乳化工程]
 乳化工程における乳化の方法は、特に限定されないが、例えば、上述したブロック重合体溶液調製工程で得られたブロック重合体の溶液と、乳化剤の水溶液との予備混合物を転相乳化する方法が好ましい。
 ここで、転相乳化には、例えば既知の乳化剤および乳化分散機を用いることができる。具体的には、乳化分散機としては、特に限定されることなく、例えば、商品名「ホモジナイザー」(IKA社製)、商品名「ポリトロン」(キネマティカ社製)、商品名「TKオートホモミキサー」(特殊機化工業社製)等のバッチ式乳化分散機;商品名「TKパイプラインホモミキサー」(特殊機化工業社製)、商品名「コロイドミル」(神鋼パンテック社製)、商品名「スラッシャー」(日本コークス工業社製)、商品名「トリゴナル湿式微粉砕機」(三井三池化工機社製)、商品名「キャビトロン」(太平洋機工社製)、商品名「マイルダー」(太平洋機工社製)、商品名「ファインフローミル」(太平洋機工社製)等の連続式乳化分散機;商品名「マイクロフルイダイザー」(みずほ工業社製)、商品名「ナノマイザー」(ナノマイザー社製)、商品名「APVガウリン」、「LAB1000」(SPXFLOW社製)、商品名「スターバースト」(スギノマシン社製)、商品名「エコナイザー」(三丸機械工業社製)等の高圧乳化分散機;商品名「膜乳化機」(冷化工業社製)等の膜乳化分散機;商品名「バイブロミキサー」(冷化工業社製)等の振動式乳化分散機;商品名「超音波ホモジナイザー」(ブランソン社製)等の超音波乳化分散機;などを用いることができる。なお、乳化分散機による乳化操作の条件(例えば、処理温度、処理時間など)は、特に限定されず、所望の分散状態になるように適宜選定すればよい。
 そして、転相乳化後に得られる乳化液から、必要に応じて、既知の方法により有機溶媒を除去する等して、粒子化したブロック重合体の水分散液を得ることができる。
 ここで、上述した通り、転相乳化に用いる予備混合物中のブロック重合体の濃度を変更することで、得られる粒子状重合体の体積平均粒子径を調整することができる。なお、粒子状重合体の体積平均粒子径は、遠心分離やろ過などの方法により分級して調整してもよい。
[グラフト工程]
 グラフト工程におけるグラフト重合の方法は、特に限定されないが、例えば、グラフト重合させる単量体の存在下において、レドックス開始剤などのラジカル開始剤を用いてブロック重合体のグラフト重合および架橋を同時に進行させる方法が好ましい。また、反応条件は、ブロック重合体の組成等に応じて調整することができる。
 このように、ブロック重合体溶液調製工程および乳化工程、並びに、任意にグラフト工程を経ることで、粒子状重合体の水分散液を得ることができる。
<分散媒>
 本発明のバインダー組成物の分散媒としては、水を含んでいれば特に限定されない。例えば、本発明のバインダー組成物は、分散媒として水のみを含んでいてもよいし、分散媒は水と有機溶媒(例えば、エステル類、ケトン類、アルコール類)の混合物であってもよい。なお、本発明のバインダー組成物は、1種の有機溶媒を含んでいてもよく、2種以上の有機溶媒を含んでいてもよい。
<その他の成分>
 本発明のバインダー組成物は、上記成分以外の成分(その他の成分)を含有することができる。例えば、バインダー組成物は、上述した粒子状重合体以外の、既知の粒子状結着材(例えば、スチレンブタジエンランダム共重合体、アクリル重合体など)を含んでいてもよい。また、バインダー組成物は、既知の添加剤を含んでいてもよい。このような既知の添加剤としては、例えば、2,6-ジ-tert-ブチル-p-クレゾールなどの酸化防止剤、消泡剤、分散剤が挙げられる。なお、その他の成分は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
<非水系二次電池電極用バインダー組成物の調製>
 そして、本発明の非水系二次電池電極用バインダー組成物の調製方法は、特に限定されることはない。例えば、「粒子状重合体の調製方法」の項で上述した手法により得られた粒子状重合体を含む水分散液をそのままバインダー組成物とすることができる。また例えば、粒子状重合体を含む水分散液に、上述したその他の成分を添加して、既知の手法で混合してバインダー組成物とすることもできる。なお、粒子状重合体を含む水分散液を用いてバインダー組成物を調製する場合には、水分散液が含有している液分(例えば、水)をそのままバインダー組成物の分散媒として利用してもよい。
(非水系二次電池電極用スラリー組成物)
 本発明の非水系二次電池電極用スラリー組成物は、電極合材層の形成用途に用いられる組成物であり、電極活物質と、上述した本発明の非水系二次電池電極用バインダー組成物とを含み、任意にその他の成分を更に含む。即ち、本発明の非水系二次電池電極用スラリー組成物は、通常、電極活物質と、上述した粒子状重合体と、分散媒とを含有し、任意に、その他の成分を更に含有する。そして、本発明のスラリー組成物は、上述したバインダー組成物を含んでいるので、電極の形成に用いた際に、電解液浸漬前の電極のピール強度の向上および電解液中における電極合材層の剥離の抑制を達成することができると共に、当該電極を用いた非水系二次電池の内部抵抗を低減することができる。
 なお、以下では、一例として非水系二次電池電極用スラリー組成物がリチウムイオン二次電池負極用スラリー組成物である場合について説明するが、本発明は下記の一例に限定されない。
<電極活物質>
 電極活物質は、二次電池の電極において電子の受け渡しをする物質である。そして、リチウムイオン二次電池用の負極活物質としては、通常は、リチウムを吸蔵および放出し得る物質を用いる。
 具体的には、リチウムイオン二次電池用の負極活物質としては、例えば、炭素系負極活物質、金属系負極活物質、およびこれらを組み合わせた負極活物質などが挙げられる。
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
 そして、炭素質材料としては、例えば、易黒鉛性炭素およびガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 ここで、易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
 また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
 更に、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
 ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。これらの中でも、金属系負極活物質としては、ケイ素を含む活物質(シリコン系負極活物質)が好ましい。シリコン系負極活物質を用いることにより、リチウムイオン二次電池を高容量化することができるからである。
 シリコン系負極活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiOx、Si含有材料を導電性カーボンで被覆または複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。なお、これらのシリコン系負極活物質は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
<バインダー組成物>
 バインダー組成物としては、上述した所定の粒子状重合体と、水を含む分散媒とを含有する、本発明のバインダー組成物を用いることができる。
 なお、スラリー組成物中における、上述した所定の粒子状重合体の含有量は、例えば、電極活物質100質量部当たり、固形分換算で、0.5質量部以上15質量部以下とすることができる。
<その他の成分>
 スラリー組成物に配合し得るその他の成分としては、特に限定することなく、本発明のバインダー組成物に配合し得るその他の成分と同様の成分が挙げられる。また、スラリー組成物は、カーボンブラック等の導電材を更に含有していてもよい。これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<非水系二次電池電極用スラリー組成物の調製>
 上述したスラリー組成物は、上記各成分を、既知の混合方法により混合することで調製することができる。このような混合は、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて行うことができる。
(非水系二次電池用電極)
 本発明の電極は、上述した本発明のスラリー組成物を用いて形成された電極合材層を備えるものであり、通常は、集電体と、集電体上に形成された電極合材層とを有している。そして、電極合材層は、通常、本発明のスラリー組成物を乾燥してなる層であり、少なくとも、電極活物質と、上記粒子状重合体に由来する重合体とを含有し、任意にその他の成分を含有する。なお、電極合材層中において、上述した粒子状重合体に由来する重合体は、粒子形状であってもよいし(即ち、粒子状重合体のまま電極合材層に含まれていてもよいし)、その他の任意の形状であってもよい。
 そして、本発明の電極は、本発明のスラリー組成物を使用して作製されているため、ピール強度に優れていると共に、電解液に浸漬した際に集電体からの電極合材層の剥離が発生し難い。また、当該電極を用いれば、非水系二次電池の内部抵抗を低減させることができる。
<電極の形成方法>
 本発明の電極は、例えば、(1)スラリー組成物を集電体上に塗布する工程(塗布工程)、(2)集電体上に塗布されたスラリー組成物を乾燥させてスラリー乾燥物を形成する工程(乾燥工程)、(3)集電体上のスラリー乾燥物をプレスする工程(プレス工程)を経て製造することができる。
<<塗布工程>>
 上記スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。塗布の際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、得られる電極合材層の厚みに応じて適宜に設定し得る。
<<乾燥工程>>
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線、電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上にスラリー乾燥物を形成する。
<<プレス工程>>
 集電体上のスラリー乾燥物をプレスする方法としては、特に限定されず、既知のプレス装置を用いて行うことができる。なかでも、スラリー乾燥物を高速で効率良くプレスする観点からは、プレスロールによるプレス(ロールプレス)が好ましい。プレス工程を経ることにより、電極合材層の密度を高めるとともに、電極合材層と集電体の密着性を向上させることができる。
(非水系二次電池)
 本発明の非水系二次電池は、本発明の非水系二次電池用電極を備えるものである。より具体的には、本発明の非水系二次電池は、正極と、負極と、電解液と、セパレータとを備え、正極及び負極の少なくとも一方として本発明の非水系二次電池用電極を用いたものである。そして、本発明の非水系二次電池は、本発明の非水系二次電池用電極を備えているので、内部抵抗が小さい。
 また、以下では、一例として二次電池がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。
<電極>
 上述のように、本発明の二次電池用電極が、正極および負極の少なくとも一方として用いられる。即ち、リチウムイオン二次電池の正極が本発明の電極であり負極が他の既知の負極であってもよく、リチウムイオン二次電池の負極が本発明の電極であり正極が他の既知の正極であってもよく、リチウムイオン二次電池の正極および負極の両方が本発明の電極であってもよい。
 なお、本発明の二次電池用電極以外の既知の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えばリチウムイオン二次電池においては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。また、これらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のセパレータを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<非水系二次電池の製造方法>
 本発明の非水系二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。なお、正極および負極の少なくとも一方を、本発明の非水系二次電池用電極とする。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。そして、実施例および比較例において、重合体のテトラヒドロフラン不溶分量、粒子状重合体の体積平均粒子径および表面酸量、電極のピール強度および電解液中での耐剥離性、並びに、二次電池の内部抵抗は、以下の方法で評価した。
<テトラヒドロフラン不溶分量>
 得られた粒子状重合体の水分散液を、50%湿度、23~25℃の環境下で乾燥させて、厚み約0.3mmに成膜した。成膜したフィルムを3mm角に裁断し、精秤した。
 裁断により得られたフィルム片の質量をw0とする。このフィルム片を、100gのテトラヒドロフラン(THF)に24時間、25℃にて浸漬した。その後、THFから引き揚げたフィルム片を105℃で3時間真空乾燥して、不溶分の質量w1を計測した。
 そして、下記式にしたがってTHF不溶分量(質量%)を算出した。
 THF不溶分量(質量%)=(w1/w0)×100
<体積平均粒子径>
 粒子状重合体の体積平均粒子径(D50)は、レーザー回折式粒子径分布測定装置(ベックマン・コールター社製、製品名「LS-230」)を用いて測定した。具体的には、粒子状重合体の固形分濃度を0.1質量%に調整した水分散液を上記装置で測定し、得られた粒度分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径を体積平均粒子径(μm)として求めた。
<表面酸量>
 得られた粒子状重合体の水分散液を0.3%ドデシルベンゼンスルホン酸水溶液にて希釈し、固形分濃度10%に調整した。その後、7000Gで30分間遠心分離し、軽液を分取した。得られた軽液を0.3%ドデシルベンゼンスルホン酸水溶液にて希釈し、固形分濃度10%に調整した。その後、7000Gで30分間遠心分離し、軽液を分取した。得られた軽液を0.3%ドデシルベンゼンスルホン酸水溶液にて希釈し、固形分濃度10%に調整した。その後、調整したサンプルを7000Gで30分間遠心分離し、軽液を分取した。得られた軽液を5%水酸化ナトリウム水溶液でpH12.0に調整した。pHを調整したサンプルを100mLビーカーに固形分換算で3.0g分取し、花王製エマルゲン120を0.2%に希釈した水溶液3gおよび東レ・ダウコーニング社製SM5512を1%に希釈した水溶液1gを添加した。スターラーで均一に撹拌しながら0.1N塩酸水溶液を0.5mL/30秒の速度で添加し、30秒毎の電気電導度を測定した。
 得られた電気伝導度データを、電気伝導度を縦軸(Y座標軸)、添加した塩酸の累計量を横軸(X座標軸)としたグラフ上にプロットした。これにより、3つの変曲点を有する塩酸量-電気伝導度曲線が得られる(例えば、国際公開第2019/107229号の図1など参照)。3つの変曲点のX座標を、値が小さい方から順にそれぞれP1、P2およびP3とする。X座標が、零から座標P1まで、座標P1から座標P2まで、および、座標P2から座標P3まで、の3つの区分内のデータについて、それぞれ、最小二乗法により近似直線L1、L2、およびL3を求める。近似直線L1と近似直線L2との交点のX座標をA1、近似直線L2と近似直線L3との交点のX座標をA2とする。
 そして、粒子状重合体1g当たりの表面酸量を、下記の式(a)から、塩酸換算した値(mmol/g)として求める。
 (a) 粒子状重合体1g当たりの表面酸量=(A2-A1)/3.0g
<ピール強度>
 作製した負極を100℃で10時間真空乾燥したのちに、長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、負極合材層の表面を下にして、負極合材層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるセロハンテープを用いた。また、セロハンテープは試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求め、当該平均値をピール強度として以下の基準で評価した。ピール強度が大きいほど、電解液に浸漬する前の負極合材層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
 A:ピール強度が24N/m以上
 B:ピール強度が15N/m以上24N/m未満
 C:ピール強度が15N/m未満
<電解液中での耐剥離性>
 作製した負極を長さ400×600mmの長方形に切り出し、100℃で10時間真空乾燥を実施した。真空乾燥後の電極を透明ラミネートフィルム包材に配置し、電解液として濃度1.0MのLiPF6溶液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)=5/5(体積比)の混合溶媒、添加剤:ビニレンカーボネート2体積%(溶媒比)含有)を600μL注入した。さらに、包材の開口を密封するために、温度150℃のヒートシールをして包材を閉口し、観察用サンプルを製造した。電解液注入後、120時間静置し、120時間後に、集電体から剥がれ、膨張して集電体からはみ出した負極合材層の面積を電極裏側から計測した。計測には、画像解析ソフト付きデジタルマイクロスコープ(KEYENCE社製、VHX-6000)を使用した。計測値を使用して、面積増加率を計算し、以下の基準に従って評価した。面積増加率が小さいほど、電解液に浸漬した場合でも負極合材層が集電体から剥離し難いことを示す。
 A:面積増加率0.1%未満
 B:面積増加率0.1%以上0.5%未満
 C:面積増加率0.5%以上
<二次電池の内部抵抗>
 作製したリチウムイオン二次電池について、以下のようにしてIV抵抗を測定した。
 リチウムイオン二次電池に対し、温度25℃で、電圧が4.2Vとなるまで0.1Cの充電レートで充電し、10分間休止した後、0.1Cの放電レートで3.0VまでCV放電させる操作を3回繰り返すコンディショニング処理を施した。その後、-10℃雰囲気下で、1C(Cは定格容量(mA)/1時間(h)で表される数値)で3.75Vまで充電した後、3.75Vを中心として0.5C、1.0C、1.5C、2.0Cで15秒間充電と15秒間放電とをそれぞれ行い、それぞれの場合について、充電側における15秒後の電池電圧を電流値に対してプロットし、その傾きをIV抵抗(Ω)として求めた。得られたIV抵抗の値(Ω)について、以下の基準で評価した。IV抵抗の値が小さいほど、内部抵抗が少なく、低温特性に優れていることを示す。
 A:IV抵抗が5Ω以下
 B:IV抵抗が5Ω超10Ω以下
 C:IV抵抗が10Ω超15Ω以下
 D:IV抵抗が15Ω超
(実施例1)
<非水系二次電池負極用バインダー組成物の調製>
[ブロック重合体のシクロヘキサン溶液の調製]
 耐圧反応器に、シクロヘキサン233.3kg、N,N,N’,N’-テトラメチルエチレンジアミン(以下、「TMEDA」と称する。)54.2mmol、および芳香族ビニル単量体としてのスチレン30.0kgを添加した。そして、これらを40℃で攪拌しているところに、重合開始剤としてのn-ブチルリチウム1806.5mmolを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100%であった。引き続き、50~60℃を保つように温度制御しながら、耐圧反応器に、脂肪族共役ジエン単量体としてのブタジエン70.0kgを1時間にわたり連続的に添加した。ブタジエンの添加を完了した後、重合反応をさらに1時間継続した。ブタジエンの重合転化率は100%であった。次いで、耐圧反応器に、カップリング剤としてのジクロロジメチルシラン722.6mmolを添加して2時間カップリング反応を行い、スチレン-ブタジエンカップリングブロック共重合体を形成させた。その後、活性末端を失活させるべく、反応液にメタノール3612.9mmolを添加してよく混合した。次いで、この反応液100部(重合体成分を30.0部含有)に、酸化防止剤として、2,6-ジ-tert-ブチル-p-クレゾール0.3部を加えて混合した。得られた混合溶液を、85~95℃の温水中に少しずつ滴下することで溶媒を揮発させて、析出物を得た。そして、この析出物を粉砕し、85℃で熱風乾燥することにより、ブロック重合体を含む乾燥物を回収した。
 そして、回収した乾燥物をシクロヘキサンに溶解し、ブロック重合体の濃度が0.4%であるブロック重合体溶液を調製した。
[転相乳化]
 アルキルベンゼンスルホン酸ナトリウムをイオン交換水に溶解し、5%の水溶液を調製した。そして、ブロック重合体溶液5000gと、得られた水溶液5000gとをタンク内に投入し撹拌させることで予備混合を行った。続いて、タンク内から、予備混合物を、定量ポンプを用いて100g/分の速度で連続式高能率乳化分散機(太平洋機工社製、製品名「キャビトロン」)へ移送し、回転数20000rpmで撹拌することにより、予備混合物を転相乳化した乳化液を得た。
 次に、得られた乳化液中のシクロヘキサンをロータリーエバポレータにて減圧留去した。その後、留去した乳化液を遠心分離機(日立工機社製、製品名「Himac CR21N」)にて、7000rpmで10分間遠心した後、上層部分を取り出すことで濃縮を行った。
 最後に、上層部分を100メッシュの金網で濾過し、粒子状のブロック重合体を含有する水分散液(ブロック重合体ラテックス)を得た。
[グラフト重合および架橋]
 得られたブロック重合体ラテックスに、粒子状のブロック重合体100部(固形分相当量)に対して水が850部になるように蒸留水を添加して希釈した。この希釈したブロック重合体ラテックスを、窒素置換された攪拌機付き重合反応容器に投入し、撹拌しながら温度を30℃にまで加温した。また、別の容器を用い、酸性基含有単量体としてのメタクリル酸10部と、蒸留水15部とを混合してメタクリル酸希釈液を調製した。このメタクリル酸希釈液を、30℃にまで加温した重合反応容器内に、30分間かけて添加した。
 更に、別の容器を用い、蒸留水7部および還元剤としての硫酸第一鉄(中部キレスト社製、商品名「フロストFe」)0.01部を含む溶液を調製した。得られた溶液を重合反応容器内に添加した後、酸化剤としてのクメンハイドロパーオキサイド(日本油脂社製、商品名「パークミル H-80」)0.5部を添加し、30℃で1時間反応させた後、更に70℃で2時間反応させ、粒子状重合体の水分散液(負極用バインダー組成物)を得た。なお、重合転化率は99%であった。
 そして、重合体のテトラヒドロフラン不溶分量、並びに、粒子状重合体の体積平均粒子径および表面酸量を測定した。結果を表1に示す。
<非水系二次電池負極用スラリー組成物の調製>
 プラネタリーミキサーに、負極活物質としての天然黒鉛(理論容量:360mAh/g)97部と、増粘剤としてカルボキシメチルセルロースを固形分相当で1部とを投入した。さらに、イオン交換水にて固形分濃度が60%となるように希釈し、その後、回転速度45rpmで60分混練した。その後、上述で得られた負極用バインダー組成物を固形分相当で1.5部投入し、回転速度40rpmで40分混練した。そして、粘度が3000±500mPa・s(B型粘度計、25℃、60rpmで測定)となるようにイオン交換水を加えることにより、負極用スラリー組成物を調製した。
<負極の製造>
 上記負極用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの電解銅箔の表面に、塗付量が11±0.5mg/cm2となるように塗布した。その後、負極用スラリー組成物が塗布された銅箔を、400mm/分の速度で、温度120℃のオーブン内を2分間、さらに温度130℃のオーブン内を2分間かけて搬送することにより、銅箔上のスラリー組成物を乾燥させ、集電体上に負極合材層が形成された負極原反を得た。
 その後、作製した負極原反の負極合材層側を温度25±3℃の環境下でロールプレスし、負極合材層密度が1.60g/cm3の負極を得た。
 そして、負極のピール強度および電解液中での耐剥離性を評価した。結果を表1に示す。
<非水系二次電池正極用スラリー組成物の調製>
 プラネタリーミキサーに、正極活物質としてのCo-Ni-Mnのリチウム複合酸化物系の活物質(NMC532、LiNi5/10Co2/10Mn3/102)を97部、導電材としてのアセチレンブラック(電気化学工業製、商品名「HS-100」)を1部、ポリフッ化ビニリデン(クレハ社製、製品名「KF7208」)を2部を添加し、混合し、さらに、有機溶媒としてのN-メチル-2-ピロリドン(NMP)を徐々に加えて、温度25±3℃、回転数25rpmにて撹拌混合して、B型粘度計(ローターM4)にて、60rpm、25±3℃で測定した粘度が3,600mPa・sの正極用スラリー組成物を得た。
<正極の製造>
 上記に従って得られた正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミニウム箔の上に、塗布量が20±0.5mg/cm2となるように塗布した。
 さらに、200mm/分の速度で、温度120℃のオーブン内を2分間、さらに温度130℃のオーブン内を2分間かけて搬送することにより、アルミニウム箔上のスラリー組成物を乾燥させ、集電体上に正極合材層が形成された正極原反を得た。
 その後、作製した正極原反の正極合材層側を温度25±3℃の環境下でロールプレスし、正極合材層密度が3.20g/cm3の正極を得た。
<非水系二次電池用セパレータの準備>
 単層のポリプロピレン製セパレータ(セルガード製、商品名「#2500」)を準備した。
<非水系二次電池の作製>
 上記の負極、正極およびセパレータを用いて、単層ラミネートセル(初期設計放電容量30mAh相当)を作製し、アルミ包材内に配置して、60℃にて10時間の真空乾燥をおこなった。その後、電解液として濃度1.0MのLiPF6溶液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)=5/5(体積比)の混合溶媒、添加剤:ビニレンカーボネート2体積%(溶媒比)含有)を充填した。さらに、アルミ包材の開口を密封するために、温度150℃のヒートシールをしてアルミ包材を閉口し、リチウムイオン二次電池を製造した。そして、リチウムイオン二次電池の内部抵抗を評価した。結果を表1に示す。
(実施例2)
 非水系二次電池負極用バインダー組成物の調製時に、硫酸第一鉄およびクメンハイドロパーオキサイドの量を、それぞれ0.007部および0.35部に変更してグラフト重合および架橋を行った以外は、実施例1と同様にして、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例3,4)
 非水系二次電池負極用バインダー組成物の調製時に、ブロック重合体を含む乾燥物を、ブロック重合体の濃度がそれぞれ0.25%(実施例3)および0.8%(実施例4)となるようにシクロヘキサンに溶解した以外は、実施例1と同様にして、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例5,6)
 非水系二次電池負極用バインダー組成物の調製時に、メタクリル酸の量を、それぞれ4部(実施例5)および20部(実施例6)に変更してグラフト重合および架橋を行った以外は、実施例1と同様にして、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例7,8)
 非水系二次電池負極用バインダー組成物の調製時に、硫酸第一鉄およびクメンハイドロパーオキサイドの量を、それぞれ、0.006部および0.3部(実施例7)、並びに、0.012部および0.6部(実施例8)に変更してグラフト重合および架橋を行った以外は、実施例1と同様にして、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例9)
 非水系二次電池負極用バインダー組成物の調製時に、ブタジエン70.0kgに替えてイソプレン70.0kgを使用してブロック重合体のシクロヘキサン溶液の調製を行った以外は、実施例1と同様にして、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(比較例1,2)
 非水系二次電池負極用バインダー組成物の調製時に、ブロック重合体を含む乾燥物を、ブロック重合体の濃度がそれぞれ0.1%(比較例1)および2.2%(比較例2)となるようにシクロヘキサンに溶解して転相乳化を行った以外は、実施例1と同様にして、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(比較例3)
 非水系二次電池負極用バインダー組成物の調製時に、クメンハイドロパーオキサイドに替えて1,1,3,3-テトラメチルブチルハイドロパーオキサイド(日本油脂社製、商品名「パーオクタH」)を0.5部使用してグラフト重合および架橋を行った以外は、実施例1と同様にして、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよびリチウムイオン二次電池を作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、芳香族ビニル単量体単位からなるブロック領域を有し、且つ、テトラヒドロフラン不溶分量が所定の範囲内である重合体からなり、体積平均粒子径が所定の範囲内である粒子状重合体を含むバインダー組成物を用いた実施例1~9では、電解液に浸漬した際に電極合材層の剥離が発生するのを抑制することができると共に非水系二次電池の内部抵抗を低減させることができることが分かる。
 一方、表1より、粒子状重合体の体積平均粒子径が小さい比較例1では非水系二次電池の内部抵抗が上昇してしまい、粒子状重合体の体積平均粒子径が大きい比較例2では電解液に浸漬した際に電極合材層の剥離が発生してしまうことが分かる。また、表1より、テトラヒドロフラン不溶分量が小さい重合体からなる粒子状重合体を含むバインダー組成物を用いた比較例3では、電解液に浸漬した際に電極合材層の剥離が発生してしまうことが分かる。
 本発明によれば、電解液に浸漬した際に電極合材層の剥離が発生するのを抑制することができると共に非水系二次電池の内部抵抗を低減させることができる非水系二次電池用電極を形成可能な非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物を提供することができる。
 また、本発明によれば、電解液に浸漬した際に集電体からの電極合材層の剥離が起こり難く、且つ、非水系二次電池の内部抵抗を低減させることができる非水系二次電池用電極を提供することができる。
 更に、本発明によれば、内部抵抗の低い非水系二次電池を提供することができる。

Claims (6)

  1.  芳香族ビニル単量体単位からなるブロック領域を有する重合体からなる粒子状重合体と、水とを含み、
     前記重合体のテトラヒドロフラン不溶分量が、50質量%超100質量%未満であり、
     前記粒子状重合体の体積平均粒子径が、0.10μm以上0.30μm以下である、非水系二次電池電極用バインダー組成物。
  2.  前記粒子状重合体の表面酸量が、0.05mmol/g以上0.90mmol/g以下である、請求項1に記載の非水系二次電池電極用バインダー組成物。
  3.  前記重合体が、脂肪族共役ジエン単量体単位およびアルキレン構造単位の少なくとも一方を含む、請求項1または2に記載の非水系二次電池電極用バインダー組成物。
  4.  電極活物質と、請求項1~3の何れかに記載の非水系二次電池電極用バインダー組成物とを含む、非水系二次電池電極用スラリー組成物。
  5.  請求項4に記載の非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備える、非水系二次電池用電極。
  6.  請求項5に記載の非水系二次電池用電極を備える、非水系二次電池。
PCT/JP2021/027409 2020-07-31 2021-07-21 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 WO2022024940A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020131090 2020-07-31
JP2020-131090 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022024940A1 true WO2022024940A1 (ja) 2022-02-03

Family

ID=80035583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027409 WO2022024940A1 (ja) 2020-07-31 2021-07-21 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Country Status (2)

Country Link
TW (1) TW202218219A (ja)
WO (1) WO2022024940A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051067A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 リチウムイオン二次電池
WO2014088070A1 (ja) * 2012-12-05 2014-06-12 日本ゼオン株式会社 リチウムイオン二次電池
WO2016052048A1 (ja) * 2014-09-30 2016-04-07 Jsr株式会社 正極用スラリー、蓄電デバイス正極、及び蓄電デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051067A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 リチウムイオン二次電池
WO2014088070A1 (ja) * 2012-12-05 2014-06-12 日本ゼオン株式会社 リチウムイオン二次電池
WO2016052048A1 (ja) * 2014-09-30 2016-04-07 Jsr株式会社 正極用スラリー、蓄電デバイス正極、及び蓄電デバイス

Also Published As

Publication number Publication date
TW202218219A (zh) 2022-05-01

Similar Documents

Publication Publication Date Title
JP7120249B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2019107229A1 (ja) 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
WO2017141791A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JPWO2019172281A1 (ja) 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池
WO2019107209A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JPWO2019044166A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2020246222A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2021172229A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2021039674A1 (ja) 非水系二次電池用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
JP7405073B2 (ja) 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
JP7107137B2 (ja) 非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び、非水系二次電池
JP7556349B2 (ja) 非水系二次電池用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
TWI833886B (zh) 非水系二次電池電極用黏結劑組成物、非水系二次電池電極用漿料組成物、非水系二次電池用電極及非水系二次電池
WO2022114199A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び、非水系二次電池
CN114365311B (zh) 非水系二次电池用粘结剂组合物及其制造方法
WO2021153670A1 (ja) 非水系二次電池用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
WO2022024940A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2023053975A1 (ja) 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、および非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP