WO2016186065A1 - シリカ被覆カーボンブラック、それを用いた電極用組成物、二次電池用電極および二次電池 - Google Patents

シリカ被覆カーボンブラック、それを用いた電極用組成物、二次電池用電極および二次電池 Download PDF

Info

Publication number
WO2016186065A1
WO2016186065A1 PCT/JP2016/064425 JP2016064425W WO2016186065A1 WO 2016186065 A1 WO2016186065 A1 WO 2016186065A1 JP 2016064425 W JP2016064425 W JP 2016064425W WO 2016186065 A1 WO2016186065 A1 WO 2016186065A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
silica
coated carbon
electrode
coated
Prior art date
Application number
PCT/JP2016/064425
Other languages
English (en)
French (fr)
Inventor
みか 西川
裕輝 名古
哲哉 伊藤
横田 博
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2017519202A priority Critical patent/JP6714587B2/ja
Publication of WO2016186065A1 publication Critical patent/WO2016186065A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to silica-coated carbon black, an electrode composition using the same, a secondary battery electrode, and a secondary battery.
  • the lithium ion secondary battery in which the negative electrode is formed using a material capable of occluding and releasing lithium ions can suppress the deposition of dendride compared to the lithium battery in which the negative electrode is formed using metallic lithium. Therefore, there is an advantage that a battery having a high capacity and a high energy density can be provided while safety is improved by preventing a short circuit of the battery.
  • the electrolyte solution in the vicinity of the positive electrode and the vicinity thereof is placed in a strong oxidizing environment, so that decomposition of the electrolyte solution or gas generation proceeds and the battery life is reduced.
  • carbon black which is a conductive agent, has a large contact area with the electrolytic solution, which causes the electrolytic solution to easily decompose or generate gas.
  • Patent Document 1 discloses a positive electrode material for a lithium ion secondary battery in which the surface of the positive electrode material is coated with an oxide containing phosphorus and boron.
  • Patent Document 2 discloses a positive electrode in which the surface of the positive electrode current collector is coated with tin oxide or indium oxide.
  • carbon black has a structure in which primary particles close to a spherical shape are connected on a bead as a common structure, and such a structure is called a structure.
  • a structure In general, the longer the structure is connected, the greater the distance that can be conducted without contact resistance, so that the electron conductivity is improved.
  • the length of the structure is indirectly evaluated using a DBP absorption amount generally measured in accordance with JIS K6217-4.
  • carbon black having a long structure is excellent in conductivity, but has an aspect that the interaction between particles becomes large, so that it is difficult to disintegrate and easily aggregates.
  • an electrode when an electrode is produced, a method of applying an electrode composition in which an active material, a conductive agent and a binder are dispersed in water or an organic solvent is applied to a metal foil, but when carbon black having a long structure is used as a conductive agent, The conductive solution aggregates remain in the coating solution, causing irregularities on the electrodes, and the coating solution is too viscous to make application impossible.
  • Patent Document 4 proposes slurrying of a conductive agent.
  • JP 2012-79603 A Japanese Patent Laid-Open No. 10-308222 JP 2012-221684 A Japanese Patent Laid-Open No. 2003-157846
  • Patent Documents 1 and 2 is not an improvement over carbon black, which greatly affects the decomposition of the electrolytic solution or the gas generation, and the effect is insufficient with this technology.
  • the present invention provides a silica-coated carbon black that suppresses decomposition of the electrolyte or gas generation when the secondary battery is placed under high voltage or overvoltage, and is excellent in conductivity and dispersibility.
  • An object of the present invention is to provide an electrode for a secondary battery and a secondary battery excellent in durability using the same.
  • An electrode composition comprising the silica-coated carbon black according to any one of (1) to (4), a positive electrode active material or a negative electrode active material, and a binder.
  • a secondary battery comprising the secondary battery electrode according to (6) on at least one of a positive electrode and a negative electrode.
  • a secondary battery using silica-coated carbon black having a specific range of localized electron spin density suppresses decomposition of the electrolyte or gas generation. Moreover, since this silica covering carbon black is excellent in dispersibility, electroconductivity becomes favorable. Moreover, the secondary electrode and secondary battery using these have the feature that it is excellent in durability.
  • FIG. 1 It is a scanning electron micrograph of the silica coating carbon black of Example 1 of this invention. It is a scanning electron micrograph of the silica coating carbon black of Example 2 of this invention. It is the scanning electron micrograph of the conventional carbon black (comparative example 1). It is the figure which showed the method of calculating a conduction electron spin density and a localized electron spin density from the total electron spin density in each temperature.
  • 2 is an ESR spectrum (differential form) of silica-coated carbon black of Example 1.
  • FIG. 1 It is a scanning electron micrograph of the silica coating carbon black of Example 1 of this invention. It is a scanning electron micrograph of the silica coating carbon black of Example 2 of this invention. It is the scanning electron micrograph of the conventional carbon black (comparative example 1). It is the figure which showed the method of calculating a conduction electron spin density and a localized electron spin density from the total electron spin density in each temperature.
  • 2 is an ESR spectrum (differential form) of silica
  • the silica-coated carbon black of the present invention is a silica-coated carbon black in which the surface of carbon black is coated with silica, and the ratio of the DBP absorption amount to the compressed DBP absorption amount of the carbon black (DBP absorption amount / compressed DBP absorption amount).
  • DBP absorption amount / compressed DBP absorption amount the ratio of the DBP absorption amount to the compressed DBP absorption amount of the carbon black.
  • the coating in the present invention means a state in which silica covers at least a part of the surface of the carbon black particles as shown in FIG. 1 or almost the entire surface as shown in FIG.
  • the carbon black in the present invention is selected from acetylene black, furnace black, channel black, and the like, similar to carbon black as a general battery conductive agent. Among these, acetylene black having excellent crystallinity and purity is more preferable.
  • the DBP absorption amount of carbon black in the present invention is a value measured according to JIS K6217-4.
  • the compressed DBP absorption amount is a value measured by the same method as the DBP absorption amount for a compressed sample produced according to JIS K6217-4 Annex A.
  • the ratio of the DBP absorption amount to the compressed DBP absorption amount of carbon black in the present invention is 2.2 or less, and more preferably 2.1 or less.
  • a large DBP absorption value compared to the compressed DBP absorption amount means that the amount of agglomerated particles that are destroyed when producing a compressed sample is large, and that more energy is required to break them up. . Therefore, by setting the ratio of the DBP absorption amount to the compressed DBP absorption amount to 2.2 or less, the energy necessary for crushing the agglomerated particles can be suppressed, and the dispersibility becomes good. When the dispersibility is poor, the cycle characteristics are inferior and gas generation increases.
  • the lower limit of the ratio of the DBP absorption amount to the compressed DBP absorption amount of carbon black is not limited as long as the required conductivity is satisfied, but the conductivity tends to be high when the structure is long. 1.4 or more is preferable.
  • the localized electron spin density of silica-coated carbon black defined as follows is strongly related to the decomposition of the electrolyte or the generation of gas.
  • the localized electron spin density (N l [number / g]) per unit mass of the silica-coated carbon black in the present invention is a value defined as in the formula (1).
  • N l N ⁇ N c (1)
  • N is the total electron spin density per unit mass of silica-coated carbon black
  • Nc is the conduction electron spin density per unit mass of silica-coated carbon black.
  • the localized electron spin density, total electron spin density, and conduction electron spin density of the silica-coated carbon black are all the number of electron spins (number) of the silica-coated carbon black, and the mass of the carbon black with respect to the silica-coated carbon black. The value multiplied by the ratio is shown.
  • the total electron spin density (N) per unit mass of the silica-coated carbon black is a value defined as in the formula (2).
  • N I / I REF ⁇ ⁇ s (s + 1) ⁇ / ⁇ S (S + 1) ⁇ ⁇ N REF / M (2)
  • I is the electron spin resonance (hereinafter referred to as ESR) signal intensity of the silica-coated carbon black
  • I REF is the ESR signal intensity of the standard sample
  • s is the standard sample.
  • N REF is the spin number of the standard sample
  • M is the mass of carbon black in the silica-coated carbon black.
  • the type of the standard sample is not particularly limited.
  • a polyethylene film in which ions having a known spin quantum number are implanted by an electrochemical method can be used.
  • the method for determining the spin number (N REF ) of the standard sample is not particularly limited.
  • a method of measuring the concentration of ions having a known spin quantum number by titration can be used.
  • the conduction electron spin density (N c ) per unit mass of the silica-coated carbon black is a value defined as the formula (3).
  • N A / T + N c (3)
  • A is a constant and T is the absolute temperature [K] of the silica-coated carbon black.
  • the localized electron spin density per unit surface area at 23 ° C. of the silica-coated carbon black in the present invention is 5.0 ⁇ 10 18 atoms / g or less.
  • the localized electron spin density is smaller, the number of lattice defects and edge portions that are liable to cause decomposition or gas generation of the electrolyte decreases, so that decomposition of the electrolyte or gas generation can be suppressed and battery durability can be expected.
  • the optimum localized electron spin density may depend on the ratio of the DBP absorption amount to the compressed DBP absorption amount of carbon black, and the ratio of the DBP absorption amount to the compression DBP absorption amount of carbon black is 1.9 or more.
  • 4.0 ⁇ 10 18 pieces / g or less is more preferable.
  • the ratio of the DBP absorption amount to the compressed DBP absorption amount of carbon black is less than 1.9, a sufficient effect can be expected even if it exceeds 4.0 ⁇ 10 18 particles / g.
  • the silica coverage of the silica-coated carbon black is preferably 5 to 90%, more preferably 10 to 80%, based on the entire surface area of the carbon black.
  • the coverage is preferably 5 to 90%, more preferably 10 to 80%, based on the entire surface area of the carbon black.
  • the volume resistivity of silica-coated carbon black is a value obtained by measuring a powder sample compressed in a disk shape at a pressure of 24 MPa in an environment of 25 ° C. and a relative humidity of 50% by a four-terminal four-probe method.
  • the volume resistivity of the silica-coated carbon black is preferably 1 ⁇ 10 5 ⁇ ⁇ cm or less, more preferably 1 ⁇ 10 4 ⁇ ⁇ cm or less, and further preferably 1 ⁇ 10 3 ⁇ ⁇ cm or less.
  • the method for producing the silica-coated carbon black of the present invention is not particularly limited.
  • a known method as described in JP-A-2008-280465 can be used.
  • the surface of carbon black can be coated with silica by irradiating an aqueous solution containing carbon black, tetraalkoxysilane and alkyltrimethylammonium halide with microwaves.
  • the silica-coated carbon black can be dispersed in a medium together with a positive electrode active material or a negative electrode active material and a binder and used as an electrode composition.
  • composite oxides having a layered rock salt structure such as lithium cobaltate, lithium nickelate, nickel cobalt lithium manganate, nickel cobalt lithium aluminum oxide, and spinel structures such as lithium manganate and lithium nickel manganate
  • composite oxides having an olivine structure such as lithium iron phosphate, lithium manganese phosphate, and lithium iron manganese phosphate.
  • Examples of the negative electrode active material include carbon-based materials such as artificial graphite, natural graphite, soft carbon, and hard carbon, metal-based materials alloyed with alkali metals such as silicon and tin, and metal composite oxides such as lithium titanate. .
  • binder examples include polymers such as polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, polyvinyl alcohol, acrylonitrile-butadiene copolymer, and carboxylic acid-modified (meth) acrylic acid ester copolymer. It is done. Of these, polyvinylidene fluoride is preferred from the viewpoint of oxidation resistance when used for the positive electrode, and polyvinylidene fluoride or styrene-butadiene copolymer is preferred from the viewpoint of adhesive strength when used for the negative electrode.
  • polymers such as polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, polyvinyl alcohol, acrylonitrile-butadiene copolymer, and carboxylic acid-modified (meth) acrylic acid ester copolymer. It is done. Of these, polyvinyliden
  • Examples of the dispersion medium for the electrode composition include water, N-methyl-2-pyrrolidone, cyclohexane, methyl ethyl ketone, and methyl isobutyl ketone.
  • N-methyl-2-pyrrolidone is preferable from the viewpoint of solubility, and when using a styrene-butadiene copolymer, water is preferable.
  • a mixing machine such as a rachi machine, a universal mixer, a Henschel mixer or a ribbon blender, or a medium stirring type mixer such as a bead mill, a vibration mill or a ball mill is used.
  • the manufactured electrode coating liquid is preferably subjected to vacuum defoaming at a stage before coating in order to ensure smoothness without causing defects in the coating film. If air bubbles are present in the coating solution, the coating film will be defective when applied to the electrode, which may impair smoothness.
  • the electrode composition may contain components other than silica-coated carbon black, a positive electrode active material, a negative electrode active material, and a binder as long as the effects of the present invention are not impaired.
  • components other than silica-coated carbon black, a positive electrode active material, a negative electrode active material, and a binder as long as the effects of the present invention are not impaired.
  • carbon nanotubes, carbon nanofibers, graphite, graphene, carbon fibers, elemental carbon, glassy carbon, metal particles, and the like may be included in addition to silica-coated carbon black for the purpose of further improving conductivity.
  • polyvinyl pyrrolidone polyvinyl imidazole, polyethylene glycol, polyvinyl alcohol, polyvinyl butyral, carboxymethyl cellulose, acetyl cellulose, a carboxylic acid-modified (meth) acrylic acid ester copolymer and the like may be included.
  • Example 1 (Carbon black)
  • acetylene black (HS100, manufactured by Denki Kagaku Kogyo K.K.) having a DBP absorption of 171 mL / 100 g and a compressed DBP absorption of 83 mL / 100 g was used as carbon black.
  • the DBP absorption amount and compression DBP absorption amount of carbon black were measured by the following methods.
  • DBP absorption DBP absorption was measured by a method according to JIS K6217-4. Further, the compressed DBP absorption amount was measured by the same method as the DBP absorption amount for a compressed sample prepared by compressing four times at 165 MPa according to JIS K6217-4 Annex A.
  • the localized electron spin density at 23 ° C. of the silica-coated carbon black was calculated by the following method. First, using an electron spin resonance measuring apparatus (ESP350E manufactured by Bruker) under the conditions of a central magnetic field of 3383 Gauss and a magnetic field sweep width of 200 Gauss, sample temperatures of ⁇ 263, ⁇ 253, ⁇ 233, ⁇ 173, ⁇ 113, ⁇ 113, ⁇ 53, and 23 ° C. The ESR signal of the silica-coated carbon black was measured. Since the ESR signal is output in a differential form as shown in FIG. 5, the spin absorption curve is obtained by integrating this once in the entire region, and the ESR signal intensity is calculated by further integrating.
  • ESR signal is output in a differential form as shown in FIG. 5
  • the ESR signal intensity of an ion-implanted polyethylene film having a known spin density was measured under the same conditions, and this was used as a standard sample for silica at each temperature.
  • the total electron spin density of the coated carbon black was calculated.
  • a graph with the total electron spin density on the vertical axis and the reciprocal of the sample temperature expressed in absolute temperature on the horizontal axis was created, and the conduction electron spin density was calculated as an intercept of the regression line calculated using the method of least squares. .
  • the localized electron spin density was calculated by subtracting the conduction electron spin density value from the total electron spin density value at 23 ° C.
  • Electrode composition and positive electrode for secondary battery 90 parts by mass of spinel-type lithium nickel manganate (manufactured by Hosen Co., Ltd.) as an active material, 5 parts by mass of silica-coated carbon black, and a polyvinylidene fluoride solution (manufactured by Kureha Chemical Co., Ltd., “KF Polymer (registered trademark) 1120” as a binder
  • This electrode composition was applied to an aluminum foil having a thickness of 20 ⁇ m using a Baker type applicator, dried, and then pressed and cut to obtain a positive electrode for a secondary battery.
  • a laminate-type battery was prepared using a non-woven fabric made of olefin fiber and an aluminum laminate film as the exterior.
  • EC ethylene carbonate, manufactured by Aldrich
  • DEC diethyl carbonate, manufactured by Aldrich
  • LiPF 6 lithium hexafluorophosphate
  • the secondary battery produced above was evaluated as follows. The results are shown in Table 1. Unless otherwise specified, the evaluation value is an arithmetic average value of the evaluation values of the three batteries.
  • a positive electrode active material amount (g) present on the positive electrode was determined from the mass of the positive electrode, and a value (mA) obtained by dividing this by 140 was defined as a current value “1C”.
  • a constant current / constant voltage charge is performed with a current of 1 C and an upper limit voltage of 5.0 V, and a constant current discharge is performed with a current of 1 C and a lower limit voltage of 3.0 V.
  • the charge capacity per 1 g of the positive electrode active material The ratio (%) of the discharge capacity (mAh / g) per gram of the positive electrode active material to the mAh / g) was defined as the Coulomb efficiency.
  • cycle characteristics were measured as follows. A constant current / constant voltage charge was performed with a current of 1 C and an upper limit voltage of 5.0 V, and then a constant current was performed with a current of 1 C and a lower limit voltage of 3.0 V, which was repeated 200 times. The ratio (%) of the 200th discharge capacity to the first discharge capacity was defined as the cycle characteristic value. When the discharge capacity became zero after less than 200 cycles, the cycle characteristic value of the battery was assumed to be 0, and the arithmetic average value of the three batteries was calculated.
  • the volume change (mL) of the battery before and after the cycle characteristic test was measured as a gas generation amount.
  • the volume of the battery was measured in a constant temperature room of 25 ⁇ 1 ° C. using a specific gravity measuring device (AUW220D manufactured by Shimadzu Corporation), and evaluated as the amount of gas generated by the following scale.
  • Example 5 The carbon black of Example 1 was converted into furnace black (SuperPLi, manufactured by Timcal Graphite and Carbon Co., Ltd.) having a DBP absorption amount of 234 mL / 100 g and a compressed DBP absorption amount of 115 mL / 100 g, and hexadecyltrimethylammonium chloride was added in Table 1.
  • a silica-coated carbon black, an electrode composition, a secondary battery electrode and a secondary battery were produced in the same manner as in Example 1 except that the mass was changed to the mass shown in FIG. The results are shown in Table 1.
  • Example 6 The carbon black of Example 1 is represented by acetylene black (AB powder form, manufactured by Denki Kagaku Kogyo Co., Ltd.) having a DBP absorption of 228 mL / 100 g and a compressed DBP absorption of 125 mL / 100 g, and hexadecyltrimethylammonium chloride is shown in Table 1.
  • acetylene black (AB powder form, manufactured by Denki Kagaku Kogyo Co., Ltd.) having a DBP absorption of 228 mL / 100 g and a compressed DBP absorption of 125 mL / 100 g
  • hexadecyltrimethylammonium chloride is shown in Table 1.
  • a silica-coated carbon black, an electrode composition, an electrode for a secondary battery, and a secondary battery were produced in the same manner as in Example 1 except that the mass was changed, and each evaluation was performed. The results are shown in Table 1.
  • Example 7 The carbon black of Example 1 was converted into acetylene black (SAB, manufactured by Denki Kagaku Kogyo Co., Ltd.) having a DBP absorption of 338 mL / 100 g and a compressed DBP absorption of 240 mL / 100 g.
  • SAB acetylene black
  • a silica-coated carbon black, an electrode composition, a secondary battery electrode, and a secondary battery were produced in the same manner as in Example 1 except that the changes were made, and each evaluation was performed. The results are shown in Table 1.
  • Example 1 A silica-coated carbon black, an electrode composition, a secondary battery electrode and a secondary battery were prepared in the same manner as in Example 1 except that the silica coating treatment was not performed, and each evaluation was performed. From each evaluation, the electrode appearance and cycle characteristics were inferior, resulting in increased gas generation. The results are shown in Table 1.
  • Example 2 Except for changing the carbon black of Example 1 to furnace black (SuperPLi, manufactured by Timcal Graphite and Carbon, Inc.) having a DBP absorption of 254 mL / 100 g and a compressed DBP absorption of 104 mL / 100 g, the same as in Example 1
  • the silica-coated carbon black, the electrode composition, the secondary battery electrode and the secondary battery were prepared by various methods, and each evaluation was performed. From each evaluation, the electrode appearance and cycle characteristics were inferior, resulting in increased gas generation. The results are shown in Table 1.
  • an electrode composition and a secondary battery electrode excellent in conductivity and dispersibility can be obtained. Thereby, even when the battery is placed under a high voltage or an overvoltage, it is possible to obtain a secondary battery excellent in durability by suppressing the decomposition of the electrolytic solution or the generation of gas.

Abstract

電池が高電圧下あるいは過電圧時におかれた際、電解液の分解あるいはガス発生を抑制して長寿命化でき、かつ優れた導電性と分散性が得られるシリカ被覆カーボンブラック並びにこれを用いた耐久性に優れる二次電池用電極および二次電池を提供する。 カーボンブラックの表面をシリカで被覆したシリカ被覆カーボンブラックであって、前記カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比(DBP吸収量/圧縮DBP吸収量)が2.2以下であり、前記シリカ被覆カーボンブラックの23℃における単位質量あたりの局在電子スピン密度が5.0×1018個/g以下である、シリカ被覆カーボンブラックにより、耐久性に優れた二次電池用電極および二次電池を得られる。

Description

シリカ被覆カーボンブラック、それを用いた電極用組成物、二次電池用電極および二次電池
 本発明は、シリカ被覆カーボンブラック、それを用いた電極用組成物、二次電池用電極および二次電池に関する。
 リチウムイオンの吸蔵、放出が可能な材料を用いて負極を形成したリチウムイオン二次電池は、金属リチウムを用いて負極を形成したリチウム電池に比べてデンドライドの析出を抑制することができる。そのため、電池の短絡を防止して安全性を高めた上で高容量なエネルギー密度の高い電池を提供できるという利点を有している。 
 近年ではこのリチウムイオン二次電池の出力密度のさらなる向上が求められている。これを実現するための一つの手段として、従来よりも放電電圧の高い正極活物質を用いることで、小さい電流密度でも高い出力密度を得る方法が検討されている。例えば、スピネル型の結晶構造を持つニッケルマンガン酸リチウム(LiNi0.5Mn1.5)を正極活物質として用いることで、4.5V程度の高い放電電圧を実現することができる。
 しかしながら、前記のような高電圧の正極活物質を用いると、正極およびその近傍の電解液が強い酸化環境におかれるため、電解液の分解あるいはガス発生が進行し、電池寿命が低下するという課題がある。特に導電剤であるカーボンブラックは電解液との接触面積が大きいことから、電解液の分解あるいはガス発生を起こしやすくする原因となっている。
 高電圧下での電池寿命の改善に、例えば特許文献1では、正極材料表面にリン及びホウ素を含む酸化物を被覆したリチウムイオン二次電池用正極材料の開示がある。また、特許文献2では、正極集電体表面を錫酸化物やインジウム酸化物でコートした正極の開示がある。
 ところで、カーボンブラックはその共通の構造として球形に近い1次粒子が数珠上に繋がりあった構造を有しており、このような構造をストラクチャと呼ぶ。一般に、ストラクチャが長く連結しているほど、接触抵抗なく電子伝導できる距離が大きくなるため、電子伝導性が向上する。
 ストラクチャの長さは、一般的にJIS K6217-4に準拠して測定されるDBP吸収量を用いて間接的に評価され、DBP吸収量が大きいほどストラクチャが長く、導電性に優れるとされる(特許文献3)。一方、ストラクチャが長いカーボンブラックは、導電性に優れる反面、粒子同士の相互作用が大きくなるため、解砕し難く凝集し易いという側面を持つ。したがって、一般に電極製造時には活物質、導電剤およびバインダーを水または有機溶剤に分散した電極用組成物を金属箔に塗布する方法がとられるが、ストラクチャが長いカーボンブラックを導電剤として用いた場合、この塗工液中に導電剤の凝集物が残存して電極に凹凸が生じたり、塗工液の粘度が高すぎて塗布不能になったりといった問題が発生しやすい。
 かかる課題を克服するために、例えば特許文献4では、導電剤のスラリー化を提案している。
特開2012-79603号公報 特開平10-308222号公報 特開2012-221684号公報 特開2003-157846号公報
 しかしながら、特許文献1及び2による改善は、電解液の分解あるいはガス発生に大きく影響するカーボンブラックに対する改善ではなく、当該技術では効果が不十分である。
 また、特許文献4に開示されるような導電材のスラリー化では、機械的な解砕によるストラクチャの切断が懸念され、十分な電子伝導性を担保できない。
 本発明は、上記問題と実情に鑑み、二次電池が高電圧下あるいは過電圧時におかれた際、電解液の分解あるいはガス発生を抑制し、かつ導電性と分散性に優れるシリカ被覆カーボンブラック、並びにこれを用いた耐久性に優れる二次電池用電極および二次電池提供することを目的とする。
 すなわち、本発明は上記の課題を解決するために、以下の手段を採用する。
(1)カーボンブラックの表面をシリカで被覆したシリカ被覆カーボンブラックであって、前記カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比(DBP吸収量/圧縮DBP吸収量)が2.2以下で、前記シリカ被覆カーボンブラックの23℃における単位質量あたりの局在電子スピン密度が5.0×1018個/g以下である、シリカ被覆カーボンブラック。
(2)前記シリカが前記カーボンブラックの表面積全体に対して5%~90%被覆してなる、(1)に記載のシリカ被覆カーボンブラック。
(3)前記カーボンブラックがアセチレンブラックである、(1)または(2)に記載のシリカ被覆カーボンブラック。
(4)体積抵抗率が1×10Ω・cm以下である、(1)~(3)の何れか一項に記載のシリカ被覆カーボンブラック。
(5)(1)~(4)の何れか一項に記載のシリカ被覆カーボンブラックと、正極活物質または負極活物質と、バインダーを含む電極用組成物。
(6)(5)に記載の電極用組成物が金属箔上に塗布された二次電池用電極。
(7)(6)に記載の二次電池用電極を、正極および負極の少なくとも一方に備えた二次電池。
 本発明者らは鋭意研究の結果、特定範囲の局在電子スピン密度のシリカ被覆カーボンブラックを用いた二次電池は、電解液の分解あるいはガス発生を抑制することを見出した。また、本シリカ被覆カーボンブラックは分散性に優れるため、導電性が良好となる。また、これらを用いた二次電極及び二次電池は、耐久性に優れるという特長を持つ。
本発明の実施例1のシリカ被覆カーボンブラックの走査型電子顕微鏡写真である。 本発明の実施例2のシリカ被覆カーボンブラックの走査型電子顕微鏡写真である。 従来(比較例1)のカーボンブラックの走査型電子顕微鏡写真である。 各温度での総電子スピン密度から伝導電子スピン密度および局在電子スピン密度を算出する方法を示した図である。 実施例1のシリカ被覆カーボンブラックのESRスペクトル(微分形式)である。
 以下、本発明を詳細に説明する。本発明のシリカ被覆カーボンブラックは、カーボンブラックの表面をシリカで被覆したシリカ被覆カーボンブラックであって、前記カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比(DBP吸収量/圧縮DBP吸収量)が2.2以下であり、前記シリカ被覆カーボンブラックの23℃における単位質量あたりの局在電子スピン密度が5.0×1018個/g以下である、シリカ被覆カーボンブラックである。
 尚、本発明における被覆とは、図1に示すようにシリカがカーボンブラック粒子の表面に少なくとも一部分または図2に示すようにおおよそ全面を覆っている状態を意味する。
 本発明におけるカーボンブラックは、一般の電池用導電剤としてのカーボンブラック同様、アセチレンブラック、ファーネスブラック、チャンネルブラックなどの中から選ばれるものである。中でも、結晶性および純度に優れるアセチレンブラックがより好ましい。
 本発明におけるカーボンブラックのDBP吸収量はJIS K6217-4に準拠して測定される値である。また、圧縮DBP吸収量はJIS K6217-4附属書Aに準拠して作製される圧縮試料についてDBP吸収量と同様の方法で測定される値である。
 本発明におけるカーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比は2.2以下であり、2.1以下であることがより好ましい。圧縮DBP吸収量に比べてDBP吸収量の値が大きいことは圧縮試料を作製する際に破壊される凝集粒子の量が多く、それらを解砕するためにより大きいエネルギーを必要とすることを意味する。したがって、圧縮DBP吸収量に対するDBP吸収量の比を2.2以下とすることで、凝集粒子を解砕するために必要なエネルギーが抑えられ、分散性が良好となる。分散性が不良な場合には、サイクル特性が劣り、ガス発生が多くなる。なお、カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比の下限値は、要求される導電性を満たす範囲であれば限定されないが、ストラクチャが長い場合に導電性が高い傾向にあるため、例えば、1.4以上であることが好ましい。
 本発明者らは鋭意研究の結果、下記のように定義されるシリカ被覆カーボンブラックの局在電子スピン密度が電解液の分解あるいはガス発生と強く関連することを見出した。
(局在電子スピン密度の定義)
 本発明におけるシリカ被覆カーボンブラックの単位質量あたりの局在電子スピン密度(N[個/g])は、式(1)のように定義される値である。
=N-N   (1)
但し、Nはシリカ被覆カーボンブラックの単位質量あたりの総電子スピン密度、Nはシリカ被覆カーボンブラックの単位質量あたりの伝導電子スピン密度である。
尚、シリカ被覆カーボンブラックの局在電子スピン密度、総電子スピン密度および伝導電子スピン密度は、いずれもシリカ被覆カーボンブラックが有する電子スピン数(個)に、シリカ被覆カーボンブラックに対するカーボンブラックの質量の割合を乗じた値を示している。
(総電子スピン密度の定義)
シリカ被覆カーボンブラックの単位質量あたりの総電子スピン密度(N)は、式(2)のように定義される値である。
N=I/IREF×{s(s+1)}/{S(S+1)}×NREF/M     (2)
但し、Iはシリカ被覆カーボンブラックの電子スピン共鳴(以下ESR)信号強度、IREFは標準試料のESR信号強度、Sはカーボンブラックのスピン量子数(すなわちS=1/2)、sは標準試料のスピン量子数、NREFは標準試料のスピン数、Mはシリカ被覆カーボンブラック中のカーボンブラックの質量である。
 標準試料の種類は特に限定されるものではないが、例えば電気化学的な方法によりスピン量子数が既知のイオンを注入されたポリエチレンフィルムなどを用いることができる。また、標準試料のスピン数(NREF)を決定する方法は特に限定されるものではないが、例えば滴定法によりスピン量子数が既知のイオンの濃度を測定する方法を用いることができる。
(伝導電子スピン密度の定義)
 シリカ被覆カーボンブラックの単位質量あたりの伝導電子スピン密度(N)は式(3)のように定義される値である。
N=A/T+N   (3)
但し、Aは定数、Tはシリカ被覆カーボンブラックの絶対温度[K]である。
すなわち、シリカ被覆カーボンブラックの伝導電子スピン密度(N)は、例えば下記のようにして決定することができる。まず、2点以上の異なる温度でシリカ被覆カーボンブラックの総電子スピン密度(N)を測定する。
次いで図4のように、Nを縦軸に、絶対温度単位で表した測定温度の逆数(1/T)を横軸にとったグラフを作成する。次いでそのグラフの回帰直線を最小自乗法により求め、その切片の値(すなわち1/T=0に外挿した値)をNとする。
 本発明におけるシリカ被覆カーボンブラックの23℃における単位表面積あたりの局在電子スピン密度は5.0×1018個/g以下である。局在電子スピン密度が少ないほど、電解液の分解あるいはガス発生を引き起こしやすい格子欠陥やエッジ部分が少なくなるため、電解液の分解あるいはガス発生を抑制できかつ電池の耐久化が期待できる。なお、最適な局在電子スピン密度は、カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比に依存する場合があり、カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比が1.9以上である場合には、4.0×1018個/g以下であることがより好ましい。一方、カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比が1.9未満である場合には、4.0×1018個/gを超えても十分効果が期待できる。
 本発明におけるシリカ被覆カーボンブラックのシリカの被覆率は、カーボンブラックの表面積全体に対して5~90%であることが好ましく、10~80%であることがより好ましい。被覆率を5%以上とすることで、電解液の分解あるいはガス発生を促進するカーボンブラック表面の格子欠陥やエッジ部分を不活性化できるため、分解抑制の効果が得られる。一方、被覆率が90%を超えるとシリカがカーボンブラックの導電性を阻害する効果が大きくなるため、被覆率は90%以下が好ましい。
 シリカ被覆カーボンブラックの体積抵抗率は、25℃、相対湿度50%の環境下、圧力24MPaで円盤状に圧縮した粉末試料を4端子4探針法にて測定した値である。
 シリカ被覆カーボンブラックの体積抵抗率は1×10Ω・cm以下が好ましく、1×10Ω・cm以下がより好ましく、1×10Ω・cm以下がさらに好ましい。シリカ被覆カーボンブラックの体積抵抗率を1×10Ω・cm以下とすることで、電極内部における導電性が良好となり、電池の内部抵抗が低くなる。
 本発明のシリカ被覆カーボンブラックを製造する方法は、特に限定されるものではないが、例えば特開2008-280465号公報に記載のような公知の方法を用いることができる。具体的には、カーボンブラックとテトラアルコキシシランとハロゲン化アルキルトリメチルアンモニウムを含む水溶液にマイクロ波を照射することでカーボンブラック表面をシリカで被覆することができる。
 本発明のシリカ被覆カーボンブラックを用いて電極を作製する際はシリカ被覆カーボンブラックを正極活物質または負極活物質およびバインダーと共に媒体に分散させ、電極用組成物として使用することができる。
正極活物質としては、コバルト酸リチウム、ニッケル酸リチウム、ニッケルコバルトマンガン酸リチウム、ニッケルコバルトアルミニウム酸リチウムなどの層状岩塩型構造を持つ複合酸化物、マンガン酸リチウム、ニッケルマンガン酸リチウムなどのスピネル型構造を持つ複合酸化物、リン酸鉄リチウム、リン酸マンガンリチウム、リン酸鉄マンガンリチウムなどのオリビン型構造を持つ複合酸化物などが挙げられる。これらの中では、スピネル型構造を持つニッケルマンガン酸リチウムを用いることが、本発明のガス発生抑制効果を顕著に発揮できる点から好ましい。
 負極活物質としては人造黒鉛、天然黒鉛、ソフトカーボン、ハードカーボンなどの炭素系材料、ケイ素、スズなどのアルカリ金属と合金化する金属系材料、チタン酸リチウムなどの金属複合酸化物などが挙げられる。
 バインダーとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-ブタジエン共重合体、ポリビニルアルコール、アクリロニトリリル-ブタジエン共重合体、カルボン酸変性(メタ)アクリル酸エステル共重合体等の高分子が挙げられる。これらの中では、正極に用いる場合は耐酸化性の点でポリフッ化ビニリデンが好ましく、負極に用いる場合は接着力の点でポリフッ化ビニリデンまたはスチレン-ブタジエン共重合体が好ましい。
 電極用組成物の分散媒としては、水、N-メチル-2-ピロリドン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。バインダーとしてポリフッ化ビニリデンを使用する際は、溶解性の点でN-メチル-2-ピロリドンが好ましく、スチレン-ブタジエン共重合体を使用する際は水が好ましい。
 電極用組成物を製造するための混合装置としては、らいかい機、万能混合機、ヘンシェルミキサー若しくはリボンブレンダーなどの混合機、又はビーズミル、振動ミル若しくはボールミルなどの媒体撹拌型混合機を用いて行うことができる。また、製造した電極用塗工液は、塗膜に欠陥が生じないようにして平滑性を確保するため、塗工前の段階で真空脱泡を行うことが好ましい。塗工液に気泡が存在すると、電極に塗布した際に、塗膜に欠陥が生じ、平滑性を損なう原因となる。
 また、電極用組成物は、本発明の効果を損なわない範囲で、シリカ被覆カーボンブラック、正極活物質、負極活物質およびバインダー以外の成分を含むことができる。例えば、導電性をさらに向上させる目的で、シリカ被覆カーボンブラック以外にカーボンナノチューブ、カーボンナノファイバー、黒鉛、グラフェン、炭素繊維、元素状炭素、グラッシーカーボン、金属粒子などを含んでも良い。また、分散性を向上させる目的でポリビニルピロリドン、ポリビニルイミダゾール、ポリエチレングリコール、ポリビニルアルコール、ポリビニルブチラール、カルボキシメチルセルロース、アセチルセルロースまたはカルボン酸変性(メタ)アクリル酸エステル共重合体などを含んでも良い。
 以下、実施例及び比較例により、本発明に係るシリカ被覆カーボンブラックを詳細に説明する。しかし、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
<実施例1>
(カーボンブラック)
 本実施例ではカーボンブラックとして、DBP吸収量171mL/100g、圧縮DBP吸収量83mL/100gであるアセチレンブラック(電気化学工業社製、HS100)を用いた。なお、カーボンブラックのDBP吸収量および圧縮DBP吸収量は、以下の方法により測定した。
[DBP吸収量]
 DBP吸収量はJIS K6217-4に準拠する方法で測定した。また、圧縮DBP吸収量はJIS K6217-4附属書Aに準拠する方法で、165MPaで4回圧縮して作製した圧縮試料について、DBP吸収量と同様の測定法で測定した。
(シリカ被覆カーボンブラックの製造)
 アセチレンブラック2.5gおよび界面活性剤としてヘキサデシルトリメチルアンモニウムクロリド(関東化学社製)0.072gを水/エタノール=1/1(質量比)混合溶媒250gに精密分散乳化機(エム・テクニック社製、クレアミックス)を用いて分散させ、次いで1Nアンモニア水(関東化学社製)を加えてpH11.6に調製した。この分散液をマグネチックスターラーで撹拌しながらシリカ源としてテトラエトキシシラン(東京化成工業社製)8.7gを室温下で10時間かけて滴下し、さらに12時間撹拌し、反応させた。その後反応液を吸引ろ過し、純水で洗浄し、40℃で1晩乾燥させたところ、シリカ被覆カーボンブラック2.6gが黒色粉末として得られた。
(シリカ被覆カーボンブラックの評価)
 シリカ被覆カーボンブラックの物性等は、各々次のようにして評価した。結果を表1に示す。
[局在電子スピン密度]
 前記シリカ被覆カーボンブラックの23℃における局在電子スピン密度は、下記の方法で算出した。まず電子スピン共鳴測定装置(Bruker社製 ESP350E)を用いて、中心磁場3383Gauss、磁場掃引幅200Gaussの条件で、試料温度-263、-253、-233、-173、-113、-53、23℃におけるシリカ被覆カーボンブラックのESR信号を測定した。ESR信号は図5のような微分形式で出力されるため、これを全領域で1回積分することでスピンの吸収曲線が得られ、さらに積分することで、ESR信号強度を算出した。
次いで、既知のスピン密度をもつイオン注入されたポリエチレンフィルム(厚み300μm、スピン数5.5×1013個/g)のESR信号強度を同一条件で測定し、これを標準試料として各温度におけるシリカ被覆カーボンブラックの総電子スピン密度を算出した。次いで縦軸に総電子スピン密度、横軸に絶対温度で表した試料温度の逆数を取ったグラフを作成し、最小自乗法を用いて算出した回帰直線の切片として、伝導電子スピン密度を算出した。23℃における総電子スピン密度の値から伝導電子スピン密度の値を減じることで、局在電子スピン密度を算出した。
[シリカ被覆率]
 シリカ被覆率は以下の式により求めた。走査型電子顕微鏡(日本電子社製,MERLIN)を用いて得たシリカ被覆カーボンブラックの反射電子像において、画像処理ソフトImageJを用いて画像解析を行った。画像中の輝度が異なる黒色部分をカーボンブラック、白色部分をシリカとしてシリカ被覆カーボンブラックの面積(黒色部分+白色部分)に対するシリカの面積(白色部分)からシリカ被覆率を算出した。画像処理はビット数8で画像中の輝度を0~255で分割し、輝度の閾値を以下の通りに規定し解析した。
シリカ被覆率(%)=白色部分/(黒色部分+白色部分)×100(%)
画像の輝度の閾値
下地(シリカ被覆カーボンブラック以外):0~46
カーボンブラック(黒色部分):47~120
シリカ(白色部分):121~255
[体積抵抗率]
 シリカ被覆カーボンブラック0.5gを量り取り、25±1℃、相対湿度50±2%の環境に24時間静置し、粉体抵抗測定システム(三菱化学アナリテック社製、MCP-PD51型)を用いて、24MPaの荷重下で直径20mmの円盤状に圧縮した状態で体積抵抗率を測定した。
(電極用組成物および二次電池用正極電極の作製)
 シリカ被覆カーボンブラック5質量部に、活物質としてスピネル型ニッケルマンガン酸リチウム(宝泉社製)を90質量部、バインダーとしてポリフッ化ビニリデン溶液(呉羽化学社製、「KFポリマー(登録商標)1120」、固形分濃度12質量%)を溶質量で5質量部、さらに分散媒としてN-メチル-2-ピロリドン(キシダ化学社製)30質量部を加えて自転公転式混合機(シンキー社製、あわとり練太郎ARV-310)を用いて混合し、電極用組成物を得た。この電極用組成物を、ベーカー式アプリケーターを用いて厚さ20μmのアルミニウム箔に塗布、乾燥し、その後、プレス、裁断して、二次電池用正極電極を得た。
(電極用組成物および二次電池用正極電極の評価)
 上記で作製した電極用組成物および二次電池用電極について、次のようにして分散性の評価を行った。結果を表1に示す。
[つぶゲージ(電極用組成物)]
 電極用組成物におけるシリカ被覆カーボンブラックの分散性はJIS K5600-2-5に記載されるつぶゲージを用いた方法で評価した。具体的には、スクレパーを用い、塗工液を塗布し、試料面に10mm以上連続した線状痕が、一つの溝について3本以上並んだ箇所の目盛りを測定した。分散性は数値が低い程、良好な分散性を意味する。
[電極外観(二次電池用正極電極)]
 二次電池用正極電極におけるシリカ被覆カーボンブラックの分散性はリチウム二次電池用正極電極の外観によって判断した。具体的には100mm四方の電極5枚を作製し、以下の尺度で評価した。
優:5枚とも電極面に筋状の塗工跡および凝集塊が観られなかった。
良:1枚以上の電極面に筋状の塗工跡または1mm未満の凝集塊が観られた。
不良:1枚以上の電極面に1mm以上の凝集塊が観察された。
(二次電池の作製)
 前記二次電池用正極電極を用いて、次のようにして二次電池を作製した。
(負極の作製)
 活物質として黒鉛粉末(日立化成社製 MAG-D)98質量部、バインダーとしてポリフッ化ビニリデン溶液を溶質量で2質量部、さらに分散媒としてN-メチル-2-ピロリドン30質量部を加えて自転公転式混合機を用いて混合し、負極用電極用組成物を得た。これをベーカー式アプリケーターを用いて厚さ15μmの銅箔に塗布、乾燥し、その後、プレス、裁断して、二次電池用負極電極を得た。
(電池の作製)
 正極として前記二次電池用正極電極を縦40mm、横40mmに裁断したもの、負極として前記二次電池用負極電極を縦44mm、横44mmに裁断したものを用い、これらを電気的に隔離するセパレータとしてオレフィン繊維製不織布、外装としてアルミラミネートフィルムを用いてラミネート型電池とした。電解液にはEC(エチレンカーボネート、Aldrich社製)、DEC(ジエチルカーボネート、Aldrich社製)を体積比で1:2に混合した溶液中に六フッ化リン酸リチウム(LiPF、ステラケミファ社製)を1mol/L溶解したものを用いた。
(二次電池の評価)
 上記で作製した二次電池について、次のようにして評価を行った。結果を表1に示す。なお特に記載のない場合は、評価値は3個の電池の評価値の算術平均値である。
[放電容量、クーロン効率]
 まず正極の質量から正極上に存在する正極活物質量(g)を求め、これを140で除した値(mA)を電流値「1C」とした。電流を1C、上限電圧を5.0Vとして定電流・定電圧充電を行い、さらに電流を1C、下限電圧を3.0Vとして定電流放電を行い、この際の正極活物質1gあたりの充電容量(mAh/g)に対する、正極活物質1gあたりの放電容量(mAh/g)の比(%)をクーロン効率とした。尚、放電容量が高いほど、電極の導電性が優れ、電池の抵抗が低いことを意味する。また、クーロン効率が高いほど、電解液の酸化反応等の耐久性の低下をもたらす副反応が少ないことを意味する。
[サイクル特性]
 耐久性の評価として、次の要領でサイクル特性の測定を行った。電流を1C、上限電圧を5.0Vとして定電流・定電圧充電を行ったあと、電流を1C、下限電圧を3.0Vとして定電流を行うことを1サイクルとして、これを200回繰り返した。1回目の放電容量に対する200回目の放電容量の比(%)をサイクル特性値とした。200サイクル未満で放電容量が0となった場合は、その電池のサイクル特性値は0として3個の電池の算術平均値を計算した。
[ガス発生量]
 ガス発生抑制効果の評価として、サイクル特性試験前後の電池の体積変化(mL)をガス発生量として測定した。電池の体積は比重測定装置(島津製作所社製 AUW220D)を用いて25±1℃の恒温室内で測定し、ガス発生量として以下の尺度で評価した。
優:ガス発生量0.0以上3.0ml未満
良:ガス発生量3.0以上4.0ml未満
可:ガス発生量4.0以上8.0ml未満
不良:ガス発生量8.0ml以上
<実施例2~4>
 実施例1のヘキサデシルトリメチルアンモニウムクロリドを表1に示す質量となるように変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極および二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例5>
 実施例1のカーボンブラックを、DBP吸収量234mL/100g、圧縮DBP吸収量115mL/100gであるファーネスブラック(ティムカル・グラファイト・アンド・カーボン社製、SuperPLi)に、またヘキサデシルトリメチルアンモニウムクロリドを表1に示す質量となるように変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極および二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例6>
 実施例1のカーボンブラックを、DBP吸収量228mL/100g、圧縮DBP吸収量125mL/100gであるアセチレンブラック(電気化学工業社製、AB粉状)に、またヘキサデシルトリメチルアンモニウムクロリドを表1に示す質量となるように変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極および二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例7>
 実施例1のカーボンブラックを、DBP吸収量338mL/100g、圧縮DBP吸収量240mL/100gであるアセチレンブラック(電気化学工業社製、SAB)に、またヘキサデシルトリメチルアンモニウムクロリドを表1に示す質量となるように変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極および二次電池を作製し、各評価を実施した。結果を表1に示す。
<比較例1>
 シリカの被覆処理を行わなかった以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極および二次電池を作製し、各評価を実施した。各評価から、電極外観およびサイクル特性に劣りガス発生が多くなる結果となった。結果を表1に示す。
<比較例2>
 実施例1のカーボンブラックを、DBP吸収量254mL/100g、圧縮DBP吸収量104mL/100gであるファーネスブラック(ティムカル・グラファイト・アンド・カーボン社製、SuperPLi)に変更した以外は、実施例1と同様な方法でシリカ被覆カーボンブラック、電極用組成物、二次電池用電極および二次電池を作製し、各評価を実施した。各評価から、電極外観およびサイクル特性が劣り、ガス発生が多くなる結果となった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明の実施例のシリカ被覆カーボンブラックは導電性と分散性に優れ、さらにこれらを用いて製造される二次電池はガス発生が少なく、耐久性に優れることが分かった。
 以上の結果は、実施例で用いたリチウムイオン二次電池正極のほか、同様に作製したリチウムイオン二次電池負極、さらにはナトリウムイオン二次電池用の電極に対しても同様であった。
 本発明のシリカ被覆カーボンブラックを利用することで、導電性および分散性に優れた電極用組成物及び二次電池用電極を得ることができる。これにより、電池が高電圧下あるいは過電圧時におかれた際も、電解液の分解あるいはガス発生を抑制し、耐久性に優れた二次電池を得ることができる。

Claims (7)

  1. カーボンブラックの表面をシリカで被覆したシリカ被覆カーボンブラックであって、前記カーボンブラックの圧縮DBP吸収量に対するDBP吸収量の比(DBP吸収量/圧縮DBP吸収量)が2.2以下で、前記シリカ被覆カーボンブラックの23℃における単位質量あたりの局在電子スピン密度が5.0×1018個/g以下である、シリカ被覆カーボンブラック。
  2. 前記シリカが前記カーボンブラックの表面積全体に対して5%~90%被覆してなる、請求項1に記載のシリカ被覆カーボンブラック。
  3. 前記カーボンブラックがアセチレンブラックである、請求項1または2に記載のシリカ被覆カーボンブラック。
  4. 体積抵抗率が1×105Ω・cm以下である、請求項1~3の何れか一項に記載のシリカ被覆カーボンブラック。
  5. 請求項1~4の何れか一項に記載のシリカ被覆カーボンブラックと、正極活物質または負極活物質と、バインダーを含む電極用組成物。
  6. 請求項5に記載の電極用組成物が金属箔上に塗布された二次電池用電極。
  7. 請求項6に記載の二次電池用電極を、正極および負極の少なくとも一方に備えた二次電池。
PCT/JP2016/064425 2015-05-19 2016-05-16 シリカ被覆カーボンブラック、それを用いた電極用組成物、二次電池用電極および二次電池 WO2016186065A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017519202A JP6714587B2 (ja) 2015-05-19 2016-05-16 シリカ被覆カーボンブラック、それを用いた電極用組成物、二次電池用電極および二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-102063 2015-05-19
JP2015102063 2015-05-19

Publications (1)

Publication Number Publication Date
WO2016186065A1 true WO2016186065A1 (ja) 2016-11-24

Family

ID=57320230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064425 WO2016186065A1 (ja) 2015-05-19 2016-05-16 シリカ被覆カーボンブラック、それを用いた電極用組成物、二次電池用電極および二次電池

Country Status (2)

Country Link
JP (1) JP6714587B2 (ja)
WO (1) WO2016186065A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668869A (ja) * 1992-08-21 1994-03-11 Central Res Inst Of Electric Power Ind リチウム二次電池
JPH07316463A (ja) * 1994-05-20 1995-12-05 Tokai Carbon Co Ltd 高電気抵抗性カーボンブラック
JPH09296072A (ja) * 1996-04-30 1997-11-18 Yokohama Rubber Co Ltd:The 高電気抵抗性カーボンブラック含有成形品
JP2002532572A (ja) * 1998-07-24 2002-10-02 キャボット コーポレイション シリカ被覆炭素生成物の製造方法
JP2014241279A (ja) * 2013-05-14 2014-12-25 ライオン株式会社 電極合材
WO2016084909A1 (ja) * 2014-11-26 2016-06-02 デンカ株式会社 シリカ被覆カーボンブラック並びにそれを用いた電極用組成物、二次電池用電極及び二次電池
WO2016088880A1 (ja) * 2014-12-04 2016-06-09 デンカ株式会社 電極用導電性組成物、非水系電池用電極及び非水系電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039336A1 (ja) * 2014-09-09 2016-03-17 電気化学工業株式会社 電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池
JP2018008828A (ja) * 2014-11-20 2018-01-18 デンカ株式会社 カーボンブラック及びそれを用いた二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668869A (ja) * 1992-08-21 1994-03-11 Central Res Inst Of Electric Power Ind リチウム二次電池
JPH07316463A (ja) * 1994-05-20 1995-12-05 Tokai Carbon Co Ltd 高電気抵抗性カーボンブラック
JPH09296072A (ja) * 1996-04-30 1997-11-18 Yokohama Rubber Co Ltd:The 高電気抵抗性カーボンブラック含有成形品
JP2002532572A (ja) * 1998-07-24 2002-10-02 キャボット コーポレイション シリカ被覆炭素生成物の製造方法
JP2014241279A (ja) * 2013-05-14 2014-12-25 ライオン株式会社 電極合材
WO2016084909A1 (ja) * 2014-11-26 2016-06-02 デンカ株式会社 シリカ被覆カーボンブラック並びにそれを用いた電極用組成物、二次電池用電極及び二次電池
WO2016088880A1 (ja) * 2014-12-04 2016-06-09 デンカ株式会社 電極用導電性組成物、非水系電池用電極及び非水系電池

Also Published As

Publication number Publication date
JPWO2016186065A1 (ja) 2018-04-12
JP6714587B2 (ja) 2020-06-24

Similar Documents

Publication Publication Date Title
JP5149920B2 (ja) リチウム二次電池用電極の製造方法
JP6278679B2 (ja) 導電組成物、正極、およびリチウムイオン二次電池。
US9595714B2 (en) Electrode-forming composition
KR102157404B1 (ko) 개선된 전기화학적 성능을 갖는 lmfp 캐소드 물질
KR101595625B1 (ko) 금속산화물/그래핀 복합 마이크로입자 및 이를 포함하는 리튬 이차전지용 양극
KR20170090196A (ko) 전기화학 성능이 우수한 양극활물질 및 이를 포함하는 리튬 이차 전지
Kwon The effect of carbon morphology on the LiCoO2 cathode of lithium ion batteries
JP6604965B2 (ja) シリカ被覆カーボンブラック並びにそれを用いた電極用組成物、二次電池用電極及び二次電池
KR20110136867A (ko) 리튬 전지의 양극을 위한 플루오르화 결합제 복합 재료 및 탄소 나노튜브
JP6581991B2 (ja) 電池用カーボンブラック、混合粉末、電池用塗工液、電池用電極および電池
WO2011002013A1 (ja) 非水電解質二次電池電極用活物質及び非水電解質二次電池
JP2012079471A (ja) 非水電解質二次電池の製造方法及び非水電解質二次電池
CN107665994A (zh) 一种负极材料及其制备方法、负极和全固态锂离子电池
US11522175B2 (en) Method of producing cathode slurry, cathode and all-solid-state battery, and cathode and all-solid-state battery
CN110495026A (zh) 负极材料和非水电解质二次电池
KR102492457B1 (ko) 전극용 도전성 조성물, 비수계 전지용 전극 및 비수계 전지
CN104781967B (zh) 活性物质颗粒、蓄电装置用正极、蓄电装置以及活性物质颗粒的制造方法
KR101699601B1 (ko) 이차 전지용 부극 활물질의 제조 방법 및 이차 전지용 부극 활물질, 이차 전지용 부극의 제조 방법 및 이차 전지용 부극, 및 이차 전지
TW201902822A (zh) 電極用碳黑及電極漿
JP2018041710A (ja) 活物質−炭素材料複合体、非水電解質二次電池用正極、非水電解質二次電池及び炭素材料
JP2011181387A (ja) 電気化学素子用電極合材の製造方法
JP2020021632A (ja) カーボンブラック分散組成物およびその利用
WO2016186065A1 (ja) シリカ被覆カーボンブラック、それを用いた電極用組成物、二次電池用電極および二次電池
CN107104235B (zh) 用于锂离子电池负极材料的石墨烯纳米铜复合材料的制备方法
US20170054143A1 (en) A graphene/he-ncm composite for lithium ion battery, a method for preparing said composite, and an electrode material and a lithium ion battery comprising said composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017519202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796458

Country of ref document: EP

Kind code of ref document: A1