WO2011002013A1 - 非水電解質二次電池電極用活物質及び非水電解質二次電池 - Google Patents
非水電解質二次電池電極用活物質及び非水電解質二次電池 Download PDFInfo
- Publication number
- WO2011002013A1 WO2011002013A1 PCT/JP2010/061128 JP2010061128W WO2011002013A1 WO 2011002013 A1 WO2011002013 A1 WO 2011002013A1 JP 2010061128 W JP2010061128 W JP 2010061128W WO 2011002013 A1 WO2011002013 A1 WO 2011002013A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- antioxidant
- secondary battery
- electrode
- electrolyte secondary
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an active material used for a nonaqueous electrolyte secondary battery electrode such as a lithium ion secondary battery, a slurry composition containing the active material, a nonaqueous electrolyte secondary battery electrode, and a nonaqueous electrolyte secondary battery.
- Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “batteries”) are frequently used as secondary batteries used for the power sources of these portable terminals.
- Batterys are frequently used as secondary batteries used for the power sources of these portable terminals.
- Mobile terminals are required to have more comfortable portability, and have rapidly become smaller, thinner, lighter, and higher in performance.
- portable terminals are used in various places.
- the battery as the power source is also required to be smaller, thinner, lighter, and higher in performance as with mobile terminals.
- an electrode is manufactured as follows. That is, a binder and a liquid medium are mixed to obtain a binder composition, and an active material is added thereto to form an electrode slurry composition. The obtained electrode slurry composition is applied onto a current collector and dried. Thus, an active material layer is formed and manufactured.
- Patent Document 1 discloses that a polymer resin solution containing an antioxidant is impregnated with an electrode in order to solve a problem related to safety of a lithium ion secondary battery, and a hindered amine-based antioxidant is disclosed.
- the electrode manufactured by the above method is dip-coated in a mixed solution of polymer resin such as polyvinylidene fluoride and the like, and then dried to coat the surface of the electrode with an antioxidant.
- Patent Document 2 discloses a method of coating a separator with a polymer containing an antioxidant in order to suppress the deterioration reaction of the separator during the oxidation reaction at the positive electrode.
- Patent Document 3 discloses that an antioxidant is added to the electrolyte in order to solve this problem.
- JP-A-10-106546 JP 2004-253393 A (US Patent Application Publication No. 2004/166415) JP 2006-209995 A
- the inside of the pores of the active material becomes an active point, so that the electrolytic solution is significantly decomposed in the pores during charge and discharge, and decomposition products such as lithium carbonate are present in the pores. Deposits inside. It was also found that this decomposition product inhibited the acceptance of lithium ions into the active material, and the acceptability particularly at low temperatures was significantly deteriorated.
- the present invention has been made in view of the above-described problems of the prior art, and improves the lithium acceptability at a low temperature in an active material having many pores, thereby improving the life characteristics of the lithium ion secondary battery. It aims at providing the active material for nonaqueous electrolyte secondary battery electrodes which suppresses deterioration of this.
- the present invention also provides a slurry composition for a non-aqueous electrolyte secondary battery electrode containing the active material, a non-aqueous electrolyte secondary battery electrode formed by applying and drying the slurry composition, and a non-aqueous electrolyte secondary battery. Also aimed.
- the present inventors have used an active material that has been previously surface-treated with an antioxidant when preparing a slurry composition, so that the antioxidant is inside the pores of the active material. It was found that the lithium acceptability at a low temperature is improved by suppressing the decomposition of the electrolyte solution at the active point inside the pore during charging and discharging.
- mercury intrusion pore volume 0.1cm 3 /g ⁇ 2.0cm 3 / g active material is one in which surface-treated with (1) to a non-aqueous electrolyte according to any one of (3) Active material for secondary battery electrode.
- a slurry composition for a nonaqueous electrolyte secondary battery electrode comprising the active material for a nonaqueous electrolyte secondary battery electrode according to (1) above, a binder, and a solvent.
- An electrode for a non-aqueous electrolyte secondary battery obtained by applying and drying the slurry composition for a lithium ion secondary battery electrode according to (5) to (6) on a current collector.
- a nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolytic solution, wherein at least one of the positive electrode and the negative electrode is the electrode according to (7).
- the antioxidant by treating the active material with the antioxidant, the antioxidant is present inside the pores of the active material, the active sites inside the pores of the active material are deactivated, and the electrolytic solution is decomposed. Can be suppressed. As a result, generation of gas derived from the electrolytic solution can be suppressed, and further, a decrease in battery capacity due to decomposition of the electrolytic solution can be suppressed. As a result, cycle characteristics are improved, and generation of lithium carbonate derived from decomposition of the electrolytic solution is suppressed, so that the acceptability of lithium ions of the active material is improved.
- the active material for a non-aqueous electrolyte secondary battery electrode of the present invention is surface-treated with an antioxidant (hereinafter, the active material surface-treated with an antioxidant is referred to as “active material“ A ””). To do.)
- the surface treatment means that the surface of the active material is coated with an antioxidant. This surface also includes the pore surface of the active material.
- active material before surface treatment The active material before surface treatment of the active material for a nonaqueous electrolyte secondary battery electrode used after surface treatment in the present invention (hereinafter sometimes referred to as “active material“ a ””) is used in the electrolyte. Any material can be used as long as it can reversibly insert and release lithium ions by applying a potential.
- the electrode active material (positive electrode active material) for the positive electrode of the non-aqueous electrolyte secondary battery uses an active material capable of occluding and releasing lithium ions, and is broadly classified into an inorganic compound and an organic compound.
- Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, and lithium-containing composite metal oxides made of lithium and a transition metal.
- Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
- Transition metal oxides include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O. 5 , V 6 O 13 and the like. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity.
- transition metal sulfide TiS 2, TiS 3, amorphous MoS 2, FeS, and the like.
- the structure of the lithium-containing composite metal oxide is not particularly limited, and examples thereof include a layered structure, a spinel structure, and an olivine structure.
- the lithium-containing composite metal oxide having a layered structure includes lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), and a composite oxide of Co—Ni—Mn as a main structure. And a lithium-containing composite oxide having a Ni—Mn—Al composite oxide as a main structure and a lithium-containing composite oxide having a Ni—Co—Al composite oxide as a main structure.
- lithium-containing composite metal oxides having a spinel structure examples include lithium manganate (LiMn 2 O 4 ) and Li [Mn 3/2 M 1/2 ] O 4 in which a part of Mn is substituted with another transition metal (here M may be Cr, Fe, Co, Ni, Cu or the like.
- Li X MPO 4 (wherein, M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Li X MPO 4 as the lithium-containing composite metal oxide having an olivine structure)
- An olivine-type lithium phosphate compound represented by at least one selected from Si, B and Mo, 0 ⁇ X ⁇ 2) may be mentioned.
- LiFePO 4 and LiCoPO 4 are often used after being atomized due to their low conductivity. Therefore, the effect of improving the cycle characteristics due to the surface treatment of the anti-aging agent is high because they have many pores.
- organic compound for example, a conductive polymer such as polyacetylene or poly-p-phenylene can be used.
- An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted.
- the positive electrode active material for a lithium ion secondary battery may be a mixture of the above inorganic compound and organic compound.
- an active material capable of occluding and releasing lithium ions is used, and is mainly classified into a carbon-based active material and a non-carbon-based active material. .
- Carbon-based active materials include carbonaceous materials and graphite materials.
- the carbonaceous material generally indicates a carbon material having a low graphitization degree (low crystallinity) obtained by heat-treating (carbonizing) a carbon precursor at 2000 ° C. or lower.
- a graphitic material having high crystallinity close to that of graphite obtained by heat-treating at a temperature of 0 ° C. or higher is shown.
- Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature and non-graphitic carbon having a structure close to an amorphous structure typified by glassy carbon.
- Examples of graphitizable carbon include carbon materials made from tar pitch obtained from petroleum and coal, such as coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fibers, pyrolytic vapor-grown carbon fibers, etc. Is mentioned.
- MCMB is a carbon fine particle obtained by separating and extracting mesophase spherules produced in the process of heating pitches at around 400 ° C.
- mesophase pitch-based carbon fiber is a mesophase pitch obtained by growing and coalescing the mesophase spherules. Is a carbon fiber made from a raw material.
- non-graphitizable carbon examples include phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic carbon, and furfuryl alcohol resin fired bodies (PFA).
- Artificial graphite mainly includes artificial graphite heat-treated at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, graphitized mesophase pitch-based carbon fiber heat-treated at 2000 ° C. or higher. Used as an active material.
- lithium metal can be used, and simple metals forming alloys with lithium, alloys thereof, oxides and sulfides thereof, and the like are used.
- Examples of single metals and alloys forming lithium alloys include compounds containing metals such as Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, and Zn. Is mentioned. Among these, silicon (Si), tin (Sn) or lead (Pb) simple metals, alloys containing these atoms, or compounds of these metals are used.
- oxides and sulfides include oxides, carbides, nitrides, silicides, sulfides, and phosphides.
- lithium-containing metal composite oxide materials containing a metal element selected from the group consisting of oxides such as tin oxide, manganese oxide, titanium oxide, niobium oxide, vanadium oxide, Si, Sn, Pb and Ti atoms are used. ing.
- a lithium titanium composite oxide represented by Li x Ti y M z O 4 (0.7 ⁇ x ⁇ 1.5, 1.5 ⁇ y ⁇ 2.3, 0 ⁇ z ⁇ 1.6, M includes Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb), among which Li 4/3 Ti 5/3 O 4 , Li 1 Ti 2 O 4 and Li 4/5 Ti 11/5 O 4 are used.
- the active material “a” is most preferably a negative electrode active material for a nonaqueous electrolyte secondary battery because it has a large effect on the surface of the negative electrode active material for a nonaqueous electrolyte secondary battery.
- the active material "a” used in the present invention mercury intrusion pore volume in the voltage step-up from the pressure 4kPa to 400MPa is, preferably has in the range of 0.1cm 3 /g ⁇ 2.0cm 3 / g , it is more preferable in a range of 0.4cm 3 /g ⁇ 1.5cm 3 / g.
- the pre-treatment active material “a” whose mercury intrusion pore volume is in the above range usually has pores having a diameter of 0.01 to 10 ⁇ m inside the active material.
- the active sites inside the pores of the active material are deactivated, and the low-temperature lithium acceptability is greatly improved. Furthermore, it is possible to reduce the amount of binder when preparing a slurry composition to be described later, to suppress a decrease in the capacity of the battery, and to easily prepare the slurry composition to have an appropriate viscosity for application. become.
- the pore volume can be determined by measuring pore size distribution by mercury porosimetry.
- the particle shape of the active material “a” used may be a lump shape, polyhedron shape, spherical shape, elliptical spherical shape, plate shape, needle shape, columnar shape, etc., as used conventionally. Since there are many pores and the effect of improving lithium acceptability by surface treatment using an antioxidant is large, it is preferable that the particles are agglomerated or formed by agglomerating primary particles to form secondary particles.
- the specific surface area of the active material “a” used in the present invention is preferably in the range of 0.1 to 20 m 2 / g, more preferably in the range of 0.5 to 10 m 2 / g.
- the particle diameter of the active material “a” used in the present invention is usually 1 to 50 ⁇ m, preferably 2 to 30 ⁇ m.
- the particle diameter of the active material “a” is in the above range, the amount of the binder when preparing a slurry composition to be described later can be reduced, the decrease in battery capacity can be suppressed, It becomes easy to adjust the viscosity to be appropriate for application.
- the active material “a” a material obtained by attaching a conductivity imparting material to the surface by a mechanical modification method can also be used.
- antioxidant examples include amine-based antioxidants, phenol-based antioxidants, quinone-based antioxidants, organic phosphorus-based antioxidants, sulfur-based antioxidants, and phenothiazine-based antioxidants. .
- amine antioxidant examples include bis (4-t-butylphenyl) amine, poly (2,2,4-trimethyl-1,2-dihydroquinoline), 6-ethoxy-1,2-dihydro- 2,2,4-trimethylquinoline, reaction product of diphenylamine and acetone, 1- (N-phenylamino) -naphthalene, diphenylamine derivatives, dialkyldiphenylamines, N, N′-diphenyl-p-phenylenediamine, mixed diallyl- and p-phenylenediamine, N-phenyl-N′-isopropyl-p-phenylenediamine, and N, N′-di-2-naphthyl-p-phenylenediamine compounds.
- phenol-based antioxidant examples include 3,5-di-t-butyl-4-hydroxytoluene, dibutylhydroxytoluene, 2,2′-methylenebis (6-t-butyl-4-methylphenol), 4,4 '-Butylidenebis (3-t-butyl-3-methylphenol), 4,4'-thiobis (6-t-butyl-3-methylphenol), ⁇ -tocophenol, 2,2,4-trimethyl-6- Examples thereof include hydroxy-7-t-butylchroman and polymer type phenol having a relatively high molecular weight.
- quinone antioxidant examples include 2,5-di-t-butylhydroquinone, 2,5-di-t-octylhydroquinone, 2,6-di-n-dodecylhydroquinone, 2-n-dodecyl-5 And hydroquinone compounds such as chlorohydroquinone and 2-t-octyl-5-methylhydroquinone.
- Examples of the phosphorus antioxidant include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenylditridecyl) phos Phyto, cyclic neopentanetetraylbis (octadecyl phosphite), tris (nonylphenyl phosphite), tris (mono (or di) nonylphenyl) phosphite, diisodecylpentaerythritol diphosphite, 9,10-dihydro-9 -Oxa-10-phosphaphenanthrene-10-oxide, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphen
- sulfur-based antioxidant examples include dilauryl-3,3′-thiodipropionate and distearyl-3,3′-tridipropionate.
- phenothiazine antioxidant examples include phenothiazine, 10-methylphenothiazine, 2-methylphenothiazine, 2-trifluoromethylphenothiazine and the like.
- antioxidants the effect of improving the cycle characteristics of the battery is great, and the reaction with the electrolyte solvent, lithium salt, surface active group of the electrode active material, etc. hardly occurs in the battery, so that the surface treatment significantly increases.
- An amine antioxidant, a phenolic antioxidant, a hydroquinone antioxidant, or an organic phosphorus antioxidant is preferred from the viewpoint of improving low-temperature lithium acceptability.
- the solubility in the electrolyte is low, and it exists on the surface of the electrode active material and in the pores even inside the battery. By deactivating the active material surface, both the life characteristics and the low-temperature lithium acceptability are greatly improved. Therefore, an amine-based antioxidant or a phenol-based antioxidant is more preferable.
- the solubility in the electrolytic solution is very low, and the diphenylamine derivative is particularly preferable because it is adsorbed and stabilized on the active material surface and easily exists inside the electrode, and is difficult to dissolve in the electrolytic solution.
- electrophenyl groups for example, diphenylamine derivatives having an imide skeleton in the side chain.
- these antioxidants may be used alone or in combination of two or more.
- an active material “A” surface-treated with an antioxidant is used.
- a surface treatment method of the active material “a” with an antioxidant a gas phase treatment method in which an antioxidant in a gaseous state is brought into contact with the surface of the active material “a”; an antioxidant dissolved or dispersed in a solvent is used.
- Examples of the vapor phase treatment method include a method of forming an antioxidant layer on the active material surface by applying a CVD method or the like.
- liquid phase treatment method examples include a wet method in which an antioxidant and an active material are dissolved or dispersed in a solvent to form an antioxidant layer on the surface of the active material, as well as a spray drying method and a vacuum deposition method. .
- Examples of the solid phase treatment method include a mechanochemical method in which an active material and an antioxidant coexist in a disperser and mechanical force is applied to these to attach the antioxidant to the surface of the active material.
- an antioxidant can be present inside the pores of the active material, and the lithium accepts lithium at a low temperature by deactivating the active sites inside the pores.
- a liquid phase treatment method is preferable, and among them, a wet method in which an antioxidant and an active material are dissolved or dispersed in a solvent to form an antioxidant layer on the surface of the active material is more preferable.
- liquid phase treatment method 1) a method in which an antioxidant and an active material “a” are added and dispersed in a solvent, and the resulting dispersion is dried; 2) an antioxidant is added in the solvent.
- the active material “a” is added to the resulting dispersion, mixed and dried; 3)
- the active material “a” is added and dispersed in the solvent, and the resulting dispersion is oxidized.
- the method for dispersing the antioxidant and the active material “a” is not particularly limited, and a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, and a planetary kneader can be used.
- a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, and a planetary kneader can be used.
- the solid content concentration in the dispersion is preferably 40 to 80% by mass, and more preferably 50 to 70% by mass.
- the active material is well dispersed, so that the surface of the active material can be uniformly coated with the antioxidant.
- the concentration of the antioxidant in the dispersion is preferably 0.1 to 10% by mass, preferably 0.5 to 5% by mass in terms of solid content with respect to the solvent. It is more preferable that it is 2 mass%.
- the concentration of the antioxidant is within the above range, the antioxidant is uniformly dissolved in the solvent, so that the active material surface can be uniformly coated.
- the drying temperature and drying time are preferably a temperature and a time at which the solvent can be completely removed, the structure of the active material is not changed, and the antioxidant is not decomposed.
- the drying temperature is preferably less than the decomposition temperature of the antioxidant, preferably 50 to 300 ° C, more preferably 100 to 250 ° C.
- the drying time is preferably 1 to 48 hours, and more preferably 5 to 24 hours. Drying may be performed under normal pressure or under reduced pressure.
- the solvent is not particularly limited as long as the antioxidant can be dissolved.
- the solvent either water or an organic solvent can be used.
- organic solvents include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; acetone, ethyl methyl ketone, disopropyl ketone, cyclohexanone, methylcyclohexane, and ethylcyclohexane.
- Ketones chlorinated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; esters such as ethyl acetate, butyl acetate, ⁇ -butyrolactone and ⁇ -caprolactone; acylonitriles such as acetonitrile and propionitrile; tetrahydrofuran; Ethers such as ethylene glycol diethyl ether: alcohols such as methanol, ethanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether; Examples include amides such as loridone and N, N-dimethylformamide.
- solvents may be used alone, or two or more of these may be mixed and used as a mixed solvent.
- a solvent having excellent solubility of the antioxidant used in the present invention and having a low boiling point and high volatility is preferable because it can be removed in a short time and at a low temperature.
- Acetone, toluene, cyclohexanone, cyclopentane, tetrahydrofuran, cyclohexane, xylene, or N-methylpyrrolidone, or a mixed solvent thereof is preferable, and particularly N—is easy to get wet with the active material and the antioxidant easily penetrates into the active material.
- Methyl pyrrolidone is preferred.
- the content of the antioxidant in the surface-treated active material “A” is preferably 0.01 to 1.0% by mass, more preferably 0.01 to 0.5% by mass, particularly preferably 0. 0.01 to 0.2% by mass.
- the antioxidant is not released into the electrolyte inside the battery, and the antioxidant is also added inside the pores of the active material.
- the lithium acceptability at a low temperature can be greatly improved by deactivating the active sites inside the pores.
- the content of the antioxidant in the active material “A” of the present invention can be measured by GC-MS in which a gas chromatograph and a mass spectrometer are directly connected.
- the active material “A” is separated into the antioxidant and the active material “a”, and the content of the antioxidant in the active material is determined by analyzing the mass of each from the GC-MS and calculating the ratio. It can be measured.
- a predetermined amount of the active material “A” surface-treated with an antioxidant and a solvent capable of dissolving the antioxidant, for example, N-methylpyrrolidone are mixed to obtain a mixed solution.
- this is filtered and separated into an active material “a” and a solution containing an antioxidant.
- the amount of the antioxidant in the solution containing the antioxidant is detected by GC-MS.
- an N-methylpyrrolidone solution in which an antioxidant is dissolved at several concentrations is prepared, and a calibration curve is prepared using this solution.
- the content of the antioxidant in the surface-treated active material “A” is calculated from the detected weight ratio of the antioxidant in the solution and the active material “a” separated by filtration.
- the slurry composition for a non-aqueous electrolyte secondary battery electrode of the present invention contains an active material “A” for a non-aqueous electrolyte secondary battery electrode that has been surface-treated with an antioxidant in advance, a binder, and a solvent.
- the binder is a solution or dispersion in which binder (polymer) particles having binding properties are dissolved or dispersed in water or an organic solvent (hereinafter, these may be collectively referred to as “binder dispersion”). ).
- the binder dispersion may be non-aqueous or aqueous.
- the binder dispersion is aqueous, it is usually a polymer particle dispersion using water as a dispersion medium.
- a diene polymer particle dispersion or an acrylic polymer particle dispersion is preferable because it has excellent binding properties to the active material and the strength and flexibility of the obtained electrode. Because of its high binding properties with the active material, it is difficult for the electrode to peel off. As a result, the antioxidant on the surface of the active material does not desorb from the surface even during long-term cycles, and the presence of the antioxidant on the surface deactivates the active sites on the surface of the active material, thereby accepting lithium. The effect of improving is sustained. As a result, high cycle characteristics can be exhibited.
- binder dispersion is non-aqueous (using an organic solvent as a dispersion medium), usually polyethylene, polypropylene, polyisobutylene, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, polyacetic acid Vinyl polymers such as vinyl polyvinyl alcohol polyvinyl, isobutyl ether, polyacrylonitrile, polymethacrylonitrile, polymethyl methacrylate, polymethyl acrylate, polyethyl methacrylate, polyallyl acetate, polystyrene, etc .; diene series such as polybutadiene, polyisoprene, etc.
- Ether-based polymer containing a hetero atom in the main chain such as polyoxymethylene, polyoxyethylene, polycyclic thioether, polydimethylsiloxane; polylactone, polycyclic anhydride, polyester Nylon 6, nylon 66, poly-m-phenylene isophthalamide, poly-p-phenylene terephthalamide, polypyromellitimide, and other condensed amide polymers such as terephthalate and polycarbonate And those dissolved in methylpyrrolidone (NMP).
- NMP methylpyrrolidone
- the diene polymer particle dispersion is an aqueous dispersion of a polymer containing monomer units formed by polymerizing a conjugated diene such as butadiene or isoprene.
- the proportion of monomer units obtained by polymerizing conjugated diene in the diene polymer is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
- the polymer include homopolymers of conjugated dienes such as polybutadiene and polyisoprene; and copolymers of monomers that are copolymerizable with conjugated dienes.
- Examples of the copolymerizable monomer include ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylic acid and methacrylic acid; styrene, chlorostyrene, vinyltoluene, and t-butyl.
- Styrene monomers such as styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, divinylbenzene; olefins such as ethylene, propylene; butadiene, isoprene, etc.
- halogen atom-containing monomers such as vinyl chloride and vinylidene chloride
- vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate
- vinyl Ether such; methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, such as isopropenyl vinyl ketone; N- vinylpyrrolidone, vinylpyridine, and a heterocyclic containing vinyl compounds such as vinyl imidazole.
- the acrylic polymer particle dispersion is an aqueous dispersion of a polymer containing monomer units obtained by polymerizing an acrylic ester and / or a methacrylic ester.
- the proportion of monomer units obtained by polymerizing acrylic acid ester and / or methacrylic acid ester is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
- the polymer include homopolymers of acrylic acid esters and / or methacrylic acid esters, and copolymers with monomers copolymerizable therewith.
- Examples of the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
- unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid
- two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
- Carboxylates having carbon double bonds having carbon double bonds; styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, Styrene monomers such as divinylbenzene; Amide monomers such as acrylamide, N-methylol aquaylamide, acrylamide-2-methylpropanesulfonic acid; ⁇ , ⁇ - such as acrylonitrile and methacrylonitrile Saturated nitrile compounds; Olefins such as ethylene and propylene; Diene monomers such as butadiene and isoprene; Halogen-containing monomers such as vinyl chloride and vinylidene chloride; Vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate Vinyl esters such as methyl
- the binder for the positive electrode it is excellent in oxidation resistance during charging, the binder itself is not decomposed and the cycle characteristics are not deteriorated, the binder is appropriately swollen in the electrolyte, and Li ions are conducted.
- An acrylic polymer particle dispersion which is a dispersion of a saturated polymer that does not have an unsaturated bond in the polymer main chain, is most preferable in that it is easy to obtain and has excellent Li acceptance characteristics.
- the binder dispersion may be an aqueous binder using water as a dispersion medium, or may be a non-aqueous binder using an organic solvent as a dispersion medium.
- a non-aqueous binder when a non-aqueous binder is used, the active material is surface-treated. Since the antioxidant is dissolved and the effects of the present invention may not be obtained, an aqueous binder is preferably used.
- the aqueous binder can be produced, for example, by emulsion polymerization of the above monomer in water.
- the non-aqueous binder can be produced by replacing the aqueous binder with an organic solvent.
- the average particle size of the binder particles in the binder dispersion is preferably 50 nm to 500 nm, more preferably 70 nm to 400 nm. When the average particle size is within this range, the strength and flexibility of the obtained electrode are good.
- the glass transition temperature of the binder is preferably 25 ° C. or less, more preferably from ⁇ 100 ° C. to + 25 ° C., still more preferably from ⁇ 80 ° C. to + 10 ° C., and most preferably from ⁇ 80 ° C. to 0 ° C. is there.
- the glass transition temperature of the binder is within the above range, characteristics such as flexibility, binding and winding properties of the electrode, and adhesion between the active material layer and the current collector layer are highly balanced and suitable.
- peeling of the antioxidant and the binder from the active material in the electrode plate pressing step can be suppressed.
- the total content of the surface-treated active material “A” and the binder in the slurry composition for an electrode of the present invention is preferably 10 to 90 parts by mass, more preferably 30 parts per 100 parts by mass of the slurry. ⁇ 80 parts by mass.
- the binder content (solid content equivalent amount) relative to the surface-treated active material “A” is preferably 0.1 to 5 parts by mass, more preferably 100 parts by mass of the active material “A”. Is 0.5 to 2 parts by mass. If the total content of the active material “A” subjected to the surface treatment in the electrode slurry composition and the binder content and the binder content are within the above ranges, the viscosity of the resulting slurry composition is optimized, and the coating is smoothly performed. In addition, sufficient adhesion strength can be obtained without increasing the resistance of the obtained electrode plate. As a result, peeling of the antioxidant and binder from the active material in the electrode plate pressing step can be suppressed.
- the solvent used for the electrode slurry is not particularly limited as long as it can uniformly disperse the above-described solid content (active material “A” for non-aqueous electrolyte secondary battery electrode surface-treated with an antioxidant, binder). Although not used, a solvent that does not dissolve the antioxidant is preferably used.
- organic solvents include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; acetone, ethyl methyl ketone, disopropyl ketone, cyclohexanone, methylcyclohexane, and ethylcyclohexane.
- Ketones chlorinated aliphatic hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride; esters such as ethyl acetate, butyl acetate, ⁇ -butyrolactone and ⁇ -caprolactone; acylonitriles such as acetonitrile and propionitrile; tetrahydrofuran; Ethers such as ethylene glycol diethyl ether: alcohols such as methanol, ethanol, isopropanol, ethylene glycol, ethylene glycol monomethyl ether; Examples include amides such as loridone and N, N-dimethylformamide.
- solvents may be used alone or as a mixed solvent by mixing two or more of them.
- a solvent having a low boiling point and high volatility is preferable because it can be removed at a low temperature in a short time.
- acetone, toluene, cyclohexanone, cyclopentane, tetrahydrofuran, cyclohexane, xylene, water, N-methylpyrrolidone, or a mixed solvent thereof is preferable.
- water is particularly preferable from the viewpoint of maintaining the amount of antioxidant in the active material without dissolving the antioxidant used for the surface treatment of the active material.
- the slurry composition for electrodes of the present invention may further contain a thickener.
- thickeners include cellulosic polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salts and alkali metal salts thereof; ) Polyvinyl alcohols such as polyvinyl alcohol, copolymers of acrylic acid or acrylate and vinyl alcohol, maleic anhydride or copolymers of maleic acid or fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified Examples include polyacrylic acid, oxidized starch, phosphoric acid starch, casein, various modified starches, and preferably ammonium salts and alkali metal salts of carboxymethyl cellulose. Used. This is because the above thickener tends to uniformly cover the surface of the active material at the time of slurry preparation,
- the blending amount of the thickener is preferably 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the active material “A” surface-treated with the antioxidant. When the blending amount of the thickener is within this range, the coating property and the adhesion with the current collector are good.
- “(modified) poly” means “unmodified poly” or “modified poly”
- “(meth) acryl” means “acryl” or “methacryl”.
- a conductive material In the slurry composition for electrodes of the present invention, a conductive material may be contained.
- conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube can be used.
- the compounding amount of the conductive material is usually 0 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the active material “A” surface-treated with the antioxidant.
- the electrode slurry composition of the present invention further contains other components such as a reinforcing material, a dispersing agent, a leveling agent, and an electrolyte additive having a function of inhibiting electrolyte decomposition. It may be included in a secondary battery electrode described later. These are not particularly limited as long as they do not affect the battery reaction.
- the reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
- a reinforcing material By using a reinforcing material, a tough and flexible electrode can be obtained, and excellent long-term cycle characteristics can be exhibited.
- the amount of the conductivity-imparting material and the reinforcing agent used in the electrode slurry composition is usually 0.01 to 20 parts by mass, preferably 1 to 100 parts by mass with respect to 100 parts by mass of the active material “A” surface-treated with the antioxidant. 10 parts by mass. By being included in the said range, a high capacity
- the dispersant examples include anionic compounds, cationic compounds, nonionic compounds, and polymer compounds.
- a dispersing agent is selected according to the electrode active material and electrically conductive agent to be used.
- the content of the dispersing agent in the electrode slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the active material “A” surface-treated with the antioxidant.
- the leveling agent examples include surfactants such as alkyl surfactants, silicon surfactants, fluorine surfactants, and metal surfactants. By mixing the surfactant, it is possible to prevent the repelling that occurs during coating or to improve the smoothness of the electrode.
- the content of the leveling agent in the electrode slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the active material “A” surface-treated with the antioxidant. When the leveling agent is within the above range, the productivity, smoothness, and battery characteristics during electrode production are excellent.
- the electrolytic solution additive vinylene carbonate used in the slurry composition for electrodes and in the electrolytic solution can be used.
- the content ratio of the electrolytic solution additive in the electrode slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the active material “A” surface-treated with the antioxidant.
- the electrolytic solution additive is in the above range, the cycle characteristics and the high temperature characteristics are excellent.
- Other examples include nanoparticles such as fumed silica and fumed alumina. By mixing the nanoparticles, the thixotropy of the electrode forming slurry can be controlled, and the leveling property of the resulting electrode can be improved.
- the content of the nanoparticles in the electrode slurry composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the active material “A” surface-treated with the antioxidant.
- the nanoparticles are in the above range, the slurry stability and productivity are excellent, and high battery characteristics are exhibited.
- the slurry composition for a non-aqueous electrolyte secondary battery electrode is prepared by mixing the binder, the active material “A” surface-treated with an antioxidant, a solvent, a thickener used as necessary, a conductive material, and the like. can get.
- the mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type. Further, a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, and a planetary kneader can be used.
- a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
- a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, and a planetary kneader can be used.
- the electrode for a non-aqueous electrolyte secondary battery of the present invention is formed by binding an active material layer formed by applying and drying the electrode slurry composition of the present invention on a current collector.
- the method for producing the electrode of the present invention is not particularly limited, and examples thereof include a method of forming the active material layer by applying and drying the electrode slurry composition on at least one surface, preferably both surfaces of the current collector.
- the method for applying the electrode slurry composition onto the current collector is not particularly limited.
- Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
- drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
- the drying time is usually 5 to 30 minutes, and the drying temperature is usually 40 to 180 ° C.
- a preferable range of the porosity is 5% to 15%, more preferably 7% to 13%. If the porosity is too high, charging efficiency and discharging efficiency are deteriorated. When the porosity is too low, there arises a problem that the volume capacity of the battery is lowered, or the active material layer is easily peeled off from the current collector, and the battery is liable to be defective.
- a curable polymer when used as the binder, it is preferably cured.
- the thickness of the active material layer of the electrode for a nonaqueous electrolyte secondary battery is usually 5 to 300 ⁇ m, preferably 30 to 250 ⁇ m, for both the positive electrode and the negative electrode.
- the electrode thickness is in the above range, both load characteristics and cycle characteristics are high.
- the current collector used in the present invention is not particularly limited as long as it is an electrically conductive and electrochemically durable material.
- a metal material is preferable because it has heat resistance.
- iron, copper, aluminum Nickel, stainless steel, titanium, tantalum, gold, platinum and the like are particularly preferable for the positive electrode of the lithium ion secondary battery
- copper is particularly preferable for the negative electrode.
- the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable.
- the current collector is preferably used after roughening in advance.
- Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
- a mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
- an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity of the mixture.
- the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and at least one of the positive electrode and the negative electrode is the non-aqueous electrolyte secondary battery electrode.
- the electrolytic solution used in the present invention is not particularly limited.
- a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used.
- the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts.
- LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. These can be used alone or in admixture of two or more.
- the amount of the supporting electrolyte is usually 1% by mass or more, preferably 5% by mass or more, and usually 30% by mass or less, preferably 20% by mass or less, with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the battery are degraded.
- the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
- Alkyl carbonates such as carbonate (BC) and methyl ethyl carbonate (MEC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane; tetrahydrofuran; sulfolane and dimethyl sulfoxide Sulfur-containing compounds are used.
- dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable because high ion conductivity is easily obtained and the use temperature range is wide. These can be used alone or in admixture of two or more.
- the electrolyte solution by adding an additive.
- an additive carbonate compounds such as vinylene carbonate (VC) are preferable.
- Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution, and an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N.
- the separator is a porous substrate having pores, and usable separators include (a) a porous separator having pores, and (b) a porous material having a polymer coating layer formed on one or both sides. There is a separator or (c) a porous separator on which a porous resin coat layer containing an inorganic ceramic powder is formed.
- Non-limiting examples of these include polypropylene, polyethylene, polyolefin, or aramid porous Polymer film for solid polymer electrolyte or gel polymer electrolyte such as conductive separator, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymer, and gelled polymer coating layer Coated separator or inorganic filler And the like porous membrane layer made of an inorganic filler dispersant is coated separator.
- the method for producing the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.
- the negative electrode and the positive electrode are overlapped via a separator, and this is wound or folded according to the shape of the battery and placed in the battery container, and the electrolytic solution is injected into the battery container and sealed.
- an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate and the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge.
- the shape of the battery may be any of a laminated cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
- Example Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
- the part and% in a present Example are a mass reference
- various physical properties were evaluated as follows.
- the pore volume of the active material “a” before the surface treatment was measured using a mercury porosimeter (Autopore IV9510 manufactured by Micromeritics). Inject 0.2 g of active material “a” before surface treatment into a powder cell, perform pretreatment by degassing for 10 minutes at room temperature under vacuum, introduce mercury under reduced pressure and change pressure The amount of mercury intrusion was measured. The mercury intrusion pore volume of the active material “a” before the surface treatment was calculated from the obtained mercury intrusion curve.
- composition of antioxidant in the surface-treated active material “A” The surface-treated active material “A” and N-methylpyrrolidone are mixed to obtain a mixed solution having a solid content of 10%. Next, this is filtered and separated into an active material “a” and a solution containing an antioxidant. Then, the amount of the antioxidant in the solution containing the antioxidant is detected by GC-MS. The amount of antioxidant in the surface-treated active material “A” was calculated from the weight ratio of the detected amount of antioxidant in the solution and the active material “a” separated by filtration. In the detection, a solution in which an antioxidant was dissolved at several concentrations was prepared, and a calibration curve was prepared using these solutions.
- Each electrode is cut into a rectangular shape having a width of 1 cm and a length of 10 cm to form a test piece, which is fixed with the electrode active material layer surface facing up.
- the stress was measured when the cellophane tape was peeled off from one end of the test piece in the 180 ° direction at a speed of 50 mm / min. The measurement was performed 10 times, the average value was obtained, and this was used as the peel strength. It shows that the adhesiveness of an electrode plate is so favorable that peel strength is large.
- Example 1 (Surface treatment with active material antioxidant) 0.02 part of an antioxidant of diphenylamine derivative represented by the following chemical formula 1 was dissolved in 50 parts of N-methylpyrrolidone to prepare a mixed solution. Into a container, 100 parts of artificial graphite having a mercury intrusion pore volume of 0.95 cm 3 / g and a specific surface area of 3.8 m 2 / g as an active material “a” before treatment is added, and then the mixed solution is added. The mixture was stirred for 1 hour with a planetary mixer, and the resulting mixture was vacuum-dried at 100 ° C. for 24 hours to subject the artificial graphite to a surface treatment.
- a 1% aqueous solution was prepared using carboxymethylcellulose (“Daicel 2200” manufactured by Daicel Chemical Industries, Ltd.) having a 1% aqueous solution viscosity of 2000 mPa ⁇ s.
- the electrode slurry composition was applied on a copper foil having a thickness of 20 ⁇ m with a comma coater so that the film thickness after drying was about 200 ⁇ m, and the speed was 0.5 m / min at 60 ° C. for 2 minutes.
- the electrode raw material was obtained by drying and heat treatment at 120 ° C. for 2 minutes.
- This electrode fabric was rolled with a roll press to obtain a negative electrode having an active material layer thickness of 80 ⁇ m.
- Polyvinylidene fluoride was added as a binder to 100 parts of LiMn 2 O 4 having a spinel structure as a positive electrode active material so that the solid content equivalent amount was 2 parts, and further 2 parts of acetylene black and 20 parts of N-methylpyrrolidone were added.
- the slurry for positive electrodes was obtained by mixing with a planetary mixer. This positive electrode slurry was applied to an aluminum foil having a thickness of 18 ⁇ m, dried at 150 ° C. for 3 hours, and then roll-pressed to obtain a positive electrode having an active material layer thickness of 100 ⁇ m.
- a battery container was prepared using a laminate film in which both surfaces of an aluminum sheet were coated with a resin made of polypropylene. Next, using the positive electrode and the negative electrode, the active material layer was removed from each end, and the Ni tab was welded to the removed portion and the Cu tab was welded to the negative electrode. The obtained positive electrode and negative electrode were wound with a separator made of a polyethylene microporous membrane so that the active material layer surfaces of both electrodes were opposed, and wound and stored in the battery container.
- Example 2 In the surface treatment of the active material, the same operation as in Example 1 was performed except that 0.1 part of a diphenylamine derivative antioxidant was dissolved in 50 parts of N-methylpyrrolidone as a mixed solution. Then, a negative electrode and a laminate cell type lithium ion secondary battery were prepared, and the performance of the battery was evaluated. The results are shown in Table 1.
- Example 3 In the surface treatment of the active material, the same operation as in Example 1 was performed except that 1.0 part of a diphenylamine derivative antioxidant dissolved in 50 parts of N-methylpyrrolidone was used as a mixed solution. Then, a negative electrode and a laminate cell type lithium ion secondary battery were prepared, and the performance of the battery was evaluated. The results are shown in Table 1.
- Example 4 In the surface treatment of the active material, the same operation as in Example 1 was performed except that 100 parts of artificial graphite having a mercury intrusion pore volume of 0.3 cm 3 / g was used as the active material “a” before the treatment. Then, a negative electrode and a laminate cell type lithium ion secondary battery were prepared, and the performance of the battery was evaluated. The results are shown in Table 1.
- Example 5 In the surface treatment of the active material, 0.02 part of an antioxidant of a diphenylamine derivative represented by the following chemical formula 2 (NOCRAK DP manufactured by Ouchi Shinsei Chemical Co., Ltd.) dissolved in 50 parts of N-methylpyrrolidone as a mixed solution A negative electrode and a laminate cell type lithium ion secondary battery were produced by performing the same operation as in Example 1 except that the battery was evaluated, and the performance of this battery was evaluated. The results are shown in Table 1.
- NOCRAK DP manufactured by Ouchi Shinsei Chemical Co., Ltd.
- Example 6 In the surface treatment of the active material, the same operation as in Example 1 was carried out except that 0.02 part of the phenolic antioxidant represented by the following chemical formula 3 was used as the mixed solution, and the negative electrode and laminate cell type A lithium ion secondary battery was manufactured and the performance of this battery was evaluated. The results are shown in Table 1.
- Example 7 In the preparation of the slurry composition, instead of the dispersion of styrene-butadiene polymer particles having a solid content concentration of 40% and a glass transition temperature of ⁇ 15 ° C., the solid content concentration is 40% and the glass transition temperature is 17
- a negative electrode and a laminate cell type lithium ion secondary battery were prepared by performing the same operation as in Example 1 except that 2.5 parts of a styrene-butadiene polymer particle dispersion liquid at 0 ° C. was used. The battery performance was evaluated. The results are shown in Table 1.
- Example 1 The same operation as in Example 1 was performed except that 100 parts of artificial graphite having a mercury intrusion pore volume of 0.95 cm 3 / g was used as the active material “a” without performing surface treatment with an antioxidant. Then, a negative electrode and a laminate cell type lithium ion secondary battery were prepared, and the performance of the battery was evaluated. The results are shown in Table 1.
- Example 1 Except that the slurry composition was used as a negative electrode slurry composition, the same operation as in Example 1 was performed to produce a negative electrode and a laminate cell type lithium ion secondary battery. Evaluation was performed. The surface of the electrode plate obtained at this time was spotted. The results are shown in Table 1.
- Comparative Example 3 The negative electrode obtained in Comparative Example 1 was dissolved in 50 parts of N-methylpyrrolidone in which 0.02 part of the antioxidant of the diphenylamine derivative represented by Chemical Formula 1 was dissolved in 100 parts of the active material amount in the electrode.
- the laminate cell type lithium ion secondary battery was manufactured by performing the same operation as in Example 1 except that the electrode plate obtained by immersing in 1 hour and then drying was used as the negative electrode. The performance of this battery was evaluated. The results are shown in Table 1.
- the present invention As shown in Examples 1 to 7, by using an active material that has been surface-treated with an antioxidant in advance, it is excellent in peel strength, lithium receiving characteristics, and amount of gas generated during charging and discharging. A lithium ion secondary battery can be obtained. Further, among the examples, the content of the amine-based antioxidant is 0.01 to 0.2% by mass, and the mercury intrusion pore volume of the active material “a” used for the surface treatment is 0.4 cm 3. in the range of /g ⁇ 1.5cm 3 / g, and example the glass transition temperature is used together 0 °C less binder 1 and example 2, peel strength, charge-discharge characteristics, charge and discharge at gas Excellent in all of the amount generated.
- an active material that has not been surface-treated with an antioxidant in advance (Comparative Example 1), an active material that is not subjected to a surface treatment, and an antioxidant is prepared when preparing a slurry composition for an electrode. What was added (Comparative Example 2), and the surface treatment of the active material was not performed, and the electrode was impregnated with a polymer solution containing an antioxidant (Comparative Example 3) was peel strength, lithium receiving characteristics, charging / discharging At least one of the gas generation amounts is significantly inferior.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
(1)酸化防止剤によって表面処理されてなる非水電解質二次電池電極用活物質。
本発明の非水電解質二次電池電極用活物質は、酸化防止剤で表面処理されたものである(以下、酸化防止剤で表面処理された活物質を、「活物質“A”」と記載することがある。)。本発明において、表面処理とは、活物質の表面が酸化防止剤で被覆されることをいう。この表面は、活物質の細孔表面も含む。
本発明において表面処理して用いる非水電解質二次電池電極用活物質の表面処理される前の活物質(以下、「活物質“a”」と記載することがある。)としては、電解質中で電位をかける事により可逆的にリチウムイオンを挿入放出できるものであれば良く、無機化合物でも有機化合物でも用いることが出来る。
本発明で用いる酸化防止剤としては、アミン系酸化防止剤、フェノール系酸化防止剤、キノン系酸化防止剤、有機リン系酸化防止剤、硫黄系酸化防止剤、フェノチアジン系酸化防止剤等が挙げられる。
前記フェノチアジン系酸化防止剤としては、例えば、フェノチアジン、10-メチルフェノチアジン、2-メチルフェノチアジン、2-トリフルオロメチルフェノチアジン等が挙げられる。
本発明では、酸化防止剤で表面処理された活物質“A”を用いる。
酸化防止剤による活物質“a”の表面処理方法としては、気体状態にした酸化防止剤を活物質“a”の表面に接触させる気相処理法;溶媒に溶解又は分散させた酸化防止剤を活物質“a”の表面に接触させる液相処理法;活物質“a”に対して固体状の、好ましくは粉末状の酸化防止剤を接触させて表面処理を行う固相処理法等、様々な方法が挙げられる。
本発明の非水電解質二次電池電極用スラリー組成物は、予め酸化防止剤で表面処理された非水電解質二次電池電極用活物質“A”、バインダー及び溶媒を含む。
バインダーは、結着性を有するバインダー(重合体)粒子が水または有機溶媒に溶解または分散された溶液または分散液である(以下、これらを総称して「バインダー分散液」と記載することがある)。バインダー分散液は非水系であっても、水系であってもよい。バインダー分散液が水系の場合は、通常、水を分散媒とした重合体粒子分散液であり、例えば、後述するジエン系重合体粒子分散液、アクリル系重合体粒子分散液、フッ素系重合体粒子分散液、シリコン系重合体粒子分散液などが挙げられる。この中でも、活物質との結着性および得られる電極の強度や柔軟性に優れるため、ジエン系重合体粒子分散液又はアクリル系重合体粒子分散液が好ましい。活物質との結着性が高い為、電極の剥がれ等を生じにくい。その結果、長期サイクル時においても活物質表面の酸化防止剤が表面から脱離せずに、表面に酸化防止剤が存在していることにより、活物質表面の活性点を非活性化させリチウム受け入れ性を向上させる効果が持続する。その結果高いサイクル特性を示すことが出来る。
電極用スラリーに用いる溶媒としては、上記固形分(酸化防止剤で表面処理された非水電解質二次電池電極用活物質“A”、バインダー)、を均一に分散し得るものであれば特に制限されないが、酸化防止剤を溶解しない溶媒が好ましく用いられる。
本発明の電極用スラリー組成物においては、さらに増粘剤を含有してもよい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプンなどが挙げられ、好ましくはカルボキシメチルセルロースのアンモニウム塩並びにアルカリ金属塩が用いられる。これは上記増粘剤がスラリー作製時に活物質の表面を均一に覆いやすいため、活物質表面の酸化防止剤の脱離を防ぐという効果があるためである。
本発明の電極用スラリー組成物においては、導電材を含有してもよい。導電材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンを使用することができる。導電材を用いることにより、活物質同士の電気的接触を向上させることができ、リチウムイオン二次電池に用いる場合に放電レート特性を改善することができる。導電材の配合量は、酸化防止剤で表面処理された活物質“A”100質量部に対して通常0~20質量部、好ましくは1~10質量部である。
非水電解質二次電池電極用スラリー組成物は、上記バインダー、酸化防止剤により表面処理されてなる活物質“A”、溶媒および必要に応じ用いられる増粘剤、導電材等とを混合して得られる。
本発明の非水電解質二次電池用電極は、集電体上に、本発明の電極用スラリー組成物を塗布乾燥してなる活物質層が結着してなる。
本発明で用いる集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、リチウムイオン二次電池の正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、合剤の接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
本発明の非水電解質二次電池は、正極、負極、セパレーター及び電解液を有してなり、正極及び負極の少なくとも一方が、前記非水電解質二次電池用電極である。
本発明に用いられる電解液は、特に限定されないが、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C4F9SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO2)2NLi、(C2F5SO2)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liは好適に用いられる。これらは、単独、または2種以上を混合して用いることができる。支持電解質の量は、電解液に対して、通常1質量%以上、好ましくは5質量%以上、また通常は30質量%以下、好ましくは20質量%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し電池の充電特性、放電特性が低下する。
セパレーターは気孔部を有する多孔性基材であって、使用可能なセパレーターとしては、(a)気孔部を有する多孔性セパレーター、(b)片面または両面上に高分子コート層が形成された多孔性セパレーター、または(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーターがあり、これらの非制限的な例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム、ゲル化高分子コート層がコートされたセパレーター、または無機フィラー、無機フィラー用分散剤からなる多孔膜層がコートされたセパレーターなどがある。
本発明の非水電解質二次電池の製造方法は、特に限定されない。例えば、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する。さらに必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をすることもできる。電池の形状は、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。尚、本実施例における部および%は、特記しない限り質量基準である。実施例および比較例において、各種物性は以下のように評価した。
表面処理前の活物質“a”の細孔体積の測定は、水銀ポロシメーター(マイクロメリティクス製 オートポアIV9510型)を使用して行った。表面処理前の活物質“a”0.2gをパウダー用セルに注入し、室温、真空下にて10分間脱気して前処理をおこない、減圧下にて水銀を導入して圧力を変えて水銀圧入量を測定した。得られた水銀圧入曲線より表面処理前の活物質“a”の水銀圧入細孔体積を算出した。
表面処理された活物質“A”とN-メチルピロリドンとを混合して固形分濃度10%の混合液を得る。次に、これをろ過して、活物質“a”と、酸化防止剤を含む溶液とに分離する。そして、GC-MSにより、酸化防止剤を含む溶液中の酸化防止剤量を検出する。検出された溶液中の酸化防止剤量とろ過により分離された活物質“a”の重量比から、表面処理された活物質“A”中の酸化防止剤の量を算出した。なお、前記検出に際しては、数種類の濃度で酸化防止剤を溶解させた溶液を準備しておき、これらを用いて検量線を作成した。
電極を、それぞれ、幅1cm×長さ10cmの矩形に切って試験片とし、電極活物質層面を上にして固定する。試験片の電極活物質層表面にセロハンテープを貼り付けた後、試験片の一端からセロハンテープを50mm/分の速度で180°方向に引き剥がしたときの応力を測定した。測定を10回行い、その平均値を求めてこれをピール強度とし、下記基準にて判定を行った。ピール強度が大きいほど、極板の密着性が良好であることを示す。
A:6N/m以上
B:5N/m以上~6N/m未満
C:4N/m以上~5N/m未満
D:3N/m以上~4N/m未満
E:2N/m以上~3N/m未満
F:2N/m未満
(1)リチウム受け入れ特性
得られたラミネートセル型電池を用いて、それぞれ25℃で充放電レートを0.1Cとし、定電流定電圧充電法にて、4.2Vになるまで定電流で充電し、定電圧で充電する。充電後に3Vまで放電する充放電を各2回繰り返し、その後0℃に設定した恒温槽内で0.1Cで定電流定電圧充電を行った。この定電流定電圧充電における定電流時に得られた電池容量をリチウム受け入れ性の指標とし、下記の基準で判定した。この値が大きいほど、リチウム受入性のよい電池であることを示す。
A:220mAh/g以上
B:200mAh/g以上220mAh/g未満
C:180mAh/g以上200mAh/g未満
D:160mAh/g以上180mAh/g未満
E:140mAh/g以上160mAh/g未満
E:140mAh/g未満
得られたラミネートセル型電池を用いて、それぞれ25℃で0.5Cの定電流定電圧充電法という方式で、4.2Vになるまで定電流で充電、その後定電圧で充電し、また0.5Cの定電流で3.0Vまで放電する充放電サイクルを行った。充放電サイクルは50サイクルまで行い、初期放電容量に対する50サイクル目の放電容量の比を容量維持率とし、下記の基準で判定した。この値が大きいほど繰り返し充放電による容量減が少ないことを示す。
A:60%以上
B:55%以上60%未満
C:50%以上55%未満
D:45%以上50%未満
E:40%以上45%未満
E:40%未満
得られたラミネートセル型電池を用いて上記方法と同様に、0.1Cで充電と放電を繰り返した後、もう一度0.1Cで充電したセルを80℃の恒温槽に入れ、30時間静置した。恒温槽にて30時間静置後のセル厚み(a)と恒温槽に入れる前のセルの厚み(b)を測定し、{(a)-(b)}/(a)×100(%)の値をセルの膨らみ率とし、下記の基準により判定する。このセルの膨らみ率をガス発生量の指標であり、セルの膨らみ率が小さいほど、ガス発生量が少ないことを示す。
A:10%未満
B:10%以上20%未満
C:20%以上30%未満
D:30%以上40%未満
E:40%以上
(活物質の酸化防止剤による表面処理)
下記化学式1に示すジフェニルアミン誘導体の酸化防止剤0.02部を、N-メチルピロリドン50部に溶解させ、混合溶液を作製した。容器に、処理前の活物質“a”として水銀圧入細孔体積が0.95cm3/g、比表面積が3.8m2/gである人造黒鉛100部をいれ、次いで前記混合溶液を加えて、プラネタリーミキサーで1時間攪拌し、得られた混合物を100℃で24時間真空乾燥し、人造黒鉛の表面処理をおこなった。
1%水溶液粘度が2000mPa・sであるカルボキシメチルセルロース(ダイセル化学工業株式会社製「Daicel2200」)を用いて、1%水溶液を調整した。
正極活物質であるスピネル構造を有するLiMn2O4 100部に、バインダーとしてポリフッ化ビニリデンを固形分相当量が2部となるように加え、さらに、アセチレンブラック2部、N-メチルピロリドン20部を加えて、プラネタリーミキサーで混合して正極用スラリーを得た。この正極用スラリーを厚さ18μmのアルミニウム箔に塗布し、150℃で3時間乾燥した後、ロールプレスして活物質層の厚みが100μmの正極用電極を得た。
アルミニウムシートの両面がポリプロピレンからなる樹脂で被覆されたラミネートフィルムを用いて電池容器を作成した。次いで、上記正極および負極を用い、それぞれ端部から活物質層を除去して、除去した箇所に正極はNiタブを、負極はCuタブを溶接させた。得られた正極及び負極を、両極の活物質層面が対向するようにしてポリエチレン製の微多孔膜からなるセパレータを挟み、捲回して上記の電池容器に収納した。続いてここに、エチレンカーボネートとジエチルカーボネートを25℃で体積比で1:2で混合した混合溶媒に、LiPF6を1モル/リットルの濃度になるように溶解させた電解液を注入した。次いで、ラミネートフィルムを封止させてラミネートセル型のリチウムイオン二次電池を作製した。この電池の性能の評価結果を表1に示す。
活物質の表面処理において、混合溶液としてジフェニルアミン誘導体の酸化防止剤0.1部を、N-メチルピロリドン50部に溶解させたものを使用した事以外は、実施例1と同様の操作を行って、負極用電極及びラミネートセル型のリチウムイオン二次電池を作製し、この電池の性能の評価を行った。結果を表1に示す。
活物質の表面処理において、混合溶液としてジフェニルアミン誘導体の酸化防止剤1.0部を、N-メチルピロリドン50部に溶解させたものを使用した事以外は、実施例1と同様の操作を行って、負極用電極及びラミネートセル型のリチウムイオン二次電池を作製し、この電池の性能の評価を行った。結果を表1に示す。
活物質の表面処理において、処理前の活物質“a”として水銀圧入細孔体積が0.3cm3/gである人造黒鉛100部を使用した事以外は、実施例1と同様の操作を行って、負極用電極及びラミネートセル型のリチウムイオン二次電池を作製し、この電池の性能の評価を行った。結果を表1に示す。
活物質の表面処理において、混合溶液として、下記化学式2に示すジフェニルアミン誘導体の酸化防止剤(ノクラック DP 大内新興化学工業社製)0.02部を、N-メチルピロリドン50部に溶解させたものを使用した事以外は、実施例1と同様の操作を行って、負極用電極及びラミネートセル型のリチウムイオン二次電池を作製し、この電池の性能の評価を行った。結果を表1に示す。
活物質の表面処理において、混合溶液として、下記化学式3に示すフェノール系の酸化防止剤0.02部を用いた事以外は、実施例1と同様の操作を行って、負極用電極及びラミネートセル型のリチウムイオン二次電池を作製し、この電池の性能の評価を行った。結果を表1に示す。
スラリー組成物作製の際に、固形分濃度が40%、ガラス転移点温度が-15℃であるスチレン-ブタジエン重合体粒子の分散液のかわりに、固形分濃度が40%、ガラス転移温度が17℃であるスチレン-ブタジエン重合体粒子分散液を2.5部用いた事以外は、実施例1と同様の操作を行って、負極用電極及びラミネートセル型のリチウムイオン二次電池を作製し、この電池の性能の評価を行った。結果を表1に示す。
酸化防止剤による表面処理を行わず、活物質“a”として水銀圧入細孔体積が0.95cm3/gである人造黒鉛100部を用いた事以外は、実施例1と同様の操作を行って、負極用電極及びラミネートセル型のリチウムイオン二次電池を作製し、この電池の性能の評価を行った。結果を表1に示す。
ディスパー付きのプラネタリーミキサーに、人造黒鉛100部と化学式1に示すジフェニルアミン誘導体の酸化防止剤0.02部を入れ、これにカルボキシメチルセルロース水溶液100部を加え、イオン交換水で固形分濃度53.5%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度44%に調整した後、さらに25℃で15分間混合し、負極用スラリー組成物を調製した。負極用スラリー組成物として、前記スラリー組成物を用いた事以外は、実施例1と同様の操作を行って、負極用電極及びラミネートセル型のリチウムイオン二次電池を作製し、この電池の性能の評価を行った。このとき得られた極板の表面には斑点状のものが確認された。結果を表1に示す。
比較例1で得られた負極用電極を、電極中の活物質量100部に対して化学式1に示すジフェニルアミン誘導体の酸化防止剤0.02部をN-メチルピロリドン50部に溶解させた溶液中に1時間浸漬し、その後乾燥後して得られた極板を負極用電極として用いた事以外は、実施例1と同様の操作を行って、ラミネートセル型のリチウムイオン二次電池を作製し、この電池の性能の評価を行った。結果を表1に示す。
本発明によれば、実施例1~実施例7に示すように、活物質として酸化防止剤で予め表面処理したものを用いることにより、ピール強度、リチウム受入特性、充放電時ガス発生量に優れるリチウムイオン二次電池を得ることができる。また、実施例の中でも、アミン系の酸化防止剤の含有量が0.01~0.2質量%で、表面処理に供される活物質“a”の水銀圧入細孔体積が0.4cm3/g~1.5cm3/gの範囲にあり、且つガラス転移点温度が0℃以下のバインダーを併用している実施例1や実施例2は、ピール強度、充放電特性、充放電時ガス発生量のすべてに優れている。
Claims (8)
- 酸化防止剤で表面処理されてなる非水電解質二次電池電極用活物質。
- 前記活物質中の酸化防止剤の含有量が、0.01~1質量%である請求項1に記載の非水電解質二次電池電極用活物質。
- 前記酸化防止剤が、アミン系酸化防止剤又はフェノール系酸化防止剤である請求項1又は2に記載の非水電解質二次電池電極用活物質。
- 水銀圧入細孔体積が、0.1cm3/g~2.0cm3/gである活物質を表面処理したものである請求項1~3のいずれかに記載の非水電解質二次電池電極用活物質。
- 請求項1に記載の非水電解質二次電池電極用活物質、バインダー及び溶媒を含む非水電解質二次電池電極用スラリー組成物。
- 前記バインダーのガラス転移温度が25℃以下である請求項5に記載の非水電解質二次電池電極用スラリー組成物。
- 集電体上に、請求項5又は6に記載の非水電解質二次電池電極用スラリー組成物を塗布乾燥してなる非水電解質二次電池用電極。
- 正極、負極、セパレーター及び電解液を有してなり、
正極及び負極の少なくとも一方が、請求項7に記載の電極である、
非水電解質二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011520950A JP5610161B2 (ja) | 2009-06-30 | 2010-06-30 | 非水電解質二次電池電極用活物質及び非水電解質二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009156251 | 2009-06-30 | ||
JP2009-156251 | 2009-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011002013A1 true WO2011002013A1 (ja) | 2011-01-06 |
Family
ID=43411084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/061128 WO2011002013A1 (ja) | 2009-06-30 | 2010-06-30 | 非水電解質二次電池電極用活物質及び非水電解質二次電池 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5610161B2 (ja) |
KR (1) | KR20120093756A (ja) |
WO (1) | WO2011002013A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015115089A1 (ja) * | 2014-01-29 | 2015-08-06 | 日本ゼオン株式会社 | リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池 |
WO2017057134A1 (ja) * | 2015-09-30 | 2017-04-06 | Necエナジーデバイス株式会社 | リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
JP2019114346A (ja) * | 2017-12-21 | 2019-07-11 | トヨタ自動車株式会社 | リチウムイオン二次電池 |
WO2019172281A1 (ja) * | 2018-03-07 | 2019-09-12 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池 |
JP2019533273A (ja) * | 2016-08-23 | 2019-11-14 | ネクシオン リミテッド | 二次電池用のシリコン系活物質粒子及びその製造方法 |
JP2021158088A (ja) * | 2020-03-30 | 2021-10-07 | 三菱ケミカル株式会社 | 非水系電解液二次電池用負極及び非水系電解液二次電池 |
JP7023198B2 (ja) | 2013-01-25 | 2022-02-21 | 帝人株式会社 | 超極細繊維状炭素、超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池、並びに超極細繊維状炭素の製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2492167C (en) | 2011-06-24 | 2018-12-05 | Nexeon Ltd | Structured particles |
JP2015510666A (ja) | 2012-01-30 | 2015-04-09 | ネクソン リミテッドNexeon Limited | Si/C電気活性材料組成物 |
KR101567203B1 (ko) | 2014-04-09 | 2015-11-09 | (주)오렌지파워 | 이차 전지용 음극 활물질 및 이의 방법 |
KR101604352B1 (ko) | 2014-04-22 | 2016-03-18 | (주)오렌지파워 | 음극 활물질 및 이를 포함하는 리튬 이차 전지 |
KR101550781B1 (ko) | 2014-07-23 | 2015-09-08 | (주)오렌지파워 | 2 차 전지용 실리콘계 활물질 입자의 제조 방법 |
GB2533161C (en) | 2014-12-12 | 2019-07-24 | Nexeon Ltd | Electrodes for metal-ion batteries |
KR101918815B1 (ko) | 2016-08-23 | 2018-11-15 | 넥시온 엘티디. | 이차 전지용 음극 활물질 및 이의 제조 방법 |
KR102683617B1 (ko) | 2021-11-24 | 2024-07-11 | 한국과학기술연구원 | 이산화탄소 흡착 스펀지 전극, 이의 제조방법 및 상기 이산화탄소 흡착 스펀지 전극을 포함하는 리튬 공기 전지 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1173964A (ja) * | 1997-08-29 | 1999-03-16 | Ricoh Co Ltd | 非水電解質二次電池 |
JP2000200602A (ja) * | 1999-01-06 | 2000-07-18 | Shin Etsu Chem Co Ltd | 水素吸蔵合金粉末 |
WO2006025601A1 (ja) * | 2004-09-03 | 2006-03-09 | Nippon Shokubai Co., Ltd. | リチウム2次電池用正極材料組成物 |
JP2006209995A (ja) * | 2005-01-25 | 2006-08-10 | Sony Corp | 非水電解質二次電池 |
-
2010
- 2010-06-30 KR KR1020117031306A patent/KR20120093756A/ko not_active Application Discontinuation
- 2010-06-30 JP JP2011520950A patent/JP5610161B2/ja not_active Expired - Fee Related
- 2010-06-30 WO PCT/JP2010/061128 patent/WO2011002013A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1173964A (ja) * | 1997-08-29 | 1999-03-16 | Ricoh Co Ltd | 非水電解質二次電池 |
JP2000200602A (ja) * | 1999-01-06 | 2000-07-18 | Shin Etsu Chem Co Ltd | 水素吸蔵合金粉末 |
WO2006025601A1 (ja) * | 2004-09-03 | 2006-03-09 | Nippon Shokubai Co., Ltd. | リチウム2次電池用正極材料組成物 |
JP2006209995A (ja) * | 2005-01-25 | 2006-08-10 | Sony Corp | 非水電解質二次電池 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11545669B2 (en) | 2013-01-25 | 2023-01-03 | Teijin Limited | Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite, and electrode active material layer |
JP7023198B2 (ja) | 2013-01-25 | 2022-02-21 | 帝人株式会社 | 超極細繊維状炭素、超極細繊維状炭素集合体、炭素系導電助剤、非水電解質二次電池用電極材料、非水電解質二次電池用電極及び非水電解質二次電池、並びに超極細繊維状炭素の製造方法 |
CN105849943A (zh) * | 2014-01-29 | 2016-08-10 | 日本瑞翁株式会社 | 锂离子二次电池电极用浆料组合物、锂离子二次电池用电极及锂离子二次电池 |
JPWO2015115089A1 (ja) * | 2014-01-29 | 2017-03-23 | 日本ゼオン株式会社 | リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池 |
WO2015115089A1 (ja) * | 2014-01-29 | 2015-08-06 | 日本ゼオン株式会社 | リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池 |
CN105849943B (zh) * | 2014-01-29 | 2019-12-13 | 日本瑞翁株式会社 | 锂离子二次电池电极用浆料组合物、锂离子二次电池用电极及锂离子二次电池 |
CN108028361B (zh) * | 2015-09-30 | 2021-05-14 | 远景Aesc能源元器件有限公司 | 用于锂离子二次电池的正极以及锂离子二次电池 |
WO2017057134A1 (ja) * | 2015-09-30 | 2017-04-06 | Necエナジーデバイス株式会社 | リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
CN108028361A (zh) * | 2015-09-30 | 2018-05-11 | Nec能源元器件株式会社 | 用于锂离子二次电池的正极以及锂离子二次电池 |
JPWO2017057134A1 (ja) * | 2015-09-30 | 2018-07-19 | Necエナジーデバイス株式会社 | リチウムイオン二次電池用正極及びリチウムイオン二次電池 |
JP2019533273A (ja) * | 2016-08-23 | 2019-11-14 | ネクシオン リミテッド | 二次電池用のシリコン系活物質粒子及びその製造方法 |
JP7094943B2 (ja) | 2016-08-23 | 2022-07-04 | ネクシオン リミテッド | 二次電池用のシリコン系活物質粒子及びその製造方法 |
JP2019114346A (ja) * | 2017-12-21 | 2019-07-11 | トヨタ自動車株式会社 | リチウムイオン二次電池 |
JPWO2019172281A1 (ja) * | 2018-03-07 | 2021-03-11 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池 |
WO2019172281A1 (ja) * | 2018-03-07 | 2019-09-12 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池 |
JP7409300B2 (ja) | 2018-03-07 | 2024-01-09 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池 |
JP2021158088A (ja) * | 2020-03-30 | 2021-10-07 | 三菱ケミカル株式会社 | 非水系電解液二次電池用負極及び非水系電解液二次電池 |
JP7468067B2 (ja) | 2020-03-30 | 2024-04-16 | 三菱ケミカル株式会社 | 非水系電解液二次電池用負極及び非水系電解液二次電池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011002013A1 (ja) | 2012-12-13 |
KR20120093756A (ko) | 2012-08-23 |
JP5610161B2 (ja) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5610161B2 (ja) | 非水電解質二次電池電極用活物質及び非水電解質二次電池 | |
JP6747587B2 (ja) | リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
EP2843739B1 (en) | Lithium ion secondary battery | |
EP2555306B1 (en) | Lithium-ion secondary battery | |
JP5761197B2 (ja) | 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池負極、二次電池及び二次電池負極用バインダー組成物の製造方法 | |
JP5673545B2 (ja) | リチウムイオン二次電池負極及びリチウムイオン二次電池 | |
JP5684226B2 (ja) | リチウム電池正極用のフッ素化バインダ複合材料およびカーボンナノチューブ | |
JP6685940B2 (ja) | リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
WO2011096463A1 (ja) | リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウム二次電池 | |
CN111357141B (zh) | 电化学元件用导电材料糊、电化学元件正极用浆料组合物及其制造方法、电化学元件用正极以及电化学元件 | |
KR20190049585A (ko) | 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자 | |
KR20130094366A (ko) | 음극 활물질 및 이를 포함하는 리튬 전지 | |
JP2014130844A (ja) | リチウムイオン二次電池電極の製造方法、及びリチウムイオン二次電池 | |
KR20150130189A (ko) | 비리튬 이차전지용 음극 활물질, 그 제조방법, 이를 포함하는 비리튬 이차전지용 음극 및 비리튬 이차전지 | |
WO2012128182A1 (ja) | リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極、及びリチウムイオン二次電池 | |
JP5556307B2 (ja) | 非水系二次電池電極用のヒドロキシ酸類被覆活物質 | |
JP2011138680A (ja) | 非水電解質二次電池用負極および非水電解質二次電池 | |
JP2019175657A (ja) | リチウムイオン二次電池。 | |
KR101745416B1 (ko) | 리튬이차전지용 양극활물질 및 그 제조방법 | |
WO2019240021A1 (ja) | 二次電池用負極材、二次電池用負極、及び二次電池 | |
JP2018041710A (ja) | 活物質−炭素材料複合体、非水電解質二次電池用正極、非水電解質二次電池及び炭素材料 | |
JP2015230794A (ja) | リチウムイオン二次電池用導電材料、リチウムイオン二次電池負極形成用組成物、リチウムイオン二次電池正極形成用組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極及びリチウムイオン二次電池 | |
EP4037028A1 (en) | Negative electrode material for secondary batteries, negative electrode for secondary batteries, and secondary battery | |
JP6315258B2 (ja) | リチウムイオン二次電池用導電材料、リチウムイオン二次電池負極形成用組成物、リチウムイオン二次電池正極形成用組成物、リチウムイオン二次電池用負極、リチウムイオン二次電池用正極及びリチウムイオン二次電池 | |
KR20220127615A (ko) | 이차전지용 음극 슬러리의 제조방법 및 이를 포함하는 음극의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10794181 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011520950 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117031306 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10794181 Country of ref document: EP Kind code of ref document: A1 |