WO2019172281A1 - 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池 - Google Patents

非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池 Download PDF

Info

Publication number
WO2019172281A1
WO2019172281A1 PCT/JP2019/008705 JP2019008705W WO2019172281A1 WO 2019172281 A1 WO2019172281 A1 WO 2019172281A1 JP 2019008705 W JP2019008705 W JP 2019008705W WO 2019172281 A1 WO2019172281 A1 WO 2019172281A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
electrode
binder composition
aqueous secondary
mass
Prior art date
Application number
PCT/JP2019/008705
Other languages
English (en)
French (fr)
Inventor
赤羽 徹也
木所 広人
華綸 堀田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201980009625.5A priority Critical patent/CN111699574B/zh
Priority to KR1020207023877A priority patent/KR20200129096A/ko
Priority to JP2020505063A priority patent/JP7409300B2/ja
Priority to EP19764544.3A priority patent/EP3764432A4/en
Priority to US16/975,709 priority patent/US20200399458A1/en
Publication of WO2019172281A1 publication Critical patent/WO2019172281A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/006Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to block copolymers containing at least one sequence of polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for non-aqueous secondary battery electrodes, a method for producing a binder composition for non-aqueous secondary battery electrodes, a slurry composition for non-aqueous secondary battery electrodes, a non-aqueous secondary battery electrode, and a non-aqueous system.
  • the present invention relates to a secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) have the characteristics of being small and light, having high energy density, and capable of repeated charge and discharge. Yes, it is used for a wide range of purposes. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of non-aqueous secondary batteries.
  • an electrode used in a secondary battery such as a lithium ion secondary battery is usually a current collector and an electrode mixture layer (a positive electrode mixture layer or a negative electrode mixture layer) formed on the current collector. It has. And this electrode compound material layer apply
  • Patent Documents 1 and 2 propose a technique for adding an antioxidant to the binder composition from the viewpoint of improving the cycle characteristics of the secondary battery.
  • the binder composition for a non-aqueous secondary battery electrode containing the conventional antioxidant further improves the peel strength of the electrode formed using the binder composition while improving the cycle characteristics of the secondary battery. There was room for improvement.
  • the present invention provides a binder composition for a non-aqueous secondary battery electrode and a slurry composition for a non-aqueous secondary battery electrode capable of forming an electrode having excellent peel strength and a secondary battery having excellent cycle characteristics. With the goal.
  • the present invention also provides an electrode for a non-aqueous secondary battery that can form a secondary battery having excellent peel strength and excellent cycle characteristics, and a non-aqueous secondary battery excellent in cycle characteristics. With the goal.
  • the inventor has intensively studied for the purpose of solving the above problems. And if this inventor uses the binder composition containing the particulate polymer which consists of a predetermined
  • the binder composition for non-aqueous secondary battery electrodes of the present invention is an aromatic vinyl block comprising aromatic vinyl monomer units. 1 part in total with respect to 100 parts by mass of the core particles containing a block copolymer containing a region and an isoprene block region composed of isoprene units, wherein the content of the isoprene block region is 70% by mass to 99% by mass.
  • Particulate polymer comprising a graft polymer having a hydrophilic graft chain, obtained by graft polymerization reaction of a hydrophilic monomer and / or a macromonomer having a mass ratio of 40 parts by mass or less, and a hindered phenol antioxidant It is characterized by containing.
  • the “monomer unit” of the polymer means “a repeating unit derived from the monomer contained in the polymer obtained by using the monomer”.
  • the polymer “has a block region composed of monomer units” means that “a part of the polymer in which only the monomer units are linked together as a repeating unit is present. "Means.
  • the “content ratio of isoprene block region” can be measured using 1 H-NMR.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention further includes a phosphite antioxidant. If a phosphite antioxidant is further contained, the peel strength of the electrode formed using the binder composition and the cycle characteristics of the secondary battery can be further improved.
  • the binder composition for nonaqueous secondary battery electrodes of the present invention further contains a metal scavenger. If a metal scavenger is further contained, the peel strength of the electrode formed using the binder composition and the cycle characteristics of the secondary battery can be further improved.
  • the median diameter of the particulate polymer is preferably 0.6 ⁇ m or more and 2.5 ⁇ m or less.
  • the median diameter of the particulate polymer is within the above range, the peel strength of the electrode formed using the binder composition and the cycle characteristics of the secondary battery can be further improved.
  • the “median diameter of particulate polymer” can be measured using the method described in the examples of the present specification.
  • the hydrophilic graft chain has an acidic group
  • the surface acid amount of the particulate polymer is 0.02 mmol / g or more and 1.0 mmol / g. The following is preferable.
  • the surface acid amount of the particulate polymer is within the above range, the peel strength of the electrode formed using the binder composition and the cycle characteristics of the secondary battery can be further improved.
  • the “surface acid amount” of the particulate polymer refers to the surface acid amount per 1 g of the solid content of the particulate polymer, and is measured using the measurement method described in the examples of the present specification. be able to.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention further includes a particulate binder, and the particulate binder is preferably composed of a styrene-butadiene copolymer and / or an acrylic polymer. .
  • the particulate binder is preferably composed of a styrene-butadiene copolymer and / or an acrylic polymer.
  • the content of the particulate polymer is 50% by mass or more of the total content of the particulate polymer and the particulate binder 90. It is preferable that it is below mass%. When the content of the particulate polymer is within the above range, the peel strength of the electrode formed using the binder composition and the cycle characteristics of the secondary battery can be further improved.
  • the slurry composition for non-aqueous secondary battery electrodes of this invention is an electrode active material and the non-aqueous secondary battery electrode mentioned above. Any of the binder compositions for use. Thus, if the binder composition for non-aqueous secondary battery electrodes described above is contained, the peel strength of the electrode formed using the slurry composition and the cycle characteristics of the secondary battery can be improved.
  • the electrode for non-aqueous secondary batteries of this invention is formed using the slurry composition for non-aqueous secondary battery electrodes mentioned above. It is characterized by comprising the electrode mixture layer.
  • the slurry composition for non-aqueous secondary battery electrodes described above is used, an electrode having excellent peel strength capable of forming a secondary battery having excellent cycle characteristics can be obtained.
  • the non-aqueous secondary battery of this invention has a positive electrode, a negative electrode, a separator, and electrolyte solution,
  • the said positive electrode and the said negative electrode At least one is the electrode for non-aqueous secondary batteries mentioned above, It is characterized by the above-mentioned. If the electrode for non-aqueous secondary batteries described above is used, a non-aqueous secondary battery having excellent cycle characteristics can be obtained.
  • the manufacturing method of the binder composition for non-aqueous secondary battery electrodes of this invention is the binder for non-aqueous secondary battery electrodes mentioned above.
  • a method for producing a composition comprising an aromatic vinyl block region comprising an aromatic vinyl monomer unit and an isoprene block region comprising an isoprene unit, wherein the content ratio of the isoprene block region is 70% by mass or more and 99% by mass.
  • a hydrophilic graft chain is provided on the core particles. If the particulate polymer consisting of the graft polymer is obtained, the above-mentioned binder composition for non-aqueous secondary battery electrodes can be easily obtained.
  • the mixture further contains a phosphite antioxidant. If a phosphite antioxidant is further contained, a binder composition capable of further improving the peel strength of the electrode and the cycle characteristics of the secondary battery can be obtained.
  • the said mixture further contains a metal scavenger. If a metal scavenger is further contained, a binder composition that can further improve the peel strength of the electrode and the cycle characteristics of the secondary battery can be obtained.
  • the mixture further contains a coupling agent, and before the emulsification, the block copolymer solution and the hindered phenol It is preferable to mix the system antioxidant, the aqueous medium, and the coupling agent to obtain the mixture. If a coupling agent is contained in the mixture to be emulsified, the particle stability of the particulate polymer composed of the graft polymer can be enhanced.
  • a cup is added to the emulsion containing the core particles between the step of obtaining the core particles and the step of obtaining the particulate polymer. It is preferable to further include a step of adding a ring agent. If a coupling agent is added to the emulsion containing the core particles, the particle stability of the particulate polymer composed of the graft polymer can be enhanced.
  • the binder composition for a non-aqueous secondary battery electrode and the slurry composition for a non-aqueous secondary battery electrode of the present invention an electrode having excellent peel strength and a secondary battery having excellent cycle characteristics can be formed. Moreover, the electrode for non-aqueous secondary batteries of this invention is excellent in peel strength, and can form the secondary battery excellent in cycling characteristics. And according to this invention, the non-aqueous secondary battery excellent in cycling characteristics is obtained.
  • the binder composition for a non-aqueous secondary battery electrode of the present invention can be used for the preparation of the slurry composition for a non-aqueous secondary battery electrode of the present invention, for example, for the non-aqueous secondary battery electrode of the present invention. It can manufacture using the manufacturing method of a binder composition. And the slurry composition for non-aqueous secondary battery electrodes prepared using the binder composition for non-aqueous secondary battery electrodes of the present invention is used for producing electrodes for non-aqueous secondary batteries such as lithium ion secondary batteries. Can be used.
  • the non-aqueous secondary battery of the present invention is characterized by using the non-aqueous secondary battery electrode of the present invention formed using the slurry composition for a non-aqueous secondary battery electrode of the present invention.
  • the non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition and non-aqueous secondary battery electrode of the present invention are preferably for negative electrodes, and the non-aqueous secondary battery of the present invention.
  • the secondary battery is preferably one using the non-aqueous secondary battery electrode of the present invention as a negative electrode.
  • the binder composition for a nonaqueous secondary battery electrode of the present invention contains a particulate polymer and a hindered phenol antioxidant, and optionally, a phosphite antioxidant, a metal scavenger, and a binder composition. It further contains at least one selected from the group consisting of other components (for example, a particulate binder, etc.) that can be blended with the above. Moreover, the binder composition for non-aqueous secondary battery electrodes of the present invention usually further contains a dispersion medium such as water.
  • the particulate polymer contains an aromatic vinyl block region composed of an aromatic vinyl monomer unit and an isoprene block region composed of an isoprene unit, and the content ratio of the isoprene block region Graft polymerization reaction of 1 to 40 parts by mass of hydrophilic monomers and / or macromonomers in total with respect to 100 parts by mass of the core particles containing a block copolymer having a mass of 70 to 99% by mass Since it consists of the graft polymer made and contains a hindered phenolic antioxidant, it is possible to form an electrode with excellent peel strength and a secondary battery with excellent cycle characteristics.
  • the particulate polymer is a component that functions as a binder, and in an electrode mixture layer formed using a slurry composition containing a binder composition, components such as an electrode active material are detached from the electrode mixture layer. Hold to not.
  • the particulate polymer is a water-insoluble particle formed from a predetermined graft polymer.
  • that the polymer particles are “water-insoluble” means that when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 25 ° C., the insoluble content becomes 90% by mass or more.
  • the graft polymer forming the particulate polymer contains an aromatic vinyl block region composed of an aromatic vinyl monomer unit and an isoprene block region composed of an isoprene unit, and the content ratio of the isoprene block region is 70% by mass. From 100 parts by mass of the core particles containing the block copolymer of 99% by mass or less to 1 part by mass or more and 40 parts by mass or less of hydrophilic monomers and / or macromonomers are subjected to graft polymerization reaction to make hydrophilic. A graft chain is provided.
  • the block copolymer constituting the core particle contains an aromatic vinyl block region composed of an aromatic vinyl monomer unit and an isoprene block region composed of an isoprene unit, and optionally an aromatic vinyl monomer unit and It further contains a polymer chain portion in which repeating units other than isoprene units are linked (hereinafter sometimes abbreviated as “other region”). And the content rate of the isoprene block area
  • the core particles may contain at least one selected from the group consisting of hindered phenolic antioxidants, phosphite antioxidants, and metal scavengers, which will be described in detail later.
  • the block copolymer may have only one aromatic vinyl block region, and may have two or more. Similarly, the block copolymer may have only one isoprene block region or a plurality of isoprene block regions. Furthermore, the block copolymer may have only one other region or a plurality of other regions.
  • the block copolymer preferably has only an aromatic vinyl block region and an isoprene block region.
  • the aromatic vinyl block region is a region including only an aromatic vinyl monomer unit as a repeating unit.
  • one aromatic vinyl block region may be composed of only one type of aromatic vinyl monomer unit, or may be composed of a plurality of types of aromatic vinyl monomer units. It is preferably composed of only one kind of aromatic vinyl monomer unit.
  • one aromatic vinyl block region may include a coupling site (that is, the aromatic vinyl monomer unit constituting one aromatic vinyl block region has an intervening coupling site. May be connected).
  • the types and ratios of the aromatic vinyl monomer units constituting the plurality of aromatic vinyl block regions may be the same or different, but the same It is preferable that
  • aromatic vinyl monomer capable of forming the aromatic vinyl monomer unit constituting the aromatic vinyl block region examples include, for example, styrene, styrene sulfonic acid and salts thereof, ⁇ -methyl styrene, pt-butyl styrene. , Butoxystyrene, vinyltoluene, chlorostyrene, and aromatic monovinyl compounds such as vinylnaphthalene. Of these, styrene is preferred. These can be used alone or in combination of two or more, but it is preferable to use one alone.
  • the ratio of the aromatic vinyl monomer unit in a block copolymer is 1 mass when the quantity of all the repeating units (monomer unit and structural unit) in a block copolymer is 100 mass%. % Or more, preferably 10% by mass or more, more preferably 15% by mass or more, preferably 30% by mass or less, and more preferably 25% by mass or less. . If the ratio of the aromatic vinyl monomer unit in the block copolymer is not less than the above lower limit value, the cycle characteristics of the secondary battery can be further improved.
  • the ratio of the aromatic vinyl monomer unit in the block copolymer is 30% by mass or less, the flexibility of the graft polymer obtained using the block copolymer is ensured, and the peel strength of the electrode Can be further improved.
  • the ratio for which an aromatic vinyl monomer unit occupies in a block copolymer corresponds with the ratio for which an aromatic vinyl block area
  • the isoprene block region is a region containing isoprene units as repeating units. Further, the isoprene block region may contain a coupling site (that is, the isoprene units constituting one isoprene block region may be linked with each other through the coupling site). Furthermore, the isoprene block region may have a crosslinked structure (that is, the isoprene block region may contain a structural unit formed by crosslinking isoprene units).
  • the isoprene unit contained in the isoprene block region may be hydrogenated (that is, the isoprene block region may contain a structural unit (isoprene hydride unit) obtained by hydrogenating the isoprene unit. ).
  • crosslinking an isoprene unit can be introduce
  • the crosslinking is not particularly limited, and can be performed using a radical initiator such as a redox initiator formed by combining an oxidizing agent and a reducing agent.
  • the oxidizing agent examples include diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, di-t-butyl peroxide, Organic peroxides such as isobutyryl peroxide and benzoyl peroxide can be used.
  • a compound containing a metal ion in a reduced state such as ferrous sulfate or cuprous naphthenate; a sulfonic acid compound such as sodium methanesulfonate; an amine compound such as dimethylaniline; be able to.
  • crosslinking may be carried out in the presence of a crosslinking agent such as polyvinyl compounds such as divinylbenzene; polyallyl compounds such as diallyl phthalate, triallyl trimellitate and diethylene glycol bisallyl carbonate; various glycols such as ethylene glycol diacrylate; Good.
  • Crosslinking can also be performed using irradiation of active energy rays such as ⁇ rays.
  • the method for introducing the isoprene hydride unit into the block copolymer is not particularly limited.
  • a method for producing a block copolymer by converting a isoprene unit to an isoprene hydride unit by hydrogenating a polymer containing an aromatic vinyl block region and an isoprene block region Is easy and preferable.
  • the total amount of isoprene units in the block copolymer, structural units obtained by crosslinking the isoprene units, and isoprene hydride units is the amount of all repeating units (monomer units and structural units) in the block copolymer. Is 100 mass%, it is necessary that it is 70 mass% or more and 99 mass% or less, preferably 75 mass% or more, preferably 90 mass% or less, and 85 mass% or less. More preferably.
  • the total proportion of the isoprene unit, the structural unit formed by crosslinking the isoprene unit and the isoprene hydride unit in the block copolymer is less than 70% by mass, the peel strength of the electrode is lowered.
  • the total proportion of the isoprene unit, the structural unit obtained by crosslinking the isoprene unit and the isoprene hydride unit in the block copolymer is more than 99% by mass, the cycle characteristics of the secondary battery are deteriorated.
  • the proportion of the isoprene unit, the structural unit obtained by crosslinking the isoprene unit, and the isoprene hydride unit in the block copolymer usually coincides with the proportion of the isoprene block region in the block copolymer.
  • the other region includes only a repeating unit other than the aromatic vinyl monomer unit and the isoprene unit (hereinafter, may be abbreviated as “other repeating unit”) as the repeating unit. is there.
  • one other region may be composed of one type of other repeating unit, or may be composed of a plurality of types of other repeating units.
  • one other region may include a coupling site (that is, other repeating units constituting one other region may be linked with each other through a coupling site). .
  • region may mutually be same or different.
  • the other repeating units are not particularly limited, and examples thereof include nitrile group-containing monomer units such as acrylonitrile units and methacrylonitrile units; (methacrylic acid alkyl ester units, methacrylic acid alkyl ester units, etc.
  • Acrylic ester monomer units Acrylic ester monomer units; Acid group-containing monomer units such as carboxyl group-containing monomer units, sulfonic acid group-containing monomer units, and phosphate group-containing monomer units; and fats other than isoprene Conjugated diene monomer units, structural units obtained by crosslinking aliphatic conjugated diene monomer units other than isoprene, and structural units obtained by hydrogenating aliphatic conjugated diene monomer units other than isoprene; It is done.
  • “(meth) acrylic acid” means acrylic acid and / or methacrylic acid.
  • the core particle containing the block copolymer described above is, for example, a block having an aromatic vinyl block region and an isoprene block region obtained by block polymerization of the above-described aromatic vinyl monomer or monomer such as isoprene in an organic solvent.
  • a step of obtaining a copolymer solution (block copolymer solution preparation step), and a step of emulsifying the resulting block copolymer solution by adding water to emulsify the block copolymer (emulsification step) ) And can be prepared.
  • the method of block polymerization in the block copolymer solution preparation step is not particularly limited.
  • the second monomer component different from the first monomer component is added to the solution obtained by polymerizing the first monomer component to perform polymerization, and if necessary, the monomer component A block copolymer can be prepared by further repeating the addition and polymerization.
  • the organic solvent used as a reaction solvent is not particularly limited, and can be appropriately selected according to the type of the monomer.
  • the block copolymer obtained by block polymerization as described above is preferably subjected to a coupling reaction using a coupling agent prior to the emulsification step described later. When the coupling reaction is performed, for example, the ends of the diblock structures contained in the block copolymer can be combined with a coupling agent to be converted into a triblock structure (that is, the amount of diblock is reduced). Can be reduced).
  • the coupling agent that can be used for the coupling reaction is not particularly limited, and examples thereof include a bifunctional coupling agent, a trifunctional coupling agent, a tetrafunctional coupling agent, and a 5-functional coupling agent.
  • the bifunctional coupling agent include bifunctional halogenated silanes such as dichlorosilane, monomethyldichlorosilane, and dichlorodimethylsilane; bifunctional halogenated alkanes such as dichloroethane, dibromoethane, methylene chloride, and dibromomethane; dichlorotin Bifunctional tin halides such as monomethyldichlorotin, dimethyldichlorotin, monoethyldichlorotin, diethyldichlorotin, monobutyldichlorotin, dibutyldichlorotin, and the like.
  • trifunctional coupling agent examples include trifunctional halogenated alkanes such as trichloroethane and trichloropropane; trifunctional halogenated silanes such as methyltrichlorosilane and ethyltrichlorosilane; methyltrimethoxysilane, phenyltrimethoxysilane, And trifunctional alkoxysilanes such as phenyltriethoxysilane.
  • tetrafunctional coupling agent examples include tetrafunctional halogenated alkanes such as carbon tetrachloride, carbon tetrabromide, and tetrachloroethane; tetrafunctional halogenated silanes such as tetrachlorosilane and tetrabromosilane; tetramethoxysilane, Tetrafunctional alkoxysilanes such as tetraethoxysilane; tetrafunctional tin halides such as tetrachlorotin and tetrabromotin;
  • pentafunctional or higher functional coupling agent examples include 1,1,1,2,2-pentachloroethane, perchloroethane, pentachlorobenzene, perchlorobenzene, octabromodiphenyl ether, decabromodiphenyl ether, and the like. These can be used alone or in combination of two or more.
  • the coupling agent is preferred as the coupling agent.
  • the coupling site derived from the coupling agent is introduced into a polymer chain (for example, a triblock structure) constituting the block copolymer.
  • the solution of the block copolymer obtained after the above-described block polymerization and an optional coupling reaction may be subjected to the emulsification step described later as it is, but if necessary, a hindered phenol-based antioxidant, After the addition of at least one selected from the group consisting of phosphite antioxidants and metal scavengers, preferably all of hindered phenol antioxidants, phosphite antioxidants and metal scavengers, the emulsification step Can also be provided.
  • the emulsification method in the emulsification step is not particularly limited.
  • a method of emulsifying a mixture of the block copolymer solution obtained in the block copolymer solution preparation step and the aqueous medium is preferable.
  • a method of emulsifying a premix of a polymer solution and an aqueous emulsifier solution is preferred.
  • the block copolymer solution contains at least one selected from the group consisting of hindered phenolic antioxidants, phosphite antioxidants, and metal scavengers, preferably all of them. It may be included.
  • the mixture may contain a coupling agent described later.
  • emulsifier for example, a known emulsifier and an emulsifier / disperser can be used.
  • the emulsifier / disperser is not particularly limited.
  • a trade name “homogenizer” manufactured by IKA
  • a trade name “polytron” manufactured by Kinematica
  • TK auto homomixer for example, a trade name “TK auto homomixer”.
  • Batch type emulsion disperser such as (made by Special Machine Industries Co., Ltd.); trade name “TK Pipeline Homo Mixer” (made by Special Machine Industries), trade name “Colloid Mill” (made by Shinko Pantech Co., Ltd.), trade name “Slasher” (manufactured by Nihon Coke Kogyo Co., Ltd.), product name "Trigonal wet milling machine” (manufactured by Mitsui Miike Chemical Co., Ltd.), product name "Cabitron” (manufactured by Eurotech), product name "Milder” (Pacific Machinery Corporation) Product name, “Fine Flow Mill” (manufactured by Taiheiyo Kiko Co., Ltd.), etc .; trade name “Microfluidizer” (manufactured by Mizuho Kogyo Co., Ltd.), trade name “Nanomizer” (Nanoma High-pressure emulsification disperser such as “APV Gaurin” (man
  • the conditions for the emulsification operation by the emulsifier / disperser are not particularly limited, and may be appropriately selected so as to obtain a desired dispersion state.
  • the aqueous dispersion of the core particle containing a block copolymer can be obtained from the emulsion obtained after emulsification, if necessary, by removing the organic solvent by a known method.
  • the hydrophilic graft chain is not particularly limited, and can be introduced into the block copolymer constituting the core particle by graft polymerization of a hydrophilic monomer or a macromonomer to the block copolymer.
  • the hydrophilic monomer is not particularly limited, and includes a carboxyl group-containing monomer, a sulfonic acid group-containing monomer, a phosphate group-containing monomer, a hydroxyl group-containing monomer, and a reactive emulsifier.
  • a carboxyl group-containing monomer a sulfonic acid group-containing monomer
  • a phosphate group-containing monomer a hydroxyl group-containing monomer
  • a reactive emulsifier emulsifier.
  • other hydrophilic monomers other than carboxyl group-containing monomers, sulfonic acid group-containing monomers, phosphate group-containing monomers, hydroxyl group-containing monomers and reactive emulsifiers are used. Also included are mers.
  • examples of the carboxyl group-containing monomer include monocarboxylic acids and derivatives thereof, dicarboxylic acids and acid anhydrides, and derivatives thereof.
  • monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid.
  • monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid and the like.
  • examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, butyl maleate, nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate And maleic acid monoesters such as fluoroalkyl maleate.
  • the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride, and citraconic anhydride.
  • an acid anhydride that generates a carboxyl group by hydrolysis can also be used.
  • carboxyl group-containing monomers include ethylenically unsaturated polyvalent carboxylic acids such as butenetricarboxylic acid, and partial esters of ethylenically unsaturated polyvalent carboxylic acids such as monobutyl fumarate and mono-2-hydroxypropyl maleate. Etc. can also be used.
  • sulfonic acid group-containing monomer examples include styrene sulfonic acid, vinyl sulfonic acid (ethylene sulfonic acid), methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, and 3-allyloxy-2-hydroxypropane sulfonic acid.
  • styrene sulfonic acid vinyl sulfonic acid (ethylene sulfonic acid), methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, and 3-allyloxy-2-hydroxypropane sulfonic acid.
  • (meth) allyl means allyl and / or methallyl.
  • examples of the phosphoric acid group-containing monomer include phosphoric acid-2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate.
  • (meth) acryloyl means acryloyl and / or methacryloyl.
  • hydroxyl group-containing monomer examples include acrylic acid ester having a hydroxyl group in the molecule such as 2-hydroxyethyl acrylate, and methacrylate ester having a hydroxyl group in the molecule such as 2-hydroxyethyl methacrylate.
  • the reactive emulsifier includes, for example, a polyalkylene oxide emulsifier having an anionic functional group and / or a nonionic functional group.
  • a polyalkylene oxide emulsifier having an anionic functional group and / or a nonionic functional group for example, sodium styrene sulfonate, sodium allyl alkyl sulfonate, alkyl allyl sulfosuccinate, polyoxyethylene alkyl allyl glycerin ether sulfate, polyoxyethylene alkylphenol allyl glycerin ether sulfate and the like can be used.
  • hydrophilic monomers examples include acrylamide, hydroxyethyl acrylamide, vinyl acetate, methoxy-polyethylene glycol acrylate, tetrahydrofurfuryl acrylate, and the like.
  • the hydrophilic monomer mentioned above may be used individually by 1 type, and may be used in combination of 2 or more type.
  • acidic group containing monomers such as a carboxyl group containing monomer, a sulfonic acid group containing monomer, and a phosphoric acid group containing monomer, are preferred, vinyl sulfonic acid, methacrylic acid, Itaconic acid and acrylic acid are more preferable, methacrylic acid and acrylic acid are more preferable, and methacrylic acid is particularly preferable.
  • the amount of the hydrophilic graft chain introduced by graft polymerization of the hydrophilic monomer is preferably 0.2 parts by mass or more, more preferably 0.8 parts by mass or more with respect to 100 parts by mass of the particulate polymer.
  • 2.1 parts by mass or more is more preferable, 8.4 parts by mass or less is preferable, 7.4 parts by mass or less is more preferable, and 6.1 parts by mass or less is still more preferable.
  • the macromonomer includes a polycarboxylic acid polymer macromonomer, a polyvinyl alcohol (PVA) polymer macromonomer, a polyethylene oxide (PEO) polymer macromonomer, and a polyvinylpyrrolidone (PVP) polymer. Macromonomer etc. are mentioned. Among these, a macromonomer of a polycarboxylic acid polymer is preferable.
  • the amount of the hydrophilic monomer and / or macromonomer to be reacted with the block copolymer needs to be 1 part by mass or more and 40 parts by mass or less per 100 parts by mass of the block copolymer, and 2 parts by mass. Part or more, preferably 5 parts by weight or more, more preferably 35 parts by weight or less, and even more preferably 25 parts by weight or less.
  • the graft polymerization of the hydrophilic graft chain is not particularly limited, and can be performed using a known graft polymerization method.
  • the graft polymerization can be performed using a radical initiator such as a redox initiator formed by combining an oxidizing agent and a reducing agent.
  • a radical initiator such as a redox initiator formed by combining an oxidizing agent and a reducing agent.
  • an oxidizing agent and a reducing agent it is the same as the oxidizing agent and reducing agent mentioned above as what can be used for bridge
  • the hydrophilic copolymer chain in the block copolymer is introduced at the time of introduction of the hydrophilic graft chain by graft polymerization.
  • Isoprene units may be cross-linked.
  • the crosslinking may not proceed simultaneously with the graft polymerization, and only the graft polymerization may proceed by adjusting the type of the radical initiator and the reaction conditions.
  • the core polymer containing the above-described block copolymer is subjected to a graft polymerization reaction of the hydrophilic monomer and / or the macromonomer at the above-described ratio, whereby a particulate polymer made of the graft polymer can be obtained.
  • the graft polymerization reaction is preferably performed in the presence of a coupling agent. If the graft polymerization reaction is carried out in the presence of a coupling agent, the particle stability of the resulting particulate polymer can be enhanced. And the graft polymer obtained by performing the graft polymerization reaction in the presence of the coupling agent usually has a coupling site derived from the coupling agent in the hydrophilic graft chain.
  • the coupling agent that can be present in the reaction system during graft polymerization is not particularly limited, and examples thereof include silane coupling agents, titanate coupling agents, and aluminate coupling agents.
  • the silane coupling agent is not particularly limited, and examples thereof include alkoxysilanes having a vinyl group such as vinyltriethoxysilane and vinyltris (2-methoxyethoxy) silane; 3-acryloxypropyltrimethoxysilane.
  • the titanate coupling agent is not particularly limited, and examples thereof include isopropyl trioctanoyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tristearoyl titanate, isopropyl triisostearoyl titanate, isopropyl diacryl titanate, and dicumyl.
  • examples thereof include phenyloxyacetate titanate, diisostearoyl ethylene titanate, and bis (dioctyl pyrophosphate) oxyacetate titanate.
  • titanate coupling agents include KRTTS, KR36B, KR55, KR41B, KR38S, KR138S, KR238S, 338X, KR44, KR9SA (all manufactured by Ajinomoto Fine-Techno Co., Ltd., trade name “Preneact (registered trademark)”) ) And the like.
  • trimethoxyaluminum, triethoxyaluminum, tripropoxyaluminum, triisopropoxyaluminum, tributoxyaluminum, aceturoxyaluminum diisopropylate manufactured by Ajinomoto Fine Techno Co., Ltd., “Plenact AL- Alkoxyaluminum such as “commercially available” as “M”.
  • a coupling agent having a carboxyl group, a coupling agent having a glycidyl group, or a coupling agent that generates a hydroxyl group by hydrolysis is preferable in order to further improve the particle stability.
  • the coupling agent described above may be present in the reaction system of the graft polymerization by blending into the mixture emulsified in the emulsification step described above, or a core obtained by emulsifying the mixture in the emulsification step described above. You may make it exist in the reaction system of graft polymerization by mix
  • the coupling agent is preferably mixed with the block copolymer solution before mixing the block copolymer solution and the aqueous medium, and mixed with the aqueous medium.
  • a solution of a block copolymer containing at least one selected from the group consisting of a hindered phenolic antioxidant, a phosphite antioxidant and a metal scavenger More preferably, it is mixed with a solution of a block copolymer containing all of a dophenol antioxidant, a phosphite antioxidant and a metal scavenger.
  • the amount of the coupling agent to be added is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more per 100 parts by mass of the block copolymer described above. It is more preferably at least part by mass, preferably at most 1.0 part by mass, more preferably at most 0.5 part by mass, and still more preferably at most 0.2 part by mass.
  • the surface acid amount of the polymer is preferably 0.02 mmol / g or more, more preferably 0.04 mmol / g or more, still more preferably 0.10 mmol / g or more, 1.0 mmol / G or less, more preferably 0.90 mmol / g or less, and even more preferably 0.70 mmol / g or less.
  • the surface acid amount of the particulate polymer is within the above range, the peel strength of the electrode and the cycle characteristics of the secondary battery can be further improved.
  • the median diameter of a particulate polymer is 0.6 micrometer or more and 2.5 micrometers or less. If the median diameter of the particulate polymer is within the above range, the peel strength of the electrode and the cycle characteristics of the secondary battery can be further improved.
  • the hindered phenol-based antioxidant contained in the binder composition is not particularly limited.
  • 4-[[4,6-bis (octylthio) -1,3,5-triazin-2-yl] amino] -2,6 is preferable from the viewpoint of suppressing the swelling of the electrode with repeated charge and discharge.
  • -Di-tert-butylphenol and 2,6-di-tert-butyl-p-cresol are preferable.
  • 4- [ [4,6-Bis (octylthio) -1,3,5-triazin-2-yl] amino] -2,6-di-tert-butylphenol is more preferred.
  • These hindered phenolic antioxidants may be used alone or in combination of two or more.
  • the amount of the hindered phenol-based antioxidant is preferably 0.01 parts by mass or more per 100 parts by mass in total of the particulate polymer and the particulate binder as an optional component. More preferably, it is 0.03 parts by mass or more, preferably 1.0 parts by mass or less, more preferably 0.50 parts by mass or less, and more preferably 0.03 parts by mass or more. More preferably, it is 30 parts by mass or less. If the content of the hindered phenolic antioxidant is equal to or higher than the above lower limit, the peel strength of the electrode and the cycle characteristics of the secondary battery can be further improved, and the swelling of the electrode due to repeated charge and discharge is suppressed. can do. Moreover, if content of a hindered phenolic antioxidant is below the said upper limit, the peel strength of an electrode and the cycling characteristics of a secondary battery can be improved further.
  • the phosphite antioxidant that the binder composition can optionally contain is not particularly limited, and for example, 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9 Diphosphaspiro [5.5] undecane, 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5 ] Undecane, 2,2-methylenebis (4,6-di-tert-butylphenyl) 2-ethylhexyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, and the like.
  • 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane And tris (2,4-di-tert-butylphenyl) phosphite are preferable.
  • 3,9-bis ( Octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane is more preferred.
  • These phosphite antioxidants may be used alone or in combination of two or more.
  • the amount of the phosphite antioxidant is preferably 0.01 parts by mass or more per 100 parts by mass in total of the particulate polymer and the particulate binder as an optional component, and 0.05 parts by mass. More preferably, it is 0.08 parts by mass or more, more preferably 0.40 parts by mass or less, more preferably 0.30 parts by mass or less, and more preferably 0.20 parts by mass. It is still more preferable that it is below mass parts. If the content of the phosphite antioxidant is at least the above lower limit value, the peel strength of the electrode and the cycle characteristics of the secondary battery can be further improved.
  • the binder composition contains a phosphite antioxidant
  • the ratio of the hindered phenol antioxidant content to the phosphite antioxidant content is preferably 0.05 or more, more preferably 0.2 or more, preferably 5 or less, and more preferably 3 or less.
  • the peel strength of the electrode and the cycle characteristics of the secondary battery can be further improved. Further, it is possible to suppress the swelling of the electrode due to repeated charge / discharge. Moreover, if the ratio of the content of the hindered phenolic antioxidant to the content of the phosphite antioxidant is not more than the above upper limit value, the peel strength of the electrode and the cycle characteristics of the secondary battery can be further improved. it can.
  • the metal scavenger that can optionally be contained in the binder composition is not particularly limited, and for example, a chelate compound can be used.
  • the chelate compound is not particularly limited, but preferably a compound selected from the group consisting of an aminocarboxylic acid chelate compound, a phosphonic acid chelate compound, gluconic acid, citric acid, malic acid and tartaric acid can be used. .
  • chelate compounds that can selectively capture transition metal ions without capturing ions involved in electrochemical reactions are preferred, and aminocarboxylic acid chelate compounds and phosphonic acid chelate compounds are particularly preferred. .
  • aminocarboxylic acid chelate compounds include ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), trans-1,2-diaminocyclohexanetetraacetic acid (CyDTA), and diethylene-triaminepentaacetic acid (DTPA).
  • EDTA ethylenediaminetetraacetic acid
  • NTA nitrilotriacetic acid
  • CyDTA trans-1,2-diaminocyclohexanetetraacetic acid
  • DTPA diethylene-triaminepentaacetic acid
  • EDTA ethylenediaminetetraace
  • Examples of the phosphonic acid chelate compound include 1-hydroxyethane-1,1-diphosphonic acid (HEDP).
  • EDTA and CyDTA are preferable from the viewpoint of suppressing the swelling of the electrode with repeated charging and discharging, and from the viewpoint of improving the peel strength of the electrode while suppressing the swelling of the electrode with repeated charging and discharging.
  • EDTA is more preferable.
  • These chelate compounds may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the metal scavenger is preferably 0.01 parts by mass or more and 0.02 parts by mass or more per 100 parts by mass in total of the particulate polymer and the particulate binder as an optional component. More preferably, 0.03 parts by mass or more, further preferably 0.5 parts by mass or less, more preferably 0.4 parts by mass or less, and 0.3 parts by mass or less. More preferably. If the content of the metal scavenger is not less than the above lower limit, it is possible to further improve the peel strength of the electrode and the cycle characteristics of the secondary battery, and to suppress the swelling of the electrode due to repeated charge and discharge. .
  • the peel strength of an electrode and the cycling characteristics of a secondary battery can further be improved.
  • the binder composition contains a phosphite antioxidant and a metal scavenger
  • the ratio of the content of the metal scavenger to the total content of the hindered phenol antioxidant and the phosphite antioxidant is preferably 0.05 or more, more preferably 0.1 or more, and preferably 1 or less, More preferably, it is 0.8 or less.
  • the peel strength of the electrode and the cycle characteristics of the secondary battery are further improved. In addition to the improvement, it is possible to suppress the swelling of the electrode due to repeated charge and discharge. If the ratio of the content of the metal scavenger to the total content of the hindered phenolic antioxidant and the phosphite antioxidant is equal to or less than the above upper limit, the peel strength of the electrode and the cycle characteristics of the secondary battery Can be further improved.
  • the aqueous medium contained in the binder composition of the present invention is not particularly limited as long as it contains water, and may be an aqueous solution or a mixed solution of water and a small amount of an organic solvent.
  • the binder composition of this invention can contain components other than the said component (other components).
  • the binder composition may contain a known particulate binder (such as a styrene-butadiene copolymer and / or an acrylic polymer) other than the particulate polymer described above.
  • the median diameter of the particulate binder is preferably 0.01 ⁇ m or more and 0.5 ⁇ m or less, more preferably 0.05 ⁇ m or more, further preferably 0.1 ⁇ m or more, and 0.4 ⁇ m. Or less, more preferably 0.3 ⁇ m or less. If the median diameter of the particulate binder is not less than the above lower limit value, the peel strength of the electrode can be further increased. Further, when the median diameter of the particulate binder is not more than the above upper limit value, the cycle characteristics of the secondary battery can be improved.
  • the “median diameter of the particulate binder” can be measured using the method described in the examples of the present specification.
  • the content of the particulate polymer described above may be 50% by mass or more of the total content of the particulate polymer and the particulate binder. Preferably, it is 55% by mass or more, more preferably 60% by mass or more, preferably 90% by mass or less, more preferably 85% by mass or less, and 80% by mass or less. More preferably it is. If content of a particulate polymer is more than the said lower limit, the peel strength of the electrode produced using the binder composition can further be improved. Moreover, if content of a particulate polymer is below the said upper limit, the cycling characteristics of the secondary battery formed using the binder composition can further be improved.
  • the binder composition may contain a water-soluble polymer.
  • the water-soluble polymer is a component that can favorably disperse the compounding components such as the particulate polymer described above in an aqueous medium, and is not particularly limited, but is preferably a synthetic polymer, and is produced through addition polymerization. More preferred is an addition polymer.
  • the water-soluble polymer may be in the form of a salt (a salt of a water-soluble polymer). That is, in the present invention, the “water-soluble polymer” includes salts of the water-soluble polymer.
  • the polymer is “water-soluble” means that when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 25 ° C., the insoluble content is less than 1.0% by mass. Say.
  • the binder composition may contain a known additive.
  • known additives include, for example, antioxidants such as 2,6-di-tert-butyl-p-cresol, antifoaming agents, dispersants (except those corresponding to the above-mentioned water-soluble polymers). .).
  • 1 type may be used independently and 2 or more types may be used in combination in arbitrary ratios.
  • the binder composition of the present invention is not particularly limited, and a particulate polymer, a hindered phenol antioxidant, and other components optionally used are mixed in the presence of an aqueous medium. Can be prepared. Further, the binder composition of the present invention contains the above-mentioned block copolymer solution, a hindered phenolic antioxidant, and an aqueous medium, and optionally contains a phosphite antioxidant and / or a metal scavenger. Further, the mixture containing the mixture is emulsified, and the organic solvent is optionally removed to obtain an aqueous dispersion of the core particles.
  • hydrophilic dispersion is provided on the core particles, and the aqueous dispersion of the particulate polymer composed of the graft polymer is performed. It can also be prepared by preparing a liquid and optionally adding other components to the aqueous dispersion and mixing.
  • the binder composition of the present invention comprises a solution of the above-mentioned block copolymer, a hindered phenolic antioxidant, an aqueous medium, and a coupling agent, and optionally a phosphite antioxidant and / or
  • a hydrophilic graft chain is provided on the core particles to form a particle made of a graft polymer. It can also be prepared by preparing an aqueous dispersion of the polymer and optionally adding other components to the aqueous dispersion and mixing.
  • the binder composition of the present invention comprises a solution of the above-mentioned block copolymer, a hindered phenolic antioxidant, and an aqueous medium, and optionally a phosphite antioxidant and / or a metal scavenger.
  • a coupling agent is added, and then hydrophilic graft chains are formed on the core particles. It is also possible to prepare an aqueous dispersion of a particulate polymer comprising a graft polymer, and optionally adding other components to the aqueous dispersion and mixing.
  • a binder composition for a non-aqueous secondary battery electrode containing a hindered phenol-based antioxidant or the like can be easily obtained. be able to.
  • the liquid contained in the dispersion and / or the aqueous solution is used as it is. It may be used as an aqueous medium.
  • the slurry composition of this invention is a composition used for the formation use of the electrode compound-material layer of an electrode, contains the binder composition mentioned above, and further contains an electrode active material. That is, the slurry composition of the present invention contains the above-mentioned particulate polymer, hindered phenol antioxidant, electrode active material and aqueous medium, and optionally, a phosphite antioxidant, a metal scavenger and others. And at least one selected from the group consisting of: And since the slurry composition of this invention contains the binder composition mentioned above, the electrode provided with the electrode compound-material layer formed from the said slurry composition is excellent in peel strength. Moreover, a secondary battery provided with the said electrode can exhibit the outstanding cycling characteristics.
  • the binder composition As the binder composition, the above-described binder composition of the present invention containing a particulate polymer made of a predetermined graft polymer and a hindered phenol antioxidant is used.
  • the compounding quantity of the binder composition in a slurry composition is not specifically limited.
  • the compounding amount of the binder composition can be an amount such that the amount of the particulate polymer is 0.5 parts by mass or more and 15 parts by mass or less in terms of solid content per 100 parts by mass of the electrode active material.
  • the electrode active material is not particularly limited, and a known electrode active material used for a secondary battery can be used.
  • the electrode active material that can be used in the electrode mixture layer of a lithium ion secondary battery as an example of a secondary battery is not particularly limited, and the following electrode active material may be used. it can.
  • the tap density of the electrode active material is preferably 0.7 g / cm 3 or more, more preferably 0.75 g / cm 3 or more, and further preferably 0.8 g / cm 3 or more. 1.1 g / cm 3 or less, more preferably 1.05 g / cm 3 or less, and still more preferably 1.03 g / cm 3 or less.
  • tap density can be measured using the method as described in the Example of this specification.
  • Examples of the positive electrode active material compounded in the positive electrode mixture layer of the positive electrode of the lithium ion secondary battery include, for example, compounds containing transition metals, such as transition metal oxides, transition metal sulfides, and composites of lithium and transition metals.
  • a metal oxide or the like can be used.
  • a transition metal Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo etc. are mentioned, for example.
  • the positive electrode active material is not particularly limited, and lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), Co— Ni—Mn lithium-containing composite oxide, Ni—Mn—Al lithium-containing composite oxide, Ni—Co—Al lithium-containing composite oxide, olivine-type lithium iron phosphate (LiFePO 4 ), olivine-type manganese phosphate Lithium (LiMnPO 4 ), Li 1 + x Mn 2 ⁇ x O 4 (0 ⁇ X ⁇ 2), an excess lithium spinel compound, Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2, LiNi 0.5 Mn 1.5 O 4 and the like.
  • the positive electrode active material mentioned above may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton, into which lithium can be inserted (also referred to as “dope”).
  • the carbon-based negative electrode active material specifically, coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber, pyrolytic vapor-grown carbon fiber, phenol resin fired body, polyacrylonitrile-based carbon fiber, Examples thereof include carbonaceous materials such as pseudo-isotropic carbon, a furfuryl alcohol resin fired body (PFA) and hard carbon, and graphite materials such as natural graphite and artificial graphite.
  • the metal-based negative electrode active material is an active material containing a metal, and usually includes an element capable of inserting lithium in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh / The active material which is more than g.
  • the metal-based active material examples include lithium metal and a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si). , Sn, Sr, Zn, Ti, etc.) and their oxides, sulfides, nitrides, silicides, carbides, phosphides and the like. Furthermore, oxides, such as lithium titanate, can be mentioned.
  • the negative electrode active material mentioned above may be used individually by 1 type, and may be used in combination of 2 or more types.
  • Other components that can be blended in the slurry composition are not particularly limited, and examples thereof include the same materials as those of the conductive material and other components that can be blended in the binder composition of the present invention.
  • the other component may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • a slurry composition can be prepared by mixing a binder composition, an electrode active material, and other components used as necessary in the presence of an aqueous medium.
  • a binder composition can also contained in the aqueous medium used in the case of preparation of a slurry composition.
  • the mixing method is not particularly limited, but the mixing can be performed using a stirrer or a disperser that can be usually used.
  • the electrode for non-aqueous secondary batteries of this invention is equipped with the electrode compound-material layer formed using the slurry composition for non-aqueous secondary battery electrodes mentioned above. Therefore, the electrode mixture layer is composed of a dried product of the slurry composition described above, and usually contains an electrode active material, a component derived from a particulate polymer, and a hindered phenol antioxidant, and optionally And at least one selected from the group consisting of phosphite antioxidants, metal scavengers and other components.
  • each component contained in the electrode mixture layer is contained in the slurry composition for non-aqueous secondary battery electrodes, and a suitable abundance ratio of each of these components is the slurry composition.
  • the particulate polymer exists in a particle shape in the slurry composition, but may be in a particle shape or any other shape in the electrode mixture layer formed using the slurry composition. It may be.
  • the electrode for non-aqueous secondary batteries of this invention forms the electrode compound-material layer using the slurry composition for non-aqueous secondary battery electrodes mentioned above, it has the outstanding peel strength. .
  • a secondary battery provided with the said electrode can exhibit the outstanding cycling characteristics.
  • the electrode mixture layer of the electrode for a non-aqueous secondary battery of the present invention can be formed using, for example, the following method. 1) A method in which the slurry composition of the present invention is applied to the surface of a current collector and then dried; 2) A method in which the current collector is immersed in the slurry composition of the present invention and then dried; and 3) The slurry composition of the present invention is applied on a release substrate and dried to produce an electrode mixture layer. And transferring the obtained electrode mixture layer to the surface of the current collector.
  • the method 1) is particularly preferable because the thickness of the electrode mixture layer can be easily controlled.
  • the method 1) includes a step of applying the slurry composition onto the current collector (application step), and drying the slurry composition applied onto the current collector to form an electrode on the current collector. Including a step of forming a composite layer (drying step).
  • the method for applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition may be applied to only one side of the current collector or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
  • an electrically conductive and electrochemically durable material is used as the current collector to which the slurry composition is applied.
  • the current collector for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used.
  • the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used. For example, a drying method using hot air, hot air, low-humidity air, vacuum drying method, infrared ray, electron beam, etc. A drying method by irradiation can be used. Thus, by drying the slurry composition on the current collector, an electrode mixture layer is formed on the current collector, and an electrode for a non-aqueous secondary battery including the current collector and the electrode mixture layer is obtained. be able to.
  • the electrode mixture layer may be subjected to pressure treatment using a die press or a roll press.
  • the pressure treatment can improve the adhesion between the electrode mixture layer and the current collector and further increase the density of the obtained electrode mixture layer.
  • an electrode compound-material layer contains a curable polymer, it is preferable to harden the said polymer after formation of an electrode compound-material layer.
  • the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and uses the above-described non-aqueous secondary battery electrode as at least one of the positive electrode and the negative electrode. And since the non-aqueous secondary battery of this invention is manufactured using the electrode for non-aqueous secondary batteries mentioned above as at least one of a positive electrode and a negative electrode, it can exhibit the outstanding cycling characteristics.
  • the secondary battery is a lithium ion secondary battery will be described as an example, but the present invention is not limited to the following example.
  • the electrode other than the electrode for the non-aqueous secondary battery of the present invention described above that can be used in the non-aqueous secondary battery of the present invention is not particularly limited, and is used for the production of the secondary battery.
  • Known electrodes can be used.
  • an electrode other than the electrode for a non-aqueous secondary battery according to the present invention described above an electrode formed by forming an electrode mixture layer on a current collector using a known manufacturing method may be used. it can.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as the supporting electrolyte for the lithium ion secondary battery.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • carbonates are preferably used because they have a high dielectric constant and a wide stable potential region.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted depending on the type of solvent.
  • the concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. Further, known additives can be added to the electrolytic solution.
  • the separator is not particularly limited, and for example, those described in JP 2012-204303 A can be used. Among these, the film thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode active material in the secondary battery and increasing the capacity per volume.
  • a microporous film made of a resin such as polyethylene, polypropylene, polybutene, or polyvinyl chloride is preferable.
  • the secondary battery according to the present invention includes, for example, a positive electrode and a negative electrode that are stacked with a separator interposed therebetween, and are wound into a battery container according to the shape of the battery as necessary. It can manufacture by inject
  • the above-mentioned electrode for non-aqueous secondary battery is used as at least one of the positive electrode and the negative electrode, preferably as the negative electrode.
  • the non-aqueous secondary battery of the present invention includes an overcurrent prevention element such as a fuse or a PTC element, if necessary, in order to prevent the occurrence of pressure rise inside the secondary battery, overcharge / discharge, etc. An expanded metal, a lead plate, or the like may be provided.
  • the shape of the secondary battery may be any of, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
  • the content ratio of the styrene block region and the isoprene block region in the polymer, the median diameter of the particulate polymer, the surface acid amount, the ratio of the acidic group-containing hydrophilic graft chain and the particle stability, The median diameter of the particulate binder, the amount of antioxidant and metal scavenger in the binder composition, the tap density of the electrode active material, the peel strength and swell resistance of the electrode, and the cycle characteristics of the secondary battery are as follows: Evaluation was made by the following method.
  • ⁇ Content ratio of styrene block region and isoprene block region> The intensity ratio between the styrene unit-derived peak and the isoprene unit-derived peak was determined by NMR (nuclear magnetic resonance absorption) method and converted into a mass ratio.
  • the mixture is centrifuged at 7000 G for 30 minutes, and the light liquid is collected.
  • the obtained light liquid is adjusted to pH 12.0 with 5% aqueous sodium hydroxide solution.
  • a sample with adjusted pH was collected in a 100 mL beaker in a solid content equivalent of 3.0 g, 3 g of an aqueous solution obtained by diluting Kao's Emulgen 120 to 0.2% and 1 g of an aqueous solution obtained by diluting SM5512 made by Toray Dow Corning to 1% Add.
  • 0.1N hydrochloric acid aqueous solution is added at a rate of 0.5 mL / 30 seconds, and the electrical conductivity is measured every 30 seconds.
  • the obtained electrical conductivity data is plotted on a graph with the electrical conductivity as the vertical axis (Y coordinate axis) and the cumulative amount of added hydrochloric acid as the horizontal axis (X coordinate axis).
  • Y coordinate axis the vertical axis
  • X coordinate axis the cumulative amount of added hydrochloric acid as the horizontal axis
  • a hydrochloric acid amount-electric conductivity curve having three inflection points is obtained.
  • the X coordinates of the three inflection points are P1, P2, and P3 in order from the smallest value.
  • Approximation lines L1, L2, and L3 are obtained by the least square method for the data in the three sections of the X coordinate from zero to coordinate P1, from coordinate P1 to coordinate P2, and from coordinate P2 to coordinate P3, respectively.
  • the X coordinate of the intersection of the approximate straight line L1 and the approximate straight line L2 is A1
  • the X coordinate of the intersection of the approximate straight line L2 and the approximate straight line L3 is A2.
  • the obtained extract was vacuum-dried at 40 ° C. for 2 hours and then dissolved by adding 5 ml of tetrahydrofuran. 1 ml of the obtained solution was collected in a 10 ml volumetric flask and then made up to 10 ml with tetrahydrofuran as a test solution.
  • the components with molecular weight of 100-1500 are separated from the prepared test solution by high-performance liquid chromatography, and the types of hindered phenolic antioxidants and phosphite-based antioxidants are identified using fast atom bombardment (FAB). did.
  • FAB fast atom bombardment
  • the amount of the specified antioxidant was quantified by a calibration curve method using high performance liquid chromatography.
  • ⁇ Amount of metal scavenger in binder composition 10 g of the prepared binder composition was adjusted to pH 4-6, and 20% strength saline was added with stirring to coagulate the dispersion. Then, the aqueous solution obtained by removing the coagulum was extracted with ethyl ether. The obtained extract was vacuum-dried at 40 ° C. for 2 hours, and then 5 ml of tetrahydrofuran was added and dissolved. 1 ml of the obtained solution was collected in a 10 ml volumetric flask and then made up to 10 ml with tetrahydrofuran as a test solution.
  • a cap attached to the measuring instrument was attached to the measuring container, and powder of the electrode active material was additionally filled up to the upper edge of the attached cap, and tapping was performed by repeatedly dropping from a height of 1.8 cm to 180 times. After the tapping, the cap was removed, and the electrode active material powder was ground again on the top surface of the container. The sample worn after tapping was weighed, and the bulk density in this state was hardened and measured as the bulk density, that is, the tap density (g / cm 3 ).
  • the produced electrode was dried in a vacuum dryer at 100 ° C. for 1 hour, and the dried electrode was cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece.
  • Cellophane tape was affixed on the surface of the electrode mixture layer of this test piece with the surface of the electrode mixture layer facing down. At this time, a cellophane tape defined in JIS Z1522 was used. Moreover, the cellophane tape was fixed to the test bench. Then, the stress when one end of the current collector was pulled vertically upward at a pulling speed of 50 mm / min and peeled was measured. This measurement was performed 3 times, the average value was calculated
  • the prepared laminate cell type lithium ion secondary battery was allowed to stand at 25 ° C. for 5 hours, and then charged and discharged at a charge / discharge rate of 4.2 V and 1 C for 100 cycles in a 45 ° C. environment. went.
  • the prepared laminated cell type lithium ion secondary battery was allowed to stand in an environment of 25 ° C. for 5 hours, and then in an environment of 25 ° C., a charge rate of 4.2 V, 1 C, a discharge rate of 3.0 V, 1 C
  • the initial capacity C0 was measured by performing a charge / discharge operation. Furthermore, the same charge / discharge was repeated under an environment of 45 ° C., and the capacity C3 after 100 cycles was measured.
  • Example 1 Preparation of particulate polymer> [Preparation of cyclohexane solution of block copolymer]
  • cyclohexane To the pressure-resistant reactor, 233.3 kg of cyclohexane, 54.2 mmol of N, N, N ′, N′-tetramethylethylenediamine (TMEDA), and 25.0 kg of styrene as an aromatic vinyl monomer were added.
  • TEDA N, N, N ′, N′-tetramethylethylenediamine
  • styrene as an aromatic vinyl monomer
  • cyclohexane in the obtained emulsion was distilled off under reduced pressure using a rotary evaporator. Thereafter, the evaporated emulsion was allowed to stand and separate in a chromatographic column with a cock for 1 day, and concentrated by removing the lower layer portion after separation. Finally, the upper layer portion was filtered through a 100-mesh wire mesh to obtain an aqueous dispersion (block copolymer latex) containing a particulate block copolymer (core particle).
  • [Graft polymerization and crosslinking] 675 parts of ion-exchanged water was added to a polymerization reaction vessel equipped with a stirrer, and then 20 parts of methacrylic acid was added.
  • the resulting mixture was adjusted to a solid content concentration of 60% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes. Next, after adjusting the solid content concentration to 52% with ion-exchanged water, the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution. To the obtained mixed liquid, 2.0 parts of the binder composition prepared above in an amount corresponding to the solid content and ion-exchanged water were added, and the final solid content concentration was adjusted to 48%. Furthermore, after mixing for 10 minutes, the slurry composition for negative electrodes with sufficient fluidity
  • the obtained positive electrode slurry composition was applied with a comma coater onto a 20 ⁇ m thick aluminum foil as a current collector so that the basis weight after drying was 23 mg / cm 2 and dried. This drying was performed by transporting the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material. And the positive electrode raw material was rolled with the roll press, and the positive electrode whose density of a positive electrode compound-material layer was 4.0 g / cm ⁇ 3 > was obtained.
  • a single-layer polypropylene separator (manufactured by Celgard, product name “Celgard 2500”) was prepared as a separator made of a separator substrate.
  • a separator a polypropylene microporous film having a thickness of 20 ⁇ m
  • a separator / positive electrode / separator / negative electrode By interposing so as to become, a laminate was obtained.
  • the laminated body of an electrode and a separator was wound around a core having a diameter of 20 mm to obtain a wound body including a positive electrode, a separator, and a negative electrode.
  • the obtained wound body was compressed from one direction at a speed of 10 mm / second until a thickness of 4.5 mm was obtained, thereby obtaining a flat body.
  • the obtained flat body had an elliptical shape in plan view, and the ratio of the major axis to the minor axis (major axis / minor axis) was 7.7.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • VC vinylene carbonate
  • the obtained secondary battery was a pouch shape having a width of 35 mm, a height of 48 mm, and a thickness of 5 mm, and the nominal capacity was 700 mAh.
  • the cycle characteristic of this lithium ion secondary battery was evaluated. The results are shown in Table 1.
  • Example 2 In the same manner as in Example 1 except that the amount of methacrylic acid was changed to 10 parts at the time of preparation of the particulate polymer and graft polymerization and crosslinking were performed, the particulate polymer, the particulate binder, and the negative electrode binder A composition, a slurry composition for a negative electrode, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 In the same manner as in Example 1 except that the amount of methacrylic acid was changed to 30 parts and graft polymerization and crosslinking were performed at the time of preparing the particulate polymer, the particulate polymer, the particulate binder, and the binder for the negative electrode A composition, a slurry composition for a negative electrode, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 In the same manner as in Example 1 except that 10 parts of acrylic acid was used instead of methacrylic acid as the hydrophilic monomer when preparing the particulate polymer, the particulate polymer, the particulate binder, and the negative electrode binder were used. A composition, a slurry composition for a negative electrode, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 In the same manner as in Example 1 except that 10 parts of itaconic acid was used in place of methacrylic acid as the hydrophilic monomer when preparing the particulate polymer, the particulate polymer, the particulate binder, and the negative electrode binder were used. A composition, a slurry composition for a negative electrode, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 In the same manner as in Example 1 except that 10 parts of 2-hydroxyethyl acrylate was used in place of methacrylic acid as the hydrophilic monomer when preparing the particulate polymer, the particulate polymer, the particulate binder, A negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 At the time of preparation of the particulate polymer, 0.05 part of stearyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (H2) as a hindered phenol antioxidant, phosphite antioxidant 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane (P2)
  • 09 parts and 0.03 part of EDTA were added as a metal scavenger to prepare a cyclohexane solution of a block copolymer, a particulate polymer, a particulate binder, and a negative electrode binder composition
  • a slurry composition for a negative electrode, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are
  • Example 8 At the time of preparation of the particulate polymer, 0.05 part of pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (H3) as a hindered phenolic antioxidant, phosphite Block copolymer by adding 0.09 part of 2,2-methylenebis (4,6-di-t-butylphenyl) 2-ethylhexyl phosphite (P3) as an antioxidant and 0.03 part of NTA as a metal scavenger
  • a particulate polymer, a particulate binder, a negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared in the same manner as in Example 1 except that a cyclohexane solution was prepared. Or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 9 At the time of preparation of the particulate polymer, 0.05 part of 2,6-di-tert-butyl-p-cresol (H5) as a hindered phenol-based antioxidant, and trisphosphite (2) as a phosphite-based antioxidant , 4-Di-tert-butylphenyl) (P4) and 0.05 part of CyDTA as a metal scavenger were added to prepare a block copolymer cyclohexane solution in the same manner as in Example 1, except that A polymer, a particulate binder, a negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 10 4-[[4,6-Bis (octylthio) -1,3,5-triazin-2-yl] amino] -2,6-di as a hindered phenolic antioxidant during the preparation of the particulate polymer -
  • the amount of tert-butylphenol (H1) was changed to 0.02 parts, and 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9- as a phosphite antioxidant
  • P1 diphosphaspiro [5.5] undecane
  • a negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same
  • Example 11 4-[[4,6-Bis (octylthio) -1,3,5-triazin-2-yl] amino] -2,6-di as a hindered phenolic antioxidant during the preparation of the particulate polymer -
  • the amount of tert-butylphenol (H1) was changed to 0.25 parts, and 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9- as a phosphite antioxidant
  • the particulate polymer and particulate binder were the same as in Example 1 except that the amount of diphosphaspiro [5.5] undecane (P1) was changed to 0.06 part to prepare a cyclohexane solution of the block copolymer.
  • Example 12 4-[[4,6-Bis (octylthio) -1,3,5-triazin-2-yl] amino] -2,6-di as a hindered phenolic antioxidant during the preparation of the particulate polymer -The amount of tert-butylphenol (H1) was changed to 0.8 part, and 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9- as a phosphite antioxidant In the same manner as in Example 1 except that a cyclohexane solution of a block copolymer was prepared without using diphosphaspiro [5.5] undecane (P1) and graft polymerization and crosslinking were performed, a particulate polymer, A binder, a negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the
  • Example 13 In the same manner as in Example 1, except that a cyclohexane solution of a block copolymer was prepared and graft polymerization and crosslinking were carried out without using EDTA as a metal scavenger during the preparation of the particulate polymer. A coalescence, a particulate binder, a negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 14 In the same manner as in Example 1, except that the aqueous dispersion of the particulate binder was not used, and the aqueous dispersion of the particulate polymer was used as it was as a binder composition for a non-aqueous secondary battery negative electrode.
  • a combined body (negative electrode binder composition), a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 When preparing the particulate polymer, graft polymerization and crosslinking are not performed, and when preparing the negative electrode binder composition, a particulate block copolymer (core) is used instead of the aqueous dispersion of the particulate polymer made of the graft polymer.
  • Example 3 In the same manner as in Example 1 except that the block copolymer was prepared by changing the amount of styrene to 35.0 kg and the amount of isoprene to 65.0 kg when preparing the particulate polymer. A coalescence, a particulate binder, a negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • a particulate polymer, a particulate binder, a negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 15 In the same manner as in Example 1 except that a mixture of 8 parts of acrylamide and 2 parts of hydroxyethylacrylamide was used instead of methacrylic acid as the hydrophilic monomer when preparing the particulate polymer. A binder, a negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 16 In the same manner as in Example 1 except that 5 parts of p-styrenesulfonic acid was used in place of methacrylic acid as the hydrophilic monomer when preparing the particulate polymer, the particulate polymer, the particulate binder, A negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 17 In the same manner as in Example 1, except that a mixture of 5 parts of 2-hydroxyethyl acrylate and 5 parts of vinyl acetate was used instead of methacrylic acid as the hydrophilic monomer when preparing the particulate polymer. A coalescence, a particulate binder, a negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 18 When preparing the particulate polymer, 3 parts of methoxy-polyethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., light acrylate 130A) and tetrahydrofurfuryl acrylate (manufactured by Kyoeisha Chemical Co., Ltd., light acrylate THF-A) instead of methacrylic acid as the hydrophilic monomer )
  • a battery was made or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 19 A particulate binder, a negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary material are obtained in the same manner as in Example 1 except that the particulate polymer prepared as follows is used. A battery was made or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • the evaporated emulsion was allowed to stand and separate in a chromatographic column with a cock for 1 day, and concentrated by removing the lower layer portion after separation. Finally, the upper layer portion was filtered through a 100-mesh wire mesh to obtain an aqueous dispersion (block copolymer latex) containing a particulate block copolymer (core particle).
  • block copolymer latex aqueous dispersion containing a particulate block copolymer (core particle).
  • the resulting block copolymer latex was diluted by adding 850 parts of ion-exchanged water to 100 parts in terms of block copolymer. Then, the diluted block copolymer latex was put into a polymerization reactor equipped with a stirrer substituted with nitrogen, and the temperature was increased to 30 ° C.
  • Example 20 3-glycidoxypropylmethyldiethoxy instead of N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane as a coupling agent to be added to the cyclohexane solution of the block copolymer during the preparation of the particulate polymer
  • a battery was made or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 21 Bis (dioctyl pyrophosphate) oxyacetate titanate instead of N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane as a coupling agent to be added to the cyclohexane solution of the block copolymer during the preparation of the particulate polymer
  • a particulate polymer, a particulate binder, a negative electrode binder composition, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a secondary battery were prepared in the same manner as in Example 19 except that (Plenact 138S) was used. Prepared or prepared. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Examples 15 to 21 an electrode having excellent peel strength and a secondary battery having excellent cycle characteristics can be obtained. Further, from Tables 1 and 2, Examples 19 to 21 in which graft polymerization and crosslinking were carried out in the presence of a coupling agent yielded a particulate polymer having excellent particle stability compared to Examples 1 to 18. You can see that
  • the binder composition for a non-aqueous secondary battery electrode and the slurry composition for a non-aqueous secondary battery electrode of the present invention an electrode having excellent peel strength and a secondary battery having excellent cycle characteristics can be formed. Moreover, the electrode for non-aqueous secondary batteries of this invention is excellent in peel strength, and can form the secondary battery excellent in cycling characteristics. And according to this invention, the non-aqueous secondary battery excellent in cycling characteristics is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、ピール強度に優れる電極と、サイクル特性に優れる二次電池とを形成可能な非水系二次電池電極用バインダー組成物を提供する。非水系二次電池電極用バインダー組成物は、芳香族ビニル単量体単位からなる芳香族ビニルブロック領域と、イソプレン単位からなるイソプレンブロック領域とを含有し、イソプレンブロック領域の含有割合が70質量%以上99質量%以下であるブロック共重合体を含むコア粒子100質量部に対し、合計で1質量部以上40質量部以下の親水性単量体および/またはマクロモノマーをグラフト重合反応させてなる、親水性グラフト鎖を有するグラフト重合体からなる粒子状重合体と、ヒンダードフェノール系酸化防止剤とを含有する。

Description

非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池
 本発明は、非水系二次電池電極用バインダー組成物、非水系二次電池電極用バインダー組成物の製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池に関するものである。
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、非水系二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
 ここで、リチウムイオン二次電池などの二次電池に用いられる電極は、通常、集電体と、集電体上に形成された電極合材層(正極合材層または負極合材層)とを備えている。そして、この電極合材層は、例えば、電極活物質と、結着材を含むバインダー組成物などとを含むスラリー組成物を集電体上に塗布し、塗布したスラリー組成物を乾燥させることにより形成される。
 そこで、近年では、二次電池の更なる性能の向上を達成すべく、電極合材層の形成に用いられるバインダー組成物の改良が試みられている。
 具体的には、例えば特許文献1および2では、二次電池のサイクル特性を向上させる観点から、バインダー組成物に酸化防止剤を含有させる技術が提案されている。
国際公開第2009/107778号 韓国登録特許第10-0993129号公報
 しかし、上記従来の酸化防止剤を含む非水系二次電池電極用バインダー組成物には、二次電池のサイクル特性を向上させつつ、バインダー組成物を用いて形成した電極のピール強度を更に向上させるという点において改善の余地があった。
 そこで、本発明は、ピール強度に優れる電極と、サイクル特性に優れる二次電池とを形成可能な非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物を提供することを目的とする。
 また、本発明は、優れたピール強度を有し、且つ、サイクル特性に優れる二次電池を形成可能な非水系二次電池用電極、並びに、サイクル特性に優れる非水系二次電池を提供することを目的とする。
 発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、所定の重合体からなる粒子状重合体と、所定の酸化防止剤とを含むバインダー組成物を用いれば、ピール強度に優れる電極およびサイクル特性に優れる二次電池が得られることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用バインダー組成物は、芳香族ビニル単量体単位からなる芳香族ビニルブロック領域と、イソプレン単位からなるイソプレンブロック領域とを含有し、前記イソプレンブロック領域の含有割合が70質量%以上99質量%以下であるブロック共重合体を含むコア粒子100質量部に対し、合計で1質量部以上40質量部以下の親水性単量体および/またはマクロモノマーをグラフト重合反応させてなる、親水性グラフト鎖を有するグラフト重合体からなる粒子状重合体と、ヒンダードフェノール系酸化防止剤とを含有することを特徴とする。このように、所定の重合体からなる粒子状重合体と、所定の酸化防止剤とを含有させれば、バインダー組成物を用いて形成した電極のピール強度および二次電池のサイクル特性を向上させることができる。
 なお、本発明において、重合体の「単量体単位」とは、「その単量体を用いて得た重合体中に含まれる、当該単量体由来の繰り返し単位」を意味する。
 また、本発明において、重合体が「単量体単位からなるブロック領域を有する」とは、「その重合体中に、繰り返し単位として、その単量体単位のみが連なって結合した部分が存在する」ことを意味する。
 そして、本発明において、「イソプレンブロック領域の含有割合」は、H-NMRを用いて測定することができる。
 ここで、本発明の非水系二次電池電極用バインダー組成物は、ホスファイト系酸化防止剤を更に含むことが好ましい。ホスファイト系酸化防止剤を更に含有させれば、バインダー組成物を用いて形成した電極のピール強度および二次電池のサイクル特性を更に向上させることができる。
 また、本発明の非水系二次電池電極用バインダー組成物は、金属捕捉剤を更に含むことが好ましい。金属捕捉剤を更に含有させれば、バインダー組成物を用いて形成した電極のピール強度および二次電池のサイクル特性を更に向上させることができる。
 更に、本発明の非水系二次電池電極用バインダー組成物は、前記粒子状重合体のメディアン径が0.6μm以上2.5μm以下であることが好ましい。粒子状重合体のメディアン径が上記範囲内であれば、バインダー組成物を用いて形成した電極のピール強度および二次電池のサイクル特性を更に向上させることができる。
 なお、本発明において、「粒子状重合体のメディアン径」は、本明細書の実施例に記載の方法を用いて測定することができる。
 また、本発明の非水系二次電池電極用バインダー組成物は、前記親水性グラフト鎖が酸性基を有し、前記粒子状重合体の表面酸量が0.02mmol/g以上1.0mmol/g以下であることが好ましい。粒子状重合体の表面酸量が上記範囲内であれば、バインダー組成物を用いて形成した電極のピール強度および二次電池のサイクル特性を更に向上させることができる。
 なお、本発明において、粒子状重合体の「表面酸量」は、粒子状重合体の固形分1g当たりの表面酸量を指し、本明細書の実施例に記載の測定方法を用いて測定することができる。
 更に、本発明の非水系二次電池電極用バインダー組成物は、粒子状結着材を更に含み、前記粒子状結着材がスチレン-ブタジエン共重合体および/またはアクリル重合体からなることが好ましい。スチレン-ブタジエン共重合体からなる粒子状結着材および/またはアクリル重合体からなる粒子状結着材を更に含有させれば、バインダー組成物を用いて形成した二次電池のサイクル特性を更に向上させることができる。
 そして、本発明の非水系二次電池電極用バインダー組成物は、前記粒子状重合体の含有量が、前記粒子状重合体と前記粒子状結着材との合計含有量の50質量%以上90質量%以下であることが好ましい。粒子状重合体の含有量が上記範囲内であれば、バインダー組成物を用いて形成した電極のピール強度および二次電池のサイクル特性を更に向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用スラリー組成物は、電極活物質と、上述した非水系二次電池電極用バインダー組成物の何れかとを含むことを特徴とする。このように、上述した非水系二次電池電極用バインダー組成物を含有させれば、スラリー組成物を用いて形成した電極のピール強度および二次電池のサイクル特性を向上させることができる。
 更に、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備えることを特徴とする。このように、上述した非水系二次電池電極用スラリー組成物を使用すれば、サイクル特性に優れる二次電池を形成可能な、ピール強度に優れる電極が得られる。
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、正極、負極、セパレータおよび電解液を有し、前記正極および前記負極の少なくとも一方が上述した非水系二次電池用電極であることを特徴とする。上述した非水系二次電池用電極を使用すれば、サイクル特性に優れる非水系二次電池が得られる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池電極用バインダー組成物の製造方法は、上述した非水系二次電池電極用バインダー組成物を製造する方法であり、芳香族ビニル単量体単位からなる芳香族ビニルブロック領域およびイソプレン単位からなるイソプレンブロック領域を含有し、前記イソプレンブロック領域の含有割合が70質量%以上99質量%以下であるブロック共重合体の溶液と、ヒンダードフェノール系酸化防止剤と、水系媒体とを含む混合物を乳化してコア粒子を得る工程と、前記コア粒子に対して親水性グラフト鎖を設け、グラフト重合体からなる粒子状重合体を得る工程とを含むことを特徴とする。このように、ブロック共重合体の溶液と、ヒンダードフェノール系酸化防止剤と、水系媒体とを含む混合物を乳化してコア粒子を得た後、コア粒子に対して親水性グラフト鎖を設けてグラフト重合体からなる粒子状重合体を得れば、上述した非水系二次電池電極用バインダー組成物を容易に得ることができる。
 ここで、本発明の非水系二次電池電極用バインダー組成物の製造方法では、前記混合物がホスファイト系酸化防止剤を更に含むことが好ましい。ホスファイト系酸化防止剤を更に含有させれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができるバインダー組成物が得られる。
 そして、本発明の非水系二次電池電極用バインダー組成物の製造方法では、前記混合物が金属捕捉剤を更に含むことが好ましい。金属捕捉剤を更に含有させれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができるバインダー組成物が得られる。
 また、本発明の非水系二次電池電極用バインダー組成物の製造方法では、前記混合物がカップリング剤を更に含有し、前記乳化の前に、前記ブロック共重合体の溶液と、前記ヒンダードフェノール系酸化防止剤と、前記水系媒体と、前記カップリング剤とを混合して前記混合物を得ることが好ましい。乳化される混合物にカップリング剤を含有させれば、グラフト重合体からなる粒子状重合体の粒子安定性を高めることができる。
 更に、本発明の非水系二次電池電極用バインダー組成物の製造方法では、前記コア粒子を得る工程と、前記粒子状重合体を得る工程との間に、前記コア粒子を含む乳化液にカップリング剤を添加する工程を更に含むことが好ましい。コア粒子を含む乳化液にカップリング剤を添加すれば、グラフト重合体からなる粒子状重合体の粒子安定性を高めることができる。
 本発明の非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物によれば、ピール強度に優れる電極と、サイクル特性に優れる二次電池とを形成することができる。
 また、本発明の非水系二次電池用電極は、ピール強度に優れており、サイクル特性に優れる二次電池を形成することができる。
 そして、本発明によれば、サイクル特性に優れる非水系二次電池が得られる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池電極用バインダー組成物は、本発明の非水系二次電池電極用スラリー組成物の調製に用いることができ、例えば本発明の非水系二次電池電極用バインダー組成物の製造方法を用いて製造することができる。そして、本発明の非水系二次電池電極用バインダー組成物を用いて調製した非水系二次電池電極用スラリー組成物は、リチウムイオン二次電池等の非水系二次電池の電極を製造する際に用いることができる。更に、本発明の非水系二次電池は、本発明の非水系二次電池電極用スラリー組成物を用いて形成した本発明の非水系二次電池用電極を用いたことを特徴とする。
 なお、本発明の非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物および非水系二次電池用電極は、負極用であることが好ましく、本発明の非水系二次電池は、本発明の非水系二次電池用電極を負極として用いたものであることが好ましい。
(非水系二次電池電極用バインダー組成物)
 本発明の非水系二次電池電極用バインダー組成物は、粒子状重合体およびヒンダードフェノール系酸化防止剤を含有し、任意に、ホスファイト系酸化防止剤、金属捕捉剤、および、バインダー組成物に配合され得るその他の成分(例えば、粒子状結着材など)からなる群より選択される少なくとも一種を更に含有する。また、本発明の非水系二次電池電極用バインダー組成物は、通常、水などの分散媒を更に含有する。
 そして、本発明のバインダー組成物は、粒子状重合体が、芳香族ビニル単量体単位からなる芳香族ビニルブロック領域と、イソプレン単位からなるイソプレンブロック領域とを含有し、イソプレンブロック領域の含有割合が70質量%以上99質量%以下であるブロック共重合体を含むコア粒子100質量部に対し、合計で1質量部以上40質量部以下の親水性単量体および/またはマクロモノマーをグラフト重合反応させてなるグラフト重合体よりなり、且つ、ヒンダードフェノール系酸化防止剤を含有しているので、ピール強度に優れる電極およびサイクル特性に優れる二次電池を形成可能である。
<粒子状重合体>
 粒子状重合体は、結着材として機能する成分であり、バインダー組成物を含むスラリー組成物を使用して形成した電極合材層において、電極活物質などの成分が電極合材層から脱離しないように保持する。
 そして、粒子状重合体は、所定のグラフト重合体により形成される非水溶性の粒子である。なお、本発明において、重合体の粒子が「非水溶性」であるとは、温度25℃において重合体0.5gを100gの水に溶解した際に、不溶分が90質量%以上となることをいう。
[グラフト重合体]
 粒子状重合体を形成するグラフト重合体は、芳香族ビニル単量体単位からなる芳香族ビニルブロック領域と、イソプレン単位からなるイソプレンブロック領域とを含有し、イソプレンブロック領域の含有割合が70質量%以上99質量%以下であるブロック共重合体を含むコア粒子100質量部に対し、合計で1質量部以上40質量部以下の親水性単量体および/またはマクロモノマーをグラフト重合反応させて親水性グラフト鎖を設けてなる。
〔コア粒子〕
 コア粒子を構成するブロック共重合体は、芳香族ビニル単量体単位からなる芳香族ビニルブロック領域と、イソプレン単位からなるイソプレンブロック領域とを含有し、任意に、芳香族ビニル単量体単位およびイソプレン単位以外の繰り返し単位が連なった高分子鎖部分(以下、「その他の領域」と略記する場合がある。)を更に含有する。そして、ブロック共重合体中におけるイソプレンブロック領域の含有割合は、70質量%以上99質量%以下であることを必要とする。そして、コア粒子には、後に詳細に説明するヒンダードフェノール系酸化防止剤、ホスファイト系酸化防止剤および金属捕捉剤からなる群より選択される少なくとも一種が含まれていてもよい。
 なお、ブロック共重合体は、芳香族ビニルブロック領域を1つのみ有していてもよく、複数有していてもよい。同様に、ブロック共重合体は、イソプレンブロック領域を1つのみ有していてもよく、複数有していてもよい。更に、ブロック共重合体は、その他の領域を1つのみ有していてもよく、複数有していてもよい。なお、ブロック共重合体は、芳香族ビニルブロック領域およびイソプレンブロック領域のみを有することが好ましい。
-芳香族ビニルブロック領域-
 芳香族ビニルブロック領域は、上述したように、繰り返し単位として、芳香族ビニル単量体単位のみを含む領域である。
 ここで、1つの芳香族ビニルブロック領域は、1種の芳香族ビニル単量体単位のみで構成されていてもよいし、複数種の芳香族ビニル単量体単位で構成されていてもよいが、1種の芳香族ビニル単量体単位のみで構成されていることが好ましい。
 また、1つの芳香族ビニルブロック領域には、カップリング部位が含まれていてもよい(すなわち、1つの芳香族ビニルブロック領域を構成する芳香族ビニル単量体単位は、カップリング部位が介在して連なっていてもよい)。
 そして、重合体が複数の芳香族ビニルブロック領域を有する場合、それら複数の芳香族ビニルブロック領域を構成する芳香族ビニル単量体単位の種類および割合は、同一でも異なっていてもよいが、同一であることが好ましい。
 芳香族ビニルブロック領域を構成する芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、例えば、スチレン、スチレンスルホン酸およびその塩、α-メチルスチレン、p-t-ブチルスチレン、ブトキシスチレン、ビニルトルエン、クロロスチレン、並びに、ビニルナフタレンなどの芳香族モノビニル化合物が挙げられる。中でも、スチレンが好ましい。これらは1種を単独で、または、2種以上を組み合わせて用いることができるが、1種を単独で用いることが好ましい。
 そして、ブロック共重合体中の芳香族ビニル単量体単位の割合は、ブロック共重合体中の全繰り返し単位(単量体単位および構造単位)の量を100質量%とした場合に、1質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましく、30質量%以下であることが好ましく、25質量%以下であることがより好ましい。ブロック共重合体中に占める芳香族ビニル単量体単位の割合が上記下限値以上であれば、二次電池のサイクル特性を更に向上させることができる。一方、ブロック共重合体中に占める芳香族ビニル単量体単位の割合が30質量%以下であれば、ブロック共重合体を用いて得られるグラフト重合体の柔軟性が確保され、電極のピール強度を更に向上させることができる。
 なお、芳香族ビニル単量体単位がブロック共重合体中に占める割合は、通常、芳香族ビニルブロック領域がブロック共重合体中に占める割合と一致する。
-イソプレンブロック領域-
 イソプレンブロック領域は、繰り返し単位として、イソプレン単位を含む領域である。
 また、イソプレンブロック領域には、カップリング部位が含まれていてもよい(すなわち、1つのイソプレンブロック領域を構成するイソプレン単位は、カップリング部位が介在して連なっていてもよい)。
 更に、イソプレンブロック領域は、架橋構造を有していてもよい(すなわち、イソプレンブロック領域は、イソプレン単位を架橋してなる構造単位を含有していてもよい)。
 また、イソプレンブロック領域に含まれるイソプレン単位は、水素化されていてもよい(すなわち、イソプレンブロック領域は、イソプレン単位を水素化して得られる構造単位(イソプレン水素化物単位)を含有していてもよい)。
 そして、イソプレン単位を架橋してなる構造単位は、芳香族ビニルブロック領域と、イソプレンブロック領域とを含む重合体を架橋することにより、ブロック共重合体に導入することができる。
 ここで、架橋は、特に限定されることなく、例えば酸化剤と還元剤とを組み合わせてなるレドックス開始剤などのラジカル開始剤を用いて行うことができる。そして、酸化剤としては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイドなどの有機過酸化物を用いることができる。また、還元剤としては、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属イオンを含有する化合物;メタンスルホン酸ナトリウム等のスルホン酸化合物;ジメチルアニリン等のアミン化合物;等を用いることができる。これらの有機過酸化物および還元剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、架橋は、ジビニルベンゼン等のポリビニル化合物;ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート等のポリアリル化合物;エチレングリコールジアクリレート等の各種グリコール;などの架橋剤の存在下で行ってもよい。また、架橋は、γ線などの活性エネルギー線の照射を用いて行うこともできる。
 また、ブロック共重合体へのイソプレン水素化物単位の導入方法は、特に限定はされない。例えば、芳香族ビニルブロック領域と、イソプレンブロック領域とを含む重合体に水素添加することで、イソプレン単位をイソプレン水素化物単位に変換してブロック共重合体を得る方法が、ブロック共重合体の製造が容易であり好ましい。
 そして、ブロック共重合体中のイソプレン単位、イソプレン単位を架橋してなる構造単位およびイソプレン水素化物単位の合計量は、ブロック共重合体中の全繰り返し単位(単量体単位および構造単位)の量を100質量%とした場合に、70質量%以上99質量%以下であることが必要であり、75質量%以上であることが好ましく、90質量%以下であることが好ましく、85質量%以下であることがより好ましい。ブロック共重合体中に占めるイソプレン単位、イソプレン単位を架橋してなる構造単位およびイソプレン水素化物単位の合計割合が70質量%未満の場合、電極のピール強度が低下する。また、ブロック共重合体中に占めるイソプレン単位、イソプレン単位を架橋してなる構造単位およびイソプレン水素化物単位の合計割合が99質量%超の場合、二次電池のサイクル特性が低下する。
 なお、イソプレン単位、イソプレン単位を架橋してなる構造単位およびイソプレン水素化物単位がブロック共重合体中に占める割合は、通常、イソプレンブロック領域がブロック共重合体中に占める割合と一致する。
-その他の領域-
 その他の領域は、上述したように、繰り返し単位として、芳香族ビニル単量体単位およびイソプレン単位以外の繰り返し単位(以下、「その他の繰り返し単位」と略記する場合がある。)のみを含む領域である。
 ここで、1つのその他の領域は、1種のその他の繰り返し単位で構成されていてもよいし、複数種のその他の繰り返し単位で構成されていてもよい。
 また、1つのその他の領域には、カップリング部位が含まれていてもよい(すなわち、1つのその他の領域を構成するその他の繰り返し単位は、カップリング部位が介在して連なっていてもよい)。
 そして、重合体が複数のその他の領域を有する場合、それら複数のその他の領域を構成するその他の繰り返し単位の種類および割合は、互いに同一でも異なっていてもよい。
 そして、その他の繰り返し単位としては、特に限定されることなく、例えば、アクリロニトリル単位やメタクリロニトリル単位等のニトリル基含有単量体単位;アクリル酸アルキルエステル単位やメタクリル酸アルキルエステル単位等の(メタ)アクリル酸エステル単量体単位;カルボキシル基含有単量体単位、スルホン酸基含有単量体単位およびリン酸基含有単量体単位等の酸性基含有単量体単位;並びに、イソプレン以外の脂肪族共役ジエン単量体単位、イソプレン以外の脂肪族共役ジエン単量体単位を架橋してなる構造単位およびイソプレン以外の脂肪族共役ジエン単量体単位を水素化して得られる構造単位;などが挙げられる。ここで、本発明において、「(メタ)アクリル酸」とは、アクリル酸および/またはメタクリル酸を意味する。
〔コア粒子の調製方法〕
 上述したブロック共重合体を含むコア粒子は、例えば、有機溶媒中で上述した芳香族ビニル単量体やイソプレンなどの単量体をブロック重合して芳香族ビニルブロック領域およびイソプレンブロック領域を有するブロック共重合体の溶液を得る工程(ブロック共重合体溶液調製工程)と、得られたブロック共重合体の溶液に水を添加して乳化することでブロック共重合体を粒子化する工程(乳化工程)とを経て調製することができる。
-ブロック共重合体溶液調製工程-
 ブロック共重合体溶液調製工程におけるブロック重合の方法は、特に限定されない。例えば、第一の単量体成分を重合させた溶液に、第一の単量体成分とは異なる第二の単量体成分を加えて重合を行い、必要に応じて、単量体成分の添加と重合とを更に繰り返すことより、ブロック共重合体を調製することができる。なお、反応溶媒として使用される有機溶媒も特に限定されず、単量体の種類等に応じて適宜選択することができる。
 ここで、上記のようにブロック重合して得られたブロック共重合体を、後述する乳化工程に先んじて、カップリング剤を用いたカップリング反応に供することが好ましい。カップリング反応を行えば、例えば、ブロック共重合体中に含まれるジブロック構造体同士の末端をカップリング剤により結合させて、トリブロック構造体に変換することができる(すなわち、ジブロック量を低減することができる)。
 上記カップリング反応に使用し得るカップリング剤としては、特に限定されず、例えば、2官能のカップリング剤、3官能のカップリング剤、4官能のカップリング剤、5官能以上のカップリング剤が挙げられる。
 2官能のカップリング剤としては、例えば、ジクロロシラン、モノメチルジクロロシラン、ジクロロジメチルシラン等の2官能性ハロゲン化シラン;ジクロロエタン、ジブロモエタン、メチレンクロライド、ジブロモメタン等の2官能性ハロゲン化アルカン;ジクロロスズ、モノメチルジクロロスズ、ジメチルジクロロスズ、モノエチルジクロロスズ、ジエチルジクロロスズ、モノブチルジクロロスズ、ジブチルジクロロスズ等の2官能性ハロゲン化スズ;が挙げられる。
 3官能のカップリング剤としては、例えば、トリクロロエタン、トリクロロプロパンなどの3官能性ハロゲン化アルカン;メチルトリクロロシラン、エチルトリクロロシランなどの3官能性ハロゲン化シラン;メチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどの3官能性アルコキシシラン;が挙げられる。
 4官能のカップリング剤としては、例えば、四塩化炭素、四臭化炭素、テトラクロロエタンなどの4官能性ハロゲン化アルカン;テトラクロロシラン、テトラブロモシランなどの4官能性ハロゲン化シラン;テトラメトキシシラン、テトラエトキシシランなどの4官能性アルコキシシラン;テトラクロロスズ、テトラブロモスズなどの4官能性ハロゲン化スズ;が挙げられる。
 5官能以上のカップリング剤としては、例えば、1,1,1,2,2-ペンタクロロエタン、パークロロエタン、ペンタクロロベンゼン、パークロロベンゼン、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテルなどが挙げられる。
 これらは1種を単独で、または、2種以上を組み合わせて用いることができる。
 上述した中でも、カップリング剤としては、ジクロロジメチルシランが好ましい。なお、カップリング剤を用いたカップリング反応によれば、当該カップリング剤に由来するカップリング部位が、ブロック共重合体を構成する高分子鎖(例えば、トリブロック構造体)に導入される。
 なお、上述したブロック重合および任意に行われるカップリング反応後に得られるブロック共重合体の溶液は、そのまま後述する乳化工程に供してもよいが、必要に応じて、ヒンダードフェノール系酸化防止剤、ホスファイト系酸化防止剤および金属捕捉剤からなる群より選択される少なくとも一種、好ましくはヒンダードフェノール系酸化防止剤、ホスファイト系酸化防止剤および金属捕捉剤の全てを添加した後に、乳化工程に供することもできる。
-乳化工程-
 乳化工程における乳化の方法は、特に限定されないが、例えば、上述したブロック共重合体溶液調製工程で得られたブロック共重合体の溶液と、水系媒体との混合物を乳化する方法が好ましく、ブロック共重合体の溶液と乳化剤の水溶液との予備混合物を乳化する方法が好ましい。ここで、上述した通り、ブロック共重合体の溶液には、ヒンダードフェノール系酸化防止剤、ホスファイト系酸化防止剤および金属捕捉剤からなる群より選択される少なくとも一種、好ましくはそれらの全てが含まれていてもよい。また、後述するように、混合物には、後述するカップリング剤が含まれていてもよい。そして、乳化には、例えば既知の乳化剤および乳化分散機を用いることができる。具体的には、乳化分散機としては、特に限定されることなく、例えば、商品名「ホモジナイザー」(IKA社製)、商品名「ポリトロン」(キネマティカ社製)、商品名「TKオートホモミキサー」(特殊機化工業社製)等のバッチ式乳化分散機;商品名「TKパイプラインホモミキサー」(特殊機化工業社製)、商品名「コロイドミル」(神鋼パンテック社製)、商品名「スラッシャー」(日本コークス工業社製)、商品名「トリゴナル湿式微粉砕機」(三井三池化工機社製)、商品名「キャビトロン」(ユーロテック社製)、商品名「マイルダー」(太平洋機工社製)、商品名「ファインフローミル」(太平洋機工社製)等の連続式乳化分散機;商品名「マイクロフルイダイザー」(みずほ工業社製)、商品名「ナノマイザー」(ナノマイザー社製)、商品名「APVガウリン」(ガウリン社製)等の高圧乳化分散機;商品名「膜乳化機」(冷化工業社製)等の膜乳化分散機;商品名「バイブロミキサー」(冷化工業社製)等の振動式乳化分散機;商品名「超音波ホモジナイザー」(ブランソン社製)等の超音波乳化分散機;などを用いることができる。なお、乳化分散機による乳化操作の条件(例えば、処理温度、処理時間など)は、特に限定されず、所望の分散状態になるように適宜選定すればよい。
 そして、乳化後に得られる乳化液から、必要に応じて、既知の方法により有機溶媒を除去する等して、ブロック共重合体を含むコア粒子の水分散液を得ることができる。
〔親水性グラフト鎖〕
 親水性グラフト鎖は、特に限定されることなく、親水性単量体やマクロモノマーをブロック共重合体にグラフト重合することによりコア粒子を構成するブロック共重合体に導入することができる。
 ここで、親水性単量体としては、特に限定されることなく、カルボキシル基含有単量体、スルホン酸基含有単量体、リン酸基含有単量体、水酸基含有単量体、反応性乳化剤などが挙げられる。また、親水性単量体としては、カルボキシル基含有単量体、スルホン酸基含有単量体、リン酸基含有単量体、水酸基含有単量体および反応性乳化剤以外の、その他の親水性単量体も挙げられる。
 ここで、カルボキシル基含有単量体としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸ブチル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸モノエステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸、無水シトラコン酸などが挙げられる。
 また、カルボキシル基含有単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 更に、カルボキシル基含有単量体としては、ブテントリカルボン酸等のエチレン性不飽和多価カルボン酸や、フマル酸モノブチル、マレイン酸モノ2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸の部分エステルなども用いることができる。
 また、スルホン酸基含有単量体としては、例えば、スチレンスルホン酸、ビニルスルホン酸(エチレンスルホン酸)、メチルビニルスルホン酸、(メタ)アリルスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸が挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリルおよび/またはメタリルを意味する。
 更に、リン酸基含有単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルが挙げられる。
 なお、本発明において、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
 また、水酸基含有単量体としては、例えば、2-ヒドロキシエチルアクリレート等の分子内に水酸基を有するアクリル酸エステル、2-ヒドロキシエチルメタクリレート等の分子内に水酸基を有するメタクリル酸エステルなどが挙げられる。
 そして、反応性乳化剤としては、例えば、アニオン系官能基および/または非イオン系官能基を有するポリアルキレンオキサイド系の乳化剤などが挙げられる。また、例えば、スチレンスルホン酸ナトリウム、アリルアルキルスルホン酸ナトリウム、アルキルアリルスルホコハク酸塩、ポリオキシエチレンアルキルアリルグリセリンエーテルサルフェート、ポリオキシエチレンアルキルフェノールアリルグリセリンエーテルサルフェートなども用いることができる。
 また、その他の親水性単量体としては、例えば、アクリルアミド、ヒドロキシエチルアクリルアミド、酢酸ビニル、メトキシ-ポリエチレングリコールアクリレート、テトラヒドロフルフリルアクリレートなどが挙げられる。
 ここで、上述した親水性単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。そして、親水性単量体としては、カルボキシル基含有単量体、スルホン酸基含有単量体、リン酸基含有単量体等の酸性基含有単量体が好ましく、ビニルスルホン酸、メタクリル酸、イタコン酸、アクリル酸がより好ましく、メタクリル酸、アクリル酸が更に好ましく、メタクリル酸が特に好ましい。
 なお、親水性単量体をグラフト重合することにより導入した親水性グラフト鎖の量は、粒子状重合体100質量部に対し、0.2質量部以上が好ましく、0.8質量部以上がより好ましく、2.1質量部以上が更に好ましく、8.4質量部以下が好ましく、7.4質量部以下がより好ましく、6.1質量部以下が更に好ましい。
 また、マクロモノマーとしては、ポリカルボン酸系重合体のマクロモノマー、ポリビニルアルコール(PVA)系重合体のマクロモノマー、ポリエチレンオキサイド(PEO)系重合体のマクロモノマー、ポリビニルピロリドン(PVP)系重合体のマクロモノマーなどが挙げられる。その中でポリカルボン酸系重合体のマクロモノマーが好ましい。
 そして、ブロック共重合体に反応させる親水性単量体および/またはマクロモノマーの量は、ブロック共重合体100質量部当たり、1質量部以上40質量部以下であることが必要であり、2質量部以上であることが好ましく、5質量部以上であることがより好ましく、35質量部以下であることが好ましく、25質量部以下であることがより好ましい。ブロック共重合体とグラフト重合反応させる量が上記範囲外の場合、電極のピール強度および二次電池のサイクル特性が低下する。
〔グラフト重合体の調製方法〕
 ここで、親水性グラフト鎖のグラフト重合は、特に限定されることなく、既知のグラフト重合方法を用いて行うことができる。具体的には、グラフト重合は、例えば酸化剤と還元剤とを組み合わせてなるレドックス開始剤などのラジカル開始剤を用いて行うことができる。そして、酸化剤および還元剤としては、芳香族ビニル単量体単位からなるブロック領域と、イソプレンブロック領域とを含むブロック重合体の架橋に使用し得るものとして上述した酸化剤および還元剤と同様のものを用いることができる。
 なお、芳香族ビニルブロック領域およびイソプレンブロック領域を有するブロック共重合体に対してレドックス開始剤を用いてグラフト重合を行う場合には、グラフト重合による親水性グラフト鎖の導入時にブロック共重合体中のイソプレン単位を架橋させてもよい。なお、グラフト重合体の調製時にはグラフト重合と同時に架橋を進行させなくてもよく、ラジカル開始剤の種類や反応条件を調整してグラフト重合のみを進行させてもよい。
 そして、上述したブロック共重合体を含むコア粒子に親水性単量体および/またはマクロモノマーを上述した割合でグラフト重合反応させることにより、グラフト重合体よりなる粒子状重合体を得ることができる。
 ここで、上記グラフト重合反応は、カップリング剤の存在下で行うことが好ましい。カップリング剤の存在下でグラフト重合反応を行えば、得られる粒子状重合体の粒子安定性を高めることができる。そして、カップリング剤の存在下でグラフト重合反応を行って得られるグラフト重合体は、通常、カップリング剤に由来するカップリング部位を親水性グラフト鎖中に有している。
 なお、グラフト重合の際に反応系中に存在させ得るカップリング剤としては、特に限定されることなく、シラン系カップリング剤、チタネート系カップリング剤およびアルミネート系カップリング剤が挙げられる。
 ここで、シラン系カップリング剤としては、特に限定されることなく、例えば、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン等のビニル基を有するアルコキシシラン;3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等のメタクリロイル基またはアクリロイル基を有するアルコシシラン;3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等のエポキシ基を有するアルコキシシラン;3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等のアミノ基を有するアルコキシシラン;3-メルカプトプロピルトリメトキシシラン等のメルカプト基を有するアルコキシシラン;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するアルコキシシラン;ヘキサメチルジシラザン、テトラメチルジシラザン、ジビニルテトラメチルジシラザン、ヘキサメチルシクロトリシラザン、オクタメチルシクロテトラシラザン等のジシラザンが挙げられる。
 また、チタネート系カップリング剤としては、特に限定されることなく、例えば、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリステアロイルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルジアクリルチタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート、ビス(ジオクチルピロホスフェート)オキシアセテートチタネートなどが挙げられる。市販品として入手可能なチタネートカップリング剤としては、KRTTS、KR36B、KR55、KR41B、KR38S、KR138S、KR238S、338X、KR44、KR9SA(いずれも味の素ファインテクノ社製、商品名「プレンアクト(登録商標)」)等が挙げられる。
 また、アルミネート系カップリング剤としては、トリメトキシアルミニウム、トリエトキシアルミニウム、トリプロポキシアルミニウム、トリイソプロポキシアルミニウム、トリブトキシアルミニウム、アセトルコキシアルミニウムジイソプロピレート(味の素ファインテクノ社製、「プレンアクトAL-M」として市販)等のアルコキシアルミニウムなどが挙げられる。
 中でも、カルボキシル基を有するカップリング剤、グリシジル基を有するカップリング剤、或いは、加水分解により水酸基を生じるカップリング剤は、粒子安定性を更に向上するために好ましい。
 なお、上述したカップリング剤は、上述した乳化工程において乳化される混合物に配合することによりグラフト重合の反応系中に存在させてもよいし、上述した乳化工程において混合物を乳化して得られるコア粒子を含む乳化液に配合することによりグラフト重合の反応系中に存在させてもよい。
 ここで、混合物にカップリング剤を含有させる場合、カップリング剤は、ブロック共重合体の溶液と水系媒体との混合前にブロック共重合体の溶液と混合することが好ましく、水系媒体との混合前に、ヒンダードフェノール系酸化防止剤、ホスファイト系酸化防止剤および金属捕捉剤からなる群より選択される少なくとも一種が含まれているブロック共重合体の溶液と混合することがより好ましく、ヒンダードフェノール系酸化防止剤、ホスファイト系酸化防止剤および金属捕捉剤の全てが含まれているブロック共重合体の溶液と混合することが更に好ましい。
 そして、添加するカップリング剤の量は、上述したブロック共重合体100質量部当たり、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることが更に好ましく、1.0質量部以下であることが好ましく、0.5質量部以下であることがより好ましく、0.2質量部以下であることが更に好ましい。
[表面酸量]
 なお、上述したようにして設けた親水性グラフト鎖が酸性基を有する場合、即ち、酸性基含有単量体や酸性基を有するマクロモノマーを用いて親水性グラフト鎖を設けた場合には、粒子状重合体の表面酸量は、0.02mmol/g以上であることが好ましく、0.04mmol/g以上であることがより好ましく、0.10mmol/g以上であることが更に好ましく、1.0mmol/g以下であることが好ましく、0.90mmol/g以下であることがより好ましく、0.70mmol/g以下であることが更に好ましい。粒子状重合体の表面酸量が上記範囲内であれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができる。
[メディアン径]
 また、粒子状重合体のメディアン径は、0.6μm以上2.5μm以下であることが好ましい。粒子状重合体のメディアン径が上記範囲内であれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができる。
<ヒンダードフェノール系酸化防止剤>
 バインダー組成物が含有するヒンダードフェノール系酸化防止剤としては、特に限定されることなく、例えば、4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、2,4,6-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)メシチレンなどが挙げられる。中でも、充放電の繰り返しに伴い電極が膨らむのを抑制する観点からは、4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノールおよび2,6-ジ-tert-ブチル-p-クレゾールが好ましく、充放電の繰り返しに伴う電極の膨らみを抑制しつつ電極のピール強度を向上させる観点からは、4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノールがより好ましい。
 これらのヒンダードフェノール系酸化防止剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 そして、ヒンダードフェノール系酸化防止剤の量は、粒子状重合体と任意成分である粒子状結着材との合計100質量部当たり、0.01質量部以上であることが好ましく、0.02質量部以上であることがより好ましく、0.03質量部以上であることが更に好ましく、1.0質量部以下であることが好ましく、0.50質量部以下であることがより好ましく、0.30質量部以下であることが更に好ましい。ヒンダードフェノール系酸化防止剤の含有量が上記下限値以上であれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができると共に、充放電の繰り返しに伴う電極の膨らみを抑制することができる。また、ヒンダードフェノール系酸化防止剤の含有量が上記上限値以下であれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができる。
<ホスファイト系酸化防止剤>
 バインダー組成物が任意に含有し得るホスファイト系酸化防止剤としては、特に限定されることなく、例えば、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)2-エチルヘキシルホスファイト、亜りん酸トリス(2,4-ジ-tert-ブチルフェニル)などが挙げられる。中でも、充放電の繰り返しに伴い電極が膨らむのを抑制する観点からは、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカンおよび亜りん酸トリス(2,4-ジ-tert-ブチルフェニル)が好ましく、充放電の繰り返しに伴う電極の膨らみを抑制しつつ電極のピール強度を向上させる観点からは、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカンがより好ましい。
 これらのホスファイト系酸化防止剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 そして、ホスファイト系酸化防止剤の量は、粒子状重合体と任意成分である粒子状結着材との合計100質量部当たり、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.08質量部以上であることが更に好ましく、0.40質量部以下であることが好ましく、0.30質量部以下であることがより好ましく、0.20質量部以下であることが更に好ましい。ホスファイト系酸化防止剤の含有量が上記下限値以上であれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができる。また、ホスファイト系酸化防止剤の含有量が上記上限値以下であれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができると共に、充放電の繰り返しに伴う電極の膨らみを抑制することができる。
 なお、バインダー組成物がホスファイト系酸化防止剤を含有する場合、ホスファイト系酸化防止剤の含有量に対するヒンダードフェノール系酸化防止剤の含有量の比(ヒンダードフェノール系酸化防止剤/ホスファイト系酸化防止剤)は、0.05以上であることが好ましく、0.2以上であることがより好ましく、5以下であることが好ましく、3以下であることがより好ましい。ホスファイト系酸化防止剤の含有量に対するヒンダードフェノール系酸化防止剤の含有量の比が上記下限値以上であれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができると共に、充放電の繰り返しに伴う電極の膨らみを抑制することができる。また、ホスファイト系酸化防止剤の含有量に対するヒンダードフェノール系酸化防止剤の含有量の比が上記上限値以下であれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができる。
<金属捕捉剤>
 バインダー組成物が任意に含有し得る金属捕捉剤としては、特に限定されることなく、例えば、キレート化合物を用いることができる。そして、キレート化合物としては、特に限定されないが、好ましくはアミノカルボン酸系キレート化合物、ホスホン酸系キレート化合物、グルコン酸、クエン酸、リンゴ酸および酒石酸からなる群より選択される化合物を用いることができる。これらの中でも、特に、電気化学反応に関与するイオンを捕捉することなく遷移金属イオンを選択的に捕捉可能なキレート化合物が好ましく、アミノカルボン酸系キレート化合物およびホスホン酸系キレート化合物が特に好ましく用いられる。
 ここで、アミノカルボン酸系キレート化合物としては、例えば、エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)、トランス-1,2-ジアミノシクロヘキサン四酢酸(CyDTA)、ジエチレン-トリアミン五酢酸(DTPA)、ビス-(アミノエチル)グリコールエーテル-N,N,N’,N’-四酢酸(EGTA)、N-(2-ヒドロキシエチル)エチレンジアミン-N,N’,N’-三酢酸(HEDTA)およびジヒドロキシエチルグリシン(DHEG)が挙げられる。
 また、ホスホン酸系キレート化合物としては、例えば、1-ヒドロキシエタン-1,1-ジホスホン酸(HEDP)が挙げられる。
 上述した中でも、充放電の繰り返しに伴い電極が膨らむのを抑制する観点からは、EDTAおよびCyDTAが好ましく、充放電の繰り返しに伴う電極の膨らみを抑制しつつ電極のピール強度を向上させる観点からは、EDTAがより好ましい。
 これらのキレート化合物は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 そして、金属捕捉剤の量は、粒子状重合体と任意成分である粒子状結着材との合計100質量部当たり、0.01質量部以上であることが好ましく、0.02質量部以上であることがより好ましく、0.03質量部以上であることが更に好ましく、0.5質量部以下であることが好ましく、0.4質量部以下であることがより好ましく、0.3質量部以下であることが更に好ましい。金属捕捉剤の含有量が上記下限値以上であれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができると共に、充放電の繰り返しに伴う電極の膨らみを抑制することができる。また、金属捕捉剤の含有量が上記上限値以下であれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができる。
 なお、バインダー組成物がホスファイト系酸化防止剤および金属捕捉剤を含有する場合、ヒンダードフェノール系酸化防止剤とホスファイト系酸化防止剤との合計含有量に対する金属捕捉剤の含有量の比(金属捕捉剤/ヒンダードフェノール系酸化防止剤+ホスファイト系酸化防止剤)は、0.05以上であることが好ましく、0.1以上であることがより好ましく、1以下であることが好ましく、0.8以下であることがより好ましい。ヒンダードフェノール系酸化防止剤とホスファイト系酸化防止剤との合計含有量に対する金属捕捉剤の含有量の比が上記下限値以上であれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができると共に、充放電の繰り返しに伴う電極の膨らみを抑制することができる。また、ヒンダードフェノール系酸化防止剤とホスファイト系酸化防止剤との合計含有量に対する金属捕捉剤の含有量の比が上記上限値以下であれば、電極のピール強度および二次電池のサイクル特性を更に向上させることができる。
<水系媒体>
 本発明のバインダー組成物が含有する水系媒体は、水を含んでいれば特に限定されず、水溶液や、水と少量の有機溶媒との混合溶液であってもよい。
<その他の成分>
 本発明のバインダー組成物は、上記成分以外の成分(その他の成分)を含有することができる。例えば、バインダー組成物は、上述した粒子状重合体以外の、既知の粒子状結着材(スチレン-ブタジエン共重合体および/またはアクリル重合体など)を含んでいてもよい。
 そして、粒子状結着材のメディアン径は0.01μm以上0.5μm以下であることが好ましく、0.05μm以上であることがより好ましく、0.1μm以上であることが更に好ましく、0.4μm以下であることがより好ましく、0.3μm以下であることが更に好ましい。粒子状結着材のメディアン径が上記下限値以上であれば、電極のピール強度を更に高めることができる。また、粒子状結着材のメディアン径が上記上限値以下であれば、二次電池のサイクル特性を向上させることができる。なお、本発明において、「粒子状結着材のメディアン径」は、本明細書の実施例に記載の方法を用いて測定することができる。
 また、バインダー組成物が粒子状結着材を含む場合、上述した粒子状重合体の含有量は、粒子状重合体と粒子状結着材との合計含有量の50質量%以上であることが好ましく、55質量%以上であることがより好ましく、60質量%以上であることが更に好ましく、90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。粒子状重合体の含有量が上記下限値以上であれば、バインダー組成物を用いて作製した電極のピール強度を更に向上させることができる。また、粒子状重合体の含有量が上記上限値以下であれば、バインダー組成物を用いて形成した二次電池のサイクル特性を更に向上させることができる。
 また、バインダー組成物は、水溶性重合体を含んでいてもよい。水溶性重合体は、上述した粒子状重合体などの配合成分を水系媒体中で良好に分散させうる成分であり、特に限定されないが、合成高分子であることが好ましく、付加重合を経て製造される付加重合体であることがより好ましい。なお、水溶性重合体は、塩の形態(水溶性重合体の塩)であってもよい。すなわち、本発明において、「水溶性重合体」には、当該水溶性重合体の塩も含まれる。また、本発明において、重合体が「水溶性」であるとは、温度25℃において重合体0.5gを100gの水に溶解した際に、不溶分が1.0質量%未満となることをいう。
 更に、バインダー組成物は、既知の添加剤を含んでいてもよい。このような既知の添加剤としては、例えば、2,6-ジ-tert-ブチル-p-クレゾールなどの酸化防止剤、消泡剤、分散剤(上述した水溶性重合体に該当するものを除く。)が挙げられる。
 なお、その他の成分は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
<バインダー組成物の調製方法>
 そして、本発明のバインダー組成物は、特に限定されることなく、粒子状重合体およびヒンダードフェノール系酸化防止剤と、任意に用いられるその他の成分等とを水系媒体の存在下で混合して調製することができる。
 また、本発明のバインダー組成物は、上述したブロック共重合体の溶液と、ヒンダードフェノール系酸化防止剤と、水系媒体とを含み、任意にホスファイト系酸化防止剤および/または金属捕捉剤を更に含む混合物を乳化し、任意に有機溶媒を除去してコア粒子の水分散液を得た後、コア粒子に対して親水性グラフト鎖を設けてグラフト重合体からなる粒子状重合体の水分散液とし、任意にその他の成分を水分散液に添加して混合することにより調製することもできる。更に、本発明のバインダー組成物は、上述したブロック共重合体の溶液と、ヒンダードフェノール系酸化防止剤と、水系媒体と、カップリング剤とを含み、任意にホスファイト系酸化防止剤および/または金属捕捉剤を更に含む混合物を乳化し、任意に有機溶媒を除去してコア粒子の水分散液を得た後、コア粒子に対して親水性グラフト鎖を設けてグラフト重合体からなる粒子状重合体の水分散液とし、任意にその他の成分を水分散液に添加して混合することにより調製することもできる。更にまた、本発明のバインダー組成物は、上述したブロック共重合体の溶液と、ヒンダードフェノール系酸化防止剤と、水系媒体とを含み、任意にホスファイト系酸化防止剤および/または金属捕捉剤を更に含む混合物を乳化し、任意に有機溶媒を除去して、コア粒子の水分散液(乳化液)を得た後、カップリング剤を添加してからコア粒子に対して親水性グラフト鎖を設けてグラフト重合体からなる粒子状重合体の水分散液とし、任意にその他の成分を水分散液に添加して混合することにより調製することもできる。このように、混合物にヒンダードフェノール系酸化防止剤などを含有させて乳化すれば、ヒンダードフェノール系酸化防止剤などが良好に含有された非水系二次電池電極用バインダー組成物を容易に得ることができる。
 なお、粒子状重合体の分散液および/または水溶性重合体の水溶液を用いてバインダー組成物を調製する場合には、分散液および/または水溶液が含有している液分をそのままバインダー組成物の水系媒体として利用してもよい。
(非水系二次電池電極用スラリー組成物)
 本発明のスラリー組成物は、電極の電極合材層の形成用途に用いられる組成物であり、上述したバインダー組成物を含み、電極活物質を更に含有する。即ち、本発明のスラリー組成物は、上述した粒子状重合体、ヒンダードフェノール系酸化防止剤、電極活物質および水系媒体を含有し、任意に、ホスファイト系酸化防止剤、金属捕捉剤およびその他の成分からなる群より選択される少なくとも一種を更に含有する。そして、本発明のスラリー組成物は、上述したバインダー組成物を含んでいるので、当該スラリー組成物から形成される電極合材層を備える電極は、ピール強度に優れている。また、当該電極を備える二次電池は、優れたサイクル特性を発揮し得る。
<バインダー組成物>
 バインダー組成物としては、所定のグラフト重合体よりなる粒子状重合体およびヒンダードフェノール系酸化防止剤を含む、上述した本発明のバインダー組成物を用いる。
 なお、スラリー組成物中のバインダー組成物の配合量は、特に限定されない。例えば、バインダー組成物の配合量は、電極活物質100質量部当たり、固形分換算で、粒子状重合体の量が0.5質量部以上15質量部以下となる量とすることができる。
<電極活物質>
 そして、電極活物質としては、特に限定されることなく、二次電池に用いられる既知の電極活物質を使用することができる。具体的には、例えば、二次電池の一例としてのリチウムイオン二次電池の電極合材層において使用し得る電極活物質としては、特に限定されることなく、以下の電極活物質を用いることができる。
 なお、電極活物質のタップ密度は、0.7g/cm以上であることが好ましく、0.75g/cm以上であることがより好ましく、0.8g/cm以上であることが更に好ましく、1.1g/cm以下であることが好ましく、1.05g/cm以下であることがより好ましく、1.03g/cm以下であることが更に好ましい。ここで、本発明において、タップ密度は、本明細書の実施例に記載の方法を用いて測定することができる。
[正極活物質]
 リチウムイオン二次電池の正極の正極合材層に配合される正極活物質としては、例えば、遷移金属を含有する化合物、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などを用いることができる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 具体的には、正極活物質としては、特に限定されることなく、リチウム含有コバルト酸化物(LiCoO)、マンガン酸リチウム(LiMn)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO)、オリビン型リン酸マンガンリチウム(LiMnPO)、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O、LiNi0.5Mn1.5等が挙げられる。
 なお、上述した正極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
[負極活物質]
 リチウムイオン二次電池の負極の負極合材層に配合される負極活物質としては、例えば、炭素系負極活物質、金属系負極活物質、および、これらを組み合わせた負極活物質などが挙げられる。
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいう。そして、炭素系負極活物質としては、具体的には、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)およびハードカーボンなどの炭素質材料、並びに、天然黒鉛および人造黒鉛などの黒鉛質材料が挙げられる。
 また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。そして、金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびそれらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが挙げられる。さらに、チタン酸リチウムなどの酸化物を挙げることができる。
 なお、上述した負極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<その他の成分>
 スラリー組成物に配合し得るその他の成分としては、特に限定することなく、導電材や、本発明のバインダー組成物に配合し得るその他の成分と同様のものが挙げられる。なお、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<スラリー組成物の調製>
 スラリー組成物の調製方法は、特に限定はされない。
 例えば、バインダー組成物と、電極活物質と、必要に応じて用いられるその他の成分とを、水系媒体の存在下で混合してスラリー組成物を調製することができる。
 なお、スラリー組成物の調製の際に用いる水系媒体には、バインダー組成物に含まれていたものも含まれる。また、混合方法は特に制限されないが、通常用いられうる撹拌機や、分散機を用いて混合することができる。
(非水系二次電池用電極)
 本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備える。従って、電極合材層は、上述したスラリー組成物の乾燥物よりなり、通常、電極活物質と、粒子状重合体に由来する成分と、ヒンダードフェノール系酸化防止剤とを含有し、任意に、ホスファイト系酸化防止剤、金属捕捉剤およびその他の成分からなる群より選択される少なくとも一種を更に含有する。なお、電極合材層中に含まれている各成分は、上記非水系二次電池電極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、スラリー組成物中の各成分の好適な存在比と同じである。また、粒子状重合体は、スラリー組成物中では粒子形状で存在するが、スラリー組成物を用いて形成された電極合材層中では、粒子形状であってもよいし、その他の任意の形状であってもよい。
 そして、本発明の非水系二次電池用電極は、上述した非水系二次電池電極用スラリー組成物を使用して電極合材層を形成しているので、優れたピール強度を有している。また、当該電極を備える二次電池は、優れたサイクル特性を発揮し得る。
<非水系二次電池用電極の製造>
 ここで、本発明の非水系二次電池用電極の電極合材層は、例えば、以下の方法を用いて形成することができる。
1)本発明のスラリー組成物を集電体の表面に塗布し、次いで乾燥する方法;
2)本発明のスラリー組成物に集電体を浸漬後、これを乾燥する方法;および
3)本発明のスラリー組成物を離型基材上に塗布し、乾燥して電極合材層を製造し、得られた電極合材層を集電体の表面に転写する方法。
 これらの中でも、前記1)の方法が、電極合材層の層厚制御をしやすいことから特に好ましい。前記1)の方法は、詳細には、スラリー組成物を集電体上に塗布する工程(塗布工程)と、集電体上に塗布されたスラリー組成物を乾燥させて集電体上に電極合材層を形成する工程(乾燥工程)を含む。
[塗布工程]
 上記スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
 ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[乾燥工程]
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法を用いることができる。このように集電体上のスラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備える非水系二次電池用電極を得ることができる。
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極合材層と集電体との密着性を向上させると共に得られる電極合材層をより一層高密度化することができる。また、電極合材層が硬化性の重合体を含む場合は、電極合材層の形成後に前記重合体を硬化させることが好ましい。
(非水系二次電池)
 本発明の非水系二次電池は、正極と、負極と、電解液と、セパレータとを備えており、上述した非水系二次電池用電極を正極および負極の少なくとも一方として用いる。そして、本発明の非水系二次電池は、上述した非水系二次電池用電極を正極および負極の少なくとも一方として用いて製造されるため、優れたサイクル特性を発揮し得る。
 なお、以下では、一例として二次電池がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。
<電極>
 ここで、本発明の非水系二次電池で使用し得る、上述した本発明の非水系二次電池用電極以外の電極としては、特に限定されることなく、二次電池の製造に用いられている既知の電極を用いることができる。具体的には、上述した本発明の非水系二次電池用電極以外の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極などを用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。リチウムイオン二次電池の支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類を用いることが好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加することができる。
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
 そして、本発明の二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。ここで、本発明の非水系二次電池では、正極および負極の少なくとも一方、好ましくは負極として、上述した非水系二次電池用電極を使用する。なお、本発明の非水系二次電池には、二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 そして、実施例および比較例において、重合体中のスチレンブロック領域およびイソプレンブロック領域の含有割合、粒子状重合体のメディアン径、表面酸量、酸性基含有親水性グラフト鎖の割合および粒子安定性、粒子状結着材のメディアン径、バインダー組成物中の酸化防止剤量および金属捕捉剤量、電極活物質のタップ密度、電極のピール強度および耐膨らみ性、並びに、二次電池のサイクル特性は、以下の方法で評価した。
<スチレンブロック領域およびイソプレンブロック領域の含有割合>
 NMR(核磁気共鳴吸収)法によりスチレン単位由来ピークとイソプレン単位由来ピークの強度比を求め、質量比に換算した。
<粒子状重合体のメディアン径>
 レーザ回折式粒子径分布測定装置(株式会社島津製作所製、製品名「SALD-2300」)を用いて測定した。具体的には、粒子状重合体の水分散液を準備し、上記測定装置で粒度分布(体積基準)を測定して、小径側から計算した累積体積が50%となる粒子径をメディアン径(μm)として求めた。
<粒子状結着材のメディアン径>
 レーザー回折式粒子径分布測定装置(ベックマン・コールター社製、製品名「LS-230」)を用いて測定した。具体的には、粒子状結着材について、固形分濃度を0.1%に調整した水分散液を準備し、上記測定装置で粒度分布(体積基準)を測定して、小径側から計算した累積体積が50%となる粒子径をメディアン径(μm)として求めた。
<粒子状重合体の表面酸量>
 得られた粒子状重合体の水分散液を0.3%ドデシルベンゼンスルホン酸水溶液にて希釈し、固形分濃度10%に調整する。その後、7000Gで30分間遠心分離し、軽液を分取する。得られた軽液を5%水酸化ナトリウム水溶液でpH12.0に調整する。pHを調整したサンプルを100mLビーカーに固形分換算で3.0g分取し、花王製エマルゲン120を0.2%に希釈した水溶液3gおよび東レ・ダウコーニング社製SM5512を1%に希釈した水溶液1gを添加する。スターラーで均一に撹拌しながら0.1N塩酸水溶液を0.5mL/30秒の速度で添加し、30秒毎の電気伝導度を測定する。
 得られた電気伝導度データを、電気伝導度を縦軸(Y座標軸)、添加した塩酸の累計量を横軸(X座標軸)としたグラフ上にプロットする。これにより、3つの変曲点を有する塩酸量-電気伝導度曲線が得られる。3つの変曲点のX座標を、値が小さい方から順にそれぞれP1、P2およびP3とする。X座標が、零から座標P1まで、座標P1から座標P2まで、および、座標P2から座標P3まで、の3つの区分内のデータについて、それぞれ、最小二乗法により近似直線L1、L2、およびL3を求める。近似直線L1と近似直線L2との交点のX座標をA1、近似直線L2と近似直線L3との交点のX座標をA2とする。
 そして、粒子状重合体1g当たりの表面酸量を、下記の式(a)から、塩酸換算した値(mmol/g)として求める。
 (a) 粒子状重合体1g当たりの表面酸量=(A2-A1)/3.0g
<酸性基含有親水性グラフト鎖の割合>
 上記<粒子状重合体の表面酸量>において電気伝導度を測定した後のサンプル(pH5~7の水溶液)をエチルエーテルで抽出し、抽出液を乾燥剤で乾燥した。そして、抽出液について、高速液体クロマトグラフィーと質量分析法を用いて、メタクリル酸、アクリル酸、イタコン酸等の酸性基含有単量体の含有mol比を求めた。
 そして、粒子状重合体の表面酸量(mmol/g)に上記で求めた酸性基含有単量体の含有mol比および分子量を乗じた値を粒子状重合体100g当たりに換算し、酸性基含有親水性グラフト鎖の割合を求めた。
<粒子状重合体の粒子安定性>
 得られた粒子状重合体の水分散液について、JIS K6381に準拠し、クラクソン試験機によって機械的安定度(MST)を測定した。そして、下記の基準で評価した。MSTの値が小さいほど、粒子安定性が高いことを示す。
 A:MSTが0.025秒以下
 B:MSTが0.025秒超0.035秒以下
 C:MSTが0.035秒超0.050秒以下
 D:MSTが0.050秒超または測定不能
<バインダー組成物中の酸化防止剤量>
 調製したバインダー組成物10gに濃度20%の食塩水を撹拌しながら添加し、分散体を粉状に凝固させた。凝固物約2gを水100mlで洗浄した後、フィルターで分離し、40度で2時間減圧乾燥した。
 そして、トルエンを溶媒として90℃で8時間ソックスレー抽出法による抽出を行い、抽出物を得た。得られた抽出物を40℃で2時間真空乾燥後、テトラヒドロフラン5mlを加えて溶解させた。得られた溶液1mlを10mlメスフラスコに採取した後、テトラヒドロフランで10mlまでメスアップしたものを検液とした。作製した検液から分子量が100~1500の成分を高速液体クロマトグラフィーで分取し、高速原子衝撃法(FAB)を用いてヒンダードフェノール系酸化防止剤およびホスファイト系酸化防止剤の種類を特定した。さらに、特定した酸化防止剤の量を、高速液体クロマトグラフィーを用いた検量線法によって定量した。
<バインダー組成物中の金属捕捉剤量>
 調製したバインダー組成物10gをpH4~6に調整し、濃度20%の食塩水を撹拌しながら添加し、分散体を凝固させた。そして、凝固物を除去して得られる水溶液をエチルエーテルで抽出した。
 得られた抽出物を40℃で2時間真空乾燥した後、テトラヒドロフラン5mlを加えて溶解させた。得られた溶液1mlを10mlメスフラスコに採取した後、テトラヒドロフランで10mlまでメスアップしたものを検液とした。作製した検液から分子量が100~1500の成分を高速液体クロマトグラフィーで分取し、高速原子衝撃法(FAB)を用いて金属捕捉剤の種類を特定した。更に、高速液体クロマトグラフィーを用いた検量線法によって金属捕捉剤の含有量を定量した。
<電極活物質のタップ密度>
 電極活物質のタップ密度は、パウダテスタ(登録商標)(ホソカワミクロン社製、PT-D)を用いて測定した。具体的には、まず、測定容器に充填した電極活物質の粉体を容器上面にてすり切った。次いで、測定容器に測定器付属のキャップを取り付け、取り付けたキャップの上縁まで電極活物質の粉体を追加充填し、高さ1.8cmから180回繰り返し落下させることにより、タッピングを行った。タッピング終了後にキャップを外し、容器上面にて電極活物質の粉体を再びすり切った。タッピング後にすり切った試料を秤量し、この状態の嵩密度を固め嵩密度、即ちタップ密度(g/cm)として測定した。
<電極のピール強度>
 作製した電極を100℃の真空乾燥機内で1時間乾燥し、乾燥後の電極を長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、電極合材層の表面を下にして、電極合材層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求め、当該平均値をピール強度として、下記の基準で評価した。ピール強度が大きいほど、電極合材層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
 A:ピール強度が24N/m以上
 B:ピール強度が19N/m以上24N/m未満
 C:ピール強度が14N/m以上19N/m未満
 D:ピール強度が14N/m未満
<電極の耐膨らみ性>
 作製したラミネートセル型のリチウムイオン二次電池を、25℃環境下で5時間静置させた後、4.2V、1Cの充放電レートにて45℃の環境下で100サイクル充放電の操作を行った。
 100サイクルの充放電終了後、25℃環境下で、1Cにて充電を行い、充電状態のセルを解体して負極を取り出し、負極(集電体の厚みを除く)の厚み(d2)を測定した。そして、リチウムイオン二次電池の作製前の負極(集電体の厚みを除く)の厚み(d0)に対する変化率(サイクル後膨らみ特性={(d2-d0)/d0}×100(%))を求め、以下の基準により判定した。サイクル後膨らみ特性が小さいほど、サイクル後の負極の膨らみが小さいことを示す。
 A:サイクル後膨らみ特性が35%未満
 B:サイクル後膨らみ特性が35%以上40%未満
 C:サイクル後膨らみ特性が40%以上45%未満
 D:サイクル後膨らみ特性が45%以上
<二次電池のサイクル特性>
 作製したラミネートセル型のリチウムイオン二次電池を25℃の環境下で5時間静置させた後、25℃の環境下で、4.2V、1Cの充電レート、3.0V、1Cの放電レートにて充放電の操作を行い、初期容量C0を測定した。さらに、45℃の環境下で同様の充放電を繰り返し、100サイクル後の容量C3を測定した。
 サイクル特性は、ΔC=(C3/C0)×100(%)で示す容量変化率ΔCを算出し、以下の基準で評価した。この容量変化率ΔCの値が高いほど、サイクル特性に優れることを示す。
 A:ΔCが86%以上
 B:ΔCが80%以上86%未満
 C:ΔCが75%以上80%未満
 D:ΔCが75%未満
(実施例1)
<粒子状重合体の調製>
[ブロック共重合体のシクロヘキサン溶液の調製]
 耐圧反応器に、シクロヘキサン233.3kg、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)54.2mmol、および芳香族ビニル単量体としてのスチレン25.0kgを添加した。そしてこれらを40℃で攪拌しているところに、重合開始剤としてのn-ブチルリチウム1806.5mmolを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100%であった。引き続き、50~60℃を保つように温度制御しながら、耐圧反応器に、イソプレン75.0kgを1時間にわたり連続的に添加した。イソプレンの添加を完了後、重合反応を更に1時間継続した。イソプレンの重合転化率は100%であった。次いで、耐圧反応器に、カップリング剤としてのジクロロジメチルシラン740.6mmolを添加して2時間カップリング反応を行った。その後、活性末端を失活させるべく、反応液にメタノール3612.9mmolを添加してよく混合した。次いで、この反応液100部(重合体成分を30.0部含有)に、ヒンダードフェノール系酸化防止剤としての4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール(H1)0.05部、ホスファイト系酸化防止剤としての3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(P1)0.09部および金属捕捉剤としてのEDTA0.03部を加えて混合し、ブロック共重合体溶液を得た。
[乳化]
 アルキルベンゼンスルホン酸ナトリウムをイオン交換水に溶解し、5%の水溶液を調製した。
 そして、得られたブロック共重合体溶液500gと得られた水溶液500gとをタンク内に投入し撹拌させることで予備混合を行った。続いて、タンク内から、予備混合物を、定量ポンプを用いて100g/分の速度で連続式高能率乳化分散機(太平洋機工社製、製品名「マイルダー MDN303V」)へ移送し、回転数15000rpmで撹拌することにより、予備混合物を乳化した乳化液を得た。
 次に、得られた乳化液中のシクロヘキサンをロータリーエバポレータにて減圧留去した。その後、留去した乳化液をコック付きのクロマトカラム中で1日静置分離させ、分離後の下層部分を除去することで濃縮を行った。
 最後に、上層部分を100メッシュの金網で濾過し、粒子状のブロック共重合体(コア粒子)を含有する水分散液(ブロック共重合体ラテックス)を得た。
[グラフト重合および架橋]
 撹拌機付き重合反応容器にイオン交換水675部を添加し、その後、メタクリル酸20部を添加した。重合反応器の攪拌翼で撹拌しながら、重合反応器に得られたブロック共重合体ラテックスをブロック共重合体換算で100部添加し、窒素置換した。そして、希釈されたブロック重合体ラテックスを撹拌しながら温度を30℃にまで加温した。
 また、別の容器を用い、イオン交換水7部および還元剤としての硫酸第一鉄(中部キレスト社製、商品名「フロストFe」)0.01部、ホルムアルデヒドスルホキシル酸ナトリウム(住友精化株式会社、商品名「SFS」)0.32部を含む溶液を調製した。得られた溶液を重合反応容器内に添加した後、酸化剤としての tert-ブチルハイドロパーオキサイド(日本油脂社製、商品名「パーブチルH」)0.35部を添加し、30℃で1時間反応させた後、更に70℃で2時間反応させた。なお、重合転化率は99%であった。
 そして、ブロック共重合体を含むコア粒子をグラフト重合および架橋してなるグラフト重合体よりなる粒子状重合体の水分散液を得た。
 得られた粒子状重合体の水分散液を用いて、粒子状重合体の表面酸量およびメディアン径を測定した。また、粒子状重合体の粒子安定性を評価した。結果を表1に示す。
<粒子状結着材の調製>
 脂肪族共役ジエン単量体としての1,3-ブタジエン33部、芳香族ビニル単量体としてのスチレン62部、カルボン酸基を有する単量体としてのイタコン酸4部、連鎖移動剤としてのtert-ドデシルメルカプタン0.3部、乳化剤としてのラウリル硫酸ナトリウム0.3部の混合物を容器Aに入れた。そして、当該容器Aから耐圧容器Bへと混合物の添加を開始すると同時に、重合開始剤としての過硫酸カリウム1部の耐圧容器Bへの添加を開始し、重合を開始した。なお、反応温度は75℃を維持した。
 また、重合開始から4時間後(混合物の70%を耐圧容器Bへと添加した後)に、水酸基を有する単量体としての2-ヒドロキシエチルアクリレート(アクリル酸-2-ヒドロキシエチル)1部を1時間30分に亘って耐圧容器Bに加えた。
 重合開始から5時間30分後に、上述した単量体の全量の添加が完了した。その後、さらに85℃に加温して6時間反応させた。
 重合転化率が97%になった時点で冷却し、反応を停止して、粒子状結着材を含む混合物を得た。この粒子状結着材を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pHを8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。そして、冷却し、メディアン径が0.15μmの粒子状結着材を含む水分散液(固形分濃度:40%)を得た。
 得られた粒子状結着材の水分散液を用いて、粒子状結着材のメディアン径を測定した。結果を表1に示す。
<非水系二次電池負極用バインダー組成物の調製>
 粒子状重合体の水分散液と、粒子状結着材の水分散液とを、粒子状重合体:粒子状結着材(質量比)=70:30となるように容器へ投入して混合物を得た。得られた混合物を撹拌機(新東科学社製、製品名「スリーワンモータ」)を用いて1時間撹拌することにより、負極用バインダー組成物を得た。
 そして、バインダー組成物中の酸化防止剤量および金属捕捉剤量を測定した。結果を表1に示す。
<非水系二次電池負極用スラリー組成物の調製>
 ディスパー付きのプラネタリーミキサーに、負極活物質としての人造黒鉛(タップ密度:0.85g/cm、容量:360mAh/g)100部、導電材としてのカーボンブラック(TIMCAL社製、製品名「Super C65」)1部、増粘剤としてのカルボキシメチルセルロース(日本製紙ケミカル社製、製品名「MAC-350HC」)の2%水溶液を固形分相当で1.2部加えて混合物を得た。得られた混合物をイオン交換水で固形分濃度60%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分間混合し混合液を得た。得られた混合液に、上述で調製されたバインダー組成物を固形分相当量で2.0部、およびイオン交換水を入れ、最終固形分濃度が48%となるように調整した。さらに10分間混合した後、減圧下で脱泡処理することにより、流動性の良い負極用スラリー組成物を得た。
 負極用スラリー組成物の調製時にスラリー組成物の安定性を評価すると共に、得られた負極用スラリー組成物を用いて塗布性を評価した。結果を表1に示す。
<負極の形成>
 得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の上に、乾燥後の目付が11mg/cmになるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、負極原反を得た。
 そして、負極原反をロールプレスで圧延して、負極合材層の密度が1.75g/cmの負極を得た。
 また、負極のピール強度および耐膨らみ性を評価した。結果を表1に示す。
<正極の形成>
 正極活物質としてのメディアン径12μmのLiCoOを100部と、導電材としてのアセチレンブラック(電気化学工業社製、製品名「HS-100」)を2部と、結着材としてのポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部と、溶媒としてのN-メチルピロリドンとを混合して全固形分濃度を70%とした。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を得た。
 得られた正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の目付が23mg/cmになるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極原反を得た。
 そして、正極原反をロールプレスで圧延して、正極合材層の密度が4.0g/cmの正極を得た。
<セパレータの準備>
 セパレータ基材よりなるセパレータとして、単層のポリプロピレン製セパレータ(セルガード社製、製品名「セルガード2500」)を準備した。
<リチウムイオン二次電池の作製>
 上述の通り作製したプレス後のリチウムイオン二次電池用正極とプレス後のリチウムイオン二次電池用負極とを、セパレータ(厚さ20μmのポリプロピレン製微多孔膜)を、セパレータ/正極/セパレータ/負極となるように介在させることにより、積層体を得た。次に、電極およびセパレータの積層体を、直径20mmの芯に対して捲回することにより、正極、セパレータ、および負極を備える捲回体を得た。続いて、得られた捲回体を、10mm/秒の速度で、厚さ4.5mmになるまで一方向から圧縮することにより扁平体を得た。なお、得られた扁平体は平面視楕円形をしており、その長径と短径との比(長径/短径)は7.7であった。
 また、非水系電解液(濃度1.0MのLiPF溶液、溶媒:エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(質量比)の混合溶媒に、添加剤としてビニレンカーボネート(VC)2体積%を更に添加)を準備した。
 次に、上記扁平体を、上記非水系電解液とともにアルミニウム製のラミネートケース内に収容した。そして、負極リードおよび正極リードを所定の箇所に接続した後に、ラミネートケースの開口部を熱で封口することにより、非水系二次電池としてのラミネート型リチウムイオン二次電池を製造した。なお、得られた二次電池は、幅35mm×高さ48mm×厚さ5mmのパウチ形であり、公称容量は700mAhであった。
 そして、このリチウムイオン二次電池のサイクル特性を評価した。結果を表1に示す。
(実施例2)
 粒子状重合体の調製時に、メタクリル酸の量を10部に変更してグラフト重合および架橋を行った以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例3)
 粒子状重合体の調製時に、メタクリル酸の量を30部に変更してグラフト重合および架橋を行った以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例4)
 粒子状重合体の調製時に、親水性単量体としてメタクリル酸に替えてアクリル酸10部を使用した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例5)
粒子状重合体の調製時に、親水性単量体としてメタクリル酸に替えてイタコン酸10部を使用した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例6)
 粒子状重合体の調製時に、親水性単量体としてメタクリル酸に替えて2-ヒドロキシエチルアクリレート10部を使用した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例7)
 粒子状重合体の調製時に、ヒンダードフェノール系酸化防止剤として3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル(H2)0.05部、ホスファイト系酸化防止剤として3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(P2)0.09部および金属捕捉剤としてEDTA0.03部を加えてブロック共重合体のシクロヘキサン溶液を調製した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例8)
 粒子状重合体の調製時に、ヒンダードフェノール系酸化防止剤としてペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](H3)0.05部、ホスファイト系酸化防止剤として2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)2-エチルヘキシルホスファイト(P3)0.09部および金属捕捉剤としてNTA0.03部を加えてブロック共重合体のシクロヘキサン溶液を調製した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例9)
 粒子状重合体の調製時に、ヒンダードフェノール系酸化防止剤として2,6-ジ-tert-ブチル-p-クレゾール(H5)0.05部、ホスファイト系酸化防止剤として亜りん酸トリス(2,4-ジ-tert-ブチルフェニル)(P4)0.09部および金属捕捉剤としてCyDTA0.05部を加えてブロック共重合体のシクロヘキサン溶液を調製した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例10)
 粒子状重合体の調製時に、ヒンダードフェノール系酸化防止剤としての4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール(H1)の量を0.02部に変更し、ホスファイト系酸化防止剤としての3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(P1)の量を0.33部に変更してブロック共重合体のシクロヘキサン溶液を調製した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例11)
 粒子状重合体の調製時に、ヒンダードフェノール系酸化防止剤としての4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール(H1)の量を0.25部に変更し、ホスファイト系酸化防止剤としての3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(P1)の量を0.06部に変更してブロック共重合体のシクロヘキサン溶液を調製した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例12)
 粒子状重合体の調製時に、ヒンダードフェノール系酸化防止剤としての4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール(H1)の量を0.8部に変更し、ホスファイト系酸化防止剤としての3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(P1)を使用せずにブロック共重合体のシクロヘキサン溶液を調製してグラフト重合および架橋を行った以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例13)
 粒子状重合体の調製時に、金属捕捉剤としてのEDTAを使用せずにブロック共重合体のシクロヘキサン溶液を調製してグラフト重合および架橋を行った以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例14)
 粒子状結着材の水分散液を使用せず、粒子状重合体の水分散液をそのまま非水系二次電池負極用バインダー組成物として用いた以外は実施例1と同様にして、粒子状重合体(負極用バインダー組成物)、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(比較例1)
 粒子状重合体の調製時に、スチレン25.0kgに替えてイソプレン25.0kgを使用し、n-ブチルリチウムの添加量を903.25mmolに変更し、カップリング剤を用いたカップリング反応を行わなかった(即ち、ブロック共重合体に替えてイソプレンの単独重合体を調製した)以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(比較例2)
 粒子状重合体の調製時に、グラフト重合および架橋を行わず、負極用バインダー組成物の調製時に、グラフト重合体よりなる粒子状重合体の水分散液に替えて粒子状のブロック共重合体(コア粒子)を含有する水分散液(ブロック共重合体ラテックス)を使用した以外は実施例1と同様にして、粒子状のブロック共重合体、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備しようとしたが、スラリー組成物が過度に増粘してしまい、負極を作製することができなかった。
(比較例3)
 粒子状重合体の調製時に、スチレンの量を35.0kgに変更し、イソプレンの量を65.0kgに変更してブロック共重合体を調製した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(比較例4)
 粒子状重合体の調製時に、4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール(H1)、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(P1)およびEDTAを使用しなかった以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(比較例5)
 粒子状重合体の調製時に、4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール(H1)に替えてメタクリル酸2-ヒドロキシ-3-(4-アニリノアニリノ)プロピルを0.15部使用し、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(P1)およびEDTAを使用しなかった以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~14では、ピール強度に優れる電極およびサイクル特性に優れる二次電池が得られることが分かる。
 また、表1より、イソプレンブロック領域を有さない比較例1、イソプレンブロック領域の含有割合が比較例3、並びに、ヒンダードフェノール系酸化防止剤を含有しない比較例4および5では、電極のピール強度および二次電池のサイクル特性が低下することが分かる。また、親水性グラフト鎖を有さない比較例2では、スラリー組成物を良好に調製できないことが分かる。
(実施例15)
 粒子状重合体の調製時に、親水性単量体としてメタクリル酸に替えてアクリルアミド8部とヒドロキシエチルアクリルアミド2部との混合物を使用した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例16)
 粒子状重合体の調製時に、親水性単量体としてメタクリル酸に替えてp-スチレンスルホン酸5部を使用した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例17)
 粒子状重合体の調製時に、親水性単量体としてメタクリル酸に替えて2-ヒドロキシエチルアクリレート5部と酢酸ビニル5部との混合物を使用した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例18)
 粒子状重合体の調製時に、親水性単量体としてメタクリル酸に替えてメトキシ-ポリエチレングリコールアクリレート(共栄社化学製、ライトアクリレート130A)3部とテトラヒドロフルフリルアクリレート(共栄社化学製、ライトアクリレートTHF-A)7部との混合物を使用した以外は実施例1と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例19)
 以下のようにして調製した粒子状重合体を使用した以外は実施例1と同様にして、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
<粒子状重合体の調製>
[ブロック共重合体のシクロヘキサン溶液の調製]
 耐圧反応器に、シクロヘキサン233.3kg、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)54.2mmol、および芳香族ビニル単量体としてのスチレン25.0kgを添加した。そしてこれらを40℃で攪拌しているところに、重合開始剤としてのn-ブチルリチウム1806.5mmolを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100%であった。引き続き、50~60℃を保つように温度制御しながら、耐圧反応器に、イソプレン75.0kgを1時間にわたり連続的に添加した。イソプレンの添加を完了後、重合反応を更に1時間継続した。イソプレンの重合転化率は100%であった。次いで、耐圧反応器に、カップリング剤としてのジクロロジメチルシラン740.6mmolを添加して2時間カップリング反応を行った。その後、活性末端を失活させるべく、反応液にメタノール3612.9mmolを添加してよく混合した。次いで、この反応液100部(重合体成分を30.0部含有)に、ヒンダードフェノール系酸化防止剤としての4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール(H1)0.05部、ホスファイト系酸化防止剤としての3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(P1)0.09部および金属捕捉剤としてのEDTA0.03部を加えて混合し、ブロック共重合体のシクロヘキサン溶液を得た。
[カップリング剤の添加]
 得られたブロック共重合体のシクロヘキサン溶液に対し、カップリング剤としてのN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(KBM-602)をブロック共重合体100部当たり0.15部の割合で加え、ブロック共重合体溶液を得た。
[乳化]
 アルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルスルホコハク酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウムを1:1:1(質量基準)で混合した混合物をイオン交換水に溶解し、5%の水溶液を調製した。
 そして、得られたブロック共重合体溶液500gと得られた水溶液500gとをタンク内に投入し撹拌させることで予備混合を行った。続いて、タンク内から、予備混合物を、定量ポンプを用いて100g/分の速度で連続式高能率乳化分散機(太平洋機工社製、製品名「マイルダー MDN303V」)へ移送し、回転数15000rpmで撹拌することにより、予備混合物を乳化した乳化液を得た。
 次に、得られた乳化液中のシクロヘキサンをロータリーエバポレータにて減圧留去した。その後、留去した乳化液をコック付きのクロマトカラム中で1日静置分離させ、分離後の下層部分を除去することで濃縮を行った。
 最後に、上層部分を100メッシュの金網で濾過し、粒子状のブロック共重合体(コア粒子)を含有する水分散液(ブロック共重合体ラテックス)を得た。
[グラフト重合および架橋]
 得られたブロック共重合体ラテックスをブロック共重合体換算で100部に対し、イオン交換水850部を添加して希釈した。そして、希釈されたブロック共重合体ラテックスを窒素置換された撹拌機付き重合反応容器に投入し、撹拌しながら温度を30℃にまで加温した。
 また、別の容器を用い、親水性単量体としてのメタクリル酸10部とイオン交換水16部とを混合してメタクリル酸希釈液を調製した。このメタクリル酸希釈液を、30℃にまで加温した重合反応容器内に、30分間かけて添加した。
 更に、別の容器を用い、イオン交換水7部および還元剤としての硫酸第一鉄(中部キレスト社製、商品名「フロストFe」)0.01部を含む溶液を調製した。得られた溶液を重合反応容器内に添加した後、酸化剤としての1,1,3,3-テトラメチルブチルハイドロパーオキサイド(日本油脂社製、商品名「パーオクタH」)0.5部を添加し、30℃で1時間反応させた後、更に70℃で2時間反応させた。なお、重合転化率は99%であった。
 そして、ブロック共重合体を含むコア粒子をグラフト重合および架橋してなるグラフト重合体よりなる粒子状重合体の水分散液を得た。
 得られた粒子状重合体の水分散液を用いて、粒子状重合体の表面酸量および体積平均粒子径を測定した。また、粒子状重合体の粒子安定性を評価した。結果を表2に示す。
(実施例20)
 粒子状重合体の調製時に、ブロック共重合体のシクロヘキサン溶液に添加するカップリング剤としてN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランに替えて3-グリシドキシプロピルメチルジエトキシシラン(KBE-402)を使用した以外は実施例19と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例21)
 粒子状重合体の調製時に、ブロック共重合体のシクロヘキサン溶液に添加するカップリング剤としてN-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランに替えてビス(ジオクチルピロホスフェート)オキシアセテートチタネート(プレンアクト138S)を使用した以外は実施例19と同様にして、粒子状重合体、粒子状結着材、負極用バインダー組成物、負極用スラリー組成物、負極、正極、セパレータおよび二次電池を作製または準備した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例15~21では、ピール強度に優れる電極およびサイクル特性に優れる二次電池が得られることが分かる。
 また、表1および表2より、カップリング剤の存在下でグラフト重合および架橋を行った実施例19~21では、実施例1~18と比較し、粒子安定性に優れる粒子状重合体が得られることが分かる。
 本発明の非水系二次電池電極用バインダー組成物および非水系二次電池電極用スラリー組成物によれば、ピール強度に優れる電極と、サイクル特性に優れる二次電池とを形成することができる。
 また、本発明の非水系二次電池用電極は、ピール強度に優れており、サイクル特性に優れる二次電池を形成することができる。
 そして、本発明によれば、サイクル特性に優れる非水系二次電池が得られる。

Claims (15)

  1.  芳香族ビニル単量体単位からなる芳香族ビニルブロック領域と、イソプレン単位からなるイソプレンブロック領域とを含有し、前記イソプレンブロック領域の含有割合が70質量%以上99質量%以下であるブロック共重合体を含むコア粒子100質量部に対し、合計で1質量部以上40質量部以下の親水性単量体および/またはマクロモノマーをグラフト重合反応させてなる、親水性グラフト鎖を有するグラフト重合体からなる粒子状重合体と、
     ヒンダードフェノール系酸化防止剤と、
    を含有する、非水系二次電池電極用バインダー組成物。
  2.  ホスファイト系酸化防止剤を更に含む、請求項1に記載の非水系二次電池電極用バインダー組成物。
  3.  金属捕捉剤を更に含む、請求項1または2に記載の非水系二次電池電極用バインダー組成物。
  4.  前記粒子状重合体のメディアン径が0.6μm以上2.5μm以下である、請求項1~3の何れかに記載の非水系二次電池電極用バインダー組成物。
  5.  前記親水性グラフト鎖が酸性基を有し、
     前記粒子状重合体の表面酸量が0.02mmol/g以上1.0mmol/g以下である、請求項1~4の何れかに記載の非水系二次電池電極用バインダー組成物。
  6.  粒子状結着材を更に含み、
     前記粒子状結着材がスチレン-ブタジエン共重合体および/またはアクリル重合体からなる、請求項1~5の何れかに記載の非水系二次電池電極用バインダー組成物。
  7.  前記粒子状重合体の含有量が、前記粒子状重合体と前記粒子状結着材との合計含有量の50質量%以上90質量%以下である、請求項6に記載の非水系二次電池電極用バインダー組成物。
  8.  電極活物質と、請求項1~7の何れかに記載の非水系二次電池電極用バインダー組成物とを含む、非水系二次電池電極用スラリー組成物。
  9.  請求項8に記載の非水系二次電池電極用スラリー組成物を用いて形成した電極合材層を備える、非水系二次電池用電極。
  10.  正極、負極、セパレータおよび電解液を有し、
     前記正極および前記負極の少なくとも一方が請求項9に記載の非水系二次電池用電極である、非水系二次電池。
  11.  請求項1~7の何れかに記載の非水系二次電池電極用バインダー組成物の製造方法であって、
     芳香族ビニル単量体単位からなる芳香族ビニルブロック領域およびイソプレン単位からなるイソプレンブロック領域を含有し、前記イソプレンブロック領域の含有割合が70質量%以上99質量%以下であるブロック共重合体の溶液と、ヒンダードフェノール系酸化防止剤と、水系媒体とを含む混合物を乳化してコア粒子を得る工程と、
     前記コア粒子に対して親水性グラフト鎖を設け、グラフト重合体からなる粒子状重合体を得る工程と、
    を含む、非水系二次電池電極用バインダー組成物の製造方法。
  12.  前記混合物がホスファイト系酸化防止剤を更に含む、請求項11に記載の非水系二次電池電極用バインダー組成物の製造方法。
  13.  前記混合物が金属捕捉剤を更に含む、請求項11または12に記載の非水系二次電池電極用バインダー組成物の製造方法。
  14.  前記混合物がカップリング剤を更に含有し、
     前記乳化の前に、前記ブロック共重合体の溶液と、前記ヒンダードフェノール系酸化防止剤と、前記水系媒体と、前記カップリング剤とを混合して前記混合物を得る、請求項11~13の何れかに記載の非水系二次電池電極用バインダー組成物の製造方法。
  15.  前記コア粒子を得る工程と、前記粒子状重合体を得る工程との間に、前記コア粒子を含む乳化液にカップリング剤を添加する工程を更に含む、請求項11~13の何れかに記載の非水系二次電池電極用バインダー組成物の製造方法。
PCT/JP2019/008705 2018-03-07 2019-03-05 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池 WO2019172281A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980009625.5A CN111699574B (zh) 2018-03-07 2019-03-05 非水系二次电池电极用粘结剂组合物及其制造方法、非水系二次电池电极用浆料组合物、非水系二次电池用电极以及非水系二次电池
KR1020207023877A KR20200129096A (ko) 2018-03-07 2019-03-05 비수계 이차 전지 전극용 바인더 조성물 및 그 제조 방법, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극, 그리고, 비수계 이차 전지
JP2020505063A JP7409300B2 (ja) 2018-03-07 2019-03-05 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池
EP19764544.3A EP3764432A4 (en) 2018-03-07 2019-03-05 NON-WATER SECONDARY BATTERY BINDER COMPOSITION, METHOD OF MANUFACTURE FOR NON-WATER SECONDARY BATTERY BINDER COMPOSITION, NON-WATER SECONDARY BATTERY BINDER COMPOSITION, NON-WATER SECONDARY BATTERY ELECTRODE AND NON-WATER SECONDARY BATTERY
US16/975,709 US20200399458A1 (en) 2018-03-07 2019-03-05 Binder composition for non-aqueous secondary battery electrode and method of producing same, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018040484 2018-03-07
JP2018-040484 2018-03-07

Publications (1)

Publication Number Publication Date
WO2019172281A1 true WO2019172281A1 (ja) 2019-09-12

Family

ID=67847211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008705 WO2019172281A1 (ja) 2018-03-07 2019-03-05 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池

Country Status (6)

Country Link
US (1) US20200399458A1 (ja)
EP (1) EP3764432A4 (ja)
JP (1) JP7409300B2 (ja)
KR (1) KR20200129096A (ja)
CN (1) CN111699574B (ja)
WO (1) WO2019172281A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172208A1 (ja) * 2020-02-26 2021-09-02 日本ゼオン株式会社 電気化学素子用複合粒子、製造方法、電気化学素子用電極、及び電気化学素子
WO2021172229A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2022045315A1 (ja) * 2020-08-31 2022-03-03 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
WO2022086173A1 (ko) * 2020-10-23 2022-04-28 주식회사 엘지화학 이차 전지의 음극용 바인더, 이차 전지의 음극 및 이차 전지
KR20230113738A (ko) 2020-11-30 2023-08-01 니폰 제온 가부시키가이샤 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
EP4039743A4 (en) * 2019-09-30 2023-10-18 Zeon Corporation BINDER COMPOSITION FOR NON-AQUEOUS SECONDARY BATTERY AS WELL AS ASSOCIATED MANUFACTURING METHOD, THICK SUSPENSION COMPOSITION FOR NON-AQUEOUS SECONDARY BATTERY ELECTRODE, ELECTRODE FOR NON-AQUEOUS SECONDARY BATTERY AND NON-AQUEOUS SECONDARY BATTERY

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592445B (zh) * 2020-12-16 2023-06-09 珠海冠宇动力电池有限公司 一种粘结剂及其制备方法和在锂离子电池中的应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249722A (ja) * 2001-02-27 2002-09-06 Daikin Ind Ltd 水性塗料用樹脂組成物
JP2004352944A (ja) * 2003-05-30 2004-12-16 Nippon Zeon Co Ltd 水性路面表示塗料用重合体ラテックスおよび水性路面表示塗料
WO2009107778A1 (ja) 2008-02-29 2009-09-03 日本ゼオン株式会社 非水電解質二次電池電極用バインダー組成物および非水電解質二次電池
KR100993129B1 (ko) 2006-12-30 2010-11-09 주식회사 엘지화학 열적 안정성이 우수한 이차전지용 바인더
WO2011002013A1 (ja) * 2009-06-30 2011-01-06 日本ゼオン株式会社 非水電解質二次電池電極用活物質及び非水電解質二次電池
JP2012169112A (ja) * 2011-02-14 2012-09-06 Nippon A&L Inc 二次電池電極用バインダー組成物、二次電池電極用スラリーおよび二次電池用電極
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2014011019A (ja) * 2012-06-29 2014-01-20 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極用スラリー、二次電池電極及び二次電池
WO2017056404A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2017077940A1 (ja) * 2015-11-05 2017-05-11 センカ株式会社 リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池
JP2017115102A (ja) * 2015-12-25 2017-06-29 三星エスディアイ株式会社Samsung SDI Co., Ltd. グラフト共重合体、二次電池用バインダ組成物、二次電池用セパレータ、二次電池およびグラフト共重合体の製造方法
WO2017141791A1 (ja) * 2016-02-17 2017-08-24 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645733B2 (ja) * 1988-01-22 1994-06-15 新日鐵化学株式会社 導電性ポリプロピレン組成物
JP4099637B2 (ja) * 2001-01-17 2008-06-11 日清紡績株式会社 分極性電極組成物及びその製造方法、分極性電極、並びに電気二重層キャパシタ
JP4280802B2 (ja) * 2002-05-15 2009-06-17 三洋化成工業株式会社 電気化学素子の電極用結合剤および電極の製造方法
CN101156264B (zh) * 2005-04-07 2011-05-25 Lg化学株式会社 用于锂二次电池的具有优良的倍率特性和长期循环性能的粘合剂
JP4671769B2 (ja) * 2005-06-08 2011-04-20 本田技研工業株式会社 固体高分子型燃料電池用膜−電極構造体およびその製造方法
TWI326691B (en) * 2005-07-22 2010-07-01 Kraton Polymers Res Bv Sulfonated block copolymers, method for making same, and various uses for such block copolymers
US20090202888A1 (en) * 2006-07-04 2009-08-13 Sumitomo Chemical Company, Limited Polymer electrolyte emulsion and use thereof
KR20120112712A (ko) * 2010-02-03 2012-10-11 제온 코포레이션 리튬 이온 이차 전지 부극용 슬러리 조성물, 리튬 이온 이차 전지 부극 및 리튬 이차 전지
WO2012050046A1 (ja) * 2010-10-15 2012-04-19 旭化成ケミカルズ株式会社 粘接着剤用ブロック共重合体、その製造方法及び粘接着剤組成物
CN104981927B (zh) * 2013-05-23 2018-06-08 Lg化学株式会社 用于二次电池的粘合剂以及包含该粘合剂的二次电池
US9799916B2 (en) * 2013-09-30 2017-10-24 GM Global Technology Operations LLC Lithium ion battery electrodes
KR101785263B1 (ko) * 2013-12-02 2017-10-16 삼성에스디아이 주식회사 바인더 조성물, 이에 의해 형성된 바인더를 포함하는 세퍼레이터, 상기 세퍼레이터를 포함하는 리튬 전지, 및 상기 바인더 조성물의 제조방법
WO2016035286A1 (ja) * 2014-09-05 2016-03-10 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JP6601413B2 (ja) * 2014-11-14 2019-11-06 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249722A (ja) * 2001-02-27 2002-09-06 Daikin Ind Ltd 水性塗料用樹脂組成物
JP2004352944A (ja) * 2003-05-30 2004-12-16 Nippon Zeon Co Ltd 水性路面表示塗料用重合体ラテックスおよび水性路面表示塗料
KR100993129B1 (ko) 2006-12-30 2010-11-09 주식회사 엘지화학 열적 안정성이 우수한 이차전지용 바인더
WO2009107778A1 (ja) 2008-02-29 2009-09-03 日本ゼオン株式会社 非水電解質二次電池電極用バインダー組成物および非水電解質二次電池
WO2011002013A1 (ja) * 2009-06-30 2011-01-06 日本ゼオン株式会社 非水電解質二次電池電極用活物質及び非水電解質二次電池
JP2012169112A (ja) * 2011-02-14 2012-09-06 Nippon A&L Inc 二次電池電極用バインダー組成物、二次電池電極用スラリーおよび二次電池用電極
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2014011019A (ja) * 2012-06-29 2014-01-20 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極用スラリー、二次電池電極及び二次電池
WO2017056404A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2017077940A1 (ja) * 2015-11-05 2017-05-11 センカ株式会社 リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池
JP2017115102A (ja) * 2015-12-25 2017-06-29 三星エスディアイ株式会社Samsung SDI Co., Ltd. グラフト共重合体、二次電池用バインダ組成物、二次電池用セパレータ、二次電池およびグラフト共重合体の製造方法
WO2017141791A1 (ja) * 2016-02-17 2017-08-24 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3764432A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4039743A4 (en) * 2019-09-30 2023-10-18 Zeon Corporation BINDER COMPOSITION FOR NON-AQUEOUS SECONDARY BATTERY AS WELL AS ASSOCIATED MANUFACTURING METHOD, THICK SUSPENSION COMPOSITION FOR NON-AQUEOUS SECONDARY BATTERY ELECTRODE, ELECTRODE FOR NON-AQUEOUS SECONDARY BATTERY AND NON-AQUEOUS SECONDARY BATTERY
WO2021172208A1 (ja) * 2020-02-26 2021-09-02 日本ゼオン株式会社 電気化学素子用複合粒子、製造方法、電気化学素子用電極、及び電気化学素子
WO2021172229A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
CN114982018A (zh) * 2020-02-28 2022-08-30 日本瑞翁株式会社 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极、以及非水系二次电池
KR20220148171A (ko) 2020-02-28 2022-11-04 니폰 제온 가부시키가이샤 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극, 및 비수계 이차 전지
WO2022045315A1 (ja) * 2020-08-31 2022-03-03 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
KR20230061342A (ko) 2020-08-31 2023-05-08 니폰 제온 가부시키가이샤 비수계 이차 전지 전극용 바인더 조성물 및 그 제조 방법, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극, 그리고 비수계 이차 전지
WO2022086173A1 (ko) * 2020-10-23 2022-04-28 주식회사 엘지화학 이차 전지의 음극용 바인더, 이차 전지의 음극 및 이차 전지
KR20230113738A (ko) 2020-11-30 2023-08-01 니폰 제온 가부시키가이샤 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지

Also Published As

Publication number Publication date
EP3764432A4 (en) 2022-01-12
CN111699574B (zh) 2023-05-05
US20200399458A1 (en) 2020-12-24
JP7409300B2 (ja) 2024-01-09
KR20200129096A (ko) 2020-11-17
JPWO2019172281A1 (ja) 2021-03-11
CN111699574A (zh) 2020-09-22
EP3764432A1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
JP7409300B2 (ja) 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池
US20200152985A1 (en) Binder composition for nonaqueous secondary batteries and slurry composition for nonaqueous secondary batteries
JPWO2017056466A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2019107229A1 (ja) 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
JP6191471B2 (ja) リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2019039560A1 (ja) 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材、および非水系二次電池
WO2017141791A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2021172229A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
US11955641B2 (en) Binder composition for non-aqueous secondary battery and method of producing same, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2020246222A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
JP7405073B2 (ja) 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
WO2017056489A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP2020053289A (ja) 非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び、非水系二次電池
JP7556349B2 (ja) 非水系二次電池用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2021153670A1 (ja) 非水系二次電池用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
CN114365311B (zh) 非水系二次电池用粘结剂组合物及其制造方法
WO2022114199A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び、非水系二次電池
TW202032835A (zh) 非水系二次電池電極用黏結劑組成物、非水系二次電池電極用漿料組成物、非水系二次電池用電極及非水系二次電池
WO2023053975A1 (ja) 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、および非水系二次電池
WO2022045315A1 (ja) 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
KR20220069936A (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극, 및 비수계 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019764544

Country of ref document: EP

Effective date: 20201007