WO2016039336A1 - 電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池 - Google Patents

電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池 Download PDF

Info

Publication number
WO2016039336A1
WO2016039336A1 PCT/JP2015/075457 JP2015075457W WO2016039336A1 WO 2016039336 A1 WO2016039336 A1 WO 2016039336A1 JP 2015075457 W JP2015075457 W JP 2015075457W WO 2016039336 A1 WO2016039336 A1 WO 2016039336A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
carbon black
electrode
polymer dispersant
dbp absorption
Prior art date
Application number
PCT/JP2015/075457
Other languages
English (en)
French (fr)
Inventor
裕輝 名古
達也 永井
横田 博
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55459081&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016039336(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2016547448A priority Critical patent/JP6581991B2/ja
Priority to CN201580060425.4A priority patent/CN107636872A/zh
Priority to KR1020177008982A priority patent/KR102493033B1/ko
Publication of WO2016039336A1 publication Critical patent/WO2016039336A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to battery carbon black, mixed powder, battery coating liquid, battery electrode, and battery.
  • the lithium ion secondary battery in which the negative electrode is formed using a material capable of occluding and releasing lithium ions can suppress the deposition of dendride compared to the lithium battery in which the negative electrode is formed using metallic lithium. Therefore, there is an advantage that a battery having a high capacity and a high energy density can be provided while safety is improved by preventing a short circuit of the battery.
  • the content of the conductive agent in the electrode mixture is typically 2 mass percent or less, and more preferably 1 mass percent or less.
  • carbon black which is a conductive agent, is required to exhibit sufficient electronic conductivity even when added in a small amount.
  • Patent Document 1 as carbon black for non-aqueous secondary batteries having excellent conductivity and dispersibility, BET specific surface area, DBP absorption amount, electrical resistivity, sulfur content and volatile component content are disclosed. Carbon blacks each in a predetermined range are disclosed.
  • the compounded material is required to be uniformly dispersed from the viewpoint of improving the performance of the lithium ion secondary battery.
  • Patent Document 2 discloses a method for producing a positive electrode mixture characterized by performing two-stage kneading of solid kneading and dilution dispersion.
  • Carbon black has a structure in which primary particles close to a spherical shape are connected on a bead as a common structure, and such a structure is called a structure.
  • a structure In general, the smaller the primary particle size, the more electrical contacts exist in the same mass of the conductive agent, and the electronic conductivity is improved. Also, the longer the structure is connected, the greater the distance that can be conducted without contact resistance, so that the electron conductivity is improved.
  • the length of the structure is indirectly evaluated using a DBP absorption amount generally measured in accordance with JIS K6217-4.
  • carbon black with a small primary particle size and a long structure is excellent in conductivity, but has an aspect that it is difficult to disintegrate and easily aggregate because the interaction between particles is large. Therefore, in general, a method of applying a coating liquid in which an active material, a conductive agent and a binder are dispersed in water or an organic solvent is applied to a metal foil at the time of manufacturing an electrode. Carbon black having a small primary particle size and a long structure is used. When used as a conductive agent, the conductive agent agglomerates remain in the coating liquid, resulting in unevenness of the electrodes, and the coating liquid is too viscous to be applied.
  • an object of the present invention is to provide a carbon black for a battery excellent in conductivity and dispersibility.
  • An object of the present invention is to provide an excellent battery electrode and a battery excellent in high output characteristics.
  • the present invention employs the following means in order to solve the above problems.
  • the number average primary particle size is 20 nm or more and 40 nm or less, the ratio of the DBP absorption amount to the compression DBP absorption amount is 2.2 or less, and the compression DBP absorption amount is 100 mL / 100 g or more and 200 mL / 100 g or less.
  • Carbon black for batteries (2)
  • the carbon black for batteries according to (1) which is acetylene black.
  • a battery coating solution comprising an active material, a polymer binder, and the battery carbon black described in (1) or (2).
  • the battery coating solution according to (3) further comprising a polymer dispersant.
  • a mixed powder comprising at least one selected from the group consisting of: (8) The mixed powder according to (7), wherein the content of the polymer dispersant is 0.05 mg or more and 0.5 mg or less per 1 m 2 with respect to the total surface area of the carbon black.
  • a battery coating solution comprising the mixed powder according to (7) or (8), an active material, and a polymer binder.
  • a battery electrode comprising: a metal foil; and a coating film containing the carbon black for battery according to (1) or (2) formed on the metal foil.
  • the content of the polymer dispersant in the coating film is 0.05 mg or more and 0.5 mg or less per m 2 with respect to the total surface area of the carbon black.
  • the present inventors have found that the carbon black for a battery in which the ratio of the DBP absorption amount to the compressed DBP absorption amount is in a specific range is excellent in dispersibility, and that the primary particle diameter and the compressed DBP absorption amount are appropriate It has been found that high conductivity and dispersibility can be achieved at the same time. In addition, it has been found that dispersibility is further improved by using an appropriate polymer dispersant together.
  • the battery electrode produced using these has a low resistance, and the battery has a feature of excellent high output characteristics.
  • FIG. 1 is a transmission electron micrograph of carbon black for a battery of Example 4.
  • FIG. 2 is a transmission electron micrograph of acetylene black of Comparative Example 1.
  • the carbon black for batteries of this embodiment has a number average primary particle size of 20 nm to 40 nm, a ratio of DBP absorption to compression DBP absorption of 2.2 or less, and a compression DBP absorption of 100 mL / 100 g or more. It is carbon black for batteries characterized by being 200 mL / 100 g or less.
  • the ratio of the DBP absorption amount to the compressed DBP absorption amount means a value obtained by dividing the DBP absorption amount by the compressed DBP absorption amount (DBP absorption amount / compressed DBP absorption amount).
  • the carbon black in the present embodiment is selected from acetylene black, furnace black, channel black, and the like, like carbon black as a general battery conductive agent. Among these, acetylene black having excellent crystallinity and purity is more preferable.
  • the number average primary particle size of the carbon black for battery in this embodiment is 20 nm or more and 40 nm or less.
  • the number average primary particle diameter is 20 nm or more and 40 nm or less.
  • the DBP absorption amount of the carbon black for batteries in the present embodiment is a value measured according to JIS K6217-4.
  • the compressed DBP absorption amount is a value measured by the same method as the DBP absorption amount for a compressed sample produced according to JIS K6217-4 Annex A.
  • the ratio of the DBP absorption amount to the compressed DBP absorption amount of the battery carbon black in the present embodiment is 2.2 or less.
  • a large DBP absorption value compared to the compressed DBP absorption amount means that the amount of agglomerated particles that are destroyed when producing a compressed sample is large, and that more energy is required to break them up. . Therefore, by setting the ratio of the DBP absorption amount to the compressed DBP absorption amount to 2.2 or less, the energy necessary for crushing the agglomerated particles can be suppressed, and the dispersibility becomes good.
  • Compressed DBP absorption of the carbon black for batteries in this embodiment is 100 mL / 100 g or more and 200 mL / 100 g or less, and more preferably 110 mL / 100 g or more and 140 mL / 100 g or less.
  • the compressed DBP absorption amount is 100 mL / 100 g or more, the structure used as a conductive agent has a sufficient length, and good conductivity can be obtained.
  • it by setting it as 200 mL / 100g or less, aggregation by the entanglement of structures is suppressed and a dispersibility becomes favorable.
  • the battery carbon black can be dispersed in a medium together with an active material and a polymer binder and used as a battery coating solution.
  • active materials composite oxides having a layered rock salt structure such as lithium cobaltate, lithium nickelate, nickel cobalt lithium manganate, nickel cobalt lithium aluminum oxide, etc., and spinels such as lithium manganate and nickel manganate are used for the positive electrode.
  • composite oxides having an olivine structure such as lithium complex phosphate, lithium iron phosphate, lithium manganese phosphate, and lithium manganese phosphate.
  • Active materials for negative electrodes include carbon-based materials such as artificial graphite, natural graphite, soft carbon and hard carbon, metal-based materials alloyed with alkali metals such as silicon and tin, and metal composite oxidation such as lithium titanate.
  • the polymer binder include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, polyvinyl alcohol, acrylonitrile-butadiene copolymer, and carboxylic acid-modified (meth) acrylic acid ester copolymer. Examples include polymers.
  • polyvinylidene fluoride is preferred from the viewpoint of oxidation resistance when used for the positive electrode, and polyvinylidene fluoride or styrene-butadiene copolymer is preferred from the viewpoint of adhesive strength when used for the negative electrode.
  • Examples of the dispersion medium for the electrode coating liquid include water, N-methylpyrrolidone, cyclohexane, methyl ethyl ketone, and methyl isobutyl ketone.
  • N-methylpyrrolidone is preferable from the viewpoint of solubility, and water is preferable when using a styrene-butadiene copolymer.
  • the electrode coating solution may further contain a polymer dispersant.
  • Polymeric dispersants include polyvinyl pyrrolidone, copolymers having vinyl pyrrolidone units, polyvinyl imidazole, polyethylene glycol, polyvinyl alcohol, polyvinyl butyral, carboxymethyl cellulose, acetyl cellulose, and carboxylic acid-modified (meth) acrylic acid ester copolymers. It is preferable to use at least one selected from Among these, it is more preferable to include at least one selected from polyvinylpyrrolidone and a copolymer having a vinylpyrrolidone unit (also referred to as a copolymer containing polyvinylpyrrolidone). Of these, polyvinylpyrrolidone is preferred. By including the polymer dispersant, the dispersibility of the carbon black for a battery is further improved.
  • the content of the polymer dispersant is preferably 0.05 mg or more and 0.5 mg or less per 1 m 2 with respect to the total surface area of the carbon black for batteries, and more preferably 0.2 mg or more and 0.5 mg or less. preferable.
  • the amount is 0.05 mg or more, the polymer dispersant exhibits a sufficient dispersion effect, and the dispersibility of the battery carbon black is further improved.
  • covers the active material surface and obstructs a charge transfer reaction is suppressed, and the high resistance of a battery is suppressed.
  • the electrode coating liquid containing the polymer dispersant As one form for obtaining the electrode coating liquid containing the polymer dispersant, it can be provided in the form of a mixed powder in which the carbon black for a battery and the polymer dispersant are mixed in advance.
  • the battery manufacturer can obtain an electrode coating solution containing the polymer dispersant by simply applying it to a conventional process without using the polymer dispersant.
  • a mixing apparatus for producing the electrode coating liquid a mixing machine such as a rough machine, a universal mixer, a Henschel mixer or a ribbon blender, or a medium stirring type mixer such as a bead mill, a vibration mill or a ball mill is used. It can be carried out.
  • the manufactured electrode coating liquid is preferably subjected to vacuum defoaming at a stage before coating in order to ensure smoothness without causing defects in the coating film. If air bubbles are present in the coating solution, the coating film will be defective when applied to the electrode, which may impair smoothness.
  • the battery coating liquid can contain components other than the battery carbon black, the active material, the polymer binder, and the polymer dispersant as long as the effects of the present invention are not impaired.
  • carbon nanotubes, carbon nanofibers, graphite, graphene, carbon fibers, elemental carbon, glassy carbon, metal particles, and the like may be included in addition to battery carbon black for the purpose of further improving the conductivity.
  • the method for producing the mixed powder includes a dry mixing method or a wet mixing method using a solvent such as water.
  • a mixer such as a V-type mixer, a high-speed stirring mixer, a universal mixer, a flash blender, or a tumbler mixer can be used.
  • the present invention may relate to a battery coating solution containing the battery carbon black.
  • the battery coating solution may include the battery carbon black and the dispersion medium.
  • the battery coating solution may further contain the active material.
  • the battery transfer solution may further contain the polymer binder.
  • the battery coating solution may further contain the polymer dispersant.
  • the present invention may also relate to a mixed powder comprising the battery carbon black and the polymer dispersant.
  • the present invention may also relate to a battery electrode comprising a metal foil and a coating film containing the carbon black for the battery formed on the metal foil.
  • the coating film may be formed from the battery coating solution.
  • the coating film is formed, for example, by applying and drying the battery coating solution.
  • the coating film may further contain the active material.
  • the coating film may further contain the polymer binder.
  • the coating film may further contain the polymer dispersant.
  • Examples of the coating method for battery coating liquid include slot die method, lip method, reverse roll method, direct roll method, blade method, knife method, extrusion method, curtain method, gravure method, bar method, dip method and squeeze. It may be law. Of these, the slot die method, the lip method, and the reverse roll method are preferable.
  • the coating method for the battery coating solution may be selected according to the physical properties, drying properties, etc. of the battery coating solution. Thereby, a favorable surface state of the coating layer can be obtained.
  • Application of the battery coating solution to the metal foil may be performed on one side or both sides, and in the case of both sides, it may be applied sequentially on one side or on both sides simultaneously.
  • the application may be continuous, intermittent, or striped. What is necessary is just to determine suitably the application
  • the coating thickness of the battery coating solution that is, the thickness of the coating film can be in the range of 10 ⁇ m to 500 ⁇ m.
  • the method for drying the battery coating solution is not particularly limited, and for example, drying methods using hot air, vacuum, infrared rays, far infrared rays, electron beams, low-temperature air, etc. can be used alone or in combination.
  • the metal foil may be, for example, an aluminum foil when used as a positive electrode. Moreover, when using metal foil as a negative electrode, copper foil etc. may be sufficient, for example.
  • the shape of the metal foil is not particularly limited, but the thickness is preferably 5 to 30 ⁇ m from the viewpoint of easy workability.
  • the electrode may be pressed as necessary.
  • a generally adopted method can be used, and a die pressing method and a calendar pressing method (cold or hot roll) are particularly preferable.
  • the press pressure in the calendar press method is not particularly limited, but is preferably 0.02 to 3 ton / cm.
  • the present invention may also relate to a battery provided with the battery electrode.
  • the battery may be a lithium ion secondary battery, a nickel hydride secondary battery, an electric double layer capacitor, or the like.
  • a battery electrode manufacturing method comprises: applying the battery coating solution onto a metal foil; and providing the battery electrode with the metal foil and a coating film formed from the battery coating solution. The process of obtaining may be included.
  • the present invention may also relate to the use of the carbon black as a carbon black for a battery.
  • the present invention may also relate to the use of the carbon black for the production of a battery coating solution.
  • the present invention may further relate to the use of the carbon black for the manufacture of a battery.
  • Example 1 Carbon carbon black
  • furnace black manufactured by Timcal Graphite and Carbon having a number average primary particle size of 40 nm, a DBP absorption of 234 mL / 100 g, and a compressed DBP absorption of 115 mL / 100 g was used.
  • the DBP absorption amount and the compressed DBP absorption amount were measured by the following methods.
  • the DBP absorption amount was measured by a method according to JIS K6217-4, and the compressed DBP absorption amount was measured by a measurement method similar to the DBP absorption amount for a compressed sample prepared by a method according to JIS K6217-4 Annex A. .
  • the number average primary particle size was measured using a transmission electron microscope JEM-2000FX (manufactured by JEOL Ltd.), and five images with a magnification of 100,000 were taken and taken into image resolving software (Nireco Corp., “Luzex AP”). The number average primary particle diameter was determined for the extracted 200 or more primary particles, and the arithmetic average value thereof was calculated.
  • Electrode coating solution evaluation of dispersibility (electrode coating solution)
  • the dispersibility of the electrode coating solution was evaluated by a method using a crush gauge described in JIS K5600-2-5. Specifically, a scraper was used to apply the coating solution, and the graduations were measured at locations where three or more linear traces of 10 mm or more continuous on the sample surface were arranged in one groove. The lower the numerical value, the better the dispersibility.
  • Electrode appearance The dispersibility of the carbon black for the battery was judged by the appearance of the positive electrode for the lithium secondary battery. Specifically, five 100 mm square electrodes were prepared and evaluated according to the following scale. Excellent: Neither streak-like coating marks nor aggregates were observed on the electrode surface. Good: A streaky coating mark or an aggregate of less than 1 mm was observed on one or more electrode surfaces. Defective: Agglomerates of 1 mm or more were observed on one or more electrode surfaces.
  • a positive electrode for a lithium secondary battery is cut out into a disk shape having a diameter of 14 mm, and both surfaces are sandwiched between flat electrodes made of SUS304, using an electrochemical measurement system (Solartron, function generator 1260 and potentiogalvanostat 1287). The resistance against 1 Hz alternating current between the electrodes was measured and found to be 26 ⁇ .
  • a positive electrode for the lithium secondary battery was used as the positive electrode, metal lithium (manufactured by Honjo Metal Co., Ltd.) was used as the negative electrode, and a non-woven fabric made of olefin fiber was used as a separator to electrically isolate them, thereby obtaining a CR-2032 type coin battery.
  • electrolyte EC (ethylene carbonate, manufactured by Aldrich), MEC (methyl ethyl carbonate, manufactured by Aldrich) was mixed in a volume ratio of 1: 2, and lithium hexafluorophosphate (LiPF6, manufactured by Stella Chemifa). ) was dissolved at 1 mol / L.
  • Examples 2 to 4> Except for changing the furnace black of Example 1 to acetylene black (SB50L, FX35, AB powder form, manufactured by Denki Kagaku Kogyo Co., Ltd.) having the number average primary particle size, DBP absorption, and compressed DBP absorption shown in Table 1.
  • a battery coating solution, an electrode and a secondary battery were prepared in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 1. Moreover, when the carbon black for batteries of Example 4 was observed with a transmission electron microscope, the transmission electron micrograph shown in FIG. 1 was obtained.
  • Examples 5 to 9 The furnace black of Example 1 was changed to acetylene black (SB50L, manufactured by Denki Kagaku Kogyo Co., Ltd.) having a number average primary particle size of 37 nm, a DBP absorption of 218 mL / 100 g, and a compressed DBP absorption of 111 mL / 100 g.
  • Polyvinylpyrrolidone manufactured by Junsei Co., Ltd., PVP K-30
  • a battery coating solution, an electrode and a secondary battery were prepared in the same manner as in Example 1 and evaluated. Carried out.
  • the total surface area of acetylene black was determined by multiplying the BET specific surface area measured using a nitrogen adsorption specific surface area meter (Macsorb 1201) by the total mass of acetylene black. The results are shown in Table 2.
  • Example 10 (Production of mixed powder) Acetylene black (SB50L manufactured by Denki Kagaku Kogyo Co., Ltd.) and polyvinylpyrrolidone (manufactured by Pure Chemical Co., PVP K-30) having a number average primary particle size of 37 nm, DBP absorption of 218 mL / 100 g, and compressed DBP absorption of 111 mL / 100 g.
  • the mixture was mixed using a V-type mixer (VM-10, manufactured by Dalton) at a ratio such that the content of polyvinylpyrrolidone per 1 m 2 of acetylene black surface area was 0.17 mg to obtain a mixed powder.
  • V-type mixer VM-10, manufactured by Dalton
  • a battery coating solution, an electrode, and a secondary battery were produced in the same manner as in Example 1 except that the furnace black in Example 1 was changed to the mixed powder, and each evaluation was performed. The results are shown in Table 2.
  • Example 1 The furnace black of Example 1 is furnace black (manufactured by Timcal Graphite and Carbon) or acetylene black (Denki Kagaku Kogyo Co., Ltd.) having the number average primary particle size, DBP absorption, and compression DBP absorption shown in Table 3.
  • a battery coating solution, an electrode, and a secondary battery were prepared in the same manner as in Example 1 except that the product was changed to “manufactured”, and each evaluation was performed.
  • the battery coating solution used in Comparative Example 1 was used, the dispersibility was poor and the electrode plate resistance was also high. Also in the battery evaluation, the 5C discharge capacity was below the measurement limit.
  • the results are shown in Table 3.
  • the acetylene black of the comparative example 1 was observed with the transmission electron microscope, the transmission electron micrograph shown in FIG. 2 was obtained.
  • ⁇ Comparative example 2> Using acetylene black having a number average primary particle size of 48 nm as carbon black, a battery coating solution, an electrode and a secondary battery were prepared in the same manner as in Example 1, and each evaluation was performed. Although the battery coating solution used in Comparative Example 2 was excellent in dispersibility, it exhibited a high value of electrode plate resistance. Also in the battery evaluation, the 5C discharge capacity was below the measurement limit. The results are shown in Table 3.
  • the carbon black for batteries of the examples of the present invention is excellent in conductivity and dispersibility, and the electrode produced using these has low resistance, and the battery has high output characteristics. It turned out to be excellent. Moreover, it turned out that the same effect is acquired also by providing with the form of mixed powder.
  • the positive electrode, the negative electrode, and the lithium ion secondary battery using various active materials other than the present Example also showed good evaluation results regardless of the type of the active material and the polymer dispersant.
  • the carbon black for a battery of the present invention is excellent in conductivity and dispersibility, and further, by using this, a battery having a low resistance and a high output characteristic can be obtained. Further, by providing the mixed powder in the form of a powder, the battery manufacturer can obtain the above effects without changing the conventional process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

 本発明は、導電性および分散性に優れた電池用カーボンブラックを提供する。 本発明の電池用カーボンブラックは、個数平均1次粒子径が20nm以上40nm以下であり、圧縮DBP吸収量に対するDBP吸収量の比が2.2以下、かつ、圧縮DBP吸収量が100mL/100g以上200mL/100g以下である。

Description

電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池
 本発明は、電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池に関する。
 リチウムイオンの吸蔵、放出が可能な材料を用いて負極を形成したリチウムイオン二次電池は、金属リチウムを用いて負極を形成したリチウム電池に比べてデンドライドの析出を抑制することができる。そのため、電池の短絡を防止して安全性を高めた上で高容量なエネルギー密度の高い電池を提供できるという利点を有している。
 近年ではこのリチウムイオン二次電池のエネルギー密度のさらなる向上が求められている。このため電極合材中における導電剤の含有量をより少なくすることが求められるようになっている。例えばデジタル機器等の民生用電池においては、正極合材中、導電剤の含有量は典型的には2質量パーセント以下、さらには1質量パーセント以下であることが好ましいとされている。
 かかる事情から、導電剤であるカーボンブラックには添加量が少量であっても十分な電子伝導性を発揮することが要求されている。
 例えば、特許文献1には、導電性および分散性に優れた非水系二次電池用カーボンブラックとして、BET比表面積、DBP吸収量、電気抵抗率、硫黄分の含有量および揮発成分の含有量がそれぞれ所定の範囲にあるカーボンブラックが開示されている。
 一方、電極合材においては、リチウムイオン二次電池の高性能化の観点から、配合された材料が均一に分散していることが求められている。
 例えば、特許文献2には、固練りと希釈分散の2段階の混練を行うことを特徴とする正極合剤の製造方法が開示されている。
特開2012-221684号公報 特開2012-59466号公報
 カーボンブラックはその共通の構造として球形に近い1次粒子が数珠上に繋がりあった構造を有しており、このような構造をストラクチャと呼ぶ。一般に、1次粒子径が小さいほど、同質量の導電剤の中により多数の電気的接点が存在することになり、電子伝導性が向上する。また、ストラクチャが長く連結しているほど、接触抵抗なく電子伝導できる距離が大きくなるため、電子伝導性が向上する。
 ストラクチャの長さは、一般的にJIS K6217-4に準拠して測定されるDBP吸収量を用いて間接的に評価され、DBP吸収量が大きいほどストラクチャが長く、導電性に優れるとされる。
 一方、1次粒子径が小さくストラクチャが長いカーボンブラックは、導電性に優れる反面、粒子同士の相互作用が大きくなるため、解砕し難く凝集し易いという側面を持つ。したがって、一般に電極製造時には活物質、導電剤および結着剤を水または有機溶剤に分散した塗工液を金属箔に塗布する方法がとられるが、1次粒子径が小さくストラクチャが長いカーボンブラックを導電剤として用いた場合、この塗工液中に導電剤の凝集物が残存して電極に凹凸が生じたり、塗工液の粘度が高すぎて塗布不能になったりといった問題が発生しやすい。
 本発明は、上記問題と実情に鑑み、導電性および分散性に優れた電池用カーボンブラックを提供することを目的とする。加えて、この電池用カーボンブラックを用いて製造される分散性に優れた電池用塗工液およびそれを製造するための材料の一形態としての混合粉末、さらにそれらを用いて製造される低抵抗な電池用電極および高出力特性に優れた電池を提供することを目的とする。
 すなわち、本発明は上記の課題を解決するために、以下の手段を採用する。
(1)個数平均1次粒子径が20nm以上40nm以下であり、圧縮DBP吸収量に対するDBP吸収量の比が2.2以下、かつ、圧縮DBP吸収量が100mL/100g以上200mL/100g以下である、電池用カーボンブラック。
(2)アセチレンブラックである、(1)に記載の電池用カーボンブラック。
(3)活物質と、高分子結着剤と、(1)又は(2)に記載の電池用カーボンブラックと、を含む、電池用塗工液。
(4)さらに高分子分散剤を含む、(3)に記載の電池用塗工液。
(5)前記高分子分散剤が、ポリビニルピロリドンおよびビニルピロリドン単位を有する共重合体からなる群より選択される少なくとも1種を含む、(4)に記載の電池用塗工液。
(6)前記高分子分散剤の含有量が、カーボンブラックの全表面積に対して1mあたり0.05mg以上0.5mg以下である、(4)又は(5)に記載の電池用塗工液。
(7)高分子分散剤と、(1)又は(2)に記載の電池用カーボンブラックと、を含み、前記高分子分散剤がポリビニルピロリドンおよびビニルピロリドン単位を有する共重合体からなる群より選択される少なくとも1種を含む、混合粉末。
(8)前記高分子分散剤の含有量が、カーボンブラックの全表面積に対して1mあたり0.05mg以上0.5mg以下である、(7)に記載の混合粉末。
(9)(7)又は(8)に記載の混合粉末と、活物質と、高分子結着剤と、を含む、電池用塗工液。
(10)金属箔と、該金属箔上に形成された(1)又は(2)に記載の電池用カーボンブラックを含む塗膜と、を備える、電池用電極。
(11)前記塗膜が、活物質および高分子結着剤をさらに含む、(10)に記載の電池用電極。
(12)前記塗膜が、高分子分散剤をさらに含む、(10)又は(11)に記載の電池用電極。
(13)前記高分子分散剤が、ポリビニルピロリドンおよびビニルピロリドン単位を有する共重合体からなる群より選択される少なくとも1種を含む、(12)に記載の電池用電極。
(14)前記塗膜における前記高分子分散剤の含有量が、カーボンブラックの全表面積に対して1mあたり0.05mg以上0.5mg以下である、(12)又は(13)に記載の電池用電極。
(15)(10)~(15)のいずれかに記載の電池用電極を備える電池。
(16)(3)~(6)および(9)のいずれかに記載の電池用塗工液を金属箔上に塗布して、前記金属箔と前記電池用塗工液から形成された塗膜とを備える電池用電極を得る工程を含む、電池用電極の製造方法。
 本発明者らは鋭意研究の結果、圧縮DBP吸収量に対するDBP吸収量の比が特定の範囲にある電池用カーボンブラックは分散性に優れ、さらに1次粒子径および圧縮DBP吸収量の値を適正化することにより、高い導電性と分散性を両立できることを見出した。加えて、適切な高分子分散剤を併用することでさらに分散性が向上することを見出した。これらを用いて製造した電池用電極は抵抗が低く、電池は高出力特性に優れるという特長を持つ。
図1は実施例4の電池用カーボンブラックの透過型電子顕微鏡写真である。 図2は比較例1のアセチレンブラックの透過型電子顕微鏡写真である。
 以下、本発明の一実施形態について詳細に説明する。本実施形態の電池用カーボンブラックは、個数平均1次粒子径が20nm以上40nm以下であり、圧縮DBP吸収量に対するDBP吸収量の比が2.2以下、かつ圧縮DBP吸収量が100mL/100g以上200mL/100g以下であることを特徴とする電池用カーボンブラックである。なお、圧縮DBP吸収量に対するDBP吸収量の比とは、DBP吸収量を圧縮DBP吸収量で除した値(DBP吸収量/圧縮DBP吸収量)を意味する。
 本実施形態におけるカーボンブラックは、一般の電池用導電剤としてのカーボンブラック同様、アセチレンブラック、ファーネスブラック、チャンネルブラックなどの中から選ばれるものである。中でも、結晶性および純度に優れるアセチレンブラックがより好ましい。
 本実施形態における電池用カーボンブラックの個数平均1次粒子径は20nm以上40nm以下である。個数平均1次粒子径を20nm以上とすることで、粒子間相互作用が抑制されて分散性が得られる。また、個数平均1次粒子径を40nm以下とすることで、同質量の導電剤の中により多数の電気的接点が存在することになり、良好な電子伝導性が得られる。
 本実施形態における電池用カーボンブラックのDBP吸収量はJIS K6217-4に準拠して測定される値である。また、圧縮DBP吸収量はJIS K6217-4附属書Aに準拠して作製される圧縮試料についてDBP吸収量と同様の方法で測定される値である。
 本実施形態における電池用カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比は2.2以下である。圧縮DBP吸収量に比べてDBP吸収量の値が大きいことは圧縮試料を作製する際に破壊される凝集粒子の量が多く、それらを解砕するためにより大きいエネルギーを必要とすることを意味する。したがって、圧縮DBP吸収量に対するDBP吸収量の比を2.2以下とすることで、凝集粒子を解砕するために必要なエネルギーが抑えられ、分散性が良好となる。
 本実施形態における電池用カーボンブラックの圧縮DBP吸収量は100mL/100g以上200mL/100g以下であり、110mL/100g以上140mL/100g以下であることがより好ましい。圧縮DBP吸収量を100mL/100g以上とすることで、導電剤として使用される際のストラクチャが十分な長さを持ち、良好な導電性が得られるようになる。また、200mL/100g以下とすることで、ストラクチャ同士の絡み合いによる凝集が抑えられ、分散性が良好となる。
 本実施形態の電池用カーボンブラックを用いて電極を作製する際は電池用カーボンブラックを活物質および高分子結着剤と共に媒体に分散させ、電池用塗工液として使用することができる。活物質としては、正極用としてコバルト酸リチウム、ニッケル酸リチウム、ニッケルコバルトマンガン酸リチウム、ニッケルコバルトアルミニウム酸リチウムなどの層状岩塩型構造を持つ複合酸化物、マンガン酸リチウム、ニッケルマンガン酸リチウムなどのスピネル型構造を持つ複合酸化物、リン酸鉄リチウム、リン酸マンガンリチウム、リン酸鉄マンガンリチウムなどのオリビン型構造を持つ複合酸化物などが挙げられる。また、負極用の活物質としては、人造黒鉛、天然黒鉛、ソフトカーボン、ハードカーボンなどの炭素系材料、ケイ素、スズなどのアルカリ金属と合金化する金属系材料、チタン酸リチウムなどの金属複合酸化物などが挙げられる。高分子結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-ブタジエン共重合体、ポリビニルアルコール、アクリロニトリリル-ブタジエン共重合体、カルボン酸変性(メタ)アクリル酸エステル共重合体等の高分子が挙げられる。これらの中では、正極に用いる場合は耐酸化性の点でポリフッ化ビニリデンが好ましく、負極に用いる場合は接着力の点でポリフッ化ビニリデンまたはスチレン-ブタジエン共重合体が好ましい。
 電極用塗工液の分散媒としては、水、N-メチルピロリドン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。高分子結着剤としてポリフッ化ビニリデンを使用する際は、溶解性の点でN-メチルピロリドンが好ましく、スチレン-ブタジエン共重合体を使用する際は水が好ましい。
 電極用塗工液は、高分子分散剤をさらに含んでいてよい。高分子分散剤としては、ポリビニルピロリドン、ビニルピロリドン単位を有する共重合体、ポリビニルイミダゾール、ポリエチレングリコール、ポリビニルアルコール、ポリビニルブチラール、カルボキシメチルセルロース、アセチルセルロースおよびカルボン酸変性(メタ)アクリル酸エステル共重合体などから選択される少なくとも1種以上を使用することが好ましい。中でもポリビニルピロリドンおよびビニルピロリドン単位を有する共重合体(ポリビニルピロリドンを含む共重合体ともいう。)から選択される少なくとも1種以上を含むことがより好ましい。これらの中では、ポリビニルピロリドンが好ましい。高分子分散剤を含むことにより、電池用カーボンブラックの分散性がより向上する。
 前記高分子分散剤の含有量は、電池用カーボンブラックの全表面積に対して1mあたり0.05mg以上0.5mg以下であることが好ましく、0.2mg以上0.5mg以下であることがより好ましい。0.05mg以上とすることで、高分子分散剤が十分な分散効果を発揮し、電池用カーボンブラックの分散性がより向上する。また、0.5mg以下とすることで、過剰な高分子分散剤が活物質表面を被覆し電荷移動反応を妨害する効果を抑え、電池の高抵抗化が抑えられる。
 前記高分子分散剤を含んだ電極用塗工液を得るための形態の一つとして、電池用カーボンブラックと高分子分散剤を予め混合した混合粉末の形で提供することができる。混合粉末の形とすることで、電池製造者は高分子分散剤を用いない従来の工程にそのまま適用するだけで前記高分子分散剤を含んだ電極用塗工液を得ることが可能となる。
 電極用塗工液を製造するための混合装置としては、らいかい機、万能混合機、ヘンシェルミキサー若しくはリボンブレンダーなどの混合機、又はビーズミル、振動ミル若しくはボールミルなどの媒体撹拌型混合機を用いて行うことができる。また、製造した電極用塗工液は、塗膜に欠陥が生じないようにして平滑性を確保するため、塗工前の段階で真空脱泡を行うことが好ましい。塗工液に気泡が存在すると、電極に塗布した際に、塗膜に欠陥が生じ、平滑性を損なう原因となる。
 また、電池用塗工液は、本発明の効果を損なわない範囲で、電池用カーボンブラック、活物質、高分子結着剤および高分子分散剤以外の成分を含むことができる。例えば、導電性をさらに向上させる目的で、電池用カーボンブラック以外にカーボンナノチューブ、カーボンナノファイバー、黒鉛、グラフェン、炭素繊維、元素状炭素、グラッシーカーボン、金属粒子などを含んでも良い。
 混合粉末を製造するための方法としては、乾式混合または水などの溶媒を介した湿式混合をする方法が挙げられる。混合装置としては、V型混合機、高速撹拌混合機、万能混合機、フラッシュブレンダー若しくはタンブラーミキサーなどの混合機を用いることができる。
 以上、本発明に係る電池用カーボンブラックの好適な一実施形態について説明したが、本発明はこれに限定されるものではない。
 例えば、本発明は、前記電池用カーボンブラックを含む電池用塗工液に関するものであってよい。本発明の一実施形態において、電池用塗工液は、前記電池用カーボンブラックと前記分散媒とを含むものであってよい。また、電池用塗工液は、前記活物質をさらに含んでいてよい。また、電池用渡工液は、前記高分子結着剤をさらに含んでいてよい。また、電池用塗工液は、前記高分子分散剤をさらに含んでいてよい。
 本発明はまた、前記電池用カーボンブラックと前記高分子分散剤とを含む混合粉末に関するものであってよい。
 本発明はまた、金属箔と、該金属箔上に形成された前記電池用カーボンブラックを含む塗膜と、を備える、電池用電極に関するものであってよい。本発明の一実施形態において、前記塗膜は、前記電池用塗工液から形成されたものであってよい。前記塗膜は、例えば、前記電池用塗工液の塗布および乾燥によって形成される。前記塗膜は、前記活物質をさらに含んでいてよい。また前記塗膜は、前記高分子結着剤をさらに含んでいてよい。また前記塗膜は、前記高分子分散剤をさらに含んでいてよい。
 電池用塗工液の塗布方法は、例えば、スロットダイ法、リップ法、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法であってよい。そのなかでもスロットダイ法、リップ法およびリバースロール法が好ましい。
 電池用塗工液の塗布方法は、電池用塗工液の物性、乾燥性等に合わせて塗布方法を選定してよい。これにより、良好な塗布層の表面状態を得ることができる。電池用塗工液の金属箔への塗布は、片面に施しても、両面に施してもよく、両面の場合、片面ずつ逐次で塗布しても両面同時に塗布してもよい。また、塗布は連続でも間欠でもストライプでもよい。電池用塗工液の塗布厚み、長さおよび巾は、適用される電池の大きさに合わせて適宜決定すればよい。例えば、電池用塗工液の塗布厚み、すなわち、塗膜の厚さは、10μm~500μmの範囲とすることができる。
 電池用塗工液の乾燥方法は、特に限定されず、例えば、熱風、真空、赤外線、遠赤外線、電子線、低温風等による乾燥方法を単独で、または組み合わせて用いることができる。
 金属箔は、正極として用いる場合は、例えばアルミニウム箔等であってよい。また、金属箔は、負極として用いる場合は、例えば銅箔等であってもよい。金属箔の形状は、特に限定されないが、加工性が容易になる点では厚さが5~30μmであることが好ましい。
 電極は、必要に応じてプレスしてもよい。プレス法は、一般に採用されている方法を用いることができるが、特に金型プレス法やカレンダープレス法(冷間または熱間ロール)が好ましい。カレンダープレス法でのプレス圧は、特に限定されないが、0.02~3ton/cmが好ましい。
 本発明また、前記電池用電極を備える電池に関するものであってよい。一実施形態において、前記電池は、リチウムイオン二次電池、ニッケル水素二次電池または電気二重層キャパシタ等であってよい。
 本発明はまた、電池用電極の製造方法に関するものであってよい。一実施形態において、電池用電極の製造方法は、前記電池用塗工液を金属箔上に塗布して、前記金属箔と前記電池用塗工液から形成された塗膜とを備える電池用電極を得る工程を含むものであってよい。
 本発明はまた、前記カーボンブラックの、電池用カーボンブラックとしての使用に関するものであってよい。本発明はまた、前記カーボンブラックの、電池用塗工液の製造のための使用に関するものであってよい。本発明はさらに、前記カーボンブラックの、電池の製造のための使用に関するものであってよい。
 以下、実施例および比較例により、本発明に係る電池用カーボンブラックの一形態を詳細に説明する。しかし、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
<実施例1>
(電池用カーボンブラック)
 電池用カーボンブラックとして、個数平均1次粒子径40nm、DBP吸収量234mL/100g、圧縮DBP吸収量115mL/100gであるファーネスブラック(ティムカル・グラファイト・アンド・カーボン社製)を用いた。なお、DBP吸収量および圧縮DBP吸収量は、以下の方法により測定した。
[DBP吸収量]
 DBP吸収量はJIS K6217-4に準拠する方法で測定し、圧縮DBP吸収量はJIS K6217-4附属書Aに準拠する方法で作製した圧縮試料について、DBP吸収量と同様の測定法で測定した。
[個数平均1次粒子径]
 個数平均1次粒子径は透過電子顕微鏡JEM-2000FX(日本電子社製)を用いて100000倍の画像5枚を撮影し、画像解折ソフト(ニレコ社製、「ルーゼックスAP」)に取り込んだ。抽出した200個以上の1次粒子について個数平均1次粒子径を求め、それらの算術平均値を算出した。
(電池用塗工液の作製)
 ファーネスブラック5質量部に、活物質としてリン酸鉄リチウム(Aleees社製)を90質量部、高分子結着剤としてポリフッ化ビニリデン溶液(呉羽化学社製、「KFポリマー1120」)を溶質量で5質量部、さらに分散媒としてN-メチルピロリドン(キシダ化学社製)を加えて自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて混合し、塗工液を得た。この塗工液を、ベーカー式アプリケーターを用いて厚さ20μmのアルミニウム箔に塗布、乾燥し、その後、プレス、裁断して、リチウム二次電池用正極電極を得た。
[分散性の評価(電極用塗工液)]
 電極用塗工液の分散性をJIS K5600-2-5に記載されるつぶゲージを用いた方法で評価した。具体的には、スクレパーを用い、塗工液を塗布し、試料面に10mm以上連続した線状痕が、一つの溝について3本以上並んだ箇所の目盛りを測定した。分散性は数値が低い程、良好な分散性を意味する。
[分散性の評価(電極外観)]
 電池用カーボンブラックの分散性はリチウム二次電池用正極電極の外観によって判断した。具体的には100mm四方の電極5枚を作製し、以下の尺度で評価した。
優:5枚とも電極面に筋状の塗工跡および凝集塊が観られなかった。
良:1枚以上の電極面に筋状の塗工跡または1mm未満の凝集塊が観られた。
不良:1枚以上の電極面に1mm以上の凝集塊が観察された。
[極板抵抗の評価]
 リチウム二次電池用正極電極を直径14mmの円盤状に切り抜き、表裏をSUS304製平板電極によって挟んだ状態で、電気化学測定システム(ソーラトロン社製、ファンクションジェネレーター1260およびポテンショガルバノスタット1287)を用いて両電極間の1Hz交流に対する抵抗を測定したところ、26Ωであった。
(リチウムイオン二次電池の作製)
 前記リチウム二次電池用正極電極を正極として用いて、次のようにしてリチウムイオン二次電池を作製した。
 正極として前記リチウム二次電池用正極電極、負極として金属リチウム(本城金属社製)を用い、これらを電気的に隔離するセパレータとしてオレフィン繊維製不織布を用いでCR-2032型コイン電池とした。電解液にはEC(エチレンカーボネート、Aldrich社製)、MEC(メチルエチルカーボネート、Aldrich社製)を体積比で1:2に混合した溶液中に六フッ化リン酸リチウム(LiPF6、ステラケミファ社製)を1mol/L溶解したものを用いた。
[リチウムイオン二次電池の評価]
 上記で作製したリチウムイオン二次電池について、次のようにして評価を行った。
[初期容量]
 まず0.7mA/cmの電流密度、上限電圧4.0Vにて定電流・定電圧充電を行い、次いで0.7mA/cmの電流密度、下限電圧2.0Vにて定電流放電を行った際の放電容量を測定し、正極活物質量で除した容量密度(mAh/g)を算出した。この容量(mAh)を1時間で充放電可能な電流値を「1C」とした。次いで、電流を0.2C、上限電圧を4.0Vとして定電流・定電圧充電を行い、さらに電流を0.2C、下限電圧を2.0Vとして定電流放電を行うことを5回繰り返し、5回目の定電流放電の際の放電容量を正極活物質量で除した値(mAh/g)を初期容量として算出した。本実施例の電池の初期容量は159mAh/gであった。
[5C放電容量]
 高出力特性の評価として、電流を0.2C、上限電圧を4.0Vとして定電流・定電圧充電を行った後、電流を5C、下限電圧を2.0Vとして定電流放電を行い、この際の放電容量を正極活物質量で除した値(mAh/g)を5C放電容量として算出したところ、75mAh/gであった。
<実施例2~4>
 実施例1のファーネスブラックを、表1に示す個数平均1次粒子径、DBP吸収量、圧縮DBP吸収量を持つアセチレンブラック(電気化学工業社製 SB50L、FX35、AB粉状)へ変更した以外は、実施例1と同様な方法で電池用塗工液、電極および二次電池を作製し、各評価を実施した。結果を表1に示す。また、実施例4の電池用カーボンブラックについて透過型電子顕微鏡による観測を行ったところ、図1に示す透過型電子顕微鏡写真が得られた。
Figure JPOXMLDOC01-appb-T000001
<実施例5~9>
 実施例1のファーネスブラックを、個数平均1次粒子径37nm、DBP吸収量218mL/100g、圧縮DBP吸収量111mL/100gであるアセチレンブラック(電気化学工業社製 SB50L)へ変更し、さらに高分子分散剤としてポリビニルピロリドン(純正科学社製、PVP K-30)を表2に示す量だけ加えて、実施例1と同様な方法で電池用塗工液、電極および二次電池を作製し、各評価を実施した。ただし、アセチレンブラックの全表面積は窒素吸着比表面積計(マウンテック社製、Macsorb1201)を用いて測定したBET比表面積にアセチレンブラックの全質量を乗ずることで求めた。結果を表2に示す。
<実施例10>
(混合粉末の作製)
 個数平均1次粒子径37nm、DBP吸収量218mL/100g、圧縮DBP吸収量111mL/100gであるアセチレンブラック(電気化学工業社製 SB50L)とポリビニルピロリドン(純正科学社製、PVP K-30)とを、アセチレンブラックの表面積1mあたりのポリビニルピロリドンの含有量が0.17mgになるような割合で、V型混合機(ダルトン社製、VM-10)を用いて混合し、混合粉末を得た。
 実施例1のファーネスブラックを、前記混合粉末へ変更した以外は、実施例1と同様な方法で電池用塗工液、電極および二次電池を作製し、各評価を実施した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<比較例1>
 実施例1のファーネスブラックを、表3に示す個数平均1次粒子径、DBP吸収量、圧縮DBP吸収量を持つファーネスブラック(ティムカル・グラファイト・アンド・カーボン社製)またはアセチレンブラック(電気化学工業社製)へ変更した以外は、実施例1と同様な方法で電池用塗工液、電極および二次電池を作製し、各評価を実施した。比較例1で用いた電池用塗工液を用いた場合、分散性に乏しく、極板抵抗も高い値を示した。また、電池評価においても5C放電容量が測定限界を下回る結果となった。結果を表3に示す。また、比較例1のアセチレンブラックについて透過型電子顕微鏡による観測を行ったところ、図2に示す透過型電子顕微鏡写真が得られた。
<比較例2>
 個数平均1次粒子径が48nmのアセチレンブラックをカーボンブラックとして用い、実施例1と同様な方法で電池用塗工液、電極および二次電池を作製し、各評価を実施した。比較例2で用いた電池用塗工液は分散性に優れるものの、極板抵抗が高い値を示した。また、電池評価においても5C放電容量が測定限界を下回る結果となった。結果を表3に示す。
<比較例3>
 DBP吸収量が254ml/100gのファーネスブラックをカーボンブラックとして用い、実施例1と同様な方法で電池用塗工液、電極および二次電池を作製し、各評価を実施した。比較例3で用いた電池用塗工液は分散性に優れるものの、極板抵抗が高い値を示した。また、電池評価においても5C放電容量が本発明の実施例より低い値となった。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表1、2および3の結果から、本発明の実施例の電池用カーボンブラックは導電性および分散性に優れており、さらにこれらを用いて製造される電極は抵抗が低く、電池は高出力特性に優れることが分かった。また、混合粉末の形態で提供することによっても、同様の効果が得られることが分かった。
 尚、本実施例以外の、各種活物質を使用した正極、負極およびリチウムイオン二次電池についても、活物質や高分子分散剤の種類によらず評価結果は良好であった。
 本発明の電池用カーボンブラックは導電性および分散性に優れており、さらにこれを用いることによって抵抗の低い電極および高出力特性に優れた電池を得ることができる。また、混合粉末の形態で提供することによって、電池製造者は従来の工程を変更することなく前記のような効果を得ることができる。

Claims (16)

  1.  個数平均1次粒子径が20nm以上40nm以下であり、
     圧縮DBP吸収量に対するDBP吸収量の比が2.2以下、かつ、圧縮DBP吸収量が100mL/100g以上200mL/100g以下である、電池用カーボンブラック。
  2.  アセチレンブラックである、請求項1に記載の電池用カーボンブラック。
  3.  活物質と、
     高分子結着剤と、
     請求項1又は2に記載の電池用カーボンブラックと、
    を含む、電池用塗工液。
  4.  さらに高分子分散剤を含む、請求項3に記載の電池用塗工液。
  5.  前記高分子分散剤が、ポリビニルピロリドンおよびビニルピロリドン単位を有する共重合体からなる群より選択される少なくとも1種を含む、請求項4に記載の電池用塗工液。
  6.  前記高分子分散剤の含有量が、カーボンブラックの全表面積に対して1mあたり0.05mg以上0.5mg以下である、請求項4又は5に記載の電池用塗工液。
  7.  高分子分散剤と、
     請求項1又は2に記載の電池用カーボンブラックと、
    を含み、
     前記高分子分散剤がポリビニルピロリドンおよびビニルピロリドン単位を有する共重合体からなる群より選択される少なくとも1種を含む、混合粉末。
  8.  前記高分子分散剤の含有量が、カーボンブラックの全表面積に対して1mあたり0.05mg以上0.5mg以下である、請求項7に記載の混合粉末。
  9.  請求項7又は8に記載の混合粉末と、
     活物質と、
     高分子結着剤と、
    を含む、電池用塗工液。
  10.  金属箔と、
     該金属箔上に形成された請求項1又は2に記載の電池用カーボンブラックを含む塗膜と、
    を備える、電池用電極。
  11.  前記塗膜が、活物質および高分子結着剤をさらに含む、請求項10に記載の電池用電極。
  12.  前記塗膜が、高分子分散剤をさらに含む、請求項10又は11に記載の電池用電極。
  13.  前記高分子分散剤が、ポリビニルピロリドンおよびビニルピロリドン単位を有する共重合体からなる群より選択される少なくとも1種を含む、請求項12に記載の電池用電極。
  14.  前記塗膜における前記高分子分散剤の含有量が、カーボンブラックの全表面積に対して1mあたり0.05mg以上0.5mg以下である、請求項12又は13に記載の電池用電極。
  15.  請求項10~14のいずれか一項に記載の電池用電極を備える電池。
  16.  請求項3~6および9のいずれか一項に記載の電池用塗工液を金属箔上に塗布して、前記金属箔と前記電池用塗工液から形成された塗膜とを備える電池用電極を得る工程を含む、電池用電極の製造方法。
PCT/JP2015/075457 2014-09-09 2015-09-08 電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池 WO2016039336A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016547448A JP6581991B2 (ja) 2014-09-09 2015-09-08 電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池
CN201580060425.4A CN107636872A (zh) 2014-09-09 2015-09-08 电池用炭黑、混合粉末、电池用涂覆液、电池用电极和电池
KR1020177008982A KR102493033B1 (ko) 2014-09-09 2015-09-08 전지용 카본 블랙, 혼합 분말, 전지용 도공액, 전지용 전극 및 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014182871 2014-09-09
JP2014-182871 2014-09-09

Publications (1)

Publication Number Publication Date
WO2016039336A1 true WO2016039336A1 (ja) 2016-03-17

Family

ID=55459081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075457 WO2016039336A1 (ja) 2014-09-09 2015-09-08 電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池

Country Status (4)

Country Link
JP (1) JP6581991B2 (ja)
KR (1) KR102493033B1 (ja)
CN (1) CN107636872A (ja)
WO (1) WO2016039336A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047454A1 (ja) * 2016-09-07 2018-03-15 デンカ株式会社 電極用導電性組成物およびそれを用いた電極、電池
JPWO2016186065A1 (ja) * 2015-05-19 2018-04-12 デンカ株式会社 シリカ被覆カーボンブラック、それを用いた電極用組成物、二次電池用電極および二次電池
CN109196695A (zh) * 2016-05-05 2019-01-11 卡博特公司 具有高结构炭黑的电极、组合物、以及设备
JP2019169272A (ja) * 2018-03-22 2019-10-03 三洋化成工業株式会社 樹脂集電体、及び、リチウムイオン電池
WO2022118921A1 (ja) * 2020-12-04 2022-06-09 デンカ株式会社 カーボンブラック、スラリー及びリチウムイオン二次電池
WO2023233788A1 (ja) * 2022-05-30 2023-12-07 デンカ株式会社 正極組成物、正極、電池、正極形成用塗液の製造方法、正極の製造方法及び電池の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052237A (ja) * 2003-08-05 2006-02-23 Mitsubishi Chemicals Corp カーボンブラック
JP2008034376A (ja) * 2006-06-27 2008-02-14 Kao Corp リチウムイオン電池用複合正極材料およびこれを用いた電池
JP2012038724A (ja) * 2010-07-16 2012-02-23 Mitsubishi Chemicals Corp リチウム二次電池用正極およびそれを用いたリチウム二次電池
JP2014143000A (ja) * 2013-01-22 2014-08-07 Toyo Ink Sc Holdings Co Ltd 二次電池電極形成用組成物、二次電池用電極および二次電池
JP2014221888A (ja) * 2013-05-14 2014-11-27 ライオン株式会社 導電性樹脂組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034542B1 (en) * 2006-06-27 2015-06-03 Kao Corporation Composite positive electrode material for lithium ion battery and battery using the same
JP5470780B2 (ja) * 2008-09-03 2014-04-16 東洋インキScホールディングス株式会社 電池用組成物
JP2012009227A (ja) * 2010-06-23 2012-01-12 Toyota Motor Corp リチウムイオン二次電池の製造方法
JP2012059466A (ja) 2010-09-07 2012-03-22 Toppan Printing Co Ltd リチウムイオン二次電池用正極合剤の製造方法および正極材
JP5578123B2 (ja) * 2011-03-29 2014-08-27 株式会社Gsユアサ 液式鉛蓄電池
JP2012221684A (ja) 2011-04-07 2012-11-12 Denki Kagaku Kogyo Kk 非水系二次電池用カーボンブラック、電極及び非水系二次電池
JP5835617B2 (ja) * 2012-01-24 2015-12-24 トヨタ自動車株式会社 密閉型リチウム二次電池
JP2013191783A (ja) * 2012-03-15 2013-09-26 Toyo Ink Sc Holdings Co Ltd 太陽電池封止材用樹脂組成物、太陽電池黒色封止材および太陽電池モジュール
JP6100516B2 (ja) * 2012-12-17 2017-03-22 デンカ株式会社 窒素含有カーボンブラック、その製造方法及びそれを用いた燃料電池用触媒
US10559828B2 (en) * 2013-02-04 2020-02-11 Zeon Corporation Slurry for lithium ion secondary battery positive electrodes
WO2014132809A1 (ja) * 2013-02-27 2014-09-04 東洋インキScホールディングス株式会社 カーボンブラック分散液およびその利用
CN105283514B (zh) * 2013-05-14 2017-09-19 狮王特殊化学株式会社 炭黑、导电性树脂组合物以及电极混合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052237A (ja) * 2003-08-05 2006-02-23 Mitsubishi Chemicals Corp カーボンブラック
JP2008034376A (ja) * 2006-06-27 2008-02-14 Kao Corp リチウムイオン電池用複合正極材料およびこれを用いた電池
JP2012038724A (ja) * 2010-07-16 2012-02-23 Mitsubishi Chemicals Corp リチウム二次電池用正極およびそれを用いたリチウム二次電池
JP2014143000A (ja) * 2013-01-22 2014-08-07 Toyo Ink Sc Holdings Co Ltd 二次電池電極形成用組成物、二次電池用電極および二次電池
JP2014221888A (ja) * 2013-05-14 2014-11-27 ライオン株式会社 導電性樹脂組成物

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016186065A1 (ja) * 2015-05-19 2018-04-12 デンカ株式会社 シリカ被覆カーボンブラック、それを用いた電極用組成物、二次電池用電極および二次電池
CN115411268A (zh) * 2016-05-05 2022-11-29 卡博特公司 具有高结构炭黑的电极、组合物、以及设备
CN109196695A (zh) * 2016-05-05 2019-01-11 卡博特公司 具有高结构炭黑的电极、组合物、以及设备
CN115411268B (zh) * 2016-05-05 2024-05-14 卡博特公司 具有高结构炭黑的电极、组合物、以及设备
US11264616B2 (en) 2016-09-07 2022-03-01 Denka Company Limited Conductive composition for electrodes, and electrode and battery using same
WO2018047454A1 (ja) * 2016-09-07 2018-03-15 デンカ株式会社 電極用導電性組成物およびそれを用いた電極、電池
JP7034077B2 (ja) 2016-09-07 2022-03-11 デンカ株式会社 電極用導電性組成物およびそれを用いた電極、電池
KR102387963B1 (ko) * 2016-09-07 2022-04-18 덴카 주식회사 전극용 도전성 조성물 및 이를 이용한 전극, 전지
JPWO2018047454A1 (ja) * 2016-09-07 2019-06-24 デンカ株式会社 電極用導電性組成物およびそれを用いた電極、電池
KR20190045198A (ko) * 2016-09-07 2019-05-02 덴카 주식회사 전극용 도전성 조성물 및 이를 이용한 전극, 전지
JP2019169272A (ja) * 2018-03-22 2019-10-03 三洋化成工業株式会社 樹脂集電体、及び、リチウムイオン電池
JP7128576B2 (ja) 2018-03-22 2022-08-31 三洋化成工業株式会社 樹脂集電体、及び、リチウムイオン電池
WO2022118921A1 (ja) * 2020-12-04 2022-06-09 デンカ株式会社 カーボンブラック、スラリー及びリチウムイオン二次電池
WO2023233788A1 (ja) * 2022-05-30 2023-12-07 デンカ株式会社 正極組成物、正極、電池、正極形成用塗液の製造方法、正極の製造方法及び電池の製造方法

Also Published As

Publication number Publication date
JPWO2016039336A1 (ja) 2017-06-22
KR102493033B1 (ko) 2023-01-30
KR20170049558A (ko) 2017-05-10
CN107636872A (zh) 2018-01-26
JP6581991B2 (ja) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6581991B2 (ja) 電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池
CN102666090B (zh) 层叠膜和非水电解质二次电池
US10626264B2 (en) Conductive composition, current collector with base layer for electric storage device, electrode for electric storage device, and electric storage device
JP2014130844A (ja) リチウムイオン二次電池電極の製造方法、及びリチウムイオン二次電池
JP6951624B2 (ja) リチウムイオン二次電池用電極、及びその製造方法
US11522175B2 (en) Method of producing cathode slurry, cathode and all-solid-state battery, and cathode and all-solid-state battery
JP6604965B2 (ja) シリカ被覆カーボンブラック並びにそれを用いた電極用組成物、二次電池用電極及び二次電池
JP7150448B2 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
KR102492457B1 (ko) 전극용 도전성 조성물, 비수계 전지용 전극 및 비수계 전지
JP6451934B2 (ja) 電気化学素子電極用複合粒子
JP7059858B2 (ja) カーボンブラック分散組成物およびその利用
JPWO2019216216A1 (ja) 全固体電池用集電層、全固体電池、及び炭素材料
JP2020021629A (ja) 電池用カーボンブラック分散組成物およびその利用
JP6197725B2 (ja) 二次電池用スラリー組成物の製造方法
JP7322865B2 (ja) 複合粒子、電極、蓄電デバイス、複合粒子の製造方法及び電極の製造方法
CN108689404B (zh) 活性炭微球、电极及超级电容器
JP2019117725A (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極及び蓄電デバイス
JP6760034B2 (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
WO2016186065A1 (ja) シリカ被覆カーボンブラック、それを用いた電極用組成物、二次電池用電極および二次電池
TW202230857A (zh) 非水電解質二次電池用正極材料、非水電解質二次電池用正極、及非水電解質二次電池
KR20240028301A (ko) 카본 나노 튜브 분산체
CN117712281A (zh) 一种干电极膜和制备其的方法
JP2024061526A (ja) 電気化学素子電極用スラリー、電気化学素子用電極、電気化学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177008982

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15839590

Country of ref document: EP

Kind code of ref document: A1