WO2019216275A1 - リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2019216275A1
WO2019216275A1 PCT/JP2019/017989 JP2019017989W WO2019216275A1 WO 2019216275 A1 WO2019216275 A1 WO 2019216275A1 JP 2019017989 W JP2019017989 W JP 2019017989W WO 2019216275 A1 WO2019216275 A1 WO 2019216275A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
lithium ion
positive electrode
secondary battery
mass
Prior art date
Application number
PCT/JP2019/017989
Other languages
English (en)
French (fr)
Inventor
達也 永井
真一朗 大角
哲哉 伊藤
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN201980030478.XA priority Critical patent/CN112106233B/zh
Priority to JP2020518278A priority patent/JP7337049B2/ja
Priority to EP19800661.1A priority patent/EP3767709A4/en
Priority to US17/047,384 priority patent/US20210119206A1/en
Priority to KR1020207033344A priority patent/KR20210006377A/ko
Publication of WO2019216275A1 publication Critical patent/WO2019216275A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • One of the key devices required for these technologies is a battery, and such a battery requires a high energy density for downsizing the system.
  • high output characteristics are required to enable stable power supply regardless of the ambient temperature.
  • good cycle characteristics that can withstand long-term use are also required. Therefore, replacement of conventional lead storage batteries, nickel-cadmium batteries, and nickel-hydrogen batteries with lithium ion secondary batteries having higher energy density, output characteristics, and cycle characteristics is rapidly progressing.
  • the basic configuration of such a lithium ion secondary battery includes a positive electrode, a negative electrode, a separator, and an electrolyte.
  • the positive electrode generally includes a positive electrode active material such as a lithium composite oxide, a conductive material, and a binder. It consists of metal foil collectors, such as a composition and aluminum. In general, a particulate carbon material such as carbon black is used as the conductive material.
  • carbon black has a structure in which primary particles close to a spherical shape are connected in a bead shape as a common structure, and such a structure is called a structure.
  • the length of the structure is indirectly evaluated using the DBP absorption amount measured in accordance with JIS K6217-4. Generally, the larger the DBP absorption amount, the longer the structure, and the effect of imparting conductivity, Excellent liquid retention, which is the ability to hold a non-aqueous electrolyte.
  • Patent Document 1 discloses a technology in which a carbon nanofiber performs an electrical bridge between an active material and carbon black, thereby creating a good conductive path in an electrode and obtaining a battery having excellent cycle characteristics. .
  • carbon black with a small particle diameter and a long structure is used, conductivity can be imparted with less addition, there is a problem that a sufficient conductive path is not formed and the content of the active material cannot be increased. Met.
  • Patent Document 2 discloses a technique for preventing a conductive material from being unevenly distributed in an electrode by using carbon black and carbon nanotubes together and obtaining a battery having excellent output characteristics.
  • the ratio of the fibrous carbon material is 1 to 20% by weight and the ratio of the granular carbon material is 99 to 80% by weight when the entire conductive material is 100% by weight.
  • a technology for obtaining a battery with improved conductivity and excellent cycle characteristics and output characteristics is disclosed.
  • any of the inventions is a technique based on the premise that a large amount of conductive material is added, it has been a problem that the content of the active material cannot be increased.
  • Patent Document 4 discloses a technique for obtaining a battery having excellent output characteristics and cycle characteristics by using carbon black and graphitized carbon fiber in combination to stabilize the conductive path in the positive electrode.
  • Patent Document 5 discloses a technique for obtaining a battery having low resistance and excellent discharge capacity and cycle characteristics by using carbon black and fibrous carbon in combination.
  • the fibrous carbon material used has a large fiber diameter, it is necessary to add a large amount of fibrous carbon material in order to form a sufficient conductive path. Will decrease. For this reason, a sufficient electrolytic solution cannot be held in the vicinity of the active material, so that a sufficient output characteristic cannot be obtained when used in a low temperature environment.
  • the present invention is a lithium ion secondary battery that can easily obtain a lithium ion secondary battery that has high energy density, low internal resistance, and excellent output characteristics, cycle characteristics, and low temperature characteristics.
  • An object is to provide a positive electrode composition.
  • lithium cobaltate as an active material, carbon black having a small particle diameter and a long structure as a conductive material, and a carbon nanotube having a specific BET specific surface area and aspect ratio with a small fiber diameter.
  • a lithium ion secondary battery manufactured using a positive electrode composition for lithium ion secondary batteries which has been found, has high energy density, low internal resistance, excellent output characteristics, cycle characteristics, and low temperature characteristics. It is.
  • a positive electrode composition for a lithium ion secondary battery including an active material capable of inserting and extracting lithium ions and a conductive material, wherein the active material is a lithium cobalt composite oxide, and the conductive material is carbon black, and
  • the carbon black has a BET specific surface area of 100 to 400 m 2 / g, a DBP absorption of 210 to 400 ml / 100 g, an average diameter of the carbon nanotube of 20 nm or less, and a BET specific surface area of 170 m 2 / g or more, the aspect ratio is 50 or more, the carbon black content X (unit: mass%) in the positive electrode composition, and the carbon nanotube content Y (unit: mass%) Satisfy
  • the positive electrode composition for lithium ion secondary batteries characterized by the above-mentioned.
  • a lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to (5).
  • the positive electrode composition for lithium ion secondary batteries which can obtain easily the lithium ion secondary battery with high energy density, small internal resistance, and excellent in output characteristics, cycling characteristics, and low temperature characteristics is provided. can do.
  • the positive electrode composition for a lithium ion secondary battery of the present invention is a positive electrode composition for a lithium ion secondary battery including an active material and a conductive material, the active material is a lithium cobalt composite oxide, and the conductive material is carbon.
  • the carbon black has a BET specific surface area of 100 to 400 m 2 / g, a DBP absorption of 210 to 400 ml / 100 g, an average diameter of the carbon nanotube of 20 nm or less, and a BET A positive electrode composition for a lithium ion secondary battery having a specific surface area of 170 m 2 / g or more and an aspect ratio of 50 or more.
  • lithium cobaltate can be used as the lithium cobalt composite oxide which is an active material in the present invention.
  • lithium cobaltate those produced by a conventionally known method such as a solid phase method, a liquid phase method, and a gas phase method are used in the same manner as lithium cobaltate as a general battery active material.
  • a metal oxide such as ZrO 2 , Al 2 O 3 , TiO 2 , SiO 2 , MgO, TiO 2 or the like whose surface is coated with an active material with Li 2 CO 3 , AlF 3 or the like may be used.
  • other active materials other than lithium cobaltate can also be included.
  • the average particle diameter D 50 of the lithium cobalt composite oxide such as lithium cobaltate in the present invention is preferably 10 to 20 ⁇ m.
  • the average particle diameter of the present invention is a value measured by a laser diffraction / scattering particle size distribution measuring device in accordance with JIS Z 8825, in which a positive electrode active material is dispersed using ethanol as a dispersion medium.
  • content of lithium cobalt complex oxides, such as lithium cobaltate in this invention is 96 mass% or more with respect to the positive electrode composition containing lithium cobaltate, a electrically conductive material, and a binder. By setting it as such content, it becomes easy to obtain the battery which has a sufficiently high energy density.
  • the conductive material in the present invention is carbon black and carbon nanotubes.
  • Carbon black is selected from acetylene black, furnace black, channel black, and the like, as is carbon black as a general battery conductive material. Among these, acetylene black having excellent crystallinity and purity is preferable. In addition, as long as the effect of this invention is not prevented, other conductive materials other than carbon black and a carbon nanotube may be included.
  • the BET specific surface area of the carbon black in the present invention is 100 to 400 m 2 / g.
  • the BET specific surface area of the carbon black in the present invention is 100 to 400 m 2 / g.
  • the BET specific surface area of carbon black is more preferably 120 to 380 m 2 / g.
  • the BET specific surface area of the present invention is a value measured by a static capacity method in accordance with JIS Z 8830 using nitrogen as an adsorbate.
  • the DBP absorption amount of carbon black in the present invention is 210 to 400 ml / 100 g.
  • the structure when used as a conductive material has a sufficient length and spread, and a good conductive path and liquid retention of a non-aqueous electrolyte can be obtained.
  • aggregation by the entanglement of structures is suppressed by setting it as 400 ml / 100g or less, it is uniformly disperse
  • the DBP absorption amount of carbon black is more preferably 250 to 320 ml / 100 g.
  • the DBP absorption amount of the present invention is a value measured according to JIS K6217-4.
  • the volume resistivity of carbon black in the present invention is not particularly limited, but it is preferably as low as possible from the viewpoint of conductivity. Specifically, the volume resistivity measured under 7.5 MPa compression is preferably 0.30 ⁇ ⁇ cm or less, and more preferably 0.25 ⁇ ⁇ cm or less.
  • the ash content and moisture content of carbon black in the present invention are not particularly limited, but are preferably as small as possible from the viewpoint of suppressing side reactions.
  • the ash content is preferably 0.04% by mass or less
  • the water content is preferably 0.10% by mass or less.
  • the average diameter of the carbon nanotubes in the present invention is 20 nm or less, the BET specific surface area is 170 m 2 / g or more, and the aspect ratio is 50 or more.
  • the average diameter of the carbon nanotubes is more preferably 15 nm or less, and the BET specific surface area is more preferably larger than 200 m 2 / g.
  • the aspect ratio is set to 50 or more, a conductive path with less interruption can be efficiently formed on the surface of the active material.
  • the aspect ratio of the carbon nanotube is more preferably 100 or more.
  • the average diameter and aspect ratio of the present invention are shapes measured by an image analysis method using a transmission electron microscope, a reflection electron microscope, an optical microscope, and the like.
  • the size is represented by the average value of carbon nanotubes.
  • the aspect ratio is a ratio of average length / average diameter.
  • the BET specific surface area of the present invention is a value measured by a static capacity method in accordance with JIS Z 8830 using nitrogen as an adsorbate.
  • the carbon black content X (unit: mass%) and the carbon nanotube content Y (unit: mass%) are 0.5 ⁇ (X + Y) ⁇ 2.0 and 0.80 ⁇ ⁇ X / (X + Y). ) ⁇ ⁇ 0.95.
  • 0.5 ⁇ (X + Y) ⁇ 2.0 a sufficient conductivity imparting effect can be obtained while suppressing the content of the conductive material, which is a component that does not contribute to the charge / discharge capacity, in the positive electrode composition.
  • 0.80 ⁇ ⁇ X / (X + Y) ⁇ ⁇ 0.95 the carbon black in the positive electrode composition forms a conductive path between the active materials and holds a non-aqueous electrolyte in the vicinity of the active materials.
  • an electrode structure is formed in which the carbon nanotubes are responsible for forming a conductive path on the surface of the active material.
  • the electrode thus obtained has both a good conductive path and an ion conductive path, and good battery characteristics can be obtained when used in a battery.
  • X + Y is more preferably 0.9 or more, and more preferably 1.3 or less.
  • the production of the positive electrode composition for a lithium ion secondary battery of the present invention is not particularly limited, and a conventionally known method can be used.
  • a conventionally known method can be used.
  • it can be obtained by mixing a positive electrode active material, a conductive material, and a solvent dispersion solution of a binder with a ball mill, a sand mill, a twin-screw kneader, a rotating and rotating stirrer, a planetary mixer, a disper mixer, etc. And manufactured and used in the state of a dispersion dispersed in a dispersion medium.
  • the positive electrode active material and the conductive material those described above may be used.
  • Carbon black and carbon nanotubes may be charged separately into the mixer or may be mixed in advance.
  • binder examples include polymers such as polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, polyvinyl alcohol, acrylonitrile-butadiene copolymer, and carboxylic acid-modified (meth) acrylic acid ester copolymer. It is done. Among these, polyvinylidene fluoride is preferable in terms of oxidation resistance.
  • dispersion medium examples include water, N-methyl-2-pyrrolidone, cyclohexane, methyl ethyl ketone, and methyl isobutyl ketone. When using polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone is preferable from the viewpoint of solubility.
  • the positive electrode composition for a lithium ion secondary battery of the present invention can contain components other than the positive electrode active material, the conductive material, and the binder as long as the effects of the present invention are not impaired.
  • components other than the positive electrode active material, the conductive material, and the binder for example, polyvinyl pyrrolidone, polyvinyl imidazole, polyethylene glycol, polyvinyl alcohol, polyvinyl butyral, carboxymethyl cellulose, acetyl cellulose, or a carboxylic acid-modified (meth) acrylic acid ester copolymer may be included for the purpose of improving dispersibility.
  • the method for producing the positive electrode for a lithium ion secondary battery of the present invention is not particularly limited, and may be performed using a conventionally known positive electrode production method.
  • it can be produced by the following method. That is, after the dispersion is applied onto a metal foil current collector such as aluminum, the dispersion medium contained in the positive electrode composition of the present invention is removed by heating, and the positive electrode composition for a secondary battery is applied to the surface of the current collector. Obtained by film formation.
  • the target electrode can be obtained by pressurizing the current collector and the electrode mixture layer with a roll press or the like to bring them into close contact.
  • the method for producing the lithium ion secondary battery of the present invention is not particularly limited and may be performed using a conventionally known method for producing a secondary battery.
  • the method can also be produced by the following method. That is, by placing a polyolefin microporous membrane serving as an insulating layer between the positive electrode and the negative electrode, and pouring until the non-aqueous electrolyte is sufficiently infiltrated into the voids of the positive electrode, the negative electrode and the polyolefin microporous membrane. Can be produced.
  • the lithium ion secondary battery of the present invention is not particularly limited.
  • a portable AV device such as a digital camera, a video camera, a portable audio player, a portable liquid crystal television, a portable information terminal such as a notebook computer, a smartphone, and a mobile PC,
  • a portable game device such as a digital camera, a video camera, a portable audio player, a portable liquid crystal television, a portable information terminal such as a notebook computer, a smartphone, and a mobile PC
  • portable game devices such as a digital camera, a video camera, a portable audio player, a portable liquid crystal television, a portable information terminal such as a notebook computer, a smartphone, and a mobile PC.
  • the positive electrode composition for a lithium ion secondary battery of the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
  • Lithium cobalt oxide (“KD-20”, “KD-20”) LiCoO 2 having an average particle diameter D 50 of 20 ⁇ m as an active material, carbon black having a BET specific surface area of 370 m 2 / g and a DBP absorption of 310 ml / 100 g as a conductive material (Denka Co., “SAB”, described as acetylene black-A in Table 1), and N-methylpyrrolidone dispersion of carbon nanotubes having an average diameter of 9 nm and a BET specific surface area of 243 m 2 / g (manufactured by CNano, “LB107” (described as CNT-A in Table 1) was prepared.
  • Negative electrode composition for lithium ion secondary battery [graphite (Shenzhen BTR, “AGP-2A”) 95% by mass, carbon black (Denka, “Li-400”) 1.0% by mass, polyvinylidene fluoride 1 .5 mass%, styrene-butadiene copolymer mass 2.5%] was applied to a copper foil having a thickness of 20 ⁇ m using a baker type applicator, dried, then pressed and cut, for a lithium ion secondary battery. A negative electrode was obtained.
  • Lithium ion secondary battery After laminating and laminating the positive electrode, separator, and negative electrode together, packing and pre-sealing with an aluminum laminate film, followed by injecting electrolyte, battery formatting, and vacuum sealing, a laminated lithium ion secondary battery is obtained. It was.
  • Example 2 The carbon black of Example 1 was changed to carbon black having a BET specific surface area of 133 m 2 / g and a DBP absorption amount of 270 ml / 100 g (manufactured by Denka, “Li-435”, described as acetylene black-B in Table 1). The content was changed to 0.9% by mass, the dispersion mass of the carbon nanotube dispersion was changed to 0.10% by mass, and the dissolved mass of the polyvinylidene fluoride solution was changed to 1.0% by mass.
  • a dispersion of a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were prepared in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 1.
  • Example 3 The active material of Example 2 was changed to lithium cobaltate having an average particle diameter D 50 of 10 ⁇ m (manufactured by Umicore, “KD-10”), the carbon black content was changed to 1.2 mass%, and the carbon nanotubes were changed.
  • the dispersion of the positive electrode composition for a lithium ion secondary battery, lithium, and a lithium ion secondary battery were prepared in the same manner as in Example 2, except that the amount of the polyvinylidene fluoride solution was changed to 0.3% by weight and the amount of the polyvinylidene fluoride solution was changed to 1.5% by weight.
  • a positive electrode for an ion secondary battery and a lithium ion secondary battery were produced and evaluated. The results are shown in Table 1.
  • Example 4 The active material of Example 2 was changed to lithium cobaltate (Nippon Chemical Industry Co., Ltd., “Cellseed C-5”) having an average particle diameter D 50 of 5 ⁇ m, and the carbon black content was changed to 1.8% by mass.
  • the lithium ion secondary battery was prepared in the same manner as in Example 2 except that the dispersion mass of the carbon nanotube dispersion was changed to 0.2 mass% and the dissolution mass of the polyvinylidene fluoride solution was changed to 2.0 mass%.
  • a positive electrode composition dispersion, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were prepared and evaluated. The results are shown in Table 1.
  • Example 1 The content of carbon black in Example 2 was changed to 2.0 mass%, the dispersion mass of the carbon nanotube dispersion was changed to 0 mass%, and the dissolved mass of the polyvinylidene fluoride solution was changed to 2.0 mass%. Except for the above, a dispersion of a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced in the same manner as in Example 2, and each evaluation was performed. The results are shown in Table 1.
  • Example 2 The content of carbon black in Example 2 was changed to 0% by mass, the dispersed mass of the carbon nanotube dispersion was changed to 2.0% by mass, and the dissolved mass of the polyvinylidene fluoride solution was changed to 2.0% by mass. Except for the above, a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced in the same manner as in Example 2, and each evaluation was performed. The results are shown in Table 1.
  • Lithium ion secondary was produced in the same manner as in Example 2 except that the carbon black content in Example 2 was changed to 0.7% by mass and the dispersion mass of the carbon nanotube dispersion was changed to 0.3% by mass.
  • a dispersion of a positive electrode composition for a battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were prepared and evaluated. The results are shown in Table 1.
  • Example 4 The carbon black of Example 2 was used as a carbon black having a BET specific surface area of 58 m 2 / g and a DBP absorption amount of 200 ml / 100 g (manufactured by Denka, “Li-250”, described as acetylene black-C in Table 1). Except for the changes, a dispersion of a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced in the same manner as in Example 2, and each evaluation was performed. The results are shown in Table 1.
  • Example 5 The carbon black of Example 2 was changed to carbon black having a BET specific surface area of 877 m 2 / g and a DBP absorption of 390 ml / 100 g (manufactured by Lion, “ECP”, described as carbon black-A in Table 1).
  • Example 6 The carbon black of Example 2 was changed to carbon black having a BET specific surface area of 877 m 2 / g and a DBP absorption of 390 ml / 100 g (manufactured by Lion, “ECP”, described as carbon black-A in Table 1).
  • Example 7 The carbon nanotubes of Example 2 were changed to those of Example 2 except that carbon nanotubes having an average diameter of 25 nm and a BET specific surface area of 100 m 2 / g (Wako Chemical Co., Ltd., described as CNT-C in Table 1) were used. A dispersion of a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced in the same manner, and each evaluation was performed. The results are shown in Table 1.
  • Example 8 The active material of Example 2 was changed to lithium nickel cobalt manganese composite oxide LiNi 0.5 Mn 0.3 Co 0.2 O 2 (manufactured by Jiangxi Jiangte Lithium Materials, “L532”) having an average particle diameter D 50 of 8 ⁇ m.
  • LiNi 0.5 Mn 0.3 Co 0.2 O 2 manufactured by Jiangxi Jiangte Lithium Materials, “L532”
  • LiNi 0.5 Mn 0.3 Co 0.2 O 2 manufactured by Jiangxi Jiangte Lithium Materials, “L532”
  • LiNi 0.5 Mn 0.3 Co 0.2 O 2 manufactured by Jiangxi Jiangte Lithium Materials, “L532” having an average particle diameter D 50 of 8 ⁇ m.
  • Example except that the content was changed to 1.8% by mass, the dispersion mass of the carbon nanotube dispersion was changed to 0.2% by mass, and the dissolved mass of the polyvinylidene fluoride solution was changed to 2.0% by mass
  • a dispersion of a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were prepared in the same manner as in Example 2, and each evaluation was performed. The results are shown in Table 1.
  • the lithium ion secondary battery produced using the positive electrode composition for lithium ion secondary batteries of the present invention has high energy density, low internal resistance, and excellent output characteristics, cycle characteristics, and low temperature characteristics. I understood it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

活物質としてコバルト酸リチウム、導電材として、BET比表面積が100~400m2/gであり、DBP吸収量が210~400ml/100gのカーボンブラックと、平均直径が20nm以下であり、BET比表面積が170m2/g以上であり、アスペクト比が50以上のカーボンナノチューブを含み、正極組成物中の前記カーボンブラックの含有量X(単位:質量%)、及び前記カーボンナノチューブの含有量Y(単位:質量%)が下記条件(A)、(B)を満たすリチウムイオン二次電池用正極組成物を用いて製造したリチウムイオン二次電池は、エネルギー密度が高く、内部抵抗が小さく、出力特性、サイクル特性、低温特性に優れる。 (A)0.5≦(X+Y)≦2.0 (B)0.80≦{X/(X+Y)}≦0.95

Description

リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池に関する。
 環境・エネルギー問題の高まりから、化石燃料への依存度を減らす低炭素社会の実現に向けた技術の開発が盛んに行われている。このような技術開発の例としては、ハイブリッド電気自動車や電気自動車等の低公害車の開発、太陽光発電や風力発電等の自然エネルギー発電・蓄電システムの開発、電力を効率よく供給し、送電ロスを減らす次世代送電網の開発等があり、多岐に渡っている。
 これらの技術に共通して必要となるキーデバイスの一つが電池であり、このような電池に対しては、システムを小型化するための高いエネルギー密度が求められる。また、使用環境温度に左右されずに安定した電力の供給を可能にするための高い出力特性が求められる。さらに、長期間の使用に耐えうる良好なサイクル特性等も求められる。そのため、従来の鉛蓄電池、ニッケル-カドミウム電池、ニッケル-水素電池から、より高いエネルギー密度、出力特性及びサイクル特性を有するリチウムイオン二次電池への置き換えが急速に進んでいる。
 このようなリチウムイオン二次電池の基本構成は、正極、負極、セパレーター、電解質からなり、正極は、一般的には、リチウム複合酸化物等の正極活物質、導電材、結着剤を含む正極組成物、及びアルミニウム等の金属箔集電体からなる。導電材には、一般的に、カーボンブラック等の粒子状炭素材料が用いられる。
 ところで、カーボンブラックは、その共通の構造として、球形に近い1次粒子が数珠状に繋がりあった構造を有しており、このような構造をストラクチャと呼ぶ。ストラクチャの長さは、JIS K6217-4に準拠して測定されるDBP吸収量を用いて間接的に評価され、一般的にDBP吸収量が大きいほどストラクチャが長く、導電性を付与する効果と、非水電解液を保持する能力である保液性が優れる。
 近年ではこのリチウムイオン二次電池のエネルギー密度の更なる向上が求められている。このため電極中で充放電容量に寄与しない成分である導電材の含有量をより少なくし、活物質の含有量を多くすることが求められている。この課題を解決する手段として、カーボンブラック等の粒子状炭素材料よりも高いアスペクト比を有し、より少ない添加量で導電性を付与することができる、繊維状炭素材料をカーボンブラックと併用する技術が提案されている。
 特許文献1では、カーボンナノファイバが活物質とカーボンブラックとの電気的な橋渡しを行うことにより、電極中に良好な導電経路が作られ、サイクル特性に優れた電池を得る技術が開示されている。しかし、より少ない添加で導電性の付与が可能な、粒子径が小さくストラクチャの長いカーボンブラックを用いた場合には、十分な導電経路が形成されず、活物質の含有量を増やせないことが課題であった。
 特許文献2では、カーボンブラックとカーボンナノチューブを併用することで、電極中に導電材が偏在することを防ぎ、出力特性に優れた電池を得る技術が開示されている。また、特許文献3では、導電材全体を100重量%としたときの繊維状炭素材料の割合を1~20重量%、粒状炭素材料の割合を99~80重量%とすることで、電極内での導電性が向上し、サイクル特性、出力特性に優れた電池を得る技術が開示されている。しかし、何れの発明によっても多量の導電材を添加することを前提とした技術であるため、活物質の含有量を増やせないことが課題であった。
 特許文献4では、カーボンブラックと黒鉛化カーボンファイバーを併用することで、正極中の導電経路を安定なものとし、出力特性、サイクル特性に優れた電池を得る技術が開示されている。また、特許文献5では、カーボンブラックと繊維状炭素を併用することで、抵抗が低く、放電容量、サイクル特性に優れた電池を得る技術が開示されている。しかし、何れの発明によっても、使用する繊維状炭素材料の繊維径が太いため、十分な導電経路を形成させるには、繊維状炭素材料を多量に添加する必要があり、併用するカーボンブラックの割合が少なくなってしまう。そのため、活物質の近傍に十分な電解液を保持させることができないので、低温環境使用時に十分な出力特性が得られないことが課題であった。
WO2013/179909号 特開2007-80652号公報 特開平11-176446号公報 特開2001-126733号公報 特開2010-238575号公報
 本発明は、上記問題と実情に鑑み、エネルギー密度が高く、内部抵抗が小さく、出力特性、サイクル特性、低温特性に優れたリチウムイオン二次電池を簡便に得ることができるリチウムイオン二次電池用正極組成物を提供することを目的とする。
 本発明者らは鋭意研究の結果、特定の活物質に対して、粒子径が小さくストラクチャの長いカーボンブラックと繊維径が細く、かつ特定のBET比表面積とアスペクト比を有するカーボンナノチューブを導電材として用いることにより、上記課題が解決できることを見出した。
 具体的には、本発明において、活物質としてコバルト酸リチウム、導電材として粒子径が小さく、かつストラクチャの長いカーボンブラックと、繊維径が細く、特定のBET比表面積とアスペクト比を有するカーボンナノチューブを含むリチウムイオン二次電池用正極組成物を用いて製造したリチウムイオン二次電池は、エネルギー密度が高く、内部抵抗が小さく、出力特性、サイクル特性、低温特性に優れることを見出し、完成されたものである。
 すなわち、本願発明は以下のように特定される。
(1)リチウムイオンを吸蔵及び放出可能な活物質及び導電材を含むリチウムイオン二次電池用正極組成物であり、前記活物質がリチウムコバルト複合酸化物であり、前記導電材がカーボンブラック、及びカーボンナノチューブであり、前記カーボンブラックのBET比表面積が100~400m2/gであり、DBP吸収量が210~400ml/100gであり、前記カーボンナノチューブの平均直径が20nm以下であり、BET比表面積が170m2/g以上であり、アスペクト比が50以上であり、前記正極組成物中の前記カーボンブラックの含有量X(単位:質量%)、及び前記カーボンナノチューブの含有量Y(単位:質量%)が、下記条件(A)、(B)を満たすことを特徴とするリチウムイオン二次電池用正極組成物。
 (A)0.5≦(X+Y)≦2.0
 (B)0.80≦{X/(X+Y)}≦0.95
(2)前記リチウムコバルト複合酸化物の平均粒子径D50が、10~20μmであることを特徴とする(1)に記載のリチウムイオン二次電池用正極組成物。
(3)前記カーボンナノチューブのBET比表面積が200m2/gより大きいことを特徴とする(1)又は(2)に記載のリチウムイオン二次電池用正極組成物。
(4)前記リチウムイオン二次電池用正極組成物において、前記リチウムコバルト複合酸化物が96質量%以上含まれることを特徴とする(1)~(3)のいずれかに記載のリチウムイオン二次電池用正極組成物。
(5)(1)~(4)のいずれかに記載のリチウムイオン二次電池用正極組成物を用いたリチウムイオン二次電池用正極。
(6)(5)に記載のリチウムイオン二次電池用正極を備えたリチウムイオン二次電池。
 本発明によれば、エネルギー密度が高く、内部抵抗が小さく、出力特性、サイクル特性、低温特性に優れたリチウムイオン二次電池を簡便に得ることができるリチウムイオン二次電池用正極組成物を提供することができる。
実施例、比較例で用いた試験用電池の構造を示す模式斜視図である。
 以下、本発明を詳細に説明する。本発明のリチウムイオン二次電池用正極組成物は、活物質及び導電材を含むリチウムイオン二次電池用正極組成物であり、前記活物質はリチウムコバルト複合酸化物であり、前記導電材はカーボンブラック、及びカーボンナノチューブであり、前記カーボンブラックのBET比表面積が100~400m2/gであり、DBP吸収量が210~400ml/100gであり、前記カーボンナノチューブの平均直径が20nm以下であり、BET比表面積が170m2/g以上であり、アスペクト比が50以上であることを特徴とするリチウムイオン二次電池用正極組成物である。
 本発明における活物質であるリチウムコバルト複合酸化物として、例えばコバルト酸リチウムを用いることができる。コバルト酸リチウムは、一般の電池用活物質としてのコバルト酸リチウム同様、固相法、液相法、気相法など従来公知の方法により製造したものが用いられる。また、ZrO2、Al23、TiO2、SiO2、MgO、TiO2などの金属酸化物やLi2CO3、AlF3などで活物質の表面を被覆処理したものを用いても良い。なお、本発明の効果を妨げない限り、コバルト酸リチウム以外、他の活物質も含み得る。
 本発明におけるコバルト酸リチウムなどのリチウムコバルト複合酸化物の平均粒子径D50は、10~20μmであることが好ましい。このような範囲の平均粒子径にすることで、得られる正極内で活物質の充填率が良くなり、高エネルギー密度の正極が得られ易くなる。また、後述する導電材の特長を引き出し易くなり、極めて少ない添加量の導電材で、高出力の電池が得られ易くなる。さらに、得られる電池を充放電する際に電解液の分解を抑制し、良好なサイクル特性が得られ易くなる。なお本発明の平均粒子径は、エタノールを分散媒として正極活物質を分散させたものを、JIS Z 8825に準拠してレーザー回折/散乱式粒度分布測定装置により測定した値である。また、本発明におけるコバルト酸リチウムなどのリチウムコバルト複合酸化物の含有量は、コバルト酸リチウム、導電材及び結着剤を含む正極組成物に対して、96質量%以上であることが好ましい。このような含有量とすることで、十分に高いエネルギー密度を有する電池が得られ易くなる。
 本発明における導電材は、カーボンブラック、及びカーボンナノチューブである。カーボンブラックは、一般の電池用導電材としてのカーボンブラック同様、アセチレンブラック、ファーネスブラック、チャンネルブラックなどの中から選ばれるものである。中でも、結晶性及び純度に優れるアセチレンブラックが好ましい。なお、本発明の効果を妨げない限り、カーボンブラック及びカーボンナノチューブ以外、他の導電材も含み得る。
 本発明におけるカーボンブラックのBET比表面積は100~400m2/gである。BET比表面積を100m2/g以上とすることで、活物質及び集電体との電気的接点が多くなり、良好な導電性付与効果が得られる。また、400m2/g以下とすることで、粒子間の相互作用が抑制されるため、正極活物質の間に均一に分散され、良好な導電経路が得られる。この観点から、カーボンブラックのBET比表面積は120~380m2/gであることがより好ましい。なお、本発明のBET比表面積は、吸着質として窒素を使用し、JIS Z 8830に準拠して静的容量法により測定した値である。 
 本発明におけるカーボンブラックのDBP吸収量は210~400ml/100gである。DBP吸収量を210ml/100g以上とすることで、導電材として使用される際のストラクチャが十分な長さと広がりを持ち、良好な導電経路と非水電解液の保液性が得られる。また、400ml/100g以下とすることで、ストラクチャ同士の絡み合いによる凝集が抑えられるため、正極活物質の間に均一に分散され、良好な導電経路の形成と十分な非水電解液の保液性を両立することができる。この観点から、カーボンブラックのDBP吸収量は250~320ml/100gであることがより好ましい。なお、本発明のDBP吸収量は、JIS K6217-4に準拠して測定した値である。
 本発明におけるカーボンブラックの体積抵抗率はとくに限定されるものではないが、導電性の観点から低いほど好ましい。具体的には、7.5MPa圧縮下で測定した体積抵抗率は0.30Ω・cm以下が好ましく、0.25Ω・cm以下がより好ましい。
 本発明におけるカーボンブラックの灰分及び水分は特に限定されるものではないが、副反応の抑制の観点から、どちらも少ないほど好ましい。具体的には、灰分は0.04質量%以下が好ましく、水分は0.10質量%以下が好ましい。
 本発明におけるカーボンナノチューブの平均直径は20nm以下であり、BET比表面積が170m2/g以上であり、かつアスペクト比が50以上である。平均直径を20nm以下で、かつBET比表面積を170m2/g以上とすることで、活物質表面との電気的接点が多くなり、良好な導電経路が得られる。この観点から、カーボンナノチューブの平均直径は15nm以下、BET比表面積は200m2/gより大きいことがより好ましい。また、アスペクト比を50以上にすることで、活物質の表面に間断の少ない導電経路を効率良く形成することができる。この観点から、カーボンナノチューブのアスペクト比は100以上であることがさらに好ましい。なお、本発明の平均直径とアスペクト比は、透過型電子顕微鏡、反射型電子顕微鏡、光学顕微鏡などを用いて、画像解析法で測定される形状のことであり、具体的には、20個のカーボンナノチューブの平均値で表される大きさである。またアスペクト比とは、平均長さ/平均直径の比のことである。さらに、本発明のBET比表面積は、吸着質として窒素を使用し、JIS Z 8830に準拠して静的容量法により測定した値である。
 本発明におけるカーボンブラックの含有量X(単位:質量%)及びカーボンナノチューブの含有量Y(単位:質量%)は0.5≦(X+Y)≦2.0かつ0.80≦{X/(X+Y)}≦0.95である。0.5≦(X+Y)≦2.0とすることで、正極組成物中で充放電容量に寄与しない成分である導電材の含有量を低く抑えつつ、十分な導電性付与効果が得られる。また、0.80≦{X/(X+Y)}≦0.95とすることで、正極組成物中でカーボンブラックが活物質間の導電経路形成と活物質の近傍に非水電解液を保液する役割を担い、カーボンナノチューブが活物質表面の導電経路形成を担う電極構造が形成される。これにより得られる電極は、良好な導電経路とイオン伝導経路を併せ持ち、電池に用いた時に良好な電池特性が得られる。上記観点から、X+Yは0.9以上であることがより好ましく、1.3以下であることがより好ましい。
 本発明のリチウムイオン二次電池用正極組成物の製造には、特に制限は無く、従来公知の方法を用いることができる。例えば、正極活物質、導電材、結着剤の溶媒分散溶液をボールミル、サンドミル、二軸混練機、自転公転式攪拌機、プラネタリーミキサー、ディスパーミキサー等により混合することで得られ、一般的には、分散媒に分散させた分散液の状態で製造及び使用される。正極活物質及び導電材としては、既述したものを用いれば良い。カーボンブラックとカーボンナノチューブは別々に混合器に投入しても、あるいは事前に混合しておいても良い。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-ブタジエン共重合体、ポリビニルアルコール、アクリロニトリル-ブタジエン共重合体、カルボン酸変性(メタ)アクリル酸エステル共重合体等の高分子が挙げられる。これらの中では、耐酸化性の点でポリフッ化ビニリデンが好ましい。分散媒としては、水、N-メチル-2-ピロリドン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。結着剤としてポリフッ化ビニリデンを使用する際には、溶解性の点でN-メチル-2-ピロリドンが好ましい。
 また、本発明のリチウムイオン二次電池用正極組成物は、本発明の効果を損なわない範囲で、正極活物質、導電材、結着剤以外の成分を含むことができる。例えば、分散性を向上させる目的でポリビニルピロリドン、ポリビニルイミダゾール、ポリエチレングリコール、ポリビニルアルコール、ポリビニルブチラール、カルボキシメチルセルロース、アセチルセルロース又はカルボン酸変性(メタ)アクリル酸エステル共重合体などを含んでいても良い。
 本発明のリチウムイオン二次電池用正極の作製方法には、特に制限は無く、従来公知の正極作製方法を用いて行えばよいが、例えば以下の方法により作製することができる。すなわち、前記分散液をアルミニウム等の金属箔集電体上に塗布した後、加熱により本発明の正極組成物に含まれる分散媒を除去し、二次電池用正極組成物が集電体表面に製膜することで得られる。さらに集電体と電極合材層をロールプレス等により加圧して密着させることにより、目的とする電極を得ることができる。
 本発明のリチウムイオン二次電池の作製方法にも、特に制限は無く、従来公知の二次電池の作製方法を用いて行えば良いが、例えば、以下の方法により作製することもできる。すなわち、正極と負極との間に絶縁層となるポリオレフィン製微多孔膜を配し、正極、負極及びポリオレフィン製微多孔膜の空隙部分に非水電解液が十分に染込むまで注液することで作製することができる。
 本発明のリチウムイオン二次電池は、特に限定されないが、例えば、デジタルカメラ、ビデオカメラ、ポータブルオーディオプレイヤー、携帯液晶テレビ等の携帯AV機器、ノート型パソコン、スマートフォン、モバイルPC等の携帯情報端末、その他、携帯ゲーム機器、電動工具、電動式自転車、ハイブリッド自動車、電気自動車、電力貯蔵システム等の幅広い分野において使用することができる。
 以下、実施例及び比較例により、本発明のリチウムイオン二次電池用正極組成物を詳細に説明する。しかし、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
<実施例1>
(リチウムイオン二次電池用正極組成物)
 活物質として平均粒子径D50が20μmのコバルト酸リチウム(ユミコア社製、「KD-20」)LiCoO2、導電材としてBET比表面積が370m2/g、DBP吸収量が310ml/100gのカーボンブラック(デンカ社製、「SAB」、表1中にアセチレンブラック-Aと記載)、及び平均直径が9nm、BET比表面積が243m2/gのカーボンナノチューブのN-メチルピロリドン分散液(CNano社製、「LB107」、表1中にCNT-Aと記載)を用意した。前記コバルト酸リチウム98.4質量%、前記カーボンブラック0.76質量%、前記カーボンナノチューブを分散質量で0.04質量%に、結着剤としてポリフッ化ビニリデンのN-メチルピロリドン溶液を溶質量で0.8質量%、さらに分散媒としてN-メチルピロリドンを加えて混合し、リチウムイオン二次電池用正極組成物の分散液を得た。
(リチウムイオン二次電池用正極)
 前記リチウムイオン二次電池用正極組成物の分散液を、ベーカー式アプリケーターを用いて厚さ20μmのアルミニウム箔に塗布、乾燥し、その後、プレス、裁断して、リチウムイオン二次電池用正極を得た。
(リチウムイオン二次電池用負極)
 リチウムイオン二次電池用負極組成物[黒鉛(Shenzhen BTR社製、「AGP-2A」)95質量%、カーボンブラック(デンカ社製、「Li-400」)1.0質量%、ポリフッ化ビニリデン1.5質量%、スチレン-ブタジエン共重合体質量2.5%]をベーカー式アプリケーターを用いて厚さ20μmの銅箔に塗布、乾燥し、その後、プレス、裁断して、リチウムイオン二次電池用負極を得た。
(リチウムイオン二次電池)
 前記正極、セパレーター、前記負極を共に重ね、積層した後、アルミラミネートフィルムでパック、プレシーリングし、続いて電解液を注入し、バッテリーフォーマッティング、真空シーリングして、ラミネート型リチウムイオン二次電池を得た。
[内部抵抗]
 作製したリチウムイオン二次電池を、電圧範囲2.75~4.2Vで5サイクル、充電/放電した後、周波数範囲10MHz~0.001Hz、振動電圧5mVでインピーダンス解析を行った。本実施例の内部抵抗は1.62Ωであった。
[出力特性(3C放電時の容量維持率)]
 作製したリチウムイオン二次電池を、25℃において4.2V、0.2C制限の定電流定電圧充電をした後、0.2Cの定電流で2.75Vまで放電した。次いで、放電電流を0.2C、3Cと変化させ、各放電電流に対する放電容量を測定した。そして、0.2C放電時に対する3C放電時の容量維持率を計算した。本実施例の3C放電時の容量維持率は96.8%であった。
[サイクル特性(サイクル容量維持率)]
 作製したリチウムイオン電池を、25℃において4.2V、1C制限の定電流定電圧充電をした後、1Cの定電流で2.75Vまで放電した。充電及び放電のサイクルを繰り返し行い、1サイクル目の放電容量に対する500サイクル目の放電容量の比率を求めてサイクル容量維持率とした。本実施例のサイクル容量維持率は96.2%であった。
[低温出力特性(-20℃放電時の容量維持率)]
 作製したリチウムイオン二次電池を、25℃において4.2V、0.2C制限の定電流定電圧充電をした後、0.5Cの定電流で2.75Vまで放電した。次いで、-20℃において4.2V、0.2C制限の定電流定電圧充電をした後、0.5Cの定電流で2.75Vまで放電した。そして、25℃放電時に対する-20℃放電時の容量維持率を計算した。本実施例の-20℃放電時の容量維持率は68.7%であった。
<実施例2>
 実施例1のカーボンブラックをBET比表面積が133m2/g、DBP吸収量が270ml/100gのカーボンブラック(デンカ社製、「Li-435」、表1中にアセチレンブラック-Bと記載)に変更し、その含有量を0.9質量%に変更し、カーボンナノチューブ分散液の分散質量を0.10質量%に変更し、ポリフッ化ビニリデン溶液の溶質量を1.0質量%に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例3>
 実施例2の活物質を平均粒子径D50が10μmのコバルト酸リチウム(ユミコア社製、「KD-10」)に変更し、カーボンブラックの含有量を1.2質量%変更し、カーボンナノチューブを平均直径が15nm、BET比表面積が207m2/gのカーボンナノチューブのN-メチルピロリドン分散液(CNano社製、「LB100」、表1中にCNT-Bと記載)に変更し、その分散質量を0.3質量%に変更し、ポリフッ化ビニリデン溶液の溶質量を1.5質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例4>
 実施例2の活物質を平均粒子径D50が5μmのコバルト酸リチウム(日本化学工業社製、「セルシードC-5」)に変更し、カーボンブラックの含有量を1.8質量%に変更し、カーボンナノチューブ分散液の分散質量を0.2質量%に変更し、ポリフッ化ビニリデン溶液の溶質量を2.0質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
 <比較例1>
 実施例2のカーボンブラックの含有量を2.0質量%に変更し、カーボンナノチューブ分散液の分散質量を0質量%に変更し、ポリフッ化ビニリデン溶液の溶質量を2.0質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<比較例2>
 実施例2のカーボンブラックの含有量を0質量%に変更し、カーボンナノチューブ分散液の分散質量を2.0質量%に変更し、ポリフッ化ビニリデン溶液の溶質量を2.0質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<比較例3>
 実施例2のカーボンブラックの含有量を0.7質量%に変更し、カーボンナノチューブ分散液の分散質量を0.3質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<比較例4>
 実施例2のカーボンブラックを、BET比表面積が58m2/g、DBP吸収量が200ml/100gのカーボンブラック(デンカ社製、「Li-250」、表1中にアセチレンブラック-Cと記載)に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<比較例5>
 実施例2のカーボンブラックを、BET比表面積が877m2/g、DBP吸収量が390ml/100gのカーボンブラック(ライオン社製、「ECP」、表1中にカーボンブラック-Aと記載)に変更し、その含有量を0.4質量%に変更し、カーボンナノチューブ分散液の分散質量を1.6質量%に変更し、ポリフッ化ビニリデン溶液の溶質量を2.0質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<比較例6>
 実施例2のカーボンブラックを、BET比表面積が877m2/g、DBP吸収量が390ml/100gのカーボンブラック(ライオン社製、「ECP」、表1中にカーボンブラック-Aと記載)に変更し、その含有量を0.9質量%に変更し、カーボンナノチューブ分散液の分散質量を0.1質量%に変更し、ポリフッ化ビニリデン溶液の溶質量を1.0質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<比較例7>
 実施例2のカーボンナノチューブを、平均直径が25nm、BET比表面積が100m2/gのカーボンナノチューブ(ワコーケミカル社製、表1中にCNT-Cと記載)に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<比較例8>
 実施例2の活物質を平均粒子径D50が8μmのリチウムニッケルコバルトマンガン複合酸化物LiNi0.5Mn0.3Co0.22(Jiangxi Jiangte Lithium Battery Materials社製、「L532」)に変更し、カーボンブラックの含有量を1.8質量%に変更し、カーボンナノチューブ分散液の分散質量を0.2質量%に変更し、ポリフッ化ビニリデン溶液の溶質量を2.0質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明のリチウムイオン二次電池用正極組成物を用いて作製したリチウムイオン二次電池は、エネルギー密度が高く、内部抵抗が小さく、出力特性、サイクル特性、低温特性に優れることがわかった。
1・・・正極
2・・・負極
3・・・正極アルミタブ
4・・・負極ニッケルタブ
5・・・ポリオレフィン製微多孔膜

Claims (6)

  1.  リチウムイオンを吸蔵及び放出可能な活物質及び導電材を含むリチウムイオン二次電池用正極組成物であり、
     前記活物質がリチウムコバルト複合酸化物であり、
     前記導電材がカーボンブラック、及びカーボンナノチューブであり、
     前記カーボンブラックのBET比表面積が100~400m2/gであり、DBP吸収量が210~400ml/100gであり、
     前記カーボンナノチューブの平均直径が20nm以下であり、BET比表面積が170m2/g以上であり、アスペクト比が50以上であり、
     前記正極組成物中の前記カーボンブラックの含有量X(単位:質量%)、及び前記カーボンナノチューブの含有量Y(単位:質量%)が、下記条件(A)、(B)を満たすことを特徴とするリチウムイオン二次電池用正極組成物。
     (A)0.5≦(X+Y)≦2.0
     (B)0.80≦{X/(X+Y)}≦0.95
  2.  前記リチウムコバルト複合酸化物の平均粒子径D50が10~20μmであることを特徴とする請求項1に記載のリチウムイオン二次電池用正極組成物。
  3.  前記カーボンナノチューブのBET比表面積が200m2/gより大きいことを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極組成物。
  4.  前記リチウムイオン二次電池用正極組成物において、前記リチウムコバルト複合酸化物が96質量%以上含まれることを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン二次電池用正極組成物。
  5.  請求項1~4のいずれか1項に記載のリチウムイオン二次電池用正極組成物を用いたリチウムイオン二次電池用正極。
  6.  請求項5に記載のリチウムイオン二次電池用正極を備えたリチウムイオン二次電池。
PCT/JP2019/017989 2018-05-08 2019-04-26 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池 WO2019216275A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980030478.XA CN112106233B (zh) 2018-05-08 2019-04-26 锂离子二次电池用正极组合物、锂离子二次电池用正极以及锂离子二次电池
JP2020518278A JP7337049B2 (ja) 2018-05-08 2019-04-26 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
EP19800661.1A EP3767709A4 (en) 2018-05-08 2019-04-26 COMPOSITION OF POSITIVE ELECTRODE FOR LITHIUM-ION ACCUMULATOR, POSITIVE ELECTRODE FOR LITHIUM-ION ACCUMULATOR AND LITHIUM-ION ACCUMULATOR
US17/047,384 US20210119206A1 (en) 2018-05-08 2019-04-26 Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
KR1020207033344A KR20210006377A (ko) 2018-05-08 2019-04-26 리튬이온 이차전지용 양극 조성물, 리튬이온 이차전지용 양극 및 리튬이온 이차전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-090074 2018-05-08
JP2018090074 2018-05-08

Publications (1)

Publication Number Publication Date
WO2019216275A1 true WO2019216275A1 (ja) 2019-11-14

Family

ID=68466796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017989 WO2019216275A1 (ja) 2018-05-08 2019-04-26 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20210119206A1 (ja)
EP (1) EP3767709A4 (ja)
JP (1) JP7337049B2 (ja)
KR (1) KR20210006377A (ja)
CN (1) CN112106233B (ja)
WO (1) WO2019216275A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270361A1 (ja) * 2021-06-25 2022-12-29 デンカ株式会社 正極組成物、正極、及び電池
WO2023026898A1 (ja) * 2021-08-27 2023-03-02 デンカ株式会社 正極組成物の製造方法及び正極の製造方法
WO2023233789A1 (ja) * 2022-05-30 2023-12-07 デンカ株式会社 正極組成物、正極、電池、正極形成用塗液の製造方法、正極の製造方法及び電池の製造方法
WO2023233787A1 (ja) * 2022-05-30 2023-12-07 デンカ株式会社 正極組成物、正極、電池、正極形成用塗液の製造方法、正極の製造方法及び電池の製造方法
WO2023233788A1 (ja) * 2022-05-30 2023-12-07 デンカ株式会社 正極組成物、正極、電池、正極形成用塗液の製造方法、正極の製造方法及び電池の製造方法
WO2024074938A1 (ja) * 2022-10-04 2024-04-11 株式会社半導体エネルギー研究所 二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312701B (zh) * 2022-09-29 2023-02-10 比亚迪股份有限公司 一种正极片及锂离子电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176446A (ja) 1997-12-15 1999-07-02 Hitachi Ltd リチウム二次電池
JP2001126733A (ja) 1999-10-27 2001-05-11 Sony Corp 非水電解質電池
JP2007080652A (ja) 2005-09-14 2007-03-29 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
JP2010238575A (ja) 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法
WO2013179909A1 (ja) 2012-05-31 2013-12-05 三菱マテリアル株式会社 リチウムイオン二次電池の電極及びその電極用ペーストの調製方法並びにその電極の作製方法
WO2014051067A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 リチウムイオン二次電池
WO2016024525A1 (ja) * 2014-08-11 2016-02-18 電気化学工業株式会社 電極用導電性組成物、それを用いた電極及びリチウムイオン二次電池
JP2017182989A (ja) * 2016-03-29 2017-10-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極合剤スラリー、非水電解質二次電池用正極、及び非水電解質二次電池
WO2018021073A1 (ja) * 2016-07-28 2018-02-01 デンカ株式会社 電極用導電性樹脂組成物及び電極組成物、並びにそれを用いた電極及びリチウムイオン電池
WO2018047454A1 (ja) * 2016-09-07 2018-03-15 デンカ株式会社 電極用導電性組成物およびそれを用いた電極、電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034541B1 (en) * 2006-06-27 2015-06-03 Kao Corporation Method for producing composite material for positive electrode of lithium battery
WO2008001791A1 (en) * 2006-06-27 2008-01-03 Kao Corporation Composite positive electrode material for lithium ion battery and battery using the same
CN102992307B (zh) * 2012-11-16 2015-08-26 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用人造石墨负极材料、其制备方法及其用途
JP6278679B2 (ja) * 2013-12-09 2018-02-14 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. 導電組成物、正極、およびリチウムイオン二次電池。
KR102296854B1 (ko) * 2014-11-14 2021-09-01 에스케이이노베이션 주식회사 리튬이온 이차전지
WO2017099481A1 (ko) * 2015-12-10 2017-06-15 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 이차전지

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176446A (ja) 1997-12-15 1999-07-02 Hitachi Ltd リチウム二次電池
JP2001126733A (ja) 1999-10-27 2001-05-11 Sony Corp 非水電解質電池
JP2007080652A (ja) 2005-09-14 2007-03-29 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
JP2010238575A (ja) 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法
WO2013179909A1 (ja) 2012-05-31 2013-12-05 三菱マテリアル株式会社 リチウムイオン二次電池の電極及びその電極用ペーストの調製方法並びにその電極の作製方法
WO2014051067A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 リチウムイオン二次電池
WO2016024525A1 (ja) * 2014-08-11 2016-02-18 電気化学工業株式会社 電極用導電性組成物、それを用いた電極及びリチウムイオン二次電池
JP2017182989A (ja) * 2016-03-29 2017-10-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極合剤スラリー、非水電解質二次電池用正極、及び非水電解質二次電池
WO2018021073A1 (ja) * 2016-07-28 2018-02-01 デンカ株式会社 電極用導電性樹脂組成物及び電極組成物、並びにそれを用いた電極及びリチウムイオン電池
WO2018047454A1 (ja) * 2016-09-07 2018-03-15 デンカ株式会社 電極用導電性組成物およびそれを用いた電極、電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270361A1 (ja) * 2021-06-25 2022-12-29 デンカ株式会社 正極組成物、正極、及び電池
WO2023026898A1 (ja) * 2021-08-27 2023-03-02 デンカ株式会社 正極組成物の製造方法及び正極の製造方法
WO2023233789A1 (ja) * 2022-05-30 2023-12-07 デンカ株式会社 正極組成物、正極、電池、正極形成用塗液の製造方法、正極の製造方法及び電池の製造方法
WO2023233787A1 (ja) * 2022-05-30 2023-12-07 デンカ株式会社 正極組成物、正極、電池、正極形成用塗液の製造方法、正極の製造方法及び電池の製造方法
WO2023233788A1 (ja) * 2022-05-30 2023-12-07 デンカ株式会社 正極組成物、正極、電池、正極形成用塗液の製造方法、正極の製造方法及び電池の製造方法
WO2024074938A1 (ja) * 2022-10-04 2024-04-11 株式会社半導体エネルギー研究所 二次電池

Also Published As

Publication number Publication date
KR20210006377A (ko) 2021-01-18
CN112106233A (zh) 2020-12-18
CN112106233B (zh) 2023-09-19
JP7337049B2 (ja) 2023-09-01
US20210119206A1 (en) 2021-04-22
EP3767709A1 (en) 2021-01-20
EP3767709A4 (en) 2021-05-19
JPWO2019216275A1 (ja) 2021-05-13

Similar Documents

Publication Publication Date Title
WO2019216275A1 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
WO2020111201A1 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP2008293875A (ja) 非水電解液二次電池用正極およびそれを用いた非水電解液二次電池
JP2007173134A (ja) リチウムイオン電池の電極用材料、リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
JP2012146590A (ja) 非水電解質二次電池用正極、その正極の製造方法、及び非水電解質二次電池
KR20140108380A (ko) 실리콘-금속 합금계 음극 활물질을 포함하는 이차전지
CN115458707A (zh) 二次电池及用电设备
JP2010225366A (ja) 非水電解質二次電池
JP2023538082A (ja) 負極およびこれを含む二次電池
JP2023520194A (ja) 負極及びこれを含む二次電池
JP2003272704A (ja) 非水系二次電池
CN115036458B (zh) 一种锂离子电池
KR102630117B1 (ko) 리튬이온 이차전지용 양극 조성물, 리튬이온 이차전지용 양극, 및 리튬이온 이차전지
JP5418828B2 (ja) リチウム二次電池とその製造方法
JP2004296305A (ja) リチウムイオン2次電池
JP7033258B2 (ja) 非水電解質二次電池用の正極
JP2006344395A (ja) リチウム二次電池用正極及びその利用と製造
JP7490567B2 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
US20230290955A1 (en) Carbon-based conductive agent, secondary battery, and electrical device
WO2023054375A1 (ja) カーボンブラック、組成物、積層体及び電池
US20220393148A1 (en) Negative electrode and nonaqueous electrolyte secondary battery including the same
WO2023225937A1 (zh) 负极极片及其制备方法、二次电池、电池模块、电池包及用电装置
JP2016201228A (ja) 活物質およびそれを用いた電池
JP2023549963A (ja) 負極活物質及びその製造方法、それを備えた二次電池
CN116031384A (zh) 锂离子二次电池用正极组合物、锂离子二次电池用正极和锂离子二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518278

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019800661

Country of ref document: EP

Effective date: 20201013

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207033344

Country of ref document: KR

Kind code of ref document: A