WO2017077940A1 - リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池 Download PDF

Info

Publication number
WO2017077940A1
WO2017077940A1 PCT/JP2016/081903 JP2016081903W WO2017077940A1 WO 2017077940 A1 WO2017077940 A1 WO 2017077940A1 JP 2016081903 W JP2016081903 W JP 2016081903W WO 2017077940 A1 WO2017077940 A1 WO 2017077940A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
binder
Prior art date
Application number
PCT/JP2016/081903
Other languages
English (en)
French (fr)
Inventor
景山 忠
篤郎 稲垣
喜樹 田中
啓嗣 中島
敏夫 所
博之 脇坂
宗生 佐々木
Original Assignee
センカ株式会社
滋賀県
明石 満
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by センカ株式会社, 滋賀県, 明石 満 filed Critical センカ株式会社
Priority to KR1020177036034A priority Critical patent/KR102570761B1/ko
Priority to JP2017548733A priority patent/JP6795814B2/ja
Priority to CN201680034156.9A priority patent/CN107710470B/zh
Publication of WO2017077940A1 publication Critical patent/WO2017077940A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • C08F290/126Polymers of unsaturated carboxylic acids or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode binder, a negative electrode slurry composition and a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are used as power sources for electronic devices such as mobile phones and laptop computers because they are lightweight and have high energy density and high durability against repeated charge and discharge. Moreover, it is utilized also as electric power apparatuses which can be discharged and charged also in electric vehicles, such as an electric vehicle.
  • a positive electrode active material layer including a positive electrode active material is formed on both surfaces of a positive electrode current collector, and a negative electrode active material layer including a negative electrode active material is formed on both surfaces of the negative electrode current collector.
  • the negative electrode is connected via an electrolyte layer and is housed in a battery case.
  • the negative electrode of a lithium ion secondary battery is formed by applying and drying a mixed slurry of graphite powder as a negative electrode active material and a negative electrode binder on the surface of a current collector.
  • the negative electrode binder serves to bind graphite powder as a negative electrode active material to each other and to bind a metal foil such as a copper foil as a current collector to the graphite powder. Since the negative electrode binder having such a role acts as an internal resistance in the negative electrode, it is required to be a material that can exhibit a high binding force in a small amount. Furthermore, since the type of binder affects the output characteristics (rate characteristics) of the battery, a negative electrode binder with good rate characteristics is required.
  • PVDF polyvinylidene fluoride
  • SBR styrene-butadiene latex
  • the main problem to be solved by the present invention is to provide a negative electrode binder which is a material of a lithium ion secondary battery having excellent rate characteristics.
  • a hydrophobic core formed of a structural unit derived from a hydrophobic monomer.
  • a dispersion containing core-corona polymer fine particles having a structure surrounded by a hydrophilic corona part formed of a structural unit derived from a carboxyl group-containing hydrophilic macromonomer around the part.
  • the present invention has been completed as a result of further studies based on such findings.
  • the present invention relates to a lithium ion secondary battery negative electrode binder, a lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery described in Items 1 to 6 below.
  • Items 1 to 6 a lithium ion secondary battery negative electrode binder, a lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery described in Items 1 to 6 below.
  • a binder for a negative electrode of a lithium ion secondary battery comprising a dispersion in which core-corona type polymer fine particles are dispersed in an aqueous dispersion medium,
  • the core-corona polymer fine particles are polymer fine particles obtained by radical polymerization of the carboxyl group-containing hydrophilic macromonomer and the hydrophobic monomer
  • the carboxyl group-containing hydrophilic macromonomer is obtained by reacting a carboxyl group-containing polymer compound with a compound having both a polymerizable reactive group and a functional group that forms a covalent bond by reacting with the carboxyl group in the molecule.
  • the binder according to Item 1 which is a macromonomer.
  • Item 3 A compound having both a polymerizable reactive group and a functional group that reacts with a carboxyl group to form a covalent bond in the molecule is represented by the following general formula (1):
  • R 1 represents a hydrogen atom or a methyl group.
  • Q 1 represents an oxygen atom or —NH—.
  • R 2 represents a hydrogen atom or a methyl group.
  • Q 2 represents an oxygen atom or —NH—.
  • n represents an integer of 1 to 4.
  • R 3 represents a hydrogen atom or a methyl group.
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a halogen atom.
  • X 1 represents a halogen atom.
  • Item 3 The binder according to Item 2, wherein the binder is at least one compound selected from the group consisting of compounds represented by: Item 4.
  • Item 5 A slurry composition for a negative electrode of a lithium ion secondary battery, comprising the binder for a negative electrode of a lithium ion secondary battery according to any one of items 1 to 3 and an active material.
  • the binder for a negative electrode of a lithium ion secondary battery of the present invention includes a core-corona polymer compound in the form of a fine particle, thereby causing point adhesion to the surface of the negative electrode active material and the current collector, contact between the negative electrode active material, the negative electrode A hydrophilic corona portion that can bind between the negative electrode active materials and between the negative electrode active material and the current collector without interfering with the contact between the active material and the current collector, and is present on the surface of the polymer fine particles As a result, the binding property between the negative electrode active materials and between the negative electrode active material and the current collector can be increased, so that the electrode resistance can be reduced.
  • the hydrophobic core portion can follow the volume change due to the swelling and shrinkage of the negative electrode active material during charge and discharge, thereby eliminating the contact portion between the negative electrode active materials and the negative electrode active material and the current collector. It is possible to prevent occurrence of a non-existing portion (electrical isolation of the negative electrode active material). Therefore, by using such a binder for a negative electrode of a lithium ion secondary battery, a lithium ion secondary battery having excellent rate characteristics can be obtained.
  • FIG. 2 is a schematic diagram illustrating a mechanism for obtaining core-corona type polymer fine particles.
  • 5 is a graph showing rate characteristics of evaluation half cells of Examples 1, 4, and 5, and Comparative Example 1.
  • FIG. It is a graph which shows the impedance measurement result of the half cell for evaluation of Example 1 and Comparative Example 1.
  • the binder for a lithium ion secondary battery negative electrode the slurry composition for a lithium ion secondary battery negative electrode, the lithium ion secondary battery negative electrode and the lithium ion secondary battery of the present invention will be specifically described.
  • Binder for negative electrode of lithium ion secondary battery is a dispersion in which core-corona type polymer fine particles are dispersed in an aqueous dispersion medium. including.
  • the core-corona type polymer compound dispersed in the dispersion is in the form of fine particles, and the core-corona type polymer fine particles are formed of structural units derived from a hydrophobic monomer.
  • the hydrophobic core portion is characterized by having a structure in which a hydrophilic corona portion formed of a structural unit derived from a carboxyl group-containing hydrophilic macromonomer is surrounded.
  • the core-corona polymer compound is in the form of fine particles, it adheres to the surface of the negative electrode active material and the current collector, contacts between the negative electrode active material, and contacts between the negative electrode active material and the current collector. Since the negative electrode active materials and between the negative electrode active material and the current collector can be bound without interfering with each other, the electrode resistance can be reduced. This is because the hydrophilic corona part present on the surface of the polymer fine particles has a number of carboxyl groups, and the carboxyl groups are excellent in affinity with the negative electrode active material. This is because it is uniformly dispersed in the layer, and the binding property between the negative electrode active materials and between the negative electrode active material and the current collector can be improved.
  • the hydrophobic core portion is formed of a hydrophobic monomer that constitutes a polymer compound having a low glass transition temperature (Tg), thereby following the volume change due to swelling and shrinkage of the negative electrode active material during charge and discharge.
  • Tg glass transition temperature
  • contact portions between the negative electrode active materials and between the negative electrode active materials and the current collector are eliminated, and a portion that cannot be electrically connected (electrical isolation of the negative electrode active material) can be prevented.
  • peeling of the negative electrode active material due to the charge / discharge cycle is reduced, so that the rate characteristics are excellent by using the lithium ion secondary battery negative electrode binder of the present invention. A lithium ion secondary battery can be obtained.
  • the core-corona type polymer fine particles are polymer fine particles obtained by radical polymerization of a carboxyl group-containing hydrophilic macromonomer and a hydrophobic monomer.
  • the carboxyl group-containing hydrophilic macromonomer reacts a carboxyl group-containing polymer compound with a compound having both a polymerizable reactive group and a functional group that reacts with the carboxyl group to form a covalent bond in the molecule. Is obtained.
  • the carboxyl group-containing polymer compound is not particularly limited as long as it contains a carboxyl group in the repeating unit of the polymer compound.
  • a polymer of a carboxyl group-containing monomer, a carboxyl group-containing polysaccharide, etc. Is mentioned.
  • Examples of the carboxyl group-containing monomer include monomers containing a carbon-carbon unsaturated double bond and a carboxyl group and / or a salt thereof as essential components.
  • Examples of such monomers include (meth) acrylic acid, crotonic acid, ⁇ -hydroxyacrylic acid, ⁇ -hydroxymethylacrylic acid and other unsaturated monocarboxylic acids, and salts thereof; itaconic acid, fumaric acid, Examples thereof include unsaturated dicarboxylic acids such as maleic acid and 2-methyleneglutaric acid, and salts thereof.
  • These monomers can be used individually by 1 type or in mixture of 2 or more types.
  • “(meth) acrylic acid” means acrylic acid and / or methacrylic acid.
  • carboxyl group-containing polysaccharide examples include carboxyalkyl celluloses such as carboxymethyl cellulose and carboxyethyl cellulose; carboxymethyl starch, carboxymethyl amylose, hyaluronic acid, alginic acid, pectin, and salts thereof. These polysaccharides can be used individually by 1 type or in mixture of 2 or more types.
  • Examples of the salt include metal salts, ammonium salts, and organic amine salts.
  • Examples of the metal salt include alkali metal salts such as lithium salt, sodium salt and potassium salt; alkaline earth metal salts such as magnesium salt and calcium salt; aluminum salt and iron salt.
  • Examples of the organic amine salt include alkanolamine salts such as monoethanolamine salt, diethanolamine salt and triethanolamine salt; alkylamine salts such as monoethylamine salt, diethylamine salt and triethylamine salt; polyamines such as ethylenediamine salt and triethylenediamine. Can be mentioned. These salts can be used individually by 1 type or in mixture of 2 or more types.
  • a monomer that is a raw material for the polymer of the carboxyl group-containing monomer is used in combination with a nonionic monomer copolymerizable with the monomer.
  • nonionic monomers include acrylamide, methacrylamide, n-isopropylacrylamide, methyl acrylate, methyl methacrylate, and the like.
  • a homopolymer or copolymer of a carboxyl group-containing monomer, or a copolymer in which a carboxyl group-containing monomer and a nonionic monomer are combined can be produced by a conventionally known polymerization method.
  • the said carboxyl group containing high molecular compound can be used individually by 1 type or in mixture of 2 or more types.
  • the carboxyl group-containing polymer compound polyacrylic acid and a salt thereof are preferable, and sodium polyacrylate is more preferable.
  • the ratio of the carboxyl group-containing structural unit in the carboxyl group-containing polymer compound is preferably 60 mol% or more, more preferably 80 mol% or more of the polymer compound total structural unit, A carboxyl group-containing structural unit is particularly preferred.
  • the molecular weight of the carboxyl group-containing polymer compound is not particularly limited as long as it is a number average molecular weight obtained by a known production method, and is preferably about 500 to 500,000.
  • Examples of compounds having both a polymerizable reactive group and a functional group that reacts with a carboxyl group to form a covalent bond in the molecule include, for example, the following general formula (1 ):
  • R 1 represents a hydrogen atom or a methyl group.
  • Q 1 represents an oxygen atom or —NH—.
  • compound (1) the following general formula (2):
  • R 2 represents a hydrogen atom or a methyl group.
  • Q 2 represents an oxygen atom or —NH—.
  • n represents an integer of 1 to 4.
  • R 3 represents a hydrogen atom or a methyl group.
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a halogen atom.
  • X 1 represents a halogen atom.
  • the functional group-containing compound at least one compound selected from the group consisting of compound (1), compound (2) and compound (3) can be used.
  • R 1 represents a hydrogen atom or a methyl group
  • Q 1 represents an oxygen atom or —NH—.
  • Examples of the compound (1) include glycidyl group-containing vinyl monomers such as glycidyl acrylate, glycidyl methacrylate, glycidyl acrylamide, and glycidyl methacrylamide. These compounds can be used individually by 1 type or in mixture of 2 or more types.
  • R 2 represents a hydrogen atom or a methyl group.
  • Q 2 represents an oxygen atom or —NH—.
  • n is an integer of 1 to 4, preferably 2.
  • Examples of the compound (2) include isocyanate group-containing vinyl monomers such as isocyanate ethyl acrylate, isocyanate ethyl methacrylate, isocyanate ethyl acrylamide, and isocyanate ethyl methacrylamide. These compounds can be used individually by 1 type or in mixture of 2 or more types.
  • R 3 represents a hydrogen atom or a methyl group.
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a halogen atom.
  • X 1 represents a halogen atom.
  • Examples of the alkyl group having 1 to 4 carbon atoms represented by R 4 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group, and the halogen atom includes a fluorine atom, a chlorine atom, and a bromine atom. And iodine atom.
  • Examples of the halogen atom represented by X 1 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 3 is preferably a hydrogen atom
  • R 4 is preferably a hydrogen atom
  • X 1 is preferably a chlorine atom or a bromine atom.
  • Examples of the compound (3) include chloromethyl styrene, bromomethyl styrene, and iodomethyl styrene. These compounds can be used individually by 1 type or in mixture of 2 or more types.
  • the synthesis of the carboxyl group-containing hydrophilic macromonomer obtained by reacting the carboxyl group-containing polymer compound with the functional group-containing compound is carried out by synthesizing the carboxyl group-containing polymer compound and the functional group-containing compound in an aqueous medium. Can usually be carried out by reacting at about 10 to 80 ° C., preferably about 20 to 60 ° C.
  • aqueous medium water; alcohols such as methanol, ethanol and propanol; ketones such as acetone and methyl ethyl ketone; dimethylformamide and the like can be used.
  • water alone, a mixed solvent of alcohol and water, a mixed solvent of ketone and water, or the like can be used, and water alone is preferable.
  • the ratio of the carboxyl group-containing polymer compound to the functional group-containing compound is not particularly limited, and the functional group-containing compound is about 40 to 1 mol per 100 mol of the carboxyl group-containing structural unit of the polymer compound. It is preferable to use in a range. A more preferable range of the functional group-containing compound is about 35 to 1 mol, and a particularly preferable range is about 10 to 1 mol.
  • the ratio of the functional group-containing compound is a ratio of the compound alone. is there.
  • the said functional group containing compound contains 2 or more types of a compound (1), a compound (2), or a compound (3), it is made for the ratio which totaled all the compounds contained to become the said range.
  • the reaction between the carboxyl group-containing polymer compound and the compound (1) is a nucleophilic reaction on the glycidyl group of the carboxyl group.
  • the reaction between the carboxyl group-containing polymer compound and the compound (2) is a nucleophilic reaction on the isocyanate group of the carboxyl group.
  • the reaction between the carboxyl group-containing polymer compound and the compound (3) is a nucleophilic reaction for the benzyl group of the carboxyl group.
  • the reaction time varies depending on the reaction temperature and is usually about 30 minutes to 10 hours.
  • the carboxyl group-containing hydrophilic macromonomer it is preferable to use polyacrylic acid or polyacrylate as the carboxyl group-containing polymer compound, and it comprises the compound (1), the compound (2) and the compound (3).
  • Compound (1) is preferably used as at least one compound selected from the group.
  • the compounds (1) it is more preferable to use glycidyl methacrylate.
  • the carboxyl group-containing hydrophilic macromonomer a combination of polyacrylic acid or polyacrylic acid salt as the carboxyl group-containing polymer compound and glycidyl methacrylate as the compound (1) as the functional group-containing compound.
  • the carboxyl group-containing polymer compound is a polyacrylate
  • M represents an alkali metal ion, an ammonium ion, or an organic ammonium ion, and l and m are integers representing the number of repeating units).
  • a structure represented by the formula (wherein l and m are the same as described above) is preferable.
  • carboxyl group-containing hydrophilic macromonomer and hydrophobic monomer are copolymerized in an aqueous medium in the presence of a polymerization initiator to obtain core-corona type polymer fine particles. be able to.
  • hydrophobic monomer known hydrophobic monomers having an ethylenically unsaturated bond group can be widely used.
  • styrene monomers (meth) acrylic acid esters, vinyl monomers And a monomer and a hydrocarbon conjugated diene monomer.
  • examples of the styrene monomer include styrene, methylstyrene, dimethylstyrene, chlorostyrene, dichlorostyrene, chloromethylstyrene, 4-methoxystyrene, 4-acetoxystyrene, and the like.
  • Examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and n-hexyl (meth) acrylate.
  • the vinyl monomer include vinyl acetate, vinyl propionate, vinyl benzoate, N-butylacrylamide, acrylonitrile, vinyl chloride and the like.
  • hydrocarbon conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, Examples include 2-phenyl-1,3-butadiene and 3-methyl-1,3-pentadiene.
  • These monomers can be used individually by 1 type or in mixture of 2 or more types.
  • (meth) acrylic acid esters are preferable, and 2-ethylhexyl (meth) acrylate is more preferable.
  • bifunctional hydrophobic monomers such as divinylbenzene and ethylene glycol dimethacrylate can be used.
  • the bifunctional hydrophobic monomer is preferably used in an amount of about 0.01 to 20% by weight, based on the total radical polymerizable monomer constituting the core of the polymer fine particle, About 10% by weight is more preferable.
  • aqueous medium water; alcohols such as methanol, ethanol and propanol; ketones such as acetone and methyl ethyl ketone; dimethylformamide and the like can be used.
  • water alone, a mixed solvent of alcohol and water, a mixed solvent of ketone and water, or the like can be used, and water alone is preferable.
  • the aqueous medium used here is the same as the aqueous medium used for the synthesis
  • polymerization initiator known polymerization initiators can be widely used. For example, ammonium persulfate, potassium persulfate, hydrogen peroxide, benzoyl peroxide, t-butyl hydroperoxide, azobisisobutyronitrile, And azobis (2-aminodipropane) hydrochloride.
  • a polymerization initiator can be used individually by 1 type or in mixture of 2 or more types.
  • the polymerization initiator is preferably used in an amount of about 0.1 to 10 mol with respect to 100 mol of the hydrophobic monomer. It is also possible to add a known molecular weight regulator as necessary.
  • the polymerization temperature is preferably 50 to 100 ° C.
  • the polymerization time varies depending on the type and amount of polymerization initiator used, the polymerization temperature and the like, and is usually about 30 minutes to 10 hours.
  • the polymerization is preferably performed until the hydrophobic monomer and the hydrophilic macromonomer that contribute to the formation of the core portion of the fine particles are consumed by the polymerization.
  • the ratio between the hydrophilic macromonomer and the hydrophobic monomer is not particularly limited.
  • the ratio of the repeating unit of the hydrophilic macromonomer to the hydrophobic monomer is preferably in the range of 1: 100 to 0.01, more preferably in the range of 1:10 to 0.05, and 1: 5 to A range of 0.1 is particularly preferred.
  • FIG. 1 schematically shows a typical mechanism for obtaining polymer fine particles when a carboxyl group-containing hydrophilic macromonomer and a hydrophobic monomer are copolymerized.
  • the carboxyl group-containing hydrophilic macromonomer 1 is composed of an acrylic acid unit 1a and a side chain 1b containing a vinyl group.
  • step D the hydrophilic corona part formed with the structural unit derived from the carboxyl group-containing hydrophilic macromonomer is formed on the surface of the hydrophobic core part 3 formed with the structural unit derived from the hydrophobic monomer.
  • Polymer fine particles 5 in which 4 is located are obtained (step D).
  • the binder for a lithium ion secondary battery negative electrode of the present invention includes a dispersion in which the core-corona polymer fine particles are dispersed in an aqueous dispersion medium.
  • aqueous dispersion medium water; alcohols such as methanol, ethanol and propanol; ketones such as acetone and methyl ethyl ketone; dimethylformamide and the like can be used.
  • water alone, a mixed solvent of alcohol and water, a mixed solvent of ketone and water, or the like can be used, and water alone is preferable.
  • the amount of the polymer fine particles contained in the lithium ion secondary battery negative electrode binder of the present invention is usually 10 to 60% by weight, preferably 15 to 50% by weight as the solid content of the dispersion.
  • the presence of the polymer fine particles can be easily confirmed by, for example, transmission electron microscopy or optical microscopy.
  • the volume average particle size of the polymer fine particles is 1 nm to 1000 nm, preferably 10 nm to 500 nm.
  • the volume average particle diameter can be measured using, for example, a zeta sizer, a microtrack, or the like.
  • the method for obtaining the dispersion is not particularly limited.
  • a method of producing a latex in which polymer fine particles are dispersed in an aqueous medium by the method as described above, and using the obtained latex as a dispersion as it is; replacing the aqueous medium of the obtained latex with another aqueous medium A method or the like is preferably used in view of good manufacturing efficiency.
  • the dispersion medium for example, when polymer fine particles are produced in alcohol and the alcohol is replaced with an aqueous medium other than the above-mentioned alcohol, an aqueous medium other than alcohol is added to the latex, and then the dispersion medium contains Examples include a method of removing an alcohol component by a distillation method, a fractional filtration method, a dispersion medium phase conversion method, or the like.
  • the resulting dispersion can be used as a negative electrode binder as it is.
  • additives such as a viscosity modifier and a fluidizing agent that improve paintability can be appropriately added and used.
  • additives include cellulose compounds such as carboxymethylcellulose, methylcellulose, and hydroxypropylcellulose; and ammonium salts and alkali metal salts thereof; polyacrylates such as sodium poly (meth) acrylate; polyvinyl alcohol, polyethylene oxide, Polyvinylpyrrolidone, copolymer of (meth) acrylic acid or (meth) acrylate and vinyl alcohol, copolymer of maleic anhydride or maleic acid or fumaric acid and vinyl alcohol, modified polyvinyl alcohol, modified poly (meta ) Water-soluble polymers such as acrylic acid, polyethylene glycol, polycarboxylic acid, ethylene-vinyl alcohol copolymer, vinyl acetate polymer, and the like. The use ratio of these additives can be appropriately selected as necessary.
  • the binder of the present invention can contain a polymer or polymer particles other than the polymer fine particles described above.
  • these polymers or polymer particles generally known polymers can be widely used as binders for battery electrodes.
  • the amount used is preferably 1 part by weight or less with respect to 1 part by weight of the polymer fine particles described above.
  • the binder of the present invention is a dispersion containing core-corona type polymer fine particles produced by the method as described above.
  • the solvent-soluble PVDF used as a binder resin has a contact between the negative electrode active material and a contact between the negative electrode active material and the current collector so as to coat the surface of the negative electrode active material.
  • the binder of the present invention contains a core-corona type polymer compound in the form of fine particles, thereby causing point adhesion to the surface of the negative electrode active material and the current collector, thereby preventing the negative electrode active material. Since the negative electrode active materials can be bonded to each other and between the negative electrode active material and the current collector without interfering with the contact between the negative electrode active material and the current collector, the electrode resistance should be reduced. Can do.
  • the core-corona type polymer fine particle has a hydrophilic corona portion having a high affinity with the negative electrode active material and the current collector on the surface of the polymer fine particle. Even in the expansion and contraction of the negative electrode active material due to charging / discharging, the binding properties between the negative electrode active materials and between the negative electrode active material and the current collector are maintained, the contact between the negative electrode active materials, the negative electrode active material and the current collector The electrode resistance can be kept small by maintaining the contact portion between the two.
  • the hydrophobic core part of the core-corona type polymer fine particles can follow the volume change due to the swelling and shrinkage of the negative electrode active material during charge / discharge, so that the negative electrode active material expands with the insertion and extraction of lithium ions. In the contraction process, it is possible to prevent the contact between the negative electrode active material and the negative electrode active material and the current collector from being lost and the occurrence of a portion that cannot be conducted (electrical isolation of the negative electrode active material).
  • Slurry composition for negative electrode of lithium ion secondary battery contains the binder and active material of the present invention described above.
  • the slurry composition for a negative electrode of a lithium ion secondary battery of the present invention can be prepared by mixing the binder and the active material of the present invention described above.
  • any active material can be used as long as it is used for the production of a normal electrode for a lithium ion secondary battery.
  • the negative electrode active material include graphite-based carbon materials (graphite) such as natural graphite, artificial graphite, and expanded graphite; carbonaceous materials such as carbon black, activated carbon, carbon fiber, coke, soft carbon, hard carbon, and pitch-based carbon fiber; Examples include conductive polymer compounds such as polyacene; composite metal oxides and other metal oxides. Among these, carbonaceous materials are preferable, and graphite such as natural graphite, artificial graphite, and expanded graphite is more preferable.
  • the content of the active material in the slurry composition is not particularly limited, and is usually 10 to 95% by weight, preferably 20 to 80% by weight, more preferably 35 to 65% by weight.
  • the average particle diameter of the active material is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, and further preferably 5 to 25 ⁇ m.
  • the value measured by the laser diffraction type particle size distribution measurement (laser diffraction scattering method) shall be employ
  • the content ratio of the active material and the binder in the negative electrode slurry composition is usually 0.1 to 10 parts by weight, preferably 0, in terms of solid content of the negative electrode binder described above with respect to 100 parts by weight of the active material. .5 to 5 parts by weight, particularly preferably 1 to 4 parts by weight. If the content of the negative electrode binder is too high, the internal resistance will increase. On the other hand, if the amount is too small, the desired binding force cannot be obtained, the negative electrode becomes unstable, and the charge / discharge cycle characteristics tend to deteriorate.
  • the negative electrode slurry composition may contain other additives in addition to the active material and the negative electrode binder.
  • additives include a conductive additive and a supporting salt (lithium salt).
  • the compounding ratio of these components is a known general range, and the compounding ratio can also be adjusted by appropriately referring to known knowledge about the lithium ion secondary battery.
  • Conductive auxiliary agent refers to a compound that is blended to improve conductivity.
  • the conductive assistant include carbon powder such as graphite; carbon fiber such as vapor grown carbon fiber (VGCF), and the like. Carbon fine particles having a particle diameter of about several nanometers to several tens of nanometers such as acetylene black and ketjen black. A powder is preferred.
  • the blending amount of the conductive assistant is preferably 1 to 10% by weight with respect to the total mass of the active material layer.
  • a slurry composition for the negative electrode can be prepared by adding a solvent for the purpose of adjusting the viscosity and adjusting the solid content of the binder.
  • a solvent for example, amide solvents such as N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, and methylformamide, and alcohol solvents such as methanol, ethanol, and higher alcohols can be used.
  • a stirrer for the mixing of the negative electrode binder, the active material, and additives and solvents used as necessary, a stirrer, a defoamer, a bead mill, a high-pressure homogenizer, or the like can be used. Moreover, it is preferable to prepare the slurry composition for negative electrodes under reduced pressure. Thereby, it can prevent that a bubble arises in the active material layer obtained.
  • Negative electrode for lithium ion secondary battery A negative electrode for a lithium ion secondary battery can be produced by applying and drying the slurry composition for negative electrode prepared as described above on a current collector. If necessary, it is preferable to press and increase the density after coating and drying.
  • the current collector used for the negative electrode those used as the current collector for the negative electrode of the lithium ion secondary battery can be used. Specifically, since it is required to be an electrochemically inert metal in the potential range where the negative electrode (carbon electrode) functions, a metal foil such as copper or nickel, an etching metal foil, an expanded metal, or the like is used. It is done.
  • a negative electrode layer can be formed by applying and drying the negative electrode slurry composition on such a current collector.
  • the method for applying the negative electrode slurry composition to the current collector include a doctor blade method, a reverse roll method, a comma bar method, a gravure method, and an air knife method.
  • the treatment temperature is usually 20 to 250 ° C., preferably 50 to 150 ° C.
  • the treatment time is usually 1 to 120 minutes, preferably 5 to 60 minutes.
  • the thickness of the active material layer (the thickness of one surface of the coating layer) is usually 20 to 500 ⁇ m, preferably 25 to 300 ⁇ m, more preferably 30 to 150 ⁇ m.
  • Lithium ion secondary battery The lithium ion secondary battery provided with the negative electrode produced as mentioned above is demonstrated.
  • the positive electrode is not particularly limited, and a known general positive electrode can be combined.
  • the positive electrode active material for example, olivine type lithium iron phosphate, lithium cobaltate, lithium manganate, lithium nickelate, ternary nickel cobalt lithium manganate, lithium nickel cobalt aluminum composite oxide and the like can be used.
  • Examples of the positive electrode current collector include metal materials such as aluminum, copper, nickel, tantalum, stainless steel, and titanium, and can be appropriately selected and used according to the type of the target power storage device.
  • aprotic polar solvents that dissolve lithium salts are widely used.
  • cyclic carbonate esters such as ethylene carbonate and propylene carbonate can be used by adding low-chain solvents such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate as low-viscosity solvents. .
  • lithium salt of the electrolyte examples include inorganic salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCl, LiBr; LiCF 3 SO 3 , LiN (SO 2 CF 3 )) 2 , LiN (SO 2 C 2 F 5 ) 2 , organic salts such as LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 )) 2, and the like may be used as electrolytes for non-aqueous electrolytes.
  • inorganic salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCl, LiBr
  • LiCF 3 SO 3 , LiN (SO 2 CF 3 )) 2 LiN (SO 2 C 2 F 5 ) 2
  • organic salts such as LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 )) 2, and the like may be used as electrolytes for non-aque
  • the separator is not particularly limited, and a polyolefin nonwoven fabric, a porous film, or the like can be used.
  • the structure of the secondary battery is not particularly limited, and examples thereof include a stacked (flat) battery, a wound (cylindrical) battery, and the like, and can be applied to any conventionally known form and structure.
  • the electrical connection form (electrode structure) in the lithium ion secondary battery can be applied to both an internal parallel connection type battery and an internal series connection type bipolar battery.
  • the lithium ion secondary battery obtained as described above has high initial discharge capacity and stable output characteristics based on the use of the negative electrode binder of the present invention.
  • Synthesis Example 3-1 Synthesis of sodium acrylate macromonomer (carboxyl group-containing hydrophilic macromonomer) In the same manner as in Synthesis Example 1-2, except that a polyacrylic acid 40% aqueous solution having a number average molecular weight of 16,500 was used, A sodium acrylate macromonomer solution (solid content concentration 32% by weight) was obtained. The number average molecular weight calculated
  • CMCNa macromonomer solution having a methacryloyl group (solid content concentration 10% by weight).
  • CMCNa macromonomer was purified by reprecipitation with acetone several times.
  • required from GPC (liquid chromatography) of the obtained CMCNa macromonomer was 16,000.
  • Example 1 Using the negative electrode binder of Synthesis Example 1, a lithium ion secondary battery evaluation half cell according to the present invention was produced by the following method. In addition, the following materials were used as the material of the evaluation half cell.
  • CMCNa aqueous solution A 2% by weight CMCNa aqueous solution was prepared, and the electrode composition ratio (weight ratio) after drying of the natural graphite powder, carbon fine powder, CMCNa, and the negative electrode binder of Synthesis Example 1 was 95: 3: 1: 1.
  • the mixture was mixed to prepare a slurry. Pure water was appropriately added to this slurry to obtain a uniform slurry, which was then applied to a copper foil with a doctor blade and dried at 100 ° C. for 20 minutes.
  • This electrode was cut into a 16 mm circle and dried under a reduced pressure of 10 ⁇ 1 Pa in a temperature atmosphere of 80 ° C. for 24 hours to obtain a target carbon negative electrode.
  • a carbon negative electrode and a counter lithium metal foil were placed, a separator was placed between both electrodes, and an electrolyte was injected to prepare a bipolar evaluation half cell.
  • Example 2 A bipolar evaluation half-cell was produced in the same manner as in Example 1 except that the negative electrode binder was changed to the binder of Synthesis Example 2.
  • Example 3 A bipolar evaluation half cell was produced in the same manner as in Example 1 except that the negative electrode binder was changed to the binder of Synthesis Example 3.
  • Example 4 A bipolar evaluation half cell was produced in the same manner as in Example 1 except that the negative electrode binder was changed to the binder of Synthesis Example 4.
  • Example 5 Without using a thickener (CMCNa), the negative electrode binder was changed to the binder of Synthesis Example 4, and the natural graphite powder, carbon fine powder, and the binder of Synthesis Example 4 were replaced with natural graphite powder, carbon fine powder, and the binder of Synthesis Example 4.
  • a bipolar evaluation half-cell was prepared in the same manner as in Example 1 except that the slurry was prepared by mixing so that the electrode composition ratio (weight ratio) after drying was 95: 3: 2.
  • Comparative Example 1 A bipolar evaluation half-cell was prepared in the same manner as in Example 1 except that the negative electrode binder was changed to SBR (milky white liquid, solid content concentration 40 wt%).
  • Comparative Example 2 A bipolar evaluation half-cell was prepared in the same manner as in Example 1 except that the negative electrode binder was changed to the emulsion of Comparative Synthesis Example 1.
  • Comparative Example 3 A bipolar evaluation half-cell was prepared in the same manner as in Example 1 except that the negative electrode binder was changed to a sodium polyacrylate aqueous solution (solid concentration 40 wt%, number average molecular weight 16,500).
  • the bipolar evaluation half cell of the example has a higher capacity at a higher rate than the comparative half cell.
  • FIG. 3 shows a Nyquist plot (Cole-Cole plot) in which the real impedance (Z ′) is taken on the X axis and the imaginary impedance (Z ′′) is taken on the Y axis.
  • FIG. 3 shows that the resistance value of the cell of Example 1 is lower than that of the cell of Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明の課題は、レート特性に優れたリチウムイオン二次電池の材料となる負極用バインダーを提供することである。本発明は、コア-コロナ型高分子微粒子が水性分散媒に分散された分散液を含むリチウムイオン二次電池負極用バインダーであって、前記コア-コロナ型高分子微粒子が、疎水性単量体由来の構造単位で形成された疎水性コア部の周囲を、カルボキシル基含有親水性マクロモノマー由来の構造単位で形成された親水性コロナ部が取り囲む構造を有する、バインダーである。

Description

リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池
 本発明は、リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、軽量でエネルギー密度が高いこと、繰り返し充放電に対する耐久性が高いことから、携帯電話、ノートパソコン等の電子デバイスの電源として用いられている。また、電気自動車等の電動車両においても、放電及び充電することができる電源装置として活用されている。
 リチウムイオン二次電池は、一般に、正極活物質を含む正極活物質層が正極集電体の両面に形成された正極と、負極活物質を含む負極活物質層が負極集電体の両面に形成された負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。
 リチウムイオン二次電池の負極は、負極活物質である黒鉛粉末と負極用バインダーとの混合スラリーを集電体表面に塗布及び乾燥することにより形成される。負極用バインダーは、負極活物質である黒鉛粉体同士を結着するとともに、集電体である銅箔等の金属箔と黒鉛粉体とを結着する働きをしている。このような役割を有する負極用バインダーは、負極において内部抵抗として作用することから、少量で高結着力を発現できる材料であることが求められる。さらに、バインダーの種類が電池の出力特性(レート特性)に影響を及ぼすため、レート特性のよい負極用バインダーが求められている。
 負極用バインダーの主成分となる樹脂としては、従来、正極と同様に、ポリビニリデンフルオライド(PVDF)が用いられていた。PVDFは、結着力が不十分であったことから、最近では、スチレン-ブタジエンラテックス(SBR)等が用いられている(例えば、特許文献1及び2)。しかし、SBRを含む負極用バインダーは、レート特性が不十分であった。
 リチウムイオン二次電池に対するレート特性の向上への要求は、益々増大していることから、レート特性に優れた負極用バインダーが望まれている。
特開平04-051459号公報 特開平05-074461号公報
 かかる状況において、本発明が解決しようとする主な課題は、レート特性に優れたリチウムイオン二次電池の材料となる負極用バインダーを提供することである。
 本発明者らは、レート特性に優れたリチウムイオン二次電池の材料となる負極用バインダーを開発すべく鋭意研究を重ねた結果、疎水性単量体由来の構造単位で形成された疎水性コア部の周囲を、カルボキシル基含有親水性マクロモノマー由来の構造単位で形成された親水性コロナ部が取り囲む構造を有するコア-コロナ型高分子微粒子を含む分散液をバインダーとして使用することにより、上記課題が解決できることを見出した。本発明はこのような知見に基づいて、さらに検討を重ねた結果、完成されたものである。
 即ち、本発明は、下記項1~6に示すリチウムイオン二次電池負極用バインダー、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池に係る。
項1. コア-コロナ型高分子微粒子が水性分散媒に分散された分散液を含むリチウムイオン二次電池負極用バインダーであって、
 前記コア-コロナ型高分子微粒子が、疎水性単量体由来の構造単位で形成された疎水性コア部の周囲を、カルボキシル基含有親水性マクロモノマー由来の構造単位で形成された親水性コロナ部が取り囲む構造を有する、バインダー。
項2. 前記コア-コロナ型高分子微粒子が、前記カルボキシル基含有親水性マクロモノマーと前記疎水性単量体とをラジカル重合させてなる高分子微粒子であって、
 前記カルボキシル基含有親水性マクロモノマーが、カルボキシル基含有高分子化合物と、重合性反応基及びカルボキシル基と反応して共有結合を形成する官能基の両方を分子内に有する化合物とを反応させてなるマクロモノマーである、上記項1に記載のバインダー。
項3. 前記重合性反応基及びカルボキシル基と反応して共有結合を形成する官能基の両方を分子内に有する化合物が、下記一般式(1):
Figure JPOXMLDOC01-appb-C000004
[式中、Rは、水素原子又はメチル基を示す。Qは、酸素原子又は-NH-を示す。]
で表される化合物、下記一般式(2):
Figure JPOXMLDOC01-appb-C000005
[式中、Rは、水素原子又はメチル基を示す。Qは、酸素原子又は-NH-を示す。nは1~4の整数を示す。]
で表される化合物、及び一般式(3):
Figure JPOXMLDOC01-appb-C000006
[式中、Rは、水素原子又はメチル基を示す。Rは、水素原子、炭素数1~4のアルキル基又はハロゲン原子を示す。Xは、ハロゲン原子を示す。]
で表される化合物からなる群から選択される少なくとも1種の化合物である、上記項2に記載のバインダー。
項4. 上記項1~3のいずれかに記載のリチウムイオン二次電池負極用バインダー、及び活物質を含有する、リチウムイオン二次電池負極用スラリー組成物。
項5. 上記項4に記載のリチウムイオン二次電池負極用スラリー組成物を、集電体上に塗布及び乾燥して形成される、リチウムイオン二次電池負極。
項6. 上記項5に記載のリチウムイオン二次電池負極を含む、リチウムイオン二次電池。
 本発明のリチウムイオン二次電池負極用バインダーは、微粒子形状のコア-コロナ型高分子化合物を含むことにより、負極活物質表面及び集電体表面に点接着し、負極活物質間の接触、負極活物質と集電体との間の接触を妨げることなく負極活物質同士及び負極活物質と集電体との間を結着させることができるとともに、高分子微粒子表面に存在する親水性コロナ部によっても負極活物質間及び負極活物質と集電体との結着性を高めることができるため、電極抵抗を小さくすることができる。さらに、疎水性コア部が充放電時の負極活物質の膨潤収縮による体積変化に追従することができ、これにより負極活物質間及び負極活物質と集電体との接触部分がなくなり導通のとれない部分が生じること(負極活物質の電気的孤立化)を防ぐことができる。よって、このようなリチウムイオン二次電池負極用バインダーを用いることにより、レート特性に優れたリチウムイオン二次電池を得ることができる。
コア-コロナ型高分子微粒子が得られるメカニズムを説明する概略図である。 実施例1、4及び5、及び比較例1の評価用ハーフセルのレート特性を示すグラフである。 実施例1及び比較例1の評価用ハーフセルのインピーダンス測定結果を示すグラフである。
 以下、本発明のリチウムイオン二次電池負極用バインダー、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池について具体的に説明する。
1.リチウムイオン二次電池負極用バインダー
 本発明のリチウムイオン二次電池負極用バインダー(以下、単に「バインダー」という場合もある)は、コア-コロナ型高分子微粒子が水性分散媒に分散された分散液を含む。
 本発明のバインダーは、分散液中に分散しているコア-コロナ型高分子化合物が微粒子形状をしており、コア-コロナ型高分子微粒子が、疎水性単量体由来の構造単位で形成された疎水性コア部の周囲を、カルボキシル基含有親水性マクロモノマー由来の構造単位で形成された親水性コロナ部が取り囲む構造を有していることが大きな特徴である。
 コア-コロナ型高分子化合物が微粒子形状をしていることにより、負極活物質表面及び集電体表面に点接着し、負極活物質間の接触、負極活物質と集電体との間の接触を妨げることなく負極活物質同士及び負極活物質と集電体との間を結着させることができるため、電極抵抗を小さくすることができる。これは、高分子微粒子の表面に存在する親水性コロナ部が多数のカルボキシル基を有しており、このカルボキシル基が負極活物質との親和性に優れることから、本発明のバインダーは負極活物質層内に均一に分散され、負極活物質間及び負極活物質と集電体との結着性を高めることができるからである。また、疎水性コア部は、ガラス転移温度(Tg)が低い高分子化合物を構成する疎水性単量体で形成することで、充放電時の負極活物質の膨潤収縮による体積変化に追従することができ、これにより負極活物質間及び負極活物質と集電体の接触部分がなくなり導通のとれない部分が生じること(負極活物質の電気的孤立化)を防ぐことができる。このようなバインダーを用いて電極を形成することで、充放電サイクルによる負極活物質の剥離が少なくなることから、本発明のリチウムイオン二次電池負極用バインダーを用いることにより、レート特性に優れたリチウムイオン二次電池を得ることができる。
 前記コア-コロナ型高分子微粒子は、カルボキシル基含有親水性マクロモノマーと、疎水性単量体とをラジカル重合させてなる高分子微粒子である。
 以下、前記カルボキシル基含有親水性マクロモノマーについて説明する。
 前記カルボキシル基含有親水性マクロモノマーは、カルボキシル基含有高分子化合物と、重合性反応基及びカルボキシル基と反応して共有結合を形成する官能基の両方を分子内に有する化合物とを、反応させることにより得られる。
 前記カルボキシル基含有高分子化合物は、高分子化合物の繰り返し単位にカルボキシル基が含まれているものであれば特に制限はなく、例えば、カルボキシル基含有単量体の重合物、カルボキシル基含有多糖類等が挙げられる。
 前記カルボキシル基含有単量体として、炭素-炭素不飽和二重結合とカルボキシル基及び/又はその塩とを必須成分として含有する単量体が挙げられる。このような単量体として、例えば、(メタ)アクリル酸、クロトン酸、α-ヒドロキシアクリル酸、α-ヒドロキシメチルアクリル酸等の不飽和モノカルボン酸、及びこれらの塩;イタコン酸、フマル酸、マレイン酸、2-メチレングルタル酸等の不飽和ジカルボン酸、及びこれらの塩等が挙げられる。これらの単量体は、1種単独で、又は2種以上を混合して使用することができる。なお、本明細書において、「(メタ)アクリル酸」は、アクリル酸及び/又はメタクリル酸の意味である。
 前記カルボキシル基含有多糖類として、例えば、カルボキシメチルセルロース、カルボキシエチルセルロース等のカルボキシアルキルセルロース;カルボキシメチルデンプン、カルボキシメチルアミロース、ヒアルロン酸、アルギン酸、ペクチン、及びこれらの塩等が挙げられる。これらの多糖類は、1種単独で、又は2種以上を混合して使用することができる。
 上記塩としては、金属塩、アンモニウム塩、有機アミン塩等が挙げられる。金属塩として、例えば、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩等のアルカリ土類金属塩;アルミニウム塩、鉄塩等が挙げられる。有機アミン塩として、例えば、モノエタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩等のアルカノールアミン塩;モノエチルアミン塩、ジエチルアミン塩、トリエチルアミン塩等のアルキルアミン塩;エチレンジアミン塩、トリエチレンジアミン等のポリアミン等が挙げられる。これらの塩は、1種単独で、又は2種以上を混合して使用することができる。
 前記カルボキシル基含有単量体の重合物の原料である単量体には、前記カルボキシル基含有単量体に加えて、該単量体と共重合可能なノニオン性単量体を組み合わせて使用することができる。このようなノニオン性単量体として、例えば、アクリルアミド、メタクリルアミド、n-イソプロピルアクリルアミド、アクリル酸メチル、メタクリル酸メチル等が挙げられる。
 カルボキシル基含有単量体の単独重合体若しくは共重合体、又はカルボキシル基含有単量体とノニオン性単量体とを組み合わせた共重合体は、従来公知の重合方法によって製造することができる。前記カルボキシル基含有高分子化合物は、1種単独で、又は2種以上を混合して使用することができる。前記カルボキシル基含有高分子化合物として、ポリアクリル酸及びその塩が好ましく、ポリアクリル酸ナトリウムがより好ましい。
 前記カルボキシル基含有高分子化合物中のカルボキシル基含有構造単位の割合として、高分子化合物全構造単位の60モル%以上であることが好ましく、80モル%以上であることがより好ましく、全構造単位がカルボキシル基含有構造単位であることが特に好ましい。
 前記カルボキシル基含有高分子化合物の分子量は、公知の製造方法によって得られる数平均分子量であれば特に限定されず、500~500,000程度が好ましい。
 前記重合性反応基及びカルボキシル基と反応して共有結合を形成する官能基の両方を分子内に有する化合物(以下、「官能基含有化合物」という場合もある)として、例えば、下記一般式(1):
Figure JPOXMLDOC01-appb-C000007
[式中、Rは、水素原子又はメチル基を示す。Qは、酸素原子又は-NH-を示す。]
で表される化合物(以下、「化合物(1)」ともいう)、下記一般式(2):
Figure JPOXMLDOC01-appb-C000008
[式中、Rは、水素原子又はメチル基を示す。Qは、酸素原子又は-NH-を示す。nは1~4の整数を示す。]
で表される化合物(以下、「化合物(2)」ともいう)、及び一般式(3):
Figure JPOXMLDOC01-appb-C000009
[式中、Rは、水素原子又はメチル基を示す。Rは、水素原子、炭素数1~4のアルキル基又はハロゲン原子を示す。Xは、ハロゲン原子を示す。]
で表される化合物(以下、「化合物(3)」ともいう)等が挙げられる。
 前記官能基含有化合物として、化合物(1)、化合物(2)及び化合物(3)からなる群から選択される少なくとも1種の化合物を使用することができる。
 前記一般式(1)中、Rは、水素原子又はメチル基を示し、Qは、酸素原子又は-NH-を示す。
 前記化合物(1)として、例えば、グリシジルアクリレート、グリシジルメタクリレート、グリシジルアクリルアミド、グリシジルメタクリルアミド等のグリシジル基含有ビニル系単量体が挙げられる。これらの化合物は、1種単独で、又は2種以上を混合して使用することができる。
 前記一般式(2)中、Rは、水素原子又はメチル基を示す。Qは、酸素原子又は-NH-を示す。nは1~4の整数であり、好ましくは2である。
 前記化合物(2)として、例えば、イソシアネートエチルアクリレート、イソシアネートエチルメタクリレート、イソシアネートエチルアクリルアミド、イソシアネートエチルメタクリルアミド等のイソシアネート基含有ビニル系単量体が挙げられる。これらの化合物は、1種単独で、又は2種以上を混合して使用することができる。
 前記一般式(3)中、Rは、水素原子又はメチル基を示す。Rは、水素原子、炭素数1~4のアルキル基又はハロゲン原子を示す。Xは、ハロゲン原子を示す。
 Rで示される炭素数1~4のアルキル基として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられ、ハロゲン原子として、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 Xで示されるハロゲン原子として、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 前記式(3)中、Rは好ましくは水素原子であり、Rは好ましくは水素原子であり、Xは好ましくは塩素原子又は臭素原子である。
 前記化合物(3)として、例えば、クロロメチルスチレン、ブロモメチルスチレン、ヨードメチルスチレン等が挙げられる。これらの化合物は、1種単独で、又は2種以上を混合して使用することができる。
 前記カルボキシル基含有高分子化合物と、前記官能基含有化合物とを反応させてなるカルボキシル基含有親水性マクロモノマーの合成は、水性媒体中で前記カルボキシル基含有高分子化合物と、前記官能基含有化合物とを、通常10~80℃程度、好ましくは20~60℃程度で反応させることによって行うことができる。
 水性媒体としては、水;メタノール、エタノール、プロパノール等のアルコール;アセトン、メチルエチルケトン等のケトン;ジメチルホルムアミド等を使用することができる。水性媒体として、水単独、アルコールと水との混合溶媒、ケトンと水との混合溶媒等を使用することができ、水単独が好ましい。
 前記カルボキシル基含有高分子化合物と、前記官能基含有化合物との比率は特に限定されず、前記高分子化合物のカルボキシル基含有構造単位100モルに対して前記官能基含有化合物を40~1モル程度の範囲で使用することが好ましい。前記官能基含有化合物のより好ましい範囲は35~1モル程度であり、特に好ましい範囲は10~1モル程度である。
 ここで、前記官能基含有化合物が、化合物(1)、化合物(2)又は化合物(3)のいずれか1種である場合には、前記官能基含有化合物の比率は、その化合物単独の比率である。前記官能基含有化合物が、化合物(1)、化合物(2)又は化合物(3)の2種以上を含む場合には、含まれる全化合物を合計した比率が前記範囲となるようにする。
 前記カルボキシル基含有高分子化合物と、前記化合物(1)との反応は、カルボキシル基のグリシジル基に対する求核反応である。前記カルボキシル基含有高分子化合物と、前記化合物(2)との反応は、カルボキシル基のイソシアネート基に対する求核反応である。前記カルボキシル基含有高分子化合物と、前記化合物(3)との反応は、カルボキシル基のベンジル基に対する求核反応である。
 反応時間は、反応温度等によって異なり、通常30分間~10時間程度である。
 カルボキシル基含有親水性マクロモノマーの合成において、カルボキシル基含有高分子化合物としてポリアクリル酸又はポリアクリル酸塩を使用することが好ましく、前記化合物(1)、化合物(2)及び化合物(3)からなる群から選択される少なくとも1種の化合物として、化合物(1)を使用することが好ましい。化合物(1)の中でも、グリシジルメタクリレートを使用することがより好ましい。
 よって、前記カルボキシル基含有親水性マクロモノマーとして、前記カルボキシル基含有高分子化合物であるポリアクリル酸又はポリアクリル酸塩と、前記官能基含有化合物として、前記化合物(1)であるグリシジルメタクリレートとの組み合わせで得られるマクロモノマーが好ましい。例えば、前記カルボキシル基含有高分子化合物がポリアクリル酸塩である場合のマクロモノマーの構造の一例として、下記式(4a):
Figure JPOXMLDOC01-appb-C000010
(式中、Mはアルカリ金属イオン、アンモニウムイオン、又は有機アンモニウムイオンを示し、l及びmは、繰り返し単位数を表す整数である)で表される構造が挙げられる。上記構造の中でも、Mがナトリウムイオンの場合である、下記式(4b):
Figure JPOXMLDOC01-appb-C000011
(式中、l及びmは、前記に同じ)で表される構造が好ましい。
 このようにして得られたカルボキシル基含有親水性マクロモノマーと、疎水性単量体とを、重合開始剤の存在下、水性媒体中で共重合することにより、コア-コロナ型高分子微粒子を得ることができる。
 前記疎水性単量体としては、エチレン性不飽和結合基を有する公知の疎水性単量体を広く使用することができ、例えば、スチレン系単量体、(メタ)アクリル酸エステル、ビニル系単量体、炭化水素共役ジエン系単量体等を挙げられる。前記スチレン系単量体としては、スチレン、メチルスチレン、ジメチルスチレン、クロロスチレン、ジクロロスチレン、クロロメチルスチレン、4-メトキシスチレン、4-アセトキシスチレン等が挙げられる。前記(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-ヒドロキシエチル等が挙げられる。前記ビニル系単量体としては、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、N-ブチルアクリルアミド、アクリロニトリル、塩化ビニル等が挙げられる。前記炭化水素共役ジエン系単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン等が挙げられる。これらの単量体は、1種単独で、又は2種以上を混合して使用することができる。上記の単量体の中で、得られる高分子化合物のガラス転移温度の観点から、(メタ)アクリル酸エステルが好ましく、(メタ)アクリル酸2-エチルヘキシルがより好ましい。
 高分子微粒子の疎水性コア部に架橋構造を導入することも可能である。このためには、ジビニルベンゼン、エチレングリコールジメタクリレート等の2官能の疎水性単量体を使用することができる。2官能の疎水性単量体は、高分子微粒子のコアを構成する全ラジカル重合性単量体に対して、0.01~20重量%程度の範囲で使用することが好ましく、0.1~10重量%程度がより好ましい。
 水性媒体としては、水;メタノール、エタノール、プロパノール等のアルコール;アセトン、メチルエチルケトン等のケトン;ジメチルホルムアミド等を使用することができる。水性媒体として、水単独、アルコールと水との混合溶媒、ケトンと水との混合溶媒等を使用することができ、水単独が好ましい。なお、ここで使用する水性媒体は、上記のカルボキシル基有親水性マクロモノマーの合成で使用する水性媒体と同じものであることが好ましい。
 重合開始剤としては、公知の重合開始剤を広く使用することができ、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、過酸化ベンゾイル、t-ブチルヒドロパーオキサイド、アゾビスイソブチロニトリル、アゾビス(2-アミノジプロパン)塩酸塩等が挙げられる。重合開始剤は、1種単独で、又は2種以上を混合して使用することができる。重合開始剤は、疎水性単量体100モルに対して、0.1~10モル程度使用することが好ましい。必要に応じて、公知の分子量調整剤を添加することも可能である。
 重合温度としては、50~100℃が好ましい。
 重合時間は、重合開始剤の種類及び使用量、重合温度等によって変化し、通常は30分間~10時間程度である。微粒子のコア部形成に寄与する疎水性単量体及び親水性マクロモノマーが重合によって消費されるまで重合を行うことが好ましい。
 高分子微粒子の合成において、親水性マクロモノマーと疎水性単量体との比率は特に限定されない。親水性マクロモノマーの繰り返し単位と疎水性単量体との比率が、1:100~0.01の範囲であることが好ましく、1:10~0.05の範囲がより好ましく、1:5~0.1の範囲が特に好ましい。
 以下、図1を参照してコア-コロナ型高分子微粒子が得られるメカニズムを説明する。図1は、カルボキシル基含有親水性マクロモノマーと疎水性単量体とを共重合した場合の高分子微粒子が得られる典型的なメカニズムを図式的に表したものである。カルボキシル基含有親水性マクロモノマー1は、アクリル酸単位1aとビニル基を含有する側鎖1bとからなる。まず、カルボキシル基含有親水性マクロモノマー1と疎水性単量体2とを混合し(工程A)、疎水性単量体を重合させると、疎水性単量体の重合(工程B)が部分的に起こり、それと同時に、ビニル基を含有する側鎖1bとの共重合が起こる。共重合の結果、あたかも疎水性単量体の重合体にカルボキシル基含有親水性マクロモノマーがグラフト化したかのような構造を有する高分子化合物が得られる。反応は水性媒体中で行われるので、疎水性単量体の重合体は内側に、カルボキシル基含有親水性マクロモノマー1は外側に選択的に集積する(工程C)。このようにして重合が完了すると、疎水性単量体由来の構造単位で形成された疎水性コア部3の表面に、カルボキシル基含有親水性マクロモノマー由来の構造単位で形成された親水性コロナ部4が位置する高分子微粒子5が得られる(工程D)。
 本発明のリチウムイオン二次電池負極用バインダーは、上記のコア-コロナ型高分子微粒子が水性分散媒に分散された分散液を含む。
 水性分散媒としては、水;メタノール、エタノール、プロパノール等のアルコール;アセトン、メチルエチルケトン等のケトン;ジメチルホルムアミド等を使用することができる。水性分散媒として、水単独、アルコールと水との混合溶媒、ケトンと水との混合溶媒等を使用することができ、水単独が好ましい。
 本発明のリチウムイオン二次電池負極用バインダーに含まれる高分子微粒子の量は、当該分散液の固形分量として、通常10~60重量%であり、好ましくは15~50重量%である。
 高分子微粒子の存在は、例えば、透過型電子顕微鏡法、光学顕微鏡法等によって容易に確認することができる。高分子微粒子の体積平均粒径は、1nm~1000nm、好ましくは10nm~500nmである。体積平均粒径は、例えば、ゼータサイザー、マイクロトラック等を用いて測定することができる。 
 前記分散液を得る方法は特に限定されない。例えば、上記のような方法によって高分子微粒子が水性媒体に分散されたラテックスを製造し、得られたラテックスをそのまま分散液として用いる方法;得られたラテックスの水性媒体を別の水性媒体に置換する方法等が、製造効率の良さ等から好ましく用いられる。分散媒の置換方法として、例えば、アルコール中で高分子微粒子を製造し、そのアルコールを上述のアルコール以外の水性媒体に置換する場合、ラテックスにアルコール以外の水性媒体を加えた後、分散媒中のアルコール分を、蒸留法、分別濾過法、分散媒相転換法等により除去する方法等が挙げられる。
 得られた分散液はそのまま負極用バインダーとして使用することができる。或いは、分散液に加えて、塗料性を向上させる粘度調整剤、流動化剤等の添加剤を適宜添加して使用することができる。これらの添加剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース化合物;及びこれらのアンモニウム塩及びアルカリ金属塩;ポリ(メタ)アクリル酸ナトリウム等のポリアクリル酸塩;ポリビニルアルコール、ポリエチレンオキシド、ポリビニルピロリドン、(メタ)アクリル酸又は(メタ)アクリル酸塩とビニルアルコールとの共重合体、無水マレイン酸又はマレイン酸若しくはフマル酸とビニルアルコールとの共重合体、変性ポリビニルアルコール、変性ポリ(メタ)アクリル酸、ポリエチレングリコール、ポリカルボン酸、エチレン-ビニルアルコール共重合体、酢酸ビニル重合体等の水溶性ポリマー等が挙げられる。これらの添加剤の使用割合は、必要に応じて適宜選択することができる。
 さらに、本発明のバインダーは、上述した高分子微粒子以外のポリマー又はポリマー粒子を含むことができる。これらのポリマー又はポリマー粒子は、一般に電池電極用バインダーとして公知のポリマーを広く使用することができる。その使用量は、上述した高分子微粒子1重量部に対して1重量部以下が好ましい。
 本発明のバインダーは、上記のような方法で製造したコア-コロナ型高分子微粒子を含む分散液である。従来バインダー樹脂として使用されている溶媒可溶型のPVDFは、負極活物質表面をコーティングするように配置するために負極活物質間の接触、及び負極活物質と集電体との間の接触を妨げ、電極抵抗が大きくなるのに対して、本発明のバインダーは、微粒子形状のコア-コロナ型高分子化合物を含むことにより、負極活物質表面及び集電体表面に点接着し、負極活物質間の接触、負極活物質と集電体との間の接触を妨げることなく負極活物質同士及び負極活物質と集電体との間を結着させることができるため、電極抵抗を小さくすることができる。
 さらに、コア-コロナ型高分子微粒子は、従来バインダー樹脂として使用されているSBRと異なり、高分子微粒子表面に負極活物質及び集電体と親和性の高い親水性コロナ部が存在するため、繰り返しの充放電による負極活物質の膨張収縮においても負極活物質同士及び負極活物質と集電体との間の結着性が保持され、負極活物質間の接触、負極活物質と集電体との間の接触部分が維持されることにより電極抵抗を小さく保つことができる。
 また、コア-コロナ型高分子微粒子の疎水性コア部は、充放電時の負極活物質の膨潤収縮による体積変化に追従することができるため、リチウムイオンの吸蔵及び放出に伴う負極活物質の膨張収縮過程において、負極活物質間及び負極活物質と集電体の接触部分がなくなり導通のとれない部分が生じること(負極活物質の電気的孤立化)を防ぐことができる。
 よって、このようなリチウムイオン二次電池負極用バインダーを用いることにより、レート特性に優れたリチウムイオン二次電池を得ることができる。
2.リチウムイオン二次電池負極用スラリー組成物
 本発明のリチウムイオン二次電池負極用スラリー組成物は、上述した本発明のバインダー及び活物質を含有する。本発明のリチウムイオン二次電池負極用スラリー組成物は、上述した本発明のバインダー及び活物質を混合することにより調製することができる。
 活物質は、通常のリチウムイオン二次電池用電極の製造に使用されるものであれば、いずれであっても用いることができる。負極活物質としては、天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛系炭素材料(黒鉛)、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、ハードカーボン、ピッチ系炭素繊維等の炭素質材料;ポリアセン等の導電性高分子化合物;複合金属酸化物及びその他の金属酸化物等が挙げられる。この中でも、炭素質材料が好ましく、天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛がより好ましい。スラリー組成物中の活物質の含有量は特に制限されず、通常10~95重量%、好ましくは20~80重量%、より好ましくは35~65重量%である。
 活物質の平均粒子径は特に制限されないが、好ましくは1~100μmであり、より好ましくは3~50μmであり、さらに好ましくは5~25μmである。なお、活物質の平均粒子径は、レーザ回折式粒度分布測定(レーザ回折散乱法)により測定された値を採用するものとする。
 負極用スラリー組成物における活物質とバインダーとの含有比率は、活物質100重量部に対して、前述の負極用バインダーが、固形分換算で通常0.1~10重量部であり、好ましくは0.5~5重量部、特に好ましくは1~4重量部である。負極用バインダーの含有量が高くなりすぎると、内部抵抗が増大することになる。一方、少なすぎると、所望の結着力が得られず、負極が不安定となり、充放電サイクル特性が低下する傾向がある。
 負極用スラリー組成物は、上記活物質、負極用バインダーに加えて、その他の添加剤を含むことができる。その他の添加剤として、例えば、導電助剤、支持塩(リチウム塩)等が挙げられる。これらの成分の配合比は、公知の一般的な範囲である、配合比についても、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整されうる。
 導電助剤とは、導電性を向上させるために配合される配合物をいう。導電助剤としては、黒鉛等のカーボン粉末;気相成長炭素繊維(VGCF)等の炭素繊維等が挙げられ、アセチレンブラック、ケッチェンブラック等の粒子径が数nm~数十nm程度のカーボン微粉末が好ましい。導電助剤の配合量は、好ましくは活物質層の合計質量に対して1~10重量%である。
 さらに、負極作製時の作業性等を考慮し、粘度調整、バインダー固形分の調整等の目的により、溶媒を追加して、負極用スラリー組成物を調製することもできる。かかる溶媒としては、例えば、N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミドなどのアミド系溶媒、メタノール、エタノール、高級アルコール等のアルコール系溶媒を用いることができる。 
 負極用バインダー、活物質、及び必要に応じて用いられる添加剤、溶媒の混合は、攪拌機、脱泡機、ビーズミル、高圧ホモジナイザー等を利用することができる。また、負極用スラリー組成物の調製は、減圧下で行うことが好ましい。これにより、得られる活物質層内に気泡が生じることを防止することができる。
3.リチウムイオン二次電池用負極
 リチウムイオン二次電池負極は、以上のようにして調製される負極用スラリー組成物を、集電体上に塗布及び乾燥することにより製造することができる。必要に応じて、塗布及び乾燥後、プレスして密度を上げることが好ましい。
 負極に用いられる集電体としては、リチウムイオン二次電池の負極の集電体として用いられているものを使用することができる。具体的には、負極(炭素電極)が機能する電位範囲において電気化学的に不活性な金属であることが求められることから、銅、ニッケル等の金属箔、エッチング金属箔、エキスパンドメタル等が用いられる。
 このような集電体上に、負極用スラリー組成物を塗布及び乾燥することで、負極層を形成することができる。負極用スラリー組成物を集電体に塗布する方法としては、ドクターブレード法、リバースロール法、コンマバー法、グラビア法、エアーナイフ法等が挙げられる。また、負極用スラリー組成物の塗布膜の乾燥処理の条件としては、処理温度が通常20~250℃であり、50~150℃であることが好ましい。また、処理時間は通常1~120分間であり、5~60分間であることが好ましい。
 活物質層の厚み(塗布層の片面の厚み)は、通常20~500μmであり、好ましくは25~300μmであり、より好ましくは30~150μmである。
4.リチウムイオン二次電池
 上記のようにして作製される負極を備えたリチウムイオン二次電池について説明する。
 正極としては、特に限定されず、公知の一般的な正極を組み合わせることができる。
 正極活物質としては、例えば、オリビン型リン酸鉄リチウム、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、三元系ニッケルコバルトマンガン酸リチウム、リチウムニッケルコバルトアルミニウム複合酸化物等を用いることができる。
 正極の集電体としては、アルミニウム、銅、ニッケル、タンタル、ステンレス、チタン等の金属材料が挙げられ、目的とする蓄電デバイスの種類に応じて適宜選択して用いることができる。
 電解液としては、リチウム塩を溶解する公知の非プロトン性極性溶媒が広く用いられる。例えば、エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステル系高誘電率・高沸点溶媒に、低粘性率溶媒である炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル等の低級鎖状炭酸エステルを含有させて用いられる。具体的には、エチレンカーボネート、クロロエチレンカーボネート、トリフルオロプロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、イソプロピルメチルカーボネート、エチルプロピルカーボネート、イソプロピルエチルカーボネート、ブチルメチルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル、ギ酸メチル、ギ酸エチルなどが挙げられる。これらは混合して用いることが好ましい。
 電解質のリチウム塩としては、LiClO4 、LiPF6 、LiBF4 、LiAsF6、LiCl、LiBr等の無機塩;LiCF3SO3 、LiN(SO2CF3))2、LiN(SO2252 、LiC(SO2CF3)3、LiN(SO3CF3))2等の有機塩など、非水電解液の電解質として常用されているものを用いればよい。これらのなかでもLiPF6 、LiBF4 又はLiClO4を用いるのが好ましい。
 セパレータとしては、特に限定されず、ポリオレフィンの不織布、多孔性フィルム等を用いることができる。
 二次電池の構造としては、特に限定されず、積層型(扁平型)電池、巻回型(円筒型)電池等が挙げられ、従来より公知のいずれの形態及び構造にも適用することができる。また、リチウムイオン二次電池内の電気的な接続形態(電極構造)については、内部並列接続タイプの電池及び内部直列接続タイプの双極型電池のいずれにも適用し得る。
 以上のようにして得られるリチウムイオン二次電池は、本発明の負極用バインダーを用いたことに基づき、初回放電容量が高く、しかも安定的な出力特性を有する。 
 以下、実施例及び比較例を挙げて本発明を更に詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
(合成例1)
1-1.アクリル酸ナトリウムマクロモノマー(カルボキシル基含有親水性マクロモノマー)の合成
 攪拌装置、空冷管及び温度計を備えた反応容器中に、水18.00g、ポリアクリル酸40%水溶液53.20g(アクリル酸ユニット295mmol、数平均分子量は5,300)、水酸化ナトリウム48%水溶液24.60g、及びグリシジルメタクリレート4.20g(29.5mmol)を順次仕込み、加熱して温度を40℃まで昇温した。反応液の温度を40℃にて6時間保ち、メタクリロイル基を有するポリアクリル酸ナトリウムマクロモノマー溶液(固形分濃度32重量%)を得た。反応終了後、アセトンで再沈殿を数回行ってポリアクリル酸マクロモノマーを精製した。得られたポリアクリル酸ナトリウムマクロモノマーのGPC(液体クロマトグラフィー)より求めた数平均分子量は5,600であった。
1-2.アクリル酸ナトリウムマクロモノマーとメタクリル酸2-エチルヘキシルとの共重合(コア-コロナ型高分子微粒子の作製)
 次いで攪拌装置、還流冷却機及び温度計を備えた反応容器中に、上記ポリアクリル酸ナトリウムマクロモノマー溶液22.16g[アクリル酸ユニット繰返し単位として65mmol(前仕込みより求めた)]、メタクリル酸2-エチルヘキシル12.87g(65mmol)、及び水63.45gを順次仕込み70℃に昇温した。この混合物に過硫酸アンモニウムの20重量%水溶液1.50g(1.31mmol)を加え、6時間共重合させ、乳白色の分散液(固形分濃度20重量%)を得た。得られたカルボン酸ナトリウム含有親水性コロナ鎖を有する高分子微粒子の平均粒子径は190nmであった。
(合成例2)
アクリル酸ナトリウムマクロモノマーとメタクリル酸2-エチルヘキシルとの共重合(コア-コロナ型高分子微粒子の作製)
 ポリアクリル酸ナトリウムマクロモノマー溶液を46.67g[アクリル酸ユニット繰返し単位として130mmol]、メタクリル酸2-エチルヘキシルを6.44g(33mmol)、及び水を45.39gに変えた以外は、合成例1-2と同様にして、乳白色の分散液(固形分濃度22重量%)を得た。得られたカルボン酸ナトリウム含有親水性コロナ鎖を有する高分子微粒子の平均粒子径は250nmであった。
(合成例3)
3-1.アクリル酸ナトリウムマクロモノマー(カルボキシル基含有親水性マクロモノマー)の合成
 数平均分子量16,500のポリアクリル酸40%水溶液を使用した以外は、合成例1-2と同様にして、メタクリロイル基を有するポリアクリル酸ナトリウムマクロモノマー溶液(固形分濃度32重量%)を得た。得られたポリアクリル酸ナトリウムマクロモノマーのGPC(液体クロマトグラフィー)より求めた数平均分子量は17,000であった。
3-2.アクリル酸ナトリウムマクロモノマーとメタクリル酸2-エチルヘキシルとの共重合(コア-コロナ型高分子微粒子の作製)
 合成例3-1で合成したポリアクリル酸ナトリウムマクロモノマー溶液を使用した以外は、合成例1-2と同様にして、乳白色の分散液(固形分濃度20重量%)を得た。得られたカルボン酸ナトリウム含有親水性コロナ鎖を有する高分子微粒子の平均粒子径は320nmであった。
(合成例4)
4-1.カルボキシメチルセルロースナトリウム(以下、CMCNa)マクロモノマー(カルボキシル基含有親水性マクロモノマー)の合成
 攪拌装置、空冷管及び温度計を備えた反応容器中に、水89.08g、粉末のCMC10.00g(カルボキシル基30mmol、数平均分子量は15,600)、水酸化ナトリウム48%水溶液0.50g、及びグリシジルメタクリレート0.42g(3.0mmol)を順次仕込み、加熱して温度を40℃まで昇温した。反応液の温度を40℃にて6時間保ち、メタクリロイル基を有するCMCNaマクロモノマー溶液(固形分濃度10重量%)を得た。反応終了後、アセトンで再沈殿を数回行ってCMCNaマクロモノマーを精製した。得られたCMCNaマクロモノマーのGPC(液体クロマトグラフィー)より求めた数平均分子量は16,000であった。
4-2.CMCNaマクロモノマーとメタクリル酸2-エチルヘキシルとの共重合(コア-コロナ型高分子微粒子の作製)
 次いで攪拌装置、還流冷却機及び温度計を備えた反応容器中に、上記CMCNaマクロモノマー溶液50.00g[グルコースユニット繰返し単位として22mmol(前仕込みより求めた)]、メタクリル酸2-エチルヘキシル4.37g(22mmol)、及び水44.13gを順次仕込み70℃に昇温した。この混合物に過硫酸アンモニウムの20重量%水溶液1.50g(1.31mmol)を加え、6時間共重合させ、乳白色の分散液(固形分濃度10重量%)を得た。得られたCMCNaコロナ鎖を有する高分子微粒子の平均粒子径は200nmであった。
(比較合成例1)
 攪拌装置、還流冷却機及び温度計を備えた反応容器中に、アクリル酸ナトリウムの30重量%水溶液21.94g(70mmol)、ドデシルベンゼンスルホン酸ナトリウムの10重量%水溶液10.00g、メタクリル酸2-エチルヘキシル13.86g(70mmol)、及び水52.70gを順次仕込み70℃に昇温した。この混合物に過硫酸アンモニウムの20重量%水溶液1.50g(1.31mmol)を加え、6時間共重合させ、乳白色の分散液(固形分濃度22重量%)を得た。得られたエマルションの平均粒子径は230nmであった。
実施例1
 合成例1の負極用バインダーを用いて以下の手法により、本発明に係るリチウムイオン二次電池評価用ハーフセルを作製した。なお、評価用ハーフセルの材料としては、以下の材料を使用した。
負極活物質:天然黒鉛粉末
対極: リチウム金属箔
導電助剤:カーボン微粉末
増粘剤:カルボキシメチルセルロースナトリウム(CMCNa)
電解液:1mol/ L 六フッ化リン酸リチウム(LiPF)/エチレンカーボネート(EC)およびジエチルカーボネート(DEC)の混合液(EC:DEC(体積比)=1:1)
セパレータ:セルロール系セパレータ
集電体:銅箔
 2重量%のCMCNa水溶液を調製し、天然黒鉛粉末、カーボン微粉末、CMCNa及び合成例1の負極用バインダーの乾燥後の電極組成比(重量比)が95:3:1:1の割合となるよう混合し、スラリーを作製した。このスラリーに適宜、純水を加え均一なスラリーを得た後、ドクターブレードにより銅箔に塗布し、100℃で20分間乾燥した。この電極を16mmの円形に切り抜き、80℃の温度雰囲気下、10-1Paの減圧下で24時間乾燥させ、目的物である炭素負極を得た。炭素負極および対極リチウム金属箔を配置し、両電極間にセパレータを配置し、電解液を注入して2極式評価用ハーフセルを作製した。
実施例2
 負極用バインダーを合成例2のバインダーに変えた以外は実施例1と同様にして2極式評価用ハーフセルを作製した。
実施例3
 負極用バインダーを合成例3のバインダーに変えた以外は実施例1と同様にして2極式評価用ハーフセルを作製した。
実施例4
 負極バインダーを合成例4のバインダーに変えた以外は実施例1と同様にして2極式評価用ハーフセルを作製した。
実施例5
 増粘剤(CMCNa)を使用せず、負極バインダーを合成例4のバインダーに変え、天然黒鉛粉末、カーボン微粉末及び合成例4のバインダーを、天然黒鉛粉末、カーボン微粉末及び合成例4のバインダーの乾燥後の電極組成比(重量比)が95:3:2の割合となるよう混合し、スラリーを作製した以外は実施例1と同様にして2極式評価用ハーフセルを作製した。
比較例1
 負極用バインダーをSBR(乳白色液体、固形分濃度40重量%)に変えた以外は実施例1と同様にして2極式評価用ハーフセルを作製した。
比較例2
 負極用バインダーを比較合成例1のエマルションに変えた以外は実施例1と同様にして2極式評価用ハーフセルを作製した。
比較例3
 負極用バインダーをポリアクリル酸ナトリウム水溶液(固形分濃度40重量%、数平均分子量16,500)に変えた以外は実施例1と同様にして2極式評価用ハーフセルを作製した。
〔測定例1:リチウムイオン電池のレート特性〕
  実施例1~5及び比較例1~3の評価用ハーフセルに対して、0.05~1.2Vの作動電圧範囲で、0.1Cの電流密度で1サイクル後、1C、3C、5C、8C及び10Cレートの電流密度にて5サイクルずつ充放電し、最後に1Cレートに戻して5サイクル充放電して各電流密度での放電容量を調べた。各電流密度の5サイクル目の放電容量を初期(0.1Cレート)放電容量で除した百分率(%)を容積保持率とした。その結果を表1及び図2に示す。容量保持率が高いほど、レート特性が高いことを示す。
Figure JPOXMLDOC01-appb-T000012
 表1中の各成分は以下のとおりである。
SBR:スチレン-ブタジエンラテックス
EHMA:メタクリル酸2-エチルヘキシル
AAcNa:アクリル酸ナトリウム
PAAcNa:ポリアクリル酸ナトリウム
CMCNa:カルボキシメチルセルロースナトリウム
 表1及び図2より、実施例の2極式評価用ハーフセルは、比較例のハーフセルよりも高レートにおいて高い容量を保持していることがわかる。
〔測定例2:リチウムイオン電池のインピーダンス〕
 測定例1で使用した実施例1及び比較例1のハーフセルについてはさらに、交流インピーダンス測定を開回路電圧にて、電位振幅10mV、交流周波数範囲100kHz~10mHzの条件にて行った。X軸に実数のインピーダンス(Z’)、Y軸に虚数のインピーダンス(Z”)をとったNyquistプロット(Cole-Coleプロット)を図3に示す。
 図3より、実施例1のセルの抵抗値は比較例1のセルよりも抵抗値が低いことがわかる。
1   カルボキシル基含有親水性マクロモノマー
1a  アクリル酸単位
1b  ビニル基を含有する側鎖
2   疎水性単量体
3   疎水性コア部
4   親水性コロナ部
5   高分子微粒子

Claims (6)

  1.  コア-コロナ型高分子微粒子が水性分散媒に分散された分散液を含むリチウムイオン二次電池負極用バインダーであって、
     前記コア-コロナ型高分子微粒子が、疎水性単量体由来の構造単位で形成された疎水性コア部の周囲を、カルボキシル基含有親水性マクロモノマー由来の構造単位で形成された親水性コロナ部が取り囲む構造を有する、バインダー。
  2.  前記コア-コロナ型高分子微粒子が、前記カルボキシル基含有親水性マクロモノマーと前記疎水性単量体とをラジカル重合させてなる高分子微粒子であって、
     前記カルボキシル基含有親水性マクロモノマーが、カルボキシル基含有高分子化合物と、重合性反応基及びカルボキシル基と反応して共有結合を形成する官能基の両方を分子内に有する化合物とを反応させてなるマクロモノマーである、請求項1に記載のバインダー。
  3.  前記重合性反応基及びカルボキシル基と反応して共有結合を形成する官能基の両方を分子内に有する化合物が、下記一般式(1):
      [化1]
    Figure JPOXMLDOC01-appb-I000001
    [式中、Rは、水素原子又はメチル基を示す。Qは、酸素原子又は-NH-を示す。]
    で表される化合物、下記一般式(2):
      [化2]
    Figure JPOXMLDOC01-appb-I000002
    [式中、Rは、水素原子又はメチル基を示す。Qは、酸素原子又は-NH-を示す。nは1~4の整数を示す。]
    で表される化合物、及び一般式(3):
      [化3]
    Figure JPOXMLDOC01-appb-I000003
    [式中、Rは、水素原子又はメチル基を示す。Rは、水素原子、炭素数1~4のアルキル基又はハロゲン原子を示す。Xは、ハロゲン原子を示す。]
    で表される化合物からなる群から選択される少なくとも1種の化合物である、請求項2に記載のバインダー。
  4.  請求項1~3のいずれかに記載のリチウムイオン二次電池負極用バインダー、及び活物質を含有する、リチウムイオン二次電池負極用スラリー組成物。
  5.  請求項4に記載のリチウムイオン二次電池負極用スラリー組成物を、集電体上に塗布及び乾燥して形成される、リチウムイオン二次電池負極。
  6.  請求項5に記載のリチウムイオン二次電池負極を含む、リチウムイオン二次電池。
PCT/JP2016/081903 2015-11-05 2016-10-27 リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池 WO2017077940A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177036034A KR102570761B1 (ko) 2015-11-05 2016-10-27 리튬 이온 2차 전지의 음극용 바인더, 음극용 슬러리 조성물 및 음극 및 리튬 이온 2차 전지
JP2017548733A JP6795814B2 (ja) 2015-11-05 2016-10-27 リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池
CN201680034156.9A CN107710470B (zh) 2015-11-05 2016-10-27 锂离子二次电池的负极用粘合剂、负极用浆料组合物及负极以及锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-217331 2015-11-05
JP2015217331 2015-11-05

Publications (1)

Publication Number Publication Date
WO2017077940A1 true WO2017077940A1 (ja) 2017-05-11

Family

ID=58662815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081903 WO2017077940A1 (ja) 2015-11-05 2016-10-27 リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池

Country Status (5)

Country Link
JP (1) JP6795814B2 (ja)
KR (1) KR102570761B1 (ja)
CN (1) CN107710470B (ja)
TW (1) TWI709275B (ja)
WO (1) WO2017077940A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935830A (zh) * 2017-12-15 2019-06-25 浙江中科立德新材料有限公司 一种基于改性明胶粘结剂的锂离子电池硅碳负极极片的制备方法
WO2019172281A1 (ja) * 2018-03-07 2019-09-12 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池
WO2019188722A1 (ja) 2018-03-27 2019-10-03 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法
WO2022250080A1 (ja) * 2021-05-28 2022-12-01 昭和電工株式会社 非水系二次電池電極バインダー、及び非水系二次電池電極

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847488B (zh) * 2018-06-14 2021-02-26 汕头市鲁汕化工原料有限公司 锂离子二次电池活性物质粘合剂
CN112002903B (zh) * 2020-08-24 2022-01-14 湖北亿纬动力有限公司 一种油性粘结剂及其用途
CN116987466B (zh) * 2023-09-22 2024-01-30 蜂巢能源科技股份有限公司 改性黏结剂及制备方法、负极片、锂离子电池及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214011A (ja) * 1998-01-28 1999-08-06 Jsr Corp 電池電極形成用バインダーおよび電池電極
JP2006077069A (ja) * 2004-09-08 2006-03-23 Osaka Univ コア−コロナ型ナノ粒子を含む水系塗料組成物
WO2012093689A1 (ja) * 2011-01-06 2012-07-12 三菱レイヨン株式会社 ポリフッ化ビニリデン用改質剤、電池用バインダー樹脂組成物、二次電池用電極及び電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2872354B2 (ja) 1990-06-18 1999-03-17 旭化成工業株式会社 非水系電池電極の製造方法
FR2735134B1 (fr) * 1995-06-09 1997-07-11 Rhone Poulenc Chimie Poudres redispersables dans l'eau de polymeres filmogenes a structure coeur/ecorce
CN100463280C (zh) * 2003-07-29 2009-02-18 松下电器产业株式会社 锂离子二次电池
US8394352B2 (en) * 2008-12-09 2013-03-12 University Of South Carolina Porous metal oxide particles and their methods of synthesis
CN101457131B (zh) * 2009-01-12 2010-07-28 成都茵地乐电源科技有限公司 一种锂离子电池电极材料用水性粘合剂及其制备方法
WO2011068215A1 (ja) * 2009-12-03 2011-06-09 日本ゼオン株式会社 電気化学素子用バインダー粒子
US9178198B2 (en) * 2012-06-01 2015-11-03 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR101616721B1 (ko) * 2013-09-09 2016-04-29 주식회사 엘지화학 접착력이 향상된 바인더 및 상기 바인더를 포함하는 리튬 이차전지
CN103794798B (zh) * 2014-01-27 2016-04-20 中南大学 一种电池负极浆料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214011A (ja) * 1998-01-28 1999-08-06 Jsr Corp 電池電極形成用バインダーおよび電池電極
JP2006077069A (ja) * 2004-09-08 2006-03-23 Osaka Univ コア−コロナ型ナノ粒子を含む水系塗料組成物
WO2012093689A1 (ja) * 2011-01-06 2012-07-12 三菱レイヨン株式会社 ポリフッ化ビニリデン用改質剤、電池用バインダー樹脂組成物、二次電池用電極及び電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TADASHI KAGEYAMA ET AL.: "3B20 Core-Corona-gata Biryushi o Binder to shite Mochiita Tansokei Fukyoku no Rate Tokusei ni Oyobosu Eikyo", DAI 56 KAI ABSTRACTS, BATTERY SYMPOSIUM IN JAPAN, 10 November 2015 (2015-11-10), pages 188 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935830A (zh) * 2017-12-15 2019-06-25 浙江中科立德新材料有限公司 一种基于改性明胶粘结剂的锂离子电池硅碳负极极片的制备方法
CN109935830B (zh) * 2017-12-15 2021-08-20 浙江中科立德新材料有限公司 一种基于改性明胶粘结剂的锂离子电池硅碳负极极片的制备方法
WO2019172281A1 (ja) * 2018-03-07 2019-09-12 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池
JPWO2019172281A1 (ja) * 2018-03-07 2021-03-11 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに、非水系二次電池
WO2019188722A1 (ja) 2018-03-27 2019-10-03 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法
CN111801823A (zh) * 2018-03-27 2020-10-20 日本瑞翁株式会社 二次电池用粘结剂组合物、二次电池功能层用浆料组合物、二次电池构件、二次电池及二次电池负极用浆料组合物的制造方法
KR20200135329A (ko) 2018-03-27 2020-12-02 니폰 제온 가부시키가이샤 이차 전지용 바인더 조성물, 이차 전지 기능층용 슬러리 조성물, 이차 전지 부재, 이차 전지, 및 이차 전지 부극용 슬러리 조성물의 제조 방법
JPWO2019188722A1 (ja) * 2018-03-27 2021-03-18 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法
CN111801823B (zh) * 2018-03-27 2023-10-17 日本瑞翁株式会社 二次电池用粘结剂组合物、浆料组合物、构件、二次电池及负极用浆料组合物的制造方法
JP7400713B2 (ja) 2018-03-27 2023-12-19 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法
WO2022250080A1 (ja) * 2021-05-28 2022-12-01 昭和電工株式会社 非水系二次電池電極バインダー、及び非水系二次電池電極

Also Published As

Publication number Publication date
CN107710470A (zh) 2018-02-16
KR20180075436A (ko) 2018-07-04
JPWO2017077940A1 (ja) 2018-08-30
TW201721945A (zh) 2017-06-16
TWI709275B (zh) 2020-11-01
JP6795814B2 (ja) 2020-12-02
KR102570761B1 (ko) 2023-08-25
CN107710470B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
KR101888854B1 (ko) 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 도전재 페이스트 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극 및 이차 전지
JP6795814B2 (ja) リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池
JP7067473B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
KR101978462B1 (ko) 리튬 이온 2 차 전지
KR20190000377A (ko) 2차 전지 전극용 바인더 조성물, 2차 전지 전극용 슬러리 조성물, 2차 전지용 전극 및 2차 전지
JPWO2016158939A1 (ja) 非水電解質二次電池電極合剤層用組成物及びその製造方法、並びに、その用途
JP2020017504A (ja) リチウムイオン電池電極用スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
WO2015133154A1 (ja) リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池多孔膜用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP7327379B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JPWO2017150048A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
US10249879B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
JP7347218B2 (ja) 非水系電池電極用スラリー、並びに非水系電池電極及び非水系電池の製造方法
JP7298592B2 (ja) リチウムイオン二次電池用スラリー組成物およびリチウムイオン二次電池用電極
JP2014165108A (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極の製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
JPWO2020004526A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
JP6922456B2 (ja) リチウムイオン電池正極用バインダー水溶液、リチウムイオン電池正極用粉体状バインダー、リチウムイオン電池正極用スラリー、リチウムイオン電池用正極、リチウムイオン電池
WO2021111933A1 (ja) 二次電池電極用水系バインダー、二次電池電極合剤層用組成物、二次電池電極及び二次電池
JPH11297328A (ja) リチウムイオン二次電池用電極および二次電池
WO2020004145A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
WO2012043763A1 (ja) 蓄電デバイス用電極合剤およびその製造方法、ならびにこれを用いた蓄電デバイス用電極およびリチウムイオン二次電池
JP6115468B2 (ja) 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池用負極および二次電池
JP4240604B2 (ja) バインダー組成物、電池電極用スラリー、電極及び電池
WO2019181744A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP7192774B2 (ja) 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法
WO2021100582A1 (ja) 二次電池電極合剤層用組成物、二次電池電極及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548733

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177036034

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862001

Country of ref document: EP

Kind code of ref document: A1