WO2022118921A1 - カーボンブラック、スラリー及びリチウムイオン二次電池 - Google Patents

カーボンブラック、スラリー及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2022118921A1
WO2022118921A1 PCT/JP2021/044304 JP2021044304W WO2022118921A1 WO 2022118921 A1 WO2022118921 A1 WO 2022118921A1 JP 2021044304 W JP2021044304 W JP 2021044304W WO 2022118921 A1 WO2022118921 A1 WO 2022118921A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
slurry
less
dbp
mass
Prior art date
Application number
PCT/JP2021/044304
Other languages
English (en)
French (fr)
Inventor
祐作 原田
祐司 古賀
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to EP21900671.5A priority Critical patent/EP4234638A4/en
Priority to KR1020237013952A priority patent/KR20230097016A/ko
Priority to US18/254,715 priority patent/US20240021834A1/en
Priority to CN202180075059.5A priority patent/CN116457427A/zh
Priority to JP2022566979A priority patent/JPWO2022118921A1/ja
Publication of WO2022118921A1 publication Critical patent/WO2022118921A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/005Carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/50Furnace black ; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to carbon black, slurry and lithium ion secondary batteries.
  • Lithium-ion secondary batteries are widely used as a power source for small electronic devices such as smartphones and tablet personal computers.
  • Lithium-ion secondary batteries are generally configured with electrodes, separators, and electrolytes.
  • the electrode is manufactured by applying and drying a mixed material slurry in which an active material, a conductive agent, a binder and the like are dispersed in a dispersion medium on a metal plate for a current collector to form a mixed material layer.
  • carbon black is used as the conductive agent (for example, Patent Document 1).
  • the role of the conductive agent is to form a conductive path in the electrode. Therefore, if they aggregate in the electrode, a portion having poor conductivity locally appears, the active material is not effectively used, the discharge capacity is lowered, and the battery characteristics are deteriorated.
  • the structure of carbon black affects the conductivity and slurry viscosity.
  • the structure of carbon black is a structure in which primary particles are connected. The carbon black structure develops in an intricately entangled shape as the primary particles become smaller in diameter. When the structure is developed, a conductive path in the electrode can be efficiently formed, but if the dispersed state is poor, the effect cannot be fully exerted.
  • the present inventors have found that the ratio of the amount of DBP absorbed to the amount of compressed DBP absorbed greatly affects the slurry viscosity in carbon black having a high specific surface area.
  • DBP DBP absorption amount
  • CDBP compressed DBP absorption amount
  • a slurry containing the carbon black according to any one of (1) to (4) and a dispersion medium A slurry containing the carbon black according to any one of (1) to (4) and a dispersion medium.
  • the slurry according to (5), wherein the viscosity at a shear rate of 10s -1 at 25 ° C. is 200 mPa ⁇ s or more and 1200 mPa ⁇ s or less.
  • a lithium ion secondary battery including a positive electrode, a negative electrode, and a separator, wherein at least one of the positive electrode and the negative electrode contains the carbon black according to any one of (1) to (4).
  • a novel carbon black having a high specific surface area and capable of forming a slurry having a low viscosity. Further, according to the present invention, a slurry containing the carbon black and a lithium ion secondary battery containing the carbon black are provided.
  • the numerical range indicated by “-” means the range of the numerical value “greater than or equal to” on the left side and the numerical value “less than or equal to” on the right side.
  • “A to B” means that it is A or more and B or less.
  • the carbon black of the present embodiment has a specific surface area of 150 m 2 / g or more and 400 m 2 / g or less. This specific surface area is higher than the specific surface area of carbon black conventionally used as a conductive agent for lithium ion secondary batteries. Carbon black having such a high specific surface area is effective as a conductive agent because it has a high ability to impart conductivity due to the percolation effect in the matrix.
  • the specific surface area is measured according to the method A distribution method (thermal conductivity measurement method) of JIS K6217-2: 2017.
  • the specific surface area of carbon black is less than 150 m 2 / g, the number of contact points with the active material in the mixture layer may be reduced, and sufficient conductivity may not be exhibited.
  • the specific surface area of carbon black is preferably 160 m 2 / g or more, more preferably 180 m 2 / g or more, and further preferably 200 m 2 / g or more. That is, the specific surface area of carbon black may be, for example, 150 to 400 m 2 / g, 160 to 400 m 2 / g, 180 to 400 m 2 / g or 200 to 400 m 2 / g.
  • the specific surface area of carbon black can be increased by reducing the particle size of the primary particles, hollowing them out, and making the surface of the particles porous.
  • the ratio (DBP / CDBP) of the DBP absorption amount (DBP) to the compressed DBP absorption amount (CDBP) is 2.0 or less.
  • the amount of DBP absorbed is an index for evaluating the ability to absorb dibutyl phthalate in the voids formed by the particle surface and the structure of carbon black.
  • the DBP absorption amount indicates a value obtained by converting the value measured by the method described in the B method of JIS K6221 into a value equivalent to JIS K6217-4: 2008 by the following formula (a).
  • DBP absorption amount (A-10.974) /0.7833 ... (a)
  • A indicates the value of the DBP absorption amount measured by the method described in JIS K6221.
  • the compressed DBP absorption amount is a DBP absorption amount measured after the carbon black is compressed in advance to destroy the structure, and is an index indicating the mechanical strength of the structure. It can be measured according to JIS K6217-4: 2008. Specifically, the sample is set in a hydraulic cylinder, compressed at 165 MPa for 1 second, then the sample is taken out and sieved until the sample mass becomes 0.25 cm or less. After repeating this series of operations four times, the compressed DBP absorption amount (CDBP) can be obtained by measuring the DBP absorption amount.
  • the present inventors have found that the ratio of the DBP absorption amount to the compressed DBP absorption amount (DBP / CDBP) greatly affects the slurry viscosity in carbon black having a high specific surface area. I found it. That is, the carbon black of the present embodiment can realize a sufficiently low slurry viscosity while having a high specific surface area when the ratio (DBP / CDBP) is 2.0 or less.
  • Carbon black has a thermal history during synthesis (for example, thermal history due to thermal decomposition and combustion reaction of fuel oil, thermal decomposition and combustion reaction of raw materials, quenching and reaction termination by cooling medium, etc.), collision frequency of primary particles.
  • the shape and strength of the structure differ greatly depending on the difference.
  • carbon black having a ratio (DBP / CDBP) of 2.0 or less has a ratio (DBP / CDBP) of more than 2.0.
  • the slurry viscosity is lower than that of carbon black.
  • a low ratio (DBP / CDBP) means that the structure is less destroyed by an external force. It is considered that the carbon black of the present embodiment is less likely to be destroyed by the structure due to an external force at the time of producing the slurry, so that the surface with high activity newly generated by the destruction is reduced, the carbon black is less likely to reaggregate, and the slurry viscosity is lowered. ..
  • the ratio (DBP / CDBP) is 2.0 or less, even carbon black having a small particle size, a high specific surface area, and a developed structure can be collected by increasing the viscosity of the mixture slurry. It is possible to reduce uneven coating on the electric body and uneven distribution of the material in the electrode. In addition, by improving the dispersed state and contact state of the active material and the conductive agent in the electrode, the high capacity of the lithium ion secondary battery is suppressed while suppressing the local decrease in conductivity and the decrease in the discharge capacity of the battery. Can be achieved.
  • the ratio (DBP / CDBP) is preferably 1.9 or less, more preferably 1.8 or less, still more preferably 1.7 or less, from the viewpoint that the above effects are more prominently exhibited. Is.
  • the ratio (DBP / CDBP) is preferably 1.0 or more, more preferably 1.1 or more, further preferably 1.2 or more, and further preferably 1.3 or more. It is preferable, and 1.4 or more is particularly preferable. That is, the ratio (DBP / CDBP) is, for example, 1.0 to 2.0, 1.0 to 1.9, 1.0 to 1.8, 1.0 to 1.7, 1.1 to 2.
  • the amount of DBP absorbed by the carbon black of the present embodiment may be, for example, 180 mL / 100 g or more, preferably 190 mL / 100 g or more, and more preferably 200 mL / 100 g or more.
  • the amount of DBP absorbed by the carbon black of the present embodiment is, for example, 370 mL / 100 g or less, more preferably 350 mL / 100 g or less.
  • the amount of DBP absorbed by the carbon black of the present embodiment is, for example, 180 to 370 mL / 100 g, 180 to 350 mL / 100 g, 190 to 370 mL / 100 g, 190 to 350 mL / 100 g, 200 to 370 mL / 100 g, or 200 to 200. It may be 350 mL / 100 g.
  • the amount of DBP absorbed increases because the neck portion formed by fusion of primary particles and the voids formed between the particles increase. If the amount of DBP absorbed is too small, the ability to impart conductivity in the electrode may be reduced because the structure is not sufficiently developed, and the volume of the active material changes due to charging and discharging of the lithium ion secondary battery. Cannot be buffered, and battery characteristics such as cycle characteristics may deteriorate. If the amount of DBP absorbed is too large, the binder in the mixture layer may be trapped in the carbon black structure, the adhesion to the active material or the current collector may be lowered, and the battery characteristics may be deteriorated.
  • the average primary particle size of the carbon black of the present embodiment may be, for example, less than 35 nm, preferably less than 30 nm, and more preferably less than 25 nm.
  • the slurry has a lower viscosity. This is because carbon black with a large particle size has a high specific surface area due to the porosity of the surface, while carbon black with a relatively smooth surface forms a complex structure with carbon black with a small particle size, resulting in a high specific surface area. It is considered that the above-mentioned effect due to the structure strength expressed by the ratio (DBP / CDBP) is more remarkable.
  • carbon black used as a conductive agent for a lithium ion secondary battery is difficult to be slurryed when the average primary particle size is small (for example, less than 30 nm), but the carbon black of the present embodiment is described above.
  • slurry can be formed even when the average primary particle size is small (for example, less than 30 nm). Since carbon black having a small particle size can be used in this way, high conductivity can be exhibited even if the compounding ratio in the mixture layer is low.
  • the average primary particle size of carbon black may be, for example, 1 nm or more, 5 nm or more, or 10 nm or more.
  • the average primary particle size of carbon black is, for example, 1 nm or more and less than 35 nm, 1 nm or more and less than 30 nm, 1 nm or more and less than 25 nm, 5 nm or more and less than 35 nm, 5 nm or more and less than 30 nm, 5 nm or more and less than 25 nm, 10 nm or more and less than 35 nm, 10 nm or more. It may be less than 30 nm, or 10 nm or more and less than 25 nm.
  • the average primary particle size of carbon black can be obtained by measuring the primary particle size of 100 or more carbon blacks randomly selected from a 50,000-fold magnified image of a transmission electron microscope (TEM) and calculating the average value. can.
  • the primary particles of carbon black have a small aspect ratio and a shape close to a true sphere, but they are not perfect true spheres. Therefore, in the present embodiment, the largest of the line segments connecting the two outer peripheral points of the primary particles in the TEM image is defined as the carbon black primary particle diameter.
  • the ash content of the carbon black of the present embodiment may be, for example, 0.05% by mass or less, preferably 0.03% by mass or less, and more preferably 0.02% by mass or less.
  • the ash content can be measured according to JIS K1469: 2003, and can be reduced, for example, by classifying carbon black with a device such as a dry cyclone.
  • the iron content of carbon black in the present embodiment may be, for example, less than 2500 mass ppb, preferably less than 2300 mass ppb, and more preferably less than 2000 mass ppb.
  • the iron content can be reduced, for example, by bringing carbon black into contact with the magnet.
  • the iron content of carbon black can be pretreated by the acid decomposition method according to JIS K0116: 2014 and measured by high frequency inductively coupled plasma mass spectrometry. Specifically, it can be measured by the following method. First, 1 g of carbon black is precisely weighed in a quartz beaker and heated at 800 ° C. ⁇ 3 hr in an electric furnace in an air atmosphere. Next, 10 mL of mixed acid (70% by mass of hydrochloric acid, 30% by mass of nitric acid) and 10 mL or more of ultrapure water are added to the residue, and the mixture is heated and dissolved on a hot plate at 200 ° C. for 1 hr. After allowing to cool, the solution diluted and adjusted to 25 mL with ultrapure water is measured with a high-frequency inductively coupled plasma mass spectrometer (Agilent 8800 manufactured by Agilent).
  • the carbon black ash content and iron content of the present embodiment are small, it is possible to more remarkably suppress the mixing of foreign substances such as metals and ceramics due to damage to the equipment and the like in the kneading process. In addition, it is possible to suppress a decrease in conductivity in the electrode due to the inclusion of ash, insulating foreign matter, and the like. Therefore, the carbon black of the present embodiment having a low ash content and iron content can be suitably used for a lithium ion secondary battery that requires high safety.
  • the method for producing carbon black of the present embodiment is not particularly limited.
  • a raw material such as a hydrocarbon is supplied from a nozzle installed in the upstream portion of the reactor, and carbon is subjected to a thermal decomposition reaction and / or a combustion reaction.
  • Black can be produced and collected from a bag filter directly connected to the downstream of the reactor.
  • the raw materials used are not particularly limited, and are gaseous hydrocarbons such as acetylene, methane, ethane, propane, ethylene, propylene and butadiene, and oils such as toluene, benzene, xylene, gasoline, kerosene, light oil and heavy oil. Hydrocarbons can be used. Above all, it is preferable to use acetylene having few impurities. Since acetylene has a larger heat of decomposition than other raw materials and can raise the temperature in the reaction furnace, the formation of carbon black nuclei becomes dominant over the particle growth due to the addition reaction, and the primary particle size of carbon black is reduced. be able to.
  • gaseous hydrocarbons such as acetylene, methane, ethane, propane, ethylene, propylene and butadiene
  • oils such as toluene, benzene, xylene, gasoline, kerosene, light oil and heavy oil. Hydrocarbons can be used.
  • the present inventors are effective in using a plurality of raw materials and heating the raw materials before supplying them to the reactor. I found that.
  • carbon black generated via the high temperature part of the reactor and carbon black generated via the low temperature part were mixed, and there was a large variation in characteristics, but by using multiple raw materials, It is considered that the temperature in the reaction furnace becomes uniform and the reaction history of thermal decomposition and combustion passing through becomes uniform, so that the structure strength of carbon black becomes uniform and the destruction from weak parts is reduced. Further, it is considered that the mixing of the plurality of raw materials was promoted by heating the raw materials, and a more uniform temperature field could be formed.
  • oily hydrocarbons are used, they are preferably gasified and supplied by heating.
  • the heating method is not particularly limited, and for example, a tank and a transportation pipe can be heated by heat exchange with a heat medium.
  • oxygen, hydrogen, nitrogen, steam, etc. it is preferable to supply oxygen, hydrogen, nitrogen, steam, etc. to the reactor separately from the raw material that is the carbon source. Gases other than these raw materials promote gas agitation in the reaction furnace, and the frequency of collision and fusion of the primary particles of carbon black generated from the raw materials is increased. Therefore, by using a gas other than the raw materials, carbon black is used. The structure of the gas is developed, and the amount of DBP absorbed tends to increase. It is preferable to use oxygen as a gas other than the raw material. When oxygen is used, a part of the raw material is burned and the temperature in the reactor becomes high, so that carbon black having a small particle size and a high specific surface area can be easily obtained. A plurality of gases may be used as the gas other than the raw material.
  • the gas supply location other than the raw material is preferably the upstream portion of the reactor, and it is preferable to supply the gas from a nozzle different from the raw material. As a result, the raw materials supplied from the upstream portion are efficiently agitated, and the structure is easily developed.
  • a cooling medium such as water may be sent from the downstream part of the reactor to thermally decompose the raw material and stop the combustion reaction, but the effect of structure development is not seen, on the other hand.
  • the slurry of the present embodiment contains the carbon black of the present embodiment and a dispersion medium.
  • the viscosity of the slurry is too high, strong shear will be applied during kneading with the active material, which may destroy the structure of the carbon black and reduce the conductivity, or foreign matter may be mixed in due to wear of the device.
  • the viscosity of the slurry is too low, carbon black tends to settle in the slurry, and it may be difficult to maintain uniformity.
  • the slurry viscosity can be lowered, so that the destruction of the carbon black structure is remarkably suppressed and the excellent conductivity-imparting ability can be maintained, and foreign matter is mixed due to wear of the equipment. Is significantly suppressed. That is, in the present embodiment, the mixing ratio of the active material in the mixture layer can be increased without impairing the viscosity characteristics and conductivity of the slurry, and the capacity of the lithium ion secondary battery can be increased.
  • the viscosity of the slurry (25 ° C., shear rate 10s -1 ) is preferably 100 mPa ⁇ s or more, more preferably 200 mPa ⁇ s or more.
  • the slurry viscosity (25 ° C., shear rate 10s -1 ) is preferably 1500 mPa ⁇ s or less, more preferably 1200 mPa ⁇ s or less.
  • the viscosity of the slurry (25 ° C., shear rate 10s -1 ) may be, for example, 100 to 1500 Pa ⁇ s, 100 to 1200 Pa ⁇ s, 200 to 1500 Pa ⁇ s, or 200 to 1200 Pa ⁇ s.
  • the dispersion medium is not particularly limited, and for example, N-methyl-2-pyrrolidone, ethanol, ethyl acetate and the like can be used.
  • the slurry of the present embodiment may further contain other carbon black, graphite, carbon nanotubes, carbon nanofibers and the like as long as it does not impair the conductivity-imparting ability and dispersibility of the carbon black of the present embodiment.
  • the slurry of the present embodiment may further contain an active substance and additives such as a dispersant.
  • the content of carbon black of the present embodiment may be, for example, 0.5% by mass or more, preferably 1% by mass or more. Further, in the slurry of the present embodiment, the content of carbon black of the present embodiment may be, for example, 50% by mass or less, preferably 20% by mass or less. That is, in the slurry of the present embodiment, the content of carbon black of the present embodiment is, for example, 0.5 to 50% by mass, 0.5 to 20% by mass, 1 to 50% by mass, or 1 to 20% by mass. May be%.
  • the method for producing the slurry of the present embodiment is not particularly limited, and for example, it is produced by kneading each component using a general device such as a mixer, a kneader, a disperser, a mill, and an automatic revolving rotary device. be able to.
  • the slurry of the present embodiment can be suitably used as an electrode forming slurry for forming an electrode of a lithium ion secondary battery.
  • the electrode forming slurry may be a positive electrode forming slurry or a negative electrode forming slurry.
  • the slurry of the present embodiment may contain an active material, a conductive agent and a dispersion medium, and at this time, the slurry is the carbon of the present embodiment as a conductive agent. Contains black.
  • the content of the conductive agent in the electrode forming slurry may be, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.08% by mass or more.
  • the content of the conductive agent in the electrode forming slurry may be, for example, 20% by mass or less, preferably 15% by mass or less, and more preferably 10% by mass or less. That is, the content of the conductive agent in the electrode forming slurry is, for example, 0.01 to 20% by mass, 0.01 to 15% by mass, 0.01 to 10% by mass, 0.05 to 20% by mass, 0. It may be 05 to 15% by mass, 0.05 to 10% by mass, 0.08 to 20% by mass, 0.08 to 15% by mass, or 0.08 to 10% by mass.
  • the electrode forming slurry may further contain a conductive agent other than carbon black.
  • a conductive agent other than carbon black examples include graphite, carbon nanotubes, carbon nanofibers and the like.
  • the ratio of carbon black to the conductive agent may be, for example, 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, and even 100% by mass. good.
  • the active material is not particularly limited, and a known active material used for a lithium ion secondary battery can be used without particular limitation.
  • the positive electrode active material include lithium cobalt oxide, lithium nickel oxide, lithium manganate, nickel-manganese-lithium cobalt oxide, lithium iron phosphate and the like.
  • the negative electrode active material include carbonaceous materials such as natural graphite, artificial graphite, graphite, activated carbon, coke, needle coke, flude coke, mesophase microbeads, carbon fiber, and pyrolytic carbon.
  • the electrode forming slurry may further contain a binder.
  • the binder is not particularly limited, and a known binder used for a lithium ion secondary battery can be used without particular limitation.
  • the binder include polyethylene, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, carboxymethyl cellulose, polyvinyl alcohol, tetrafluoroethylene resin, polyvinylidene fluoride, polyfluorinated chloroprene and the like. Can be mentioned.
  • the method of forming the electrode with the electrode forming slurry is not particularly limited, and for example, the electrode forming slurry can be applied onto the current collector and dried to form an electrode including the current collector and the mixture layer. can.
  • the current collector is not particularly limited, and for example, gold, silver, copper, platinum, aluminum, iron, nickel, chromium, manganese, lead, tungsten, titanium, and metal foils of alloys containing these as main components are used. ..
  • gold, silver, copper, platinum, aluminum, iron, nickel, chromium, manganese, lead, tungsten, titanium, and metal foils of alloys containing these as main components are used. ..
  • an aluminum foil is preferably used for the positive electrode current collector
  • a copper foil is preferably used for the negative electrode current collector.
  • the lithium ion secondary battery of the present embodiment includes a positive electrode, a negative electrode, and a separator. Further, in the lithium ion secondary battery of the present embodiment, at least one of the positive electrode and the negative electrode contains the carbon black of the above-mentioned embodiment. In the lithium ion secondary battery of the present embodiment, at least one of the positive electrode and the negative electrode may be formed from the above-mentioned electrode forming slurry, and at least one of the positive electrode and the negative electrode may be formed from the above-mentioned electrode forming slurry. It may contain a mixture layer formed on the current collector by the slurry.
  • the lithium ion secondary battery of the present embodiment has a high capacity because it uses the carbon black of the present embodiment, and can be manufactured with good productivity by using the above-mentioned electrode forming slurry.
  • the positive electrode contains the above-mentioned carbon black of the present embodiment. Further, in the lithium ion secondary battery of the present embodiment, the positive electrode is preferably formed from the above-mentioned electrode forming slurry, and the positive electrode is formed on the current collector by the above-mentioned electrode forming slurry. It is more preferable to include a mixture layer.
  • the configuration other than the electrode containing the carbon black of the present embodiment may be the same as that of the known lithium ion secondary battery.
  • the separator is not particularly limited, and a known separator can be used as a separator for a lithium ion secondary battery without particular limitation.
  • the separator include synthetic resins such as polyethylene and polypropylene.
  • the separator is preferably a porous film because it has good retention of the electrolytic solution.
  • the lithium ion secondary battery of the present embodiment may include a group of electrodes in which a positive electrode and a negative electrode are laminated or wound via a separator.
  • the positive electrode, the negative electrode and the separator may be immersed in the electrolytic solution.
  • the electrolytic solution is not particularly limited, and may be, for example, a non-aqueous electrolytic solution containing a lithium salt.
  • the non-aqueous solvent in the non-aqueous electrolytic solution containing a lithium salt include ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate.
  • the lithium salt that can be dissolved in a non-aqueous solvent include lithium hexafluoride phosphate, lithium borotetrafluoride, and lithium trifluoromethanesulfonate.
  • the lithium ion secondary battery of the present embodiment may use an ion conductive polymer or the like as an electrolyte.
  • one aspect of the present invention may be an evaluation method for evaluating carbon black having a specific surface area of 150 m 2 / g or more and 400 m 2 / g or less.
  • the evaluation method includes a measurement step of determining the ratio (DBP / CDBP) of the DBP absorption amount (DBP) to the compressed DBP absorption amount (CDBP), and an evaluation step of evaluating carbon black by the ratio (DBP / CDBP). You may be prepared.
  • the evaluation step may be a sorting step of sorting carbon black having a ratio (DBP / CDBP) of 2.0 or less.
  • the above evaluation method can also be said to be a carbon black sorting method.
  • Example 1 Manufacturing of carbon black> From the nozzle installed upstream of the carbon black reactor (furnace length 6 m, furnace diameter 0.65 m), acetylene, which is the raw material, is 12 Nm 3 / h, toluene is 32 kg / h, and oxygen is 20 Nm 3 / h as a gas other than the raw material. It was supplied to produce carbon black, which was collected by a bag filter installed in the downstream part of the reactor. After that, it was collected in a tank through a dry cyclone device and a magnet for removing iron. Acetylene, toluene, and oxygen were heated to 115 ° C. and then supplied to the reactor. The following physical properties of the obtained carbon black were measured. The evaluation results are shown in Table 1.
  • ⁇ Making batteries 40 parts by mass of carbon black slurry (1.2 parts by mass of carbon black, 38.8 parts by mass of N-methyl-2-pyrrolidone), LiNi 0.5 Mn 0.3 Co 0.2 O 2 (Yumicoa) as a positive electrode active material 96.8 parts by mass of "TX10”), 2 parts by mass of polyvinylidene fluoride (“HSV900” manufactured by Alchema) as a binder, 0.1 part by mass of polyvinyl alcohol (“B05”) manufactured by Denka, as a dispersion medium.
  • N-methyl-2-pyrrolidone manufactured by Kanto Chemical Co., Ltd.
  • a rotating and revolving mixer (“Awatori Rentaro ARV-310” manufactured by Shinky Co., Ltd.) to form a positive electrode.
  • a material slurry was prepared.
  • the obtained mixture slurry for forming a positive electrode was applied on an aluminum foil (manufactured by UACJ) having a thickness of 15 ⁇ m with an applicator, and pre-dried at 105 ° C. for 1 hour.
  • a positive electrode was prepared by vacuum drying at 170 ° C. for 3 hours.
  • the obtained mixture slurry for forming a negative electrode was applied on a copper foil (manufactured by UACJ) having a thickness of 10 ⁇ m with an applicator, and pre-dried at 60 ° C. for 1 hour. Next, it was pressed with a roll press machine at a linear pressure of 100 kg / cm to prepare the sum of the thicknesses of the copper foil and the coating film to be 40 ⁇ m.
  • a negative electrode was prepared by vacuum drying at 120 ° C. for 3 hours in order to completely remove water.
  • the positive electrode was processed to 40 ⁇ 40 mm and the negative electrode was processed to 44 ⁇ 44 mm, and a polyolefin microporous film was placed between both electrodes as a separator to prepare a battery.
  • 1 mol / L of lithium hexafluorophosphate (manufactured by Stella Chemifa) is dissolved in a solution in which ethylene carbonate (manufactured by Aldrich) / dimethyl carbonate (manufactured by Aldrich) is mixed at a volume ratio of 1/1. was used.
  • the manufactured battery was charged at a constant current constant voltage of 4.35 V and 0.2 C limit at 25 ° C., and then discharged to 3.0 V at a constant current of 0.2 C.
  • the discharge current was changed to 0.2C, 0.5C, 1C, 2C, and 3C, and the discharge capacity for each discharge current was measured.
  • the capacity retention rate at the time of 3C discharge with respect to the time of 0.2C discharge was calculated and evaluated as the discharge rate characteristic.
  • the produced battery was charged at 4.35 V at 25 ° C. with a constant current and constant voltage limited to 1 C, and then discharged to 3.0 V with a constant current of 1 C.
  • the above charge and discharge were repeated for 500 cycles, and the discharge capacity was measured.
  • the capacity retention rate at the time of 500 cycle discharge with respect to the time of 1 cycle discharge was calculated and evaluated as a cycle characteristic.
  • the measurement results are shown in Table 2.
  • Example 2 Carbon black in the same manner as in Example 1 except that the oxygen supply amount was changed to 21 Nm 3 / h (Example 2), 22 Nm 3 / h (Example 3) or 24 Nm 3 / h (Example 4).
  • Example 2 Carbon black in the same manner as in Example 1 except that the oxygen supply amount was changed to 21 Nm 3 / h (Example 2), 22 Nm 3 / h (Example 3) or 24 Nm 3 / h (Example 4).
  • Example 3 Carbon black in the same manner as in Example 1 except that the oxygen supply amount was changed to 21 Nm 3 / h (Example 2), 22 Nm 3 / h (Example 3) or 24 Nm 3 / h (Example 4).
  • Example 3 Carbon black in the same manner as in Example 1 except that the oxygen supply amount was changed to 21 Nm 3 / h (Example 2), 22 Nm 3 / h (Example 3) or 24 Nm 3 /
  • Example 5 Carbon black was prepared and evaluated in the same manner as in Example 1 except that the temperature at the time of supplying toluene was changed to 100 ° C. and the amount of oxygen supplied was changed to 21 Nm 3 / h. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 6 Carbon in the same manner as in Example 1 except that the temperature at the time of supplying acetylene was changed to 85 ° C, the temperature at the time of supplying toluene was changed to 100 ° C, and the amount of oxygen supplied was changed to 21 Nm 3 / h. Black was made and evaluated. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 7 Carbon in the same manner as in Example 1 except that the temperature at the time of supplying acetylene was changed to 85 ° C, the temperature at the time of supplying toluene was changed to 85 ° C, and the amount of oxygen supplied was changed to 21 Nm 3 / h. Black was made and evaluated. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 8 Carbon black was prepared and evaluated in the same manner as in Example 1 except that the supply amount of acetylene was changed to 11 Nm 3 / h, the supply amount of toluene was changed to 30 kg / h, and the supply amount of oxygen was changed to 19 Nm 3 / h. did. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 9 Carbon black was prepared and evaluated in the same manner as in Example 1 except that the supply amount of acetylene was changed to 13 Nm 3 / h, the supply amount of toluene was changed to 35 kg / h, and the supply amount of oxygen was changed to 26 Nm 3 / h. did. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 10 Carbon black was produced in the same manner as in Example 1 except that 12 Nm 3 / h of ethylene was heated to 115 ° C. and supplied instead of acetylene, and the oxygen supply amount was changed to 22 Nm 3 / h. And evaluated. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 11 Carbon black was prepared in the same manner as in Example 1 except that 32 kg / h of benzene was heated to 115 ° C. and supplied instead of toluene, and the amount of oxygen supplied was changed to 21 Nm 3 / h. ,evaluated. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Carbon black was prepared and evaluated in the same manner as in Example 1 except that hydrogen of 21 Nm 3 / h was heated to 115 ° C. and supplied in place of oxygen. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 2 Carbon black was prepared and evaluated in the same manner as in Example 1 except that the supply amount of acetylene was changed to 11 Nm 3 / h, the supply amount of toluene was changed to 30 kg / h, and the supply amount of oxygen was changed to 24 Nm 3 / h. .. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 12 The carbon black obtained in Comparative Example 1 was oxidized in an electric furnace heated to 720 ° C. to obtain carbon black. The obtained carbon black was evaluated in the same manner as in Example 1. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 13 Carbon black was prepared in the same manner as in Example 1 except that the oxygen supply amount was changed to 21 Nm 3 / h and the classification conditions of the dry cyclone device were changed to adjust the ash content. evaluated. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 14 Carbon black was produced in the same manner as in Example 1 except that the oxygen supply amount was changed to 21 Nm 3 / h and the iron content was adjusted by changing the magnetic flux density condition of the iron removing magnet. And evaluated. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 3 Carbon black was prepared and evaluated in the same manner as in Example 1 except that the supply amount of acetylene was changed to 38 Nm 3 / h, the supply amount of oxygen was changed to 10 Nm 3 / h without supplying toluene. .. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 4 (Comparative Example 4) Example 1 except that the oxygen supply amount was changed to 22 Nm 3 / h, and the temperature at the time of supplying acetylene, the temperature at the time of supplying toluene, and the temperature at the time of supplying oxygen were all changed to 25 ° C. Carbon black was prepared and evaluated in the same manner as above. The results are shown in Table 1. Moreover, using the obtained carbon black, the slurry and the battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • the carbon black of the present invention can be suitably used for a lithium ion secondary battery electrode slurry and a lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

比表面積が150m2/g以上400m2/g以下であり、圧縮DBP吸収量(CDBP)に対するDBP吸収量(DBP)の比(DBP/CDBP)が2,0以下である、カーボンブラック。

Description

カーボンブラック、スラリー及びリチウムイオン二次電池
 本発明は、カーボンブラック、スラリー及びリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、スマートフォン、タブレット型パソコン等の小型電子機器の電源として幅広く用いられている。リチウムイオン二次電池は一般に、電極、セパレータ、電解液を備えて構成される。電極は、活物質、導電剤、バインダー等を分散媒に分散させた合材スラリーを集電体用金属板上に塗工・乾燥させ、合材層とすることで製造される。
 導電剤には、例えばカーボンブラックが使用される(例えば、特許文献1)。
特開2014-193986号公報
 導電剤の役割は電極内で導電パスを形成することである。そのため、電極内で凝集してしまうと、局所的に導電性の劣る部分が現れ、活物質が有効に利用されずに放電容量が低下し、電池特性が低下する原因となる。
 近年、リチウムイオン二次電池の高容量化が求められており、合材層中の活物質の配合比率を増加させ、導電剤及びバインダーの配合比率を減少させる傾向にある。導電剤の配合比率が減少すると電極内での導電パスの形成が困難となり、電池特性が低下してしまう。そこで小粒径の導電剤を用いて単位質量あたりの粒子個数を増やし、電極内で導電剤同士の近接距離を短くしたり、活物質及び集電体との接触点を増やすことで導電性を向上させる検討が行われている。しかしながら、導電剤の小粒径化に伴い比表面積が高くなると、合材スラリーの粘度が著しく上昇してしまうため、均一分散が困難となる。
 また、導電剤としてカーボンブラックを用いる場合、カーボンブラックのストラクチャーが導電性及びスラリー粘度に影響する。ここでカーボンブラックのストラクチャーとは一次粒子が連結した構造のことである。カーボンブラックのストラクチャーは、一次粒子の小粒径化に伴い、複雑に絡み合った形状で発達する。ストラクチャーが発達すると、電極内での導電パスを効率的に形成できるが、分散状態が悪いとその効果を十分に発揮できない。
 導電剤の高分散及び合材スラリーの低粘度化を目的として、高圧ジェットミルなどの装置で強力な衝突エネルギーを与えて分散することや、分散処理時間の延長などが検討されているが、装置の摩耗により不純物が混入するなどの問題があった。また、分散剤の添加も検討されているが、導電剤の小粒径化により分散剤の添加量が増加すると、電池特性の低下を招くといった問題があった。
 そこで、本発明は、高い比表面積を有し、且つ、低粘度のスラリーを形成可能な新規カーボンブラックを提供することを目的とする。また、本発明は、当該カーボンブラックを含むスラリー、及び、当該カーボンブラックを含むリチウムイオン二次電池を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、高い比表面積を有するカーボンブラックにおいて、圧縮DBP吸収量に対するDBP吸収量の比がスラリー粘度に大きく影響することを見出した。
 すなわち、上記課題を解決する本発明は、下記に例示される。
(1) 比表面積が150m/g以上400m/g以下であり、圧縮DBP吸収量(CDBP)に対するDBP吸収量(DBP)の比(DBP/CDBP)が2.0以下である、カーボンブラック。
(2) DBP吸収量が200mL/100g以上350mL/100g以下である、(1)に記載のカーボンブラック。
(3) 灰分が0.02質量%以下である、(1)又は(2)に記載のカーボンブラック。
(4) 鉄の含有量が2000質量ppb未満である、(1)~(3)のいずれかに記載のカーボンブラック。
(5) (1)~(4)のいずれかに記載のカーボンブラックと、分散媒と、を含む、スラリー。
(6) 25℃でせん断速度10s-1における粘度が、200mPa・s以上1200mPa・s以下である、(5)に記載のスラリー。
(7) 正極と負極とセパレータとを備え、前記正極及び前記負極のうち少なくとも一方が(1)~(4)のいずれかに記載のカーボンブラックを含有する、リチウムイオン二次電池。
 本発明によれば、高い比表面積を有し、且つ、低粘度のスラリーを形成可能な新規カーボンブラックが提供される。また、本発明によれば、当該カーボンブラックを含むスラリー、及び、当該カーボンブラックを含むリチウムイオン二次電池が提供される。
 以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。なお、本明細書において、特にことわりがない限り、「~」を用いて示される数値範囲は、左側の数値「以上」かつ右側の数値「以下」の範囲を意味する。例えば、「A~B」は、A以上B以下であるという意味である。
<カーボンブラック>
 本実施形態のカーボンブラックは、150m/g以上400m/g以下の比表面積を有する。この比表面積は、リチウムイオン二次電池の導電剤として従来から使用されているカーボンブラックの比表面積と比べて高い。このような高比表面積を有するカーボンブラックは、マトリックス中でのパーコレーション効果により導電性付与能力が高くなるため、導電剤として有効である。
 なお、比表面積は、JIS K6217-2:2017のA法流通法(熱伝導度測定法)に従って測定される。
 カーボンブラックの比表面積が150m/g未満であると、合材層中で活物質との接触点が少なくなり、十分な導電性を発揮できない場合がある。導電性付与能力がより向上する観点から、カーボンブラックの比表面積は、好ましくは160m/g以上、より好ましくは180m/g以上、更に好ましくは200m/g以上である。すなわち、カーボンブラックの比表面積は、例えば、150~400m/g、160~400m/g、180~400m/g又は200~400m/gであってよい。また、カーボンブラックの比表面積が400m/gを超えると、スラリー中での分散が著しく困難となり、電極内において局所的に導電性の劣る部分が生じ、電池特性が低下する場合がある。カーボンブラックの比表面積は、一次粒子の小粒径化、中空化、粒子表面の多孔質化などにより高めることができる。
 本実施形態のカーボンブラックにおいて、圧縮DBP吸収量(CDBP)に対するDBP吸収量(DBP)の比(DBP/CDBP)は、2.0以下である。
 DBP吸収量(DBP)は、カーボンブラックの粒子表面及びストラクチャーが作る空隙にジブチルフタレートを吸収する能力を評価する指標である。本明細書中、DBP吸収量は、JIS K6221のB法に記載の方法により測定された値を、下記式(a)により、JIS K6217-4:2008相当の値に換算した値を示す。
 DBP吸収量=(A-10.974)/0.7833 …(a)
[式中、Aは、JIS K6221に記載の方法により測定されたDBP吸収量の値を示す。]
 DBP吸収量(DBP)の測定では、強い外力が加わるため、カーボンブラックのアグロメレート(ストラクチャーの二次凝集)は解砕され、一次粒子の表面積とストラクチャーの発達度合いとが評価される。
 圧縮DBP吸収量(CDBP)は、カーボンブラックを予め圧縮してストラクチャーを破壊した後に測定するDBP吸収量であり、ストラクチャーの機械的強度を示す指標である。JIS K6217-4:2008に従って測定することができ、具体的には、試料を油圧シリンダにセットし、165MPaで1秒間圧縮した後に試料を取り出し、試料の塊が0.25cm以下になるまでふるう。この一連の操作を4回繰り返した後、DBP吸収量を測定することで圧縮DBP吸収量(CDBP)を求めることができる。
 本発明者らは、上記課題を解決するため鋭意検討した結果、高い比表面積を有するカーボンブラックにおいて、圧縮DBP吸収量に対するDBP吸収量の比(DBP/CDBP)がスラリー粘度に大きく影響することを見出した。すなわち、本実施形態のカーボンブラックは、比(DBP/CDBP)が2.0以下であることで、高い比表面積を有しながら十分に低いスラリー粘度を実現できる。
 カーボンブラックは、合成時の熱履歴(例えば、燃料油の熱分解及び燃焼反応、原料の熱分解及び燃焼反応、冷却用媒体による急冷及び反応停止等に起因する熱履歴)、一次粒子の衝突頻度の違い等によって、ストラクチャーの形状及び強度が大きく異なる。
 本発明者らの知見によれば、同じ比表面積を有するカーボンブラックで比較した場合、比(DBP/CDBP)が2.0以下のカーボンブラックは、比(DBP/CDBP)が2.0を超えるカーボンブラックよりスラリー粘度が低くなる。ここで、比(DBP/CDBP)が低いことは、外力によるストラクチャーの破壊が少ないことを意味する。本実施形態のカーボンブラックは、スラリー作製時に、外力によるストラクチャーによる破壊が少ないため、破壊により新たに生じる高活性の表面が少なくなり、カーボンブラックの再凝集が起こり難く、スラリー粘度が低くなると考えられる。
 本実施形態では、比(DBP/CDBP)が2.0以下であることで、小粒径で高比表面積で、且つストラクチャーの発達したカーボンブラックであっても、合材スラリーの粘度上昇による集電体への塗工むらや電極内での材料の偏在を減少させることができる。また、電極内での活物質と導電剤の分散状態、接触状態が良くなることで、局所的な導電性の低下や電池の放電容量の低下を抑制しつつ、リチウムイオン二次電池の高容量化が達成できる。
 本実施形態のカーボンブラックにおいて、比(DBP/CDBP)は、上記効果がより顕著に奏される観点から、好ましくは1.9以下、より好ましくは1.8以下、更に好ましくは1.7以下である。
 本実施形態のカーボンブラックにおいて、比(DBP/CDBP)が小さすぎると、ストラクチャーの機械的強度が強過ぎる、又は、ストラクチャーが破壊され難い形状であるため、スラリー作製時にアグロメレートの過度な発達によってスラリー粘度が上昇する場合がある。このアグロメレートの過度な発達を抑制する観点からは、比(DBP/CDBP)は、1.0以上が好ましく、1.1以上がより好ましく、1.2以上が更に好ましく、1.3以上が一層好ましく、1.4以上が特に好ましい。すなわち、比(DBP/CDBP)は、例えば、1.0~2.0、1.0~1.9、1.0~1.8、1.0~1.7、1.1~2.0、1.1~1.9、1.1~1.8、1.1~1.7、1.2~2.0、1.2~1.9、1.2~1.8、1.2~1.7、1.3~2.0、1.3~1.9、1.3~1.8、1.3~1.7、1.4~2.0、1.4~1.9、1.4~1.8、又は、1.4~1.7であってよい。
 本実施形態のカーボンブラックのDBP吸収量は、例えば180mL/100g以上であってよく、好ましくは190mL/100g以上、より好ましくは200mL/100g以上である。また、本実施形態のカーボンブラックのDBP吸収量は、例えば370mL/100g以下、より好ましくは350mL/100g以下である。すなわち、本実施形態のカーボンブラックのDBP吸収量は、例えば、180~370mL/100g、180~350mL/100g、190~370mL/100g、190~350mL/100g、200~370mL/100g、又は、200~350mL/100gであってよい。
 ストラクチャーの発達したカーボンブラックでは、一次粒子が融着してできるネック部や粒子間で形成される空隙が多くなるためDBP吸収量が多くなる。DBP吸収量が少なすぎると、ストラクチャーが十分に発達していないために電極内での導電性付与能力が低くなる場合があり、また、リチウムイオン二次電池の充放電に伴う活物質の体積変化を緩衝することができず、サイクル特性などの電池特性が低下する場合がある。DBP吸収量が多すぎると、カーボンブラックのストラクチャーに合材層中のバインダーがトラップされてしまい、活物質や集電体との密着性が低下し、電池特性が低下してしまう場合がある。
 本実施形態のカーボンブラックの平均一次粒子径は、例えば35nm未満であってよく、好ましくは30nm未満、より好ましくは25nm未満である。本発明者らの知見によれば、上述の比(DBP/CDBP)を満たすカーボンブラックでは、比表面積が同程度で平均一次粒子径が異なる2種を比較したところ、小粒径のカーボンブラックのほうがスラリー粘度が低くなる。これは、大粒径のカーボンブラックでは表面の多孔質化によって比表面積が高くなる一方、小粒径のカーボンブラックでは比較的表面が滑らかなカーボンブラックが複雑なストラクチャーを構成することで高比表面積を達成していると考えられ、比(DBP/CDBP)で表されるストラクチャー強度による上述の効果がより顕著に奏されるためと考えられる。
 従来、リチウムイオン二次電池の導電剤に用いられるカーボンブラックは、平均一次粒子径が小さい(例えば30nm未満である)とスラリー化が困難であったが、本実施形態のカーボンブラックは、上述の比(DBP/CDBP)を満たすため、平均一次粒子径が小さい(例えば30nm未満の)場合でもスラリー化することができる。このように小粒径のカーボンブラックの使用が可能となることにより、合材層における配合比率が低くても高い導電性を発揮することができる。カーボンブラックの平均一次粒子径は、例えば1nm以上であってよく、5nm以上であってもよく、10nm以上であってもよい。すなわち、カーボンブラックの平均一次粒子径は、例えば、1nm以上35nm未満、1nm以上30nm未満、1nm以上25nm未満、5nm以上35nm未満、5nm以上30nm未満、5nm以上25nm未満、10nm以上35nm未満、10nm以上30nm未満、又は、10nm以上25nm未満であってよい。
 カーボンブラックの平均一次粒子径は、透過型電子顕微鏡(TEM)の5万倍拡大画像から無作為に選択した100個以上のカーボンブラックの一次粒子径を測り、平均値を算出して求めることができる。カーボンブラックの一次粒子はアスペクト比が小さく真球に近い形状をしているが、完全な真球ではない。そこで、本実施形態では、TEM画像における一次粒子の外周2点を結ぶ線分のうちで最大のものをカーボンブラックの一次粒子径とする。
 本実施形態のカーボンブラックの灰分は、例えば0.05質量%以下であってよく、好ましくは0.03質量%以下、より好ましくは0.02質量%以下である。灰分はJIS K1469:2003に従って測定することができ、例えば、カーボンブラックを乾式サイクロンなどの装置で分級することによって低減できる。
 本実施形態のカーボンブラックの鉄の含有量は、例えば2500質量ppb未満であってよく、好ましくは2300質量ppb未満、より好ましくは2000質量ppb未満である。鉄の含有量は、例えばカーボンブラックを磁石に接触させることで低減できる。
 カーボンブラックの鉄の含有量はJIS K0116:2014に従い酸分解法にて前処理し、高周波誘導結合プラズマ質量分析法にて測定することができる。具体的には、以下の方法で測定できる。まず、カーボンブラック1gを石英ビーカーに精秤し、大気雰囲気中で電気炉により800℃×3hr加熱する。次いで残渣に混酸(塩酸70質量%、硝酸30質量%)10mLと超純水10mL以上を添加しホットプレート上で200℃×1hr加熱溶解する。放冷後、超純水により25mLに希釈・調整した溶液を高周波誘導結合プラズマ質量分析装置(Agilent社製Agilent8800)で測定する。
 本実施形態のカーボンブラックの灰分及び鉄の含有量が少ないと、混練処理において、装置等の損傷による金属、セラミックス等の異物の混入をより顕著に抑制できる。また、灰分、絶縁性異物等の混入による電極内での導電性低下も抑制できる。このため、灰分及び鉄の含有量が少ない本実施形態のカーボンブラックは、高い安全性が求められるリチウムイオン二次電池に好適に使用することができる。
 本実施形態のカーボンブラックの製造方法は特に限定されるものではなく、例えば、炭化水素などの原料を反応炉の上流部に設置されたノズルから供給し、熱分解反応及び/又は燃焼反応によりカーボンブラックを製造し、反応炉の下流部に直結されたバグフィルターから捕集することができる。
 使用する原料は特に限定されるものではなく、アセチレン、メタン、エタン、プロパン、エチレン、プロピレン、ブタジエンなどのガス状炭化水素や、トルエン、ベンゼン、キシレン、ガソリン、灯油、軽油、重油などのオイル状炭化水素を使用することができる。中でも不純物が少ないアセチレンを使用することが好ましい。アセチレンは他の原料よりも分解熱が大きく、反応炉内の温度を高くすることができるため、カーボンブラックの核生成が付加反応による粒子成長よりも優勢となり、カーボンブラックの一次粒子径を小さくすることができる。また、本発明者らは、カーボンブラックのストラクチャー強度を制御するために鋭意検討を行った結果、複数の原料を使用し、かつ、原料を加熱してから反応炉へ供給することが有効であることを見出した。従来の製法では反応炉の高温部を経由して生成したカーボンブラックと、低温部を経由して生成したカーボンブラックが混在し、特性上のばらつきも大きかったが、複数の原料を使用することにより反応炉内の温度が均一になり、経由する熱分解、燃焼の反応履歴も均一になるため、カーボンブラックのストラクチャー強度が均一化して、弱い部分からの破壊が減少するためと考えられる。また、原料を加熱することで複数原料の混合が促進され、より均一な温度場を形成することができたと考えられる。複数の原料は反応炉へ供給する前に混合することが好ましい。オイル状炭化水素を用いる場合には加熱によりガス化して供給することが好ましい。加熱の方法は特に限定されるものではなく、例えばタンク、輸送配管を熱媒との熱交換により加熱することができる。
 また、炭素源となる原料とは別に、酸素、水素、窒素、スチームなどを反応炉に供給することが好ましい。これらの原料以外のガスは反応炉内のガス攪拌を促進し、原料から生成したカーボンブラックの一次粒子同士が衝突、融着する頻度を高めるため、原料以外のガスを使用することで、カーボンブラックのストラクチャーが発達し、DBP吸収量が多くなる傾向がある。原料以外のガスとしては、酸素を使用することが好ましい。酸素を使用すると原料の一部が燃焼して反応炉内の温度が高くなり、小粒径、高比表面積のカーボンブラックが得られやすくなる。原料以外のガスとして、複数のガスを使用することもできる。原料以外のガスの供給箇所は反応炉の上流部が好ましく、原料とは別のノズルから供給することが好ましい。これにより同じく上流部から供給される原料の攪拌が効率的に起こり、ストラクチャーが発達しやすくなる。
 従来のカーボンブラック製造では、原料の熱分解、燃焼反応の停止のために反応炉の下流部から水などの冷却用媒体を送入する場合があるが、ストラクチャー発達の効果は見られず、一方で急激な温度変化によりストラクチャー強度のばらつきが大きくなって比(DBP/CDBP)が低くなるおそれがあるため、本実施形態では反応炉の下流部から冷却用媒体を送入しないことが好ましい。
<スラリー>
 本実施形態のスラリーは、本実施形態のカーボンブラックと分散媒とを含む。
 スラリーの粘度が高すぎると、活物質との混練時に強いせん断が加わるため、カーボンブラックのストラクチャーが破壊されて導電性が低下したり、装置の摩耗による異物混入が起こる場合がある。一方、スラリーの粘度が低すぎると、スラリー中でカーボンブラックの沈降が起こりやすくなり、均一性の維持が困難となる場合がある。本実施形態では、上述のカーボンブラックの使用のためスラリー粘度を低くできるため、カーボンブラックのストラクチャーの破壊が顕著に抑制されて優れた導電性付与能を維持でき、また、装備の摩耗による異物混入が顕著に抑制される。すなわち、本実施形態では、スラリーの粘度特性及び導電性を損なうことなく、合材層中の活物質の配合比率を高めることができ、リチウムイオン二次電池の高容量化が達成できる。
 上記効果がより顕著に得られる観点から、スラリーの粘度(25℃、せん断速度10s-1)は、好ましくは100mPa・s以上、より好ましくは200mPa・s以上である。これにより、カーボンブラックの沈降が抑制されてスラリーの均一性が向上する。また、上記効果がより顕著に得られる観点から、スラリー粘度(25℃、せん断速度10s-1)は、好ましくは1500mPa・s以下、より好ましくは1200mPa・s以下である。すなわち、スラリーの粘度(25℃、せん断速度10s-1)は、例えば、100~1500Pa・s、100~1200Pa・s、200~1500Pa・s、又は、200~1200Pa・sであってよい。
 分散媒は特に限定されず、例えばN-メチル-2-ピロリドン、エタノール、酢酸エチル等を使用することができる。
 本実施形態のスラリーは、本実施形態のカーボンブラックの導電性付与能力、分散性を阻害しない範囲で、その他のカーボンブラック、黒鉛、カーボンナノチューブ、カーボンナノファイバー等を更に含んでいてもよい。
 本実施形態のスラリーは、活物質や、分散剤等の添加剤を更に含んでいてもよい。
 本実施形態のスラリーにおいて、本実施形態のカーボンブラックの含有量は、例えば0.5質量%以上であってよく、好ましくは1質量%以上である。また、本実施形態のスラリーにおいて、本実施形態のカーボンブラックの含有量は、例えば50質量%以下であってよく、好ましくは20質量%以下である。すなわち、本実施形態のスラリーにおいて、本実施形態のカーボンブラックの含有量は、例えば、0.5~50質量%、0.5~20質量%、1~50質量%、又は、1~20質量%であってよい。
 本実施形態のスラリーの作製方法は特に限定されず、例えば、ミキサー、ニーダー、分散機、ミル、自動公転式回転装置等の一般的な装置を使用して、各成分を混練することで作製することができる。
 本実施形態のスラリーは、リチウムイオン二次電池の電極を形成するための電極形成用スラリーとして好適に用いることができる。電極形成用スラリーは、正極形成用スラリーであってもよく、負極形成用スラリーであってもよい。
 本実施形態のスラリーが電極形成用スラリーである場合、本実施形態のスラリーは、活物質、導電剤及び分散媒を含むものであってよく、このときスラリーは、導電剤として本実施形態のカーボンブラックを含有する。
 電極形成用スラリーにおける導電剤の含有量は、例えば0.01質量%以上であってよく、好ましくは0.05質量%以上、より好ましくは0.08質量%以上である。また、電極形成用スラリーにおける導電剤の含有量は、例えば20質量%以下であってよく、好ましくは15質量%以下、より好ましくは10質量%以下である。すなわち、電極形成用スラリーにおける導電剤の含有量は、例えば、0.01~20質量%、0.01~15質量%、0.01~10質量%、0.05~20質量%、0.05~15質量%、0.05~10質量%、0.08~20質量%、0.08~15質量%、又は、0.08~10質量%であってよい。
 電極形成用スラリーは、カーボンブラック以外の導電剤を更に含有していてよい。カーボンブラック以外の導電剤としては、例えば、黒鉛、カーボンナノチューブ、カーボンナノファイバー等が挙げられる。
 電極形成用スラリーにおいて、導電剤に占めるカーボンブラックの割合は、例えば50質量%以上であってよく、好ましくは70質量%以上、より好ましくは90質量%以上であり、100質量%であってもよい。
 活物質は特に限定されず、リチウムイオン二次電池に用いられる公知の活物質を特に制限無く使用できる。正極活物質としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、ニッケル・マンガン・コバルト酸リチウム、リン酸鉄リチウム等が挙げられる。負極活物質としては、天然黒鉛、人造黒鉛、グラファイト、活性炭、コークス、ニードルコークス、フリュードコークス、メソフェーズマイクロビーズ、炭素繊維、熱分解炭素等の炭素質材料が挙げられる。
 電極形成用スラリーは、バインダーを更に含有してよい。バインダーは特に限定されず、リチウムイオン二次電池に用いられる公知のバインダーを特に制限無く使用できる。バインダーとしては、例えば、ポリエチレン、ニトリルゴム、ポリブタジエン、ブチルゴム、ポリスチレン、スチレン・ブタジエンゴム、多硫化ゴム、ニトロセルロース、カルボキシメチルセルロース、ポリビニルアルコール、四フッ化エチレン樹脂、ポリフッ化ビニリデン、ポリフッ化クロロプレン等が挙げられる。
 電極形成用スラリーによる電極の形成方法は特に限定されず、例えば、電極形成用スラリーを集電体上に塗布し、乾燥させることにより、集電体及び合材層を含む電極を形成することができる。
 集電体は特に限定されず、例えば、金、銀、銅、白金、アルミニウム、鉄、ニッケル、クロム、マンガン、鉛、タングステン、チタン、及びこれらを主成分とする合金の金属箔が使用される。例えば、正極集電体にはアルミニウム箔、負極集電体には銅箔が好適に用いられる。
<リチウムイオン二次電池>
 本実施形態のリチウムイオン二次電池は、正極と負極とセパレータとを備える。また、本実施形態のリチウムイオン二次電池は、正極及び負極のうち少なくとも一方が上述の本実施形態のカーボンブラックを含有する。本実施形態のリチウムイオン二次電池は、正極及び負極のうち少なくとも一方が、上述の電極形成用スラリーから形成されたものであってもよく、正極及び負極の少なくとも一方が、上述の電極形成用スラリーにより集電体上に形成された合材層を含んでいてもよい。
 本実施形態のリチウムイオン二次電池は、本実施形態のカーボンブラックを使用しているため高容量であり、また、上述の電極形成用スラリーを用いることで生産性良く製造することができる。
 本実施形態のリチウムイオン二次電池は、正極が上述の本実施形態のカーボンブラックを含有することが好ましい。また、本実施形態のリチウムイオン二次電池は、正極が、上述の電極形成用スラリーから形成されたものであることが好ましく、正極が、上述の電極形成用スラリーにより集電体上に形成された合材層を含むことがより好ましい。
 本実施形態のリチウムイオン二次電池において、本実施形態のカーボンブラックを含む電極以外の構成は、公知のリチウムイオン二次電池と同様の構成であってよい。
 セパレータは特に限定されず、リチウムイオン二次電池用セパレータとして公知のセパレータを特に制限なく使用できる。セパレータとしては、例えば、ポリエチレン、ポリプロピレン等の合成樹脂が挙げられる。セパレータは、電解液の保持性が良いことから多孔性フィルムであることが好ましい。
 本実施形態のリチウムイオン二次電池は、正極と負極とをセパレータを介して積層又は捲回した電極群を備えていてよい。
 本実施形態のリチウムイオン二次電池は、正極、負極及びセパレータが電解液に浸漬されていてよい。
 電解液は、特に限定されず、例えば、リチウム塩を含む非水電解液であってよい。リチウム塩を含む非水電解液における非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等が挙げられる。また、非水溶媒に溶解できるリチウム塩としては、六フッ化リン酸リチウム、ホウ四フッ化リチウム、トリフルオロメタンスルホン酸リチウム等が挙げられる。
 本実施形態のリチウムイオン二次電池は、イオン伝導ポリマー等を電解質として用いたものであってもよい。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、本発明の一側面は、比表面積が150m/g以上400m/g以下のカーボンブラックを評価する評価方法であってよい。当該評価方法は、圧縮DBP吸収量(CDBP)に対するDBP吸収量(DBP)の比(DBP/CDBP)を求める測定工程と、当該比(DBP/CDBP)によりカーボンブラックを評価する評価工程と、を備えていてよい。
 評価工程は、比(DBP/CDBP)が2.0以下のカーボンブラックを選別する選別工程であってもよい。この場合、上記評価方法は、カーボンブラックの選別方法ということもできる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
<カーボンブラックの製造>
 カーボンブラック反応炉(炉長6m、炉直径0.65m)の上流部に設置されたノズルから原料であるアセチレンを12Nm/h、トルエンを32kg/h、原料以外のガスとして酸素を20Nm/h供給してカーボンブラックを製造し、反応炉の下流部に設置したバグフィルターで捕集した。その後、乾式サイクロン装置、鉄除去用磁石を通過させてタンクに回収した。なお、アセチレン、トルエン、酸素は115℃に加熱してから反応炉へ供給した。得られたカーボンブラックについて、以下の物性を測定した。評価結果を表1に示す。
(1)比表面積
 JIS K6217-2:2017のA法流通法(熱伝導度測定法)に従い測定した。
(2)DBP吸収量:JIS K6221のB法に記載の方法により測定した値を、上記式(a)により、JIS K6217-4:2008相当の値に換算した。
(3)圧縮DBP吸収量(CDBP):JIS K6217-4:2008附属書A(圧縮試料の作製方法、圧縮装置I形を使用)に従い試料を作製し、JIS K6217-4:2008に従い測定した。
(4)平均一次粒子径:透過型電子顕微鏡の5万倍画像より、無作為に選択した100個以上のカーボンブラック一次粒子径を測り、平均値を算出した。
(5)灰分:JIS K1469:2003に従い測定した。
(6)鉄の含有量:鉄の含有量はJIS K0116:2014に従い酸分解法にて前処理し、高周波誘導結合プラズマ質量分析法にて測定した。
<スラリーの調製>
 カーボンブラック3質量部と、分散媒としてN-メチル-2-ピロリドン(関東化学社製)97質量部を、自転公転式混合機(シンキー社製「あわとり練太郎ARV-310」)回転数2000rpmで30分間混練し、カーボンブラックスラリーを作製した。このスラリーの25℃における粘度を粘弾性測定機(AntonPaar社製「MCR102」、φ30mm、角度3°のコーンプレート使用、ギャップ1mm)で評価した。せん断速度は0.01s-1から100s-1へ変化させて測定し、せん断速度10s-1における粘度を求めた。測定結果を表2に示す。
<電池の作製>
 カーボンブラックスラリー40質量部(カーボンブラック1.2質量部、N-メチル-2-ピロリドン38.8質量部)、正極活物質としてLiNi0.5Mn0.3Co0.2(ユミコア社製「TX10」)96.8質量部、バインダーとしてポリフッ化ビニリデン(アルケマ社製「HSV900」)2質量部、分散剤としてポリビニルアルコール(デンカ社製「B05」)0.1質量部、分散媒としてN-メチル-2-ピロリドン(関東化学社製)10質量部を、自転公転式混合機(シンキー社製「あわとり練太郎ARV-310」)回転数2000rpmで10分間混練し、正極形成用合材スラリーを作製した。得られた正極形成用合材スラリーを厚さ15μmのアルミニウム箔(UACJ社製)上にアプリケータにて塗工し、105℃で1時間予備乾燥させた。次に、ロールプレス機にて200kg/cmの線圧でプレスし、アルミニウム箔と塗工膜の厚みの和が80μmになるように調製した。揮発成分を除去するため、170℃で3時間真空乾燥して正極を作製した。
 負極活物質として人造黒鉛(日立化成社製「MAG-D」)97質量部、バインダーとしてスチレンブタジエンゴム(日本ゼオン社製「BM-400B」)2質量部、分散剤としてカルボキシメチルセルロース(ダイセル社製「D2200」)1質量部を秤量し、純水を添加して自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて混合し、負極形成用合材スラリーを作製した。得られた負極形成用合材スラリーを厚さ10μmの銅箔(UACJ社製)上にアプリケータにて塗工し、60℃で1時間で予備乾燥させた。次に、ロールプレス機にて100kg/cmの線圧でプレスし、銅箔と塗工膜の厚みの和が40μmになるように調製した。水分を完全に除去するため、120℃で3時間真空乾燥して負極を作製した。
 上記正極を40×40mm、上記負極を44×44mmに加工し、両電極間にセパレータとしてポリオレフィン微多孔質膜を配置して電池を作製した。電解液にはエチレンカーボネート(Aldrich製)/ジメチルカーボネート(Aldrich製)を1/1の容積比で混合した溶液中に六フッ化リン酸リチウム(ステラケミファ社製)を1mol/L溶解させたものを用いた。
 電池の放電試験として、作製した電池を25℃において4.35V、0.2C制限の定電流定電圧充電をした後、0.2Cの定電流で3.0Vまで放電した。次いで、放電電流を0.2C、0.5C、1C、2C、3Cと変化させ、各放電電流に対する放電容量を測定した。0.2C放電時に対する3C放電時の容量維持率を計算し、放電レート特性として評価した。また、作製した電池を25℃において4.35V、1C制限の定電流定電圧充電をした後、1Cの定電流で3.0Vまで放電した。次いで、上記充放電を500サイクル繰り返し、放電容量を測定した。1サイクル放電時に対する500サイクル放電時の容量維持率を計算し、サイクル特性として評価した。測定結果を表2に示す。
(実施例2~4)
 酸素の供給量を21Nm/h(実施例2)、22Nm/h(実施例3)又は24Nm/h(実施例4)に変更したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(実施例5)
 トルエンの供給時の温度を100℃に変更し、且つ、酸素の供給量を21Nm/hに変更したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(実施例6)
 アセチレンの供給時の温度を85℃、トルエンの供給時の温度を100℃にそれぞれ変更し、且つ、酸素の供給量を21Nm/hに変更したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(実施例7)
 アセチレンの供給時の温度を85℃、トルエンの供給時の温度を85℃にそれぞれ変更し、且つ、酸素の供給量を21Nm/hに変更したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(実施例8)
 アセチレンの供給量を11Nm/h、トルエンの供給量を30kg/h、酸素の供給量を19Nm/hにそれぞれ変更したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(実施例9)
 アセチレンの供給量を13Nm/h、トルエンの供給量を35kg/h、酸素の供給量を26Nm/hにそれぞれ変更したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(実施例10)
 アセチレンに代えて12Nm/hのエチレンを115℃に加熱して供給したこと、及び、酸素の供給量を22Nm/hに変更したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(実施例11)
 トルエンに代えて32kg/hのベンゼンを115℃に加熱して供給したこと、及び、酸素の供給量を21Nm/hに変更したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(比較例1)
 酸素に代えて21Nm/hの水素を115℃に加熱して供給したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(比較例2)
 アセチレンの供給量を11Nm/h、トルエンの供給量を30kg/h、酸素の供給量を24Nm/hに変更したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(実施例12)
 比較例1で得られたカーボンブラックを720℃に加熱された電気炉内にて酸化処理して、カーボンブラックを得た。得られたカーボンブラックを実施例1と同様に評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(実施例13)
 酸素の供給量を21Nm/hに変更したこと、及び、乾式サイクロン装置の分級条件を変更して灰分の含有量を調整したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(実施例14)
 酸素の供給量を21Nm/hに変更したこと、及び、鉄除去用磁石の磁束密度条件を変更して鉄の含有量を調整したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(比較例3)
 アセチレンの供給量を38Nm/hに変更し、トルエンを供給せず、酸素の供給量を10Nm/hに変更したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
(比較例4)
 酸素の供給量を22Nm/hに変更し、且つ、アセチレンの供給時の温度、トルエンの供給時の温度及び酸素の供給時の温度をいずれも25℃に変更したこと以外は、実施例1と同様にしてカーボンブラックを作製し、評価した。結果を表1に示す。また、得られたカーボンブラックを用いて、実施例1と同様にしてスラリー及び電池の調製及び評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示すとおり、実施例のカーボンブラックを用いた場合、優れたスラリー粘度特性及び優れた電池特性が実現され、本発明のカーボンブラックによって高性能なリチウムイオン二次電池を生産性良く得られることが確認された。
 本発明のカーボンブラックは、リチウムイオン二次電池電極用スラリー及びリチウムイオン二次電池に好適に利用することができる。

Claims (7)

  1.  比表面積が150m/g以上400m/g以下であり、
     圧縮DBP吸収量(CDBP)に対するDBP吸収量(DBP)の比(DBP/CDBP)が2.0以下である、カーボンブラック。
  2.  DBP吸収量が200mL/100g以上350mL/100g以下である、請求項1に記載のカーボンブラック。
  3.  灰分が0.02質量%以下である、請求項1又は2に記載のカーボンブラック。
  4.  鉄の含有量が2000質量ppb未満である、請求項1~3のいずれか一項に記載のカーボンブラック。
  5.  請求項1~4のいずれか一項に記載のカーボンブラックと、分散媒と、を含む、スラリー。
  6.  25℃でせん断速度10s-1における粘度が、200mPa・s以上1200mPa・s以下である、請求項5に記載のスラリー。
  7.  正極と負極とセパレータとを備え、
     前記正極及び前記負極のうち少なくとも一方が請求項1~4のいずれか一項に記載のカーボンブラックを含有する、リチウムイオン二次電池。
PCT/JP2021/044304 2020-12-04 2021-12-02 カーボンブラック、スラリー及びリチウムイオン二次電池 WO2022118921A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21900671.5A EP4234638A4 (en) 2020-12-04 2021-12-02 CARBON BLACK, SLURRY, AND LITHIUM-ION SECONDARY BATTERY
KR1020237013952A KR20230097016A (ko) 2020-12-04 2021-12-02 카본 블랙, 슬러리 및 리튬 이온 이차 전지
US18/254,715 US20240021834A1 (en) 2020-12-04 2021-12-02 Carbon black, slurry, and lithium ion secondary battery
CN202180075059.5A CN116457427A (zh) 2020-12-04 2021-12-02 炭黑、浆料及锂离子二次电池
JP2022566979A JPWO2022118921A1 (ja) 2020-12-04 2021-12-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020201971 2020-12-04
JP2020-201971 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118921A1 true WO2022118921A1 (ja) 2022-06-09

Family

ID=81853335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044304 WO2022118921A1 (ja) 2020-12-04 2021-12-02 カーボンブラック、スラリー及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20240021834A1 (ja)
EP (1) EP4234638A4 (ja)
JP (1) JPWO2022118921A1 (ja)
KR (1) KR20230097016A (ja)
CN (1) CN116457427A (ja)
WO (1) WO2022118921A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500138A (ja) * 1990-08-29 1994-01-06 キャボット コーポレイション 改良された性能のカーボンブラック
JP2002121422A (ja) * 2000-10-17 2002-04-23 Tokai Carbon Co Ltd 高ストラクチャーカーボンブラックおよびその製造方法
JP2006213767A (ja) * 2005-02-01 2006-08-17 Mitsubishi Chemicals Corp 導電性熱可塑性樹脂組成物およびicトレー
JP2007204531A (ja) * 2006-01-31 2007-08-16 Ricoh Co Ltd カーボンブラック分散液、成膜液、及びこれを用いた画像形成装置
WO2010035871A1 (ja) * 2008-09-29 2010-04-01 ライオン株式会社 高純度カーボンブラックの製造方法
JP2014193986A (ja) 2013-02-27 2014-10-09 Toyo Ink Sc Holdings Co Ltd カーボンブラック分散液およびその利用
JP2014221889A (ja) * 2013-05-14 2014-11-27 ライオン株式会社 カーボンブラック
WO2016039336A1 (ja) * 2014-09-09 2016-03-17 電気化学工業株式会社 電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池
JP2018522977A (ja) * 2015-07-09 2018-08-16 イメリス グラファイト アンド カーボン スイッツァランド リミティド 低粘度の高導電性カーボンブラック

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153684A (en) * 1990-08-29 2000-11-28 Cabot Corporation Performance carbon blacks
CA2194557A1 (en) * 1994-07-12 1996-01-25 Jameel Menashi Dispersible carbon black pellets
DE10107228A1 (de) * 2001-02-16 2002-09-05 Degussa Ruß, Verfahren zu seiner Herstellung und seine Verwendung
ES2751068T3 (es) * 2009-11-02 2020-03-30 Cabot Corp Area de superficie alta y negros de carbono de baja estructura para aplicaciones de almacenamiento de energía
WO2014185452A1 (ja) * 2013-05-14 2014-11-20 ライオン株式会社 カーボンブラック、導電性樹脂組成物及び電極合材
JP2018008828A (ja) * 2014-11-20 2018-01-18 デンカ株式会社 カーボンブラック及びそれを用いた二次電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06500138A (ja) * 1990-08-29 1994-01-06 キャボット コーポレイション 改良された性能のカーボンブラック
JP2002121422A (ja) * 2000-10-17 2002-04-23 Tokai Carbon Co Ltd 高ストラクチャーカーボンブラックおよびその製造方法
JP2006213767A (ja) * 2005-02-01 2006-08-17 Mitsubishi Chemicals Corp 導電性熱可塑性樹脂組成物およびicトレー
JP2007204531A (ja) * 2006-01-31 2007-08-16 Ricoh Co Ltd カーボンブラック分散液、成膜液、及びこれを用いた画像形成装置
WO2010035871A1 (ja) * 2008-09-29 2010-04-01 ライオン株式会社 高純度カーボンブラックの製造方法
JP2014193986A (ja) 2013-02-27 2014-10-09 Toyo Ink Sc Holdings Co Ltd カーボンブラック分散液およびその利用
JP2014221889A (ja) * 2013-05-14 2014-11-27 ライオン株式会社 カーボンブラック
WO2016039336A1 (ja) * 2014-09-09 2016-03-17 電気化学工業株式会社 電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池
JP2018522977A (ja) * 2015-07-09 2018-08-16 イメリス グラファイト アンド カーボン スイッツァランド リミティド 低粘度の高導電性カーボンブラック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4234638A4

Also Published As

Publication number Publication date
US20240021834A1 (en) 2024-01-18
EP4234638A4 (en) 2024-05-01
CN116457427A (zh) 2023-07-18
JPWO2022118921A1 (ja) 2022-06-09
KR20230097016A (ko) 2023-06-30
EP4234638A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
US20210020947A1 (en) Particle systems and methods
WO2019046320A1 (en) SYSTEMS AND METHODS FOR GENERATING PARTICLES
WO2016080539A1 (ja) カーボンブラック及びそれを用いた二次電池
WO2017057527A1 (ja) ピッチ系極細炭素繊維、その製造方法、該ピッチ系極細炭素繊維を用いた非水電解質二次電池用負極及び当該非水電解質二次電池用負極を具備する非水電解質二次電池
JP2017134937A (ja) リチウム二次電池用複合活物質およびその製造方法
JP6734093B2 (ja) 粘度特性に優れたリチウムイオン二次電池電極用スラリー組成物
JP2017122183A (ja) スラリー粘度特性に優れたカーボンブラック、リチウムイオン二次電池電極用スラリー組成物及びリチウムイオン二次電池
JPWO2017010476A1 (ja) 二次電池用黒鉛含有炭素粉の製造方法及び電池電極用炭素材料
WO2021005689A1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極活物質の製造方法
WO2022118921A1 (ja) カーボンブラック、スラリー及びリチウムイオン二次電池
WO2022118924A1 (ja) カーボンブラック、スラリー及びリチウムイオン二次電池
WO2022118923A1 (ja) カーボンブラック、スラリー及びリチウムイオン二次電池
WO2023145543A1 (ja) カーボンブラック、スラリー及びリチウムイオン二次電池
WO2022118920A1 (ja) カーボンブラック、スラリー及びリチウムイオン二次電池
JP2018006271A (ja) リチウムイオン二次電池負極用炭素材料、その中間体、その製造方法、及びそれを用いた負極又は電池
JP2018055999A (ja) リチウムイオン二次電池の負極活物質用低結晶性炭素材料及びその製造方法並びにそれを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2012221684A (ja) 非水系二次電池用カーボンブラック、電極及び非水系二次電池
WO2021005688A1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、リチウムイオン二次電池、及びリチウムイオン二次電池用負極活物質の製造方法
JP6045860B2 (ja) 炭素材料及びそれを用いた非水系二次電池
WO2022270361A1 (ja) 正極組成物、正極、及び電池
WO2021177291A1 (ja) 二次電池電極用添加剤
WO2023238495A1 (ja) スラリー、電極の製造方法及び電池の製造方法
WO2023233788A1 (ja) 正極組成物、正極、電池、正極形成用塗液の製造方法、正極の製造方法及び電池の製造方法
CN117638060A (zh) 石墨复合材料及其制备方法、应用及锂离子电池
WO2013190624A1 (ja) 非水系二次電池用カーボンブラック、電極及び非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566979

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180075059.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18254715

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021900671

Country of ref document: EP

Effective date: 20230523

NENP Non-entry into the national phase

Ref country code: DE