WO2019039560A1 - 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材、および非水系二次電池 - Google Patents

非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材、および非水系二次電池 Download PDF

Info

Publication number
WO2019039560A1
WO2019039560A1 PCT/JP2018/031228 JP2018031228W WO2019039560A1 WO 2019039560 A1 WO2019039560 A1 WO 2019039560A1 JP 2018031228 W JP2018031228 W JP 2018031228W WO 2019039560 A1 WO2019039560 A1 WO 2019039560A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
water
secondary battery
negative electrode
binder composition
Prior art date
Application number
PCT/JP2018/031228
Other languages
English (en)
French (fr)
Inventor
徳一 山本
祐作 松尾
秀岳 石井
俊仁 相原
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2019537688A priority Critical patent/JP7306268B2/ja
Priority to US16/633,784 priority patent/US11374224B2/en
Priority to KR1020207004175A priority patent/KR20200042898A/ko
Priority to EP18847960.4A priority patent/EP3675255A4/en
Priority to CN201880050934.2A priority patent/CN111066185B/zh
Publication of WO2019039560A1 publication Critical patent/WO2019039560A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/044Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes using a coupling agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a binder composition for non-aqueous secondary batteries, a slurry composition for non-aqueous secondary battery functional layers, a functional layer for non-aqueous secondary batteries, a battery member for non-aqueous secondary batteries, and a non-aqueous secondary battery It is about
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) are small and lightweight, have high energy density, and are capable of repeated charge and discharge. Yes, it is used in a wide range of applications.
  • the secondary battery generally includes a battery member such as an electrode (positive electrode and negative electrode), and a separator for separating the positive electrode and the negative electrode.
  • the battery member of the secondary battery contains a binder and optionally contains particles (hereinafter referred to as "functional particles") blended to cause the battery member to exhibit a desired function.
  • the member provided with the functional layer which consists of is used.
  • a separator of a secondary battery a separator provided with a porous film layer including an adhesive layer containing a binder, and a binder and nonconductive particles as functional particles on a separator substrate Is used.
  • an electrode including an electrode mixture layer including a binder and electrode active material particles as functional particles on a current collector, or an electrode mixture on a current collector On the electrode base material provided with a layer, the electrode provided with the adhesive layer and porous membrane layer which were further mentioned above is used.
  • Patent Document 1 a current collector of an electrode mixture layer is formed by forming an electrode mixture layer using a binder composition containing a modifying polymer having a sulfonic acid (salt) group and a binder resin.
  • a binder composition containing a modifying polymer having a sulfonic acid (salt) group and a binder resin.
  • Techniques have been proposed to improve adhesion to
  • the strength of the electrode is enhanced by forming an electrode mixture layer using a binder composition containing a polymer obtained by acid-modifying a predetermined block copolymer hydride, and the secondary battery Techniques have been proposed to improve room temperature cycling characteristics.
  • the battery member provided with the functional layer is required to be easy to handle (that is, the battery member provided with the functional layer is required to have excellent handling properties).
  • battery components comprising a porous membrane layer and / or an adhesive layer as a functional layer may be scraped, stored and transported.
  • adjacent battery members stick together via the porous membrane layer or the adhesive layer, that is, generation of defects due to blocking causes a decrease in productivity. May occur. Therefore, there is a demand for a battery member provided with a porous membrane layer and / or an adhesive layer to suppress blocking during storage and transportation.
  • an electrode including an electrode mixture layer as a functional layer may be subjected to pressure treatment by a roll press for the purpose of densifying the electrode mixture layer and the like.
  • a roll press when the electrode is pressed by a roll press, the occurrence of defects due to the adhesion of the electrode mixture layer to the roll may occur and the productivity may be reduced. Therefore, in the electrode including the electrode mixture layer, it is required to suppress the adhesion of the electrode mixture layer to the roll during the roll press.
  • the battery members before being immersed in the electrolytic solution are pressure-bonded to each other under high temperature conditions (for example, 50 ° C. or higher) to form a laminate, and cut into a desired size if necessary. And may be transported as it is. And in the case of the said cutting
  • process adhesion process adhesion
  • the present invention relates to a binder composition for a non-aqueous secondary battery capable of forming a functional layer capable of achieving both excellent handling properties and process adhesiveness in battery members such as electrodes and separators, and a non-aqueous secondary battery
  • An object of the present invention is to provide a slurry composition for a functional layer.
  • Another object of the present invention is to provide a non-aqueous secondary battery functional layer capable of achieving both excellent handling properties and process adhesion, for battery members such as electrodes and separators.
  • this invention aims at providing the non-aqueous secondary battery provided with the battery member for non-aqueous secondary batteries which can be compatible in the outstanding handling property and process adhesiveness, and the said battery member.
  • the present inventors diligently studied for the purpose of solving the above-mentioned problems. And, the inventor of the present invention has a block region comprising an aromatic vinyl monomer unit, and has a polymer particle containing a block polymer having a diblock amount within a predetermined range, and a hydrophilic group, By using a binder composition containing a water-soluble polymer having a weight average molecular weight within a predetermined range and water, it is possible to form a functional layer capable of exhibiting good handling property and process adhesiveness to a battery member. The present invention has been completed.
  • the present invention aims to solve the above-mentioned problems advantageously, and the binder composition for a non-aqueous secondary battery of the present invention has a block having a block region composed of aromatic vinyl monomer units.
  • a polymer particle containing a block polymer having a block region composed of aromatic vinyl monomer units and having a diblock amount within the above range, and a hydrophilic group, and a weight average molecular weight When a functional layer is formed using a water-soluble polymer in the range described above and a binder composition containing water, excellent handling property and excellent process adhesiveness to a battery member provided with the functional layer And can be made compatible.
  • the “monomer unit” of the polymer means “a repeating unit derived from the monomer contained in the polymer obtained using the monomer”.
  • the phrase "having a block region composed of monomer units” means that "a portion in which only the monomer units are linked and linked as a repeating unit exists in the polymer""Means.
  • the amount of diblock means the proportion (% by mass) of the diblock structure (polymer chain having diblock structure) contained in the block polymer, and the example of the present specification It can measure using the method as described in.
  • the polymer is “water-soluble” means that the insoluble content is less than 1.0% by mass when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 25 ° C. Say.
  • the "weight average molecular weight" of a water-soluble polymer can be measured using the method as described in the Example of this specification.
  • the hydrophilic group is preferably a carboxyl group. If a water-soluble polymer having a carboxyl group as a hydrophilic group is used, the handleability of the battery member provided with the functional layer can be further improved. In addition, the stability of the non-aqueous secondary battery functional layer slurry composition prepared using the binder composition is enhanced to improve the coating density, and at the time of the application of the slurry composition, compounding components such as polymer particles Aggregation can be suppressed.
  • the content of the polymer particles is 50% by mass to 99.8% by mass of the total content of the polymer particles and the water-soluble polymer. Is preferred. If the ratio of the polymer particles to the total of the polymer particles and the water-soluble polymer is within the above range, the process adhesiveness of the battery member provided with the functional layer can be further improved. In addition, the stability of the non-aqueous secondary battery functional layer slurry composition prepared using the binder composition is enhanced to improve the coating density, and at the time of the application of the slurry composition, compounding components such as polymer particles Aggregation can be suppressed.
  • the block polymer can include a coupling site.
  • “coupling site” in the polymer means “a site derived from the coupling agent which is contained in the polymer obtained through the coupling reaction using the coupling agent”. .
  • the block polymer preferably further contains at least one of an aliphatic conjugated diene monomer unit and an alkylene structural unit. If the block polymer contains an aliphatic conjugated diene monomer unit and / or an alkylene structural unit, the process adhesiveness of the battery member provided with the functional layer can be further improved.
  • the water-soluble polymer can contain an aliphatic conjugated diene monomer unit.
  • the slurry composition for non-aqueous secondary battery functional layers of this invention is a binder for any of the above-mentioned non-aqueous secondary batteries mentioned above It is characterized by including a composition.
  • a functional layer is formed using the slurry composition containing any one of the binder compositions described above, the battery member provided with the functional layer can have both excellent handling properties and excellent process adhesion. It can be done.
  • the slurry composition for a non-aqueous secondary battery functional layer of the present invention can further contain electrode active material particles. If the electrode mixture layer is formed using a slurry composition for a non-aqueous secondary battery functional layer containing electrode active material particles as functional particles, adhesion of the electrode mixture layer to the roll during roll pressing is suppressed. However, an electrode having excellent process adhesion can be produced.
  • the slurry composition for non-aqueous secondary battery functional layers of this invention can contain nonelectroconductive particle further. If a porous film layer is formed using the slurry composition for non-aqueous secondary battery functional layers containing nonconductive particles as functional particles, a battery member (separator and electrode) excellent in handling property and process adhesiveness is produced. can do.
  • the functional layer for non-aqueous secondary batteries of this invention is a slurry composition for any of the non-aqueous secondary battery functional layers mentioned above It is characterized by being formed using an object.
  • a functional layer capable of exhibiting excellent handling properties and process adhesion to the battery member By using any of the above-described slurry compositions, it is possible to form a functional layer capable of exhibiting excellent handling properties and process adhesion to the battery member.
  • the battery member for non-aqueous secondary batteries of this invention is characterized by including the functional layer for non-aqueous secondary batteries mentioned above.
  • a battery member such as a separator or an electrode provided with the above-mentioned functional layer is excellent in handling property and process adhesion.
  • a non-aqueous secondary battery is manufactured using the battery member for non-aqueous secondary batteries of this invention mentioned above, blocking of a battery member and adhesion to the roll of the electrode compound material layer at the time of roll press are suppressed. On the other hand, positional deviation of the battery members pressure-bonded under high temperature conditions can be prevented. Therefore, by using the battery member of the present invention, a non-aqueous secondary battery excellent in battery characteristics can be efficiently produced.
  • a functional layer containing a binder and electrode active material particles is referred to as an “electrode mixture layer”
  • a functional layer containing a binder and nonconductive particles is referred to as a “porous film layer”
  • a functional layer that contains a material and does not contain any of the electrode active material particles and the nonconductive particles is referred to as an "adhesive layer”.
  • a non-aqueous secondary battery binder composition capable of forming a functional layer capable of achieving both excellent handling properties and process adhesiveness in battery members such as electrodes and separators, and non-aqueous secondary battery
  • the slurry composition for functional layers can be provided.
  • a non-aqueous secondary battery functional layer capable of achieving both excellent handling properties and process adhesion, for battery members such as electrodes and separators.
  • a battery member for a non-aqueous secondary battery capable of achieving both excellent handling properties and process adhesiveness, and a non-aqueous secondary battery provided with the battery member.
  • the binder composition for non-aqueous secondary batteries of the present invention is used for manufacturing applications of non-aqueous secondary batteries, and, for example, preparation of the slurry composition for non-aqueous secondary battery functional layers of the present invention It can be used for
  • the slurry composition for a non-aqueous secondary battery functional layer according to the present invention is an optional functional layer (for example, an electrode mixture layer) having a function of electron transfer, reinforcement or adhesion in the non-aqueous secondary battery. , Porous membrane layer, adhesive layer) can be used.
  • the functional layer for non-aqueous secondary batteries of this invention is formed from the slurry composition for non-aqueous secondary battery functional layers of this invention.
  • the battery member for non-aqueous secondary batteries of the present invention is, for example, an electrode or a separator, and includes the functional layer for non-aqueous secondary batteries of the present invention.
  • the non-aqueous secondary battery of this invention is equipped with the battery member for non-aqueous secondary batteries of this invention.
  • the binder composition of the present invention contains polymer particles, a water-soluble polymer, and an aqueous medium, and optionally further contains other components that can be blended in the functional layer of the secondary battery.
  • the binder composition of the present invention is The polymer particles contain a block polymer having a block region composed of aromatic vinyl monomer units, and the diblock amount of the block polymer is 0% by mass or more and 60% by mass or less,
  • the water-soluble polymer has a hydrophilic group and a weight average molecular weight of 15,000 or more and 500,000 or less, It is characterized by
  • the binder composition of this invention contains the polymer particle and water-soluble polymer which were mentioned above in the aqueous medium, if the functional layer is formed using the said binder composition, a battery provided with a functional layer
  • the member can have both excellent handling properties and excellent process adhesion. As described above, it is not clear why it is possible to enhance both the handling property and the process adhesiveness of the battery member by using the binder composition containing the polymer particles and the water-soluble polymer in the aqueous medium. It is guessed that First, the block polymer in the polymer particles has a block region composed of aromatic vinyl monomer units.
  • a block polymer having a block region composed of an aromatic vinyl monomer unit can exhibit binding properties at high temperature conditions, it does not have excessive tackiness at around normal temperature.
  • the said block polymer is 0 mass% or more and 60 mass% or less of diblock amounts.
  • the diblock structure in the block polymer is more easily tacky than a longer chain structure (for example, a triblock structure), but as described above, the block polymer used in the present invention Since the amount of diblock of is no more than 60% by mass, the occurrence of excessive tackiness at around normal temperature due to excessive diblock structure is suppressed.
  • the functional layer can be obtained by using the polymer particles containing the block polymer in which the development of the tackiness is suppressed at around normal temperature while exhibiting the binding property under high temperature conditions for forming the functional layer.
  • the handling property and process adhesion of the battery member provided can be secured.
  • the binder composition of the present invention includes, in addition to the above-described polymer particles, a water-soluble polymer having a hydrophilic group and having a weight average molecular weight of 15,000 or more and 500,000 or less.
  • the water-soluble polymer adheres to the surface of the polymer particles, and contributes to the improvement of the dispersibility of the polymer particles, resulting in a slurry composition.
  • the stability of things increases.
  • the polymer particles can sufficiently exhibit the intended performance described above.
  • a battery member is provided with a functional layer capable of exhibiting both excellent handling properties and process adhesiveness. be able to.
  • the polymer particles are components that function as a binder, and components such as functional particles do not separate from the functional layer in the functional layer formed on the substrate using the slurry composition containing the binder composition. As well as enabling adhesion of the battery members to one another via the functional layer.
  • the polymer particles are non-water-soluble particles formed by a predetermined block polymer.
  • the polymer particles may contain at least a predetermined block polymer, and may contain components other than the predetermined block polymer, such as components inevitably mixed in the preparation stage.
  • the particles being "water insoluble" means that the insoluble content is 90% by mass or more when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 25 ° C.
  • the block polymer contained in the polymer particles has a block region consisting of aromatic vinyl monomer units (hereinafter sometimes abbreviated as “aromatic vinyl block region”) and other than aromatic vinyl monomer units And a polymer chain portion (hereinafter sometimes abbreviated as "other region") in which repeating units of the above are linked.
  • aromatic vinyl block region and the other region are adjacent to each other.
  • the block polymer may have only one aromatic vinyl block region, may have a plurality of aromatic vinyl block regions, and may similarly have only one other region, and may have a plurality. It may be done.
  • region is an area
  • one aromatic vinyl block region may be composed of only one type of aromatic vinyl monomer unit, or may be composed of a plurality of types of aromatic vinyl monomer units. It is preferable to be composed of only one kind of aromatic vinyl monomer unit.
  • one aromatic vinyl block region may contain a coupling site (that is, an aromatic vinyl monomer unit constituting one aromatic vinyl block region is mediated by a coupling site). May be connected).
  • the type and ratio of aromatic vinyl monomer units constituting the plurality of aromatic vinyl block regions may be the same or different, Preferably they are identical.
  • aromatic vinyl monomer capable of forming the aromatic vinyl monomer unit constituting the aromatic vinyl block region of the block polymer examples include, for example, styrene, styrene sulfonic acid and salts thereof, ⁇ -methylstyrene, p- t-Butylstyrene, butoxystyrene, vinyl toluene, chlorostyrene and vinyl naphthalene are mentioned. Among them, styrene is preferred. Although these can be used individually by 1 type or in combination of 2 or more types, it is preferable to use 1 type alone.
  • the ratio of the aromatic vinyl monomer unit in the block polymer is all repeating units (monomer units and structural units in the block polymer.
  • the block polymer contains a graft portion
  • the amount of the repeating unit is 100% by mass, it is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 15% by mass or more. .7% by mass or more is particularly preferable, 50% by mass or less is preferable, 45% by mass or less is more preferable, and 40% by mass or less is more preferable.
  • the proportion of the aromatic vinyl monomer unit in the block polymer is 5% by mass or more, the tackiness of the block polymer can be sufficiently suppressed to further improve the handling property of the battery member. .
  • the proportion of the aromatic vinyl monomer unit in the block polymer is 50% by mass or less, the flexibility of the block polymer is secured, and the process adhesiveness of the battery member can be further improved.
  • the proportion of the aromatic vinyl monomer unit in the block polymer generally corresponds to the proportion of the aromatic vinyl block region in the block polymer.
  • the other region is, as described above, a region containing only repeating units other than the aromatic vinyl monomer units (hereinafter, may be abbreviated as “other repeating units”) as the repeating units.
  • one other region may be composed of one type of other repeating unit, or may be composed of a plurality of other types of repeating units.
  • one other region may contain a coupling site (that is, other repeating units constituting one other region may be linked via a coupling site). .
  • region may be same or different.
  • an aliphatic conjugated diene monomer unit and an alkylene structural unit preferable.
  • aliphatic conjugated diene monomer capable of forming an aliphatic conjugated diene monomer unit constituting another region
  • 1,3-butadiene isoprene, 2,3-dimethyl-1,3 And-a conjugated diene compound having 4 or more carbon atoms such as butadiene and 1,3-pentadiene.
  • 1,3-butadiene and isoprene are preferable from the viewpoint of further improving the process adhesiveness of the battery member.
  • the proportion of the aliphatic conjugated diene monomer unit in the block polymer is preferably 50% by mass or more, assuming that the amount of all repeating units in the block polymer is 100% by mass, and 65% by mass. % Or more is more preferable, 67% by mass or more is further preferable, 98% by mass or less is preferable, and 95% by mass or less is more preferable. If the proportion of the aliphatic conjugated diene monomer unit in the block polymer is 50% by mass or more, the process adhesion of the battery member can be further improved.
  • the proportion of aliphatic conjugated diene monomer units in the block polymer is 98% by mass or less, the tackiness of the block polymer is sufficiently suppressed to further improve the handling property of the battery member. be able to.
  • the alkylene structural unit constituting the other region is a repeating unit composed only of an alkylene structure represented by the general formula: —C n H 2 n — [wherein n is an integer of 2 or more].
  • the alkylene structural unit may be linear or branched, but the alkylene structural unit is preferably linear, that is, a linear alkylene structural unit.
  • the carbon number of the alkylene structural unit is preferably 4 or more (that is, n in the above general formula is an integer of 4 or more).
  • the method for introducing the alkylene structural unit into the block polymer is not particularly limited.
  • a polymer is prepared from a monomer composition containing an aliphatic conjugated diene monomer, and the polymer is hydrogenated to convert an aliphatic conjugated diene monomer unit into an alkylene structural unit to obtain a block.
  • the method of obtaining the polymer is preferable because the production of the block polymer is easy.
  • the alkylene structural unit is preferably a structural unit (aliphatic conjugated diene hydride unit) obtained by hydrogenating an aliphatic conjugated diene monomer unit, and a structural unit obtained by hydrogenating an isoprene unit (isoprene More preferred is a hydride unit).
  • selective hydrogenation of an aliphatic conjugated diene monomer unit can be performed using well-known methods, such as an oil-layer hydrogenation method and a water-layer hydrogenation method.
  • the proportion of the alkylene structural unit in the block polymer is preferably 50% by mass or more, and 65% by mass or more, when the amount of all repeating units in the block polymer is 100% by mass. Is more preferable, 67 mass% or more is more preferable, 98 mass% or less is preferable, and 95 mass% or less is more preferable. If the proportion of the alkylene structural unit in the block polymer is 50% by mass or more, the process adhesion of the battery member can be further improved. On the other hand, when the proportion of the alkylene structural unit in the block polymer is 98 mass% or less, the tackiness of the block polymer can be sufficiently suppressed to further improve the handling property of the battery member.
  • the block polymer contains both an alkylene structural unit and an aliphatic conjugated diene monomer unit
  • the sum of the ratio of the alkylene structural unit and the aliphatic conjugated diene monomer unit in the block polymer is the block polymer
  • the amount of all the repeating units in the medium is 100% by mass, it is preferably 50% by mass or more, more preferably 65% by mass or more, and preferably 90% by mass or less, 85% by mass It is more preferable that If the sum of the ratio of the alkylene structural unit and the aliphatic conjugated diene monomer unit in the block polymer is 50% by mass or more, the process adhesiveness of the battery member can be further improved.
  • the total of the ratio of the alkylene structural unit and the aliphatic conjugated diene monomer unit in the block polymer is 90% by mass or less, the development of the tackiness of the block polymer is sufficiently suppressed, and the battery member Handleability can be further improved.
  • the other regions of the block polymer may contain a graft portion. That is, the block polymer may have a structure in which a polymer serving as a graft portion is bonded to a polymer serving as a trunk portion. Although it does not specifically limit as a repeating unit contained in the grafting part of a block polymer, For example, an acidic group containing monomer unit is mentioned.
  • an acidic group containing monomer which can form an acidic group containing monomer unit
  • a carboxyl group containing monomer, a sulfonic acid group containing monomer, and a phosphoric acid group containing monomer are mentioned, for example.
  • monocarboxylic acids include acrylic acid, methacrylic acid and crotonic acid.
  • monocarboxylic acid derivatives include 2-ethyl acrylic acid, isocrotonic acid, ⁇ -acetoxy acrylic acid, ⁇ -trans-aryloxy acrylic acid, and ⁇ -chloro- ⁇ -E-methoxy acrylic acid.
  • dicarboxylic acids include maleic acid, fumaric acid and itaconic acid.
  • dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, fluoro maleate
  • Maleic acid monoesters such as alkyl are mentioned.
  • the acid anhydride of dicarboxylic acid maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like can be mentioned.
  • generates a carboxyl group by hydrolysis can also be used.
  • sulfonic acid group containing monomer for example, styrene sulfonic acid, vinyl sulfonic acid (ethylene sulfonic acid), methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, 3-allyloxy-2-hydroxypropane sulfonic acid It can be mentioned.
  • (meth) allyl means allyl and / or methallyl.
  • phosphoric acid group-containing monomer for example, phosphoric acid-2- (meth) acryloyloxyethyl, methyl 2- (meth) acryloyloxyethyl phosphate, ethyl phosphate- (meth) acryloyloxyethyl phosphate It can be mentioned.
  • (meth) acryloyl means acryloyl and / or methacryloyl.
  • one kind of the above-mentioned monomers may be used alone, or two or more kinds of them may be used in combination, which form the repeating unit contained in the graft portion of the block polymer.
  • the acidic group containing monomer mentioned above is preferable, methacrylic acid, itaconic acid, and acrylic acid are more preferable, and methacrylic acid Is more preferred.
  • the introduction method of the grafting part to a block polymer is not specifically limited.
  • a polymer having an aromatic vinyl block region and another region containing an aliphatic conjugated diene monomer unit is prepared, and the polymer is used as a trunk portion, and the above-mentioned acidic group-containing monomer and the like are known.
  • graft-polymerizing using the method of (4) a block polymer having a structure in which a polymer of a graft moiety is bonded to an aliphatic conjugated diene monomer unit of a polymer of a trunk moiety can be obtained.
  • the proportion of the graft portion in the block polymer is 0.1 mass% or more when the amount of all repeating units in the block polymer is 100 mass%. Is preferably 0.5% by mass or more, more preferably 1% by mass or more, preferably 20% by mass or less, and more preferably 18% by mass or less, More preferably, it is 15% by mass or less.
  • the block polymer contained in the polymer particles is composed of a plurality of polymer chains.
  • a polymer chain constituting the block polymer a diblock structure having one aromatic block region and one other region (for example, an aromatic vinyl block region and an aliphatic conjugated diene monomer unit) Structure consisting of a block region (aliphatic conjugated diene block region) and a triblock structure consisting of three regions (for example, an aromatic vinyl block region, an aliphatic conjugated diene block region, and an aromatic vinyl block And optional structures such as structures consisting of regions.
  • the ratio (diblock amount) of the diblock structure in the block polymer is required to be 0 mass% or more and 60 mass% or less, when the mass of the whole block polymer is 100 mass%.
  • the content is preferably 2% by mass or more, more preferably 5% by mass or more, preferably 50% by mass or less, and more preferably 40% by mass or less.
  • the amount of diblock of the block polymer exceeds 60% by mass, the handling property of the battery member is impaired.
  • the diblock amount of the block polymer is 2% by mass or more, the process adhesiveness of the battery member can be further improved.
  • the amount of diblock can be reduced, for example, by performing a coupling reaction described later at the time of preparation of the block polymer.
  • the amount of diblock can also be adjusted by changing the type and amount of coupling agent used at the time of preparation of the block polymer.
  • the weight average molecular weight of the block polymer is preferably 50,000 or more, more preferably 60,000 or more, still more preferably 70,000 or more, and 140,000 or more. Is particularly preferable, 1,000,000 or less is preferable, 900,000 or less is more preferable, and 850,000 or less is more preferable. If the weight average molecular weight of the block polymer is 50,000 or more, the polymer strength can be secured to improve the electrode strength, and if the weight average molecular weight of the block polymer is 1,000,000 or less, the electrode Makes it easy to press. In the present invention, the "weight average molecular weight" of the block polymer can be measured using the method described in the examples of the present specification.
  • a polymer particle containing a block polymer having an aromatic vinyl block region is, for example, a step of block polymerizing the above-mentioned monomer in an organic solvent to obtain a solution of the block polymer (block polymer solution preparation step And, a step of emulsifying the block polymer into particles by adding water to a solution of the obtained block polymer and emulsifying it to obtain an aqueous dispersion of polymer particles (emulsifying step) it can.
  • the method of block polymerization in the block polymer solution preparation step is not particularly limited.
  • a second monomer component different from the first monomer component is added to a solution obtained by polymerizing the first monomer component to carry out polymerization, and if necessary, It can be prepared by further repeating addition and polymerization.
  • the organic solvent used as a reaction solvent is not specifically limited, either, According to the kind etc. of a monomer, it can select suitably.
  • a coupling reaction for example, the ends of diblock structures contained in a block polymer can be coupled by a coupling agent to convert them into triblock structures (that is, the amount of diblock is reduced) can do).
  • the coupling agent that can be used for the above-mentioned coupling reaction is not particularly limited.
  • a bifunctional coupling agent, a trifunctional coupling agent, a tetrafunctional coupling agent, a pentafunctional or higher cup Ring agents are mentioned.
  • bifunctional coupling agent for example, bifunctional halogenated silanes such as dichlorosilane, monomethyldichlorosilane, dichlorodimethylsilane, etc .; bifunctional halogenated alkanes such as dichloroethane, dibromoethane, methylene chloride, dibromomethane; dichlorotin And bifunctional tin halides such as monomethyl dichloro tin, dimethyl dichloro tin, monoethyl dichloro tin, diethyl dichloro tin, monobutyl dichloro tin, and dibutyl dichloro tin.
  • bifunctional halogenated silanes such as dichlorosilane, monomethyldichlorosilane, dichlorodimethylsilane, etc .
  • bifunctional halogenated alkanes such as dichloroethane, dibromoethane, methylene chloride, dibromomethane
  • trifunctional coupling agents include trifunctional halogenated alkanes such as trichloroethane and trichloropropane; trifunctional halogenated silanes such as methyltrichlorosilane and ethyltrichlorosilane; methyltrimethoxysilane and phenyltrimethoxysilane And trifunctional alkoxysilanes such as phenyltriethoxysilane.
  • tetrafunctional coupling agents include tetrafunctional halogenated alkanes such as carbon tetrachloride, carbon tetrabromide and tetrachloroethane; tetrafunctional halogenated silanes such as tetrachlorosilane and tetrabromosilane; tetramethoxysilane, And tetrafunctional alkoxysilanes such as tetraethoxysilane; and tetrafunctional tin halides such as tetrachlorotin and tetrabromotin.
  • Examples of the pentafunctional or higher coupling agent include 1,1,1,2,2-pentachloroethane, perchloroethane, pentachlorobenzene, perchlorobenzene, octabromodiphenyl ether, decabromodiphenyl ether and the like. These can be used alone or in combination of two or more. Among these, dichlorodimethylsilane is preferable from the viewpoint of easily preparing a block polymer having a diblock amount within a predetermined range.
  • the coupling part derived from the said coupling agent is introduce
  • the solution of the block polymer obtained after the above-mentioned block polymerization and coupling reaction optionally performed may be used for the emulsification process mentioned later as it is, the hydrogenation described above to the block polymer may be carried out as needed. It can also be subjected to an emulsification step after performing graft polymerization.
  • the method of emulsification in the emulsification step is not particularly limited, for example, a method of phase inversion emulsification of a preliminary mixture of a solution of the block polymer obtained in the block polymer solution preparation step described above and an aqueous solution of an emulsifier is preferable.
  • phase inversion emulsification for example, known emulsifiers and emulsification dispersers can be used.
  • the organic solvent can be removed by a known method or the like to obtain an aqueous dispersion of polymer particles.
  • the water-soluble polymer is a component capable of well dispersing the compounding components such as the above-mentioned polymer particles in an aqueous medium.
  • the water-soluble polymer is not particularly limited as long as it has a hydrophilic group and the weight average molecular weight is 15,000 or more and 500,000 or less, but a synthetic polymer is preferable, and addition polymerization is preferable. It is more preferable that it is an addition polymer produced through
  • the water-soluble polymer may be in the form of a salt (a salt of a water-soluble polymer). That is, in the present invention, the "water-soluble polymer" also includes a salt of the water-soluble polymer.
  • Hydrophilic group As a hydrophilic group which a water-soluble polymer has, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a hydroxyl group is mentioned, for example.
  • the water-soluble polymer may have only one type of these hydrophilic groups, or may have two or more types. Among these, from the viewpoint of enhancing the stability of the slurry composition to improve the coating density and suppressing the aggregation of polymer particles etc. at the time of applying the slurry composition, and further improving the handling property of the battery member.
  • a carboxyl group and a sulfonic acid group are preferable, and a carboxyl group is more preferable.
  • the method for introducing the hydrophilic group into the water-soluble polymer is not particularly limited, and a monomer composition containing at least the above-described hydrophilic group-containing monomer (hydrophilic group-containing monomer)
  • the polymer may be prepared by addition polymerization to obtain a water-soluble polymer containing a hydrophilic group-containing monomer unit, or the above-mentioned hydrophilicity may be obtained by modifying any polymer (for example, terminal modification). Although a water-soluble polymer having a functional group may be obtained, the former is preferred.
  • Hydrophilic group-containing monomer unit The water-soluble polymer enhances the stability of the slurry composition to improve the coating density, and suppresses the aggregation of polymer particles and the like when the slurry composition is applied, and further, the handling property of the battery member is further enhanced.
  • a hydrophilic group-containing monomer unit a carboxyl group-containing monomer unit, a sulfonic acid group-containing monomer unit, and a phosphoric acid group-containing monomer unit
  • a hydroxyl group-containing monomer unit Containing at least one selected from the group consisting of at least one, more preferably containing at least one of a carboxyl group-containing monomer unit and a sulfonic acid group-containing monomer unit, and containing a carboxyl group-containing monomer unit Is more preferred.
  • the water-soluble polymer may contain only one type of the above-mentioned hydrophilic group-containing monomer unit, or may contain two or more types.
  • a carboxyl group-containing monomer capable of forming a carboxyl group-containing monomer unit, a sulfonic acid group-containing monomer capable of forming a sulfonic acid group-containing monomer unit, and a phosphoric acid group-containing monomer unit As a possible phosphoric acid group containing monomer, what was illustrated by the term of "polymer particle" can be used, for example.
  • the ratio of the hydrophilic group-containing monomer unit in the water-soluble polymer is preferably 10% by mass or more, when the amount of all repeating units in the water-soluble polymer is 100% by mass.
  • the content is more preferably 20% by mass or more, still more preferably 30% by mass or more, and particularly preferably 35% by mass or more.
  • the proportion of the hydrophilic group-containing monomer unit in the water-soluble polymer is 10% by mass or more, the stability of the slurry composition is enhanced to improve the coating density, and the polymer at the time of applying the slurry composition The aggregation of particles and the like can be suppressed, and in addition, the handling property of the battery member can be further improved.
  • the upper limit of the proportion of the hydrophilic group-containing monomer unit in the water-soluble polymer is not particularly limited, and can be 100% by mass or less, can be 70% by mass or less, and 65% by mass It can be below and can be 60 mass% or less.
  • the water-soluble polymer may contain monomer units (other monomer units) other than the hydrophilic group-containing monomer units described above.
  • the other monomers capable of forming other monomer units contained in the water-soluble polymer are not particularly limited as long as they can be copolymerized with the above-mentioned hydrophilic group-containing monomer.
  • Examples of other monomers include (meth) acrylic acid ester monomers, fluorine-containing (meth) acrylic acid ester monomers, crosslinkable monomers, and aliphatic conjugated diene monomers.
  • the (meth) acrylic acid ester monomer the fluorine-containing (meth) acrylic acid ester monomer, and the crosslinkable monomer, for example, those exemplified in JP-A-2015-70245 can be used.
  • the aliphatic conjugated diene monomer for example, those exemplified in the section of "polymer particles" can be used.
  • these aliphatic conjugated diene monomers can be used individually by 1 type or in combination of 2 or more types. Among these, 1,3-butadiene and isoprene are preferable.
  • the proportion of the aliphatic conjugated diene monomer unit in the water-soluble polymer is equal to that of all repeating units in the water-soluble polymer.
  • the amount is 100% by mass, it is preferably 30% by mass or more, more preferably 35% by mass or more, still more preferably 40% by mass or more, and 90% by mass or less
  • the content is preferably 80% by mass or less, more preferably 70% by mass or less, still more preferably 65% by mass or less, and particularly preferably 60% by mass or less.
  • the proportion of the aliphatic conjugated diene monomer unit in the water-soluble polymer is 90% by mass or less, the stability of the slurry composition is enhanced to improve the coating density and the weight at the time of applying the slurry composition.
  • the aggregation of the united particles and the like can be suppressed, and in addition, the handling property of the battery member can be further improved.
  • the other monomers may be used alone or in combination of two or more.
  • the water-soluble polymer can be produced by polymerizing a monomer composition containing the above-mentioned monomer, for example, in an aqueous solvent such as water. At this time, the content ratio of each monomer in the monomer composition can be determined according to the content ratio of each monomer unit in the water-soluble polymer.
  • the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • any reaction such as ionic polymerization, radical polymerization, living radical polymerization can be used.
  • both random polymerization and block polymerization can be used.
  • a water-soluble polymer is a copolymer prepared using multiple types of monomer, it is preferable that a water-soluble polymer is a random copolymer.
  • additives such as emulsifiers, dispersants, polymerization initiators, polymerization assistants, molecular weight modifiers, etc. used in polymerization may be those generally used. The amount of these additives used may also be a commonly used amount.
  • the polymerization conditions can be appropriately adjusted according to the polymerization method, the type of the polymerization initiator, and the like.
  • the weight average molecular weight of the water-soluble polymer is required to be 15,000 or more and 500,000 or less, preferably 20,000 or more, and more preferably 25,000 or more. It is more preferably 100,000 or more, preferably 400,000 or less, and more preferably 350,000 or less. If the weight-average molecular weight of the water-soluble polymer is less than 15,000, the stability of the slurry composition may be impaired (over-thickening), making it difficult to apply uniformly on the substrate. . In addition, even if coating can be performed, sufficient coating density can not be secured.
  • the weight-average molecular weight of the water-soluble polymer exceeds 500,000, compounding components such as polymer particles are aggregated when the slurry composition is applied, and the application density decreases and the handling property of the battery member And process adhesion is reduced.
  • the weight average molecular weight of the water-soluble polymer can be adjusted by changing the amount and type of the polymerization initiator and the molecular weight modifier.
  • the content ratio (in terms of solid content) of the polymer particles and the water-soluble polymer in the binder composition of the present invention is not particularly limited.
  • the content of the polymer particles in the binder composition of the present invention is preferably 50% by mass or more of the total content of the polymer particles and the water-soluble polymer, and more preferably 60% by mass or more
  • the content is preferably 70% by mass or more, more preferably 99.8% by mass or less, and still more preferably 99.6% by mass or less. If the content of the polymer particles in the total content of the polymer particles and the water-soluble polymer is 50% by mass or more, the process adhesiveness of the battery member can be further improved.
  • the stability of the slurry composition is enhanced to improve the coating density, and the slurry is It is possible to suppress aggregation of compounding components such as polymer particles at the time of composition application.
  • the aqueous medium contained in the binder composition of the present invention is not particularly limited as long as it contains water, and may be an aqueous solution or a mixed solution of water and a small amount of an organic solvent.
  • the binder composition of this invention can contain components (other components) other than the said component.
  • the binder composition may contain known particulate binders (styrene-butadiene random copolymers, acrylic polymers, etc.) other than the above-mentioned polymer particles.
  • the binder composition may also contain known additives.
  • antioxidants such as 2,6-di-tert-butyl-p-cresol, antifoaming agents, dispersants (except those corresponding to the above-mentioned water-soluble polymer) Is mentioned.
  • another component may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • the binder composition of the present invention is not particularly limited, and may be prepared by mixing polymer particles, a water-soluble polymer and other components optionally used in the presence of an aqueous medium. it can.
  • a binder composition is prepared using a dispersion of polymer particles and / or an aqueous solution of a water-soluble polymer, the liquid fraction contained in the dispersion and / or the aqueous solution is directly used as the aqueous system of the binder composition. It may be used as a medium.
  • the slurry composition of the present invention is a composition used for forming a functional layer, contains the above-mentioned binder composition, and optionally contains functional particles. That is, the slurry composition of the present invention contains the above-described polymer particles, water-soluble polymer, and aqueous medium, and optionally further contains functional layer particles and other components. And since the slurry composition of this invention contains the binder composition mentioned above, the battery member provided with the functional layer formed from the said slurry composition is excellent in handling property and process adhesiveness.
  • ⁇ Binder composition> As a binder composition, the binder composition of this invention mentioned above which contains a predetermined
  • the compounding quantity of the binder composition in a slurry composition is not specifically limited.
  • the blending amount of the binder composition is 0.5 parts by mass of polymer particles in terms of solid content per 100 parts by mass of electrode active material particles. The amount can be 15 parts by mass or less.
  • the compounding quantity of a binder composition is 0.2 mass parts of polymer particles in solid content conversion per 100 mass parts of nonelectroconductive particles.
  • the amount can be 30 parts by mass or less.
  • a functional particle for exhibiting a desired function to a functional layer when a functional layer is an electrode compound material layer, an electrode active material particle is mentioned, for example, A functional layer is a porous membrane layer In some cases, nonconductive particles may be mentioned.
  • Electrode active material particles are not particularly limited, and particles made of known electrode active materials used in secondary batteries can be mentioned. Specifically, for example, the electrode active material particles that can be used in the electrode mixture layer of a lithium ion secondary battery as an example of a secondary battery are not particularly limited, and particles composed of the following electrode active materials Can be used.
  • a positive electrode active material to be blended in the positive electrode mixture layer of the positive electrode of a lithium ion secondary battery for example, a compound containing a transition metal, for example, a transition metal oxide, a transition metal sulfide, a composite of lithium and a transition metal A metal oxide or the like can be used.
  • a transition metal Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo etc. are mentioned, for example.
  • the positive electrode active material is not particularly limited, and lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), Co- Lithium-containing composite oxide of Ni-Mn, lithium-containing composite oxide of Ni-Mn-Al, lithium-containing composite oxide of Ni-Co-Al, lithium olivine type iron phosphate (LiFePO 4 ), olivine type manganese phosphate Lithium (LiMnPO 4 ), a lithium excess spinel compound represented by Li 1 + x Mn 2-x O 4 (0 ⁇ X ⁇ 2), Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2, LiNi 0.5 Mn 1.5 O 4 and the like.
  • the positive electrode active material mentioned above may be used individually by 1 type, and may be used combining 2 or more types.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton capable of inserting (also referred to as “doping”) lithium.
  • the carbon-based negative electrode active material specifically, coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber, pyrolysis vapor grown carbon fiber, phenol resin fired body, polyacrylonitrile-based carbon fiber
  • Examples include carbonaceous materials such as quasi-isotropic carbon, furfuryl alcohol resin fired body (PFA) and hard carbon, and graphitic materials such as natural graphite and artificial graphite.
  • the metal-based negative electrode active material is an active material containing a metal, and usually contains an element capable of inserting lithium in its structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh / An active material of g or more.
  • lithium metal single metal which can form a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si) Sn, Sr, Zn, Ti, etc.) and their oxides, sulfides, nitrides, silicides, carbides, phosphides, etc. Further, oxides such as lithium titanate can be mentioned.
  • the negative electrode active material mentioned above may be used individually by 1 type, and may be used combining 2 or more types.
  • non-conductive particles As a nonelectroconductive particle mix
  • the non-conductive particles both inorganic fine particles and organic fine particles (except those corresponding to the binder such as the above-mentioned polymer particles) can be used, but usually inorganic fine particles are used. Is used.
  • a material of the nonconductive particles a material which is stably present in the use environment of the secondary battery and is electrochemically stable is preferable.
  • the material of the nonconductive particles include aluminum oxide (alumina), hydrated aluminum oxide (boehmite), silicon oxide, magnesium oxide (magnesia), calcium oxide, titanium oxide (titania) Oxide particles such as BaTiO 3 , ZrO, and alumina-silica composite oxide; Nitride particles such as aluminum nitride and boron nitride; Covalent crystal particles such as silicon and diamond; barium sulfate, calcium fluoride, barium fluoride And so forth; clay fine particles such as talc and montmorillonite; and the like. In addition, these particles may be subjected to element substitution, surface treatment, solid solution formation, etc., as necessary.
  • the non-conductive particles described above may be used alone or in combination of two or more.
  • examples of other components that can be added to the slurry composition include, without being particularly limited, the same components as the other components that can be added to the binder composition of the present invention.
  • another component may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the method for preparing the slurry composition is not particularly limited.
  • the binder composition, electrode active material particles, and other components used as needed are mixed in the presence of an aqueous medium.
  • the slurry composition can be prepared.
  • the binder composition, non-conductive particles, and other components used as needed are mixed in the presence of an aqueous medium.
  • Slurry compositions can be prepared.
  • the binder composition can be used as it is or diluted with an aqueous medium to be used as a slurry composition, and the binder composition and, if necessary,
  • the slurry composition can also be prepared by mixing with other components used in the presence of an aqueous medium.
  • the aqueous medium used at the time of preparation of a slurry composition also contains what was contained in the binder composition.
  • the mixing method is not particularly limited, but the mixing may be performed using a stirrer or a disperser which can be usually used.
  • the functional layer of the present invention is a layer responsible for electron transfer, reinforcement, or adhesion in a secondary battery, and as the functional layer, for example, an electrode mixture layer for transferring electrons via an electrochemical reaction. And, a porous film layer for improving heat resistance and strength, an adhesive layer for improving adhesiveness, and the like can be mentioned.
  • the functional layer of the present invention is formed from the above-mentioned slurry composition of the present invention, for example, after applying the above-mentioned slurry composition on the surface of a suitable substrate to form a coating film, It can form by drying the formed coating film.
  • the functional layer of the present invention comprises the dried product of the above-described slurry composition, and usually contains at least a component (mainly block polymer) derived from the above-described polymer particles and a water-soluble polymer, , Functional particles and other ingredients.
  • a component mainly block polymer
  • the suitable abundance ratio of those each component is the suitable presence of each component in a slurry composition. It is the same as the ratio.
  • the polymer particles are present in the form of particles in the slurry composition, but may be in the form of particles in the functional layer formed using the slurry composition, or in any other form. It is also good.
  • the functional layer of the present invention is formed from the slurry composition of the present invention containing the binder composition of the present invention, the battery member provided with the functional layer exhibits excellent handling property and process adhesiveness. be able to.
  • the base material to which the slurry composition is applied is not limited.
  • the coating film of the slurry composition is formed on the surface of the release substrate, the coating film is dried to form the functional layer, and the functional layer is formed.
  • the release substrate may be removed from the above.
  • the functional layer peeled off from the release substrate can be used as a self-supporting film for forming a battery member of a secondary battery.
  • the slurry composition is preferably applied onto a current collector as a substrate.
  • a slurry composition it is preferable to apply a slurry composition on a separator base or an electrode base.
  • a material having electrical conductivity and electrochemical durability is used.
  • a current collector for example, a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum or the like can be used.
  • copper foil is particularly preferable as a current collector used for the negative electrode.
  • aluminum foil is especially preferable.
  • the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • Separator base material Although it does not specifically limit as a separator base material, Well-known separator base materials, such as an organic separator base material, are mentioned.
  • the organic separator substrate is a porous member made of an organic material, and examples of the organic separator substrate include microporous films or nonwoven fabrics containing polyolefin resins such as polyethylene and polypropylene, aromatic polyamide resins, etc. From the viewpoint of excellent strength, a microporous membrane or nonwoven fabric made of polyethylene is preferred.
  • Electrode base material (positive electrode base material and negative electrode base material) is not particularly limited, but an electrode base material layer in which electrode active material particles and a binder are formed on the above-described current collector is It can be mentioned.
  • the electrode active material particles and the binder contained in the electrode mixture layer in the electrode substrate are not particularly limited, and known ones can be used.
  • an electrode mixture formed from the functional layer of the present invention electrode active material particles, and a slurry composition containing a predetermined polymer particle and a predetermined water-soluble polymer) as an electrode mixture layer in an electrode substrate Layers
  • an electrode mixture formed from the functional layer of the present invention electrode active material particles, and a slurry composition containing a predetermined polymer particle and a predetermined water-soluble polymer
  • ⁇ Method of forming functional layer> As a method of forming a functional layer on base materials, such as a collector, a separator base material, and an electrode base material mentioned above, the following method is mentioned. 1) A method of applying the slurry composition of the present invention to the surface of a substrate (in the case of an electrode substrate, the surface on the electrode mixture layer side, the same applies hereinafter) and then drying it; 2) A method of immersing a substrate in the slurry composition of the present invention and drying the same; and 3) applying the slurry composition of the present invention on a release substrate and drying to produce a functional layer Method of transferring the prepared functional layer to the surface of the substrate.
  • base materials such as a collector, a separator base material, and an electrode base material mentioned above.
  • the method 1) is particularly preferable because it is easy to control the layer thickness of the functional layer.
  • the method 1) includes applying a slurry composition on a substrate (application step) and drying the slurry composition applied on the substrate to form a functional layer (function Layer forming step).
  • the method for applying the slurry composition onto the substrate is not particularly limited.
  • the doctor blade method, reverse roll method, direct roll method, gravure method, extrusion method, brushing method, etc. Method is mentioned.
  • the slurry composition of the present invention contains the predetermined water-soluble polymer described above, it can be applied on a substrate at a high application density. And if the application density of a slurry composition rises in this way, it will be easy to form an electrode compound material layer which carried out densification, for example through a functional layer formation process mentioned below.
  • ⁇ Functional layer formation process >> Moreover, it does not specifically limit as a method to dry the slurry composition on a base material in a functional layer formation process, A well-known method can be used. As the drying method, for example, drying by warm air, hot air, low humidity air, vacuum drying, drying by irradiation of infrared rays, electron beams and the like can be mentioned.
  • the drying method for example, drying by warm air, hot air, low humidity air, vacuum drying, drying by irradiation of infrared rays, electron beams and the like can be mentioned.
  • a functional layer is an electrode compound material layer
  • the battery member of the present invention is, for example, a separator or an electrode, and usually, the above-described functional layer of the present invention is provided on the above-described separator substrate or electrode substrate. Since the battery member of the present invention is provided with the functional layer of the present invention, it is excellent in handleability and excellent in process adhesion. And if the battery member of this invention is used, the secondary battery which is excellent in the battery characteristic can be manufactured favorably.
  • the battery member of the present invention may be provided with the above-mentioned functional layer of the present invention and components other than the base material.
  • Such components are not particularly limited, and examples thereof include an electrode mixture layer, a porous membrane layer, and an adhesive layer which do not correspond to the functional layer of the present invention.
  • the battery member may be equipped with multiple types of functional layers of this invention.
  • the electrode comprises an electrode mixture layer formed from the slurry composition for an electrode mixture layer of the present invention on a current collector, and for the porous membrane layer of the present invention and / or on the electrode mixture layer.
  • a porous membrane layer and / or an adhesive layer formed of the adhesive layer slurry composition may be provided.
  • the separator comprises a porous film layer formed from the slurry composition for a porous film layer of the present invention on a separator substrate, and is formed from the slurry composition for an adhesive layer of the present invention on the porous film layer.
  • the adhesive layer may be provided.
  • the secondary battery of the present invention includes the above-described battery member of the present invention. More specifically, the secondary battery of the present invention comprises a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the functional layer of the present invention is included in at least one of the positive electrode, the negative electrode and the separator as battery members. Since the secondary battery of the present invention is manufactured using the battery member of the present invention, the occurrence of defects in the manufacturing process can be suppressed, and excellent battery characteristics can be exhibited.
  • At least one of the positive electrode, the negative electrode and the separator used in the secondary battery of the present invention is the above-mentioned battery member of the present invention.
  • the positive electrode, the negative electrode and the separator other than the battery member of the present invention are not particularly limited, and known positive electrodes, negative electrodes and separators can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a supporting electrolyte for example, a lithium salt is used in a lithium ion secondary battery.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • the electrolyte may be used alone or in combination of two or more.
  • the lithium ion conductivity tends to be higher as the supporting electrolyte having a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted by the type of the supporting electrolyte.
  • the organic solvent used for the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • dimethyl carbonate (DMC) dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC)
  • Carbonates such as propylene carbonate (PC), butylene carbonate (BC), ethyl methyl carbonate (EMC), vinylene carbonate (VC); esters such as ⁇ -butyrolactone and methyl formate; 1,2-dimethoxyethane, tetrahydrofuran and the like And the like.
  • Ethers of the above; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and the like are suitably used.
  • a mixture of these solvents may be used.
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be. Therefore, the lithium ion conductivity can be controlled by the type of the solvent.
  • the concentration of the electrolyte in the electrolyte can be adjusted as appropriate.
  • known additives may be added to the electrolytic solution.
  • the positive electrode and the negative electrode are stacked via a separator, and if necessary, this is wound or folded to be placed in the battery container, and the electrolyte is injected into the battery container It can be manufactured by sealing it.
  • at least one battery member among a positive electrode, a negative electrode, and a separator be a battery member of this invention provided with the functional layer of this invention.
  • expanded metal, a fuse, an overcurrent preventing element such as a PTC element, a lead plate, and the like may be inserted into the battery container as necessary to prevent pressure increase inside the battery and overcharge and discharge.
  • the shape of the battery may be, for example, a coin, a button, a sheet, a cylinder, a square, or a flat.
  • weight average molecular weight and diblock amount of block polymer and hydrogenation rate of block polymer (hydrogenated), weight average molecular weight of water-soluble polymer, slurry composition for negative electrode mixture layer
  • the coating density, the handling property of the battery member (roll peeling test of negative electrode and blocking test of separator), and the process adhesion of the battery member were evaluated by the following methods.
  • the weight average molecular weight of the block polymer was measured as polystyrene equivalent molecular weight using high performance liquid chromatography (device: manufactured by Tosoh Corporation, model number “HLC 8220”).
  • a column three manufactured by Showa Denko, model number “Shodex KF-404HQ”, column temperature: 40 ° C., carrier: tetrahydrofuran with a flow rate of 0.35 ml / min
  • carrier tetrahydrofuran with a flow rate of 0.35 ml / min
  • differential refraction as a detector are used.
  • a UV detector were used.
  • Coating density (g / cm 3 ) coating amount (g / cm 2 ) / thickness (cm) ⁇ Handling property> ⁇ Roll peeling test of negative electrode >>
  • the obtained negative electrode material sheet is continuously pressed using a roll press with a diameter of 500 mm at a press speed of 15 m / s so that the density of the negative electrode composite material layer after pressing is 1.75 g / cm 3.
  • AA Adherence was not confirmed on the roll surface even after 1000 m continuous pressing.
  • Blocking test for separators >> The porous membrane layer-provided separator was cut into 5 cm ⁇ 5 cm square pieces. And two pieces of the square piece concerned were piled up so that porous membrane layer sides might face each other.
  • the pressed sample pieces were obtained by placing the superposed square pieces under a pressure of 10 g / cm 2 at 40 ° C.
  • the obtained press test piece was left to stand for 24 hours, and the test piece after left to stand for 24 hours was checked whether two square pieces were adhered or not.
  • one entire square piece of stacked separators was fixed, the other was pulled with a force of 0.3 N / m, and it was observed whether or not peeling was possible, and blocking state was evaluated based on the following criteria. It shows that the separator with a porous membrane layer is excellent in the handling property so that adhesion is not observed.
  • a cellophane tape (as defined in JIS Z1522) was attached to the surface of the negative electrode with the surface of the negative electrode on the current collector side down.
  • the cellophane tape was fixed on a horizontal test stand. Then, the stress when the end of the separator was pulled vertically upward and peeled off was measured at a tensile speed of 50 mm / min. This measurement was performed three times. The average value of the total of three measured stresses was determined as peel strength (N / m), and the process adhesion between the negative electrode and the separator through the negative electrode mixture layer was evaluated based on the following criteria. The higher the peel strength, the better the process adhesion.
  • the cut positive electrode and the separator were stacked such that the positive electrode mixture layer of the positive electrode and the porous film layer of the separator were in contact with each other. And the obtained lamination piece was pressed with the plate press of temperature 70 degreeC, and load 5 kN / m, and the test piece was obtained.
  • a cellophane tape (as defined in JIS Z1522) was attached to the surface of the positive electrode with the surface of the positive electrode on the current collector side down. The cellophane tape was fixed on a horizontal test stand. Then, the stress when the end of the separator was pulled vertically upward and peeled off was measured at a tensile speed of 50 mm / min. This measurement was performed three times.
  • the cut negative electrode was laminated with a separator in the same manner as the above positive electrode, and pressed to obtain a test piece.
  • the stress of the test piece was measured in the same manner as in the case of the positive electrode. This measurement was performed three times.
  • the average value of the total of six measured stresses was determined as peel strength (N / m), and evaluated as the process adhesion between the porous membrane layer-provided separator and the electrode via the porous membrane layer based on the following criteria. The higher the peel strength, the better the process adhesion.
  • Example 1 ⁇ Preparation of polymer particles> ⁇ Preparation of cyclohexane solution of block polymer >> 233.3 kg of cyclohexane, 54.2 mmol of N, N, N ′, N′-tetramethylethylenediamine (TMEDA), and 25.0 kg of styrene as an aromatic vinyl monomer were added to the pressure resistant reactor. While stirring at 40 ° C., 1806.5 mmol of n-butyllithium as a polymerization initiator was added, and polymerization was carried out for 1 hour while raising the temperature to 50 ° C. The polymerization conversion of styrene was 100%.
  • TEDA N, N ′, N′-tetramethylethylenediamine
  • phase change emulsification A mixture of sodium alkylbenzene sulfonate, sodium polyoxyethylene alkylsulfosuccinate and sodium polyoxyethylene alkyl ether sulfate at 1: 1: 1 (by mass) was dissolved in ion exchanged water to prepare a 5% aqueous solution. Then, 500 g of the obtained block polymer solution and 500 g of the obtained aqueous solution were introduced into the tank and stirred to carry out preliminary mixing.
  • the pre-mixture is transferred at a rate of 100 g / min using a metering pump to a continuous high-efficiency emulsification disperser (manufactured by Pacific Kiko Co., Ltd., product name "Milder MDN 303 V"), and the rotation speed is 20000 rpm.
  • An emulsion obtained by phase inversion emulsification of the pre-mixture was obtained by stirring.
  • cyclohexane in the obtained emulsion was distilled off under reduced pressure using a rotary evaporator.
  • Particulate Binding Material (Styrene-Butadiene Random Copolymer)
  • a reactor 150 parts of ion-exchanged water, 25 parts of an aqueous solution of sodium dodecylbenzene sulfonate (concentration 10%) as an emulsifier, 63 parts of styrene as an aromatic vinyl monomer, itaconic acid 3 as a carboxyl group-containing monomer .5 parts, 1 part of 2-hydroxyethyl acrylate as a hydroxyl group-containing monomer, and 0.5 parts of t-dodecyl mercaptan as a molecular weight modifier were charged in this order.
  • aqueous dispersion of a styrene butadiene random copolymer as a particulate binder.
  • the resulting mixture was adjusted to a solid concentration of 60% with ion exchanged water and then mixed at 25 ° C. for 60 minutes. Next, the solid concentration was adjusted to 52% with ion-exchanged water, and the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution. In the obtained mixed solution, 2.2 parts by solid equivalent of the above-prepared binder composition and ion-exchanged water were added to adjust the final solid concentration to be 48%. After mixing for a further 10 minutes, degassing was performed under reduced pressure to obtain a slurry composition for a negative electrode mixture layer having a good fluidity.
  • the obtained slurry composition for a negative electrode mixture layer was applied by a comma coater on a copper foil having a thickness of 15 ⁇ m, which is a current collector, so that the film thickness after drying was about 150 ⁇ m, and dried. .
  • This drying was performed by conveying the copper foil at a speed of 0.5 m / min for 2 minutes in an oven at 60 ° C. Then, it heat-processed at 120 degreeC for 2 minutes, and obtained the negative electrode original fabric. Coating density and handling property (roll peeling test of negative electrode) were evaluated using this negative electrode raw fabric. The results are shown in Table 1.
  • the negative electrode material sheet was rolled by a roll press to obtain a negative electrode having a thickness of 80 ⁇ m.
  • the obtained slurry composition for positive electrode mixture layer was applied by a comma coater on a 20 ⁇ m thick aluminum foil as a current collector such that the film thickness after drying was about 150 ⁇ m and dried. .
  • This drying was performed by conveying the aluminum foil at a speed of 0.5 m / min for 2 minutes in an oven at 60 ° C. Then, it heat-processed at 120 degreeC for 2 minutes, and obtained the positive electrode original fabric. Then, the positive electrode material sheet was rolled by a roll press to obtain a positive electrode having a thickness of 55 ⁇ m of the positive electrode mixture layer.
  • ⁇ Preparation of Separator> As a separator, a single-layer polypropylene separator (manufactured by Celgard, product name "Celgard 2500”) was used. Process adhesion was evaluated using this separator and the negative electrode obtained above. The results are shown in Table 1.
  • ⁇ Fabrication of lithium ion secondary battery> The obtained positive electrode is cut out into a 49 cm ⁇ 5 cm rectangle, placed with the surface on the positive electrode mixture layer side facing up, and the separator cut into 120 cm ⁇ 5.5 cm on the positive electrode mixture layer is a positive electrode It was arranged to be located on the left side in the longitudinal direction.
  • the obtained negative electrode is cut out into a 50 ⁇ 5.2 cm rectangle, and arranged on the separator so that the surface on the negative electrode mixture layer side faces the separator and the negative electrode is positioned on the right side in the longitudinal direction of the separator did.
  • the obtained laminate was wound by a winding machine to obtain a wound body.
  • Example 2 The preparation of the binder composition for the negative electrode mixture layer is the same as Example 1 except that an acrylic polymer prepared as follows is used in place of the styrene butadiene random copolymer as a particulate binder. Then, a polymer particle, a binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 The preparation of the binder composition for the negative electrode mixture layer was carried out in the same manner as in Example 1, except that the polymer particles prepared as described below were used and the particulate binder was not used.
  • a polymer, a binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. ⁇ Preparation of polymer particles> ⁇ Preparation of cyclohexane solution of block polymer >> In the same manner as in Example 1, a dried product containing a block polymer was obtained.
  • the obtained dried product was dissolved in cyclohexane so as to have a solid concentration of 10%.
  • 100 g of methacrylic acid as a carboxyl group-containing monomer was added.
  • 10 g of dimethyl 2,2′-azobis (2-methylpropionate) as a polymerization initiator is added, and the temperature is raised to 80 ° C. and maintained for 2 hours.
  • a cyclohexane solution (block polymer solution) of a block polymer in which a graft portion in which methacrylic acid units were connected was obtained.
  • phase change emulsification An aqueous dispersion (block polymer latex) of polymer particles containing a block polymer was obtained in the same manner as in Example 1 except that the block polymer solution obtained as described above was used.
  • Example 4 Polymer particles, water-soluble polymer, binder composition for negative electrode mixture layer in the same manner as in Example 1 except that the particulate binder was not used at the time of preparation of the binder composition for negative electrode mixture layer Then, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 Polymer particles, water-soluble in the same manner as in Example 4, except that the mass ratio in terms of solid content of the polymer particles and the water-soluble polymer was changed to 98: 2 when preparing the binder composition for the negative electrode mixture layer Polymer, a binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 When preparing the binder composition for the negative electrode mixture layer, instead of using an aqueous solution of polymethacrylic acid as a water-soluble polymer, it is carried out except using polyacrylic acid (manufactured by Sigma Aldrich, weight average molecular weight: 130,000) In the same manner as Example 4, a polymer particle, a binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 Water-soluble polymer, binder composition for negative electrode mixture layer, in the same manner as in Example 4, except that polymer particles prepared as follows were used at the time of preparation of the binder composition for negative electrode mixture layer, A slurry composition for the negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 8 At the time of preparation of the binder composition for the negative electrode mixture layer, sodium polystyrene sulfonate (product name “POLYNUS PS-5” manufactured by Tosoh Corporation, weight average molecular weight: 10, instead of aqueous solution of polymethacrylic acid as water-soluble polymer) Polymer particles, a binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and lithium ions except for using an aqueous solution of The next battery was prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 9 When preparing the binder composition for the negative electrode mixture layer, the aqueous solution of polyacrylic acid (manufactured by Sigma Aldrich, weight average molecular weight: 450,000) was used in place of the aqueous solution of polymethacrylic acid as a water-soluble polymer Similarly to Example 4, a polymer particle, a binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 10 Water-soluble polymer, binder composition for negative electrode mixture layer, in the same manner as in Example 4, except that polymer particles prepared as follows were used at the time of preparation of the binder composition for negative electrode mixture layer, A slurry composition for the negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 11 ⁇ Preparation of polymer particles>
  • an aqueous dispersion of block-polymer-containing polymer particles (block polymer latex) was obtained.
  • Preparation of Water-Soluble Polymer An aqueous solution of polymethacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd., weight average molecular weight: 100,000) similar to that of Example 1 was prepared.
  • a stirrer product name "SleeOne Motor” manufactured by Shinto Scientific Co., Ltd.
  • the slurry composition for non-aqueous secondary battery porous membrane layers was prepared by mixing using the above.
  • ⁇ Formation of Separator with Porous Membrane Layer> The slurry composition for a porous membrane layer obtained above is applied to one surface of a single-layer polypropylene separator (product name “Celgard 2500” manufactured by Celgard) as a separator substrate, and the mixture is applied at 50 ° C.
  • a negative electrode provided with a negative electrode mixture layer was obtained in the same manner as in Example 1 except that the binder composition for a negative electrode mixture layer prepared as follows was used. Process adhesiveness was evaluated using this negative electrode, the positive electrode obtained by the above, and the separator with a porous film layer obtained by the above. The results are shown in Table 1.
  • Binder Composition for Nonaqueous Secondary Battery Negative Electrode Mixture Layer In a reactor, 150 parts of ion-exchanged water, 25 parts of an aqueous solution of sodium dodecylbenzene sulfonate (concentration 10%) as an emulsifier, 63 parts of styrene as an aromatic vinyl monomer, itaconic acid 3 as a carboxyl group-containing monomer .5 parts, 1 part of 2-hydroxyethyl acrylate as a hydroxyl group-containing monomer, and 0.5 parts of t-dodecyl mercaptan as a molecular weight modifier were charged in this order.
  • aqueous dispersion of a styrene butadiene random copolymer was used as a binder composition for the negative electrode mixture layer.
  • aqueous dispersion was used as a binder composition for the negative electrode mixture layer.
  • the obtained positive electrode is cut out into a 49 cm ⁇ 5 cm rectangle, placed with the surface on the positive electrode mixture layer side facing up, and a separator with a porous membrane layer cut into 120 cm ⁇ 5.5 cm on the positive electrode mixture layer, The positive electrode was disposed on the left side in the longitudinal direction of the porous membrane layer-provided separator.
  • the obtained negative electrode is cut into a rectangle of 50 ⁇ 5.2 cm, and on the separator with a porous membrane layer, the negative electrode is a separator with a porous membrane layer so that the surface on the negative electrode mixture layer side faces the porous membrane layer. It was arranged to be located to the right of the longitudinal direction. Then, the obtained laminate was wound by a winding machine to obtain a wound body.
  • Example 12 When preparing the binder composition for the porous membrane layer, the aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared as follows was used instead of the aqueous solution of polymethacrylic acid as the water-soluble polymer A polymer particle, a binder composition for a porous membrane layer, a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion secondary battery were produced in the same manner as Example 11 except for . And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 1.
  • the reaction was stopped by cooling to obtain a mixture containing a water-soluble polymer.
  • the mixture containing this water-soluble polymer was adjusted to pH 8 by adding 10% aqueous ammonia to obtain an aqueous solution of a water-soluble polymer (random copolymer).
  • Example 13 At the time of preparation of the binder composition for a porous membrane layer, a polymer particle containing a block polymer into which a graft portion in which methacrylic acid units are connected and which was prepared in the same manner as in Example 3 was used.
  • a binder composition for a porous membrane layer In the same manner as in Example 11 except for preparing a water-soluble polymer, a binder composition for a porous membrane layer, a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion secondary battery Made. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 1.
  • Example 11 using a polymer particle prepared in the same manner as Example 7 as the polymer particle when preparing the binder composition for a porous membrane layer, in the same manner as Example 11, a water-soluble polymer, porous membrane layer A binder composition for a porous membrane layer, a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion secondary battery were prepared or manufactured. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 1.
  • Example 15 At the time of preparation of the binder composition for the porous membrane layer, it is replaced with an aqueous solution of polymethacrylic acid as a water-soluble polymer, and sodium polystyrene sulfonate (product name “POLYNAS PS-5” manufactured by Tosoh Corporation, weight average molecular weight: 100,000 Polymer particles, a binder composition for a porous membrane layer, a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion in the same manner as in Example 11 except that the aqueous solution of A secondary battery was prepared or fabricated. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 1.
  • Example 16 Water-soluble polymer, binder composition for negative electrode mixture layer, in the same manner as in Example 4, except that polymer particles prepared as follows were used at the time of preparation of the binder composition for negative electrode mixture layer, A slurry composition for the negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. ⁇ Preparation of polymer particles> ⁇ Preparation of cyclohexane solution of block polymer >> 233.3 kg of cyclohexane, 54.2 mmol of TMEDA, and 25.0 kg of styrene as an aromatic vinyl monomer were added to the pressure resistant reactor.
  • the solvent cyclohexane and other volatile components are removed from the solution at a temperature of 260 ° C. and a pressure of 0.001 MPa or less using a cylindrical concentrator dryer (product name “Contro” manufactured by Hitachi, Ltd.), It was extruded in the form of a strand in the molten state from a die connected directly to a concentration dryer. After cooling the extrudate, it was cut with a pelletizer to obtain pellets of block polymer (hydride). Then, the recovered pellet was dissolved in cyclohexane to prepare a block polymer solution having a block polymer (hydrogenated) concentration of 25%.
  • a cylindrical concentrator dryer product name “Contro” manufactured by Hitachi, Ltd.
  • the hydrogenation rate of the obtained polymer is measured, and the hydrogenation rate of the unsaturated bond in the main chain and the side chain is 99.9 mol%, and the hydrogenation rate of the unsaturated bond in the aromatic ring is 0 It confirmed that it was mol%.
  • Comparative example 1 Water-soluble polymer, binder composition for negative electrode mixture layer, in the same manner as in Example 4, except that polymer particles prepared as follows were used at the time of preparation of the binder composition for negative electrode mixture layer, A slurry composition for the negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative example 4 A water-soluble polymer, a binder composition for a porous membrane layer, in the same manner as in Example 11, except that polymer particles prepared in the same manner as in Comparative Example 1 were used when preparing the binder composition for a porous membrane layer
  • a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion secondary battery were prepared or manufactured. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 1.
  • Example 17 When preparing the binder composition for the negative electrode mixture layer, the aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared as follows is used instead of the aqueous solution of polymethacrylic acid as the water-soluble polymer Polymer particles, a particulate binder, a binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and lithium ions except for the same as in Example 1. The next battery was prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • a water-soluble polymer weight average molecular weight: 300,000
  • ⁇ Preparation of Water-Soluble Polymer> In a reactor, 473 parts of ion-exchanged water, 58 parts of methacrylic acid (carboxyl group-containing monomer), 0.6 parts of t-dodecyl mercaptan, and dodecylbenzenesulfonic acid diluted to a solid concentration of 10% with ion-exchanged water Charged 3.0 parts of sodium. Then, the inside of the reactor was sealed, and nitrogen replacement was performed twice while stirring with a stirring blade. After completion of nitrogen substitution, 42 parts of nitrogen-substituted isoprene (aliphatic conjugated diene monomer) was charged into the reactor. Thereafter, the inside of the reactor was controlled at 5 ° C.
  • sodium formaldehyde sulfoxylate manufactured by Mitsubishi Gas Chemical Co., Ltd., product name "SFS" 0.04 part (first time) with 9.0 parts of ion-exchanged water, ferrous sulfate (Chubu Kirest Co., Ltd.)
  • a solution of 0.003 parts (first) of product name “Frost Fe” and 0.03 parts of ethylenediaminetetraacetic acid was added to the reactor. .
  • the temperature in the reactor was raised to 10 ° C.
  • the temperature in the reactor was raised to 18 ° C.
  • Example 18 An aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 17 in place of the aqueous solution of polymethacrylic acid as a water-soluble polymer at the time of preparation of the binder composition for negative electrode mixture layer Polymer particles, a binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, and a negative electrode in the same manner as in Example 1 except that the particulate binder was not used. , A positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 19 When preparing the binder composition for the negative electrode mixture layer, the aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared as follows is used instead of the aqueous solution of polymethacrylic acid as the water-soluble polymer Polymer particles, a particulate binder, a binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and lithium ions except for the same as in Example 1. The next battery was prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • a water-soluble polymer weight average molecular weight: 300,000
  • ⁇ Preparation of Water-Soluble Polymer> In a reactor, 473 parts of ion-exchanged water, 58 parts of methacrylic acid (carboxyl group-containing monomer), 0.6 parts of t-dodecyl mercaptan, dodecylbenzenesulfonic acid diluted to a solid concentration of 10% with ion-exchanged water Charged 3.0 parts of sodium. Then, the inside of the reactor was sealed, and nitrogen replacement was performed twice while stirring with a stirring blade. After completion of nitrogen substitution, 42 parts of nitrogen-substituted 1,3-butadiene (aliphatic conjugated diene monomer) was charged into the reactor. Thereafter, the inside of the reactor was controlled at 5 ° C.
  • Example 20 An aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as the collar 17 instead of the aqueous solution of polymethacrylic acid as a water-soluble polymer at the time of preparation of the binder composition for negative electrode mixture layer Polymer particles, a particulate binder, a binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and lithium in the same manner as in Example 2 except that An ion secondary battery was prepared or fabricated. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 21 An aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 17 in place of the aqueous solution of polymethacrylic acid as a water-soluble polymer at the time of preparation of the binder composition for negative electrode mixture layer
  • a polymer particle, a binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery are prepared in the same manner as in Example 3 except that Or made.
  • evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 22 An aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 17 in place of the aqueous solution of polymethacrylic acid as a water-soluble polymer at the time of preparation of the binder composition for negative electrode mixture layer Polymer particles and a negative electrode mixture layer in the same manner as in Example 3, except that the styrene-butadiene random copolymer as a particulate binder prepared using the same method as in Example 1 was used. Binder composition, slurry composition for negative electrode mixture layer, negative electrode, positive electrode, separator, and lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 23 An aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 17 in place of the aqueous solution of polymethacrylic acid as a water-soluble polymer at the time of preparation of the binder composition for negative electrode mixture layer Polymer particles, a binder composition for a negative electrode mixture layer, and a negative electrode mixture layer in the same manner as in Example 3 except that an acrylic polymer prepared in the same manner as in Example 2 was used. A slurry composition, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 24 An aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 19 in place of the aqueous solution of polymethacrylic acid as a water-soluble polymer at the time of preparation of the binder composition for negative electrode mixture layer
  • a polymer particle, a binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery are prepared in the same manner as in Example 3 except that Or made.
  • evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 25 An aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 19 in place of the aqueous solution of polymethacrylic acid as a water-soluble polymer at the time of preparation of the binder composition for negative electrode mixture layer Polymer particles and a negative electrode mixture layer in the same manner as in Example 3, except that the styrene-butadiene random copolymer as a particulate binder prepared using the same method as in Example 1 was used. Binder composition, slurry composition for negative electrode mixture layer, negative electrode, positive electrode, separator, and lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 26 An aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 17 in place of the aqueous solution of polymethacrylic acid as a water-soluble polymer at the time of preparation of the binder composition for a porous membrane layer Polymer particles, a binder composition for a porous membrane layer, a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion secondary battery in the same manner as in Example 11 except for using Prepared or made. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 2.
  • Example 27 An aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 17 in place of the aqueous solution of polymethacrylic acid as a water-soluble polymer at the time of preparation of the binder composition for a porous membrane layer Polymer particle, binder composition for porous membrane layer in the same manner as in Example 11 except that the styrene butadiene random copolymer was used as the particulate binder and used in the same manner as in Example 1. , A slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion secondary battery were prepared or manufactured. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 2.
  • Example 28 An aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 19 in place of the aqueous solution of polymethacrylic acid as a water-soluble polymer at the time of preparation of the binder composition for a porous membrane layer Polymer particles, a binder composition for a porous membrane layer, a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion secondary battery in the same manner as in Example 11 except for using Prepared or made. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 2.
  • Example 29 An aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 19 in place of the aqueous solution of polymethacrylic acid as a water-soluble polymer at the time of preparation of the binder composition for a porous membrane layer
  • Binder for polymer particles and porous membrane layer in the same manner as in Example 11 except that used and a styrene butadiene random copolymer as a particulate binder prepared in the same manner as in Example 1 was used A composition, a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion secondary battery were prepared or manufactured. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 2.
  • Example 30 At the time of preparation of the binder composition for a porous membrane layer, polymer particles containing a block polymer into which a graft portion in which methacrylic acid units are connected and which is prepared in the same manner as in Example 3 are used.
  • aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 17 in place of the aqueous solution of polymethacrylic acid as the water-soluble polymer, except for using Example 11 and Similarly, a binder composition for a porous membrane layer, a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion secondary battery were prepared or manufactured. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 2.
  • Example 31 At the time of preparation of the binder composition for a porous membrane layer, polymer particles containing a block polymer into which a graft portion in which methacrylic acid units are connected and which is prepared in the same manner as in Example 3 are used.
  • an aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 17 is used, and in the same manner as Example 1.
  • the binder composition for a porous membrane layer, the slurry composition for a porous membrane layer, and the porous membrane layer in the same manner as in Example 11 except that the styrene-butadiene random copolymer prepared as a particulate binder was used.
  • a separator, a negative electrode, a positive electrode, and a lithium ion secondary battery were prepared or manufactured. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 2.
  • Example 32 At the time of preparation of the binder composition for a porous membrane layer, polymer particles containing a block polymer into which a graft portion in which methacrylic acid units are connected and which is prepared in the same manner as in Example 3 are used.
  • aqueous solution of the water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 19 in place of the aqueous solution of polymethacrylic acid as the water-soluble polymer, except for using Example 11 and Similarly, a binder composition for a porous membrane layer, a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion secondary battery were prepared or manufactured. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 2.
  • Example 33 At the time of preparation of the binder composition for a porous membrane layer, polymer particles containing a block polymer into which a graft portion in which methacrylic acid units are connected and which is prepared in the same manner as in Example 3 are used.
  • an aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 19 is used, and in the same manner as Example 1.
  • the binder composition for a porous membrane layer, the slurry composition for a porous membrane layer, and the porous membrane layer in the same manner as in Example 11 except that the styrene-butadiene random copolymer prepared as a particulate binder was used.
  • a separator, a negative electrode, a positive electrode, and a lithium ion secondary battery were prepared or manufactured. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 2.
  • Example 34 At the time of preparation of the binder composition for a porous membrane layer, polymer particles containing a block polymer into which a graft portion in which methacrylic acid units are connected and which is prepared in the same manner as in Example 3 are used. In place of the aqueous solution of polymethacrylic acid as a water-soluble polymer, an aqueous solution of a water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as in Example 17 is used, and in the same manner as Example 2.
  • the next battery was prepared or manufactured. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 2.
  • Example 35 In preparing the binder composition for the negative electrode mixture layer, the polymer particles prepared in the same manner as in Example 16 are used, and instead of the aqueous solution of polymethacrylic acid as a water-soluble polymer, the same as Example 17 In the same manner as in Example 4 except that the aqueous solution of the water-soluble polymer (weight-average molecular weight: 300,000) prepared in the above manner was used, the water-soluble polymer, the binder composition for the negative electrode mixture layer, the negative electrode mixture layer A slurry composition, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Example 36 Water-soluble polymer, binder composition for negative electrode mixture layer in the same manner as in Example 18 except that polymer particles prepared in the same manner as in Example 7 were used at the time of preparation of the binder composition for negative electrode mixture layer , A slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
  • Example 37 A water-soluble polymer, a particulate binder, and a negative electrode mixture were prepared in the same manner as in Example 22 except that polymer particles prepared as described below were used when preparing the binder composition for the negative electrode mixture layer.
  • the binder composition for layers, the slurry composition for negative mix layers, the negative electrode, the positive electrode, the separator, and the lithium ion secondary battery were prepared or produced. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
  • Example 38 A binder composition for a porous membrane layer, a slurry for a porous membrane layer, in the same manner as in Example 30, except that polymer particles prepared in the same manner as in Example 37 were used when preparing the binder composition for a porous membrane layer.
  • a composition, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion secondary battery were prepared or manufactured. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 3.
  • Example 39 A water-soluble polymer in the same manner as in Example 21 except that a water-soluble polymer (weight-average molecular weight: 450,000) prepared as follows was used at the time of preparation of the binder composition for the negative electrode mixture layer A binder composition for a negative electrode mixture layer, a slurry composition for a negative electrode mixture layer, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared or manufactured. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
  • a water-soluble polymer weight-average molecular weight: 450,000
  • Example 40 In the same manner as in Example 31 except that a water-soluble polymer (weight average molecular weight: 100,000) prepared as follows was used at the time of preparation of the binder composition for a porous membrane layer, A polymer particle, a particulate binder, a binder composition for a porous membrane layer, a slurry composition for a porous membrane layer, a separator with a porous membrane layer, a negative electrode, a positive electrode, and a lithium ion secondary battery were prepared or manufactured. And evaluation was carried out in the same manner as in Example 11. The results are shown in Table 3.
  • a water-soluble polymer weight average molecular weight: 100,000
  • Example 41 The aqueous solution was prepared in the same manner as in Example 12 by replacing it with the aqueous solution of the water-soluble polymer (weight average molecular weight: 300,000) prepared in the same manner as Example 17 when preparing the binder composition for the negative electrode mixture layer.
  • a positive electrode, a separator, and a lithium ion secondary battery were prepared or fabricated. And evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
  • Comparative Example 1 in which the negative electrode mixture layer was formed using a binder composition containing polymer particles containing a block polymer having a diblock amount exceeding 60% by mass, it can be seen that the handling property of the negative electrode is lowered. .
  • Comparative Example 2 using a binder composition containing a water-soluble polymer having a weight average molecular weight of less than 15,000, as described above, the negative electrode can be prepared by thickening the slurry composition for the negative electrode mixture layer could not.
  • Comparative Example 3 in which a negative electrode mixture layer is formed using a binder composition containing a water-soluble polymer having a weight average molecular weight of more than 500,000, polymer particles etc.
  • a non-aqueous secondary battery binder composition capable of forming a functional layer capable of achieving both excellent handling properties and process adhesiveness in battery members such as electrodes and separators, and non-aqueous secondary battery
  • the slurry composition for functional layers can be provided.
  • a non-aqueous secondary battery functional layer capable of achieving both excellent handling properties and process adhesion, for battery members such as electrodes and separators.
  • a battery member for a non-aqueous secondary battery capable of achieving both excellent handling properties and process adhesiveness, and a non-aqueous secondary battery provided with the battery member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Graft Or Block Polymers (AREA)
  • Cell Separators (AREA)

Abstract

本発明は、電極およびセパレータなどの電池部材に、優れたハンドリング性およびプロセス接着性を両立させ得る機能層を形成可能な非水系二次電池用バインダー組成物の提供を目的とする。本発明の非水系二次電池用バインダー組成物は、芳香族ビニル単量体単位からなるブロック領域を有するブロック重合体を含有する重合体粒子と、親水性基を有する水溶性重合体と、水とを含み、前記ブロック重合体のジブロック量が、0質量%以上60質量%以下であり、前記水溶性重合体の重量平均分子量が、15,000以上500,000以下である。

Description

非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材、および非水系二次電池
 本発明は、非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材、および非水系二次電池に関するものである。
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして、二次電池は、一般に、電極(正極および負極)、並びに、正極と負極とを隔離するセパレータなどの電池部材を備えている。
 ここで、二次電池の電池部材としては、結着材を含み、任意に、電池部材に所望の機能を発揮させるために配合されている粒子(以下、「機能性粒子」という。)を含んでなる機能層を備える部材が使用されている。
 具体的に、二次電池のセパレータとしては、セパレータ基材の上に、結着材を含む接着層や、結着材と機能性粒子としての非導電性粒子とを含む多孔膜層を備えるセパレータが使用されている。また、二次電池の電極としては、集電体の上に、結着材と機能性粒子としての電極活物質粒子とを含む電極合材層を備える電極や、集電体上に電極合材層を備える電極基材の上に、更に上述した接着層や多孔膜層を備える電極が使用されている。
 そこで、近年では、二次電池の更なる性能の向上を達成すべく、機能層の形成に用いられるバインダー組成物の改良が試みられている(例えば、特許文献1および2を参照)。
 特許文献1では、スルホン酸(塩)基を有する改質用重合体と、結着樹脂とを含むバインダー組成物を用いて電極合材層を形成することで、電極合材層の集電体に対する密着性を向上させる技術が提案されている。
 特許文献2では、所定のブロック共重合体水素化物を酸変性して得られる重合体を含むバインダー組成物を用いて電極合材層を形成することで、電極の強度を高めて二次電池の室温サイクル特性を向上させる技術が提案されている。
国際公開第2011/024789号 特開2014-11019号公報
 ここで、二次電池の製造プロセスにおいて、機能層を備える電池部材は、取り扱いが容易であることが求められる(すなわち、機能層を備える電池部材には、優れたハンドリング性が求められる)。
 例えば、機能層としての多孔膜層および/または接着層を備える電池部材は、捲き取って保存および運搬することがある。しかし、このような電池部材を捲き取った状態で保存および運搬すると、多孔膜層や接着層を介して隣接する電池部材同士が膠着する、即ち、ブロッキングすることによる不良の発生、生産性の低下が生じることがある。よって、多孔膜層および/または接着層を備える電池部材には、保存および運搬中におけるブロッキングを抑制することが求められている。
 また、例えば、機能層としての電極合材層を備える電極は、電極合材層の高密度化等を目的としてロールプレスにより加圧処理を施すことがある。しかし、電極をロールプレスで加圧すると、電極合材層がロールに付着することによる不良の発生、生産性の低下が生じることがある。よって、電極合材層を備える電極には、ロールプレス時における、電極合材層のロールへの付着を抑制することが求められている。
 一方で、二次電池の製造プロセスにおいては、電解液に浸漬する前の電池部材同士を、高温条件(例えば、50℃以上)で圧着させて積層体とし、必要に応じて所望のサイズに切断したり、積層体のまま運搬したりすることがある。そして、当該切断または運搬の際には、圧着された電池部材同士が位置ズレなどを起こし、不良の発生、生産性の低下といった問題が生じることがある。従って、機能層を備える電池部材には、上述のハンドリング性を確保する一方で、二次電池の製造プロセス中における電池部材同士の高い接着性(プロセス接着性)を兼ね備えることが求められている。
 しかしながら、上記従来のバインダー組成物を用いて機能層を形成しても、当該機能層を備える電池部材に、ハンドリング性とプロセス接着性とを高いレベルで両立させることは困難であった。
 そこで、本発明は、電極およびセパレータなどの電池部材に、優れたハンドリング性およびプロセス接着性を両立させ得る機能層を形成可能な非水系二次電池用バインダー組成物、および、非水系二次電池機能層用スラリー組成物を提供することを目的とする。
 また、本発明は、電極およびセパレータなどの電池部材に、優れたハンドリング性およびプロセス接着性を両立させ得る非水系二次電池用機能層を提供することを目的とする。
 そして、本発明は、優れたハンドリング性およびプロセス接着性が両立し得る非水系二次電池用電池部材、並びに、当該電池部材を備える非水系二次電池を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、芳香族ビニル単量体単位からなるブロック領域を有し、ジブロック量が所定の範囲内であるブロック重合体を含有する重合体粒子と、親水性基を有し、重量平均分子量が所定の範囲内である水溶性重合体と、水とを含むバインダー組成物を用いれば、電池部材に、良好なハンドリング性およびプロセス接着性を発揮させ得る機能層を形成可能であることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用バインダー組成物は、芳香族ビニル単量体単位からなるブロック領域を有するブロック重合体を含有する重合体粒子と、親水性基を有する水溶性重合体と、水とを含み、前記ブロック重合体のジブロック量が、0質量%以上60質量%以下であり、前記水溶性重合体の重量平均分子量が、15,000以上500,000以下である、ことを特徴とする。このように、芳香族ビニル単量体単位からなるブロック領域を有し、ジブロック量が上述の範囲内であるブロック重合体を含有する重合体粒子と、親水性基を有し、重量平均分子量が上述の範囲内である水溶性重合体と、水とを含むバインダー組成物を用いて機能層を形成すれば、当該機能層を備える電池部材に、優れたハンドリング性と、優れたプロセス接着性とを両立させることができる。
 なお、本発明において、重合体の「単量体単位」とは、「その単量体を用いて得た重合体中に含まれる、当該単量体由来の繰り返し単位」を意味する。
 また、本発明において、重合体が「単量体単位からなるブロック領域を有する」とは、「その重合体中に、繰り返し単位として、その単量体単位のみが連なって結合した部分が存在する」ことを意味する。
 そして、本発明において、「ジブロック量」とは、ブロック重合体に含まれるジブロック構造体(ジブロック構造を有する高分子鎖)の割合(質量%)を意味し、本明細書の実施例に記載の方法を用いて測定することができる。
 また、本発明において、重合体が「水溶性」であるとは、温度25℃において重合体0.5gを100gの水に溶解した際に、不溶分が1.0質量%未満となることをいう。
 そして、本発明において、水溶性重合体の「重量平均分子量」は、本明細書の実施例に記載の方法を用いて測定することができる。
 ここで、本発明の非水系二次電池用バインダー組成物は、前記親水性基がカルボキシル基であることが好ましい。親水性基としてカルボキシル基を有する水溶性重合体を用いれば、機能層を備える電池部材のハンドリング性を更に向上させることができる。加えて、バインダー組成物を用いて調製される非水系二次電池機能層用スラリー組成物の安定性を高めて塗布密度を向上させると共に、当該スラリー組成物塗布時に重合体粒子等の配合成分が凝集するのを抑制することができる。
 また、本発明の非水系二次電池用バインダー組成物は、前記重合体粒子の含有量が、前記重合体粒子と前記水溶性重合体の合計含有量の50質量%以上99.8質量%以下であることが好ましい。重合体粒子と水溶性重合体の合計中に占める重合体粒子の割合が上述の範囲内であれば、機能層を備える電池部材のプロセス接着性を更に向上させることができる。加えて、バインダー組成物を用いて調製される非水系二次電池機能層用スラリー組成物の安定性を高めて塗布密度を向上させると共に、当該スラリー組成物塗布時に重合体粒子等の配合成分が凝集するのを抑制することができる。
 そして、本発明の非水系二次電池用バインダー組成物において、前記ブロック重合体が、カップリング部位を含むことができる。
 なお、本発明において、重合体中の「カップリング部位」とは、「カップリング剤を用いたカップリング反応を経て得られる重合体中に含まれる、当該カップリング剤由来の部位」を意味する。
 ここで、本発明の非水系二次電池用バインダー組成物は、前記ブロック重合体が、更に、脂肪族共役ジエン単量体単位およびアルキレン構造単位の少なくとも一方を含むことが好ましい。ブロック重合体が、脂肪族共役ジエン単量体単位および/またはアルキレン構造単位を含めば、機能層を備える電池部材のプロセス接着性を更に向上させることができる。
 そして、本発明の非水系二次電池用バインダー組成物は、前記水溶性重合体が、脂肪族共役ジエン単量体単位を含むことができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池機能層用スラリー組成物は、上述した何れかの非水系二次電池用バインダー組成物を含むことを特徴とする。このように、上述した何れかのバインダー組成物を含むスラリー組成物を用いて機能層を形成すれば、当該機能層を備える電池部材に、優れたハンドリング性と、優れたプロセス接着性とを両立させることができる。
 ここで、本発明の非水系二次電池機能層用スラリー組成物は、更に電極活物質粒子を含むことができる。機能性粒子としての電極活物質粒子を含む非水系二次電池機能層用スラリー組成物を用いて電極合材層を形成すれば、ロールプレス時における電極合材層のロールへの付着を抑制しつつ、優れたプロセス接着性を有する電極を作製することができる。
 そして、本発明の非水系二次電池機能層用スラリー組成物は、更に非導電性粒子を含むことができる。機能性粒子としての非導電性粒子を含む非水系二次電池機能層用スラリー組成物を用いて多孔膜層を形成すれば、ハンドリング性およびプロセス接着性に優れる電池部材(セパレータおよび電極)を作製することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用機能層は、上述した何れかの非水系二次電池機能層用スラリー組成物を用いて形成されることを特徴とする。上述したスラリー組成物の何れかを使用すれば、電池部材に優れたハンドリング性およびプロセス接着性を発揮させ得る機能層を形成することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用電池部材は、上述した非水系二次電池用機能層を備えることを特徴とする。上述した機能層を備えるセパレータや電極などの電池部材は、ハンドリング性およびプロセス接着性に優れる
 そして、上述した本発明の非水系二次電池用電池部材を用いて非水系二次電池を製造すれば、電池部材のブロッキングや、ロールプレス時における電極合材層のロールへの付着を抑制する一方で、高温条件下で圧着した電池部材同士の位置ズレを防ぐことができる。よって、本発明の電池部材を用いることで、電池特性に優れる非水系二次電池を効率良く製造することができる。
 なお、本明細書では、結着材および電極活物質粒子を含む機能層を「電極合材層」と、結着材および非導電性粒子を含む機能層を「多孔膜層」と、結着材を含み、電極活物質粒子および非導電性粒子の何れも含まない機能層を「接着層」と称する。
 本発明によれば、電極およびセパレータなどの電池部材に、優れたハンドリング性およびプロセス接着性を両立させ得る機能層を形成可能な非水系二次電池用バインダー組成物、および、非水系二次電池機能層用スラリー組成物を提供することができる。
 また、本発明によれば、電極およびセパレータなどの電池部材に、優れたハンドリング性およびプロセス接着性を両立させ得る非水系二次電池用機能層を提供することができる。
 そして、本発明によれば、優れたハンドリング性およびプロセス接着性を両立し得る非水系二次電池用電池部材、並びに、当該電池部材を備える非水系二次電池を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池用バインダー組成物は、非水系二次電池の製造用途に用いられるものであり、例えば、本発明の非水系二次電池機能層用スラリー組成物の調製に用いることができる。そして、本発明の非水系二次電池機能層用スラリー組成物は、非水系二次電池内において電子の授受、または補強若しくは接着などの機能を担う、任意の機能層(例えば、電極合材層、多孔膜層、接着層)の形成に用いることができる。また、本発明の非水系二次電池用機能層は、本発明の非水系二次電池機能層用スラリー組成物から形成される。さらに、本発明の非水系二次電池用電池部材は、例えば電極やセパレータであり、本発明の非水系二次電池用機能層を備える。そして、本発明の非水系二次電池は、本発明の非水系二次電池用電池部材を備える。
(非水系二次電池用バインダー組成物)
 本発明のバインダー組成物は、重合体粒子、水溶性重合体、および水系媒体を含み、任意に、二次電池の機能層に配合され得るその他の成分を更に含有する。
 そして、本発明のバインダー組成物は、
 重合体粒子が、芳香族ビニル単量体単位からなるブロック領域を有するブロック重合体を含有し、且つ当該ブロック重合体のジブロック量が0質量%以上60質量%以下であること、および、
 水溶性重合体が、親水性基を有し、且つ重量平均分子量が15,000以上500,000以下であること、
を特徴とする。
 そして、本発明のバインダー組成物は、水系媒体中に上述した重合体粒子と水溶性重合体とを含んでいるため、当該バインダー組成物を用いて機能層を形成すれば、機能層を備える電池部材に、優れたハンドリング性と、優れたプロセス接着性とを両立させることができる。このように、水系媒体中に重合体粒子および水溶性重合体を含むバインダー組成物を用いることで、電池部材のハンドリング性およびプロセス接着性の双方を高めることができる理由は定かではないが、以下の通りであると推察される。
 まず、重合体粒子中のブロック重合体は、芳香族ビニル単量体単位からなるブロック領域を有する。芳香族ビニル単量体単位からなるブロック領域を有するブロック重合体は、高温条件では結着性を発揮しうる一方で、常温付近で過剰なタック性を帯びることもない。さらに、当該ブロック重合体は、ジブロック量が0質量%以上60質量%以下である。ここで、ブロック重合体中のジブロック構造体は、より長鎖の構造体(例えば、トリブロック構造体)に比してタック性を帯びやすいが、上述の通り、本発明で用いるブロック重合体のジブロック量は60質量%以下であるため、ジブロック構造体過多による常温付近での過剰なタック性発現が抑制される。このように、高温条件では結着性を発揮する一方で、常温付近では過剰なタック性発現が抑制されたブロック重合体を含有する重合体粒子を機能層の形成に用いれば、当該機能層を備える電池部材のハンドリング性およびプロセス接着性を確保することができる。
 さらに、本発明のバインダー組成物は、上述した重合体粒子に加え、親水性基を有し、且つ重量平均分子量が15,000以上500,000以下である水溶性重合体を含む。このような水溶性重合体を含むバインダー組成物を用いて調製されるスラリー組成物中では、水溶性重合体が重合体粒子表面に付着し、重合体粒子の分散性向上に寄与してスラリー組成物の安定性が高まる。その上、スラリー組成物を基材上に塗布する際に、スラリー組成物にせん断力が加えられた場合であっても、重合体粒子等の配合成分が凝集するのを抑制して、得られる機能層中で、重合体粒子に上述した所期の性能を十分に発揮させることができる。
 したがって、水系媒体中に上述した重合体粒子と水溶性重合体とを含むバインダー組成物を用いることで、電池部材に、優れたハンドリング性およびプロセス接着性の双方を発揮させ得る機能層を形成することができる。
<重合体粒子>
 重合体粒子は、結着材として機能する成分であり、バインダー組成物を含むスラリー組成物を使用して基材上に形成した機能層において、機能性粒子などの成分が機能層から脱離しないように保持すると共に、機能層を介した電池部材同士の接着を可能にする。
 ここで、重合体粒子は、所定のブロック重合体により形成される非水溶性の粒子である。そして、重合体粒子は、少なくとも所定のブロック重合体を含み、調製段階で不可避に混入する成分など、所定のブロック重合体以外の成分を含んでいてもよい。
 なお、本発明において、粒子が「非水溶性」であるとは、温度25℃において重合体0.5gを100gの水に溶解した際に、不溶分が90質量%以上となることをいう。
<<ブロック重合体>>
 重合体粒子に含まれるブロック重合体は、芳香族ビニル単量体単位からなるブロック領域(以下、「芳香族ビニルブロック領域」と略記する場合がある。)と、芳香族ビニル単量体単位以外の繰り返し単位が連なった高分子鎖部分(以下、「その他の領域」と略記する場合がある。)とを有する共重合体である。ブロック重合体において、芳香族ビニルブロック領域とその他の領域は互いに隣接して存在する。また、ブロック重合体は、芳香族ビニルブロック領域を1つのみ有していてもよく、複数有していてもよく、同様に、その他の領域を1つのみ有していてもよく、複数有していてもよい。
[芳香族ビニルブロック領域]
 芳香族ビニルブロック領域は、上述したように、繰り返し単位として、芳香族ビニル単量体単位のみを含む領域である。
 ここで、1つの芳香族ビニルブロック領域は、1種の芳香族ビニル単量体単位のみで構成されていてもよいし、複数種の芳香族ビニル単量体単位で構成されていてもよいが、1種の芳香族ビニル単量体単位のみで構成されていることが好ましい。
 また、1つの芳香族ビニルブロック領域には、カップリング部位が含まれていてもよい(すなわち、1つの芳香族ビニルブロック領域を構成する芳香族ビニル単量体単位は、カップリング部位が介在して連なっていてもよい)。
 そして、ブロック重合体が複数の芳香族ビニルブロック領域を有する場合、それら複数の芳香族ビニルブロック領域を構成する芳香族ビニル単量体単位の種類および割合は、同一でも異なっていてもよいが、同一であることが好ましい。
 ブロック重合体の芳香族ビニルブロック領域を構成する芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、例えば、スチレン、スチレンスルホン酸およびその塩、α-メチルスチレン、p-t-ブチルスチレン、ブトキシスチレン、ビニルトルエン、クロロスチレン、並びに、ビニルナフタレンが挙げられる。中でも、スチレンが好ましい。これらは1種を単独で、または、2種以上を組み合わせて用いることができるが、1種を単独で用いることが好ましい。
 そして、ブロック重合体中の芳香族ビニル単量体単位の割合は、ブロック重合体中の全繰り返し単位(単量体単位および構造単位。ブロック重合体がグラフト部分を含む場合は、当該グラフト部分の繰り返し単位を含む。)の量を100質量%とした場合に、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましく、22.7質量%以上であることが特に好ましく、50質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。ブロック重合体中に占める芳香族ビニル単量体単位の割合が5質量%以上であれば、ブロック重合体のタック性発現を十分に抑制して、電池部材のハンドリング性を更に向上させることができる。一方、ブロック重合体中に占める芳香族ビニル単量体単位の割合が50質量%以下であれば、ブロック重合体の柔軟性が確保され、電池部材のプロセス接着性を更に向上させることができる。
 なお、芳香族ビニル単量体単位がブロック重合体中に占める割合は、通常、芳香族ビニルブロック領域がブロック重合体中に占める割合と一致する。
[その他の領域]
 その他の領域は、上述したように、繰り返し単位として、芳香族ビニル単量体単位以外の繰り返し単位(以下、「その他の繰り返し単位」と略記する場合がある。)のみを含む領域である。
 ここで、1つのその他の領域は、1種のその他の繰り返し単位で構成されていてもよいし、複数種のその他の繰り返し単位で構成されていてもよい。
 また、1つのその他の領域には、カップリング部位が含まれていてもよい(すなわち、1つのその他の領域を構成するその他の繰り返し単位は、カップリング部位が介在して連なっていてもよい)。
 そして、ブロック重合体が複数のその他の領域を有する場合、それら複数のその他の領域を構成するその他の繰り返し単位の種類および割合は、同一でも異なっていてもよい。
 ブロック重合体のその他の領域を構成するその他の繰り返し単位としては、特に限定されないが、例えば、電池部材のプロセス接着性を更に向上させる観点から、脂肪族共役ジエン単量体単位、アルキレン構造単位が好ましい。
―脂肪族共役ジエン単量体単位―
 ここで、その他の領域を構成する脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの炭素数4以上の共役ジエン化合物が挙げられる。これらは1種を単独で、または、2種以上を組み合わせて用いることができる。そしてこれらの中でも、電池部材のプロセス接着性を更に向上させる観点から、1,3-ブタジエン、イソプレンが好ましい。
 そして、ブロック重合体中の脂肪族共役ジエン単量体単位の割合は、ブロック重合体中の全繰り返し単位の量を100質量%とした場合に、50質量%以上であることが好ましく、65質量%以上であることがより好ましく、67質量%以上であることが更に好ましく、98質量%以下であることが好ましく、95質量%以下であることがより好ましい。ブロック重合体中に占める脂肪族共役ジエン単量体単位の割合が50質量%以上であれば、電池部材のプロセス接着性を更に向上させることができる。一方、ブロック重合体中に占める脂肪族共役ジエン単量体単位の割合が98質量%以下であれば、ブロック重合体のタック性発現を十分に抑制して、電池部材のハンドリング性を更に向上させることができる。
―アルキレン構造単位―
 また、その他の領域を構成するアルキレン構造単位は、一般式:-C2n-[但し、nは2以上の整数]で表わされるアルキレン構造のみで構成される繰り返し単位である。
 ここで、アルキレン構造単位は、直鎖状であっても分岐状であってもよいが、アルキレン構造単位は直鎖状、すなわち直鎖アルキレン構造単位であることが好ましい。また、アルキレン構造単位の炭素数は4以上である(即ち、上記一般式のnが4以上の整数である)ことが好ましい。
 なお、ブロック重合体へのアルキレン構造単位の導入方法は、特に限定はされない。例えば、脂肪族共役ジエン単量体を含む単量体組成物から重合体を調製し、当該重合体に水素添加することで、脂肪族共役ジエン単量体単位をアルキレン構造単位に変換してブロック重合体を得る方法が、ブロック重合体の製造が容易であり好ましい。
 上記の方法で用いる脂肪族共役ジエン単量体としては、脂肪族共役ジエン単量体単位を形成し得る脂肪族共役ジエン単量体として上述した炭素数4以上の共役ジエン化合物が挙げられ、中でも、イソプレンが好ましい。すなわち、アルキレン構造単位は、脂肪族共役ジエン単量体単位を水素化して得られる構造単位(脂肪族共役ジエン水素化物単位)であることが好ましく、イソプレン単位を水素化して得られる構造単位(イソプレン水素化物単位)であることがより好ましい。そして、脂肪族共役ジエン単量体単位の選択的な水素化は、油層水素化法や水層水素化法などの公知の方法を用いて行なうことができる。
 そして、ブロック重合体中のアルキレン構造単位の割合は、ブロック重合体中の全繰り返し単位の量を100質量%とした場合に、50質量%以上であることが好ましく、65質量%以上であることがより好ましく、67質量%以上であることが更に好ましく、98質量%以下であることが好ましく、95質量%以下であることがより好ましい。ブロック重合体中に占めるアルキレン構造単位の割合が50質量%以上であれば、電池部材のプロセス接着性を更に向上させることができる。一方、ブロック重合体中に占めるアルキレン構造単位の割合が98質量%以下であれば、ブロック重合体のタック性発現を十分に抑制して、電池部材のハンドリング性を更に向上させることができる。
 また、ブロック重合体がアルキレン構造単位と脂肪族共役ジエン単量体単位の双方を含む場合、ブロック重合体中のアルキレン構造単位および脂肪族共役ジエン単量体単位の割合の合計は、ブロック重合体中の全繰り返し単位の量を100質量%とした場合に、50質量%以上であることが好ましく、65質量%以上であることがより好ましく、90質量%以下であることが好ましく、85質量%以下であることがより好ましい。ブロック重合体中に占めるアルキレン構造単位と脂肪族共役ジエン単量体単位の割合の合計が50質量%以上であれば、電池部材のプロセス接着性を更に向上させることができる。一方、ブロック重合体中に占めるアルキレン構造単位と脂肪族共役ジエン単量体単位の割合の合計が90質量%以下であれば、ブロック重合体のタック性発現を十分に抑制して、電池部材のハンドリング性を更に向上させることができる。
―グラフト部分―
 なお、ブロック重合体のその他の領域は、グラフト部分を含んでいてもよい。すなわち、ブロック重合体は、幹部分となる重合体に対してグラフト部分となる重合体が結合した構造を有していてもよい。
 ブロック重合体のグラフト部分に含まれる繰り返し単位としては、特に限定されないが、例えば、酸性基含有単量体単位が挙げられる。
 酸性基含有単量体単位を形成し得る酸性基含有単量体としては、例えば、カルボキシル基含有単量体、スルホン酸基含有単量体、およびリン酸基含有単量体が挙げられる。
 そして、カルボキシル基含有単量体としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸モノエステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 また、カルボキシル基含有単量体としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 また、スルホン酸基含有単量体としては、例えば、スチレンスルホン酸、ビニルスルホン酸(エチレンスルホン酸)、メチルビニルスルホン酸、(メタ)アリルスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸が挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリルおよび/またはメタリルを意味する。
 更に、リン酸基含有単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルが挙げられる。
 なお、本発明において、「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
 ここで、ブロック重合体のグラフト部分に含まれる繰り返し単位を形成する、上述した単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。そしてこれらの中でも、ブロック重合体のグラフト部分に含まれる繰り返し単位を形成する単量体としては、上述した酸性基含有単量体が好ましく、メタクリル酸、イタコン酸、アクリル酸がより好ましく、メタクリル酸が更に好ましい。
 なお、ブロック重合体へのグラフト部分の導入方法は特に限定されない。例えば、芳香族ビニルブロック領域と、脂肪族共役ジエン単量体単位を含むその他の領域とを有する重合体を調製し、当該重合体を幹部分として、上述した酸性基含有単量体などを既知の方法を用いてグラフト重合することで、幹部分の重合体の脂肪族共役ジエン単量体単位にグラフト部分の重合体が結合した構造を有するブロック重合体を得ることができる。
 そして、ブロック重合体が、グラフト部分を有する場合、ブロック重合体中のグラフト部分の割合は、ブロック重合体中の全繰り返し単位の量を100質量%とした場合に、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることが更に好ましく、20質量%以下であることが好ましく、18質量%以下であることがより好ましく、15質量%以下であることが更に好ましい。
[ジブロック量]
 ここで、重合体粒子に含まれるブロック重合体は、複数の高分子鎖により構成されている。ブロック重合体を構成する高分子鎖としては、芳香族ブロック領域と、その他の領域をそれぞれ1つずつ有するジブロック構造体(例えば、芳香族ビニルブロック領域と、脂肪族共役ジエン単量体単位からなるブロック領域(脂肪族共役ジエンブロック領域)とからなる構造体)や、3つの領域からなるトリブロック構造体(例えば、芳香族ビニルブロック領域と、脂肪族共役ジエンブロック領域と、芳香族ビニルブロック領域とからなる構造体)などの任意の構造体が挙げられる。
 そして、ブロック重合体に占める、ジブロック構造体の割合(ジブロック量)は、ブロック重合体全体の質量を100質量%とした場合に、0質量%以上60質量%以下であることが必要であり、2質量%以上であることが好ましく、5質量%以上であることがより好ましく、50質量%以下であることが好ましく、40質量%以下であることがより好ましい。ブロック重合体のジブロック量が60質量%を超えると、電池部材のハンドリング性が損なわれる。一方、ブロック重合体のジブロック量が2質量%以上であれば、電池部材のプロセス接着性を更に向上させることができる。
 ここで、ジブロック量は、例えば、ブロック重合体の調製時に後述するカップリング反応を行うことで低減することができる。更には、ブロック重合体の調製時に用いられるカップリング剤の種類や量を変更することにより、ジブロック量を調整することもできる。
[重量平均分子量]
 また、ブロック重合体の重量平均分子量は、50,000以上であることが好ましく、60,000以上であることがより好ましく、70,000以上であることが更に好ましく、140,000以上であることが特に好ましく、1,000,000以下であることが好ましく、900,000以下であることがより好ましく、850,000以下であることが更に好ましい。ブロック重合体の重量平均分子量が50,000以上であれば、ポリマー強度が確保されて電極強度を向上させることができ、ブロック重合体の重量平均分子量が1,000,000以下であれば、電極のプレスが容易となる。
 なお、本発明において、ブロック重合体の「重量平均分子量」は、本明細書の実施例に記載の方法を用いて測定することができる。
<<ブロック重合体を含有する重合体粒子の調製方法>>
 芳香族ビニルブロック領域を有するブロック重合体を含有する重合体粒子は、例えば、有機溶媒中で上述した単量体をブロック重合して、ブロック重合体の溶液を得る工程(ブロック重合体溶液調製工程)と、得られたブロック重合体の溶液に水を添加して乳化することでブロック重合体を粒子化し、重合体粒子の水分散液を得る工程(乳化工程)と、を経て調製することができる。
[ブロック重合体溶液調製工程]
 ブロック重合体溶液調製工程におけるブロック重合の方法は、特に限定されない。例えば、第一の単量体成分を重合させた溶液に、第一の単量体成分とは異なる第二の単量体成分を加えて重合を行い、必要に応じて、単量体成分の添加と重合とを更に繰り返すことより、調製することができる。なお、反応溶媒として使用される有機溶媒も特に限定されず、単量体の種類等に応じて適宜選択することができる。
 ここで、上記のようにブロック重合して得られたブロック重合体を、後述する乳化工程に先んじて、カップリング剤を用いたカップリング反応に供することが好ましい。カップリング反応を行えば、例えば、ブロック重合体中に含まれるジブロック構造体同士の末端をカップリング剤により結合させて、トリブロック構造体に変換することができる(すなわち、ジブロック量を低減することができる)。
 ここで、上記カップリング反応に使用し得るカップリング剤としては、特に限定されず、例えば、2官能のカップリング剤、3官能のカップリング剤、4官能のカップリング剤、5官能以上のカップリング剤が挙げられる。
 2官能のカップリング剤としては、例えば、ジクロロシラン、モノメチルジクロロシラン、ジクロロジメチルシラン等の2官能性ハロゲン化シラン;ジクロロエタン、ジブロモエタン、メチレンクロライド、ジブロモメタン等の2官能性ハロゲン化アルカン;ジクロロスズ、モノメチルジクロロスズ、ジメチルジクロロスズ、モノエチルジクロロスズ、ジエチルジクロロスズ、モノブチルジクロロスズ、ジブチルジクロロスズ等の2官能性ハロゲン化スズ;が挙げられる。
 3官能のカップリング剤としては、例えば、トリクロロエタン、トリクロロプロパンなどの3官能性ハロゲン化アルカン;メチルトリクロロシラン、エチルトリクロロシランなどの3官能性ハロゲン化シラン;メチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどの3官能性アルコキシシラン;が挙げられる。
 4官能のカップリング剤としては、例えば、四塩化炭素、四臭化炭素、テトラクロロエタンなどの4官能性ハロゲン化アルカン;テトラクロロシラン、テトラブロモシランなどの4官能性ハロゲン化シラン;テトラメトキシシラン、テトラエトキシシランなどの4官能性アルコキシシラン;テトラクロロスズ、テトラブロモスズなどの4官能性ハロゲン化スズ;が挙げられる。
 5官能以上のカップリング剤としては、例えば、1,1,1,2,2-ペンタクロロエタン,パークロロエタン、ペンタクロロベンゼン、パークロロベンゼン、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテルなどが挙げられる。
 これらは1種を単独で、または、2種以上を組み合わせて用いることができる。
そしてこれらの中でも、ジブロック量が所定の範囲内であるブロック重合体を容易に調製し得る観点から、ジクロロジメチルシランが好ましい。なお、カップリング剤を用いたカップリング反応によれば、当該カップリング剤に由来するカップリング部位が、ブロック重合体を構成する高分子鎖(例えば、トリブロック構造体)に導入される。
 なお、上述したブロック重合および任意に行われるカップリング反応後に得られるブロック重合体の溶液は、そのまま後述する乳化工程に供してもよいが、必要に応じて、ブロック重合体に対し上述した水素化および/またはグラフト重合を行った後に、乳化工程に供することもできる。
[乳化工程]
 乳化工程における乳化の方法は、特に限定されないが、例えば、上述したブロック重合体溶液調製工程で得られたブロック重合体の溶液と、乳化剤の水溶液との予備混合物を転相乳化する方法が好ましい。ここで、転相乳化には、例えば既知の乳化剤および乳化分散機を用いることができる。
 そして、転相乳化後に得られる乳化液から、必要に応じて、既知の方法により有機溶媒を除去する等して、重合体粒子の水分散液を得ることができる。
<水溶性重合体>
 水溶性重合体は、水系媒体中で、上述した重合体粒子などの配合成分を良好に分散させうる成分である。ここで、水溶性重合体としては、親水性基を有し、且つ重量平均分子量が15,000以上500,000以下であれば、特に限定されないが、合成高分子であることが好ましく、付加重合を経て製造される付加重合体であることがより好ましい。なお、水溶性重合体は、塩の形態(水溶性重合体の塩)であってもよい。すなわち、本発明において、「水溶性重合体」には、当該水溶性重合体の塩も含まれる。
<<親水性基>>
 水溶性重合体が有する親水性基としては、例えば、カルボキシル基、スルホン酸基、リン酸基、ヒドロキシル基が挙げられる。水溶性重合体は、これらの親水性基を1種類のみ有していてもよく、2種類以上有していてもよい。そしてこれらの中でも、スラリー組成物の安定性を高めて塗布密度を向上させると共に当該スラリー組成物塗布時における重合体粒子等の凝集を抑制し、更には電池部材のハンドリング性を一層向上させる観点から、カルボキシル基、スルホン酸基が好ましく、カルボキシル基がより好ましい。
 ここで、水溶性重合体に親水性基を導入する方法は特に限定されず、上述した親水性基を含有する単量体(親水性基含有単量体)を少なくとも含む単量体組成物を付加重合して重合体を調製し、親水性基含有単量体単位を含む水溶性重合体を得てもよいし、任意の重合体を変性(例えば、末端変性)することにより、上述した親水性基を有する水溶性重合体を得てもよいが、前者が好ましい。
<<親水性基含有単量体単位>>
 そして、水溶性重合体は、スラリー組成物の安定性を高めて塗布密度を向上させると共に当該スラリー組成物塗布時における重合体粒子等の凝集を抑制し、更には、電池部材のハンドリング性を一層向上させる観点から、親水性基含有単量体単位として、カルボキシル基含有単量体単位、スルホン酸基含有単量体単位、およびリン酸基含有単量体単位、ヒドロキシル基含有単量体単位からなる群から選択される少なくとも1つを含むことが好ましく、カルボキシル基含有単量体単位とスルホン酸基含有単量体単位の少なくとも一方を含むことがより好ましく、カルボキシル基含有単量体単位を含むことが更に好ましい。なお、水溶性重合体は、上述した親水性基含有単量体単位を1種類のみ含んでいてもよく、2種類以上含んでいてもよい。
 カルボキシル基含有単量体単位を形成しうるカルボキシル基含有単量体、スルホン酸基含有単量体単位を形成しうるスルホン酸基含有単量体、およびリン酸基含有単量体単位を形成しうるリン酸基含有単量体としては、例えば、「重合体粒子」の項で例示したものを用いることができる。
 ヒドロキシル基含有単量体単位を形成しうるヒドロキシル基含有単量体としては、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オールなどのエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式:CH2=CR-COO-(Cq2qO)p-H(式中、pは2~9の整数、qは2~4の整数、Rは水素原子またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコールモノ(メタ)アリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲンおよびヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテルおよびそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;N-ヒドロキシメチルアクリルアミド(N-メチロールアクリルアミド)、N-ヒドロキシメチルメタクリルアミド、N-ヒドロキシエチルアクリルアミド、N-ヒドロキシエチルメタクリルアミドなどのヒドロキシル基を有するアミド類などが挙げられる。
 そして、水溶性重合体中の親水性基含有単量体単位の割合は、水溶性重合体中の全繰り返し単位の量を100質量%とした場合に、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、35質量%以上であることが特に好ましい。水溶性重合体中に占める親水性基含有単量体単位の割合が10質量%以上であれば、スラリー組成物の安定性を高めて塗布密度を向上させると共に当該スラリー組成物塗布時における重合体粒子等の凝集を抑制し、加えて、電池部材のハンドリング性を更に向上させることができる。なお、水溶性重合体中に親水性基含有単量体単位の割合の上限は、特に限定されず、100質量%以下とすることができ、70質量%以下とすることができ、65質量%以下とすることができ、60質量%以下とすることができる。
<<その他の単量体単位>>
 水溶性重合体は、上述した親水性基含有単量体単位以外の単量体単位(その他の単量体単位)を含んでいてもよい。水溶性重合体に含まれるその他の単量体単位を形成しうるその他の単量体は、上述した親水性基含有単量体と共重合可能であれば特に限定されない。その他の単量体としては、例えば、(メタ)アクリル酸エステル単量体、フッ素含有(メタ)アクリル酸エステル単量体、架橋性単量体、脂肪族共役ジエン単量体が挙げられる。
 (メタ)アクリル酸エステル単量体、フッ素含有(メタ)アクリル酸エステル単量体、架橋性単量体としては、例えば、特開2015-70245号公報で例示されたものを用いることができる。
 脂肪族共役ジエン単量体としては、例えば、「重合体粒子」の項で例示したものを用いることができる。なお、これらの脂肪族共役ジエン単量体は、1種を単独で、または、2種以上を組み合わせて用いることができる。そしてこれらの中でも、1,3-ブタジエン、イソプレンが好ましい。
 そして、水溶性重合体が脂肪族共役ジエン単量体を用いて調製される場合、水溶性重合体中の脂肪族共役ジエン単量体単位の割合は、水溶性重合体中の全繰り返し単位の量を100質量%とした場合に、30質量%以上であることが好ましく、35質量%以上であることがより好ましく、40質量%以上であることが更に好ましく、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることが更に好ましく、65質量%以下であることがより一層好ましく、60質量%以下であることが特に好ましい。
 水溶性重合体中に占める脂肪族共役ジエン単量体単位の割合が、90質量%以下であれば、スラリー組成物の安定性を高めて塗布密度を向上させると共に当該スラリー組成物塗布時における重合体粒子等の凝集を抑制し、加えて、電池部材のハンドリング性を更に向上させることができる。
 なお、その他の単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
<<水溶性重合体の調製方法>>
 水溶性重合体は、上述した単量体を含む単量体組成物を、例えば水などの水系溶媒中で重合することにより、製造し得る。この際、単量体組成物中の各単量体の含有割合は、水溶性重合体中の各単量体単位の含有割合に準じて定めることができる。
 そして、重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。更に、重合様式としては、ランダム重合とブロック重合の何れも使用することができる。そして、水溶性重合体が複数種の単量体を用いて調製される共重合体である場合、水溶性重合体は、ランダム共重合体であることが好ましい。
 また、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤、分子量調整剤などの添加剤は、一般に用いられるものを使用しうる。これらの添加剤の使用量も、一般に使用される量としうる。重合条件は、重合方法及び重合開始剤の種類などに応じて適宜調整しうる。
<<重量平均分子量>>
 ここで、水溶性重合体の重量平均分子量は、15,000以上500,000以下であることが必要であり、20,000以上であることが好ましく、25,000以上であることがより好ましく、100,000以上であることが更に好ましく、400,000以下であることが好ましく、350,000以下であることがより好ましい。水溶性重合体の重量平均分子量が15,000未満であると、スラリー組成物の安定性が損なわれて(過度に増粘して)基材上への均一な塗布が困難となる虞がある。また、仮に塗布できたとしても、十分な塗布密度を確保することができない。一方、水溶性重合体の重量平均分子量が500,000を超えると、スラリー組成物を塗布する際に重合体粒子等の配合成分が凝集してしまい、塗布密度が低下すると共に電池部材のハンドリング性およびプロセス接着性が低下する。
 なお、水溶性重合体の重量平均分子量は、重合開始剤および分子量調整剤の量や種類を変更することにより調整することができる。
<重合体粒子と水溶性重合体との含有量比>
 本発明のバインダー組成物における重合体粒子と水溶性重合体との含有量比(固形分換算)は特に限定されない。例えば、本発明のバインダー組成物中の重合体粒子の含有量は、重合体粒子と水溶性重合体の合計含有量の50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましく、99.8質量%以下であることが好ましく、99.6質量%以下であることがより好ましい。重合体粒子と水溶性重合体の合計含有量に占める重合体粒子の含有量が50質量%以上であれば、電池部材のプロセス接着性を更に向上させることができる。一方、重合体粒子と水溶性重合体の合計含有量に占める重合体粒子の含有量が99.8質量%以下であれば、スラリー組成物の安定性を高めて塗布密度を向上させつつ、スラリー組成物塗布時に重合体粒子等の配合成分が凝集するのを抑制することができる。
<水系媒体>
 本発明のバインダー組成物が含有する水系媒体は、水を含んでいれば特に限定されず、水溶液や、水と少量の有機溶媒との混合溶液であってもよい。
<その他の成分>
 本発明のバインダー組成物は、上記成分以外の成分(その他の成分)を含有することができる。例えば、バインダー組成物は、上述した重合体粒子以外の、既知の粒子状結着材(スチレンブタジエンランダム共重合体、アクリル重合体など)を含んでいてもよい。また、バインダー組成物は、既知の添加剤を含んでいてもよい。このような既知の添加剤としては、例えば、2,6-ジ-tert-ブチル-p-クレゾールなどの酸化防止剤、消泡剤、分散剤(上述した水溶性重合体に該当するものを除く。)が挙げられる。なお、その他の成分は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
<バインダー組成物の調製方法>
 そして、本発明のバインダー組成物は、特に限定されることなく、重合体粒子と、水溶性重合体と、任意に用いられるその他の成分とを水系媒体の存在下で混合して調製することができる。なお、重合体粒子の分散液および/または水溶性重合体の水溶液を用いてバインダー組成物を調製する場合には、分散液および/または水溶液が含有している液分をそのままバインダー組成物の水系媒体として利用してもよい。
(非水系二次電池機能層用スラリー組成物)
 本発明のスラリー組成物は、機能層の形成用途に用いられる組成物であり、上述したバインダー組成物を含み、任意に、機能性粒子を更に含有する。すなわち、本発明のスラリー組成物は、上述した重合体粒子、水溶性重合体、および水系媒体を含有し、任意に、機能層粒子およびその他の成分を更に含有する。そして、本発明のスラリー組成物は、上述したバインダー組成物を含んでいるので、当該スラリー組成物から形成される機能層を備える電池部材は、ハンドリング性およびプロセス接着性に優れる。
<バインダー組成物>
 バインダー組成物としては、所定の重合体粒子および所定の水溶性重合体を水系媒体中に含む、上述した本発明のバインダー組成物を用いる。
 なお、スラリー組成物中のバインダー組成物の配合量は、特に限定されない。例えばスラリー組成物が電極合材層用スラリー組成物である場合、バインダー組成物の配合量は、電極活物質粒子100質量部当たり、固形分換算で、重合体粒子の量が0.5質量部以上15質量部以下となる量とすることができる。また例えばスラリー組成物が多孔膜層用スラリー組成物である場合、バインダー組成物の配合量は、非導電性粒子100質量部当たり、固形分換算で、重合体粒子の量が0.2質量部以上30質量部以下となる量とすることができる。
<機能性粒子>
 ここで、機能層に所期の機能を発揮させるための機能性粒子としては、例えば、機能層が電極合材層である場合には電極活物質粒子が挙げられ、機能層が多孔膜層である場合には非導電性粒子が挙げられる。
<<電極活物質粒子>>
 そして、電極活物質粒子としては、特に限定されることなく、二次電池に用いられる既知の電極活物質よりなる粒子を挙げることができる。具体的には、例えば、二次電池の一例としてのリチウムイオン二次電池の電極合材層において使用し得る電極活物質粒子としては、特に限定されることなく、以下の電極活物質よりなる粒子を用いることができる。
[正極活物質]
 リチウムイオン二次電池の正極の正極合材層に配合される正極活物質としては、例えば、遷移金属を含有する化合物、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などを用いることができる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 具体的には、正極活物質としては、特に限定されることなく、リチウム含有コバルト酸化物(LiCoO)、マンガン酸リチウム(LiMn)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO)、オリビン型リン酸マンガンリチウム(LiMnPO)、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O、LiNi0.5Mn1.5等が挙げられる。
 なお、上述した正極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
[負極活物質]
 リチウムイオン二次電池の負極の負極合材層に配合される負極活物質としては、例えば、炭素系負極活物質、金属系負極活物質、および、これらを組み合わせた負極活物質などが挙げられる。
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいう。そして、炭素系負極活物質としては、具体的には、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)およびハードカーボンなどの炭素質材料、並びに、天然黒鉛および人造黒鉛などの黒鉛質材料が挙げられる。
 また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。そして、金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびそれらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが挙げられる。さらに、チタン酸リチウムなどの酸化物を挙げることができる。
 なお、上述した負極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<<非導電性粒子>>
 また、多孔膜層に配合される非導電性粒子としては、特に限定されることなく、二次電池に用いられる既知の非導電性粒子を挙げることができる。
 具体的には、非導電性粒子としては、無機微粒子と有機微粒子(上述した重合体粒子などの結着材に該当するものを除く。)との双方を用いることができるが、通常は無機微粒子が用いられる。なかでも、非導電性粒子の材料としては、二次電池の使用環境下で安定に存在し、電気化学的に安定である材料が好ましい。このような観点から非導電性粒子の材料の好ましい例を挙げると、酸化アルミニウム(アルミナ)、水和アルミニウム酸化物(ベーマイト)、酸化ケイ素、酸化マグネシウム(マグネシア)、酸化カルシウム、酸化チタン(チタニア)、BaTiO、ZrO、アルミナ-シリカ複合酸化物等の酸化物粒子;窒化アルミニウム、窒化ホウ素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイト等の粘土微粒子;などが挙げられる。また、これらの粒子は必要に応じて元素置換、表面処理、固溶体化等が施されていてもよい。
 なお、上述した非導電性粒子は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<その他の成分>
 スラリー組成物に配合し得るその他の成分としては、特に限定することなく、本発明のバインダー組成物に配合し得るその他の成分と同様のものが挙げられる。なお、その他の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<スラリー組成物の調製>
 スラリー組成物の調製方法は、特に限定はされない。
 例えば、スラリー組成物が電極合材層用スラリー組成物である場合は、バインダー組成物と、電極活物質粒子と、必要に応じて用いられるその他の成分とを、水系媒体の存在下で混合してスラリー組成物を調製することができる。
 また、スラリー組成物が多孔膜層用スラリー組成物である場合は、バインダー組成物と、非導電性粒子と、必要に応じて用いられるその他の成分とを、水系媒体の存在下で混合してスラリー組成物を調製することができる。
 そして、スラリー組成物が接着層用スラリー組成物である場合は、バインダー組成物をそのまま、または水系媒体で希釈してスラリー組成物として使用することもできるし、バインダー組成物と、必要に応じて用いられるその他の成分とを、水系媒体の存在下で混合してスラリー組成物を調製することもできる。
 なお、スラリー組成物の調製の際に用いる水系媒体は、バインダー組成物に含まれていたものも含まれる。また、混合方法は特に制限されないが、通常用いられうる撹拌機や、分散機を用いて混合を行う。
(非水系二次電池用機能層)
 本発明の機能層は、二次電池内において電子の授受または補強若しくは接着などの機能を担う層であり、機能層としては、例えば、電気化学反応を介して電子の授受を行う電極合材層や、耐熱性や強度を向上させる多孔膜層や、接着性を向上させる接着層などが挙げられる。
 そして、本発明の機能層は、上述した本発明のスラリー組成物から形成されたものであり、例えば、上述したスラリー組成物を適切な基材の表面に塗布して塗膜を形成した後、形成した塗膜を乾燥することにより、形成することができる。即ち、本発明の機能層は、上述したスラリー組成物の乾燥物よりなり、通常、少なくとも、上述した重合体粒子に由来する成分(主としてブロック重合体)および水溶性重合体を含有し、任意に、機能性粒子やその他の成分を含有する。なお、機能層中に含まれている各成分は、上記スラリー組成物中に含まれていたものであるため、それら各成分の好適な存在比は、スラリー組成物中の各成分の好適な存在比と同じである。また、重合体粒子は、スラリー組成物中では粒子形状で存在するが、スラリー組成物を用いて形成された機能層中では、粒子形状であってもよいし、その他の任意の形状であってもよい。
 そして、本発明の機能層は、本発明のバインダー組成物を含む本発明のスラリー組成物から形成されているので、当該機能層を備える電池部材に、優れたハンドリング性およびプロセス接着性を発揮させることができる。
<基材>
 ここで、スラリー組成物を塗布する基材に制限は無く、例えば、離型基材の表面にスラリー組成物の塗膜を形成し、その塗膜を乾燥して機能層を形成し、機能層から離型基材を剥がすようにしてもよい。このように、離型基材から剥がされた機能層を、自立膜として二次電池の電池部材の形成に用いることもできる。
 しかし、機能層を剥がす工程を省略して電池部材の製造効率を高める観点からは、基材として、集電体、セパレータ基材、または電極基材を用いることが好ましい。具体的には、電極合材層の調製の際には、スラリー組成物を、基材としての集電体上に塗布することが好ましい。また、多孔膜層や接着層を調製する際には、スラリー組成物を、セパレータ基材または電極基材上に塗布することが好ましい。
<<集電体>>
 集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。中でも、負極に用いる集電体としては銅箔が特に好ましい。また、正極に
用いる集電体としては、アルミニウム箔が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<<セパレータ基材>>
 セパレータ基材としては、特に限定されないが、有機セパレータ基材などの既知のセパレータ基材が挙げられる。有機セパレータ基材は、有機材料からなる多孔性部材であり、有機セパレータ基材の例を挙げると、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微多孔膜または不織布などが挙げられ、強度に優れることからポリエチレン製の微多孔膜や不織布が好ましい。
<<電極基材>>
 電極基材(正極基材および負極基材)としては、特に限定されないが、上述した集電体上に、電極活物質粒子および結着材を含む電極合材層が形成された電極基材が挙げられる。
 電極基材中の電極合材層に含まれる電極活物質粒子および結着材としては、特に限定されず、既知のものを用いることができる。また、電極基材中の電極合材層として、本発明の機能層(電極活物質粒子、並びに、所定の重合体粒子および所定の水溶性重合体を含むスラリー組成物から形成される電極合材層)を使用することもできる。
<機能層の形成方法>
 上述した集電体、セパレータ基材、電極基材などの基材上に機能層を形成する方法としては、以下の方法が挙げられる。
1)本発明のスラリー組成物を基材の表面(電極基材の場合は電極合材層側の表面、以下同じ)に塗布し、次いで乾燥する方法;
2)本発明のスラリー組成物に基材を浸漬後、これを乾燥する方法;および
3)本発明のスラリー組成物を離型基材上に塗布し、乾燥して機能層を製造し、得られた機能層を基材の表面に転写する方法。
 これらの中でも、前記1)の方法が、機能層の層厚制御をしやすいことから特に好ましい。前記1)の方法は、詳細には、スラリー組成物を基材上に塗布する工程(塗布工程)と、基材上に塗布されたスラリー組成物を乾燥させて機能層を形成する工程(機能層形成工程)を含む。
<<塗布工程>>
 そして、塗布工程において、スラリー組成物を基材上に塗布する方法としては、特に制限は無く、例えば、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。ここで、本発明のスラリー組成物は、上述した所定の水溶性重合体を含むため、高い塗布密度で基材上に塗布することが可能である。そして、このようにスラリー組成物の塗布密度が高まれば、後述する機能層形成工程を経て、例えば、高密度化した電極合材層を容易に形成することができる。
<<機能層形成工程>>
 また、機能層形成工程において、基材上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができる。乾燥法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥が挙げられる。
 なお、機能層が電極合材層である場合、乾燥後に、ロールプレス等を用いてプレス処理を行うことが好ましい。プレス処理を行うことで、得られる電極合材層をより一層高密度化することができる。
(非水系二次電池用電池部材)
 本発明の電池部材は、例えば、セパレータや電極であり、通常、上述した本発明の機能層を、上述したセパレータ基材または電極基材上に備える。本発明の電池部材は、本発明の機能層を備えるため、ハンドリング性に優れると共に、プロセス接着性にも優れる。そして、本発明の電池部材を用いれば、電池特性に優れる二次電池を良好に製造することができる。
 ここで、本発明の電池部材は、本発明の機能層が電池部材の表面に配置されている限り、上述した本発明の機能層と、基材以外の構成要素を備えていてもよい。このような構成要素としては、特に限定されることなく、本発明の機能層に該当しない電極合材層、多孔膜層、および接着層などが挙げられる。
 また、電池部材は、本発明の機能層を複数種類備えていてもよい。例えば、電極は、集電体上に本発明の電極合材層用スラリー組成物から形成される電極合材層を備え、且つ、当該電極合材層上に本発明の多孔膜層用および/または接着層用スラリー組成物から形成される多孔膜層および/または接着層を備えていてもよい。また例えば、セパレータは、セパレータ基材上に本発明の多孔膜層用スラリー組成物から形成される多孔膜層を備え、且つ、当該多孔膜層上に本発明の接着層用スラリー組成物から形成される接着層を備えていてもよい。
(非水系二次電池)
 本発明の二次電池は、上述した本発明の電池部材を備えるものである。より具体的には、本発明の二次電池は、正極、負極、セパレータ、および電解液を備え、電池部材である正極、負極およびセパレータの少なくとも一つに、本発明の機能層が含まれる。本発明の二次電池は、本発明の電池部材を用いて製造されるため、製造プロセスにおける不良の発生が抑制され、優れた電池特性を発揮し得る。
<正極、負極およびセパレータ>
 本発明の二次電池に用いる正極、負極およびセパレータは、少なくとも一つが、上述した本発明の電池部材である。なお、本発明の電池部材以外(すなわち、本発明の機能層を備えない)正極、負極およびセパレータとしては、特に限定されることなく、既知の正極、負極およびセパレータを用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えばリチウムイオン二次電池においては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。また、これらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
<非水系二次電池の製造方法>
 上述した本発明の二次電池は、例えば、正極と負極とをセパレータを介して重ね合わせ、これを必要に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することで製造することができる。なお、正極、負極、セパレータのうち、少なくとも一つの電池部材を、本発明の機能層を備える本発明の電池部材とする。また、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 そして、実施例および比較例において、ブロック重合体の重量平均分子量およびジブロック量、ブロック重合体(水素化物)の水素化率、水溶性重合体の重量平均分子量、負極合材層用スラリー組成物の塗布密度、電池部材のハンドリング性(負極のロール剥がれ試験およびセパレータのブロッキング試験)、並びに、電池部材のプロセス接着性は、以下の方法で評価した。
<ブロック重合体の重量平均分子量およびジブロック量>
 まず、ブロック重合体の重量平均分子量を、高速液体クロマトグラフィー(装置:東ソー社製、型番「HLC8220」)を用いて、ポリスチレン換算分子量として測定した。なお、測定には、3本連結したカラム(昭和電工社製、型番「Shodex KF-404HQ」、カラム温度:40℃、キャリア:流速0.35ml/分のテトラヒドロフラン)、並びに、検出器として示差屈折計および紫外検出器を用いた。また、分子量の較正は、標準ポリスチレン(ポリマーラボラトリー社製、標準分子量:500~3000000)の12点で実施した。
 そして、上記高速液体クロマトグラフィーにより得られたチャートのピークを各構造体(例えば、ジブロック構造体およびトリブロック構造体)に帰属し、これらピークの面積比を元に、ジブロック量(質量)%を算出した。
<ブロック重合体(水素化物)の水素化率>
 ブロック重合体(水素化物)の水素化率は、水素化反応前後にH-NMRスペクトルを測定して、水素化反応前後での主鎖および側鎖部分の不飽和結合、並びに芳香環の不飽和結合に対応するシグナルの積分値の減少量を元に算出した。
<水溶性重合体の重量平均分子量>
 得られた水溶性重合体の水溶液を、下記の溶離液で0.05質量%に希釈し、測定試料を得た。得られた測定試料を、以下の条件のゲル浸透クロマトグラフィー(GPC)により分析し、水溶性重合体の重量平均分子量を求めた。
・GPC装置:東ソー社製「HLC-8220」
・分離カラム:昭和電工社製「Shodex OHpak SB-807HQ,SB-806M HQ」(温度40℃)
・溶離液:0.1mol/L硝酸ナトリウム(NaNO)水溶液
・流速:0.5mL/分
・標準資料:標準ポリエチレンオキシド
<塗布密度>
 得られた負極原反の負極合材層の厚み(cm)と塗布量(g/cm)から、以下の計算式を用いて塗布密度(g/cm)を算出した。なお、負極合材層の厚みはマイクロメーターにより測定した。
 塗布密度(g/cm)=塗布量(g/cm)/厚み(cm)
<ハンドリング性>
<<負極のロール剥がれ試験>>
 得られた負極原反を、直径500mmのロールプレス機を用いて、15m/秒のプレス速度で、プレス後の負極合材層の密度が1.75g/cmとなるように連続プレスを行った。この連続プレス時に、ロールプレス機のロール表面に付着する負極合材層由来の付着物を目視で確認し、下記の基準で評価した。ロール表面に付着物が付着し難いほど、負極がハンドリング性に優れることを示す。
 AA:1000m連続プレスした後も、ロール表面に付着物が確認されなかった。
  A:800m連続プレスした後も、ロール表面に付着物が確認されなかったが、800m超1000m未満連続プレスした段階で、ロール表面に付着物が確認された。
  B:500m以上800m未満連続プレスした段階で、ロール表面に付着物が確認された。
  C:0m超500m未満連続プレスした段階で、ロール表面に付着物が確認された。
<<セパレータのブロッキング試験>>
 多孔膜層付きセパレータを、5cm×5cmの正方形片に裁断した。そして、当該正方形片を、多孔膜層面が向かい合うように2枚重ね合わせた。重ね合わせた正方形片を、40℃、10g/cmの加圧下に置くことによりプレス試料片を得た。得られたプレス試験片を24時間放置し、24時間放置後の試験片について、2枚の正方形片が接着しているか否かを確認した。次いで、接着が確認された試験片について、重ね合わされたセパレータの正方形片1枚全体を固定し、もう1枚を0.3N/mの力で引っ張り、剥離可能か否かを観察し、ブロッキング状態を下記基準で評価した。接着が観察されないほど、多孔膜層付きセパレータがハンドリング性に優れることを示す。
 A:正方形片同士が接着していない。
 B:正方形片同士が接着しているが、剥離可能である。
 C:正方形片同士が接着し、剥離することができない。
<プロセス接着性>
<<実施例1~10、16~26、36および比較例1~3>>
 機能層としての負極合材層を介した負極とセパレータのプロセス接着性を、以下の通りピール強度を測定することで評価した。
 まず、負極およびセパレータを、それぞれ長さ50mm、幅10mmに裁断した。裁断した負極およびセパレータを、負極合材層を介して積層させた。そして、得られた積層片を、温度70℃、荷重5kN/mの平板プレスでプレスして、試験片を得た。
 この試験片を、負極の集電体側の面を下にして、負極の表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付けた。なお、セロハンテープは水平な試験台に固定しておいた。そして、引張り速度50mm/分で、セパレータの一端を鉛直上方に引っ張って剥がしたときの応力を測定した。この測定を3回行った。測定された合計3回の応力の平均値をピール強度(N/m)として求め、負極合材層を介した負極とセパレータとのプロセス接着性として下記の基準で評価した。ピール強度が大きいほど、プロセス接着性が良好であることを示す。
 AA:ピール強度が3N/m以上
  A:ピール強度が2N/m以上3N/m未満
  B:ピール強度が1N/m以上2N/m未満
  C:ピール強度が1N/m未満
<<実施例11~15、27~35および比較例4>>
 機能層としての多孔膜層を介した、多孔膜層付きセパレータと電極(正極および負極)のプロセス接着性を、以下の通りピール強度を測定することで評価した。
 まず、正極、負極および多孔膜層付きセパレータを、それぞれ長さ50mm、幅10mmに裁断した。
 裁断した正極とセパレータを、正極の正極合材層とセパレータの多孔膜層が接するようにして積層させた。そして、得られた積層片を、温度70℃、荷重5kN/mの平板プレスでプレスして、試験片を得た。
 この試験片を、正極の集電体側の面を下にして、正極の表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付けた。なお、セロハンテープは水平な試験台に固定しておいた。そして、引張り速度50mm/分で、セパレータの一端を鉛直上方に引っ張って剥がしたときの応力を測定した。この測定を3回行った。
 また、裁断した負極を、上記正極と同様にして、セパレータと積層させ、プレスして、試験片を得た。この試験片について、上記正極の場合と同様にして応力を測定した。この測定を3回行った。
 測定された合計6回の応力の平均値をピール強度(N/m)として求め、多孔膜層を介した、多孔膜層付きセパレータと電極とのプロセス接着性として下記の基準で評価した。ピール強度が大きいほど、プロセス接着性が良好であることを示す。
 AA:ピール強度が13N/m以上
  A:ピール強度が10N/m以上13N/m未満
  B:ピール強度が7N/m以上10N/m未満
  C:ピール強度が7N/m未満
(実施例1)
<重合体粒子の調製>
<<ブロック重合体のシクロヘキサン溶液の調製>>
 耐圧反応器に、シクロヘキサン233.3kg、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)54.2mmol、および芳香族ビニル単量体としてのスチレン25.0kgを添加した。そしてこれらを40℃で攪拌しているところに、重合開始剤としてのn-ブチルリチウム1806.5mmolを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100%であった。引き続き、50~60℃を保つように温度制御しながら、耐圧反応器に、脂肪族共役ジエン単量体としてのイソプレン75.0kgを1時間にわたり連続的に添加した。イソプレンの添加を完了後、重合反応を更に1時間継続した。イソプレンの重合転化率は100%であった。次いで、耐圧反応器に、カップリング剤としてのジクロロジメチルシラン740.6mmolを添加して2時間カップリング反応を行った。その後、活性末端を失活させるべく、反応液にメタノール3612.9mmolを添加してよく混合した。次いで、この反応液100部(重合体成分を30.0部含有)に、酸化防止剤として、2,6-ジ-tert-ブチル-p-クレゾール0.3部を加えて混合した。得られた混合溶液を、85~95℃の温水中に少しずつ滴下することで溶媒を揮発させて、析出物を得た。そして、この析出物を粉砕し、85℃で熱風乾燥することにより、ブロック重合体を含む乾燥物を回収した。
 そして、回収した乾燥物をシクロヘキサンに溶解し、ブロック重合体の濃度が25%であるブロック重合体溶液を調製した。
<<転相乳化>>
 アルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルスルホコハク酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウムを1:1:1(質量基準)で混合した混合物をイオン交換水に溶解し、5%の水溶液を調製した。
 そして、得られたブロック重合体溶液500gと得られた水溶液500gとをタンク内に投入し撹拌させることで予備混合を行った。続いて、タンク内から、予備混合物を、定量ポンプを用いて100g/分の速度で連続式高能率乳化分散機(太平洋機工社製、製品名「マイルダー MDN303V」)へ移送し、回転数20000rpmで撹拌することにより、予備混合物を転相乳化した乳化液を得た。
 次に、得られた乳化液中のシクロヘキサンをロータリーエバポレータにて減圧留去した。その後、留去した乳化液をコック付きのクロマトカラム中で1日静置分離させ、分離後の下層部分を除去することで濃縮を行った。
 最後に、上層部分を100メッシュの金網で濾過し、ブロック重合体を含有する重合体粒子の水分散液(ブロック重合体ラテックス)を得た。
 得られたブロック重合体を含有する重合体粒子の水分散液を用いて、ブロック重合体の重量平均分子量およびジブロック量を測定した。結果を表1に示す。
<水溶性重合体の準備>
 ポリメタクリル酸(和光純薬社製、重量平均分子量:10万)の水溶液を準備した。
<粒子状結着材(スチレンブタジエンランダム共重合体)の調製>
 反応器に、イオン交換水150部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム水溶液(濃度10%)25部、芳香族ビニル単量体としてのスチレン63部、カルボキシル基含有単量体としてのイタコン酸3.5部、ヒドロキシル基含有単量体としての2-ヒドロキシエチルアクリレート1部、および、分子量調整剤としてのt-ドデシルメルカプタン0.5部を、この順に投入した。次いで、反応器内部の気体を窒素で3回置換した後、脂肪族共役ジエン単量体としての1,3-ブタジエン32.5部を投入した。60℃に保った反応器に、重合開始剤としての過硫酸カリウム0.5部を投入して重合反応を開始し、撹拌しながら重合反応を継続した。重合転化率が96%になった時点で冷却し、重合停止剤としてのハイドロキノン水溶液(濃度10%)0.1部を加えて重合反応を停止した。その後、水温60℃のロータリーエバポレータを用いて残留単量体を除去し、粒子状結着材としてのスチレンブタジエンランダム共重合体の水分散液を得た。
<非水系二次電池負極合材層用バインダー組成物の調製>
 上述で得られた重合体粒子の水分散液と、水溶性重合体の水溶液と、粒子状結着材の水分散液とを、固形分換算の質量比が重合体粒子:水溶性重合体:粒子状結着材=96:4:96となるように容器へ投入して混合物を得た。得られた混合物を撹拌機(新東科学社製、製品名「スリーワンモータ」)を用いて1時間撹拌することにより、負極合材層用バインダー組成物を得た。
<非水系二次電池負極合材層用スラリー組成物の調製>
 ディスパー付きのプラネタリーミキサーに、負極活物質としての人造黒鉛(容量:360mAh/g)100部、導電材としてのカーボンブラック(TIMCAL社製、製品名「Super C65」)1部、増粘剤としてのカルボキシメチルセルロース(日本製紙ケミカル社製、製品名「MAC-350HC」)の2%水溶液を固形分相当で1.2部加えて混合物を得た。得られた混合物をイオン交換水で固形分濃度60%に調整した後、25℃で60分間混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分間混合し混合液を得た。得られた混合液に、上述で調製されたバインダー組成物を固形分相当量で2.2部、およびイオン交換水を入れ、最終固形分濃度が48%となるように調整した。さらに10分間混合した後、減圧下で脱泡処理することにより、流動性の良い負極合材層用スラリー組成物を得た。
<負極の形成>
 得られた負極合材層用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、負極原反を得た。この負極原反を用いて、塗布密度およびハンドリング性(負極のロール剥がれ試験)を評価した。結果を表1に示す。
 そして、負極原反をロールプレスで圧延して、負極合材層の厚みが80μmの負極を得た。
<正極の形成>
 正極活物質としての体積平均粒子径12μmのLiCoOを100部と、導電材としてのアセチレンブラック(電気化学工業社製、製品名「HS-100」)を2部と、結着材としてのポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部と、溶媒としてのN-メチルピロリドンとを混合して全固形分濃度を70%とした。これらをプラネタリーミキサーにより混合し、正極合材層用スラリー組成物を得た。
 得られた正極合材層用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極原反を得た。
 そして、正極原反をロールプレスで圧延して、正極合材層の厚みが55μmの正極を得た。
<セパレータの準備>
 セパレータとしては、単層のポリプロピレン製セパレータ(セルガード社製、製品名「セルガード2500」)を用いた。
 このセパレータと、上述で得られた負極とを用いてプロセス接着性を評価した。結果を表1に示す。
<リチウムイオン二次電池の作製>
 得られた正極を49cm×5cmの長方形に切り出して正極合材層側の表面が上側になるように置き、その正極合材層上に120cm×5.5cmに切り出したセパレータを、正極がセパレータの長手方向左側に位置するように配置した。更に、得られた負極を50×5.2cmの長方形に切り出し、セパレータ上に、負極合材層側の表面がセパレータに向かい合うように、かつ、負極がセパレータの長手方向右側に位置するように配置した。そして、得られた積層体を捲回機により捲回し、捲回体を得た。この捲回体を電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート/ジエチルカーボネート/ビニレンカーボネート=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF6)を空気が残らないように注入し、更にアルミ包材外装の開口を150℃のヒートシールで閉口して、容量800mAhの捲回型リチウムイオン二次電池を製造した。そして、このリチウムイオン二次電池が良好に動作することを確認した。
(実施例2)
 負極合材層用バインダー組成物の調製時に、粒子状結着材としてのスチレンブタジエンランダム共重合体に替えて、以下のようにして調製したアクリル重合体を使用した以外は、実施例1と同様にして、重合体粒子、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
<<粒子状結着材(アクリル重合体)の調製>
 冷却管、温度計、攪拌機、滴下ロートを有するセパラブルフラスコに、イオン交換水159.5部および界面活性剤(三洋化成工業社製、製品名「エレミノールJS-20」(40%品))1.5部を仕込み、65℃に昇温した。また別途、界面活性剤(三洋化成工業社製、製品名「エレミノールJS-20」(40%品))を11.0部、芳香族ビニル単量体としてのスチレン255部、(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート225部、ヒドロキシル基含有単量体としての2-ヒドロキシエチルアクリレート10部、カルボキシル基含有単量体としてのイタコン酸10部およびアクリル酸15部、並びにイオン交換水300部を乳化させた単量体乳化物を調製した。得られた単量体乳化物を、上記セパラブルフラスコに3時間かけて滴下した。この単量体乳化物の添加と並行して、上記セパラブルフラスコに、酸化剤としての過硫酸カリウム0.4部をイオン交換水55部に溶解したもの、および、還元剤としてのヒドロキシメタンスルフィン酸ナトリウム0.4部をイオン交換水55部に溶解したものを、4時間かけて滴下し、65℃で滴下重合を行った。そして、単量体乳化物を滴下終了後、2時間熟成した。得られた反応混合物を冷却し、アンモニア水18部を添加して、粒子状結着材としてのアクリル重合体の水分散液を得た。
(実施例3)
 負極合材層用バインダー組成物の調製時に、以下のようにして調製した重合体粒子を使用し、且つ粒子状結着材を使用しなかった以外は、実施例1と同様にして、水溶性重合体、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
<重合体粒子の調製>
<<ブロック重合体のシクロヘキサン溶液の調製>>
 実施例1と同様にして、ブロック重合体を含む乾燥物を得た。得られた乾燥物を、固形分濃度が10%となるようにシクロヘキサンに溶解した。この溶解物10kgに対し、カルボキシル基含有単量体としてのメタクリル酸100gを添加した。得られた混合物を30℃で攪拌しているところに、重合開始剤としてのジメチル2,2'-アゾビス(2-メチルプロピオネート)を10g加え、80℃に昇温後2時間保持することで、メタクリル酸単位が連なったグラフト部分が導入されたブロック重合体のシクロヘキサン溶液(ブロック重合体溶液)を得た。
<<転相乳化>>
 上記のようにして得られたブロック重合体溶液を使用した以外は、実施例1と同様にして、ブロック重合体を含有する重合体粒子の水分散液(ブロック重合体ラテックス)を得た。
(実施例4)
 負極合材層用バインダー組成物の調製時に、粒子状結着材を使用しなった以外は、実施例1と同様にして、重合体粒子、水溶性重合体、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例5)
 負極合材層用バインダー組成物の調製時に、重合体粒子と水溶性重合体の固形分換算の質量比を98:2に変更した以外は、実施例4と同様にして、重合体粒子、水溶性重合体、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例6)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、ポリアクリル酸(シグマアルドリッチ社製、重量平均分子量:13万)を使用した以外は、実施例4と同様にして、重合体粒子、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例7)
 負極合材層用バインダー組成物の調製時に、以下のようにして調製した重合体粒子を使用した以外は、実施例4と同様にして、水溶性重合体、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
<重合体粒子の調製>
<<ブロック重合体のシクロヘキサン溶液の調製>>
 カップリング剤としてのジクロロジメチルシランの使用量を496.8mmolに変更した以外は、実施例1と同様にして、ブロック重合体の濃度が25%であるブロック重合体溶液を調製した。
<<転相乳化>>
 上記のようにして得られたブロック重合体溶液を使用した以外は、実施例1と同様にして、ブロック重合体を含有する重合体粒子の水分散液(ブロック重合体ラテックス)を得た。
(実施例8)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、ポリスチレンスルホン酸ナトリウム(東ソー社製、製品名「ポリナスPS-5」、重量平均分子量:10万)の水溶液を使用した以外は、実施例4と同様にして、重合体粒子、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例9)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、ポリアクリル酸(シグマアルドリッチ社製、重量平均分子量:45万)の水溶液を使用した以外は、実施例4と同様にして、重合体粒子、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、リチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例10)
 負極合材層用バインダー組成物の調製時に、以下のようにして調製した重合体粒子を使用した以外は、実施例4と同様にして、水溶性重合体、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
<重合体粒子の調製>
<<ブロック重合体のシクロヘキサン溶液の調製>>
 脂肪族共役ジエン単量体として、イソプレンに替えて1,3-ブタジエンを使用した以外は、実施例1と同様にして、ブロック重合体の濃度が25%であるブロック重合体溶液を調製した。
<<転相乳化>>
 上記のようにして得られたブロック重合体溶液を使用した以外は、実施例1と同様にして、ブロック重合体を含有する重合体粒子の水分散液(ブロック重合体ラテックス)を得た。
(実施例11)
<重合体粒子の調製>
 実施例1と同様にして、ブロック重合体を含有する重合体粒子の水分散液(ブロック重合体ラテックス)を得た。
<水溶性重合体の準備>
 実施例1と同様の、ポリメタクリル酸(和光純薬社製、重量平均分子量:10万)の水溶液を準備した。
<非水系二次電池多孔膜層用バインダー組成物の調製>
 上述で得られた重合体粒子の水分散液と、水溶性重合体の水溶液とを、固形分換算の質量比が重合体粒子:水溶性重合体=20:1となるように容器へ投入して混合物を得た。得られた混合物を撹拌機(新東科学社製、製品名「スリーワンモータ」)を用いて1時間撹拌することにより、多孔膜層用バインダー組成物を得た。
<非水系二次電池多孔膜層用スラリー組成物の調製>
 非導電性粒子としてのアルミナ(住友化学社製、製品名「AKP3000」)を固形分相当で100部と、上述で得られた多孔膜層用バインダー組成物を固形分相当で10部とをボールミルを用いて混合することにより、非水系二次電池多孔膜層用スラリー組成物を調製した。
<多孔膜層付きセパレータの形成>
 セパレータ基材としての単層のポリプロピレン製セパレータ(セルガード社製、製品名「セルガード2500」)の一方の面に、上述で得られた多孔膜層用スラリー組成物を塗布し、50℃で3分間乾燥させた。その後、上記セパレータの他方の面にも上述で得られた多孔膜層用スラリー組成物を塗布し、50℃で3分間乾燥させて、両面に多孔膜層(厚みはそれぞれ2μm)を備える多孔膜層付きセパレータを得た。
 この多孔膜層付きセパレータを用いて、ハンドリング性(セパレータのブロッキング試験)を評価した。結果を表1に示す。
<正極の形成>
 実施例1と同様にして、正極合材層を備える正極を得た。
<負極の形成>
 以下のようにして調製した負極合材層用バインダー組成物を使用した以外は実施例1と同様にして、負極合材層を備える負極を得た。
 この負極と、上述で得られた正極と、上述で得られた多孔膜層付きセパレータとを用いてプロセス接着性を評価した。結果を表1に示す。
<<非水系二次電池負極合材層用バインダー組成物の調製>>
 反応器に、イオン交換水150部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム水溶液(濃度10%)25部、芳香族ビニル単量体としてのスチレン63部、カルボキシル基含有単量体としてのイタコン酸3.5部、ヒドロキシル基含有単量体としての2-ヒドロキシエチルアクリレート1部、および、分子量調整剤としてのt-ドデシルメルカプタン0.5部を、この順に投入した。次いで、反応器内部の気体を窒素で3回置換した後、脂肪族共役ジエン単量体としての1,3-ブタジエン32.5部を投入した。60℃に保った反応器に、重合開始剤としての過硫酸カリウム0.5部を投入して重合反応を開始し、撹拌しながら重合反応を継続した。重合転化率が96%になった時点で冷却し、重合停止剤としてのハイドロキノン水溶液(濃度10%)0.1部を加えて重合反応を停止した。その後、水温60℃のロータリーエバポレータを用いて残留単量体を除去し、粒子状結着材としてのスチレンブタジエンランダム共重合体の水分散液を得た。この水分散液を、負極合材層用バインダー組成物として使用した。
<リチウムイオン二次電池の作製>
 得られた正極を49cm×5cmの長方形に切り出して正極合材層側の表面が上側になるように置き、その正極合材層上に120cm×5.5cmに切り出した多孔膜層付きセパレータを、正極が多孔膜層付きセパレータの長手方向左側に位置するように配置した。更に、得られた負極を50×5.2cmの長方形に切り出し、多孔膜層付きセパレータ上に、負極合材層側の表面が多孔膜層に向かい合うように、かつ、負極が多孔膜層付きセパレータの長手方向右側に位置するように配置した。そして、得られた積層体を捲回機により捲回し、捲回体を得た。この捲回体を電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート/ジエチルカーボネート/ビニレンカーボネート=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF6)を空気が残らないように注入し、更にアルミ包材外装の開口を150℃のヒートシールで閉口して、容量800mAhの捲回型リチウムイオン二次電池を製造した。そして、このリチウムイオン二次電池が良好に動作することを確認した。
(実施例12)
 多孔膜層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、以下のようにして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用した以外は、実施例11と同様にして、重合体粒子、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、およびリチウムイオン二次電池を作製した。そして、実施例11と同様にして評価を行った。結果を表1に示す。
<水溶性重合体の調製>
 攪拌機付き5MPa耐圧容器に、ヒドロキシル基含有単量体としての2-ヒドロキシエチルアクリレート4部、カルボキシル基含有単量体としてのメタクリル酸32.5部、架橋性単量体としてのエチレンジメタクリレート0.8部、フッ素含有(メタ)アクリル酸エステル単量体としての2,2,2-トリフルオロエチルメタクリレート7.5部、(メタ)アクリル酸エステル単量体としてのエチルアクリレート55.2部、界面活性剤としてのドデシルベンゼンスルホン酸ナトリウム0.1部、分子量調節剤としてのt-ドデシルメルカプタン0.1部、イオン交換水150部、および重合開始剤としての過硫酸カリウム0.5部を入れ、十分に攪拌した。その後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む混合物を得た。この水溶性重合体を含む混合物に10%アンモニア水を添加してpH8に調整して、水溶性重合体(ランダム共重合体)の水溶液を得た。
(実施例13)
 多孔膜層用バインダー組成物の調製時に、重合体粒子として、実施例3と同様にして調製した、メタクリル酸単位が連なったグラフト部分が導入されたブロック重合体を含有する重合体粒子を使用した以外は、実施例11と同様にして、水溶性重合体、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、リチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表1に示す。
(実施例14)
 多孔膜層用バインダー組成物の調製時に、重合体粒子として、実施例7と同様にして調製した重合体粒子を使用した以外は、実施例11と同様にして、水溶性重合体、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、およびリチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表1に示す。
(実施例15)
 多孔膜層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、ポリスチレンスルホン酸ナトリウム(東ソー社製、製品名「ポリナスPS-5」、重量平均分子量:10万)の水溶液を使用した以外は、実施例11と同様にして、重合体粒子、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、およびリチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表1に示す。
(実施例16)
 負極合材層用バインダー組成物の調製時に、以下のようにして調製した重合体粒子を使用した以外は、実施例4と同様にして、水溶性重合体、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
<重合体粒子の調製>
<<ブロック重合体のシクロヘキサン溶液の調製>>
 耐圧反応器に、シクロヘキサン233.3kg、TMEDA54.2mmol、および芳香族ビニル単量体としてのスチレン25.0kgを添加した。そしてこれらを40℃で攪拌しているところに、重合開始剤としてのn-ブチルリチウム1806.5mmolを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100%であった。引き続き、50~60℃を保つように温度制御しながら、耐圧反応器に、脂肪族共役ジエン単量体としてのイソプレン75.0kgを1時間にわたり連続的に添加した。イソプレンの添加を完了後、重合反応を更に1時間継続した。イソプレンの重合転化率は100%であった。次いで、耐圧反応器に、カップリング剤としてのジクロロジメチルシラン740.6mmolを添加して2時間カップリング反応を行った。その後、活性末端を失活させるべく、反応液にメタノール3612.9mmolを添加してよく混合した。次いで、この反応液100部(重合体成分を30.0部含有)に、酸化防止剤として、2,6-ジ-tert-ブチル-p-クレゾール0.3部を加えて混合した。得られた混合溶液を、撹拌装置を備えた耐圧反応器に移送し、水素化触媒としてシリカ-アルミナ担持型ニッケル触媒(日揮触媒化成社製、製品名「E22U」、ニッケル担持量60%)4.0部及び脱水シクロヘキサン100部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を撹拝しながら水素を供給し、温度170℃、圧力4.5MPaにて6時間水素化反応を行った。
 水素化反応終了後、反応溶液をろ過して水素化触媒を除去した。次いで、ゼータプラス(登録商標)フィルター30H(キュノー社製、孔径0.5~1μm)にて濾過し、更に別の金属ファイバー製フィルター(ニチダイ社製、孔径0.4μm)にて順次濾過して微小な固形分を除去した。更に、円筒型濃縮乾燥器(日立製作所社製、製品名「コントロ」)を用いて、温度260℃、圧力0.001MPa以下で、溶液から、溶媒であるシクロヘキサン及びその他の揮発成分を除去し、濃縮乾燥器に直結したダイから溶融状態でストランド状に押出した。押出物を冷却後、ペレタイザーでカットして、ブロック重合体(水素化物)のペレットを得た。
 そして、回収したペレットをシクロヘキサンに溶解し、ブロック重合体(水素化物)の濃度が25%であるブロック重合体溶液を調製した。
 なお、得られた重合体の水素化率を測定し、主鎖及び側鎖部分の不飽和結合の水素化率が99.9モル%であり、芳香環の不飽和結合の水素化率が0モル%であることを確認した。
(比較例1)
 負極合材層用バインダー組成物の調製時に、以下のようにして調製した重合体粒子を使用した以外は、実施例4と同様にして、水溶性重合体、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
<重合体粒子の調製>
<<ブロック重合体のシクロヘキサン溶液の調製>>
 カップリング剤としてのジクロロジメチルシランの使用量を225.8mmolに変更した以外は、実施例1と同様にして、ブロック重合体の濃度が25%であるブロック重合体溶液を調製した。
<<転相乳化>>
 上記のようにして得られたブロック重合体溶液を使用した以外は、実施例1と同様にして、ブロック重合体を含有する重合体粒子の水分散液(ブロック重合体ラテックス)を得た。
(比較例2)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、ポリアクリル酸(和光純薬社製、重量平均分子量:5000)の水溶液を使用すると共に、重合体粒子と水溶性重合体の固形分換算の質量比を98:2に変更した以外は、実施例4と同様にして、重合体粒子、負極合材層用バインダー組成物および負極合材層用スラリー組成物を調製した。しかしながら、スラリー組成物が過度に増粘してしまい、負極を作製することができなかった。
(比較例3)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、ポリアクリル酸(和光純薬社製、重量平均分子量:100万)の水溶液を使用すると共に、重合体粒子と水溶性重合体の固形分換算の質量比を98:2に変更した以外は、実施例4と同様にして、重合体粒子、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(比較例4)
 多孔膜層用バインダー組成物の調製時に、比較例1と同様にして調製した重合体粒子を使用した以外は、実施例11と同様にして、水溶性重合体、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、およびリチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表1に示す。
(実施例17)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、以下のようにして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用した以外は、実施例1と同様にして、重合体粒子、粒子状結着材、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
<水溶性重合体の調製>
 リアクターに、473部のイオン交換水と58部のメタクリル酸(カルボキシル基含有単量体)、0.6部のt-ドデシルメルカプタン、イオン交換水で固形分濃度10%に希釈したドデシルベンゼンスルホン酸ナトリウム3.0部を仕込んだ。次いで、リアクター内を密閉し、撹拌翼で撹拌しながら窒素置換を2回実施した。窒素置換終了後、窒素置換したイソプレン(脂肪族共役ジエン単量体)42部をリアクターに仕込んだ。その後、リアクター内を5℃に制御した。リアクター内が5℃に制御されていることを確認した後、ハイドロサルファイト0.01部をイオン交換水で溶解してリアクター内に添加した。ハイドロサルファイト添加5分後、クメンハイドロパーオキサイドを0.1部(1回目)添加した。更に別の容器を用い、イオン交換水9.0部にナトリウムホルムアルデヒドスルホキシレート(三菱ガス化学社製、製品名「SFS」)0.04部(1回目)、硫酸第一鉄(中部キレスト社製、製品名「フロストFe」)0.003部(1回目)、およびエチレンジアミン四酢酸(中部キレスト社製、製品名「キレスト400G」)0.03部を溶解したものを、リアクター内に添加した。
 重合転化率が40%に到達したところでリアクター内を10℃に昇温した。その後、重合転化率が60%に到達した後、リアクター内を18℃に昇温した。その後、重合転化率70%に到達時、クメンハイドロパーオキサイド0.09部(2回目)をリアクター内に添加した。更に別の容器を用い、イオン交換水9.0部にナトリウムホルムアルデヒドスルホキシレート(三菱ガス化学社製、製品名「SFS」)0.04部(2回目)、硫酸第一鉄(中部キレスト社製、製品名「フロストFe」)0.003部(2回目)、およびエチレンジアミン四酢酸(中部キレスト社製、製品名「キレスト400G」)0.03部を溶解したものをリアクター内に添加した。
 重合転化率が93%に到達した後、2,2,6,6-テトラメチルピペリジン 1-オキシル0.12部を10.35部のイオン交換水で希釈したものをリアクター内に添加し、反応を停止した。反応停止後、エバポレーターで残留イソプレンが300ppm以下となるまで脱臭した。脱臭完了後、5%水酸化ナトリウム水溶液でpHが12となるように撹拌しながら調整して、水溶性重合体(ランダム共重合体)の水溶液を得た。
(実施例18)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例17と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用し、且つ、粒子状結着材を使用しなかった以外は、実施例1と同様にして、重合体粒子、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例19)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、以下のようにして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用した以外は、実施例1と同様にして、重合体粒子、粒子状結着材、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
<水溶性重合体の調製>
 リアクターに、473部のイオン交換水と58部のメタクリル酸(カルボキシル基含有単量体)、0.6部のt-ドデシルメルカプタン,イオン交換水で固形分濃度10%に希釈したドデシルベンゼンスルホン酸ナトリウム3.0部を仕込んだ。次いで、リアクター内を密閉し、撹拌翼で撹拌しながら窒素置換を2回実施した。窒素置換終了後、窒素置換した1,3-ブタジエン(脂肪族共役ジエン単量体)42部をリアクターに仕込んだ。その後、リアクター内を5℃に制御した。リアクター内が5℃に制御されていることを確認した後、ハイドロサルファイト0.01部をイオン交換水で溶解してリアクター内に添加した。ハイドロサルファイト添加5分後、クメンハイドロパーオキサイドを0.1部添加した。更に別の容器を用い、イオン交換水9.0部にナトリウムホルムアルデヒドスルホキシレート(三菱ガス化学社製、製品名「SFS」)0.04部、硫酸第一鉄(中部キレスト社製、製品名「フロストFe」)0.003部、およびエチレンジアミン四酢酸(中部キレスト社製、製品名「キレスト400G」)0.03部を溶解したものを、リアクター内に添加した。
 重合転化率が40%に到達したところでリアクター内を10℃に昇温した。その後、重合転化率が60%に到達した後、リアクター内を18℃に昇温した。その後、重合転化率70%に到達時、クメンハイドロパーオキサイド0.09部をリアクター内に添加した。更に別の容器を用い、イオン交換水9.0部にナトリウムホルムアルデヒドスルホキシレート(三菱ガス化学社製、製品名「SFS」)0.04部、硫酸第一鉄(中部キレスト社製、製品名「フロストFe」)0.003部、およびエチレンジアミン四酢酸(中部キレスト社製、製品名「キレスト400G」)0.03部を溶解したものをリアクター内に添加した。
 重合転化率が93%に到達した後、2,2,6,6-テトラメチルピペリジン 1-オキシル0.12部を10.35部のイオン交換水で希釈したものをリアクター内に添加し、反応を停止した。反応停止後、エバポレーターで残留1,3-ブタジエンが300pppm以下となるまで脱臭した。脱臭完了後、5%水酸化ナトリウム水溶液でpHが12となるように撹拌しながら調整して、水溶性重合体(ランダム共重合体)の水溶液を得た。
(実施例20)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施襟17と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用した以外は、実施例2と同様にして、重合体粒子、粒子状結着材、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例21)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例17と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用した以外は、実施例3と同様にして、重合体粒子、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例22)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例17と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用し、且つ、実施例1と同様にして調製した粒子状結着剤としてのスチレンブタジエンランダム共重合体を使用した以外は、実施例3と同様にして、重合体粒子、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例23)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例17と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用し、且つ、実施例2と同様にして調製したアクリル重合体を使用した以外は、実施例3と同様にして、重合体粒子、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例24)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例19と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用した以外は、実施例3と同様にして、重合体粒子、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例25)
 負極合材層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例19と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用し、且つ、実施例1と同様にして調製した粒子状結着剤としてのスチレンブタジエンランダム共重合体を使用した以外は、実施例3と同様にして、重合体粒子、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例26)
 多孔膜層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例17と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用した以外は、実施例11と同様にして、重合体粒子、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、およびリチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表2に示す。
(実施例27)
 多孔膜層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例17と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用し、且つ実施例1と同様にして調製した粒子状結着剤としてのスチレンブタジエンランダム共重合体を使用した以外は、実施例11と同様にして、重合体粒子、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、およびリチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表2に示す。
(実施例28)
 多孔膜層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例19と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用した以外は、実施例11と同様にして、重合体粒子、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、およびリチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表2に示す。
(実施例29)
 多孔膜層用バインダー組成物の調製時に、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例19と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用し、且つ、実施例1と同様にして調製した粒子状結着剤としてのスチレンブタジエンランダム共重合体を使用した以外は、実施例11と同様にして、重合体粒子、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、およびリチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表2に示す。
(実施例30)
 多孔膜層用バインダー組成物の調製時に、重合体粒子として、実施例3と同様にして調製した、メタクリル酸単位が連なったグラフト部分が導入されたブロック重合体を含有する重合体粒子を使用し、且つ水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例17と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用した以外は、実施例11と同様にして、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、リチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表2に示す。
(実施例31)
 多孔膜層用バインダー組成物の調製時に、重合体粒子として、実施例3と同様にして調製した、メタクリル酸単位が連なったグラフト部分が導入されたブロック重合体を含有する重合体粒子を使用し、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例17と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用し、且つ、実施例1と同様にして調製した粒子状結着剤としてのスチレンブタジエンランダム共重合体を使用した以外は、実施例11と同様にして、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、リチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表2に示す。
(実施例32)
 多孔膜層用バインダー組成物の調製時に、重合体粒子として、実施例3と同様にして調製した、メタクリル酸単位が連なったグラフト部分が導入されたブロック重合体を含有する重合体粒子を使用し、且つ水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例19と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用した以外は、実施例11と同様にして、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、リチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表2に示す。
(実施例33)
 多孔膜層用バインダー組成物の調製時に、重合体粒子として、実施例3と同様にして調製した、メタクリル酸単位が連なったグラフト部分が導入されたブロック重合体を含有する重合体粒子を使用し、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例19と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用し、且つ、実施例1と同様にして調製した粒子状結着剤としてのスチレンブタジエンランダム共重合体を使用した以外は、実施例11と同様にして、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、リチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表2に示す。
(実施例34)
 多孔膜層用バインダー組成物の調製時に、重合体粒子として、実施例3と同様にして調製した、メタクリル酸単位が連なったグラフト部分が導入されたブロック重合体を含有する重合体粒子を使用し、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例17と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用し、且つ、実施例2と同様にして調製したアクリル重合体を使用した以外は、実施例11と同様にして、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、リチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表2に示す。
(実施例35)
 負極合材層用バインダー組成物の調製時に、実施例16と同様にして調製した重合体粒子を使用し、且つ、水溶性重合体としてのポリメタクリル酸の水溶液に替えて、実施例17と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用した以外は、実施例4と同様にして、水溶性重合体、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表2に示す。
(実施例36)
 負極合材層用バインダー組成物の調製時に、実施例7と同様にして調製した重合体粒子を使用した以外は、実施例18と同様にして、水溶性重合体、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表3に示す。
(実施例37)
 負極合材層用バインダー組成物の調製時に、以下のようにして調製した重合体粒子を使用した以外は、実施例22と同様にして、水溶性重合体、粒子状結着材、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表3に示す。
<重合体粒子の調製>
<<ブロック重合体のシクロヘキサン溶液の調製>>
 カップリング剤としてのジクロロジメチルシランの使用量を496.8mmolに変更した以外は、実施例3と同様にして、ブロック重合体の濃度が25%であるブロック重合体溶液を調製した。
<<転相乳化>>
 上記のようにして得られたブロック重合体溶液を使用した以外は、実施例3と同様にして、ブロック重合体を含有する重合体粒子の水分散液(ブロック重合体ラテックス)を得た。
(実施例38)
 多孔膜層用バインダー組成物の調製時に、実施例37と同様にして調製した重合体粒子を使用した以外は、実施例30と同様にして、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、リチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表3に示す。
(実施例39)
 負極合材層用バインダー組成物の調製時に、以下のようにして調製した水溶性重合体(重量平均分子量:45万)を使用した以外は、実施例21と同様にして、水溶性重合体、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表3に示す。
<水溶性重合体の調製>
 クメンハイドロパーオキサイドの添加量を0.08部(1回目と2回目の双方)に変更した以外は、実施例17と同様にして水溶性重合体(ランダム共重合体)の水溶液を得た。
(実施例40)
 多孔膜層用バインダー組成物の調製時に、以下のようにして調製した水溶性重合体(重量平均分子量:10万)を使用した以外は、実施例31と同様にして、
重合体粒子、粒子状結着材、多孔膜層用バインダー組成物、多孔膜層用スラリー組成物、多孔膜層付きセパレータ、負極、正極、リチウムイオン二次電池を準備または作製した。そして、実施例11と同様にして評価を行った。結果を表3に示す。
<水溶性重合体の調製>
 クメンハイドロパーオキサイドの添加量を0.3部(1回目と2回目の双方)に、ナトリウムホルムアルデヒドスルホキシレートの添加量を0.12部(1回目と2回目の双方)に、硫酸第一鉄の添加量を0.009部(1回目と2回目の双方)に変更した以外は、実施例17と同様にして水溶性重合体(ランダム共重合体)の水溶液を得た。
(実施例41)
 負極合材層用バインダー組成物の調製時に、実施例17と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液に替えて、実施例12と同様にして調製した水溶性重合体(重量平均分子量:30万)の水溶液を使用した以外は、実施例21と同様にして、重合体粒子、負極合材層用バインダー組成物、負極合材層用スラリー組成物、負極、正極、セパレータ、およびリチウムイオン二次電池を準備または作製した。そして、実施例1と同様にして評価を行った。結果を表3に示す。
 なお、以下に示す表1~3中、
「AG」は、人造黒鉛を示し、
「ST」は、スチレン単位を示し、
「IP」は、イソプレン単位を示し、
「IP水素化物」は、イソプレン水素化物単位を示し、
「BD」は、1,3-ブタジエン単位を示し、
「MAA」は、メタクリル酸単位を示し、
「DDS」は、ジクロロジメチルシランに由来する部位を示し、
「PMAA」は、ポリメタクリル酸を示し、
「PAA」は、ポリアクリル酸を示し、
「WP」は、実施例12で調製した水溶性重合体を示し、
「SPSS」は、ポリスチレンスルホン酸ナトリウムを示し、
「COOH」は、カルボキシル基を示し、
「SOH」は、スルホン酸基を示し、
「OH」は、ヒドロキシル基を示し、
「SBR」は、スチレンブタジエンランダム共重合体を示し、
「ACL」は、アクリル重合体を示し、
「IP/MAA」は、イソプレンとメタクリル酸のランダム共重合体を示し、
「BD/MAA」は、1,3-ブタジエンとメタクリル酸のランダム共重合体を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3より、芳香族ビニル単量体単位からなるブロック領域を有し、且つジブロック量が0~60質量%の範囲内であるブロック重合体を含有する重合体粒子と、親水性基を有し、且つ重量平均分子量が15,000~500,000の範囲内である水溶性重合体と、水とを含むバインダー組成物を用いて機能層(負極合材層または多孔膜層)を形成した実施例1~41では、電池部材としての負極またはセパレータに、優れたハンドリング性およびプロセス接着性を付与し得ることが分かる。加えて、実施例1~10、16~25、35~37、39および41では、負極合材層用スラリー組成物を、高い塗布密度で集電体上に塗布できていることが分かる。
 一方、ジブロック量が60質量%を超えるブロック重合体を含有する重合体粒子を含むバインダー組成物を用いて負極合材層を形成した比較例1では、負極のハンドリング性が低下することが分かる。
 また、重量平均分子量が15,000未満の水溶性重合体を含むバインダー組成物を用いた比較例2では、上述した通り、負極合材層用スラリー組成物の増粘により負極を作製することができなかった。
 そして、重量平均分子量が500,000超の水溶性重合体を含むバインダー組成物を用いて負極合材層を形成した比較例3では、負極合材層用スラリー組成物塗布時に重合体粒子などが凝集してしまい、負極のハンドリング性およびプロセス接着性が低下し、また負極合材層用スラリー組成物の塗布密度が低下することが分かる。
 更に、ジブロック量が60質量%を超えるブロック重合体を含有する重合体粒子を含むバインダー組成物を用いて多孔膜層を形成した比較例4では、セパレータのハンドリング性が低下することが分かる。
 本発明によれば、電極およびセパレータなどの電池部材に、優れたハンドリング性およびプロセス接着性を両立させ得る機能層を形成可能な非水系二次電池用バインダー組成物、および、非水系二次電池機能層用スラリー組成物を提供することができる。
 また、本発明によれば、電極およびセパレータなどの電池部材に、優れたハンドリング性およびプロセス接着性を両立させ得る非水系二次電池用機能層を提供することができる。
 そして、本発明によれば、優れたハンドリング性およびプロセス接着性を両立し得る非水系二次電池用電池部材、並びに、当該電池部材を備える非水系二次電池を提供することができる。

Claims (12)

  1.  芳香族ビニル単量体単位からなるブロック領域を有するブロック重合体を含有する重合体粒子と、親水性基を有する水溶性重合体と、水とを含み、
     前記ブロック重合体のジブロック量が、0質量%以上60質量%以下であり、
     前記水溶性重合体の重量平均分子量が、15,000以上500,000以下である、非水系二次電池用バインダー組成物。
  2.  前記親水性基がカルボキシル基である、請求項1に記載の非水系二次電池用バインダー組成物。
  3.  前記重合体粒子の含有量が、前記重合体粒子と前記水溶性重合体の合計含有量の50質量%以上99.8質量%以下である、請求項1または2に記載の非水系二次電池用バインダー組成物。
  4.  前記ブロック重合体が、更に、カップリング部位を含む、請求項1~3の何れかに記載の非水系二次電池用バインダー組成物。
  5.  前記ブロック重合体が、更に、脂肪族共役ジエン単量体単位およびアルキレン構造単位の少なくとも一方を含む、請求項1~4の何れかに記載の非水系二次電池用バインダー組成物。
  6.  前記水溶性重合体が、脂肪族共役ジエン単量体単位を含む、請求項1~5の何れかに記載の非水系二次電池用バインダー組成物。
  7.  請求項1~6の何れかに記載の非水系二次電池用バインダー組成物を含む、非水系二次電池機能層用スラリー組成物。
  8.  更に電極活物質粒子を含む、請求項7に記載の非水系二次電池機能層用スラリー組成物。
  9.  更に非導電性粒子を含む、請求項7に記載の非水系二次電池機能層用スラリー組成物。
  10.  請求項7~9の何れかに記載の非水系二次電池機能層用スラリー組成物を用いて形成される、非水系二次電池用機能層。
  11.  請求項10に記載の非水系二次電池用機能層を備える、非水系二次電池用電池部材。
  12.  請求項11に記載の非水系二次電池用電池部材を備える、非水系二次電池。
PCT/JP2018/031228 2017-08-24 2018-08-23 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材、および非水系二次電池 WO2019039560A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019537688A JP7306268B2 (ja) 2017-08-24 2018-08-23 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材、および非水系二次電池
US16/633,784 US11374224B2 (en) 2017-08-24 2018-08-23 Binder composition for non-aqueous secondary battery, slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery component for non-aqueous secondary battery, and non-aqueous secondary battery
KR1020207004175A KR20200042898A (ko) 2017-08-24 2018-08-23 비수계 이차 전지용 바인더 조성물, 비수계 이차 전지 기능층용 슬러리 조성물, 비수계 이차 전지용 기능층, 비수계 이차 전지용 전지 부재, 및 비수계 이차 전지
EP18847960.4A EP3675255A4 (en) 2017-08-24 2018-08-23 COMPOSITION OF BINDER FOR NON-AQUEOUS SECONDARY BATTERIES, COMPOSITION OF SLURRY FOR FUNCTIONAL LAYERS OF NON-AQUEOUS SECONDARY BATTERY, FUNCTIONAL LAYER FOR NON-AQUEOUS SECONDARY BATTERIES, BATTERY ELEMENT FOR NON-AQUEOUS SECONDARY BATTERIES AND NON-AQUEOUS SECONDARY BATTERY
CN201880050934.2A CN111066185B (zh) 2017-08-24 2018-08-23 粘结剂组合物、功能层用浆料组合物、功能层、电池构件及非水系二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-161167 2017-08-24
JP2017161167 2017-08-24

Publications (1)

Publication Number Publication Date
WO2019039560A1 true WO2019039560A1 (ja) 2019-02-28

Family

ID=65438990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031228 WO2019039560A1 (ja) 2017-08-24 2018-08-23 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材、および非水系二次電池

Country Status (6)

Country Link
US (1) US11374224B2 (ja)
EP (1) EP3675255A4 (ja)
JP (1) JP7306268B2 (ja)
KR (1) KR20200042898A (ja)
CN (1) CN111066185B (ja)
WO (1) WO2019039560A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246222A1 (ja) * 2019-06-05 2020-12-10 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2021065634A1 (ja) * 2019-09-30 2021-04-08 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2021065742A1 (ja) 2019-09-30 2021-04-08 日本ゼオン株式会社 非水系二次電池用バインダー組成物及びその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
WO2021153670A1 (ja) * 2020-01-31 2021-08-05 日本ゼオン株式会社 非水系二次電池用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
WO2021172229A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
US20210305659A1 (en) * 2020-03-20 2021-09-30 Samsung Sdi Co., Ltd. Composition for coating layer, separator for rechargeable lithium battery including coating layer formed therefrom and rechargeable lithium battery including the same
KR20220147584A (ko) 2020-02-26 2022-11-03 니폰 제온 가부시키가이샤 전기 화학 소자용 복합 입자, 제조 방법, 전기 화학 소자용 전극, 및 전기 화학 소자
EP3950750A4 (en) * 2019-03-29 2022-12-21 Zeon Corporation NON-WATER SECONDARY BATTERY ELECTRODE BINDING COMPOSITION, NON-WATER SECONDARY BATTERY ELECTRODE SLUR COMPOSITION, NON-WATER SECONDARY BATTERY ELECTRODE AND NON-WATER SECONDARY BATTERY ELECTRODE
EP4023687A4 (en) * 2019-08-30 2023-08-23 Zeon Corporation NON-WATER SECONDARY BATTERY BINDER COMPOSITION, METHOD OF MANUFACTURE THEREOF, NON-WATER SECONDARY BATTERY ELECTRODE SLURRY COMPOSITION, NON-WATER SECONDARY BATTERY ELECTRODE AND NON-WATER SECONDARY BATTERY ELECTRODE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176522B2 (ja) 2017-08-30 2022-11-22 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
CN112382756B (zh) * 2020-07-31 2021-10-15 万向一二三股份公司 一种具有嵌段结构侧链的负极粘结剂材料及其制备方法
CN118738393A (zh) * 2023-03-31 2024-10-01 宁德时代新能源科技股份有限公司 复合粘结剂及制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013604A1 (ja) * 2009-07-29 2011-02-03 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
WO2011024789A1 (ja) 2009-08-24 2011-03-03 Jsr株式会社 電極形成用組成物、電極形成用スラリー、電極および電気化学デバイス
JP2014011019A (ja) 2012-06-29 2014-01-20 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極用スラリー、二次電池電極及び二次電池
WO2014196547A1 (ja) * 2013-06-04 2014-12-11 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2014196436A1 (ja) * 2013-06-04 2014-12-11 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜スラリー組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2015504234A (ja) * 2012-01-19 2015-02-05 ジール ゲーエムベーハーSihl GmbH 多孔層を含むセパレータおよび前記のセパレータを製造するための方法
JP2015070245A (ja) 2013-10-01 2015-04-13 日本ゼオン株式会社 電気化学キャパシタ用バインダー組成物、電気化学キャパシタ用スラリー組成物、電気化学キャパシタ用電極及び電気化学キャパシタ
WO2017056404A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194098B1 (en) 1998-12-17 2001-02-27 Moltech Corporation Protective coating for separators for electrochemical cells
JP2010135094A (ja) * 2008-12-02 2010-06-17 Jsr Corp 電気化学素子電極用結着剤および電気化学素子電極用組成物
AU2009330594B2 (en) * 2008-12-16 2014-09-11 Dow Global Technologies Llc A coating composition comprising polymer encapsulated metal oxide opacifying pigments and a process of producing the same
CN103782426B (zh) * 2011-08-30 2016-03-30 日本瑞翁株式会社 二次电池负极用粘合剂组合物、二次电池用负极、负极用浆料组合物、制造方法及二次电池
US10090527B2 (en) * 2013-03-15 2018-10-02 Zeon Corporation Binder composition for secondary battery, slurry composition for secondary battery, negative electrode for secondary battery, and secondary battery
WO2014148064A1 (ja) * 2013-03-22 2014-09-25 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN105229832B (zh) * 2013-05-23 2017-09-01 日本瑞翁株式会社 二次电池用粘合剂组合物、二次电池电极用浆料组合物、二次电池用负极及二次电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013604A1 (ja) * 2009-07-29 2011-02-03 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
WO2011024789A1 (ja) 2009-08-24 2011-03-03 Jsr株式会社 電極形成用組成物、電極形成用スラリー、電極および電気化学デバイス
JP2015504234A (ja) * 2012-01-19 2015-02-05 ジール ゲーエムベーハーSihl GmbH 多孔層を含むセパレータおよび前記のセパレータを製造するための方法
JP2014011019A (ja) 2012-06-29 2014-01-20 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極用スラリー、二次電池電極及び二次電池
WO2014196547A1 (ja) * 2013-06-04 2014-12-11 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2014196436A1 (ja) * 2013-06-04 2014-12-11 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜スラリー組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2015070245A (ja) 2013-10-01 2015-04-13 日本ゼオン株式会社 電気化学キャパシタ用バインダー組成物、電気化学キャパシタ用スラリー組成物、電気化学キャパシタ用電極及び電気化学キャパシタ
WO2017056404A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3675255A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950750A4 (en) * 2019-03-29 2022-12-21 Zeon Corporation NON-WATER SECONDARY BATTERY ELECTRODE BINDING COMPOSITION, NON-WATER SECONDARY BATTERY ELECTRODE SLUR COMPOSITION, NON-WATER SECONDARY BATTERY ELECTRODE AND NON-WATER SECONDARY BATTERY ELECTRODE
WO2020246222A1 (ja) * 2019-06-05 2020-12-10 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
JP7533455B2 (ja) 2019-06-05 2024-08-14 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
CN113874412A (zh) * 2019-06-05 2021-12-31 日本瑞翁株式会社 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极以及非水系二次电池
EP4023687A4 (en) * 2019-08-30 2023-08-23 Zeon Corporation NON-WATER SECONDARY BATTERY BINDER COMPOSITION, METHOD OF MANUFACTURE THEREOF, NON-WATER SECONDARY BATTERY ELECTRODE SLURRY COMPOSITION, NON-WATER SECONDARY BATTERY ELECTRODE AND NON-WATER SECONDARY BATTERY ELECTRODE
WO2021065634A1 (ja) * 2019-09-30 2021-04-08 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2021065742A1 (ja) 2019-09-30 2021-04-08 日本ゼオン株式会社 非水系二次電池用バインダー組成物及びその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
CN114258601A (zh) * 2019-09-30 2022-03-29 日本瑞翁株式会社 非水系二次电池用粘结剂组合物及其制造方法、非水系二次电池电极用浆料组合物、非水系二次电池用电极、以及非水系二次电池
CN114424370A (zh) * 2019-09-30 2022-04-29 日本瑞翁株式会社 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极以及非水系二次电池
KR20220069924A (ko) 2019-09-30 2022-05-27 니폰 제온 가부시키가이샤 비수계 이차 전지용 바인더 조성물 및 그 제조 방법, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극, 그리고 비수계 이차 전지
WO2021153670A1 (ja) * 2020-01-31 2021-08-05 日本ゼオン株式会社 非水系二次電池用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
CN114982017A (zh) * 2020-01-31 2022-08-30 日本瑞翁株式会社 非水系二次电池用粘结剂组合物及其制造方法、非水系二次电池电极用浆料组合物、非水系二次电池用电极、以及非水系二次电池
KR20220147584A (ko) 2020-02-26 2022-11-03 니폰 제온 가부시키가이샤 전기 화학 소자용 복합 입자, 제조 방법, 전기 화학 소자용 전극, 및 전기 화학 소자
EP4112683A4 (en) * 2020-02-26 2024-03-13 Zeon Corporation COMPOSITE PARTICLES FOR ELECTROCHEMICAL ELEMENT AS WELL AS METHOD FOR MANUFACTURING SAME, ELECTRODE FOR ELECTROCHEMICAL ELEMENT, AND ELECTROCHEMICAL ELEMENT
CN114982018A (zh) * 2020-02-28 2022-08-30 日本瑞翁株式会社 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极、以及非水系二次电池
WO2021172229A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
US20210305659A1 (en) * 2020-03-20 2021-09-30 Samsung Sdi Co., Ltd. Composition for coating layer, separator for rechargeable lithium battery including coating layer formed therefrom and rechargeable lithium battery including the same
US12107297B2 (en) * 2020-03-20 2024-10-01 Samsung Sdi Co., Ltd. Composition for coating layer including heat-resistant binder, hydroxy-containing polyimide particle, and silane crosslinker, separator for rechargeable lithium battery including coating layer formed therefrom and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
CN111066185A (zh) 2020-04-24
JPWO2019039560A1 (ja) 2020-07-30
JP7306268B2 (ja) 2023-07-11
CN111066185B (zh) 2023-03-24
EP3675255A4 (en) 2021-03-24
US20200243861A1 (en) 2020-07-30
EP3675255A1 (en) 2020-07-01
US11374224B2 (en) 2022-06-28
KR20200042898A (ko) 2020-04-24

Similar Documents

Publication Publication Date Title
JP7306268B2 (ja) 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材、および非水系二次電池
JP7120249B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
US11482707B2 (en) Binder composition for non-aqueous secondary battery, slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery component for non-aqueous secondary battery, and non-aqueous secondary battery
US11578164B2 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2017141791A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP7235045B2 (ja) 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池部材、および非水系二次電池
WO2021172229A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
WO2020246222A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
JP7405073B2 (ja) 非水系二次電池用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用電池部材および非水系二次電池
WO2021153670A1 (ja) 非水系二次電池用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
KR20200024791A (ko) 전기 화학 소자용 바인더 조성물, 전기 화학 소자 기능층용 슬러리 조성물, 전기 화학 소자 접착층용 슬러리 조성물, 및 복합막
JP7347411B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池部材、および非水系二次電池
KR20220069936A (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극, 및 비수계 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537688

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018847960

Country of ref document: EP

Effective date: 20200324