WO2018047454A1 - 電極用導電性組成物およびそれを用いた電極、電池 - Google Patents

電極用導電性組成物およびそれを用いた電極、電池 Download PDF

Info

Publication number
WO2018047454A1
WO2018047454A1 PCT/JP2017/024408 JP2017024408W WO2018047454A1 WO 2018047454 A1 WO2018047454 A1 WO 2018047454A1 JP 2017024408 W JP2017024408 W JP 2017024408W WO 2018047454 A1 WO2018047454 A1 WO 2018047454A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
positive electrode
mwcnt
conductive composition
battery
Prior art date
Application number
PCT/JP2017/024408
Other languages
English (en)
French (fr)
Inventor
達也 永井
蓉子 堀越
金子 仁
横田 博
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202311447150.2A priority Critical patent/CN117673358A/zh
Priority to US16/330,657 priority patent/US11264616B2/en
Priority to JP2018538042A priority patent/JP7034077B2/ja
Priority to EP17848399.6A priority patent/EP3512012B1/en
Priority to KR1020197006452A priority patent/KR102387963B1/ko
Priority to CN201780054782.9A priority patent/CN109690845A/zh
Publication of WO2018047454A1 publication Critical patent/WO2018047454A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a conductive composition for electrodes, an electrode using the same, and a battery.
  • the basic configuration of such a lithium ion secondary battery is composed of a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte.
  • a positive electrode a positive electrode active material capable of inserting and extracting lithium ions, a conductive material, a binder
  • a positive electrode mixture paint containing a material and an organic solvent is applied on an aluminum foil current collector, dried and formed into a film.
  • the above positive electrode is used up to the point where the charge / discharge capacity is close to the effective charge / discharge capacity of the active material alone, and the energy density as the positive electrode is approaching the limit. Therefore, in order to improve the utilization factor of the positive electrode, a carbon nanotube (hereinafter referred to as CNT), which is a conductive carbon material, and a mixture of carbon black (hereinafter referred to as CB) and CNT are used as the conductive material of the positive electrode.
  • CNT carbon nanotube
  • CB mixture of carbon black
  • the CNT generally has a fibrous shape having an outer diameter of 5 to 100 nm and an aspect ratio indicating a ratio of the fiber length to the outer diameter of 10 or more.
  • catalytic vapor phase growth method Conventionally, electrode discharge method, catalytic vapor phase growth method, laser method and the like have been used for the production of CNT, and among these, catalytic vapor phase growth method is considered to be most suitable as an industrial production method. ing.
  • transition metal particles are used as a catalyst, and CNTs are generally grown from catalyst particles at a high temperature of 900 ° C. or higher by bringing them into contact with a raw material gas that is a carbon source, such as acetylene or benzene.
  • a method of producing CNTs from a gas mainly composed of carbon monoxide as a raw material using a transition metal component such as cobalt as a catalyst has attracted attention as a method for obtaining high-purity and high-quality CNTs at a relatively low temperature.
  • Patent Documents 1 to 5 the yield and activity are not sufficient, and further high activity of the catalyst is required.
  • the obtained CNT is used as a conductive material, a CNT having a higher conductivity (low powder resistivity) is demanded.
  • CNT When CNT is used as a conductive material for a positive electrode of a lithium ion secondary battery, dispersibility of the CNT in the positive electrode is important.
  • Conventional fine carbon fibers such as CNT are intricately entangled with each other. Since the secondary structure is formed and the dispersibility in the positive electrode becomes insufficient, the binder is taken into the complicatedly entangled secondary structure, and at the interface between the positive electrode mixture and the aluminum current collector. The binding property is lowered and the battery performance is also lowered. There is also a problem that the cost for dispersion increases.
  • Patent Document 6 As a means for obtaining a good dispersion state of CNTs in the positive electrode, there is a method of suppressing the aggregation of CNTs by dry-mixing the active material and carbon fiber and then mixing the dry mixture, binder and solvent (Patent Document 6). ). However, in the method of Patent Document 6, it has been difficult to completely and uniformly disperse CNTs in the positive electrode slurry.
  • Patent Document 7 As another means for obtaining a good dispersion state of CNTs, there is a method in which concentrated nitric acid and concentrated sulfuric acid are used for CNTs to perform surface oxidation treatment and uniformly disperse in a solvent (Patent Document 7).
  • Patent Document 7 there is a problem that the conductivity of CNT is lowered by oxidation treatment, and the cost is high because concentrated nitric acid and concentrated sulfuric acid are used.
  • JP 2004-299986 A Japanese Patent Laid-Open No. 2004-300631 JP 2006-152490 A International Publication No. 2009/110570 International Publication No. 2012/053334 JP 2009-16265 A JP 2013-77479 A
  • CNT has a high cost related to its manufacture and dispersion for imparting high conductivity, and therefore, its use is limited, and CB ( Acetylene black and ketjen black) have been used.
  • a conductive material made of a deformed carbon material hereinafter referred to as a carbon conductive material
  • the combination of CNTs with a particularly large aspect ratio (length to diameter) and excellent dispersibility and conventional carbon materials such as CB has the potential to become a carbon conductive material with excellent cost performance. Yes.
  • the present invention has been made in view of the above circumstances, and for an electrode excellent in conductivity and dispersibility using a conductive material including CB excellent in conductivity and multilayer CNT excellent in dispersibility and conductivity. It is an object of the present invention to provide a conductive composition and a nonaqueous battery having an electrode having a low electrode plate resistance and excellent binding properties, a high energy density, a high output characteristic, and a good cycle characteristic.
  • a conductive composition for an electrode [1]
  • the powder resistivity measured under a load of 9.8 MPa is 0.035 ⁇ ⁇ cm or less.
  • the volume-converted median diameter D50 value measured according to JIS Z8825 is 0.3 to 8 ⁇ m.
  • the content in the conductive material is 3 to 50% by mass
  • the carbon black used has a number average primary particle size of 20 to 40 nm and a DBP oil absorption measured according to JIS K6217-4 of 200 to 320 ml / 100 g.
  • Conductive composition for electrode (3) The conductive composition for electrodes according to (1) or (2), wherein the multi-walled carbon nanotubes used have a D / G value of 0.8 to 1.3 as measured by Raman spectroscopy.
  • the content of the conductive material used is 0.1 to 2% by mass with respect to the total of the conductive composition for an electrode, according to any one of (1) to (4)
  • (6) active material used is, LiCoO 2, LiMn 2 O 4 , LiNiO 2, LiMPO 4, Li 2 MSiO 4, LiNi X Mn (2-X) O 4, Li (Mn X Ni Y Co Z) O 2, li (Al X Ni Y Co Z ) O 2 and RLi 2 MnO 3 - either (1-R) LiMO 2 is selected from, characterized in that it is any one (1) to (5)
  • the conductive composition for an electrode according to one item The conductive composition for an electrode according to one item.
  • LiNi X Mn (2-X) O 4 satisfies the relationship 0 ⁇ X ⁇ 2, and in Li (Mn X Ni Y Co Z ) O 2 or Li (Al X Ni Y Co Z ) O 2.
  • Composition. (8) A positive electrode for a non-aqueous battery using the conductive composition for an electrode according to any one of (1) to (7). (9) The positive electrode for a nonaqueous battery according to (8), wherein the peel strength of the electrode conductive composition and the aluminum foil current collector is 12 N / m or more as measured according to JIS Z0237. (10) A nonaqueous battery using the positive electrode for a nonaqueous battery according to (8) or (9).
  • the symbol “ ⁇ ” means a range of “more than” and “less than” at both ends.
  • a to B means A or more and B or less.
  • the powder resistivity measured under a load of 9.8 MPa with carbon black is 0.035 ⁇ ⁇ cm or less, and the median diameter D50 value in terms of volume measured according to JIS Z8825 is 0.3 to 8 ⁇ m.
  • the conductive composition for an electrode of the present invention forms a strong conductive path by improving the dispersibility, when used as a positive electrode for a non-aqueous battery, the binding property is improved and the electrode plate resistance is decreased.
  • the conductive composition for an electrode of the present invention When used as a non-aqueous battery, it is characterized by high energy density, high output characteristics, and excellent cycle characteristics.
  • the powder resistivity measured under a load of 9.8 MPa with carbon black is 0.035 ⁇ ⁇ cm or less, and the median diameter D50 value in terms of volume measured according to JIS Z8825 is 0.3 to 8 ⁇ m.
  • the carbon black (CB) used in the present invention is selected from acetylene black, furnace black, channel black, and the like, like carbon black as a general battery conductive material. Among these, acetylene black having excellent crystallinity and purity is more preferable.
  • the number average primary particle size is 20 to 40 nm, and the DBP oil absorption measured according to JIS K6217-4 is 200 to 320 ml / 100 g, more preferably 260 to 320 ml / 100 g. By setting the number average primary particle diameter to 20 nm or more, the interparticle interaction is suppressed and easy dispersibility is obtained. Further, by setting the number average primary particle diameter to 40 nm or less, a larger number of electrical contacts are present in the same mass of the conductive material, and good electrical conductivity is easily obtained.
  • the multi-walled carbon nanotube (MWCNT) used in the present invention refers to a multi-walled carbon nanotube (MWCNT) having an average outer diameter of 5 to 100 nm, preferably 5 to 50 nm, and an aspect ratio indicating a ratio of the fiber length to the outer diameter of 10 or more.
  • Multi-walled carbon nanotubes have an outer diameter of approximately 5 nm or more. If the outer diameter is too large, for example, exceeding 50 nm, the number of multi-walled carbon nanotubes per unit weight may decrease, making it difficult to form a conductive network.
  • the single-walled carbon nanotube is not included in the multi-walled carbon nanotube (MWCNT).
  • Single-walled carbon nanotubes have the characteristics of high conductivity, but there are practical problems such as the presence of isomers due to chirality and the difficulty of dispersion due to a strong bundle structure. Absent.
  • FIG. 1 shows a TEM photograph of MWCNT synthesized in Synthesis Example 1 as a representative example of the multi-walled carbon nanotube used in the present invention.
  • MWCNT used in the present invention has a volume-converted median diameter D50 value measured according to JIS Z8825 of 0.3 to 8 ⁇ m, more preferably 0.3 to 3 ⁇ m, and most preferably 0.3 to 1 ⁇ m.
  • the median diameter D50 value can be obtained by irradiating the MWCNT particles with laser light and converting the diameter of the MWCNT into a spherical shape from the scattered light.
  • a larger median diameter D50 value means that more MWCNT aggregates are present and the dispersibility is poor.
  • the median diameter D50 value is larger than 8 ⁇ m, there is a high possibility that MWCNT aggregates exist in the electrode, and the conductivity of the entire electrode becomes non-uniform.
  • the capacity and output characteristics of the battery electrode are degraded.
  • the median diameter D50 value is smaller than 0.3 ⁇ m, the fiber length of the MWCNT is shortened, and the contact point increases when the MWCNT forms a conductive path between the active material and the current collector, thereby increasing the contact resistance. As a result, the conductivity is lowered.
  • the median diameter D50 value is in the range of 0.3 to 8 ⁇ m, MWCNT can be uniformly dispersed in the electrode while maintaining conductivity.
  • MWCNT having a median diameter D50 value in the range of 1 to 2.9 ⁇ m when MWCNT having a median diameter D50 value in the range of 1 to 2.9 ⁇ m is used, the dispersibility is higher in the electrode than in the range of 3 to 8 ⁇ m, and the resistance of the electrode can be lowered. . Further, when MWCNT having a median diameter D50 value in the range of 0.3 to 0.9 ⁇ m is used, the dispersibility is higher in the electrode than in the range of 1 to 2.9 ⁇ m, and the resistance of the electrode is lowered. Is possible.
  • MWCNT used in the present invention has a D / G value obtained by Raman spectroscopic measurement of 0.8 to 1.3, more preferably 0.8 to 1.0.
  • MWCNT having a D / G value of 0.8 to 1.3 is excellent in conductivity and crystallinity.
  • the D / G value can be obtained from the ratio of the sum of the areas derived from the D band peak and the sum of the areas derived from the G band peak when the Raman spectroscopic measurement of the MWCNT powder is performed. The lower the D / G value, the higher the crystallinity of the MWCNT, and the higher the conductivity of the MWCNT.
  • MWCNT used in the present invention has a powder resistivity measured under a load of 9.8 Mpa of 0.035 ⁇ ⁇ cm or less. When the powder resistivity exceeds 0.035 ⁇ ⁇ cm, the conductivity between the active material and the electrode is lowered.
  • a catalyst for synthesizing MWCNT used in the present invention it is preferable to use an active species mainly composed of cobalt as a catalyst.
  • a catalyst a catalyst in which 3 to 150% by mass of an active species mainly composed of cobalt is supported on a support made of an oxide containing magnesium having a BET specific surface area of 0.01 to 5 m 2 / g (hereinafter cobalt- It is more preferable to synthesize MWCNT using a magnesium oxide supported catalyst.
  • Cobalt can be contained not only in the form of metallic cobalt but also in the form of compounds such as oxides, hydroxides, hydrated oxides, nitrates, acetates, oxalates and carbonates.
  • the synthetic activity in this specification is the mass of MWCNT obtained per unit time per unit mass of active species.
  • the catalyst activity in this specification is the mass of the obtained MWCNT per unit time per unit mass of the catalyst.
  • the active species here is a metal containing cobalt as a main component.
  • the carrier means an oxide for supporting the active species.
  • oxide containing magnesium When an oxide containing magnesium is used as the active species carrier, examples of the oxide containing magnesium include magnesium oxide, spinel oxide containing magnesium, and perovskite oxide. Of these, magnesium oxide is most preferred as the carrier.
  • the BET specific surface area of the oxide containing magnesium is preferably 0.01 to 5 m 2 / g, and more preferably 0.01 to 3 m 2 / g from the viewpoint of dispersibility of MWCNT.
  • the loading is preferably 3 to 150% by mass, more preferably 5 to 120% by mass, and most preferably 10 to 90% by mass.
  • the loading rate is less than 3% by mass, the conductivity of the obtained MWCNT may deteriorate.
  • it exceeds 150 mass% the particle diameter of a cobalt particle may increase and synthetic activity may fall.
  • the carrying method is not particularly limited.
  • a carrier is impregnated in a non-aqueous solution (for example, ethanol solution) or an aqueous solution in which a cobalt salt is dissolved, thoroughly dispersed and mixed, dried, and heated in air at a high temperature (300 to 600 ° C.).
  • a carrier may be simply impregnated in a non-aqueous solution (for example, ethanol) or an aqueous solution in which a cobalt salt is dissolved, sufficiently dispersed and mixed, and then dried by removing moisture.
  • MWCNT used in the present invention preferably uses carbon monoxide as a carbon source of MWCNT.
  • Carbon monoxide used as a raw material gas may be used as a mixed gas with carbon dioxide or hydrogen, and may contain an inert gas such as nitrogen gas.
  • the partial pressure of carbon monoxide is preferably 0.04 to 0.98 MPa, more preferably 0.05 to 0.3 MPa, and most preferably 0.05 to 0.1 MPa. If the carbon monoxide gas partial pressure is less than 0.04 MPa, the synthetic activity may decrease, and the crystallinity and conductivity of the obtained MWCNT may decrease. On the other hand, when the carbon monoxide partial pressure is higher than 0.98 MPa, the dispersibility of the obtained MWCNT may be lowered and the deactivation of the catalyst may become severe, resulting in a decrease in synthesis activity.
  • the hydrogen gas partial pressure is preferably 1 to 100% with respect to the carbon monoxide gas partial pressure, and more preferably 10 to 100%.
  • the synthesis activity may be lowered, and the crystallinity and conductivity of the obtained MWCNT may be lowered.
  • the catalyst may be deactivated early and the synthesis activity may be reduced.
  • the hydrogen gas partial pressure relative to the carbon monoxide gas partial pressure can be calculated by the following equation.
  • Hydrogen gas partial pressure relative to carbon monoxide partial pressure X1 / X2 x 100 (%)
  • X1 molar ratio of hydrogen gas
  • X2 molar ratio of carbon monoxide gas
  • the total gas partial pressure obtained by adding an inert gas to carbon monoxide, hydrogen, or carbon dioxide source gas is preferably less than 1.0 MPa. If the total pressure exceeds 1.0 MPa, there is a possibility that equipment costs and utilities for high pressure will be increased in production. In addition, when the pressure is greatly reduced compared to 0.1 MPa (atmospheric pressure), for example, less than 0.08 MPa, it is difficult and difficult to seal the atmosphere (oxygen) in the high temperature reactor. There is.
  • the carbon monoxide gas flow rate is preferably 1 NL / g-active species ⁇ min or more.
  • MWCNT can be produced with high synthetic activity.
  • the high synthetic activity here means specifically that it is 10 g-MWCNT / g-active species ⁇ time or more.
  • the upper limit of the carbon monoxide gas flow rate is not particularly limited, but if it exceeds 200 NL / g-active species / minute, the gas flow rate is too high, and the utility cost for residual heat increases, which is not preferable.
  • the synthetic activity may decrease. “NL” indicates the gas amount L (liter) converted to the standard state (0 ° C., 1 atm), and “NL / g-active species / minute” means in the presence of active species unit mass (active species) Gas flow rate per minute).
  • the reaction temperature during MWCNT synthesis is preferably 670 to 780 ° C., more preferably 700 to 750 ° C.
  • the reaction temperature is less than 670 ° C.
  • the crystallinity, conductivity, and dispersibility of MWCNT may decrease.
  • combination activity may fall.
  • it can also be synthesized by the method described in WO15 / 119102.
  • any known reactor such as a fixed bed, a fluidized bed, or a rotary kiln is used.
  • it is a reactor having an arbitrary shape capable of accommodating a catalyst in a gas atmosphere containing a carbon-containing compound, and a part or all of the reactor is mechanically operated to mechanically agitate the catalyst and the generated MWCNT.
  • a reactor having the function of: The movable part of the reactor may be a stirring blade or a paddle, or the reactor itself may rotate or vibrate. An example of the latter is a rotary kiln reactor.
  • the reactor having a mechanical stirring function is preferably a rotary reactor, and a horizontal rotary reactor having a slight gradient such as a rotary kiln reactor is more preferable.
  • the catalyst in the reactor and the produced MWCNT can be mechanically stirred to come into contact with the carbon-containing gas as a raw material with high uniformity.
  • the reaction in this reactor may be a batch type or a continuous type.
  • the active species and the carrier are removed by dispersing MWCNT in an acid such as hydrochloric acid, nitric acid, sulfuric acid, etc., as described in JP-A-2006-69850, and then filtering or centrifuging by means such as centrifugation. It can carry out by the method of collect
  • an acid such as hydrochloric acid, nitric acid, sulfuric acid, etc.
  • the active material used in the present invention is a lithium-containing composite oxide or lithium-containing polyanion compound containing Mn having a volume resistivity of 1 ⁇ 10 4 ⁇ ⁇ cm or more, and is a positive electrode active material capable of reversibly occluding and releasing cations. That is.
  • LiNi X Mn (2-X) O 4 satisfies the relationship 0 ⁇ X ⁇ 2, and in Li (Mn X Ni Y Co Z ) O 2 or Li (Al X Ni Y Co Z ) O 2.
  • the active material used in the present invention has an average particle diameter (D50) measured by a laser light scattering method of 20 ⁇ m or less, preferably 5 ⁇ m or less.
  • binder examples include polyvinylidene fluoride (PVdF), polytetrafluoroethylene, styrene butadiene copolymer, (meth) acrylic ester copolymer, polyvinyl alcohol, and a copolymer of polyvinyl alcohol and polyacrylonitrile. Is mentioned. There is no restriction on the structure of the polymer as the binder, and random copolymers, alternating copolymers, graft copolymers, block copolymers, and the like can also be used. Among these, PVdF is preferable in terms of oxidation resistance.
  • PVdF polyvinylidene fluoride
  • the dispersant examples include at least one selected from polyvinyl pyrrolidone, polyvinyl imidazole, polyethylene glycol, polyvinyl alcohol, polyvinyl butyral, carboxymethyl cellulose, acetyl cellulose, carboxylic acid-modified (meth) acrylic acid ester copolymer, and the like. It is preferable to use it. Among these, it is more preferable to include at least one selected from polyvinylpyrrolidone and a copolymer containing polyvinylpyrrolidone. In these, the copolymer containing polyvinylpyrrolidone is preferable.
  • the dispersibility of the conductive material in the conductive composition for electrodes is further improved.
  • a well-known method can be used for manufacture of the electroconductive composition for electrodes used for this invention. For example, by mixing a solvent dispersion solution of conductive material, active material, dispersant, and binder containing CB and MWCNT with a ball mill, sand mill, twin-screw kneader, autorotation revolving stirrer, planetary mixer, disper mixer, etc. Generally, it is used as a slurry.
  • the conductive material, the active material, and the binder containing CB and MWCNT those described above may be used. CB and MWCNT may be charged separately into the mixer, or may be mixed in advance by a known method.
  • a viscosity modifier in order to adjust the viscosity of the positive electrode slurry for non-aqueous batteries containing the electroconductive composition for electrodes, a viscosity modifier can be used.
  • the viscosity modifier include water-soluble polymers such as polyvinyl alcohol, carboxymethyl cellulose and its salt, methyl cellulose and its salt, polymethacrylic acid and its salt.
  • the salt include alkali metals such as sodium and potassium.
  • the conductive material content in the conductive composition for electrodes used in the present invention is preferably 0.1 to 2% by weight, and preferably 0.5 to 1% by weight, based on the total of the conductive composition for electrodes. It is more preferable to achieve both dispersibility and conductivity. This range varies depending on the type of the battery and the active material, and does not necessarily need to be within this range.
  • the conductive material may include a conductive material other than the conductive material used in the present invention.
  • the conductive material carbon fiber, artificial graphite, natural graphite, acetylene black, furnace black and other carbon black, expanded graphite, metal powder, and the like can be used.
  • the content of MWCNT in the conductive material used in the present invention is preferably 3 to 50% by mass, and more preferably 5 to 30% by mass in order to achieve both dispersibility and conductivity.
  • the content of MWCNT is less than 3% by mass, the conductive path in the electrode becomes non-uniform, and as a result, the capacity and output characteristics as the battery electrode are reduced.
  • the content of MWCNT is larger than 50% by mass, the entanglement between MWCNTs becomes strong, and the presence of a large amount of MWCNT aggregates in the electrode causes a decrease in conductivity.
  • the positive electrode for a non-aqueous battery used in the present invention is obtained by applying a non-aqueous battery positive electrode slurry containing the conductive composition for an electrode on a current collector such as an aluminum foil, and then heating the solvent contained in the slurry. Then, an electrode mixture layer is formed which is a porous body in which the positive electrode active material is bound to the surface of the current collector through the binder. Furthermore, the target electrode can be obtained by pressurizing the current collector and the electrode mixture layer with a roll press or the like to bring them into close contact.
  • the positive electrode for a non-aqueous battery used in the present invention preferably has a peel strength measured in accordance with JIS Z0237 of 12 N / m or more. By setting the peel strength to 12 N / m or more, it is possible to achieve both high rate characteristics and cycle characteristics in the nonaqueous battery using the positive electrode for a nonaqueous battery of the present invention.
  • the method for producing the nonaqueous battery used in the present invention is not particularly limited, and may be performed using a conventionally known method for producing a secondary battery.
  • a conventionally known method for producing a secondary battery For example, in the configuration schematically shown in FIG. It can also be produced by this method. That is, an aluminum tab is welded to the nonaqueous battery positive electrode 1 and a nickel tab is welded to the nonaqueous battery negative electrode 2, and then a polyolefin microporous film 3 serving as an insulating layer is disposed between the electrodes.
  • the non-aqueous electrolyte positive electrode 1, the non-aqueous battery negative electrode 2, and the polyolefin microporous membrane 3 are poured until the non-aqueous electrolyte is sufficiently infiltrated and sealed by the exterior. Can do.
  • non-aqueous battery of the present invention is not particularly limited.
  • a portable AV device such as a digital camera, a video camera, a portable audio player, and a portable liquid crystal television
  • a portable information terminal such as a notebook computer, a smartphone, and a mobile PC
  • portable game devices electric tools, electric bicycles, hybrid cars, electric cars, and power storage systems.
  • the present invention will be described more specifically with reference to examples and comparative examples.
  • the present invention is not limited to the following examples as long as the gist thereof is not impaired.
  • the member used with the Example and the comparative example was vacuum-dried at 170 degreeC for 3 hours in order to volatilize the adsorbed water
  • the horizontal rotary reactor 100 schematically shown in FIG. 3 was connected to a commercially available rotary evaporator rotating device (N-1110V manufactured by Tokyo Rika Kikai Co., Ltd.) (not shown), and the reaction was carried out in a batch mode.
  • the reactor 100 includes a fixed part 104 (non-rotating, made of heat-resistant glass) and a rotating part 103 (made of cylindrical quartz glass). Furthermore, in the center of the reactor 100, there is a non-rotating gas introduction part 105 (tubular, diameter 12 mm) connected to the fixed part 104.
  • the rotating part 103 has a reaction part 107 (length: about 20 cm, diameter: 5 cm) with a stirring blade 106 on the inner wall of the cylindrical part at the tip.
  • the arrangement of the stirring blades 106 is as shown in the end view along the line AA ′ in FIG.
  • a gas introduction pipe 108 connected perpendicularly to the gas introduction part 105 and a thermocouple introduction pipe 109 connected straight to the gas introduction part 105 are installed in the fixed part 104.
  • a sealed thermocouple 110 enters from the thermocouple introduction pipe 109 and is inverted 180 degrees outside the outlet of the gas introduction part 105, and the thermocouple temperature measurement part is outside the gas introduction part 105 in the reaction part 107. Measure the temperature of the gas phase.
  • thermocouples 110 there are three thermocouples 110, and the temperatures of the center, right end, and left end of the reaction unit 107 are measured.
  • the entire reaction section 107 can be heated uniformly.
  • a gas exhaust pipe 111 connected to the outer peripheral portion of the fixed portion 104 is installed, and exhaust gas from the reaction portion 107 is discharged.
  • reaction In the reaction, a predetermined amount of catalyst and fluidizing material are charged in the reaction section 107 of the reactor 100.
  • the reactor 100 is inclined horizontally or slightly downward with the reaction section inclined downward.
  • the rotating part 103 was rotated at a predetermined rotational speed while flowing through the part 107 to the gas exhaust pipe 111.
  • the obtained solid component was vacuum-dried at 60 ° C. for 24 hours, and then calcined at 400 ° C. for 5 hours. After the calcination treatment, the obtained solid component was pulverized in an agate mortar to obtain a cobalt-magnesium oxide supported catalyst supporting 50% by mass of cobalt metal.
  • the carbon monoxide gas partial pressure is set to 0.086 MPa and the hydrogen gas partial pressure is set to 0.015 MPa so that the carbon monoxide gas flow rate becomes 3.9 NL / g-active species / minute.
  • the mixture was passed through the catalyst layer and reacted for 1 hour. Thereafter, the raw material gas was switched to nitrogen gas and immediately cooled.
  • MWCNT synthesized in Synthesis Example 1 was designated as MWCNT-A.
  • ⁇ Synthesis Example 2 of MWCNT> When it reached 600 ° C, it was switched to reducing gas of 80% nitrogen and 20% hydrogen and heated up to 610 ° C for about 20 minutes. After reaching 610 ° C, the carbon monoxide partial pressure was set to 0.086 MPa, and the hydrogen gas partial pressure was Synthesis Example 1 of MWCNT, except that a raw material gas having a flow rate of 0.015 MPa was passed through the catalyst layer so that the carbon monoxide gas flow rate was 1.0 NL / g-active species ⁇ minute and the reaction was performed for 30 minutes. As well as. The MWCNT synthesized in Synthesis Example 2 was designated as MWCNT-B.
  • ⁇ Synthesis Example 3 of MWCNT> A raw material gas having a carbon monoxide partial pressure of 0.086 MPa and a hydrogen gas partial pressure of 0.015 MPa is passed through the catalyst layer so that the carbon monoxide gas flow rate is 5.3 NL / g-active species / minute. The reaction was performed in the same manner as in MWCNT synthesis example 1 except that the reaction was performed for 1 hour. MWCNT synthesized in Synthesis Example 3 was designated as MWCNT-C.
  • MWCNT-A crushing treatment was performed with a bead mill.
  • RMB-08 manufactured by Imex Co., Ltd. was used for the bead mill.
  • 0.8 g of MWCNT-A, 39.2 g of N-methyl-2-pyrrolidone, and 160 g of zirconia ⁇ 0.5 mm beads were added to the vessel, and the mixture was crushed at a stirring speed of 1000 rpm and a stirring time of 20 minutes, and then distilled.
  • CNF was washed with water, filtered, and dried in vacuo at 120 ° C. for 10 hours.
  • the MWCNT obtained by this crushing treatment was designated as MWCNT-D.
  • the synthesized MWCNT contains magnesium oxide and active species used as a carrier.
  • the catalyst activity is less than 3 g-MWCNT / g-catalyst ⁇ hour, the amount of magnesium oxide and active species in the MWCNTs obtained in Synthesis Examples 1 to 3 increases, which affects conductivity and dispersibility. In some cases, magnesium oxide and active species were removed.
  • 2 g of synthesized MWCNT was added to 400 mL of 2 mol / L hydrochloric acid, and the dispersion was performed for 10 minutes at a rotational speed of 7000 rpm using a Robomix F model manufactured by Primics, using a MOHOMIXER MARK 2-2.5 type as the stirring unit. .
  • MWCNT-containing hydrochloric acid was centrifuged, the supernatant was discarded, distilled water was added and stirred, and this was repeated until no chloride ions were detected in the supernatant by the aqueous silver nitrate solution. Then, solid content was dried under reduced pressure at 110 degreeC for 13 hours, and the removal process of magnesium oxide and an active species was performed.
  • Number average primary particle size The number average primary particle size was measured by image analysis of 200 or more randomly extracted primary particles, taken five times at 100,000 times using a transmission electron microscope JEM-2000FX (manufactured by JEOL Ltd.). And the number average of them was calculated.
  • DBP absorption DBP absorption was measured by a method according to JIS K6217-4.
  • Table 1 shows the results of evaluation of powder properties of CB used in Examples and Comparative Examples.
  • D1 Derived from point defects in the crystal crystal structure and defects derived from crystal edges
  • D3 Derived from amorphous carbon
  • D4 Derived from polyene or ionic impurities
  • G + Crystalline peak of graphite: Longitudinal optical mode
  • G- Crystallinity of graphite Peak: Transverse optical mode
  • Dispersibility evaluation was performed with a particle size distribution measuring device (LS 13 320 Universal Liquid Module manufactured by BECKMAN COULTER). Prior to the measurement of the proportion of dispersed particles of 1 ⁇ m or less and the median diameter D50 value, the particle size distribution measuring device was tested, and the median diameter D50 value obtained by measuring each of the following test samples satisfied all the following conditions. In this case, the measurement accuracy of the apparatus was accepted, and the particle size distribution measurement of Examples and Comparative Examples was performed.
  • LS 13 320 Universal Liquid Module manufactured by BECKMAN COULTER Prior to the measurement of the proportion of dispersed particles of 1 ⁇ m or less and the median diameter D50 value, the particle size distribution measuring device was tested, and the median diameter D50 value obtained by measuring each of the following test samples satisfied all the following conditions. In this case, the measurement accuracy of the apparatus was accepted, and the particle size distribution measurement of Examples and Comparative Examples was performed.
  • CMCNa sodium carboxymethyl cellulose
  • CMCNa aqueous solution To 100 mL of distilled water, 2.0 g of sodium carboxymethylcellulose was added and stirred and dissolved at 25 ° C. for 24 hours or more to prepare a 2.0% by mass CMCNa aqueous solution.
  • the particle size distribution meter After performing offset measurement, optical axis adjustment, and background measurement at a pump speed of 50%, the particle size distribution meter has a relative concentration of 8-12% indicating the percentage of light scattered by the particles outside the beam by the particles, Alternatively, the particle size distribution was measured by adding PIDS (polarized light scattering intensity difference) to 40% to 55%. A graph of volume% with respect to the particle size (particle diameter) was obtained, and the accuracy was confirmed. The median diameter D50 value obtained by the measurement is within 0.297 ⁇ m ⁇ 0.018 ⁇ m, the D10 value is within 0.245 ⁇ m ⁇ 0.024 ⁇ m, and the D90 value is within the range of 0.360 ⁇ m ⁇ 0.036 ⁇ m. confirmed.
  • Alumina dispersion test Denka's alumina LS-13 (median diameter D50 value: 45 ⁇ m) and alumina AS-50 (median diameter D50 value: 6.7 ⁇ m) manufactured by Showa Denko K.K. Each 0.120 g was weighed, 12.0 g of the aqueous dispersion medium was added, and the vial was shaken well to prepare an aqueous alumina dispersion. The optical model was set to 1.768 alumina and water 1.333 for each refractive index, and after completion of the module cleaning, about 1.0 mL of the CMCNa aqueous solution was filled.
  • the particle size distribution meter After performing offset measurement, optical axis adjustment, and background measurement at a pump speed of 50%, the particle size distribution meter shows the relative concentration indicating the percentage of light scattered by the particles to the outside of the beam.
  • a graph of volume% with respect to the particle size (particle diameter) was obtained, and the accuracy was confirmed. It was confirmed that the D50 value obtained by the measurement was within 48.8 ⁇ m ⁇ 5.0 ⁇ m in the case of LS-13, and within 12.6 ⁇ m ⁇ 0.75 ⁇ m in the case of AS-50.
  • 6.0 mg of MWCNT was weighed into a vial, and 6.0 g of the aqueous dispersion medium was added.
  • An ultrasonic homogenizer (SmurtNR-50 manufactured by Microtech Nichion) was used for the measurement pretreatment. It was confirmed that there was no deterioration of the tip that was attached to the tip of the ultrasonic homogenizer and generated vibrations, and the tip was adjusted so that it was 10 mm or more from the treated sample liquid surface. As the tip, the total ultrasonic generation time is within 30 minutes, preferably a new tip is used.
  • An irradiation time of 40 seconds and an output of 50% were made uniform by ultrasonic irradiation under the condition of a constant output power to produce a CNT aqueous dispersion.
  • the median diameter D50 value of MWCNT was measured according to the following method.
  • the optical model of the LS 13 320 universal liquid module is set to the respective refractive indexes of CNT, 1.520 and water 1.333, and after completion of the module cleaning, about 1.0 mL of CMCNa aqueous solution is filled.
  • the particle size distribution meter shows a relative concentration indicating the percentage of light scattered by the particles outside the beam by the MWCNT aqueous dispersion.
  • dispersion treatment other than the above-mentioned standardized measurement pretreatment means manual dispersion treatment using a mortar or the like, mechanical dispersion treatment such as a jet mill, bead mill, ball mill, or emulsification disperser, or the above measurement pretreatment.
  • dispersion treatments that affect dispersibility including dispersion treatments using ultrasonic waves, such as an ultrasonic homogenizer and an ultrasonic cleaning machine other than the above.
  • Table 2 shows the results of evaluation of powder characteristics of MWCNT used in Examples and Comparative Examples.
  • Example 1> (Preparation of positive electrode slurry for non-aqueous battery containing conductive composition for electrode) N-methylpyrrolidone (manufactured by Kanto Chemical Co., Inc., hereinafter referred to as NMP) as a solvent, LiCoO 2 (manufactured by Umicore, “KD20” average primary particle size 20 ⁇ m) as a positive electrode active material, and polyvinylidene fluoride (Kureha) as a binder “KF polymer 7208” manufactured by Kagaku Co., Ltd., hereinafter referred to as PVdF), polyvinylpyrrolidone (manufactured by Daiichi Kogyo Co., Ltd., “PVP K-90”, hereinafter referred to as “PVP”) as a dispersant, and CB (Denka Corporation) as a conductive material.
  • NMP N-methylpyrrolidone
  • LiCoO 2 manufactured by Umicore, “KD20”
  • LiCoO 2 powder was weighed so as to have a solid content of 98.45% by mass, added to the above mixture, and uniform using a rotation and revolution mixer (Shinky Co., Ltd., Awatori Kentaro ARV-310). To obtain a positive electrode slurry for a non-aqueous battery containing a conductive composition for an electrode.
  • the non-aqueous battery positive electrode slurry containing the prepared electrode conductive composition was formed on an aluminum foil (manufactured by UACJ) having a thickness of 15 ⁇ m with an applicator, and allowed to stand in a dryer to be 80. Preliminary drying was performed at 10 ° C. for 10 minutes and further at 105 ° C. for 1 hour. Next, the film was pressed at a linear pressure of 200 kg / cm with a roll press machine so that the thickness of the film containing an aluminum foil having a thickness of 15 ⁇ m was 60 ⁇ m. In order to remove volatile components, vacuum drying was performed at 170 ° C. for 3 hours to obtain a positive electrode for a non-aqueous battery.
  • the produced positive electrode for a non-aqueous battery was cut into a disk shape with a diameter of 14 mm, and the front and back sides were sandwiched between flat electrodes made of SUS304, using an electrochemical measurement system (Solartron, function generator 1260 and potentiogalvanostat 1287), The AC impedance was measured at an amplitude voltage of 10 mV and a frequency range of 1 Hz to 100 kHz. The resistance value obtained by multiplying the obtained resistance component value by the disk-shaped area cut out was defined as an electrode plate resistance.
  • the electrode plate resistance of the positive electrode for a non-aqueous battery of this example was 160 ⁇ ⁇ cm 2 .
  • a negative electrode slurry for a non-aqueous battery was formed into a film on a copper foil having a thickness of 10 ⁇ m (manufactured by UACJ) with an applicator, and allowed to stand in a dryer and pre-dried at 60 ° C. for one hour.
  • the film was pressed with a roll press at a linear pressure of 100 kg / cm so that the thickness of the film including the copper foil was 40 ⁇ m.
  • vacuum drying was performed at 120 ° C. for 3 hours to obtain a negative electrode for a non-aqueous battery.
  • the non-aqueous battery positive electrode is processed to 40 x 40 mm and the non-aqueous battery negative electrode is processed to 44 x 44 mm, and then the electrode mixture coating surface faces in the center
  • a polyolefin microporous membrane processed to 45 ⁇ 45 mm was disposed between the electrodes.
  • the aluminum laminate sheet cut and processed into a 70 ⁇ 140 mm square was folded in half at the center of the long side, and placed and sandwiched so that the current collecting tab of the electrode was exposed to the outside of the laminate sheet.
  • Example 2 The conductive material addition amount was weighed and mixed so that the solid content of CB was 0.425% by mass and the solid content of MWCNT-A was 0.075% by mass (the content of MWCNT in the conductive material was 15% by mass). Except for the above, a positive electrode slurry for a nonaqueous battery, a positive electrode for a nonaqueous battery, and a nonaqueous battery containing a conductive composition for an electrode were prepared in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 3.
  • Example 3 The conductive material addition amount was weighed and mixed so that CB had a solid content of 0.25% by mass and MWCNT-A had a solid content of 0.25% by mass (the content of MWCNT in the conductive material was 50% by mass). Except for the above, a positive electrode slurry for a nonaqueous battery, a positive electrode for a nonaqueous battery, and a nonaqueous battery containing a conductive composition for an electrode were prepared in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 3.
  • Example 4 A positive electrode slurry for a non-aqueous battery, a positive electrode for a non-aqueous battery, and a non-aqueous battery containing a conductive composition for an electrode were produced in the same manner as in Example 1 except that CB in the conductive material was changed to SB50L (Denka). Each evaluation was conducted. The results are shown in Table 3.
  • Example 5 A positive electrode slurry for a nonaqueous battery, a positive electrode for a nonaqueous battery, and a nonaqueous battery containing a conductive composition for an electrode were produced in the same manner as in Example 3 except that CB in the conductive material was changed to SB50L (manufactured by Denka). Each evaluation was conducted. The results are shown in Table 3.
  • Example 6 A non-aqueous battery positive electrode slurry containing a conductive composition for an electrode, a non-aqueous battery positive electrode and a non-aqueous battery are produced in the same manner as in Example 1 except that CB in the conductive material is SAB (manufactured by Denka). Each evaluation was conducted. The results are shown in Table 3.
  • Example 7 A non-aqueous battery positive electrode slurry containing a conductive composition for an electrode, a non-aqueous battery positive electrode and a non-aqueous battery were prepared in the same manner as in Example 3 except that CB in the conductive material was SAB (manufactured by Denka). Each evaluation was conducted. The results are shown in Table 3.
  • Example 8> Except for changing the MWCNT in the conductive material to MWCNT-B synthesized in Synthesis Example 2, the positive electrode slurry for the non-aqueous battery, the non-aqueous battery positive electrode and the non-aqueous battery containing the conductive composition for the electrode in the same manner as in Example 1. A water-based battery was prepared and evaluated. The results are shown in Table 4.
  • Example 9 Except for changing the MWCNT in the conductive material to MWCNT-B synthesized in Synthesis Example 2, the positive electrode slurry for a non-aqueous battery, the non-aqueous battery positive electrode and the non-aqueous battery containing the conductive composition for an electrode in the same manner as in Example 3. A water-based battery was prepared and evaluated. The results are shown in Table 4.
  • Example 10 Except for changing the MWCNT in the conductive material to MWCNT-C synthesized in Synthesis Example 3, the positive electrode slurry for a non-aqueous battery, the non-aqueous battery positive electrode and the non-aqueous battery containing the conductive composition for an electrode in the same manner as in Example 1. A water-based battery was prepared and evaluated. The results are shown in Table 4.
  • Example 11 Except for changing the MWCNT in the conductive material to MWCNT-C synthesized in Synthesis Example 3, the positive electrode slurry for non-aqueous battery, the non-aqueous battery positive electrode and the non-aqueous battery containing the conductive composition for electrode were prepared in the same manner as in Example 3. A water-based battery was prepared and evaluated. The results are shown in Table 4.
  • Example 12 For a non-aqueous battery containing a conductive composition for electrodes as in Example 3, except that CB in the conductive material is SB50L (Denka) and MWCNT is MWCNT-B synthesized in Synthesis Example 2 above. A positive electrode slurry, a positive electrode for a non-aqueous battery, and a non-aqueous battery were prepared and evaluated. The results are shown in Table 4.
  • Example 13> For a non-aqueous battery containing a conductive composition for electrodes as in Example 3, except that CB in the conductive material is SB50L (manufactured by Denka) and MWCNT is MWCNT-C synthesized in Synthesis Example 3 above. A positive electrode slurry, a positive electrode for a non-aqueous battery, and a non-aqueous battery were prepared and evaluated. The results are shown in Table 4.
  • Example 14 For a non-aqueous battery containing a conductive composition for electrodes in the same manner as in Example 1 except that CB in the conductive material was SAB (manufactured by Denka) and MWCNT was MWCNT-B synthesized in Synthesis Example 2 above. A positive electrode slurry, a positive electrode for a non-aqueous battery, and a non-aqueous battery were prepared and evaluated. The results are shown in Table 4.
  • Example 15 For a non-aqueous battery containing a conductive composition for electrodes in the same manner as in Example 1, except that CB in the conductive material is SAB (manufactured by Denka) and MWCNT is MWCNT-C synthesized in Synthesis Example 3 above.
  • CB in the conductive material is SAB (manufactured by Denka)
  • MWCNT is MWCNT-C synthesized in Synthesis Example 3 above.
  • a positive electrode slurry, a positive electrode for a non-aqueous battery, and a non-aqueous battery were prepared and evaluated. The results are shown in Table 4.
  • Example 16 A positive electrode slurry for a non-aqueous battery, a non-aqueous battery positive electrode and a non-aqueous battery containing a conductive composition for electrodes in the same manner as in Example 3 except that CB in the conductive material was HS-100 (manufactured by Denka). Were prepared and each evaluation was performed. The results are shown in Table 4.
  • Example 17 A positive electrode slurry for a nonaqueous battery, a positive electrode for a nonaqueous battery, and a nonaqueous battery containing a conductive composition for an electrode in the same manner as in Example 3 except that MWCNT in the conductive material was changed to VGCF-H (manufactured by Showa Denko). Were prepared and each evaluation was performed. The results are shown in Table 4.
  • Example 1 The electrode was prepared in the same manner as in Example 1 except that the conductive material was added so that MWCNT-A had a solid content of 0.5 parts by mass (the content of MWCNT in the conductive material was 100% by mass) and mixed.
  • a positive electrode slurry for a non-aqueous battery, a positive electrode for a non-aqueous battery, and a non-aqueous battery containing a conductive composition for a battery were prepared, and each evaluation was performed. The results are shown in Table 5.
  • Conductive material for electrodes was obtained in the same manner as in Example 1 except that the conductive material was added so that CB was 0.5% by mass (content of MWCNT in the conductive material was 0% by mass).
  • a positive electrode slurry for a non-aqueous battery, a positive electrode for a non-aqueous battery, and a non-aqueous battery containing a conductive composition were prepared and evaluated. The results are shown in Table 5.
  • the MWCNT in the conductive material is Flotube 9000 (manufactured by CNano Co., Ltd.), the conductive material is added in a solid content of CB of 0.45% by mass, and the Flotube 9000 is solid content of 0.05% by mass (the content of MWCNT in the conductive material is 10
  • the non-aqueous battery positive electrode slurry, the non-aqueous battery positive electrode and the non-aqueous battery containing the conductive composition for electrodes were prepared in the same manner as in Example 1 except that they were weighed and mixed so that Each evaluation was performed. The results are shown in Table 6.
  • Example 11 A positive electrode slurry for a nonaqueous battery, a positive electrode for a nonaqueous battery, and a nonaqueous battery containing a conductive composition for an electrode were prepared in the same manner as in Example 3 except that MWCNT in the conductive material was changed to Flotube 9000 (manufactured by CNano). Each evaluation was conducted. The results are shown in Table 6.
  • the positive electrodes for non-aqueous batteries containing the conductive compositions for electrodes of Examples 1 to 17 have lower electrode plate resistance than the positive electrodes for non-aqueous batteries containing the conductive compositions for electrodes of Comparative Examples 1 to 14, and the results are as follows. It became clear that the wearability was also high. Thereby, it turned out that the voltage drop at the time of discharge can be suppressed by the positive electrode for non-aqueous batteries using the conductive composition for electrodes of the example of the present invention.
  • the nonaqueous batteries of Examples 1 to 17 were found to have higher discharge rate characteristics and higher cycle characteristics than the nonaqueous batteries of Comparative Examples 1 to 14. Thus, it was found that the non-aqueous battery using the conductive composition for electrodes of the present invention can suppress a decrease in output accompanying an increase in discharge current and has a long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

導電性及び分散性に優れた電極用導電性組成物を提供する。さらに、この電極用導電性組成物を用いた極板抵抗が低く、結着性に優れた非水系電池用正極、および高エネルギー密度、高出力特性、高サイクル特性を有する非水系電池を提供する。本発明においてカーボンブラックと9.8MPaの荷重下で測定した粉体抵抗率が0.035Ω・cm以下で、分散性の尺度である体積換算のメジアン径D50値が0.3~8μmの範囲である多層カーボンナノチューブとを含む導電材、活物質、結着材及び分散剤を含有した電極用導電性組成物を用い、さらに導電材中の多層カーボンナノチューブの含有量を3~50質量%にすることで、極板抵抗が低く、結着性に優れた非水系電池用正極および高出力特性、高サイクル特性を有する非水系電池が得られる。

Description

電極用導電性組成物およびそれを用いた電極、電池
 本発明は、電極用導電性組成物およびそれを用いた電極、電池に関するものである。
 近年、環境・エネルギー問題の高まりから、化石燃料への依存度を減らす低炭素社会の実現に向けた技術の開発が盛んに行われている。このような技術開発の例としては、ハイブリッド電気自動車や電気自動車等の低公害車の開発、太陽光発電や風力発電等の自然エネルギー発電・蓄電システムの開発、電力を効率よく供給し、送電ロスを減らす次世代送電網の開発等があり、多岐に渡っている。
 これらの技術に共通して必要となるキーデバイスの一つが電池であり、このような電池に対しては、システムを小型化するための高いエネルギー密度が求められる。また、使用環境温度に左右されずに安定した電力の供給を可能にするための高い出力特性が求められる。さらに、長期間の使用に耐えうる良好なサイクル特性等も求められている。そのため、従来の鉛蓄電池、ニッケル-カドミウム電池、ニッケル-水素電池から、より高いエネルギー密度、出力特性およびサイクル特性を有するリチウムイオン二次電池への置き換えが急速に進んでいる。
 このようなリチウムイオン二次電池の基本構成は、正極、負極、セパレーター、非水系電解液からなり、一般的に正極としては、リチウムイオンを吸蔵・放出可能な正極活物質、導電材、結着材及び有機溶媒を含む正極合材塗料をアルミニウム箔集電体上に塗布し、乾燥・製膜したものが用いられる。
 上記の正極は、充放電容量が活物質単体での実効的な充放電容量に近いところまで使われており、正極としてのエネルギー密度は、限界に近づいている。そのため、正極の利用率を向上させるために、正極の導電材として、導電性炭素材であるカーボンナノチューブ(以下CNTと記載)、およびカーボンブラック(以下CBと記載)とCNTの混合物が用いられる。CNTを用いるあるいは添加する場合、比較的低い導電性炭素材含量で高い導電率が得られる特徴があり、期待が集まっている。ここでCNTは一般的に5~100nmの外径、繊維長の外径に対する比を示すアスペクト比は10以上という繊維状の形状を有する。
 従来、CNTの製造には、電極放電法、触媒気相成長法、レーザー法等が用いられており、このうち、触媒気相成長法が工業的な製造方法として、最も適していると考えられている。触媒気相成長法では、遷移金属粒子を触媒とし、炭素源である原料ガス、たとえばアセチレンやベンゼンと接触させることにより、一般的には900℃以上の高温で触媒粒子よりCNTを成長させる。なかでも、コバルト等の遷移金属成分を触媒とし、原料として一酸化炭素を主体とするガスからCNTを製造する方法が、高純度、高品位のCNTを、比較的低温で得る方法として着目されている(特許文献1~5)。しかしながらその収量や活性は十分ではなく、さらなる触媒の高活性が求められている。得られるCNTを導電材として使用する場合、より高い導電率(低い粉体抵抗率)のCNTが求められている。
 CNTをリチウムイオン二次電池正極用の導電材として使用する場合には、CNTの正極中での分散性が重要となるが、従来のCNT等の微細な炭素繊維は、繊維が互いに複雑に絡み合って二次構造を形成しており正極中での分散性が不十分となるため、複雑に絡み合った二次構造体中に結着材が取り込まれ、正極合材とアルミニウム集電体界面での結着性が低下し、電池性能も低下する。また分散にかかるコストが大きくなるという課題がある。
 正極中においてCNTの良好な分散状態を得る手段として、活物質と炭素繊維を乾式混合した後に、この乾式混合物とバインダーと溶媒を混合することで、CNTの凝集を抑える方法がある(特許文献6)。しかしながら特許文献6の方法ではCNTを正極スラリーに完全に均一に分散させることは難しかった。また、分散が不十分であったために、正極中導電材による導電性を維持するため、正極スラリー中のCNTの添加率を大きくする必
要があり、正極中の充放電容量に直接寄与する活物質の量が減少し、正極としてのエネルギー密度が低下するという問題があった。
 また、CNTの良好な分散状態を得る他の手段として、CNTに対して濃硝酸と濃硫酸を用い、表面酸化処理を行い、溶媒中に均一に分散させる方法がある(特許文献7)。しかしながら特許文献7の方法では酸化処理によりCNTの導電性を低下させ、また、濃硝酸と濃硫酸を使用するため高コストとなる問題があった。
特開2004-299986号公報 特開2004-300631号公報 特開2006-152490号公報 国際公開第2009/110570号 国際公開第2012/053334号 特開2009-16265号公報 特開2013-77479号公報
 以上に示すように、CNTは、その製造および高導電性を与えるための分散に関わるコストが高く、それ故用途が限られており、コストが重視される場合にはコスト的に有利なCB(アセチレンブラックやケッチェンブラック)等が用いられてきた。
 今後、異形の炭素材料からなる導電材(以下、炭素導電材と記載)は、その形状、添加量により、正極内に多様な導電性能を与えると考えられる。特に大きなアスペクト比(直径に対する長さ)を有し、かつ分散性に優れたCNTと従来の安価なCB等の炭素材料の併用により、コストパフォーマンスに優れた炭素導電材となる可能性を秘めている。
 本発明は、上記事情に鑑みてなされたものであり、導電性に優れたCBと、分散性、導電性に優れた多層CNTを含む導電材を用いた導電性及び分散性に優れた電極用導電性組成物と、それを用いた極板抵抗が低く、結着性に優れた電極、高いエネルギー密度、高い出力特性および良好なサイクル特性を有する非水系電池を提供することを目的とする。
すなわち、上記課題を解決する本発明は、下記より構成される。
(1)カーボンブラックと多層カーボンナノチューブとを含む導電材、活物質、結着材及び分散剤を含有する導電性組成物であり、前記多層カーボンナノチューブが以下の[1]~[3]を満たすことを特徴とする電極用導電性組成物。
[1]9.8MPaの荷重下で測定した粉体抵抗率が0.035Ω・cm以下
[2]JIS Z8825に準じて測定した体積換算のメジアン径D50値が0.3~8μm
[3]導電材中の含有量が3~50質量%
(2)用いるカーボンブラックが、個数平均1次粒子径が20~40nmで、JIS K6217-4に準じて測定したDBP吸油量が200~320ml/100gであることを特徴とする(1)に記載の電極用導電性組成物。
(3)用いる多層カーボンナノチューブのラマン分光測定によるD/G値が0.8~1.3であることを特徴とする(1)または(2)に記載の電極用導電性組成物。
(4)用いるカーボンブラックがアセチレンブラックであることを特徴とする(1)~(3)のいずれか一項に記載の電極用導電性組成物。
(5)用いる導電材の含有量が、前記電極用導電性組成物の総和に対し、0.1~2質量%であることを特徴とする(1)~(4)のいずれか一項に記載の電極用導電性組成物。
(6)用いる活物質が、LiCoO2、LiMn24、LiNiO2、LiMPO4、Li2MSiO4、LiNiXMn(2-X)4、Li(MnXNiYCoZ)O2、Li(AlXNiYCoZ)O2およびRLi2MnO3-(1-R)LiMO2から選択された、いずれか1種であることを特徴とする(1)~(5)のいずれか一項に記載の電極用導電性組成物。但し、LiNiXMn(2-X)4中のXは0<X<2という関係を満たし、Li(MnXNiYCoZ)O2中又はLi(AlXNiYCoZ)O2中のX、Y及びZは、X+Y+Z=1という関係を満たし、かつ0<X<1、0<Y<1、0<Z<1という関係を満たし、RLi2MnO3-(1-R)LiMO2中のRは0<R<1という関係を満たし、LiMPO4中、Li2MSiO4中又はRLi2MnO3-(1-R)LiMO2中のMはFe、Co、Ni、Mnから選ばれる元素の1種以上である。
(7)用いる分散剤が、ポリビニルピロリドンおよびポリビニルピロリドンを含む共重合体のいずれか1種以上であることを特徴とする(1)~(6)のいずれか一項に記載の電極用導電性組成物。
(8)(1)~(7)のいずれか一項に記載の電極用導電性組成物を用いることを特徴とする非水系電池用正極。
(9)電極用導電性組成物とアルミニウム箔集電体のピール強度がJIS Z0237に準じた測定で12N/m以上であることを特徴とする(8)に記載の非水系電池用正極。
(10)(8)または(9)に記載の非水系電池用正極を用いることを特徴とする非水系電池。
 なお、本願明細書において、特にことわりがない限り、「~」という記号は両端の値「以上」および「以下」の範囲を意味する。例えば、「A~B」というのは、A以上、B以下であるという意味である。
 本発明では、カーボンブラックと9.8MPaの荷重下で測定した粉体抵抗率が0.035Ω・cm以下であり、JIS Z8825に準じて測定した体積換算のメジアン径D50値が0.3~8μmの範囲である多層カーボンナノチューブとを含む導電材を用い、さらに導電材中の多層カーボンナノチューブの含有量が3~50質量%にすることで、経済性に優れかつ導電性及び分散性に優れた電極用導電性組成物が得られることを見出した。また、本発明の電極用導電性組成物は、分散性の改善により強固な導電経路が形成されるため、非水系電池用正極として用いた場合、結着性の向上と極板抵抗の低下、非水系電池として用いた場合、高いエネルギー密度、高い出力特性および良好なサイクル特性に優れるという特徴を持つ。
本発明に使用したCNTのTEM画像である。 本発明に用いられる非水系電池の模式図である。 本発明に使用したCNTの合成に使用した回転式反応器の図である。
以下、本発明について詳細に説明する。
[本発明の構成]
 本発明では、カーボンブラックと9.8MPaの荷重下で測定した粉体抵抗率が0.035Ω・cm以下であり、JIS Z8825に準じて測定した体積換算のメジアン径D50値が0.3~8μmの範囲である多層カーボンナノチューブとを含む導電材、活物質、結着材及び分散剤を含有する電極用導電性組成物であり、前記導電材中の多層カーボンナノチューブの含有量が3~50質量%であることを特徴とする電極用導電性組成物及びそれを用いた電極と電池に関する発明である。
以下、本発明の構成材料について詳細に説明する。
<カーボンブラック>
 本発明で用いるカーボンブラック(CB)は、一般の電池用導電材としてのカーボンブラック同様、アセチレンブラック、ファーネスブラック、チャンネルブラックなどの中から選ばれるものである。中でも、結晶性および純度に優れるアセチレンブラックがより好ましい。また、個数平均1次粒子径が20~40nmで、JIS K6217-4に準じて測定したDBP吸油量が200~320ml/100gであり、260~320ml/100gがより好ましい。個数平均1次粒子径を20nm以上とすることで、粒子間相互作用が抑制されて易分散性が得られる。また、個数平均1次粒子径を40nm以下とすることで、同質量の導電材の中により多数の電気的接点が存在することになり、良好な電気伝導性が得られ易くなる。
<多層カーボンナノチューブ>
 本発明で用いる多層カーボンナノチューブ(MWCNT)は、平均外径5~100nm、好ましくは5~50nm、ファイバー長の外径に対する比を示すアスペクト比が10以上である多層カーボンナノチューブ(MWCNT)を指す。多層カーボンナノチューブはおおよそ5nm以上の外径を有する。また外径が大きくなりすぎる、例えば50nmを超えると、単位重量あたりの多層カーボンナノチューブの本数が減少してしまい導電ネットワークを形成しづらくなってしまう恐れがある。
 上記多層カーボンナノチューブ(MWCNT)には単層カーボンナノチューブ(SWCNT)は含まれない。単層カーボンナノチューブは高導電性を示す特徴が有るが、カイラリティによる異性体が存在し、また強固なバンドル構造をとり分散が困難になる等実用上の課題が有り、本願の目的とするものではない。本発明に用いられる多層カーボンナノチューブの代表例として図1に合成例1で合成したMWCNTのTEM写真を示す。
 本発明で用いるMWCNTは、JIS Z8825に準じて測定した体積換算のメジアン径D50値が0.3~8μmであり、0.3~3μmがより好ましく、0.3~1μmが最も好ましい。ここでメジアン径D50値はMWCNTの粒子にレーザー光を照射し、その散乱光からMWCNTの直径を球形に換算して求めることが出来る。メジアン径D50値が大きいほどMWCNTの凝集体が多く存在し、分散性が悪いことを意味する。メジアン径D50値が8μmより大きい場合、電極中でMWCNTの凝集体が存在する可能性が高くなり、電極全体における導電性が不均一になる。その結果、電池用電極としての容量や出力特性が低下してしまう。一方、メジアン径D50値が0.3μmよりも小さい場合、MWCNTの繊維長が短くなり、MWCNTが活物質と集電体の間に導電パスを形成する際に接触点が多くなり、接触抵抗増大により導電性が低下してしまう。メジアン径D50値が0.3~8μmの範囲内である場合、MWCNTは導電性を維持したまま電極内で均一に分散することが可能になる。さらに、メジアン径D50値が1~2.9μmの範囲内であるMWCNTを用いると、3~8μmの範囲内よりも電極内で高い分散性を示し、電極の抵抗を低下させることが可能になる。さらに、メジアン径D50値が0.3~0.9μmの範囲内であるMWCNTを用いると、1~2.9μmの範囲内よりも電極内で高い分散性を示し、電極の抵抗を低下させることが可能になる。
 本発明で用いるMWCNTは、ラマン分光測定で求められるD/G値が0.8~1.3であり、0.8~1.0がより好ましい。D/G値が0.8~1.3であるMWCNTは、導電性および結晶性に優れる。ここでD/G値とは、MWCNT粉体のラマン分光測定を行った際の、Dバンドピークに由来する面積の総和と、Gバンドピークに由来する面積の総和の比より求めることができる。D/G値が低いほどMWCNTの結晶性が高いことを示し、MWCNTの導電性が高くなることを意味する。D/G値が1.3より大きい場合、MWCNTの屈曲が増加するために、MWCNT同士の絡み合いがより複雑化し、電極中のMWCNTの凝集体が存在する可能性が高くなり、電極全体における導電性が不均一になる。その結果、電池用電極としての容量や出力特性が低下してしまう。しかし、D/G値を小さくするためには、結晶性を向上させるための追加処理工程を必要とし、優れた結晶性を有するMWCNTを容易に得ることは難しかった。一方、本発明の触媒を用いる方法では合成温度及び合成時間を制御することによりD/G値が0.8~1.5であるような優れた結晶性を有するMWCNTを効率よく得ることが出来る。
 本発明で用いるMWCNTは、9.8Mpaの荷重下で測定した粉体抵抗率が0.035Ω・cm以下である。粉体抵抗率が0.035Ω・cmを超えると、活物質と電極間の導電性が低下する。
 本発明で用いるMWCNTを合成するための触媒としては、コバルトを主成分とする活性種を触媒として用いることが好ましい。触媒として、コバルトを主成分とする活性種を、BET比表面積が0.01~5m2/gであるマグネシウムを含有する酸化物からなる担体に、3~150質量%担持した触媒(以下コバルト-酸化マグネシウム担持触媒と記載)を用い、MWCNTを合成することがより好ましい。コバルトは、金属コバルトのみならず、酸化物、水酸化物、含水酸化物、硝酸塩、酢酸塩、シュウ酸塩および炭酸塩等の化合物の形態で含むこともできる。本明細書中における合成活性とは、活性種単位質量あたり、単位時間あたり得られたMWCNTの質量である。また本明細書における触媒活性とは触媒単位質量あたり、単位時間あたり、得られたMWCNTの質量である。ここでいう活性種とはコバルトを主成分とする金属である。さらに担体とは、該活性種を担持するための、酸化物を意味する。
 活性種の担体としてマグネシウムを含有する酸化物を使用する場合、マグネシウムを含有する酸化物としては、たとえば、酸化マグネシウムやマグネシウムを含むスピネル型酸化物およびペロブスカイト型酸化物等が挙げられる。これらのうち、担体としては、酸化マグネシウムが最も好ましい。マグネシウムを含有する酸化物のBET比表面積は0.01~5m2/gが好ましく、0.01~3m2/gが、MWCNTの分散性の点でより好ましい。
 活性種としてコバルトを用いる場合、担持率は、3~150質量%が好ましく、5~120質量%がより好ましく、10~90質量%が最も好ましい。担持率が、3質量%未満であると得られるMWCNTの導電性が悪くなる場合がある。また、150質量%を超えると、コバルト粒子の粒子径が増加し、合成活性が低下してしまう場合がある。
 コバルトを担体に担持する場合、担持方法は、特に限定されない。例えば、コバルトの塩を溶解させた非水溶液中(例えばエタノール溶液)又は水溶液中に、担体を含浸し、充分に分散混合した後、乾燥させ、空気中、高温(300~600℃)で加熱することにより、担体にコバルトを担持させることができる。また、単純にコバルトの塩を溶解させた非水溶液中(例えばエタノール)又は水溶液中に、担体を含浸し、充分に分散混合した後、水分除去乾燥させただけでも良い。
 本発明で用いるMWCNTは、一酸化炭素をMWCNTの炭素源とすることが好ましい。原料ガスとして使用する一酸化炭素は、二酸化炭素や水素との混合ガスとして使用してもよく、窒素ガス等の不活性ガスを含んでいてもよい。一酸化炭素の分圧は0.04~0.98MPaであることが好ましく、より好ましくは0.05~0.3MPaであり、最も好ましくは0.05~0.1MPaである。一酸化炭素ガス分圧が0.04MPa未満であると、合成活性の低下や、また得られるMWCNTの結晶性や導電性が低下する場合がある。また一酸化炭素ガス分圧が0.98MPaより高いと、得られるMWCNTの分散性の低下や、触媒の失活が激しくなり合成活性が低下してしまう場合がある。
 水素ガス分圧は一酸化炭素ガス分圧に対し1~100%であることが好ましく、10~100%がより好ましい。一酸化炭素ガス分圧に対する水素ガス分圧が100%を超えると、合成活性の低下や、得られるMWCNTの結晶性や導電性が低下する場合がある。水素ガス分圧が1%未満の場合、早期に触媒の失活が起こり合成活性の低下を引き起こす場合がある。
 なお、一酸化炭素ガス分圧に対する水素ガス分圧は以下の式によって計算できる。
 一酸化炭素ガス分圧に対する水素ガス分圧=X1/X2×100(%)
 但し、X1:水素ガスのモル比、X2:一酸化炭素ガスのモル比
 例えば、原料ガス組成がCO/H2/N2=85/15/0の混合ガスの場合であれば、
 一酸化炭素ガス分圧に対する水素ガス分圧は、
 一酸化炭素ガス分圧に対する水素ガス分圧=15/85×100=18(%)
 と計算できる。
 一酸化炭素、水素、二酸化炭素の原料ガスに、不活性ガスを加えた全ガス分圧は1.0MPa未満が好ましい。全圧が1.0MPaを超えると、製造に当たり高圧対応設備費用やユーティリティが嵩んでしまう可能性がある。また0.1MPa(大気圧)と比較し大きく減圧である場合、例えば0.08MPa未満の場合には、高温の反応器に対し大気(酸素)の混入を防ぐためのシールが難しく、好ましくない場合がある。
 一酸化炭素ガス流速は、1NL/g-活性種・分以上であることが好ましい。一酸化炭素ガス流速をこの範囲に設定することで、MWCNTを高い合成活性で製造することができる。ここでいう高い合成活性とは、具体的には10g-MWCNT/g-活性種・時間以上であることを意味する。一酸化炭素ガス流速の上限は特にないが、200NL/g-活性種・分を超えると、ガスの流量が多すぎて、余熱のためのユーティリティコストが嵩み、好ましくない。また、合成活性が低下する場合がある。
尚、「NL」とは標準状態(0℃、1気圧)に換算したガス量L(リットル)を示し、「NL/g-活性種・分」とは、活性種単位質量存在下(活性種1gあたり)での1分間のガス流量を示す。
 MWCNT合成時の反応温度は、670~780℃が好ましく、700~750℃であることがより好ましい。反応温度が670℃未満になると、MWCNTの結晶性、導電性および分散性が低下する場合がある。また、780℃を超えると合成活性が低下する場合がある。例えば、WO15/119102号公報に記載の方法でも合成することができる。
 MWCNT製造において使用可能な反応器としては、固定床、流動床、またはロータリーキルン等の任意の公知の反応器が用いられる。好ましくは炭素含有化合物を含むガス雰囲気下で触媒を収容することのできる任意の形状の反応器であり、その一部または全部が機械的に稼働することにより触媒及び生成したMWCNTを機械的に攪拌する機能を有する反応器が用いられる。反応器の可動部分は、攪拌羽、パドルのようなものでも良く、あるいは反応器自身が回転や振動しても良い。後者の例としてはロータリーキルン反応器が例示できる。本発明においては、機械的に攪拌する機能を有する反応器が回転式の反応器であることが好ましく、ロータリーキルン反応器のような軽微な勾配を有している横型の回転式反応器がより好ましい。反応器内の触媒及び生成したMWCNTは機械的に攪拌されることで原料である炭素含有ガスと高い均一性で接触することができる。本反応器における反応は、バッチ式であっても、あるいは連続式であってもよい。
 製造されたMWCNTは、純度を高めるために活性種および担体を除去することが好ましい。活性種および担体の除去は、具体的には特開2006-69850号公報等に記載された、MWCNTを塩酸、硝酸、硫酸等の酸に分散させた後、ろ過や遠心分離等の手段によってMWCNTを回収する方法により行うことができる。
<活物質>
 本発明で用いる活物質とは、体積抵抗率1×104Ω・cm以上のMnを含むリチウム含有複合酸化物またはリチウム含有ポリアニオン化合物であり、カチオンを可逆的に吸蔵放出可能な正極活物質のことである。例えば、LiCoO2、LiMn24、LiNiO2、LiMPO4、Li2MSiO4、LiNiXMn(2-X)4、Li(MnXNiYCoZ)O2、Li(AlXNiYCoZ)O2またはRLi2MnO3-(1-R)LiMO2などがあげられる。但し、LiNiXMn(2-X)4中のXは0<X<2という関係を満たし、Li(MnXNiYCoZ)O2中又はLi(AlXNiYCoZ)O2中のX、Y及びZは、X+Y+Z=1という関係を満たし、かつ0<X<1、0<Y<1、0<Z<1という関係を満たし、RLi2MnO3-(1-R)LiMO2中のRは0<R<1という関係を満たし、さらにLiMPO4中、Li2MSiO4中又はRLi2MnO3-(1-R)LiMO2中のMはFe、Co、Ni、Mnから選ばれる元素の1種以上であることが好ましい。
 上記活物質の内、本発明で用いる活物質はレーザー光散乱法で測定した平均粒子径(D50)が20μm以下、好ましくは5μm以下であることが好ましい。このような構成にすることで、導電材と結着剤間の結着性を向上する効果が十分に発現され、良好なピール強度を有する正極と高いサイクル特性を有する電池が得られ易くなる。
 <結着材>
 結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、スチレンブタジエン共重合体、(メタ)アクリル酸エステル共重合体、ポリビニルアルコール、及びポリビニルアルコールとポリアクリロニトリルとの共重合体が挙げられる。結着材としてのポリマーの構造には制約がなく、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体なども使用できる。これらの中では、耐酸化性の点でPVdFが好ましい。
 <分散剤>
 分散剤としては、例えば、ポリビニルピロリドン、ポリビニルイミダゾール、ポリエチレングリコール、ポリビニルアルコール、ポリビニルブチラール、カルボキシメチルセルロース、アセチルセルロースまたはカルボン酸変性(メタ)アクリル酸エステル共重合体などから選択される少なくとも1種以上を使用することが好ましい。中でもポリビニルピロリドンおよびポリビニルピロリドンを含む共重合体から選択される少なくとも1種以上を含むことがより好ましい。これらの中では、ポリビニルピロリドンを含む共重合体が好ましい。分散剤を含むことにより、電極用導電性組成物中導電材の分散性がより向上する。
<電極用導電性組成物>
 本発明に用いられる電極用導電性組成物の製造には公知の方法を用いることができる。例えば、CBとMWCNTを含む導電材、活物質、分散剤、結着材の溶媒分散溶液をボールミル、サンドミル、二軸混練機、自転公転式攪拌機、プラネタリーミキサー、ディスパーミキサー等により混合することで得られ、一般的には、スラリーにして用いられる。前記のCBとMWCNTを含む導電材、活物質および結着材としては、既述したものを用いれば良い。CBとMWCNTは別々に混合器に投入しても、あるいは公知の方法で事前に混合しておいても良い。なお、電極用導電性組成物を含む非水系電池用正極スラリーの粘度を調整するために、粘度調整剤を使用することができる。粘度調整剤としては、ポリビニルアルコール、カルボキシメチルセルロース及びその塩、メチルセルロース及びその塩、ポリメタクリル酸及びその塩等の水溶性ポリマーが挙げられる。塩の具体例としては、ナトリウムやカリウム等のアルカリ金属が挙げられる。
 本発明で用いられる電極用導電性組成物中の導電材含有量は、電極用導電性組成物の総和に対し、0.1~2質量%であることが好ましく、0.5~1質量%であることが分散性と導電性を両立する上でより好ましい。この範囲は電池や活物質の種類によって変動するものであり、必ずしもこの範囲内に収まる必要は無い。なお、導電材として、本発明に用いる導電材以外の導電性材料を含んでもよい。導電性材料としては、炭素繊維、人造黒鉛、天然黒鉛、アセチレンブラック、ファーネスブラック等のカーボンブラック、膨張黒鉛、金属粉等を用いることができる。
 本発明に用いられる導電材中のMWCNTの含有量は、3~50質量%であることが好ましく、5~30質量%が、分散性と導電性を両立する上でより好ましい。MWCNTの含有量が3質量%よりも少ない場合、電極中の導電パスが不均一になり、その結果、電池用電極としての容量や出力特性が低下してしまう。一方、MWCNTの含有量が50質量%よりも多い場合、MWCNT同士の絡み合いが強固になり、電極中にMWCNTの凝集体が多く存在することで、導電性が低下してしまう。
<非水系電池用正極>
 本発明に用いられる非水系電池用正極は、上記の電極用導電性組成物を含む非水系電池用正極スラリーをアルミニウム箔等の集電体上に塗布した後、加熱によりスラリーに含まれる溶剤を除去し、正極活物質が結着材を介して集電体表面に結着された多孔質体である電極合材層を形成する。さらに集電体と電極合材層をロールプレス等により加圧して密着させることにより、目的とする電極を得ることができる。
 本発明に用いられる非水系電池用正極は、JIS Z0237に準じた測定のピール強度が12N/m以上が好ましい。ピール強度が12N/m以上とすることで、本発明の非水系電池用正極を用いた非水系電池において、高いレート特性とサイクル特性を両立することが可能になる。
<非水系電池>
 本発明に用いられる非水系電池の作製方法には、特に制限は無く、従来公知の二次電池の作製方法を用いて行えば良いが、例えば、図2に模式的に示した構成で、以下の方法により作製することもできる。すなわち、前記の非水系電池用正極1にアルミ製タブを溶接し、非水系電池用負極2にニッケル製タブを溶接した後、各電極の間に絶縁層となるポリオレフィン製微多孔膜3を配し、非水系電池用正極1、非水系電池用負極2およびポリオレフィン製微多孔膜3の空隙部分に非水電解液が十分に染込むまで注液し、外装で封止することで作製することができる。
 本発明の非水系電池の用途は、特に限定されないが、例えば、デジタルカメラ、ビデオカメラ、ポータブルオーディオプレイヤー、携帯液晶テレビ等の携帯AV機器、ノート型パソコン、スマートフォン、モバイルPC等の携帯情報端末、その他、携帯ゲーム機器、電動工具、電動式自転車、ハイブリット自動車、電気自動車、電力貯蔵システム等の幅広い分野において使用することができる。
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は、その趣旨を損なわない限り、以下に示す実施例に限定されるものではない。また実施例および比較例とも使用した部材は、吸着した水分を揮発させるために170℃で3時間真空乾燥を行った。
<MWCNT回転式合成反応器>
 図3に模式的に示す横型の回転式の反応器100を市販のロータリーエバポレーター回転装置(東京理化器械株式会社製N-1110V)(図示せず)に接続し、バッチ式に反応を行った。反応器100は固定部104(非回転、耐熱性ガラス製)と回転部103(円筒状石英ガラス製)より構成される。さらに、反応器100の中心には固定部104に接続している非回転のガス導入部105(管状、直径12mm)がある。回転部103にはその先端に円筒部内壁に攪拌羽106が付いた反応部107(長さ約20cm、直径5cm)がある。攪拌羽106の配置は図3のA-A’線端面図に示す通りである。固定部104にはガス導入部105に垂直に接続したガス導入管108及びガス導入部105にまっすぐ接続した熱電対導入管109が設置してある。熱電対導入管109からは、シールされた熱電対110が入り、ガス導入部105の出口の外側で180度反転し、熱電対測温部はガス導入部105の外側で反応部107の中の気相の温度を計測する。熱電対110は3本あり、反応部107の中心、右端部と左端部の温度を測定する。反応部107の外周に配置されたスリーゾーン横型管状電気炉(図示せず)の3つの電気炉を独立して制御することにより反応部107全体を均一に加熱することができる。固定部104の外周部に接続したガス排気管111が設置してあり、反応部107からの排ガスが排出される。
<反応>
 反応は、反応器100の反応部107に所定量の触媒、流動材を仕込み、反応器100は水平または若干反応部を下向きに傾斜させ、原料ガスをガス導入管108からガス導入部105、反応部107を経てガス排気管111へ流しながら回転部103を所定の回転数で回転させながら行った。
<MWCNT導電材合成用触媒の調製>
 硝酸コバルト六水和物(3N5、関東化学社製)6.17gを量り取り、質量比2:1の蒸留水とエタノール混合溶媒30gに溶解した。この硝酸コバルト水溶液にBET比表面積0.61m2/gの酸化マグネシウム(DENMAG(登録商標)KMAOH-F、タテホ化学社製)を2.5g加え、湯浴で50℃に保持した状態で1時間撹拌した。撹拌後、エバポレータで水を蒸発させた。得られた固体成分を60℃で24時間真空乾燥し、その後400℃で5時間焼成処理を行った。焼成処理後、得られた固体成分をメノウ乳鉢で粉砕し、コバルト金属を50質量%担持したコバルト-酸化マグネシウム担持触媒を得た。
<MWCNTの合成例1>
 原料の一酸化炭素は、(株)鈴木商館から購入した、G1グレード(純度99.95%)を使用した。回転式合成反応器内に、作製したコバルト-酸化マグネシウム担持触媒0.62g(活性種量0.25g)を投入し、窒素を十分流して窒素置換しながら、大気圧(0.101MPa)下、反応器を回転速度30rpmで回転させ、昇温を開始した。600℃に達したところで、窒素80%、水素20%の還元ガスに切り替え650℃まで約20分間昇温させた。650℃到達後、一酸化炭素ガス分圧を0.086MPaとし、水素ガス分圧を0.015MPaとした原料ガスを一酸化炭素ガス流量が3.9NL/g-活性種・分となるように触媒層に通過させ、1時間反応を行った。その後、原料ガスを窒素ガスに切り替え、直ちに冷却した。本合成例1で合成したMWCNTをMWCNT-Aとした。
<MWCNTの合成例2>
 600℃に達したところで、窒素80%、水素20%の還元ガスに切り替え610℃まで約20分間昇温させ、610℃到達後、一酸化炭素ガス分圧を0.086MPaとし、水素ガス分圧を0.015MPaとした原料ガスを一酸化炭素ガス流量が1.0NL/g-活性種・分となるように触媒層に通過させて、30分反応を行った以外は、MWCNTの合成例1と同様に行った。本合成例2で合成したMWCNTをMWCNT-Bとした。
<MWCNTの合成例3>
 一酸化炭素ガス分圧を0.086MPaとし、水素ガス分圧を0.015MPaとした原料ガスを一酸化炭素ガス流量が5.3NL/g-活性種・分となるように触媒層に通過させ、1時間反応を行った以外は、MWCNTの合成例1と同様に行った。本合成例3で合成したMWCNTをMWCNT-Cとした。
<MWCNTの解砕処理>
 MWCNT-Aを用い、ビーズミルにて解砕処理を行った。ビーズミルにはアイメックス社(株)製RMB-08を使用した。MWCNT-Aを0.8g、N-メチル-2-ピロリドン39.2g、ジルコニア製φ0.5mmビーズ160gをベッセル内に加え、攪拌速度1000rpm、攪拌時間20分で解砕処理を行った後、蒸留水を用いてCNFを洗浄、ろ過後、120℃で10時間真空乾燥した。本解砕処理で得られたMWCNTをMWCNT-Dとした。
<触媒除去>
 合成したMWCNTには担体として使用した酸化マグネシウムおよび活性種が含まれている。触媒活性が3g-MWCNT/g-触媒・時間未満の場合には、合成例1~3により得られたMWCNT中の、酸化マグネシウムおよび活性種量が多くなり、導電性や分散性に影響を与える場合があるため、酸化マグネシウムと活性種の除去処理を行った。まず、2mol/L塩酸400mLに、合成したMWCNT2gを入れ、プライミクス社製のロボミックスFモデル、撹拌部にはモホミクサーMARK2-2.5型を使用し、回転速度7000rpmで10分間分散処理を行った。その後、MWCNT含有塩酸を遠心分離し、上澄みを捨て、蒸留水を加えて攪拌し、これを、上澄み中の塩化物イオンが、硝酸銀水溶液によって検出されなくなるまで繰り返した。その後、固形分を110℃、13時間で減圧乾燥し、酸化マグネシウムおよび活性種の除去処理を行った。
 実施例及び比較例に使用したCBの粉体特性は、以下の方法に従い評価した。
[個数平均1次粒子径]
 個数平均1次粒子径は透過電子顕微鏡JEM-2000FX(日本電子社製)を用いて100000倍の画像5枚を撮影し、無作為に抽出した200個以上の1次粒子について画像解析により粒子径を求め、それらの個数平均を算出することによって測定した。
[DBP吸収量]
 DBP吸収量はJIS K6217-4に準拠する方法で測定した。
 実施例及び比較例に使用したCBの粉体特性評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例及び比較例に使用したMWCNTの粉体特性は、以下の方法に従い評価した。
[粉体抵抗率]
 MWCNTの粉体抵抗率は、三菱化学アナリティック社製ロレスタGP:粉体抵抗測定システムMCP-PD51型を用い、23℃、相対湿度50%の雰囲気にて、荷重9.8MPaの条件下、四探針法にて測定した。測定には100mgのサンプルを用いた。
[ラマン分光測定によるD/G値]
 MWCNTのラマン分光測定は、顕微レーザーラマン分光分析装置(Niolet Almega-XR型、サーモフィッシャーサイエンティフィック社製、レーザー532nm)を用い測定した。Dバンド(D1:ピーク位置1330cm-1、D3:1500cm-1、D4:1150cm-1)とGバンド(G+:1600cm-1、G-:1570cm-1)の波形分離を行った後、Dバンドピークに由来する面積の総和とGバンドピークに由来する面積の総和の比(D/G値)を求めた。本D/G値が低いほどMWCNTの結晶性が高いことを示している。
(参考)
D1:グラファイト結晶構造内の点欠陥、結晶端由来の欠陥に由来
D3:アモルファスカーボンに由来
D4:ポリエンやイオン性不純物に由来
G+:グラファイトの結晶性ピーク:縦光学モード
G-:グラファイトの結晶性ピーク:横光学モード
[メジアン径D50値:レーザ回折・散乱法(ISO 13320:2009)による粒度分布測定]
 分散性評価は、粒度分布測定装置(LS 13 320 ユニバーサルリキッドモジュール BECKMAN COULTER社製)にて行なった。
 なお、1μm以下の分散粒子の割合およびメジアン径D50値の測定に先立ち、粒度分布測定装置の検定を行ない、下記各検定用試料の測定で得られたメジアン径D50値が以下の条件をすべて満足した場合、装置の測定精度は合格とし、実施例、比較例の粒度分布測定を実施した。
[水分散媒の調製]
 蒸留水100mLにカルボキシメチルセルロースナトリウム(以下CMCNaと記載)0.10gを添加し、24時間以上25℃で撹拌し溶解させ、CMCNa0.1質量%の水分散媒を調製した。
[CMCNa水溶液の調製]
 蒸留水100mLにカルボキシメチルセルロースナトリウム2.0gを添加し、24時間以上25℃で撹拌し溶解させ、CMCNa2.0質量%の水溶液を調製した。
[検定用試料の調製および検定]
(1)ポリスチレン分散液による検定
 粒度分布測定装置(LS 13 320 ユニバーサルリキッドモジュール BECKMAN COULTER社製)に付属された、測定精度確認用LATRON300LS(メジアン径D50値:0.297μm)水分散液を使用した。
 光学モデルをポリスチレン1.600、水1.333とそれぞれの屈折率に設定し、モジュ-ル洗浄終了後に前記CMCNa水溶液を約1.0mL充填した。ポンプスピード50%の条件でオフセット測定、光軸調整、バックグラウンド測定を行った後、粒度分布計に、LATRON300LSを粒子によってビームの外側に散乱する光のパーセントを示す相対濃度が8~12%、もしくはPIDS(偏光散乱強度差)が40%~55%になるように加え、粒度分布測定を行った。粒度(粒子径)に対する体積%のグラフを得て、精度の確認を行った。測定で得られたメジアン径D50値は0.297μm±0.018μm以内、同D10値は0.245μm±0.024μm以内、同D90値は0.360μm±0.036μm以内の範囲に入ることを確認した。
(2)アルミナ分散液による検定
 バイアル瓶にデンカ社製のアルミナLS-13(メジアン径D50値:45μm)および昭和電工(株)製のアルミナAS-50(メジアン径D50値:6.7μm)をそれぞれ0.120g秤量し、前記水分散媒を12.0g添加し、バイアル瓶を良く振りアルミナ水分散液を作製した。
 光学モデルをアルミナ1.768、水1.333とそれぞれの屈折率に設定し、モジュ-ル洗浄終了後に前記CMCNa水溶液を約1.0mL充填した。ポンプスピード50%の条件でオフセット測定、光軸調整、バックグラウンド測定を行った後、粒度分布計に、調製した上記アルミナ水分散液を粒子によってビームの外側に散乱する光のパーセントを示す相対濃度が8~12%、もしくはPIDSが40%~55%になるように加え、粒度分布測定を行った。粒度(粒子径)に対する体積%のグラフを得て、精度の確認を行った。測定で得られたD50値がLS-13の場合は48.8μm±5.0μm以内、AS-50の場合は、12.6μm±0.75μm以内の範囲に入ることを確認した。
[測定前処理]
 バイアル瓶にMWCNTを6.0mg秤量し、前記水分散媒6.0gを添加した。測定前処理に超音波ホモジナイザー(SmurtNR-50(株)マイクロテック・ニチオン製)を用いた。
 超音波ホモジナイザーの先端に取り付けられ、振動を発生させるチップの劣化がないことを確認し、チップが処理サンプル液面から10mm以上つかるように調整した。チップは超音波発生時間の合計が30分以内、好ましくは新品のチップを使用する。照射時間40秒、出力50%とし、出力電力が一定運転の条件下で超音波照射により均一化させCNT水分散液を作製した。 
[MWCNTの粒度分布測定]
 前記の方法により調製したMWCNTの水分散液を用い、MWCNTのメジアン径D50値の測定を、以下の方法に従い実施した。LS 13 320 ユニバーサルリキッドモジュールの光学モデルをCNT、1.520、水1.333とそれぞれの屈折率に設定し、モジュ-ル洗浄終了後にCMCNa水溶液を約1.0mL充填する。ポンプスピード50%の条件でオフセット測定、光軸調整、バックグラウンド測定を行った後、粒度分布計に、調製したMWCNT水分散液を粒子によってビームの外側に散乱する光のパーセントを示す相対濃度が8~12%、もしくはPIDSが40%~55%になるように加え、粒度分布計付属装置により78W、2分間超音波照射を行い(測定前処理)、30秒循環し気泡を除いた後に粒度分布測定を行った。粒度(粒子径)に対する体積%のグラフを得て、メジアン径D50値を求めた。
 測定は、MWCNT1試料につき、採取場所を変え3測定用サンプルを採取して粒度分布測定を行い、メジアン径D50値をその平均値で求めた。
 本測定に用いるサンプルは、上記規格化された測定前処理以外の分散処理は一切行わない。ここで「上記規格化された測定前処理以外の分散処理」とは、乳鉢等による手動による分散処理、ジェットミルやビーズミル、ボールミル、乳化分散機等の機械的な分散処理や、上記測定前処理以外の超音波ホモジナイザーや超音波洗浄機等超音波を使用する分散処理を含む、分散性に影響を与える公知の分散処理を示す。
 実施例及び比較例に使用したMWCNTの粉体特性評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<実施例1>
(電極用導電性組成物を含む非水系電池用正極スラリーの調製)
 溶媒としてN-メチルピロリドン(関東化学株式会社製、以下、NMPと記載)、正極活物質としてLiCoO2(ユミコア社製、「KD20」平均一次粒子径20μm)、結着材としてポリフッ化ビニリデン(呉羽化学社製、「KFポリマー7208」、以下、PVdFと記載)、分散剤としてポリビニルピロリドン(第一工業社製、「PVP K-90」、以下、PVPと記載)、導電材としてCB(デンカ社製、「FX-35」)、上記合成例1で合成したMWCNT-Aをそれぞれ用意した。PVdFが固形分で1.00質量%、PVPが固形分で0.05質量%、CBが固形分で0.485質量%、MWCNT-Aが固形分で0.015質量%(導電材中のMWCNTの含有量3質量%)となるように秤量して混合し、この混合物にNMPを添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて、均一になるまで混合した。さらに、LiCoO2粉末が固形分で98.45質量%となるように秤量し、上記混合物に添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて、均一になるまで混合し、電極用導電性組成物を含む非水系電池用正極スラリーを得た。
(非水系電池用正極の作製)
 次に、調製した電極用導電性組成物を含む非水系電池用正極スラリーを、厚さ15μmのアルミニウム箔(UACJ社製)上にアプリケータにて成膜し、乾燥機内に静置して80℃、10分、更に105℃、一時間で予備乾燥させた。次に、ロールプレス機にて200kg/cmの線圧でプレスし、厚さ15μmのアルミニウム箔を含んだ膜の厚さが60μmになるように調製した。揮発成分を除去するため、170℃で3時間真空乾燥して非水系電池用正極を得た。
(非水系電池用正極の評価)
[非水系電池用正極の結着性]
 作製した非水系電池用正極を1.5cmの短冊状に切り取り、表に剥離用粘着テープを、裏に試料固定用両面粘着テープをそれぞれ貼り付け、SUS製の固定板に固定し、引張・圧縮万能試験機(島津製作所社製、小型卓上試験機EZ‐S)を用いて、JIS Z0237で180°剥離強度を測定した。得られた剥離強度を結着性とした。本実施例1の非水系電池用正極の結着性は12N/mであった。
[非水系電池用正極の極板抵抗]
 作製した非水系電池用正極を直径14mmの円盤状に切り抜き、表裏をSUS304製平板電極によって挟んだ状態で、電気化学測定システム(ソーラトロン社製、ファンクションジェネレーター1260およびポテンショガルバノスタット1287)を用いて、振幅電圧10mV、周波数範囲1Hz~100kHzにて交流インピーダンスを測定した。得られた抵抗成分値に切り抜いた円盤状の面積を掛けた抵抗値を極板抵抗とした。本実施例の非水系電池用正極の極板抵抗は160Ω・cm2であった。
(非水系電池用負極の作製)
 溶媒として純水(関東化学株式会社製)、負極活物質として人造黒鉛(日立化成社製、「MAG-D」)、結着材としてスチレンブタジエンゴム(日本ゼオン社製、「BM-400B」、以下、SBRと記載)、分散剤としてカルボキシメチルセルロース(ダイセル社製、「D2200」、以下、CMCと記載)をそれぞれ用意した。次いで、CMCが固形分で1質量%、人造黒鉛が固形分で97質量%となるように秤量して混合し、この混合物に純水を添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて、均一になるまで混合した。さらに、SBRが固形分で2質量%となるように秤量し、上記混合物に添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて、均一になるまで混合し、非水系電池用負極スラリーを得た。次いで、非水系電池用負極スラリーを、厚さ10μmの銅箔(UACJ社製)上にアプリケータにて成膜し、乾燥機内に静置して60℃、一時間で予備乾燥させた。次に、ロールプレス機にて100kg/cmの線圧でプレスし、銅箔を含んだ膜の厚さが40μmになるように調製した。残留水分を完全に除去するため、120℃で3時間真空乾燥して非水系電池用負極を得た。
(非水系電池の作製)
 露点-50℃以下に制御したドライルーム内で、上記非水系電池用正極を40×40mmに加工し、非水系電池用負極を44×44mmに加工した後、電極合材塗工面が中央で対向するようにし、さらに電極間に45×45mmに加工したポリオレフィン微多孔質膜を配置した。次に70×140mm角に切断・加工したアルミラミネートシートを、長辺の中央部で二つ折りにし、電極の集電用タブがラミネートシートの外部に露出するように配置して挟み込んだ。次にヒートシーラーを用いて、アルミラミネートシートの集電用タブが露出した辺を含む2辺を加熱融着した後、加熱融着していない一辺から、2gの電解液(キシダ化学製、エチレンカーボネート/ジエチルカーボネート=3/7(体積比)+1M LiPF6溶液、以下、電解液と記載)を注液し、非水系電池用正極、非水系電池用負極およびポリオレフィン微多孔膜に十分に染み込ませてから、真空ヒートシーラーにより、電池の内部を減圧しながら、アルミラミネートシートの残り1辺を加熱融着して非水系電池を得た。
作製した非水系電池について、以下の方法により電池性能を評価した。
(非水系電池の評価)
[放電レート特性(3C放電時の容量維持率)]
 作製した非水系電池を、25℃において4.2V、0.2C制限の定電流定電圧充電をした後、0.2Cの定電流で3.0Vまで放電した。次いで、放電電流を0.2C、0.5C、1C、2C、3Cと変化させ、各放電電流に対する放電容量を測定した。各測定における回復充電は4.2V、0.2C制限の定電流定電圧充電を行った。そして、0.2C放電時に対する3C放電時の容量維持率を計算した。本実施例の電池の3C放電時の容量維持率は79.4%であった。
[サイクル特性(サイクル後放電容量維持率)]
 作製した非水系電池を、25℃において4.2V、1C制限の定電流定電圧充電をした後、1Cの定電流で3.0Vまで放電した。次いで、上記充放電を400サイクル繰り返し、放電容量を測定した。そして、1サイクル放電時に対する400サイクル放電時のサイクル後放電容量維持率を計算した。本実施例1の電池のサイクル後放電容量維持率は81.5%であった。
<実施例2>
 導電材添加量をCBが固形分で0.425質量%、MWCNT-Aが固形分で0.075質量%(導電材中のMWCNTの含有量15質量%)となるように秤量して混合した以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表3に示す。
<実施例3>
 導電材添加量をCBが固形分で0.25質量%、MWCNT-Aが固形分で0.25質量%(導電材中のMWCNTの含有量50質量%)となるように秤量して混合した以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表3に示す。
<実施例4>
 導電材中のCBをSB50L(デンカ社製)とした以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表3に示す。
<実施例5>
 導電材中のCBをSB50L(デンカ社製)とした以外は、実施例3と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表3に示す。
<実施例6>
 導電材中のCBをSAB(デンカ社製)とした以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表3に示す。
<実施例7>
 導電材中のCBをSAB(デンカ社製)とした以外は、実施例3と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表3に示す。
<実施例8>
 導電材中のMWCNTを上記合成例2で合成したMWCNT-Bとした以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表4に示す。
<実施例9>
 導電材中のMWCNTを上記合成例2で合成したMWCNT-Bとした以外は、実施例3と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表4に示す。
<実施例10>
 導電材中のMWCNTを上記合成例3で合成したMWCNT-Cとした以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表4に示す。
<実施例11>
 導電材中のMWCNTを上記合成例3で合成したMWCNT-Cとした以外は、実施例3と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表4に示す。
<実施例12>
 導電材中のCBをSB50L(デンカ社製)とし、MWCNTを上記合成例2で合成したMWCNT-Bとした以外は、実施例3と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表4に示す。
<実施例13>
 導電材中のCBをSB50L(デンカ社製)とし、MWCNTを上記合成例3で合成したMWCNT-Cとした以外は、実施例3と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表4に示す。
<実施例14>
 導電材中のCBをSAB(デンカ社製)とし、MWCNTを上記合成例2で合成したMWCNT-Bとした以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表4に示す。
<実施例15>
 導電材中のCBをSAB(デンカ社製)とし、MWCNTを上記合成例3で合成したMWCNT-Cとした以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表4に示す。
<実施例16>
 導電材中のCBをHS-100(デンカ社製)とした以外は、実施例3と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表4に示す。
<実施例17>
 導電材中のMWCNTをVGCF-H(昭和電工製)とした以外は、実施例3と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表4に示す。
<比較例1>
 導電材添加量をMWCNT-Aが固形分で0.5質量部(導電材中のMWCNTの含有量100質量%)となるように秤量して混合した以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表5に示す。
<比較例2>
 導電材中のMWCNTを上記合成例2で合成したMWCNT-Bとした以外は、比較例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表5に示す。
<比較例3>
 導電材中のMWCNTを上記合成例3で合成したMWCNT-Cとした以外は、比較例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表5に示す。
<比較例4>
 導電材添加量をCBが固形分で0.5質量%(導電材中のMWCNTの含有量0質量%)となるように秤量して混合した以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表5に示す。
<比較例5>
 導電材中のCBをSB50L(デンカ社製)とした以外は、比較例4と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表5に示す。
<比較例6>
 導電材中のCBをSAB(デンカ社製)とした以外は、比較例4と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表5に示す。
<比較例7>
 導電材中のMWCNTをFlotube9000(CNano社製)とした以外は、比較例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表5に示す。
<比較例8>
 導電材添加量をCBが固形分で0.2質量%、MWCNT-Aが固形分で0.3質量%(導電材中のMWCNTの含有量60質量%)となるように秤量して混合した以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表6に示す。
<比較例9>
 導電材添加量をCBが固形分で0.075質量%、MWCNT-Aが固形分で0.425質量%(導電材中のMWCNTの含有量85質量%)となるように秤量して混合した以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表6に示す。
<比較例10>
 導電材中のMWCNTをFlotube9000(CNano社製)とし、導電材添加量をCBが固形分で0.45質量%、Flotube9000が固形分で0.05質量%(導電材中のMWCNTの含有量10質量%)となるように秤量して混合した以外は、実施例1と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表6に示す。
<比較例11>
 導電材中のMWCNTをFlotube9000(CNano社製)とした以外は、実施例3と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表6に示す。
<比較例12>
 導電材中のMWCNTをFlotube9000(CNano社製)とした以外は、比較例9と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表6に示す。
<比較例13>
 導電材中のMWCNTをNC7000(Nanocyl社製)とした以外は、比較例10と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表6に示す。
<比較例14>
 導電材中のMWCNTを上記解砕処理で得られたMWCNT-Dとした以外は、比較例10と同様にして電極用導電性組成物を含む非水系電池用正極スラリー、非水系電池用正極および非水系電池を作製し、各評価を実施した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例1~17の電極用導電性組成物を含む非水系電池用正極は、比較例1~14の電極用導電性組成物を含む非水系電池用正極に比べて極板抵抗が低く、結着性も高いことが明らかになった。これにより本発明の実施例の電極用導電性組成物を用いた非水系電池用正極は放電時の電圧降下を抑えられることが分かった。
 さらに、実施例1~17の非水系電池は、比較例1~14の非水系電池に比べて放電レート特性が高く、サイクル特性も高いことが明らかになった。これにより本発明の電極用導電性組成物を用いた非水系電池は放電電流の増加に伴う出力低下を抑えられ、高い寿命も兼ね備えていることが分かった。
1    非水系電池用正極
2    非水系電池用負極
3    絶縁層(ポリオレフィン製微多孔膜)
100  回転式反応器
103  回転部  
104  固定部
105  ガス導入部
106  攪拌羽
107  反応部
108  ガス導入管
109  熱電対導入管
110  熱電対
111  ガス排気管

Claims (10)

  1.  カーボンブラックと多層カーボンナノチューブとを含む導電材、活物質、結着材及び分散剤を含有する導電性組成物であり、前記多層カーボンナノチューブが以下の(1)~(3)を満たすことを特徴とする電極用導電性組成物。
    (1)9.8MPaの荷重下で測定した粉体抵抗率が0.035Ω・cm以下
    (2)JIS Z8825に準じて測定した体積換算のメジアン径D50値が0.3~8μm
    (3)導電材中の含有量が3~50質量%
  2.  前記カーボンブラックが、個数平均1次粒子径が20~40nmで、JIS K6217-4に準じて測定したDBP吸油量が200~320ml/100gであることを特徴とする請求項1に記載の電極用導電性組成物。
  3.  前記多層カーボンナノチューブのラマン分光測定によるD/G値が0.8~1.3であることを特徴とする請求項1または請求項2に記載の電極用導電性組成物。
  4.  前記カーボンブラックがアセチレンブラックであることを特徴とする請求項1~3のいずれか一項に記載の電極用導電性組成物。
  5.  前記導電材の含有量が、前記電極用導電性組成物の総和に対し、0.1~2質量%であることを特徴とする請求項1~4のいずれか一項に記載の電極用導電性組成物。
  6.  前記活物質が、LiCoO2、LiMn24、LiNiO2、LiMPO4、Li2MSiO4、LiNiXMn(2-X)4、Li(MnXNiYCoZ)O2、Li(AlXNiYCoZ)O2およびRLi2MnO3-(1-R)LiMO2から選択された、いずれか1種であることを特徴とする請求項1~5のいずれか一項に記載の電極用導電性組成物。但し、LiNiXMn(2-X)4中のXは0<X<2という関係を満たし、Li(MnXNiYCoZ)O2中又はLi(AlXNiYCoZ)O2中のX、Y及びZは、X+Y+Z=1という関係を満たし、かつ0<X<1、0<Y<1、0<Z<1という関係を満たし、RLi2MnO3-(1-R)LiMO2中のRは0<R<1という関係を満たし、LiMPO4中、Li2MSiO4中又はRLi2MnO3-(1-R)LiMO2中のMはFe、Co、NiおよびMnから選ばれる元素の1種以上である。
  7.  前記分散剤が、ポリビニルピロリドンおよびポリビニルピロリドンを含む共重合体のいずれか1種以上であることを特徴とする請求項1~6のいずれか一項に記載の電極用導電性組成物。
  8.  請求項1~7のいずれか一項に記載の電極用導電性組成物を用いることを特徴とする非水系電池用正極。
  9.  電極用導電性組成物とアルミニウム箔集電体のピール強度がJIS Z0237に準じた測定で12N/m以上であることを特徴とする請求項8に記載の非水系電池用正極。
  10.  請求項8または請求項9に記載の非水系電池用正極を用いることを特徴とする非水系電池。
PCT/JP2017/024408 2016-09-07 2017-07-03 電極用導電性組成物およびそれを用いた電極、電池 WO2018047454A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202311447150.2A CN117673358A (zh) 2016-09-07 2017-07-03 电极用导电性组合物及使用了其的电极、电池
US16/330,657 US11264616B2 (en) 2016-09-07 2017-07-03 Conductive composition for electrodes, and electrode and battery using same
JP2018538042A JP7034077B2 (ja) 2016-09-07 2017-07-03 電極用導電性組成物およびそれを用いた電極、電池
EP17848399.6A EP3512012B1 (en) 2016-09-07 2017-07-03 Conductive composition for electrodes, and electrode and battery using same
KR1020197006452A KR102387963B1 (ko) 2016-09-07 2017-07-03 전극용 도전성 조성물 및 이를 이용한 전극, 전지
CN201780054782.9A CN109690845A (zh) 2016-09-07 2017-07-03 电极用导电性组合物及使用了其的电极、电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016174800 2016-09-07
JP2016-174800 2016-09-07

Publications (1)

Publication Number Publication Date
WO2018047454A1 true WO2018047454A1 (ja) 2018-03-15

Family

ID=61561999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024408 WO2018047454A1 (ja) 2016-09-07 2017-07-03 電極用導電性組成物およびそれを用いた電極、電池

Country Status (6)

Country Link
US (1) US11264616B2 (ja)
EP (1) EP3512012B1 (ja)
JP (1) JP7034077B2 (ja)
KR (1) KR102387963B1 (ja)
CN (2) CN109690845A (ja)
WO (1) WO2018047454A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265626A (zh) * 2018-08-31 2019-09-20 宁德时代新能源科技股份有限公司 正极极片、其制备方法及锂离子二次电池
WO2019216275A1 (ja) * 2018-05-08 2019-11-14 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP2020035746A (ja) * 2018-08-28 2020-03-05 三星電子株式会社Samsung Electronics Co., Ltd. 正極、及びそれを含むリチウム電池
WO2020111201A1 (ja) * 2018-11-28 2020-06-04 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
WO2020157550A1 (en) * 2019-01-29 2020-08-06 Gharda Chemicals Limited Polymeric blend composite and a process for preparing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210112669A1 (en) * 2019-10-09 2021-04-15 National Taiwan University Of Science And Technology Conductive slurry and plating method using the same
KR102570427B1 (ko) * 2021-03-25 2023-08-24 에스케이온 주식회사 이차전지용 음극 및 이를 포함하는 리튬 이차 전지
CN115655379B (zh) * 2022-11-16 2023-03-31 山东大学 一种石质文物本体高密度电法监测装置、系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238575A (ja) * 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法
JP2014019619A (ja) * 2012-07-20 2014-02-03 Ube Ind Ltd 微細炭素分散液とその製造方法、及びそれを用いた電極ペースト並びにリチウムイオン電池用電極
JP2015115106A (ja) * 2013-12-09 2015-06-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 導電組成物、正極、およびリチウムイオン二次電池。
WO2016024525A1 (ja) * 2014-08-11 2016-02-18 電気化学工業株式会社 電極用導電性組成物、それを用いた電極及びリチウムイオン二次電池
JP2016028109A (ja) * 2012-11-13 2016-02-25 保土谷化学工業株式会社 多層カーボンナノチューブ含有カルボキシメチルセルロースナトリウム水分散液
WO2016039336A1 (ja) * 2014-09-09 2016-03-17 電気化学工業株式会社 電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3961440B2 (ja) 2003-03-31 2007-08-22 三菱マテリアル株式会社 カーボンナノチューブの製造方法
JP4157791B2 (ja) 2003-03-31 2008-10-01 三菱マテリアル株式会社 カーボンナノファイバの製造方法
JP4565384B2 (ja) 2004-11-30 2010-10-20 三菱マテリアル株式会社 樹脂に対する分散性に優れたカーボンナノファイバーの製造方法
JP2009016265A (ja) 2007-07-06 2009-01-22 Showa Denko Kk リチウム系電池用電極、リチウム系電池用電極の製造方法、リチウム系電池、及びリチウム系電池の製造方法
JP5412032B2 (ja) 2007-10-26 2014-02-12 ピーエスフォー ルクスコ エスエイアールエル 半導体記憶装置
WO2009110570A1 (ja) 2008-03-06 2009-09-11 宇部興産株式会社 微細な炭素繊維、微細な炭素短繊維およびそれらの製造方法
EP2595221A4 (en) * 2010-07-16 2014-03-26 Mitsubishi Chem Corp CATHODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY USING THE SAME
JP2012053334A (ja) 2010-09-02 2012-03-15 Murata Mach Ltd 画像形成装置
JP5960059B2 (ja) 2010-10-20 2016-08-02 デンカ株式会社 カーボンナノファイバーの製造方法、炭素複合体及びその製造方法
US20130313486A1 (en) 2011-02-23 2013-11-28 Sanyo Electric Co., Ltd. Electrode for non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery
JP2013077479A (ja) 2011-09-30 2013-04-25 Mitsubishi Materials Corp リチウムイオン二次電池の電極材料用の導電助剤分散液
JP5497109B2 (ja) * 2012-07-03 2014-05-21 昭和電工株式会社 複合炭素繊維
CN104412433A (zh) * 2012-07-06 2015-03-11 大金工业株式会社 片材、电极和燃料电池
KR102141482B1 (ko) * 2013-05-14 2020-08-10 라이온 스페셜티 케미칼즈 가부시키가이샤 카본블랙, 도전성 수지 조성물 및 전극합재
JP6604854B2 (ja) 2014-02-05 2019-11-13 デンカ株式会社 カーボンナノファイバーの製造方法およびカーボンナノファイバー
CN107004472B (zh) * 2014-11-26 2018-10-19 昭和电工株式会社 导电性糊的制造方法以及导电性糊
WO2016084691A1 (ja) 2014-11-26 2016-06-02 東レ株式会社 カーボンナノチューブ複合体、半導体素子およびその製造方法ならびにそれを用いたセンサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238575A (ja) * 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法
JP2014019619A (ja) * 2012-07-20 2014-02-03 Ube Ind Ltd 微細炭素分散液とその製造方法、及びそれを用いた電極ペースト並びにリチウムイオン電池用電極
JP2016028109A (ja) * 2012-11-13 2016-02-25 保土谷化学工業株式会社 多層カーボンナノチューブ含有カルボキシメチルセルロースナトリウム水分散液
JP2015115106A (ja) * 2013-12-09 2015-06-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 導電組成物、正極、およびリチウムイオン二次電池。
WO2016024525A1 (ja) * 2014-08-11 2016-02-18 電気化学工業株式会社 電極用導電性組成物、それを用いた電極及びリチウムイオン二次電池
WO2016039336A1 (ja) * 2014-09-09 2016-03-17 電気化学工業株式会社 電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3512012A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112106233A (zh) * 2018-05-08 2020-12-18 电化株式会社 锂离子二次电池用正极组合物、锂离子二次电池用正极以及锂离子二次电池
WO2019216275A1 (ja) * 2018-05-08 2019-11-14 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
CN112106233B (zh) * 2018-05-08 2023-09-19 电化株式会社 锂离子二次电池用正极组合物、锂离子二次电池用正极以及锂离子二次电池
JP7337049B2 (ja) 2018-05-08 2023-09-01 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
EP3767709A4 (en) * 2018-05-08 2021-05-19 Denka Company Limited COMPOSITION OF POSITIVE ELECTRODE FOR LITHIUM-ION ACCUMULATOR, POSITIVE ELECTRODE FOR LITHIUM-ION ACCUMULATOR AND LITHIUM-ION ACCUMULATOR
JPWO2019216275A1 (ja) * 2018-05-08 2021-05-13 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP2020035746A (ja) * 2018-08-28 2020-03-05 三星電子株式会社Samsung Electronics Co., Ltd. 正極、及びそれを含むリチウム電池
JP7422503B2 (ja) 2018-08-28 2024-01-26 三星電子株式会社 正極、及びそれを含むリチウム電池
CN110265626B (zh) * 2018-08-31 2020-09-29 宁德时代新能源科技股份有限公司 正极极片、其制备方法及锂离子二次电池
CN111969182A (zh) * 2018-08-31 2020-11-20 宁德时代新能源科技股份有限公司 正极极片、其制备方法及其相关的锂离子二次电池、电动车辆和电子产品
CN111969183A (zh) * 2018-08-31 2020-11-20 宁德时代新能源科技股份有限公司 正极极片、其制备方法及其相关的锂离子二次电池、电动车辆和电子产品
CN111969182B (zh) * 2018-08-31 2021-06-29 宁德时代新能源科技股份有限公司 正极极片、其制备方法及其相关的锂离子二次电池、电动车辆和电子产品
CN111969183B (zh) * 2018-08-31 2021-06-29 宁德时代新能源科技股份有限公司 正极极片、其制备方法及其相关的锂离子二次电池、电动车辆和电子产品
US11121369B2 (en) 2018-08-31 2021-09-14 Contemporary Amperex Technology Co., Limited Positive electrode plate, method for preparing the same and lithium-ion secondary battery
CN110265626A (zh) * 2018-08-31 2019-09-20 宁德时代新能源科技股份有限公司 正极极片、其制备方法及锂离子二次电池
CN113169310A (zh) * 2018-11-28 2021-07-23 电化株式会社 锂离子二次电池用正极组合物、锂离子二次电池用正极以及锂离子二次电池
EP3890062A4 (en) * 2018-11-28 2022-04-27 Denka Company Limited COMPOSITION OF SECONDARY LITHIUM-ION BATTERY POSITIVE ELECTRODE, SECONDARY LITHIUM-ION BATTERY POSITIVE ELECTRODE AND SECONDARY LITHIUM-ION BATTERY
WO2020111201A1 (ja) * 2018-11-28 2020-06-04 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP7490567B2 (ja) 2018-11-28 2024-05-27 デンカ株式会社 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
WO2020157550A1 (en) * 2019-01-29 2020-08-06 Gharda Chemicals Limited Polymeric blend composite and a process for preparing the same

Also Published As

Publication number Publication date
CN109690845A (zh) 2019-04-26
US11264616B2 (en) 2022-03-01
EP3512012A4 (en) 2019-09-04
JPWO2018047454A1 (ja) 2019-06-24
JP7034077B2 (ja) 2022-03-11
EP3512012A1 (en) 2019-07-17
KR102387963B1 (ko) 2022-04-18
US20190198879A1 (en) 2019-06-27
CN117673358A (zh) 2024-03-08
EP3512012B1 (en) 2021-09-01
KR20190045198A (ko) 2019-05-02

Similar Documents

Publication Publication Date Title
WO2018047454A1 (ja) 電極用導電性組成物およびそれを用いた電極、電池
JP6939931B2 (ja) グラフェン粉末の製造方法
JP6686826B2 (ja) 繊維状のカーボンナノホーン集合体及びその製造方法
TWI580637B (zh) 石墨烯粉末、製造石墨烯粉末之方法以及鋰離子電池用之含有石墨烯粉末的電極
CN107148692B (zh) 电极用导电性组合物、使用该导电性组合物的电极以及锂离子二次电池
TWI709527B (zh) 石墨烯分散體、電極糊之製造方法以及電極之製造方法
JP6937761B2 (ja) 電池用カーボンブラック、電極用導電性組成物、電池用電極、および電池
Li et al. High performance porous MnO@ C composite anode materials for lithium-ion batteries
JP2014505002A (ja) グラフェン粉末、グラフェン粉末の製造方法およびグラフェン粉末を含むリチウム二次電池用電気化学素子
CN104507860A (zh) 可高度分散的石墨烯组合物、制备方法及含该可高度分散的石墨烯组合物的锂离子二次电池用的电极
TWI483448B (zh) 一種複合式球形鋰鐵材料/碳陰極材料的製法及其用途
JP6615431B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2015210962A (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2023022173A (ja) 二次電池
JP2015210960A (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
Xu et al. Hydrothermal synthesis of manganese oxides/carbon nanotubes composites as anode materials for lithium ion batteries
Liu et al. Comparative study of the cathode and anode performance of Li2MnSiO4 for lithium-ion batteries
Yang et al. Nanosized tin and tin oxides loaded expanded mesocarbon microbeads as negative electrode material for lithium-ion batteries
JP2018195586A (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
KR102176590B1 (ko) 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지
Jia et al. Ternary chalcogenide LiInSe2: a promising high-performance anode material for lithium ion batteries
JP6409319B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538042

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197006452

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017848399

Country of ref document: EP

Effective date: 20190408