WO2022250080A1 - 非水系二次電池電極バインダー、及び非水系二次電池電極 - Google Patents

非水系二次電池電極バインダー、及び非水系二次電池電極 Download PDF

Info

Publication number
WO2022250080A1
WO2022250080A1 PCT/JP2022/021375 JP2022021375W WO2022250080A1 WO 2022250080 A1 WO2022250080 A1 WO 2022250080A1 JP 2022021375 W JP2022021375 W JP 2022021375W WO 2022250080 A1 WO2022250080 A1 WO 2022250080A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
copolymer
mmol
general formula
battery electrode
Prior art date
Application number
PCT/JP2022/021375
Other languages
English (en)
French (fr)
Inventor
景斗 中山
一成 深瀬
悠真 田中
健太郎 高橋
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2023523504A priority Critical patent/JPWO2022250080A1/ja
Priority to CN202280035503.5A priority patent/CN117425985A/zh
Priority to KR1020237039841A priority patent/KR20240014467A/ko
Publication of WO2022250080A1 publication Critical patent/WO2022250080A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for non-aqueous secondary battery electrodes, a composition thereof, a non-aqueous secondary battery electrode, and a non-aqueous secondary battery.
  • non-aqueous secondary batteries Secondary batteries that use non-aqueous electrolytes are superior to secondary batteries that use aqueous electrolytes in terms of higher voltage, smaller size, and lighter weight. Therefore, non-aqueous secondary batteries are widely used as power sources for notebook computers, mobile phones, power tools, and electronic/communication devices. In recent years, non-aqueous batteries have also been used for electric vehicles and hybrid vehicles from the viewpoint of application to eco-vehicles.
  • a typical example of a non-aqueous secondary battery is a lithium ion secondary battery.
  • Non-aqueous secondary batteries consist of a positive electrode using a metal oxide as an active material, a negative electrode using a carbon material such as graphite as an active material, and a non-aqueous electrolyte solvent mainly composed of carbonates or flame-retardant ionic liquids.
  • a nonaqueous secondary battery is a secondary battery in which charge and discharge of the battery are performed by movement of ions between a positive electrode and a negative electrode.
  • the positive electrode is obtained by applying a slurry composed of a metal oxide and a binder to the surface of a positive electrode current collector such as an aluminum foil, drying it, and then cutting it into an appropriate size.
  • the negative electrode is obtained by applying a slurry composed of a carbon material and a binder to the surface of a negative electrode current collector such as a copper foil, drying it, and then cutting it into an appropriate size.
  • the binder binds the active materials to each other and the active material to the current collector in the positive electrode and the negative electrode, and has a role of preventing the active material from peeling off from the current collector.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • a water-dispersed binder for example, it is known to use carboxymethyl cellulose (CMC) as a thickener together with a (meth)acrylic acid ester-based or styrene-butadiene rubber (SBR)-based water dispersion.
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • Patent Document 1 discloses a binder composition for a lithium ion battery secondary battery electrode containing a (meth)acrylic acid ester compound and a polyfunctional thiol compound.
  • Patent Document 2 discloses a binder composition for a silicon-based negative electrode of a lithium ion secondary battery containing acrylic acid, a tetrafunctional (meth)acrylate monomer, and acrylamide.
  • the binder using a polyfunctional thiol described in Patent Document 1 requires the combined use of carboxymethyl cellulose as a thickener, and the slurry preparation process is complicated.
  • the binding between the active materials and between the active material and the current collector is insufficient, and when an electrode is produced with a small amount of binder, a part of the active material is cut off in the process of cutting the current collector. I had a peeling problem.
  • the binder for non-aqueous battery electrodes disclosed in Patent Document 3 has problems of low electrode flexibility and low discharge capacity retention after charge-discharge cycles, as shown in Comparative Example 3 described later. rice field.
  • the present invention provides a non-aqueous secondary battery electrode binder and a non-aqueous secondary battery electrode binder that can greatly improve the discharge capacity retention rate after charge-discharge cycles while improving the flexibility of the electrode active material layer formed on the current collector. It is an object of the present invention to provide a secondary battery electrode binder composition. Another object of the present invention is to provide a non-aqueous secondary battery electrode that has high flexibility and a high discharge capacity retention rate after charge-discharge cycles. Another object of the present invention is to provide a non-aqueous secondary battery having an electrode that is highly flexible and has a high discharge capacity retention rate after charge-discharge cycles.
  • the copolymer (P) is a main chain consisting only of bonds between carbon atoms; a substituent having an amide bond; a substituent having a salt of a carboxyl group; a substituent (c) represented by the following general formula (1); has The substituent having an amide bond, the substituent having a salt of a carboxyl group, and the substituent (c) are each bonded to the main chain,
  • the amount of amide bonds contained per 1 g of the copolymer (P) is 0.050 mmol/g or more and 5.0 mmol/g or less,
  • the amount of the carboxy group salt contained per 1 g of the copolymer (P) is 5.0 mmol/g or more and 12.0 mmol/g or less,
  • Non-aqueous secondary battery electrode binder (In general formula (1), R 31 is a hydrocarbon group, m and n each represent the number of corresponding substituents directly bonded to R 31 , m is an integer of 0 or more, n is Integer of 1 or more, m+n ⁇ 2.) [2] The non-aqueous secondary battery electrode binder according to [1], wherein in the general formula (1), R 31 consists of a carbon atom and a hydrogen atom. [3] The non-aqueous secondary battery electrode binder according to [1] or [2], wherein R 31 has a plurality of carbon atoms and all bonds between carbon atoms are single bonds in the general formula (1) .
  • the non-aqueous secondary battery electrode binder according to any one of [1] to [3], wherein Mc/(m+n) ⁇ 400, where Mc is the formula weight of the substituent (c).
  • the substituent (c) is a structure derived from the polyfunctional thiol compound (C), and the polyfunctional thiol compound (C) has two or more mercapto groups in one molecule [1] to [4 ]
  • the copolymer (P) further contains 0.50% by mass or more and 20.0% by mass or less of a structural unit (d) represented by the following general formula (2) [1] to [5 ]
  • the non-aqueous secondary battery electrode binder according to any one of (In general formula (2), R 41 , R 42 and R 44 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 43 is an alkyl group having 1 to 6 carbon atoms. , the number of carbon atoms is greater than that of R 42.
  • j and k each mean the number of serially connected structures in the corresponding parentheses, j is an integer of 1 or more, k is an integer of 0 or more , and j+k ⁇ 20.)
  • the copolymer (P) further contains a structural unit (e) represented by the following general formula (3) in an amount of 0.030 mmol/g or more per 1 g of the copolymer (P). .75 mmol/g or less non-aqueous secondary battery electrode binder according to any one of [1] to [6].
  • R 51 represents a hydrogen atom or a methyl group
  • R 52 is a substituent having an aromatic ring.
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R2 represents a hydrogen atom or a methyl group, and X is a cation.
  • X is a cation.
  • a non-aqueous secondary battery electrode binder composition comprising the non-aqueous secondary battery electrode binder according to any one of [1] to [10] and an aqueous medium.
  • a non-aqueous secondary battery electrode comprising a binder for use and an electrode active material. [13] including a positive electrode, a negative electrode and an electrolytic solution, A non-aqueous secondary battery, wherein at least one of the positive electrode and the negative electrode is the non-aqueous secondary battery electrode according to [12].
  • a method for producing an aqueous secondary battery electrode binder comprising:
  • the monomer (M) includes a monomer (A) having an amide bond and a monomer (B) having a salt of a carboxyl group,
  • the chain transfer agent is also used as a polymerization component,
  • the amount of the monomer (A) contained per 1 g of the polymerization component is 0.050 mmol/g or more and 5.0 mmol/g or less
  • the amount of the monomer (B) contained per 1 g of the polymerization component is 5.0 mmol/g or more and 12.0 mmol/g or less,
  • a non-aqueous secondary battery electrode binder that can improve the flexibility of an electrode active material layer formed on a current collector and greatly improve the discharge capacity retention rate after charge-discharge cycles, and a composition thereof can provide things. Moreover, according to the present invention, it is possible to provide a non-aqueous secondary battery electrode that has high flexibility and a high discharge capacity retention rate after charge-discharge cycles. Furthermore, according to the present invention, it is possible to provide a non-aqueous secondary battery having an electrode that is highly flexible and has a high discharge capacity retention rate after charge-discharge cycles.
  • the battery is a secondary battery that involves movement of ions between the positive electrode and the negative electrode during charging and discharging.
  • the positive electrode comprises a positive electrode active material and the negative electrode comprises a negative electrode active material.
  • These electrode active materials are materials capable of intercalating and deintercalating ions.
  • a preferred example of such a secondary battery is a lithium ion secondary battery.
  • (Meth)acrylic acid refers to one or both of methacrylic acid and acrylic acid.
  • a “(meth)acrylic acid monomer” refers to one or both of a methacrylic acid monomer and an acrylic acid monomer.
  • (Meth)acrylate refers to one or both of methacrylate and acrylate.
  • Weight average molecular weight is a pullulan conversion value calculated using gel permeation chromatography (GPC).
  • Hydrocarbon group means a structure consisting only of carbon atoms and hydrogen atoms. However, this does not apply if there is a special notice that some hydrogen atoms are substituted.
  • a salt of a functional group means a form in which an ion in which a part of the functional group is dissociated is combined with a counter ion other than a hydrogen ion and a hydroxide ion .
  • Non-aqueous secondary battery electrode binder contains the copolymer (P) described below.
  • the electrode binder may contain other components, for example, a polymer other than the copolymer (P), a surfactant, and the like.
  • the electrode binder is composed of a component that remains without volatilizing in the process accompanied by heating in the manufacturing process of the battery, which will be described later.
  • the components constituting the electrode binder were measured by weighing 1 g of the mixture containing the electrode binder in an aluminum dish having a diameter of 5 cm, and drying at 110° C. for 5 hours in a drier at atmospheric pressure while air was circulated. is an ingredient.
  • the content of the copolymer (P) in the electrode binder is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and 98% by mass. It is more preferable that it is above. This is to increase the contribution of the copolymer (P) to the intended effects of the present invention.
  • the copolymer (P) has a main chain consisting only of bonds between carbon atoms, a substituent having an amide bond, a substituent having a salt of a carboxyl group, and a substituent represented by the following general formula (1). (c) and Preferably, the main chain consists only of single bonds between carbon atoms.
  • a substituent having an amide bond, a substituent having a salt of a carboxy group, and a substituent (c) are each bonded to the main chain.
  • the substituent having an amide bond and the substituent having a salt of a carboxy group are preferably branched from the main chain.
  • the substituent (c) is preferably bonded to the end of the main chain.
  • a plurality of main chains may be bonded to one substituent (c). That is, one molecule may have a structure in which a plurality of main chains composed of bonds between carbon atoms are bonded via the substituent (c).
  • the copolymer (P) further includes at least one of a structural unit (d) represented by general formula (2) described later and a structural unit (e) represented by general formula (3) described later. Having both is preferable, and having both is more preferable.
  • the copolymer (P) may have a structure other than the above structure, such as a molecular terminal structure.
  • the weight average molecular weight of the copolymer (P) is preferably 700,000 or more, more preferably 1,000,000 or more, and even more preferably 1,500,000 or more. Also, the weight average molecular weight of the copolymer (P) is preferably 7.5 million or less, more preferably 5 million or less, even more preferably 4 million or less.
  • the amount of amide bonds contained per 1 g of the copolymer (P) is 0.050 mmol/g or more, preferably 0.085 mmol/g or more, more preferably 0.40 mmol/g or more. . This is because it is possible to prepare an electrode slurry with excellent dispersibility of an electrode active material, a conductive aid, and the like when preparing an electrode slurry, which will be described later, and with good coatability. This is also because the copolymer (P) improves the electrolytic solution resistance of the negative electrode active material layer.
  • the amount of amide bonds contained per 1 g of the copolymer (P) is 5.0 mmol/g or less, preferably 3.0 mmol/g or less, more preferably 1.7 mmol/g or less. , 0.90 mmol/g or less. This is to allow the copolymer (P) to contain another structure. Moreover, it is because the occurrence of cracks in the electrode, which will be described later, is suppressed, and the productivity of the electrode is improved.
  • amide bond may be included in structural units having other functional groups, such as the structural unit (e) described later.
  • the amide bond is preferably contained as a structural unit (a) represented by the following general formula (4). This is because the amount of the amide bond relative to the mass of the structural unit (a) is large, and the copolymer (P) can efficiently contain the amide bond.
  • the proportion contained in the structural unit (a) is preferably 95 mol% or more, more preferably 98 mol% or more, and preferably 99 mol% or more. More preferred.
  • R 11 and R 12 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 11 and R 12 are each independently more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 11 and R 12 are each independently a hydrogen atom or a methyl group. It is even more preferable to have
  • R 11 and R 12 is R 11 :H and R 12 :H, or R 11 :H and R 12 :CH 3 . This is because the amount of amide bonds relative to mass is large, and more amide bonds can be contained in the copolymer (P).
  • a salt of a carboxy group is preferably a salt of —COO 2 — with a monovalent cation.
  • the monovalent cations are more preferably alkali metal ions or ammonium ions, still more preferably alkali metal ions, and particularly preferably lithium ions or sodium ions.
  • the amount of the carboxy group salt contained per 1 g of the copolymer (P) is 5.0 mmol/g or more, preferably 6.0 mmol/g or more, and preferably 7.0 mmol/g or more. more preferred. This is because the copolymer (P) makes it possible to obtain an electrode active material layer having high peel strength against the current collector.
  • the amount of the carboxy group salt contained per 1 g of the copolymer (P) is 12.0 mmol/g or less, preferably 9.9 mmol/g or less. This is because the dispersibility of solid components such as an electrode active material and a conductive aid during preparation of an electrode slurry, which will be described later, is further improved.
  • the amount of salt of carboxy group is the amount of —COO 2 — bonded to cations other than hydrogen ions. For example, when two COO 2 — are bound to one divalent cation, there are two salts of the carboxy group.
  • salt of the carboxyl group may be contained together with structural units having other functional groups, such as the structural unit (e) described below.
  • the salt of the carboxy group is preferably contained as a structural unit (b) represented by the following general formula (5). This is because the amount of the salt of the carboxy group is large relative to the mass, and the salt of the carboxy group can be efficiently contained in the copolymer (P).
  • the ratio of the salt of the carboxy group in the copolymer (P) contained in the structural unit (b) is preferably 95 mol% or more, more preferably 98 mol% or more, and 99 mol% or more. is more preferred.
  • R2 represents a hydrogen atom or a methyl group
  • X is a cation
  • X is more preferably a monovalent cation, and more preferably at least one of lithium ion, sodium ion, potassium ion and ammonium ion. Among them, it is particularly preferable to contain at least one of lithium ions and sodium ions.
  • the copolymer (P) may contain two or more types of structures in which X is different in the general formula (5).
  • structural unit (b) may include two types of structures, a salt with lithium and a salt with sodium.
  • Substituent (c) is represented by the following general formula (1).
  • R 31 is a hydrocarbon group
  • m and n are the numbers of corresponding substituents directly bonded to R 31 (structures in parentheses corresponding to each of m and n number of branches)
  • m is an integer of 0 or more
  • n is an integer of 1 or more
  • m+n ⁇ 2 is a hydrogen atom or a methyl group.
  • the substituent (c) has the role of connecting the main chains and extending the molecular chain, and if n ⁇ 3, it can form a crosslinked structure in the copolymer (P).
  • m+n ⁇ 3 is preferable, and m+n ⁇ 4 is more preferable. This is because the peel strength and toughness of the electrode active material layer containing the copolymer (P) against the current collector are improved. This is because it is considered to form a structure.
  • R 31 preferably consists of a carbon atom and a hydrogen atom. More preferably, R 31 has multiple carbon atoms and all bonds between carbon atoms are single bonds. In general formula (1), R 31 may be a straight-chain hydrocarbon group or a hydrocarbon group having a branched structure. The number of carbon atoms contained in R 31 is preferably 10 or less, more preferably 8 or less, even more preferably 6 or less. Also, R 31 is preferably not directly bonded to the main chain. In R 31 , all bonds between carbon atoms are preferably single bonds. This is for improving the flexibility of the substituent (c) and improving the flexibility of the electrode binder.
  • R 32 is preferably a methyl group. This is because the peel strength of the electrode active material layer containing the copolymer (P) is improved.
  • the formula weight of the substituent (c) is Mc, it is preferably Mc/(m+n) ⁇ 400, more preferably Mc/(m+n) ⁇ 300, and Mc/(m+n) ⁇ 200. is more preferred.
  • Mc/(m+n) ⁇ 400 it is preferably Mc/(m+n) ⁇ 400, more preferably Mc/(m+n) ⁇ 300, and Mc/(m+n) ⁇ 200. is more preferred.
  • To improve the effect of molecular chain extension by the substituent (c) and/or the crosslink density of the copolymer (P), thereby improving the peel strength of the electrode active material layer against the current collector and the toughness of the electrode active material layer. is.
  • the substituent (c) is a structural unit derived from the polyfunctional thiol compound (C), and the polyfunctional thiol compound (C) preferably has two or more mercapto groups in one molecule.
  • the polyfunctional thiol compound (C) more preferably has 3 or more, more preferably 4 or more, mercapto groups in one molecule. Details of the polyfunctional thiol compound (C) will be described later in the method for producing the copolymer (P).
  • the amount of the substituent (c) contained per 1 g of the copolymer (P) is 0.15 ⁇ 10 ⁇ 2 mmol/g or more, preferably 0.30 ⁇ 10 ⁇ 2 mmol/g or more. , 0.65 ⁇ 10 ⁇ 2 mmol/g or more. This is because, in the electrode described later, the composite layer strength of the electrode is improved, and the discharge capacity retention rate after charge-discharge cycles is improved.
  • the amount of the substituent (c) contained per 1 g of the copolymer (P) is 8.0 ⁇ 10 ⁇ 2 mmol/g or less, preferably 5.5 ⁇ 10 ⁇ 2 mmol/g or less. , more preferably 4.0 ⁇ 10 ⁇ 2 mmol/g or less, more preferably 1.4 ⁇ 10 ⁇ 2 mmol/g or less. This is for improving the flexibility of the electrode, which will be described later. It is also for improving the cycle characteristics (discharge capacity retention rate) in the non-aqueous secondary battery described later.
  • Structural unit (d) is a structure represented by the following general formula (2).
  • R 41 , R 42 and R 44 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 43 is an alkyl group having 1 to 6 carbon atoms and has more carbon atoms than R 42 .
  • j and k each mean the number of serially connected structures in the corresponding brackets. j is an integer of 1 or more, k is an integer of 0 or more, and j+k ⁇ 20.
  • R 41 , R 42 and R 44 are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 41 , R 42 and R 44 are each independently hydrogen More preferably, it is an atom or a methyl group. More preferably, R 44 is a methyl group.
  • j is an integer of 1 or more
  • k is an integer of 0 or more
  • j+k ⁇ 20 is preferable
  • j+k ⁇ 30 is preferable
  • j+k ⁇ 40 is more preferable.
  • j+k ⁇ 500 is preferable
  • j+k ⁇ 200 is preferable
  • even more preferably j+k ⁇ 150 is preferable. This is because the binding force of the electrode binder is higher.
  • the polyoxyalkylene chain of general formula (2) may have a block structure in which each structural unit is entirely or partially continuous, and two structural units are alternately arranged.
  • a structure in which two structural units are arranged with periodic regularity, such as a structure in which two structural units are arranged at random, may be used.
  • a preferred form of the polyoxyalkylene chain of general formula (2) is a structure arranged with periodic regularity or a structure arranged randomly. This is to suppress uneven distribution of each structural unit in the molecular chain forming the general formula (2).
  • a more preferred form of the copolymer of general formula (2) is a randomly arranged structure. This is because it can be polymerized with a radical polymerization initiator without using a special catalyst, and the production cost can be reduced.
  • the content of the structural unit (d) in the copolymer (P) is preferably 0.50% by mass or more, more preferably 0.70% by mass or more, and 3.5% by mass or more. It is even more preferable to have This is for suppressing the occurrence of cracks in electrodes, which will be described later.
  • the content of the structural unit (d) in the copolymer (P) is preferably 20.0% by mass or less, more preferably 14.0% by mass or less, and 7.0% by mass or less. It is more preferable to have This is for improving the peel strength of the electrode active material layer. It is also for improving the cycle characteristics (discharge capacity retention rate) in the non-aqueous secondary battery described later.
  • Structural unit (e) is a structure represented by the following general formula (3).
  • R 51 represents a hydrogen atom or a methyl group
  • R 52 is a substituent having an aromatic ring.
  • the number of aromatic rings contained in R 52 is preferably one.
  • R 52 preferably has neither an amide bond nor a salt of a carboxyl group.
  • R 52 preferably has a benzene ring, and more preferably consists of a carbon atom and a hydrogen atom.
  • Structural unit (e) is preferably represented by the following general formula (6).
  • R51 is a hydrogen atom or a methyl group.
  • R 53 is -CH 2 - or -(CH 2 CH 2 O) h - or -CH 2 CH(OH)CH 2 O-.
  • h is an integer of 1 or more and 5 or less.
  • R54 is a substituent having an aromatic ring. More preferably, R 53 is -CH 2 - or -CH 2 CH 2 O-, more preferably -CH 2 -.
  • the number of aromatic rings contained in R 54 is preferably one.
  • R 54 preferably has a benzene ring, and more preferably consists of carbon and hydrogen atoms.
  • R 54 preferably has neither an amide bond nor a salt of a carboxyl group.
  • R 54 is particularly preferably a phenyl group.
  • the amount of the structural unit (e) contained per 1 g of the copolymer (P) is preferably 0.030 mmol/g or more, more preferably 0.045 mmol/g or more, and 0.30 mmol/g. g or more is more preferable. This is because the occurrence of cracks in the electrode, which will be described later, is suppressed, and the productivity of the electrode is improved.
  • the amount of the structural unit (e) contained per 1 g of the copolymer (P) is preferably 1.75 mmol/g or less, more preferably 1.50 mmol/g or less, and 0.90 mmol/g. g or less is more preferable. This is for improving the peel strength of the electrode active material layer and for suppressing swelling of the electrode active material layer in the electrode described later. It is also for improving the cycle characteristics (discharge capacity retention rate) in the non-aqueous secondary battery described later.
  • copolymer (P) includes a molecular chain terminal structure and a structure other than the above structure branched from the main chain.
  • the content of the terminal structure in the copolymer (P) is preferably 10% by mass or less, more preferably 2.0% by mass or less, and even more preferably 1.0% by mass or less. . This is to increase the effect of the above structure in the copolymer (P). In the structure derived from one chain transfer agent, there is only one bonding site to the molecular chain of the copolymer (P).
  • Structures other than the above structure contained in the copolymer (P) include a carboxy group.
  • the amount of carboxy groups contained per 1 g of the copolymer (P) is preferably 0.030 mmol/g or more, more preferably 1.5 mmol/g or more. is more preferred.
  • the amount of carboxy groups contained per 1 g of copolymer (P) is preferably 5.0 mmol/g or less, more preferably 3.0 mmol/g or less.
  • the copolymer (P) includes a main chain consisting of bonds between carbon atoms, a substituent (c), an ester bond, an amide bond, a salt of a carboxy group, a structural unit (d), a structural unit (e), and a carboxy It may also include structures that do not fall under any of the groups.
  • the content is preferably 0.50 mmol/g or less, more preferably 0.30 mmol/g or less, and even more preferably 0.10 mmol/g or less. This is because the effects of the functional groups and structures contained in the copolymer (P) are exhibited more strongly.
  • An example of a suitable configuration of the copolymer (P) is a structural unit (a) represented by general formula (4), a structural unit (b) represented by general formula (5), and general formula (1)
  • Examples include copolymers having the represented substituent (c).
  • This copolymer may have a structure derived from the initiator, a structure derived from the chain transfer agent, etc. at the molecular chain end.
  • the content of each structural unit is determined by the amounts of functional groups and structures to be introduced into the copolymer (P).
  • the amounts of functional groups and structures contained in the copolymer (P) are as described above.
  • the total content of the structural unit (a), the structural unit (b) and the substituent (c) in the copolymer (P) in this example is preferably 97.0% by mass or more, and 98.0% by mass. It is more preferably 99.0% by mass or more, more preferably 99.0% by mass or more.
  • copolymer (P) is, in addition to the structural unit (a), the structural unit (b), and the substituent (c), the structural unit (d) and the structural unit (e)
  • a copolymer having one or both of This copolymer may have a structure derived from the initiator, a structure derived from the chain transfer agent, etc. at the molecular chain end.
  • the content of each structural unit is determined by the amounts of functional groups and structures to be introduced into the copolymer (P).
  • the amounts of functional groups and structures contained in the copolymer (P) are as described above.
  • the total content of the structural unit (a), the structural unit (b), the substituent (c), the structural unit (d), and the structural unit (e) in the copolymer (P) in this example was 97.0%. It is preferably 0% by mass or more, more preferably 98.0% by mass or more, and even more preferably 99.0% by mass or more.
  • the method for producing the copolymer (P) is not particularly limited, but in the presence of a polyfunctional thiol compound (C) having two or more mercapto groups in one molecule, a monomer having an ethylenically unsaturated bond (M) is preferably radically polymerized. Polymerization is preferably carried out in an aqueous medium.
  • a method of charging all the monomers (M) used for polymerization at once and polymerizing, a method of polymerizing while continuously supplying the monomers (M) used for polymerization, etc. are applied.
  • the polymerization temperature is not particularly limited, it is preferably 30° C. or higher and 90° C. or lower.
  • the monomer (M) it is preferable to use a monomer (A) having an amide bond and a monomer (B) having a salt of a carboxy group for simplification of the manufacturing process.
  • the monomer (E) represented by the general formula (11) described below for simplification of the production process it is preferable to use the monomer (E) represented by the general formula (11) described below for simplification of the production process.
  • a necessary functional group may be formed by a reaction after polymerization or the like.
  • Monomer (A) has an ethylenically unsaturated bond and an amide bond.
  • this monomer (A) also corresponds to the monomer (B).
  • Monomer (A) preferably has a (meth)acryloyloxy group. This is because the polymerization rate is improved and the productivity of the copolymer (P) is improved. More preferably, the monomer (A) has a structure represented by the following general formula (7).
  • R 11 and R 12 in general formula (7) are the same as those in general formula (4) above.
  • a particularly preferred example of monomer (A) is N-vinylformamide (R 11 :H and R 12 :H) or N-vinylacetamide (R 11 :H and R 12 :CH 3 ). This is because the amount of amide bonds relative to the mass of the monomer (A) is large, and more amide bonds can be contained in the copolymer (P).
  • the monomer (B) has an ethylenically unsaturated bond and a salt of a carboxyl group. In addition, when the monomer (B) has an amide bond, this monomer (B) also corresponds to the monomer (A). Monomer (B) preferably has a (meth)acryloyloxy group. This is because the polymerization rate is improved and the productivity of the copolymer (P) is improved.
  • the monomer (B) more preferably has a structure represented by the following general formula (8).
  • R 2 and X in general formula (8) are the same as those in general formula (5) above.
  • the monomer (B) two or more compounds in which X is different in general formula (8) may be used.
  • two types of compounds, a lithium salt and a sodium salt, may be used as the monomer (B).
  • a polyfunctional thiol compound (C) has two or more mercapto groups.
  • the polyfunctional thiol compound (C) preferably has a structure represented by the following general formula (9). This is because it is inexpensive and readily available, improves the reaction rate, and improves the productivity of the copolymer (P).
  • R 32 in general formula (9) has the same structure as in general formula (1) above.
  • R33 is a hydrocarbon group.
  • f represents the number of corresponding substituents directly attached to R 33 (the number of branches of the structure in brackets). f ⁇ 2.
  • R 33 may be a straight-chain hydrocarbon group or a hydrocarbon group having a branched structure.
  • the number of carbon atoms contained in R 33 is preferably 10 or less, more preferably 8 or less, even more preferably 6 or less.
  • R 33 preferably does not have an ethylenically unsaturated bond. This is to suppress bias in crosslink density and excessive crosslink density.
  • the thiol equivalent (molecular weight per mercapto group) of the polyfunctional thiol compound (C) is preferably 400 or less, more preferably 300 or less, and even more preferably 200 or less.
  • the effect of molecular chain extension by the polyfunctional thiol compound (C) and / or the cross-linking density of the copolymer (P) is improved, and the peel strength of the electrode active material layer against the current collector and the toughness of the electrode active material layer are improved. It is for
  • the polyfunctional thiol compound (C) is a compound represented by formula (9), the molecular weight of the polyfunctional thiol compound (C) is MC, and MC/f ⁇ 400. MC/f ⁇ 300 is more preferred, and MC/f ⁇ 200 is even more preferred.
  • R 41 , R 42 , R 43 , R 44 , j, and k in general formula (10) are the same as those in general formula (2) above.
  • k 0 in general formula (10).
  • R 51 and R 52 in general formula (11) are the same as those in general formula (3) above.
  • the monomer (E) is preferably represented by the following general formula (12).
  • R 51 , R 53 and R 54 in general formula (12) are the same as those in general formula (6) above.
  • Examples of the monomer (E) include benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, phenoxyethylene glycol (meth)acrylate, phenoxydiethyleneglycol (meth)acrylate, phenoxypolyethylene glycol (meth)acrylate, ethoxy C-o-phenylphenol (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate and the like.
  • the monomer (E) is more preferably one or both of benzyl (meth)acrylate and phenoxyethyl (meth)acrylate.
  • polymerization initiators include, but are not limited to, hydrogen peroxide, t-butyl hydroperoxide, and azo compounds.
  • azo compounds include 2,2′-azobis(2-methylpropionamidine) dihydrochloride.
  • water-soluble polymerization initiator When the polymerization is carried out in water, it is preferred to use a water-soluble polymerization initiator.
  • a radical polymerization initiator and a reducing agent may be used in combination during the polymerization to carry out redox polymerization.
  • reducing agents include sodium bisulfite, Rongalite, ascorbic acid, and the like.
  • a component such as a persulfate that assists radical generation from the azo compound may be added. not.
  • persulfates include ammonium persulfate and potassium persulfate.
  • Aqueous medium Although it is preferable to use water as the aqueous medium, an aqueous medium obtained by adding a hydrophilic solvent to water may be used as long as the polymerization stability of the obtained binder copolymer is not impaired.
  • Hydrophilic solvents added to water include methanol, ethanol and N-methylpyrrolidone.
  • a chain transfer agent may be used for the purpose of adjusting the molecular weight of the copolymer (P) in the polymerization.
  • chain transfer agents include, but are not limited to, monofunctional thiols such as ⁇ -mercaptopropionic acid and octyl thioglycolate, alcohols such as isopropyl alcohol and ethanol, and halogens such as carbon tetrabromide and carbon tetrachloride. hydrocarbons, ⁇ -methylstyrene dimers, and the like.
  • each component in the polymerization component When a compound that becomes a part of the structure of the copolymer (P) by the polymerization reaction is regarded as a polymerization component, each monomer, chain transfer agent, and polymerization initiator are included in the polymerization component.
  • the composition of the polymerizable components is determined by the amount of functional groups and structures introduced into the copolymer (P).
  • radical polymerization unless there is an operation for changing a specific functional group, all of the monomers are combined with the structural units of the copolymer (P) without reacting with portions other than the ethylenically unsaturated bond. Become.
  • all of the polyfunctional thiol compound (C) becomes the substituent (c) of the copolymer (P) unless there is an operation for changing a specific functional group.
  • each monomer and polyfunctional thiol compound (C) used to obtain the copolymer (P) according to the present invention are described below, but are not limited thereto.
  • the chain transfer agent used for synthesizing the copolymer (P) is also collectively referred to as a polymerization component.
  • the amount of the monomer (A) contained per 1 g of the polymerization component is preferably 0.050 mmol/g or more, more preferably 0.085 mmol/g or more, and 0.40 mmol/g or more. is more preferred.
  • the amount of the monomer (A) contained per 1 g of the polymerization component is preferably 5.0 mmol/g or less, more preferably 3.0 mmol/g or less, and 1.7 mmol/g or less. is more preferable, and 0.90 mmol/g or less is particularly preferable.
  • the amount of the monomer (B) contained per 1 g of the polymerization component is preferably 5.0 mmol/g or more, more preferably 6.0 mmol/g or more, and 7.0 mmol/g or more. is more preferred.
  • the amount of the monomer (B) contained in 1 g of the polymerizable component is preferably 12.0 mmol/g or less, more preferably 9.9 mmol/g or less.
  • the amount of the polyfunctional thiol compound (C) contained per 1 g of the polymerization component is 0.15 ⁇ 10 ⁇ 2 mmol/g or more, preferably 0.30 ⁇ 10 ⁇ 2 mmol/g or more, and 0 It is more preferably 0.65 ⁇ 10 ⁇ 2 mmol/g or more.
  • the amount of the polyfunctional thiol compound (C) contained per 1 g of the polymerization component is 8.0 ⁇ 10 ⁇ 2 mmol/g or less, preferably 5.5 ⁇ 10 ⁇ 2 mmol/g or less. 0 ⁇ 10 ⁇ 2 mmol/g or less, more preferably 1.4 ⁇ 10 ⁇ 2 mmol/g or less.
  • the content of the monomer (D) in the polymerization component is preferably 0.50% by mass or more, more preferably 0.70% by mass or more, and preferably 3.5% by mass or more. More preferred.
  • the content of the monomer (D) in the polymerization component is preferably 20.0% by mass or less, more preferably 14.0% by mass or less, and preferably 7.0% by mass or less. more preferred.
  • the amount of the monomer (E) contained per 1 g of the polymerization component is preferably 0.030 mmol/g or more, more preferably 0.045 mmol/g or more, and 0.30 mmol/g mass% or more. is more preferable.
  • the amount of the monomer (E) contained per 1 g of the polymerization component is preferably 1.75 mmol/g or less, preferably 1.50 mmol/g mass% or less, and 0.90 mmol/g mass%. The following are more preferable.
  • the content of the chain transfer agent in the polymerization component is not particularly limited, but is preferably 0.10% by mass or more, more preferably 0.25% by mass or more, and more preferably 0.35% by mass. % or more is more preferable.
  • the content of the chain transfer agent in the polymerization component is not particularly limited, but is preferably 10% by mass or less, more preferably 2.0% by mass or less, and 0.70% by mass or less. is more preferable.
  • the amount of the chain transfer agent contained per 1 g of the polymerization component is preferably 1.0 ⁇ 10 ⁇ 2 mmol/g or more, more preferably 2.0 ⁇ 10 ⁇ 2 mmol/g or more. It is more preferably 0 ⁇ 10 ⁇ 2 mmol/g or more.
  • the amount of the chain transfer agent contained per 1 g of the polymerization component is preferably 20 ⁇ 10 ⁇ 2 mmol/g or less, more preferably 10 ⁇ 10 ⁇ 2 mmol/g or less, and 7.0 ⁇ 10 -2 mmol/g or less is more preferable.
  • the content of the polymerization initiator in the polymerization component is preferably 0.020% by mass or more, more preferably 0.10% by mass or more, and even more preferably 0.15% by mass or more.
  • the content of the polymerization initiator in the polymerization component is preferably 1.0% by mass or less, more preferably 0.50% by mass or less, and even more preferably 0.35% by mass or less.
  • it does not contain a component such as a reducing agent that does not form the structure of the copolymer (P) and assists the function of the polymerization initiator.
  • the amount of the polymerization initiator contained per 1 g of the polymerization component is preferably 0.10 ⁇ 10 ⁇ 2 mmol/g or more, more preferably 0.20 ⁇ 10 ⁇ 2 mmol/g or more, More preferably, it is 0.50 ⁇ 10 ⁇ 2 mmol/g or more.
  • the amount of the polymerization initiator contained per 1 g of the polymerization component is preferably 5.0 ⁇ 10 ⁇ 2 mmol/g or less, more preferably 2.0 ⁇ 10 ⁇ 2 mmol/g or less. It is more preferably 0 ⁇ 10 ⁇ 2 mmol/g or less.
  • it does not contain a component such as a reducing agent that does not form the structure of the copolymer (P) and assists the function of the polymerization initiator.
  • the monomer represented by the general formula (7) and the monomer represented by the general formula (8) in the monomer (M) all monomers
  • the total content of the polymer is 90% by mass or more, preferably 95% by mass or more, and more preferably 100% by mass.
  • Another example is a configuration in which one or both of the monomer (D) and the monomer (E) are used.
  • the monomer represented by the general formula (7) in the monomer (M) all monomers
  • the monomer represented by the general formula (8), and the general formula (10) The total content of the represented monomer and the monomer represented by general formula (11) is 90% by mass or more, preferably 95% by mass or more, and more preferably 100% by mass. preferable.
  • a method for producing a non-aqueous secondary battery electrode binder comprises a monomer having an ethylenically unsaturated bond (M) in the presence of a polyfunctional thiol compound (C) having two or more mercapto groups in one molecule. It includes a polymerization step of radical polymerization.
  • the method for producing the non-aqueous secondary battery electrode binder may be the same as the method for producing the copolymer (P), or may include additional steps.
  • the method for producing the copolymer (P) is as described above. Additional steps include, for example, a refining step, an additive mixing step, and the like.
  • the non-aqueous secondary battery electrode binder composition (hereinafter also referred to as "electrode binder composition") of the present embodiment contains an electrode binder and an aqueous medium. Moreover, the electrode binder composition may contain other components such as a pH adjuster and a surfactant, if necessary.
  • the aqueous medium contained in the electrode binder composition contains water.
  • the aqueous medium contained in the electrode binder composition may contain a hydrophilic solvent. Hydrophilic solvents include methanol, ethanol and N-methylpyrrolidone.
  • the content of water in the aqueous medium contained in the electrode binder composition is preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more.
  • the composition of the aqueous medium contained in the electrode binder composition may be the same as or different from the aqueous medium used for synthesizing the copolymer (P). Moreover, in the electrode binder composition of the present embodiment, the electrode binder may be dissolved or dispersed in the aqueous medium.
  • the content of the copolymer (P) in the electrode binder composition is preferably 30% by mass or less, more preferably 20% by mass or less. This is to suppress an increase in the viscosity of the electrode binder composition, and to efficiently disperse the electrode active material and the like when the electrode binder composition is mixed with the electrode active material and the like to be described later to prepare an electrode slurry.
  • the content of the copolymer (P) in the electrode binder composition is preferably 3.0% by mass or more, more preferably 5.0% by mass or more, and 8.0% by mass or more. is more preferred. This is because the electrode slurry and the electrode can be produced from a smaller amount of the electrode binder composition.
  • the pH of the electrode binder composition is preferably 4.0 or higher, more preferably 5.0 or higher, and even more preferably 6.0 or higher. This is for efficiently dispersing the electrode active material and the like when preparing an electrode slurry by mixing with the electrode active material and the like, which will be described later.
  • the pH of the electrode binder composition is preferably 11 or less, more preferably 10 or less, and even more preferably 9.0 or less. This is for efficiently dispersing the electrode active material and the like when preparing an electrode slurry by mixing with the electrode active material and the like, which will be described later.
  • the pH is a value measured with a pH meter at a liquid temperature of 23°C.
  • Non-aqueous secondary battery electrode slurry In the non-aqueous secondary battery electrode slurry (hereinafter also referred to as "electrode slurry") of the present embodiment, an electrode binder and an electrode active material are dissolved or dispersed in an aqueous medium.
  • the electrode slurry of the present embodiment may contain a conductive aid, a thickening agent, etc. as necessary, but in order to simplify the electrode slurry preparation process, it is preferable not to contain a thickening agent.
  • the method for preparing the electrode slurry is not particularly limited, but examples thereof include a method of mixing the necessary components using a mixing device such as a stirring, rotating, or shaking type.
  • the non-volatile content of the electrode slurry is preferably 30% by mass or more, more preferably 40% by mass or more. This is for forming more electrode active material layers with a smaller amount of electrode slurry.
  • the non-volatile content of the electrode slurry is preferably 70% by mass or less, more preferably 60% by mass or less.
  • the non-volatile content can be adjusted by adjusting the amount of the aqueous medium.
  • the non-volatile content concentration is, unless otherwise specified, 1 g of the mixture is weighed in an aluminum dish with a diameter of 5 cm, and dried at atmospheric pressure for 1 hour at 130 ° C. while circulating air in a dryer. is the ratio of the mass of the product to the mass before drying.
  • the content of the copolymer (P) in the electrode slurry is 0.5% by mass or more with respect to the total mass of the electrode active material (described later), the conductive aid (described later), and the electrode binder. , more preferably 1.0% by mass or more, and even more preferably 2.0% by mass or more. This is because the copolymer (P) can ensure the binding properties between the electrode active materials and between the electrode active materials and the current collector.
  • the content of the copolymer (P) in the electrode slurry is preferably 10% by mass or less, and 7.0% by mass or less, based on the total mass of the electrode active material, conductive aid, and electrode binder. is more preferably 4.0% by mass or less. This is because the charge/discharge capacity of the electrode active material layer formed from the electrode slurry can be increased, and the internal resistance of the battery can be reduced.
  • Non-aqueous secondary batteries are not particularly limited, but in the case of lithium ion secondary batteries, examples of negative electrode active materials include conductive polymers, carbon materials, lithium titanate, silicon, and silicon compounds.
  • examples of conductive polymers include polyacetylene and polypyrrole.
  • Carbon materials include coke such as petroleum coke, pitch coke and coal coke; carbides of organic compounds; graphite such as artificial graphite and natural graphite.
  • Examples of silicon compounds include SiO x (0.1 ⁇ x ⁇ 2.0).
  • a composite material containing Si and graphite (Si/graphite) or the like may be used as the electrode active material.
  • these active materials carbon materials, lithium titanate, silicon, and silicon compounds are preferably used because of their high energy density per volume.
  • carbon materials such as coke, carbides of organic compounds, and graphite, silicon-containing materials such as SiO x (0.1 ⁇ x ⁇ 2.0), Si, and Si/graphite can be used with the electrode binder of the present embodiment.
  • the effect of improving the binding property is remarkable.
  • a specific example of artificial graphite is SCMG (registered trademark)-XRs (manufactured by Showa Denko KK).
  • SCMG registered trademark
  • XRs manufactured by Showa Denko KK
  • positive electrode active materials for lithium ion secondary batteries include lithium cobalt oxide (LiCoO 2 ), nickel-containing lithium composite oxides, spinel-type lithium manganate (LiMn 2 O 4 ), olivine-type lithium iron phosphate, TiS 2 , Chalcogen compounds such as MnO 2 , MoO 3 and V 2 O 5 can be mentioned.
  • the positive electrode active material may contain one of these compounds alone, or may contain a plurality of them. Other alkali metal oxides can also be used.
  • Lithium composite oxides containing nickel include Ni--Co--Mn-based lithium composite oxides, Ni--Mn--Al-based lithium composite oxides, and Ni--Co---Al-based lithium composite oxides.
  • Specific examples of the positive electrode active material include LiNi 1/3 Mn 1/3 Co 1/3 O 2 and LiNi 3/5 Mn 1/5 Co 1/5 .
  • the electrode slurry may contain carbon black, vapor-grown carbon fiber, etc. as a conductive aid.
  • a specific example of the vapor-grown carbon fiber is VGCF (registered trademark)-H (Showa Denko KK).
  • the aqueous medium of the electrode slurry contains water.
  • the aqueous medium of the electrode slurry may contain a hydrophilic solvent. Hydrophilic solvents include methanol, ethanol and N-methylpyrrolidone.
  • the content of water in the aqueous medium is preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more.
  • the composition of the aqueous medium of the electrode slurry may be the same as or different from that of the aqueous medium contained in the electrode binder composition.
  • the electrode of this embodiment has a current collector and an electrode active material layer formed on the surface of the current collector.
  • the electrode active material layer contains the electrode active material and the electrode binder of the present embodiment.
  • the shape of the electrode includes, for example, a laminated body and a wound body, but is not particularly limited.
  • the current collector is preferably a metal sheet with a thickness of 0.001-0.5 mm.
  • Metals for the current collector include iron, copper, aluminum, nickel, stainless steel, and the like.
  • the non-aqueous secondary battery is a lithium ion secondary battery
  • aluminum is preferable as the current collector for the positive electrode
  • copper is preferable as the current collector for the negative electrode, but the materials are not particularly limited.
  • the electrode of the present embodiment can be manufactured, for example, by coating an electrode slurry on a current collector and drying it, but is not limited to this method.
  • Methods for applying the electrode slurry onto the current collector include, for example, reverse roll method, direct roll method, doctor blade method, knife method, extrusion method, curtain method, gravure method, bar method, dip method and squeeze method. is mentioned.
  • the doctor blade method, knife method, or extrusion method is preferred, and application using a doctor blade is more preferred. This is because it is suitable for various physical properties such as viscosity and drying property of the electrode slurry, and a coating film having a good surface condition can be obtained.
  • the electrode slurry may be applied to only one side of the current collector, or may be applied to both sides. When the electrode slurry is applied to both sides of the current collector, it may be applied to each side or both sides at the same time. Moreover, the electrode slurry may be applied to the surface of the current collector continuously or intermittently. The application amount and application range of the electrode slurry can be appropriately determined according to the size of the battery and the like.
  • the basis weight of the electrode active material layer after drying is preferably 4 to 20 mg/cm 2 , more preferably 6 to 16 mg/cm 2 .
  • An electrode sheet is obtained by drying the electrode slurry applied to the current collector.
  • the drying method is not particularly limited, but for example, hot air, vacuum, (far) infrared rays, electron beams, microwaves and low temperature air can be used alone or in combination.
  • the drying temperature is preferably 40° C. or higher and 180° C. or lower, and the drying time is preferably 1 minute or longer and 30 minutes or shorter.
  • the electrode sheet may be used as an electrode as it is, or it may be cut to have a suitable size and shape as an electrode.
  • the method for cutting the electrode sheet is not particularly limited, and for example, a slit, laser, wire cut, cutter, Thomson, or the like can be used.
  • the electrode active material can be more strongly bound to the electrode, and the thickness of the electrode can be reduced, thereby making it possible to make the non-aqueous battery compact.
  • a pressing method a general method can be used, and it is particularly preferable to use a die pressing method or a roll pressing method.
  • the pressing pressure is not particularly limited, but is preferably in the range of 0.5 to 5 t/cm 2 that does not affect the doping/de-doping of lithium ions or the like to/from the electrode active material by pressing.
  • a lithium ion secondary battery will be described as a preferred example of the battery according to the present embodiment, but the configuration of the battery is not limited to the configuration described below.
  • parts such as a positive electrode, a negative electrode, an electrolytic solution, and, if necessary, a separator are housed in an exterior body. At least one of the positive electrode and the negative electrode contains the electrode binder according to the present embodiment.
  • Electrolyte a non-aqueous liquid having ionic conductivity is used.
  • the electrolytic solution include a solution obtained by dissolving an electrolyte in an organic solvent, an ionic liquid, and the like. The former is preferable because the production cost is low and a battery with low internal resistance can be obtained.
  • an alkali metal salt can be used, which can be appropriately selected according to the type of the electrode active material and the like.
  • electrolytes include LiClO 4 , LiBF 6 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl 4 , LiCl, LiBr, LiB(C 2 H 5 ). 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li(CF 3 SO 2 ) 2 N, lithium aliphatic carboxylate, and the like.
  • Other alkali metal salts can also be used as the electrolyte.
  • the organic solvent that dissolves the electrolyte is not particularly limited, but examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), methylethyl carbonate (MEC), dimethyl carbonate (DMC), fluoroethylene carbonate.
  • carbonic ester compounds such as (FEC) and vinylene carbonate (VC); nitrile compounds such as acetonitrile; and carboxylic acid esters such as ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and propyl propionate.
  • FEC propylene carbonate
  • DEC diethyl carbonate
  • MEC methylethyl carbonate
  • DMC dimethyl carbonate
  • fluoroethylene carbonate ethylene carbonate
  • carbonic ester compounds such as (FEC) and vinylene carbonate (VC)
  • nitrile compounds such as acetonitrile
  • carboxylic acid esters such as e
  • Exterior body As the exterior body, a metal, an aluminum laminate material, or the like can be appropriately used.
  • the shape of the battery may be coin-shaped, button-shaped, sheet-shaped, cylindrical, square, flat, or any other shape.
  • the present invention will be described in more detail below by showing examples and comparative examples of the negative electrode binder, negative electrode slurry, negative electrode, and lithium ion secondary battery of the lithium ion secondary battery. In addition, this invention is not limited to these Examples.
  • the polymerization initiator has a part that is not incorporated into the polymer, such as the desorbed nitrogen.
  • the content (% by mass) of each component in the polymerization component and the number of moles of each component per 1 g of the polymerization component are the copolymer to be produced. and the number of moles of the structure corresponding to each component per 1 g of the copolymer.
  • Aa acrylic acid polyfunctional thiol compound (C-1): pentaerythritol tetrakis (3-mercaptobutyrate)
  • a separable flask equipped with a cooling tube, a thermometer, a stirrer, and a dropping funnel was charged with a total of 100 parts by mass of polymerization components having compositions (Tables 2 to 4) corresponding to each example and comparative example, and ammonium persulfate. 0.050 parts by mass and 693 parts by mass of water were charged at 30°C. This was heated to 80° C. and polymerized for 4 hours to synthesize copolymers P1 to CP20 and copolymers CP1 to CP5, respectively.
  • the negative electrode binder compositions Q1 to Q20 are referred to without distinction, it is referred to as the negative electrode binder composition (Q), and when the negative electrode binder compositions CQ1 to CQ5 are referred to without distinction, it is referred to as the negative electrode binder composition (CQ).
  • Q negative electrode binder composition
  • CQ negative electrode binder composition
  • GPC device GPC-101 (manufactured by Showa Denko KK)) Solvent: 0.1 M NaNO 3 aqueous solution
  • Sample column Shodex Column Ohpak SB-806 HQ (8.0 mm I.D. x 300 mm) ⁇ 2 Reference column: Shodex Column Ohpak SB-800 RL (8.0 mm ID x 300 mm) x 2
  • Column temperature 40°C
  • Pump DU-H2000 (manufactured by Shimadzu Corporation) Pressure: 1.3MPa Flow rate: 1ml/min
  • Molecular weight standard pullulan (P-5, P-10, P-20, P-50, P-100, P-200, P-400, P-800, P-1300, P-2500 (Showa Denko Co., Ltd. made))
  • Negative electrode slurry> [2-1. Preparation of negative electrode slurry] 76.8 parts by mass of SCMG (registered trademark)-XRs (manufactured by Showa Denko KK) as graphite, 19.2 parts by mass of silicon monoxide (SiO) (manufactured by Sigma-Aldrich), and VGCF (registered trademark) 1.0 parts by mass of -H (Showa Denko Co., Ltd.), 30 parts by mass of the binder composition (Q) (including 3.0 parts by mass of the copolymer (P) and 27 parts by mass of water), and 20 parts by mass of water were mixed.
  • SCMG registered trademark
  • SiO silicon monoxide
  • VGCF registered trademark
  • negative electrode> [3-1. Flexibility of negative electrode active material layer (winding test)]
  • the negative electrode slurry prepared as described above was applied to both sides of a 10 ⁇ m-thick copper foil (current collector) using a doctor blade so that the basis weight after drying would be 8 mg/cm 2 .
  • the copper foil coated with the negative electrode slurry was dried at 60° C. for 10 minutes and further dried at 100° C. for 5 minutes to prepare a negative electrode sheet having a negative electrode active material layer formed thereon. This negative electrode sheet was pressed with a press pressure of 1 t/cm 2 using a mold press.
  • the pressed negative electrode sheet was cut into a test piece with a width of 50 mm and a length of 60 mm.
  • the specimen was dried at 80°C for 12 hours.
  • One side of the dried test piece in the width direction was fixed to a stainless steel rod having a diameter of 3 mm with a single-sided adhesive tape having a thickness of 50 ⁇ m (the width direction of the test piece and the longitudinal direction of the stainless steel rod were parallel).
  • the other side of the test piece in the width direction was fixed to the glass plate. After the test piece was wound around the stainless steel bar, the appearance of the test piece was visually observed, and the number of cracks in the test piece was counted.
  • a pressed negative electrode sheet was produced in the same manner as in the evaluation of flexibility, except that the negative electrode slurry was applied to both surfaces of the copper foil so that the weight per unit area after drying was 8 mg/cm 2 .
  • the entire process was carried out at 23°C and in an atmosphere with a relative humidity of 50% by mass.
  • Tensilon (registered trademark, manufactured by A&D Co., Ltd.) was used as the testing machine.
  • a negative electrode sheet was cut into a width of 25 mm and a length of 70 mm to obtain a test piece.
  • the negative electrode active material layer on the test piece and the SUS plate with a width of 50 mm and a length of 200 mm were put together using a double-sided tape (NITTOTAPE (registered trademark) No. 5, manufactured by Nitto Denko Corporation) so that the center of the test piece and the center of the SUS plate were aligned. Glued together to match.
  • the double-faced tape was attached so as to cover the entire area of the test piece. The bonding was performed by reciprocating a 2-kg roller over the entire test piece once.
  • the copper foil was peeled off from the negative electrode active material by 20 mm in the length direction from one end of the test piece, folded back 180°, and the peeled copper foil portion was tested. I grabbed it with the chuck on the top of the machine. Furthermore, one end of the SUS plate from which the copper foil was removed was gripped with a lower chuck. In this state, the copper foil was peeled off from the test piece at a speed of 100 ⁇ 10 mm/min to obtain a peel length (mm)-peeling force (mN) graph.
  • the average value (mN) of the peel force at a peel length of 10 to 45 mm was calculated, and the value obtained by dividing the average value of the peel force by the width of the test piece of 25 mm was the peel strength of the negative electrode active material layer (mN/ mm).
  • the peel strength of the negative electrode active material layer was the peel strength of the negative electrode active material layer (mN/ mm).
  • the prepared positive electrode slurry was coated on one side of a 20 ⁇ m thick aluminum foil (current collector) by a doctor blade method so that the basis weight after drying was 22.5 mg/cm 2 (22.5 ⁇ 10 ⁇ 3 g/cm 2 ). It was applied using a doctor blade so that The aluminum foil coated with the positive electrode slurry was dried at 120° C. for 5 minutes and then pressed with a roll press to prepare a positive electrode sheet on which a positive electrode active material layer having a thickness of 100 ⁇ m was formed. The obtained positive electrode sheet was cut into a size of 20 mm ⁇ 20 mm (2.0 cm ⁇ 2.0 cm), and a conductive tab was attached thereto to prepare a positive electrode.
  • the theoretical capacity of the prepared positive electrode is calculated by the basis weight of the positive electrode slurry after drying (22.5 ⁇ 10 ⁇ 3 gg/cm 2 ) ⁇ the application area of the positive electrode slurry (2.0 cm ⁇ 2.0 cm) ⁇ LiNi 1/3 Mn.
  • the capacity of 1/3 Co 1/3 O 2 as a positive electrode active material 160 mAh/g ⁇ the ratio of LiNi 1/3 Mn 1/3 Co 1/3 O 2 in the solid content (0.90) , the calculated value is 13 mAh.
  • Electrode 1.0 mol/L of LiPF6 and vinylene carbonate (VC) were added to a mixed solvent of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and fluoroethylene carbonate (FEC) mixed at a volume ratio of 30:60:10.
  • An electrolytic solution was prepared by dissolving so as to have a concentration of 1.0% by mass.
  • a positive electrode and a negative electrode were arranged so that their active material layers faced each other with a separator made of a polyolefin porous film interposed therebetween, and housed in an aluminum laminate package (battery pack). An electrolytic solution was injected into this package and packed with a vacuum heat sealer to obtain a laminate type battery.
  • the measurement of the discharge capacity retention rate of the battery was performed under the conditions of 25°C according to the following procedure. First, it was charged with a current of 1 C until the voltage reached 4.2 V (CC charge), and then charged with a voltage of 4.2 V until the current reached 0.05 C (CV charge). After being left for 30 minutes, the battery was discharged at a current of 1 C until the voltage reached 2.75 V (CC discharge). A series of operations of CC charging, CV charging, and CC discharging is defined as one cycle.
  • the sum of the time integral values of the current in the nth cycle CC charging and CV charging is the nth cycle charging capacity (mAh), and the nth cycle discharging capacity (mAh) is the time integral value of the current in the nth cycle CC discharging.
  • the discharge capacity retention rate of the battery at the nth cycle is the ratio (%) of the discharge capacity at the nth cycle to the discharge capacity at the first cycle. In this example and comparative example, the discharge capacity retention rate at the 100th cycle was evaluated.
  • a negative electrode slurry was prepared using a copolymer CP1 having no amide bond.
  • the negative electrode slurry prepared in Comparative Example 1 contained aggregates.
  • the negative electrode slurry prepared in Comparative Example 1 could not be applied evenly to the current collector, and a negative electrode and battery that could be evaluated could not be prepared.
  • Comparative Example 2 a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced using a copolymer CP2 containing an excess of amide bonds.
  • the electrode slurry prepared in Comparative Example 2 contained aggregates.
  • the negative electrode active material layer slid down during the winding test.
  • the peel strength of the negative electrode active material layer to the current collector was low.
  • the lithium ion secondary battery produced in Comparative Example 2 had a low discharge capacity retention rate.
  • Comparative Example 3 a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were produced using a copolymer CP3 having no substituent (c). It was found that the negative electrode produced in Comparative Example 3 had a large number of cracks in the negative electrode active material layer after the winding test, and the flexibility of the negative electrode was low. In addition, in Comparative Example 3, the peel strength of the negative electrode active material layer to the current collector was low. The lithium ion secondary battery produced in Comparative Example 3 had a low discharge capacity retention rate.
  • Comparative Example 5 a copolymer CP5 containing no substituent (c) and containing a structural unit derived from a tetramethylolmethane tetraacrylate (tetramethylolmethane tetraacrylate) was used to prepare a negative electrode slurry, a negative electrode, and a lithium ion secondary battery. was made. It was found that the negative electrode produced in Comparative Example 5 had a large number of cracks in the negative electrode active material layer after the winding test, and the flexibility of the negative electrode was low. Further, in Comparative Example 5, the peel strength of the negative electrode active material layer to the current collector was low. The lithium ion secondary battery produced in Comparative Example 5 had a low discharge capacity retention rate.
  • the binder copolymer according to this example as a binder for a non-aqueous battery negative electrode, sufficient bonding can be achieved between the negative electrode active materials in the non-aqueous battery negative electrode and between the negative electrode active material and the current collector. It was found that while securing the adhesiveness, flexibility was imparted, and good charge-discharge cycle characteristics as a battery were obtained.
  • these binders can also be used as binders for the positive electrode of non-aqueous batteries. can produce a battery with good

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

集電体上に形成された電極活物質層の柔軟性を向上しつつ、充放電サイクル後の放電容量維持率を大きく向上できる非水系二次電池電極バインダー、その組成物及び非水系二次電池電極を提供する。本発明の非水系二次電池電極バインダーは、共重合体(P)を含む。共重合体(P)は、炭素原子間の結合からなる主鎖と、前記主鎖と結合している、アミド結合を有する置換基と、カルボキシ基の塩を有する置換基と、以下の一般式(1)で表される置換基(c)とを有する。共重合体(P)1gあたりに含まれる前記アミド結合の量は0.050~5.0mmol/gであり、前記置換基(b1)の量は5.0~12.0mmol/gであり、前記置換基(c)の量は0.15×10-2~8.0×10-2mmol/gである。

Description

非水系二次電池電極バインダー、及び非水系二次電池電極
 本発明は、非水系二次電池電極用バインダー、その組成物、非水系二次電池電極及び非水系二次電池に関する。
 本願は、2021年5月28日に、日本に出願された特願2021-090167号に基づき優先権を主張し、その内容をここに援用する。
 非水系電解質を用いる二次電池(非水系二次電池)は高電圧化、小型化、軽量化の面において水系電解質を用いる二次電池よりも優れている。そのため、非水系二次電池は、ノート型パソコン、携帯電話、電動工具、電子・通信機器の電源として広く使用されている。また、最近では環境車両適用の観点から電気自動車やハイブリッド自動車用にも非水系電池が使用されているが、高出力化、高容量化、長寿命化等が強く求められてきている。非水系二次電池としてリチウムイオン二次電池が代表例として挙げられる。
 非水系二次電池は、金属酸化物などを活物質とした正極と、黒鉛等の炭素材料を活物質とした負極と、カーボネート類または難燃性のイオン液体を中心した非水系電解液溶剤とを備える。非水系二次電池は、イオンが正極と負極との間を移動することにより電池の充放電が行われる二次電池である。詳細には、正極は、金属酸化物とバインダーから成るスラリーをアルミニウム箔などの正極集電体表面に塗布し、乾燥させた後に、適当な大きさに切断することにより得られる。負極は、炭素材料とバインダーから成るスラリーを銅箔などの負極集電体表面に塗布し、乾燥させた後に、適当な大きさに切断することにより得られる。バインダーは、正極及び負極において活物質同士及び活物質と集電体を結着させ、集電体からの活物質の剥離を防止させる役割がある。
 バインダーとしては、有機溶剤系のN-メチル-2-ピロリドン(NMP)を溶剤としたポリフッ化ビニリデン(PVDF)系バインダーがよく知られている。しかしながら、このバインダーは活物質同士及び活物質と集電体との結着性が低く、実際に使用するには多量のバインダーを必要とする。そのため、非水系二次電池の容量が低下する欠点がある。また、バインダーに高価な有機溶剤であるNMPを使用しているため、製造コストを抑えることが困難であった。
 これらの問題を解決する方法として、水分散系バインダーの開発が進められている。水分散系バインダーとして、例えば、カルボキシメチルセルロース(CMC)を増粘剤とし、(メタ)アクリル酸エステル系またはスチレン-ブタジエンゴム(SBR)系の水分散体を併用することが知られている。
 特許文献1では、(メタ)アクリル酸エステル化合物及び多官能チオール化合物を含むリチウムイオン電池二次電池電極用バインダー組成物が開示されている。また、特許文献2では、アクリル酸と4官能性(メタ)アクリレート単量体とアクリルアミドを含むリチウムイオン二次電池シリコン系負極用バインダー組成物が開示されている。
 特許文献3では、アクリル酸ナトリウム-N-ビニルアセトアミド共重合体(共重合比:アクリル酸ナトリウム/N-ビニルアセトアミド=10/90質量比)を含む非水系電池電極用バインダーが開示されている。
特開2014-116265号公報 特開2016-181422号公報 国際公開第2017/150200号
 しかしながら、特許文献1に記載の多官能チオールを用いたバインダーは、増粘剤であるカルボキシメチルセルロースを併用する必要があり、スラリー作製工程が複雑である。かつこのバインダーにおいても活物質同士、及び活物質と集電体との結着性が足りず、少量のバインダーで電極を生産した場合に、集電体を切断する工程で活物質の一部が剥離する問題があった。
 特許文献2に開示されている4官能アクリレートを用いたバインダーでは、後述する比較例5に示されるように、電極の柔軟性が確保できず、電極を巻回したときにクラックが発生するという課題があった。
 特許文献3で開示されている非水系電池電極用バインダーでは、後述する比較例3に示されるように、電極の柔軟性が低く、また充放電サイクル後の放電容量維持率が低いという課題があった。
 そこで、本発明は、集電体上に形成された電極活物質層の柔軟性を向上しつつ、充放電サイクル後の放電容量維持率を大きく向上できる非水系二次電池電極バインダー及び非水系二次電池電極バインダー組成物を提供することを目的とする。
 また、本発明は、柔軟性が高く、充放電サイクル後の放電容量維持率が高い非水系二次電池電極を提供することを目的とする。
 さらに、本発明は、柔軟性が高く、充放電サイクル後の放電容量維持率が高い電極を備えた非水系二次電池を提供することを目的とする。
 上記課題を解決するために、本発明は以下の〔1〕~〔14〕の通りである。
〔1〕 共重合体(P)を含む非水系二次電池電極バインダーであって、
 前記共重合体(P)は、
 炭素原子間の結合のみからなる主鎖と、
 アミド結合を有する置換基と、
 カルボキシ基の塩を有する置換基と、
 以下の一般式(1)で表される置換基(c)と、
を有し、
 前記アミド結合を有する置換基、前記カルボキシ基の塩を有する置換基、及び前記置換基(c)は、それぞれ、前記主鎖に結合しており、
 前記共重合体(P)1gあたりに含まれるアミド結合の量は0.050mmol/g以上5.0mmol/g以下であり、
 前記共重合体(P)1gあたりに含まれるカルボキシ基の塩の量は5.0mmol/g以上12.0mmol/g以下であり、
 前記共重合体(P)1gあたりに含まれる前記置換基(c)の量は0.15×10-2mmol/g以上8.0×10-2mmol/g以下である
 ことを特徴とする非水系二次電池電極バインダー。
Figure JPOXMLDOC01-appb-C000006
(一般式(1)において、R31は、炭化水素基であり、m及びnはそれぞれ、R31に直接結合している対応する置換基の数を表し、mは0以上の整数、nは1以上の整数、m+n≧2である。)
〔2〕 前記一般式(1)において、R31は炭素原子及び水素原子からなる〔1〕に記載の非水系二次電池電極バインダー。
〔3〕 前記一般式(1)において、R31は複数の炭素原子を有し、炭素原子間の結合は全て単結合である〔1〕または〔2〕に記載の非水系二次電池電極バインダー。
〔4〕 前記置換基(c)の式量をMcとすると、Mc/(m+n)≦400である〔1〕~〔3〕のいずれかに記載の非水系二次電池電極バインダー。
〔5〕 前記置換基(c)は、多官能チオール化合物(C)由来の構造であり、前記多官能チオール化合物(C)は1分子中にメルカプト基を2個以上有する〔1〕~〔4〕のいずれかに記載の非水系二次電池電極バインダー。
〔6〕 前記共重合体(P)は、更に、以下の一般式(2)で表される構造単位(d)を0.50質量%以上20.0質量%以下含む〔1〕~〔5〕のいずれかに記載の非水系二次電池電極バインダー。
Figure JPOXMLDOC01-appb-C000007
(一般式(2)において、R41、R42、R44は各々独立に水素原子または炭素数1以上5以下のアルキル基である。R43は、炭素数1以上6以下のアルキル基であり、R42よりも炭素原子の数が多い。j及びkはそれぞれ、対応するカッコ内の構造が直列的に結合している数を意味する。jは1以上の整数、kは0以上の整数であり、j+k≧20である。)
〔7〕 前記共重合体(P)は、更に、以下の一般式(3)で表される構造単位(e)を、前記共重合体(P)1gあたりに、0.030mmol/g以上1.75mmol/g以下含む〔1〕~〔6〕のいずれかに記載の非水系二次電池電極バインダー。
Figure JPOXMLDOC01-appb-C000008
(一般式(3)において、R51は水素原子またはメチル基を表し、R52は、芳香環を有する置換基である。)
〔8〕 前記共重合体(P)において、前記アミド結合の少なくとも一部が以下の一般式(4)で表される構造単位(a)として含まれる〔1〕~〔7〕のいずれかに記載の非水系二次電池電極バインダー。
Figure JPOXMLDOC01-appb-C000009
(一般式(4)において、R11、R12は各々独立に水素原子または炭素数1以上5以下のアルキル基を表す。)
〔9〕 前記共重合体(P)において、前記カルボキシ基の塩の少なくとも一部は以下の一般式(5)で表される構造単位(b)として含まれる〔1〕~〔8〕のいずれかに記載の非水系二次電池電極バインダー。
Figure JPOXMLDOC01-appb-C000010
(一般式(5)において、Rは水素原子またはメチル基を表し、Xはカチオンである。)
〔10〕 前記共重合体(P)の重量平均分子量が、70万以上750万以下であることを特徴とする〔1〕~〔9〕のいずれかに記載の非水系二次電池電極バインダー。
〔11〕 〔1〕~〔10〕のいずれかに記載の非水系二次電池電極バインダーと水性媒体とを含む非水系二次電池電極バインダー組成物。
〔12〕 集電体と、該集電体表面に形成された電極活物質層と、を備え
 該電極活物質層は〔1〕~〔10〕のいずれかに記載の非水系二次電池電極用バインダーと電極活物質とを含む非水系二次電池電極。
〔13〕 正極と負極と電解液とを含み、
 前記正極と前記負極のうち少なくとも一方は、〔12〕に記載の非水系二次電池電極であることを特徴とする非水系二次電池。
〔14〕 エチレン性不飽和結合を有する単量体(M)を、1分子中に2個以上のメルカプト基を有する多官能チオール化合物(C)の存在下でラジカル重合する重合工程を含む、非水系二次電池電極バインダーを製造する方法であって、
 前記単量体(M)は、アミド結合を有する単量体(A)と、カルボキシ基の塩を有する単量体(B)と、を含み、
 前記単量体(M)、前記多官能チオール化合物(C)、重合開始剤、及び連鎖移動剤を用いる場合は連鎖移動剤も合わせて重合成分とすると、
 前記重合成分1gあたりに含まれる前記単量体(A)の量は0.050mmol/g以上5.0mmol/g以下であり、
 前記重合成分1gあたりに含まれる前記単量体(B)の量は5.0mmol/g以上12.0mmol/g以下であり、
 前記重合成分1gあたりに含まれる前記多官能チオール化合物(C)の量は0.15×10-2mmol/g以上8.0×10-2mmol/g以下である
ことを特徴とする非水系二次電池電極バインダーの製造方法。
 本発明によれば、集電体上に形成された電極活物質層の柔軟性を向上しつつ、充放電サイクル後の放電容量維持率を大きく向上できる非水系二次電池電極バインダー、及びその組成物を提供することができる。
 また、本発明によれば、柔軟性が高く、充放電サイクル後の放電容量維持率が高い非水系二次電池電極を提供することができる。
 さらに、本発明によれば、柔軟性が高く、充放電サイクル後の放電容量維持率が高い電極を備えた非水系二次電池を提供することができる。
 以下、本発明の実施形態について詳細に説明する。本実施形態において、電池は、充放電において正極と負極との間でイオンの移動を伴う二次電池である。正極は正極活物質を備え、負極は負極活物質を備える。これらの電極活物質はイオンを挿入及び脱離(Intercaration及びDeintercalation)可能な材料である。このような構成の二次電池としての好ましい例として、リチウムイオン二次電池が挙げられる。
 「(メタ)アクリル酸」とは、メタクリル酸及びアクリル酸の一方または両方をいう。「(メタ)アクリル酸単量体」とは、メタクリル酸単量体及びアクリル酸単量体の一方又は両方をいう。「(メタ)アクリレート」とは、メタクリレート及びアクリレートの一方又は両方をいう。
 「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて算出されるプルラン換算値である。
 「炭化水素基」は、炭素原子及び水素原子のみからなる構造を意味する。ただし、一部の水素原子が置換されている等の特段の断りがある場合は、この限りではない。
 以下の説明では、構造単位を示す式において、結合を示す線の先に原子がない場合、その部分は重合体を形成する他の構造単位または末端構造に結合していることを意味する。
 官能基の塩とは、官能基の一部が解離したイオンと、水素イオン及び水酸化物イオン以外の対イオンとが結合した形態を意味し、例えば、カルボキシ基の塩とは、COOと、水素イオン以外のカチオンとが結合した形態を意味する。
<1.非水系二次電池電極バインダー>
 本実施形態にかかる非水系二次電池電極バインダー(または、非水系二次電池電極バインダー。以下、「電極バインダー」とすることがある)は、以下に説明する共重合体(P)を含む。電極バインダーは、その他の成分を含んでもよく、例えば、共重合体(P)以外の重合体、界面活性剤等を含んでもよい。
 ここで電極バインダーは、後述する電池の製造工程における加熱を伴う工程において揮発せずに残る成分からなる。具体的には電極バインダーを構成する成分は、電極バインダーを含む混合物を直径5cmのアルミ皿に1g秤量し、大気圧、乾燥器内で空気を循環させながら110℃で5時間乾燥させ後に残った成分である。
 電極バインダー中の共重合体(P)の含有率は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることがさらに好ましい。共重合体(P)による本発明の目的とする効果への寄与を大きくするためである。
〔1-1.共重合体(P)〕
 共重合体(P)は、炭素原子間の結合のみからなる主鎖と、アミド結合を有する置換基と、カルボキシ基の塩を有する置換基と、下記一般式(1)で表される置換基(c)と、を有する。前記主鎖は炭素原子間の単結合のみからなることが好ましい。
 アミド結合を有する置換基、カルボキシ基の塩を有する置換基、及び置換基(c)は、それぞれ、前記主鎖に結合している。アミド結合を有する置換基、及びカルボキシ基の塩を有する置換基は、前記主鎖から分岐していることが好ましい。置換基(c)は、前記主鎖の末端に結合していることが好ましい。また、1つの置換基(c)に対して、複数の主鎖が結合していてもよい。すなわち、1つの分子中に置換基(c)を介して、炭素原子間の結合からなる主鎖が複数結合した構造を有してもよい。
 共重合体(P)は、更に、後述する一般式(2)で表される構造単位(d)、及び後述する一般式(3)で表される構造単位(e)のうち少なくともいずれかを有することが好ましく、両方有することがより好ましい。共重合体(P)は、分子の末端構造等、上記構造以外の構造を有していてもよい。
 共重合体(P)の重量平均分子量は、70万以上であることが好ましく、100万以上であることがより好ましく、150万以上であることがさらに好ましい。また、共重合体(P)の重量平均分子量は、750万以下であることが好ましく、500万以下であることがより好ましく、400万以下であることがさらに好ましい。
[1-1-1.アミド結合]
 共重合体(P)1gあたりに含まれるアミド結合の量は、0.050mmol/g以上であり、0.085mmol/g以上であることが好ましく、0.40mmol/g以上であることがより好ましい。後述する電極スラリー作製時の電極活物質、導電助剤等の分散性に優れ、塗工性が良好な電極スラリーを作製することができるためである。また、共重合体(P)により、負極活物質層の耐電解液性が向上するためである。
 共重合体(P)1gあたりに含まれるアミド結合の量は、5.0mmol/g以下であり、3.0mmol/g以下であることが好ましく、1.7mmol/g以下であることがより好ましく、0.90mmol/g以下であることがさらに好ましい。共重合体(P)に他の構造を含有させるためである。また、後述する電極のクラックの発生が抑制され、電極の生産性が向上するためである。
 なお、アミド結合は、後述する構造単位(e)等、他の官能基を有する構造単位にともに含まれていてもよい。
 共重合体(P)において、アミド結合は少なくとも一部が以下の一般式(4)で表される構造単位(a)として含まれることが好ましい。構造単位(a)の質量に対するアミド結合の量が多く、共重合体(P)に効率的にアミド結合を含ませることができるためである。共重合体(P)中のアミド結合のうち、構造単位(a)に含まれる割合は、95mol%以上であることが好ましく、98mol%以上であることがより好ましく、99mol%以上であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000011
 一般式(4)において、R11、R12は各々独立に水素原子または炭素数1以上5以下のアルキル基を表す。
 一般式(4)において、R11、R12は各々独立に水素原子または炭素数1以上3以下のアルキル基であることがより好ましく、R11、R12は各々独立に水素原子またはメチル基であることがさらに好ましい。
 R11、R12の組み合わせとして特に好ましい具体例は、R11:HかつR12:H、またはR11:HかつR12:CHである。質量に対するアミド結合の量が多く、共重合体(P)により多くのアミド結合を含ませることができるためである。
[1-1-2.カルボキシ基の塩]
 カルボキシ基の塩は、-COOと1価のカチオンとの塩であることが好ましい。1価のカチオンは、アルカリ金属イオンまたはアンモニウムイオンであることがより好ましく、アルカリ金属イオンであることがさらに好ましく、リチウムイオンまたはナトリウムイオンであることが特に好ましい。
 共重合体(P)1gあたりに含まれるカルボキシ基の塩の量は、5.0mmol/g以上であり、6.0mmol/g以上であることが好ましく、7.0mmol/g以上であることがより好ましい。共重合体(P)により、集電体に対する剥離強度の高い電極活物質層を得ることができるためである。
 共重合体(P)1gあたりに含まれるカルボキシ基の塩の量は、12.0mmol/g以下であり、9.9mmol/g以下であることが好ましい。後述する電極スラリー作製時の電極活物質、導電助剤等の固形分の分散性がより向上するためである。
 なお、カルボキシ基の塩の量は、水素イオン以外のカチオンと結合している-COOの量である。例えば、2価のカチオン1個に、2個のCOOが結合している場合、カルボキシ基の塩は2個である。
 なお、カルボキシ基の塩は、後述する構造単位(e)等、他の官能基を有する構造単位にともに含まれていてもよい。
 共重合体(P)において、カルボキシ基の塩の少なくとも一部は以下の一般式(5)で表される構造単位(b)として含まれることが好ましい。質量に対するカルボキシ基の塩の量が多く、共重合体(P)に効率的にカルボキシ基の塩を含ませることができるためである。共重合体(P)中のカルボキシ基の塩のうち、構造単位(b)に含まれる割合は95mol%以上であることが好ましく、98mol%以上であることがより好ましく、99mol%以上であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(5)において、Rは水素原子またはメチル基を表し、Xはカチオンである。
 一般式(5)中、Xは1価のカチオンであることがより好ましく、リチウムイオン、ナトリウムイオン、カリウムイオン、アンモニウムイオンのうち少なくとも1種であることがさらに好ましい。その中でも、リチウムイオン、ナトリウムイオンのうち少なくとも一方を含むことが特に好ましい。
 構造単位(b)として、上記一般式(5)において、Xが異なる2種類以上の構造が共重合体(P)に含まれていてもよい。例えば、構造単位(b)はリチウムとの塩、及びナトリウムとの塩の2種類の構造を含んでもよい。
[1-1-3.置換基(c)]
 置換基(c)は、以下の一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000013
 一般式(1)において、R31は、炭化水素基であり、m及びnはそれぞれ、R31に直接結合している対応する置換基の数(m及びnのそれぞれに対応するカッコ内の構造の分岐の数)を表し、mは0以上の整数、nは1以上の整数、m+n≧2であり、R32は、水素原子またはメチル基である。
 置換基(c)は、前記主鎖どうしを連結し、分子鎖を延長する役割を有し、n≧3であれば、共重合体(P)において、架橋構造を形成させることができる。
 一般式(1)において、m+n≧3であることが好ましく、m+n≧4であることがより好ましい。共重合体(P)を含む電極活物質層の、集電体に対する剥離強度及び靭性が向上するためであり、これは、置換基(c)の少なくとも一部が共重合体(P)における架橋構造を形成していると考えられるためである。
 なお、特に限定されないが、m+n≦6であることが好ましく、m+n≦5であることがより好ましい。m+n≦4であることがさらに好ましく、m+n=4であることが特に好ましい。共重合体(P)を含む電極活物質層の柔軟性が向上するためである。
 一般式(1)において、R31は、炭素原子及び水素原子からなることが好ましい。R31は複数の炭素原子を有し、炭素原子間の結合は全て単結合であることがより好ましい。
 一般式(1)において、R31は、直鎖の炭化水素基であってもよく、分岐構造を有する炭化水素基であってもよい。R31に含まれる炭素原子の数は10個以下であることが好ましく、8個以下であることがより好ましく、6個以下であることがさら好ましい。また、R31は、直接前記主鎖と結合していないことが好ましい。R31において、炭素原子間の結合は全て単結合であることが好ましい。置換基(c)の屈曲性を向上させ、電極バインダーの柔軟性を向上させるためである。
 一般式(1)において、R32はメチル基であることが好ましい。共重合体(P)を含む電極活物質層の剥離強度が向上するためである。
 置換基(c)の式量をMcとすると、Mc/(m+n)≦400であることが好ましく、Mc/(m+n)≦300であることがより好ましく、Mc/(m+n)≦200であることがさらに好ましい。置換基(c)による分子鎖延長の効果、及び/または共重合体(P)の架橋密度を向上させ、集電体に対する電極活物質層の剥離強度及び電極活物質層の靭性が向上するためである。
 置換基(c)は、多官能チオール化合物(C)由来の構造単位であり、前記多官能チオール化合物(C)は、1分子中にメルカプト基を2個以上有することが好ましい。ここで多官能チオール化合物(C)は、1分子中にメルカプト基を3個以上有することがより好ましく、4個以上有することがさらに好ましい。多官能チオール化合物(C)の詳細については、共重合体(P)の製造方法にて後述する。
 共重合体(P)1gあたりに含まれる置換基(c)の量は、0.15×10-2mmol/g以上であり、0.30×10-2mmol/g以上であることが好ましく、0.65×10-2mmol/g以上であることがより好ましい。後述する電極において、電極の合材層強度が向上し、充放電サイクル後の放電容量維持率が向上するためである。
 共重合体(P)1gあたりに含まれる置換基(c)の量は、8.0×10-2mmol/g以下であり、5.5×10-2mmol/g以下であることが好ましく、4.0×10-2mmol/g以下であることがより好ましく、1.4×10-2mmol/g以下であることがさらに好ましい。後述する電極において、電極の柔軟性を向上させるためである。また、後述する非水系二次電池において、サイクル特性(放電容量維持率)を向上させるためである。
[1-1-4.構造単位(d)]
 構造単位(d)は、以下の一般式(2)で表される構造である。
Figure JPOXMLDOC01-appb-C000014
 一般式(2)において、R41、R42、R44は各々独立に水素原子または炭素数1以上5以下のアルキル基である。R43は、炭素数1以上6以下のアルキル基であり、R42よりも炭素原子の数が多い。この式において、j及びkはそれぞれ、対応するカッコ内の構造が直列的に結合している数を意味する。jは1以上の整数、kは0以上の整数であり、j+k≧20である。
 一般式(2)において、R41、R42、R44は各々独立に水素原子または炭素数1以上3以下のアルキル基であることが好ましく、R41、R42、R44は各々独立に水素原子またはメチル基であることがより好ましい。R44はメチル基であることがさらに好ましい。
 一般式(2)において、jは1以上の整数、kは0以上の整数であり、j+k≧20である。共重合体(P)を電極活物質のためのバインダーとして電極を作製した場合、電極の可撓性が向上し、クラックの発生を抑制されるためである。この観点から、j+k≧30であることが好ましく、j+k≧40であることがより好ましい。また、j+k≦500であることが好ましく、j+k≦200であることがより好ましく、j+k≦150であることがさらに好ましい。電極バインダーの結着力がより高くなるためである。
 なお、一般式(2)では、R42を含む構造単位j個及びR43を含む構造単位k個が含まれるということを限定しているが、これらの構造単位の配列について限定はしていない。すなわち、k≧1の場合、一般式(2)のポリオキシアルキレン鎖では、それぞれの構造単位が全てまたは一部が連続したブロック構造を有していてもよく、2つの構造単位が交互に配列した構造等の周期的な規則性をもって配列した構造でもよく、2つの構造単位がランダムに配列した構造でもよい。一般式(2)のポリオキシアルキレン鎖の好ましい形態としては、周期的な規則性をもって配列した構造、またはランダムに配列した構造である。一般式(2)を形成する分子鎖内での各構造単位の分布の偏りを抑制するためである。一般式(2)の共重合体のより好ましい形態としては、ランダムに配列した構造である。特殊な触媒を用いずにラジカル重合開始剤により重合可能であり、製造コストを低減できるためである。
 一般式(2)において、R41、R42、R43、R44、j、kの組み合わせとして好ましい例としては、以下の表1の例が挙げられる。
Figure JPOXMLDOC01-appb-T000015
 共重合体(P)における、構造単位(d)の含有率は、0.50質量%以上であることが好ましく、0.70質量%以上であることがより好ましく、3.5質量%以上であることがさらに好ましい。後述する電極の、クラック発生を抑制するためである。
 共重合体(P)における、構造単位(d)の含有率は、20.0質量%以下であることが好ましく、14.0質量%以下であることがより好ましく、7.0質量%以下であることがより好ましい。電極活物質層の剥離強度を向上させるためである。また、後述する非水系二次電池において、サイクル特性(放電容量維持率)を向上させるためである。
[1-1-5.構造単位(e)]
 構造単位(e)は、以下の一般式(3)で表される構造である。
Figure JPOXMLDOC01-appb-C000016
 一般式(3)において、R51は水素原子またはメチル基を表し、R52は、芳香環を有する置換基である。R52に含まれる芳香環は1個であることが好ましい。R52は、アミド結合及びカルボキシ基の塩のいずれも有さないことが好ましい。R52は、ベンゼン環を有することが好ましく、炭素原子と水素原子からなることがより好ましい。
 構造単位(e)は、以下の一般式(6)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(6)において、R51は水素原子またはメチル基である。R53は-CH-または-(CHCHO)-または-CHCH(OH)CHO-である。ここでhは1以上5以下の整数である。R54は、芳香環を有する置換基である。R53は-CH-または-CHCHO-であることがより好ましく、-CH-であることがさらに好ましい。R54に含まれる芳香環は1個であることが好ましい。R54は、ベンゼン環を有することが好ましく、炭素原子及び水素原子からなることがより好ましい。R54は、アミド結合及びカルボキシ基の塩のいずれも有さないことが好ましい。R54は、フェニル基であることが特に好ましい。
 共重合体(P)1gあたりに含まれる、構造単位(e)の量は、0.030mmol/g以上であることが好ましく、0.045mmol/g以上であることがより好ましく、0.30mmol/g以上であることがさらに好ましい。後述する電極のクラックの発生が抑制され、電極の生産性が向上するためである。
 共重合体(P)1gあたりに含まれる、構造単位(e)の量は、1.75mmol/g以下であることが好ましく、1.50mmol/g以下であることがより好ましく、0.90mmol/g以下であることがさらに好ましい。後述する電極において、電極活物質層の剥離強度を向上させるため、及び電極活物質層の膨れを抑制するためである。また、後述する非水系二次電池において、サイクル特性(放電容量維持率)を向上させるためである。
[1-1-6.その他の構造]
 共重合体(P)に含まれる、その他の構造としては、分子鎖末端の構造、前記主鎖から分岐した上記構造以外の構造が挙げられる。
 分子鎖末端の構造としては、例えば、重合開始剤由来の構造、連鎖移動剤由来の構造等が挙げられる。なお、置換基(c)は、例えば、一般式(1)においてn=1であっても分子鎖末端の構造とはしない。共重合体(P)中の末端構造の含有率は、10質量%以下であることが好ましく、2.0質量%以下であることがより好ましく、1.0質量%以下であることがさらに好ましい。共重合体(P)における上記構造による効果をより大きくするためである。なお、1個の連鎖移動剤由来の構造における、共重合体(P)の分子鎖への結合箇所は1箇所のみである。
 共重合体(P)に含まれる上記構造以外の構造としては、カルボキシ基が挙げられる。共重合体(P)がカルボキシ基を有する場合、共重合体(P)1gあたりに含まれるカルボキシ基の量は0.030mmol/g以上であることが好ましく、1.5mmol/g以上であることがより好ましい。共重合体(P)1gあたりに含まれるカルボキシ基の量は5.0mmol/g以下であることが好ましく、3.0mmol/g以下であることがより好ましい。
 共重合体(P)には、炭素原子間の結合からなる主鎖、置換基(c)、エステル結合、アミド結合、カルボキシ基の塩、構造単位(d)、構造単位(e)、及びカルボキシ基のいずれにも該当しない構造を含んでもよい。その含有率は0.50mmol/g以下であることが好ましく、0.30mmol/g以下であることがより好ましく、0.10mmol/g以下であることがさらに好ましい。共重合体(P)に含まれる、官能基及び構造による効果をより強く発揮させるためである。
[1-1-7.共重合体(P)の好適な構成の例]
 共重合体(P)の好適な構成の一例は、一般式(4)で表される構造単位(a)、一般式(5)で表させる構造単位(b)、及び一般式(1)で表される置換基(c)を有する共重合体が挙げられる。この共重合体において、分子鎖末端に開始剤由来の構造及び連鎖移動剤由来の構造等を有していてもよい。各構造単位の含有量は、共重合体(P)に導入する官能基及び構造の量によって決定する。共重合体(P)に含まれる官能基及び構造の量は、上記の通りである。この一例における共重合体(P)中の、構造単位(a)、構造単位(b)及び置換基(c)の合計含有率は、97.0質量%以上であることが好ましく、98.0質量%以上であることがより好ましく、99.0質量%以上であることがさらに好ましい。
 共重合体(P)の好適な構成の別の一例は、構造単位(a)、構造単位(b)、及び置換基(c)に加えて、上記構造単位(d)及び構造単位(e)のうち一方または両方を有する共重合体が挙げられる。この共重合体において、分子鎖末端に開始剤由来の構造及び連鎖移動剤由来の構造等を有していてもよい。各構造単位の含有量は、共重合体(P)に導入する官能基及び構造の量によって決定する。共重合体(P)に含まれる官能基及び構造の量は、上記の通りである。この一例における共重合体(P)中の、構造単位(a)、構造単位(b)、置換基(c)、構造単位(d)、及び構造単位(e)の合計含有率は、97.0質量%以上であることが好ましく、98.0質量%以上であることがより好ましく、99.0質量%以上であることがさらに好ましい。
〔1-2.共重合体(P)の製造方法〕
 共重合体(P)の製造方法は、特に限定されないが、1分子中に2個以上のメルカプト基を有する多官能チオール化合物(C)の存在下で、エチレン性不飽和結合を有する単量体(M)を、ラジカル重合することが好ましい。重合は水性媒体中で行うことが好ましい。重合の手順としては、例えば、重合に使用する単量体(M)を全て一括して仕込んで重合する方法、重合に使用する単量体(M)を連続供給しながら重合する方法等が適用できる。重合温度は、特に限定されないが、30℃以上90℃以下であることが好ましい。
 単量体(M)としては、アミド結合を有する単量体(A)、カルボキシ基の塩を有する単量体(B)を用いることが製造工程の簡素化のために好ましい。構造単位(d)含む共重合体(P)を合成する場合、後述する一般式(10)で表される単量体(D)を用いることが製造工程の簡素化のために好ましい。構造単位(e)含む共重合体(P)を合成する場合、後述する一般式(11)で表される単量体(E)を用いることが製造工程の簡素化のために好ましい。なお、これらの単量体を用いずに、重合後の反応等で、必要な官能基を形成させてもよい。
[1-2-1.単量体(A)]
 単量体(A)は、エチレン性不飽和結合及びアミド結合を有する。なお、単量体(A)がカルボキシ基の塩を有する場合、この単量体(A)は単量体(B)にも該当する。単量体(A)は、(メタ)アクリロイルオキシ基を有することが好ましい。重合速度が向上し、共重合体(P)の生産性が向上するためである。単量体(A)は、以下の一般式(7)で表される構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(7)における、R11、R12は、上記一般式(4)におけるこれらの構成と同様である。単量体(A)の特に好ましい具体例は、N-ビニルホルムアミド(R11:HかつR12:H)、またはN-ビニルアセトアミド(R11:HかつR12:CH)である。単量体(A)の質量に対するアミド結合の量が多く、共重合体(P)により多くのアミド結合を含ませることができるためである。
[1-2-2.単量体(B)]
 単量体(B)は、エチレン性不飽和結合及びカルボキシ基の塩を有する。なお、単量体(B)がアミド結合を有する場合、この単量体(B)は、単量体(A)にも該当する。単量体(B)は、(メタ)アクリロイルオキシ基を有することが好ましい。重合速度が向上し、共重合体(P)の生産性が向上するためである。単量体(B)は、以下の一般式(8)で表される構造であることがより好ましい。
Figure JPOXMLDOC01-appb-C000019
 一般式(8)における、R及びXは、上記一般式(5)におけるこれらの構成と同様である。単量体(B)として、一般式(8)においてXが異なる2種類以上の化合物を用いてもよい。例えば、単量体(B)として、リチウム塩、及びナトリウム塩の2種類の化合物を用いてもよい。
[1-2-3.多官能チオール化合物(C)]
 多官能チオール化合物(C)は、2個以上のメルカプト基を有する。多官能チオール化合物(C)は、以下の一般式(9)で表される構造であることが好ましい。安価かつ容易に入手できること、及び反応速度が向上し、共重合体(P)の生産性が向上するためである。
Figure JPOXMLDOC01-appb-C000020
 一般式(9)における、R32は、上記一般式(1)における構成と同様である。R33は、炭化水素基である。fは、R33に直接結合している対応する置換基の数(カッコ内の構造の分岐の数)を表す。f≧2である。
 f≧3であることが好ましく、f≧4であることがより好ましい。共重合体(P)において架橋構造を形成させることができ、共重合体(P)を含む電極活物質層の、集電体に対する剥離強度及び靭性が向上するためである。また、特に限定されないが、f≦6であることが好ましく、f≦5であることがより好ましく、f≦4であることがさらに好ましく、f=4であることが最も好ましい。共重合体(P)を含む電極活物質層の柔軟性が向上するためである。
 一般式(9)において、R33は、直鎖の炭化水素基であってもよく、分岐構造を有する炭化水素基であってもよい。R33に含まれる炭素原子の数は10個以下であることが好ましく、8個以下であることがより好ましく、6個以下であることがさら好ましい。また、R33は、エチレン性不飽和結合を有さないことが好ましい。架橋密度の偏り及び、架橋密度が過剰になることを抑制するためである。
 多官能チオール化合物(C)のチオール当量(メルカプト基1個当たりの分子量)は400以下であることが好ましく、300以下であることがより好ましく、200以下であることがさらに好ましい。多官能チオール化合物(C)による分子鎖延長の効果、及び/または共重合体(P)の架橋密度を向上させ、集電体に対する電極活物質層の剥離強度及び電極活物質層の靭性が向上するためである。
 同様の理由から、多官能チオール化合物(C)が、式(9)で表される化合物である場合、多官能チオール化合物(C)の分子量をMCとすると、MC/f≦400であることが好ましく、MC/f≦300であることがより好ましく、MC/f≦200であることがさらに好ましい。
 多官能チオール化合物(C)としては、例えばペンタエリスリトール=テトラキス(3-メルカプトブチレート)、ペンタエリスリトール=テトラキス(3-メルカプトプロピオネート)、トリメチロールプロパン=トリス(3-メルカプトブチレート)、トリメチロールプロパン=トリス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、テトラエチレングリコール=ビス(3-メルカプトプロピオネート)、ジペンタエリスリトール=ヘキサキス(3-メルカプトプロピオネート)等があげられる。単量体(C)は、これらの化合物のうち、ペンタエリスリトール=テトラキス(3-メルカプトブチレート)、ペンタエリスリトール=テトラキス(3-メルカプトプロピオネート)、トリメチロールプロパン=トリス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタンを含むことがさらに好ましい。
[1-2-4.単量体(D)]
 単量体(D)は、以下の一般式(10)で表される。
Figure JPOXMLDOC01-appb-C000021
 一般式(10)における、R41、R42、R43、R44、j、及びkは、上記一般式(2)におけるこれらの構成と同様である。 
 一般式(10)においてk=0であることがより好ましい。k=0の単量体(D)の例として、ポリエチレングリコールのモノ(メタ)アクリレートが挙げられ、より具体的には、メトキシポリエチレングリコール(メタ)アクリレート(例えば、表1の単量体d1、d2)等を挙げることができる。メトキシポリエチレングリコールメタクリレートの一例としては、EVONIK INDUSTRIES製のVISIOMER(登録商標)MPEG2005 MA Wが挙げられる。この製品においてはR41=CH、R42=H、R44=CH、j=45、k=0である。メトキシポリエチレングリコールメタクリレートの他の例としては、EVONIK INDUSTRIES製のVISIOMER(登録商標)MPEG5005 MA Wが挙げられ、この製品においては、R41=CH、R42=H、R44=CH、j=113、k=0である。
 k=0の単量体(D)の別の例として、ポリプロピレングリコールのモノ(メタ)アクリレートが挙げられ、より具体的には、メトキシポリプロピレングリコール(メタ)アクリレート等を挙げることができる。
[1-2-5.単量体(E)]
 単量体(E)は、以下の一般式(11)で表される。
Figure JPOXMLDOC01-appb-C000022
 一般式(11)における、R51及びR52は、上記一般式(3)におけるこれらの構成と同様である。
 単量体(E)は、以下の一般式(12)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000023
 一般式(12)における、R51、R53、及びR54は、上記一般式(6)におけるこれらの構成と同様である。
 単量体(E)としては、例えば、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、フェノキシエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、エトキシ化-o-フェニルフェノール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等が挙げられる。単量体(E)は、これらの化合物のうち、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチルのうち一方または両方を用いることがより好ましい。
[1-2-7.重合開始剤]
 ラジカル重合の場合、重合開始剤としては、例えば、過酸化水素、t-ブチルハイドロパーオキサイド、アゾ化合物等が挙げられるが、これらに限られない。アゾ化合物としては、例えば、2,2’-アゾビス(2-メチルプロピオンアミジン)2塩酸塩が挙げられる。重合を水中で行う場合は、水溶性の重合開始剤を用いることが好ましい。また、必要に応じて、重合の際にラジカル重合開始剤と、還元剤とを併用して、レドックス重合してもよい。還元剤としては、重亜硫酸ナトリウム、ロンガリット、アスコルビン酸等が挙げられる。なお、重合開始剤としてアゾ化合物を用いる場合、過硫酸塩等、アゾ化合物からのラジカル生成を補助する成分を添加してもよいが、これらの成分は、共重合体(P)の構成とはならない。過硫酸塩としては過硫酸アンモニウム、過硫酸カリウム等が挙げられる。
[1-2-8.水性媒体]
 水性媒体として水を用いることが好ましいが、得られるバインダー用共重合体の重合安定性を損なわない限り、水に親水性の溶媒を添加したものを水性媒体として用いてもよい。水に添加する親水性の溶媒としては、メタノール、エタノール及びN-メチルピロリドン等が挙げられる。
[1-2-9.連鎖移動剤]
 重合に際し、共重合体(P)の分子量を調節する目的で連鎖移動剤を用いてもよい。連鎖移動剤として、特に制限されることはないが、例えばβ-メルカプトプロピオン酸及びチオグリコール酸オクチル等の単官能チオール、イソプロピルアルコール及びエタノール等のアルコール、四臭化炭素及び四塩化炭素等のハロゲン化炭化水素、及びα-メチルスチレンダイマー等が挙げられる。
[1-2-10.重合成分中の各成分の含有量]
 重合反応により共重合体(P)の構造の一部となる化合物を重合成分とすると、重合成分には、各単量体、連鎖移動剤、及び重合開始剤が含まれる。重合成分の構成は共重合体(P)に導入する官能基及び構造の量によって決定される。ラジカル重合であれば、特定の官能基を変化させるための操作がない限り、各単量体は全て、エチレン性不飽和結合以外の部分は反応せずに共重合体(P)の構造単位となる。また、ラジカル重合であれば、特定の官能基を変化させるための操作がない限り、多官能チオール化合物(C)は全て、共重合体(P)の置換基(c)となる。
 共重合体(P)の合成において、単量体(D)および単量体(E)を用いない形態、単量体(D)及び単量体(E)のうち一方または両方を用いる形態が挙げられる。
 以下、本発明にかかる共重合体(P)を得るために用いる、各単量体及び多官能チオール化合物(C)の好適な使用量について説明するが、これに限定されない。ここでは、共重合体(P)の合成に用いられる単量体、多官能チオール化合物(C)、重合開始剤、及び連鎖移動剤を用いる場合は連鎖移動剤も合わせて重合成分と呼ぶ。
 重合成分1gあたりに含まれる単量体(A)の量は、0.050mmol/g以上であることが好ましく、0.085mmol/g以上であることがより好ましく、0.40mmol/g以上であることがさらに好ましい。重合成分1gあたりに含まれる単量体(A)の量は、5.0mmol/g以下であることが好ましく、3.0mmol/g以下であることがより好ましく、1.7mmol/g以下であることがさらに好ましく、0.90mmol/g以下であることが特に好ましい。
 重合成分1gあたりに含まれる単量体(B)の量は、5.0mmol/g以上であることが好ましく、6.0mmol/g以上であることがより好ましく、7.0mmol/g以上であることがさらに好ましい。重合成分1gあたりに含まれる単量体(B)の量は、12.0mmol/g以下であることが好ましく、9.9mmol/g以下であることがより好ましい。なお、2価以上のカチオンに単量体(B)の構造に対応するカルボン酸イオンが複数結合している場合は、単量体(B)はそのカチオンに結合している数存在すると考える。
 重合成分1gあたりに含まれる多官能チオール化合物(C)の量は、0.15×10-2mmol/g以上であり、0.30×10-2mmol/g以上であることが好ましく、0.65×10-2mmol/g以上であることがより好ましい。重合成分1gあたりに含まれる多官能チオール化合物(C)の量は、8.0×10-2mmol/g以下であり、5.5×10-2mmol/g以下であることが好ましく、4.0×10-2mmol/g以下であることがより好ましく、1.4×10-2mmol/g以下であることがさらに好ましい。
 重合成分中の単量体(D)の含有率は、0.50質量%以上であることが好ましく、0.70質量%以上であることがより好ましく、3.5質量%以上であることがさらに好ましい。重合成分中の単量体(D)の含有率は、20.0質量%以下であることが好ましく、14.0質量%以下であることがより好ましく、7.0質量%以下であることがより好ましい。
 重合成分1gあたりに含まれる単量体(E)の量は、0.030mmol/g以上であることが好ましく、0.045mmol/g以上であることがより好ましく、0.30mmol/g質量%以上であることがさらに好ましい。重合成分1gあたりに含まれる単量体(E)の量は、1.75mmol/g以下であることが好ましく、1.50mmol/g質量%以下であることが好ましく、0.90mmol/g質量%以下であることがより好ましい。
 重合成分中の連鎖移動剤の含有率は、特に制限されることはないが、0.10質量%以上であることが好ましく、0.25質量%以上であることがより好ましく、0.35質量%以上であることがさらに好ましい。重合成分中の連鎖移動剤の含有率は、特に制限されることはないが、10質量%以下であることが好ましく、2.0質量%以下であることがより好ましく、0.70質量%以下であることがさらに好ましい。
 重合成分1gあたりに含まれる連鎖移動剤の量は、1.0×10-2mmol/g以上であることが好ましく、2.0×10-2mmol/g以上であることがより好ましく、3.0×10-2mmol/g以上であることがさらに好ましい。重合成分1gあたりに含まれる連鎖移動剤の量は、20×10-2mmol/g以下であることが好ましく、10×10-2mmol/g以下であることがより好ましく、7.0×10-2mmol/g以下であることがさらに好ましい。
 重合成分中の重合開始剤の含有率は、0.020質量%以上であることが好ましく、0.10質量%以上であることがより好ましく、0.15質量%以上であることがさらに好ましい。重合成分中の重合開始剤の含有率は、1.0質量%以下であることが好ましく、0.50質量%以下であることがより好ましく、0.35質量%以下であることがさらに好ましい。ここで、還元剤等の共重合体(P)の構造とはならずに重合開始剤の機能を補助する成分は含まない。
 重合成分1gあたりに含まれる重合開始剤の量は、0.10×10-2mmol/g以上であることが好ましく、0.20×10-2mmol/g以上であることがより好ましく、0.50×10-2mmol/g以上であることがさらに好ましい。重合成分1gあたりに含まれる重合開始剤の量は、5.0×10-2mmol/g以下であることが好ましく、2.0×10-2mmol/g以下であることがより好ましく、1.0×10-2mmol/g以下であることがさらに好ましい。ここで、還元剤等の共重合体(P)の構造とはならずに重合開始剤の機能を補助する成分は含まない。
 共重合体(P)の合成方法の一例として、単量体(M)(全単量体)中の一般式(7)で表される単量体及び一般式(8)で表される単量体の合計含有率は90質量%以上であり、95質量%以上であることが好ましく、100質量%であることがさらに好ましい構成が挙げられる。
 また別の一例として、単量体(D)及び単量体(E)のうち一方または両方が用いられる構成が挙げられる。この一例では、単量体(M)(全単量体)中の一般式(7)で表される単量体、一般式(8)で表される単量体、一般式(10)で表される単量体、及び一般式(11)で表される単量体の合計含有率は90質量%以上であり、95質量%以上であることが好ましく、100質量%であることがさらに好ましい。
〔1-3.非水系二次電池電極バインダーの製造方法〕
 非水系二次電池電極バインダーの製造方法は、エチレン性不飽和結合を有する単量体(M)を、1分子中に2個以上のメルカプト基を有する多官能チオール化合物(C)の存在下でラジカル重合する重合工程を含む。
 非水系二次電池電極バインダーの製造方法は、共重合体(P)の製造方法と同じであってもよく、さらに工程を加えてもよい。共重合体(P)の製造方法は上記の通りである。さらに加えられる工程は、例えば、精製工程、添加剤の混合工程等が挙げられる。
<2.非水系二次電池電極用バインダー組成物>
 本実施形態の非水系二次電池電極バインダー組成物(以下、「電極バインダー組成物」とすることもある。)は、電極バインダー、及び水性媒体を含む。また、電極バインダー組成物は、必要に応じてpH調整剤、界面活性剤等、その他の成分を含んでもよい。
 電極バインダー組成物に含まれる水性媒体は、水を含む。電極バインダー組成物に含まれる水性媒体は、親水性の溶媒を含んでもよい。親水性の溶媒としては、メタノール、エタノール及びN-メチルピロリドン等が挙げられる。電極バインダー組成物に含まれる水性媒体中の水の含有率は80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。
 電極バインダー組成物に含まれる水性媒体の組成は、共重合体(P)の合成に用いた水性媒体と同じであってもよく、異なっていてもよい。また、本実施形態の電極バインダー組成物において、電極バインダーは、水性媒体中に溶解していてもよく、分散していてもよい。
 電極バインダー組成物中の共重合体(P)の含有率は、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。電極バインダー組成物の粘度の上昇を抑制し、後述する電極活物質等と混合して、電極スラリーを作製する場合に、効率よく電極活物質等を分散させるためである。
 電極バインダー組成物中の共重合体(P)の含有率は、3.0質量%以上であることが好ましく、5.0質量%以上であることがより好ましく、8.0質量%以上であることがさらに好ましい。より少ない電極バインダー組成物から電極スラリー及び電極を作製することができるためである。
 電極バインダー組成物のpHは、4.0以上であることが好ましく、5.0以上であることがより好ましく、6.0以上であることがさらに好ましい。後述する電極活物質等と混合して、電極スラリーを作製する場合に、効率よく電極活物質等を分散させるためである。電極バインダー組成物のpHは、11以下であることが好ましく、10以下であることがより好ましく、9.0以下であることがさらに好ましい。後述する電極活物質等と混合して、電極スラリーを作製する場合に、効率よく電極活物質等を分散させるためである。ここで、pHは、液温23℃において、pHメーターにより測定された値である。
<3.非水系二次電池電極スラリー>
 本実施形態の非水系二次電池電極スラリー(以下、「電極スラリー」とすることもある。)では、電極バインダーと、電極活物質とが、水性媒体に溶解または分散している。本実施形態の電極スラリーは、必要に応じて導電助剤、増粘剤等を含んでもよいが、電極スラリー作製工程を簡単化するためには、増粘剤を含まないほうが好ましい。電極スラリーを調製する方法としては、特に限定されないが、例えば、攪拌式、回転式、または振とう式などの混合装置を使用して必要な成分を混合する方法が挙げられる。
 電極スラリーの不揮発分濃度は好ましくは30質量%以上であり、より好ましくは40質量%以上である。少ない電極スラリーの量でより多くの電極活物質層を形成させるためである。電極スラリーの不揮発分濃度は好ましくは70質量%以下であり、より好ましくは60質量%以下である。不揮発分濃度は、水性媒体の量により調整できる。
 ここで不揮発分濃度とは、特に断りがなければ、混合物を直径5cmのアルミ皿に1g秤量し、大気圧、乾燥器内で空気を循環させながら130℃で1時間乾燥させ、後に残った成分の質量の、乾燥前の質量に対する割合である。
〔3-1.電極スラリー中の共重合体(P)の含有量〕
 電極スラリー中の共重合体(P)の含有量は、電極活物質(後述する)と導電助剤(後述する)と電極バインダーとを合計した質量に対して、0.5質量%以上であることが好ましく、1.0質量%以上であることがより好ましく、2.0質量%以上であることがさらに好ましい。共重合体(P)により、電極活物質間、及び電極活物質と集電体との結着性を確保することができるためである。電極スラリー中の共重合体(P)の含有量は、電極活物質と導電助剤と電極バインダーとを合計した質量に対して、10質量%以下であることが好ましく、7.0質量%以下であることがより好ましく、4.0質量%以下であることがさらに好ましい。電極スラリーから形成される電極活物質層の充放電容量を大きくすることができ、電池としたときの内部抵抗も低くすることができるためである。
〔3-2.電極活物質〕
 非水系二次電池は、特に限定されないが、リチウムイオン二次電池である場合、負極活物質の例として、導電性ポリマー、炭素材料、チタン酸リチウム、シリコン、シリコン化合物等が挙げられる。導電性ポリマーとして、ポリアセチレン、ポリピロール等が挙げられる。炭素材料としては、石油コークス、ピッチコークス、石炭コークス等のコークス;有機化合物の炭化物;人造黒鉛、天然黒鉛等の黒鉛などが挙げられる。シリコン化合物としては、SiO(0.1≦x≦2.0)等が挙げられる。
 また、電極活物質としては、Siと黒鉛とを含む複合材料(Si/黒鉛)等を用いてもよい。これら活物質の中でも、体積当たりのエネルギー密度が大きい点から、炭素材料、チタン酸リチウム、シリコン、シリコン化合物を用いることが好ましい。また、コークス、有機化合物の炭化物、黒鉛等の炭素材料、SiO(0.1≦x≦2.0)、Si、Si/黒鉛等のシリコン含有材料であると、本実施形態の電極バインダーによる結着性を向上させる効果が顕著である。例えば、人造黒鉛の具体例としては、SCMG(登録商標)-XRs(昭和電工(株)製)が挙げられる。なお、負極活物質として、ここで挙げた材料を2種類以上複合化してもよい。
 リチウムイオン二次電池の正極活物質の例として、コバルト酸リチウム(LiCoO)、ニッケルを含むリチウム複合酸化物、スピネル型マンガン酸リチウム(LiMn)、オリビン型燐酸鉄リチウム、TiS、MnO、MoO、V等のカルコゲン化合物が挙げられる。正極活物質は、これらの化合物のいずれかを単独で含んでもよく、あるいは複数種を含んでもよい。また、その他のアルカリ金属の酸化物も使用することができる。ニッケルを含むリチウム複合酸化物として、Ni-Co-Mn系のリチウム複合酸化物、Ni-Mn-Al系のリチウム複合酸化物、Ni-Co-Al系のリチウム複合酸化物などが挙げられる。正極活物質の具体例として、LiNi1/3Mn1/3Co1/3やLiNi3/5Mn1/5Co1/5など挙げられる。
〔3-3.導電助剤〕
 電極スラリーは、導電助剤として、カーボンブラック、気相法炭素繊維等を含んでもよい。気相法炭素繊維の具体例としては、VGCF(登録商標)-H(昭和電工(株))が挙げられる。
〔3-4.水性媒体〕
 電極スラリーの水性媒体は、水を含む。電極スラリーの水性媒体は、親水性の溶媒を含んでもよい。親水性の溶媒としては、メタノール、エタノール及びN-メチルピロリドン等が挙げられる。水性媒体中の水の含有率は80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。電極スラリーの水性媒体の組成は、電極バインダー組成物に含まれる水性媒体と同じでもよく、異なっていてもよい。
<4.電極>
 本実施形態の電極は、集電体と、集電体の表面に形成された電極活物質層とを有する。電極活物質層は、電極活物質、及び本実施形態の電極バインダーを含む。電極の形状としては、例えば、積層体や捲回体が挙げられるが、特に限定されない。集電体は、厚さ0.001~0.5mmの金属シートであることが好ましい。集電体の金属としては、鉄、銅、アルミニウム、ニッケル、ステンレス等が挙げられる。非水系二次電池がリチウムイオン二次電池の場合、正極の集電体としてはアルミニウム、負極の集電体としては銅が好ましいが、特に限定されない。
 本実施形態の電極は、例えば、電極スラリーを集電体上に塗布し、乾燥させることにより製造できるが、この方法に限られない。
 電極スラリーを集電体上に塗布する方法としては、例えば、リバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法等が挙げられる。これらの中でも、ドクターブレード法、ナイフ法、またはエクストルージョン法が好ましく、ドクターブレードを用いて塗布することがより好ましい。電極スラリーの粘性等の諸物性及び乾燥性に対して好適であり、良好な表面状態の塗布膜を得られるためである。
 電極スラリーは、集電体の片面にのみ塗布してもよいし、両面に塗布してもよい。電極スラリーを集電体の両面に塗布する場合は、片面ずつ塗布してもよく、両面同時に塗布してもよい。また、電極スラリーは、集電体の表面に連続して塗布してもよいし、間欠的に塗布してもよい。電極スラリーの塗布量、塗布範囲は、電池の大きさなどに応じて、適宜決定できる。乾燥後の電極活物質層の目付量は、4~20mg/cmであることが好ましく、6~16mg/cmであることがより好ましい。
 集電体に塗布された電極スラリーを乾燥することにより電極シートが得られる。乾燥方法は、特に限定されないが、例えば、熱風、真空、(遠)赤外線、電子線、マイクロ波および低温風を単独あるいは組み合わせて用いることができる。乾燥温度は、40℃以上180℃以下であることが好ましく、乾燥時間は、1分以上30分以下であることが好ましい。
 電極シートはそのまま電極として用いてもよいが、電極として適当な大きさや形状にするために切断してもよい。電極シートの切断方法は特に限定されないが、例えば、スリット、レーザー、ワイヤーカット、カッター、トムソン等を用いることができる。
 電極シートを切断する前または後に、必要に応じてそれをプレスしてもよい。それによって電極活物質を電極により強固に結着させ、さらに電極を薄くすることによる非水系電池のコンパクト化が可能になる。プレスの方法としては、一般的な方法を用いることができ、特に金型プレス法またはロールプレス法を用いることが好ましい。プレス圧は、特に限定されないが、プレスによる電極活物質へのリチウムイオン等のドープ/脱ドープに影響を及ぼさない範囲である0.5~5t/cmとすることが好ましい。
<5.電池>
 本実施形態にかかる電池の好ましい一例として、リチウムイオン二次電池について説明するが、電池の構成は以下に説明する構成に限られない。ここで説明する例にかかるリチウムイオン二次電池は、正極、負極、電解液、及び必要に応じてセパレータ等の部品が外装体に収容されている。正極と負極のうち少なくとも一方は、本実施形態にかかる電極バインダーを含む。
<5-1.電解液>
 電解液としては、イオン伝導性を有する非水系の液体を使用する。電解液としては、電解質を有機溶媒に溶解させた溶液、イオン液体等が挙げられるが、製造コストが低く、内部抵抗の低い電池が得られるため、前者が好ましい。
 電解質としては、アルカリ金属塩を用いることができ、電極活物質の種類等に応じ適宜選択できる。電解質としては、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、脂肪族カルボン酸リチウム等が挙げられる。また、電解質として、その他のアルカリ金属塩を用いることもできる。
 電解質を溶解する有機溶媒としては、特に限定されないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ジメチルカーボネート(DMC)、フルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)等の炭酸エステル化合物、アセトニトリル等のニトリル化合物、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピルなどのカルボン酸エステルが挙げられる。これらの有機溶媒は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
<5-2.外装体>
 外装体としては、金属やアルミラミネート材などを適宜使用できる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角型、扁平型等、いずれの形状であってもよい。
 以下に、リチウムイオン二次電池の負極バインダー、負極スラリー、負極、リチウムイオン二次電池についての実施例および比較例を示して本発明をさらに詳細に説明する。なお、本発明はこれらに実施例によって限定されない。
<1.負極バインダー>
〔1-1.共重合体の合成〕
 実施例1~20及び比較例1~5で用いた各単量体、多官能チオール化合物(C)、及び連鎖移動剤の構成を表2~4に示した。ここで表2~4に示される各単量体、多官能チオール化合物(C)、連鎖移動剤、及び重合開始剤を重合成分と称する。以下、表2~4に示される各原料化合物の詳細は以下の通りである。単量体が溶液として用いられる場合、表中の単量体の使用量は、溶媒を含まないその単量体自体の量を示す。
 なお、重合開始剤は、脱離する窒素等、一部が重合体に取り込まれない部分がある。しかし、重合開始剤の使用量は少ないため、表2~4において、重合成分中の各成分の含有率(質量%)、及び重合成分1g当たりの各成分のモル数は、生成する共重合体中の各成分に対応する構造の含有率、及び共重合体1g当たりの各成分に対応する構造のモル数とできる。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 単量体(A-1):N-ビニルアセトアミド(NVA)
 単量体(B-1):アクリル酸ナトリウム(AaNa)(28.5質量%水溶液)
 単量体(B-2):アクリル酸リチウム(AaLi)(28.5質量%水溶液)、
 Aa:アクリル酸
 多官能チオール化合物(C-1):ペンタエリスリトールテトラキス(3-メルカプトブチレート)
 多官能チオール化合物(C-2):トリメチロールプロパントリス(3-メルカプトブチレート)
 多官能チオール化合物(C-3):1,4-ビス(3-メルカプトブチリルオキシ)ブタン
 多官能チオール化合物(C-4):ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)
 単量体(D-1):メトキシポリエチレングリコールメタクリレート(EVONIK INDUSTRIES製;VISIOMER(登録商標)MPEG2005 MA W)(一般式(10)中のR41=CH、R42=H、R44=CH、j=45、k=0、j+k=45)の50.0質量%水溶液
 単量体(E-1):ベンジルアクリレート
 MPA:β-メルカプトプロピオン酸
 TMA:テトラメチロールメタンテトラアクリレート
 重合開始剤:2,2’-アゾビス(2-メチルプロピオンアミジン)2塩酸塩(和光純薬工業社製;V-50)及び過硫酸アンモニウム(和光純薬工業社製)
 冷却管、温度計、攪拌機、滴下ロートが組みつけられたセパラブルフラスコに、各実施例及び比較例に対応する組成(表2~4)の重合成分を合計で100質量部と、過硫酸アンモニウムを0.050質量部と、水693質量部とを30℃で仕込んだ。これを、80℃に昇温し、4時間重合を行い、共重合体P1~CP20及び共重合体CP1~CP5をそれぞれ合成した。
〔1-2.負極バインダー組成物の作製〕
 共重合体が得られた反応液に、不揮発分濃度10.0質量%となるように水を加えて(単量体(B-1)に含まれる水を考慮して水の添加量を調節する)、負極バインダー組成物Q1~Q20、及びCQ1~CQ5を調製した。以下の説明において、共重合体P1~P20を区別せずに言及する場合は共重合体(P)、及び共重合体CP1~CP5を区別せずに言及する場合は共重合体(CP)とすることもある。負極バインダー組成物Q1~Q20を区別せずに言及する場合は負極バインダー組成物(Q)、及び負極バインダー組成物CQ1~CQ5を区別せずに言及する場合は負極バインダー組成物(CQ)とすることもある。
〔1-3.共重合体(P)の重量平均分子量〕
 共重合体(P)及び共重合体(CP)の重量平均分子量を、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定し、測定結果を表4に示した。
 GPC装置: GPC‐101(昭和電工(株)製))
 溶媒:0.1M NaNO水溶液
 サンプルカラム:Shodex Column Ohpak SB-806 HQ(8.0mmI.D. x 300mm) ×2
 リファレンスカラム:Shodex Column Ohpak SB-800 RL(8.0mmI.D. x 300mm) ×2
 カラム温度:40℃
 サンプル濃度:0.1質量%
 検出器:RI-71S(株式会社島津製作所製)
 ポンプ:DU-H2000(株式会社島津製作所製)
 圧力:1.3MPa
 流量:1ml/min
 分子量スタンダード:プルラン(P‐5、P-10、P‐20、P-50、P‐100、P-200、P-400、P-800、P-1300、P-2500(昭和電工(株)製))
<2.負極スラリー>
〔2-1.負極スラリーの作製〕
 黒鉛としてSCMG(登録商標)-XRs(昭和電工(株)製)を76.8質量部と、一酸化ケイ素(SiO)(Sigma-Aldrich製)を19.2質量部と、VGCF(登録商標)-H(昭和電工(株))を1.0質量部と、バインダー組成物(Q)を30質量部(共重合体(P)を3.0質量部、水を27質量部含む)と、及び水を20質量部と、を混合した。混合は、攪拌式混合装置(自転公転撹拌ミキサー)を用いて2000回転/分で4分間混練することにより行われた。得られた混合物に、さらに水を53質量部加え、上記混合装置で、さらに2000回転/分で4分間混合し、負極スラリーを作製した。
〔2-2.負極スラリーの外観評価〕
 作製された負極スラリーを目視して外観を確認し、凝集物のサイズをマイクロメーターで測定した。負極スラリー10g中に最長寸法1mm以上の凝集物がある場合を×、ない場合を○とした。評価結果を表5に示した。
Figure JPOXMLDOC01-appb-T000027
<3.負極>
〔3-1.負極活物質層の柔軟性(巻回試験)〕
 上記の通り作製された負極スラリーを厚さ10μmの銅箔(集電体)の両面に、乾燥後の目付量が8mg/cmとなるようにドクターブレードを用いて塗布した。負極スラリーが塗布された銅箔を、60℃で10分乾燥後、さらに100℃で5分乾燥して負極活物質層が形成された負極シートを作製した。この負極シートを、金型プレスを用いてプレス圧1t/cmでプレスした。
 ここでプレスされた負極シートを幅50mm、長さ60mmで切り出し、試験片とした。この試験片を80℃で12時間乾燥させた。乾燥後の試験片の幅方向の一辺を、直径3mmのステンレス製棒に、厚さ50μmの片面粘着テープで固定した(試験片の幅方向とステンレス製棒の長手方向が平行)。試験片の幅方向の他辺をガラス板に固定した。このステンレス製棒に試験片を巻回させた後、その試験片を目視して外観を観察し、試験片におけるクラックの数を数えた。
〔3-2.負極活物質層の集電体に対する剥離強度〕
 銅箔の両面に負極スラリーを、乾燥後の目付量が8mg/cmとなるように塗布したこと以外は上記柔軟性の評価と同様に、プレスされた負極シートを作製した。
 ここでプレスされた負極シートを用いて、全工程において23℃、相対湿度50質量%雰囲気で行った。試験機はテンシロン(登録商標、(株)エー・アンド・デイ製)を用いた。負極シートを幅25mm、長さ70mmで切り出し、試験片とした。試験片上の負極活物質層と、幅50mm、長さ200mmSUS板とを両面テープ(NITTOTAPE(登録商標) No5、日東電工(株)製)を用いて、試験片の中心とSUS板の中心とが一致するように貼り合わせた。なお、両面テープは試験片の全範囲をカバーするように貼り合わせた。貼り合わせは2kgローラを試験片全体にわたって1往復させることにより行った。
 試験片とSUS板とを貼り合わせた状態で10分放置した後、負極活物質から銅箔を、試験片の一端から長さ方向に20mm剥がし、180°折り返し、剥がした銅箔の部分を試験機の上側のチャックで掴んだ。さらに、銅箔を剥がした方のSUS板の一端を下側チャックで掴んだ。その状態で、試験片から銅箔を100±10mm/minの速度で引き剥がし、剥離長さ(mm)-剥離力(mN)のグラフを得た。得られたグラフにおいて剥離長さ10~45mmにおける剥離力の平均値(mN)を算出し、剥離力の平均値を試験片の幅25mmで割った数値を負極活物質層の剥離強度(mN/mm)とした。なお、いずれの実施例及び比較例においても、試験中、両面テープとSUS板の間での剥離、及び両面テープと負極活物質層との間での界面剥離は起こらなかった。
<4.リチウムイオン二次電池>
〔4-1.電池の作製〕
[負極]
 上記プレスされた負極シートを22mm×22mmに切り出し、導電タブを取り付けて負極を作製した。
[正極]
 LiNi1/3Mn1/3Co1/3を90質量部、アセチレンブラックを5質量部、及びポリフッ化ビニリデン5質量部を混合し、その後、N-メチルピロリドン100質量部を混合して正極スラリーを調製した(固形分中のLiNi1/3Mn1/3Co1/3の割合は0.90)。
 調製した正極スラリーを、ドクターブレード法により厚さ20μmのアルミニウム箔(集電体)の片面に、乾燥後の目付量が22.5mg/cm(22.5×10-3g/cm)となるようにドクターブレードを用いて塗布した。正極スラリーが塗布されたアルミニウム箔を、120℃で5分乾燥後、ロールプレスによりプレスして、厚さ100μmの正極活物質層が形成された正極シートを作製した。得られた正極シートを20mm×20mm(2.0cm×2.0cm)に切り出し、導電タブを取り付けて正極を作製した。
 作製した正極の理論容量は、正極スラリーの乾燥後の目付量(22.5×10-3gg/cm)×正極スラリーの塗布面積(2.0cm×2.0cm)×LiNi1/3Mn1/3Co1/3の正極活物質としての容量(160mAh/g)×固形分中のLiNi1/3Mn1/3Co1/3の割合(0.90)で求められ、算出される値は、13mAhである。
[電解液]
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とフルオロエチレンカーボネート(FEC)とを体積比30:60:10で混合した混合溶媒に、LiPFを1.0mol/L、ビニレンカーボネート(VC)を1.0質量%の濃度になるように溶解して、電解液を調製した。
[電池の組み立て]
 ポリオレフィン多孔性フィルムからなるセパレータを介して、正極と負極とを、それぞれの活物質層が互いに対向するように配して、アルミラミネート外装体(電池パック)の中に収納した。この外装体の中に電解液を注入し、真空ヒートシーラーでパッキングし、ラミネート型電池を得た。
〔4-2.電池のサイクル特性(放電容量維持率)の評価〕
 各実施例及び比較例で作製したそれぞれの電池のサイクル特性を評価した。評価方法は以下の通りで、評価結果は表5に示した通りである。
 電池の放電容量維持率の測定(電池の充放電サイクル試験)は、25℃の条件下、以下の手順で行った。まず、電圧4.2Vになるまで1Cの電流で充電し(CC充電)、次に、電流0.05Cになるまで4.2Vの電圧で充電した(CV充電)。30分放置後、電圧2.75Vになるまで1Cの電流で放電した(CC放電)。CC充電、CV充電、及びCC放電の一連の操作を1サイクルとする。nサイクル目のCC充電及びCV充電における電流の時間積分値の和をnサイクル目の充電容量(mAh)、nサイクル目のCC放電における電流の時間積分値をnサイクル目の放電容量(mAh)とする。電池のnサイクル目の放電容量維持率は、1サイクル目の放電容量に対するnサイクル目の放電容量の割合(%)である。本実施例及び比較例では、100サイクル目の放電容量維持率を評価した。
<5.評価結果>
 表5からわかるように、実施例1~20で作製された負極スラリーは、凝集物の発生が少ない。実施例1~20で作製された負極は、巻回試験において発生したクラックが少なく、電極活物質層の柔軟性が高いことがわかる。実施例1~20で作製された負極は、負極活物質層の集電体に対する剥離強度も高い。実施例1~20で作製されたリチウムイオン二次電池は、電池の使用に伴う放電容量維持率が高い、すなわちサイクル特性が優れていることがわかる。
 比較例1では、アミド結合を有さない共重合体CP1を用いて負極スラリーを作製した。比較例1で作製した負極スラリーには凝集物があった。比較例1で作製された負極スラリーは、集電体に対して平坦に塗工することができず、評価可能な負極及び電池の作製はできなかった。
 比較例2では、アミド結合を過剰に含む共重合体CP2を用いて、負極スラリー、負極、及びリチウムイオン二次電池を作製した。比較例2で作製した電極スラリーには凝集物があった。比較例2で作製した負極は、巻回試験中に負極活物質層が滑落した。また、比較例2では、負極活物質層の集電体に対する剥離強度が低かった。比較例2で作製したリチウムイオン二次電池は、放電容量維持率が低かった。
 比較例3では、置換基(c)を有さない共重合体CP3を用いて、負極スラリー、負極、及びリチウムイオン二次電池を作製した。比較例3で作製した負極は、巻回試験後に負極活物質層に多数のクラックが発生し、負極の柔軟性が低いことが分かった。また、比較例3では、負極活物質層の集電体に対する剥離強度が低かった。比較例3で作製したリチウムイオン二次電池は、放電容量維持率が低かった。
 比較例4では、多官能チオール化合物(C)を多量に用いて、置換基(c)を過剰に含む共重合体CP4を合成しようとしたが、生成物はゲル化し、評価可能な負極スラリーを作製できなかった。
 比較例5では、置換基(c)を含まず、4官能アクリレート(テトラメチロールメタンテトラアクリラート)由来の構造単位を含む共重合体CP5を用いて、負極スラリー、負極、及びリチウムイオン二次電池を作製した。比較例5で作製した負極は、巻回試験後に負極活物質層に多数のクラックが発生し、負極の柔軟性が低いことが分かった。また、比較例5では、負極活物質層の集電体に対する剥離強度が低かった。比較例5で作製したリチウムイオン二次電池は、放電容量維持率が低かった。
 したがって、本実施例にかかるバインダー用共重合体を非水系電池負極用のバインダーとして用いることにより、非水系電池負極における負極活物質同士、及び負極活物質と集電体との間で十分な結着性を確保しつつ、柔軟性を付与し電池として良好な充放電サイクル特性となることが分かった。
 また、これらバインダーは非水系電池正極用のバインダーとしても用いることができ、正極活物質同士、及び正極活物質と集電体との間で十分な結着性を確保しつつ、充放電サイクル特性が良好な電池を作製できる。

Claims (14)

  1.  共重合体(P)を含む非水系二次電池電極バインダーであって、
     前記共重合体(P)は、
     炭素原子間の結合のみからなる主鎖と、
     アミド結合を有する置換基と、
     カルボキシ基の塩を有する置換基と、
     以下の一般式(1)で表される置換基(c)と、
    を有し、
     前記アミド結合を有する置換基、前記カルボキシ基の塩を有する置換基、及び前記置換基(c)は、それぞれ、前記主鎖に結合しており、
     前記共重合体(P)1gあたりに含まれるアミド結合の量は0.050mmol/g以上5.0mmol/g以下であり、
     前記共重合体(P)1gあたりに含まれるカルボキシ基の塩の量は5.0mmol/g以上12.0mmol/g以下であり、
     前記共重合体(P)1gあたりに含まれる前記置換基(c)の量は0.15×10-2mmol/g以上8.0×10-2mmol/g以下である
     ことを特徴とする非水系二次電池電極バインダー。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、R31は、炭化水素基であり、m及びnはそれぞれ、R31に直接結合している対応する置換基の数を表し、mは0以上の整数、nは1以上の整数、m+n≧2である。)
  2.  前記一般式(1)において、R31は炭素原子及び水素原子からなる請求項1に記載の非水系二次電池電極バインダー。
  3.  前記一般式(1)において、R31は複数の炭素原子を有し、炭素原子間の結合は全て単結合である請求項1または2に記載の非水系二次電池電極バインダー。
  4.  前記置換基(c)の式量をMcとすると、Mc/(m+n)≦400である請求項1または2に記載の非水系二次電池電極バインダー。
  5.  前記置換基(c)は、多官能チオール化合物(C)由来の構造であり、前記多官能チオール化合物(C)は1分子中にメルカプト基を2個以上有する請求項1または2に記載の非水系二次電池電極バインダー。
  6.  前記共重合体(P)は、更に、以下の一般式(2)で表される構造単位(d)を0.50質量%以上20.0質量%以下含む請求項1または2に記載の非水系二次電池電極バインダー。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、R41、R42、R44は各々独立に水素原子または炭素数1以上5以下のアルキル基である。R43は、炭素数1以上6以下のアルキル基であり、R42よりも炭素原子の数が多い。j及びkはそれぞれ、対応するカッコ内の構造が直列的に結合している数を意味する。jは1以上の整数、kは0以上の整数であり、j+k≧20である。)
  7.  前記共重合体(P)は、更に、以下の一般式(3)で表される構造単位(e)を、前記共重合体(P)1gあたりに、0.030mmol/g以上1.75mmol/g以下含む請求項1または2に記載の非水系二次電池電極バインダー。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)において、R51は水素原子またはメチル基を表し、R52は、芳香環を有する置換基である。)
  8.  前記共重合体(P)において、前記アミド結合の少なくとも一部が以下の一般式(4)で表される構造単位(a)として含まれる請求項1または2に記載の非水系二次電池電極バインダー。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)において、R11、R12は各々独立に水素原子または炭素数1以上5以下のアルキル基を表す。)
  9.  前記共重合体(P)において、前記カルボキシ基の塩の少なくとも一部は以下の一般式(5)で表される構造単位(b)として含まれる請求項1または2に記載の非水系二次電池電極バインダー。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(5)において、Rは水素原子またはメチル基を表し、Xはカチオンである。)
  10.  前記共重合体(P)の重量平均分子量が、70万以上750万以下であることを特徴とする請求項1または2に記載の非水系二次電池電極バインダー。
  11.  請求項1または2に記載の非水系二次電池電極バインダーと水性媒体とを含む非水系二次電池電極バインダー組成物。
  12.  集電体と、該集電体表面に形成された電極活物質層と、を備え
     該電極活物質層は請求項1または2に記載の非水系二次電池電極用バインダーと電極活物質とを含む非水系二次電池電極。
  13.  正極と負極と電解液とを含み、
     前記正極と前記負極のうち少なくとも一方は、請求項12に記載の非水系二次電池電極であることを特徴とする非水系二次電池。
  14.  エチレン性不飽和結合を有する単量体(M)を、1分子中に2個以上のメルカプト基を有する多官能チオール化合物(C)の存在下でラジカル重合する重合工程を含む、非水系二次電池電極バインダーを製造する方法であって、
     前記単量体(M)は、アミド結合を有する単量体(A)と、カルボキシ基の塩を有する単量体(B)と、を含み、
     前記単量体(M)、前記多官能チオール化合物(C)、重合開始剤、及び連鎖移動剤を用いる場合は連鎖移動剤も合わせて重合成分とすると、
     前記重合成分1gあたりに含まれる前記単量体(A)の量は0.050mmol/g以上5.0mmol/g以下であり、
     前記重合成分1gあたりに含まれる前記単量体(B)の量は5.0mmol/g以上12.0mmol/g以下であり、
     前記重合成分1gあたりに含まれる前記多官能チオール化合物(C)の量は0.15×10-2mmol/g以上8.0×10-2mmol/g以下である
    ことを特徴とする非水系二次電池電極バインダーの製造方法。
PCT/JP2022/021375 2021-05-28 2022-05-25 非水系二次電池電極バインダー、及び非水系二次電池電極 WO2022250080A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023523504A JPWO2022250080A1 (ja) 2021-05-28 2022-05-25
CN202280035503.5A CN117425985A (zh) 2021-05-28 2022-05-25 非水系二次电池电极粘合剂和非水系二次电池电极
KR1020237039841A KR20240014467A (ko) 2021-05-28 2022-05-25 비수계 이차 전지 전극 결합제 및 비수계 이차 전지 전극

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021090167 2021-05-28
JP2021-090167 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022250080A1 true WO2022250080A1 (ja) 2022-12-01

Family

ID=84230091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021375 WO2022250080A1 (ja) 2021-05-28 2022-05-25 非水系二次電池電極バインダー、及び非水系二次電池電極

Country Status (4)

Country Link
JP (1) JPWO2022250080A1 (ja)
KR (1) KR20240014467A (ja)
CN (1) CN117425985A (ja)
WO (1) WO2022250080A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247292A (ja) * 2003-01-21 2004-09-02 Hitachi Chem Co Ltd バインダー樹脂、合剤スラリー、非水電解液系二次電池の電極及び非水電解液系二次電池
JP2007194202A (ja) * 2005-12-20 2007-08-02 Sony Corp リチウムイオン二次電池
WO2017077940A1 (ja) * 2015-11-05 2017-05-11 センカ株式会社 リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116265A (ja) 2012-12-12 2014-06-26 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP6528497B2 (ja) 2015-03-24 2019-06-12 日本ゼオン株式会社 リチウムイオン二次電池シリコン系負極用バインダー組成物およびリチウムイオン二次電池シリコン系負極用スラリー組成物
EP3425708A4 (en) 2016-03-04 2019-11-20 Showa Denko K.K. COPOLYMERS FOR BINDERS FOR NONAQUEOUS ELECTROLYTE BATTERY ELECTRODES, THICK SUSPENSION FOR NONAQUEOUS ELECTROLYTE BATTERY ELECTRODES, NONAQUEOUS ELECTROLYTE BATTERY ELECTRODE, AND NONAQUEOUS ELECTROLYTE BATTERY

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247292A (ja) * 2003-01-21 2004-09-02 Hitachi Chem Co Ltd バインダー樹脂、合剤スラリー、非水電解液系二次電池の電極及び非水電解液系二次電池
JP2007194202A (ja) * 2005-12-20 2007-08-02 Sony Corp リチウムイオン二次電池
WO2017077940A1 (ja) * 2015-11-05 2017-05-11 センカ株式会社 リチウムイオン二次電池の負極用バインダー、負極用スラリー組成物及び負極並びにリチウムイオン二次電池

Also Published As

Publication number Publication date
CN117425985A (zh) 2024-01-19
JPWO2022250080A1 (ja) 2022-12-01
KR20240014467A (ko) 2024-02-01

Similar Documents

Publication Publication Date Title
JP7338749B2 (ja) 非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、非水系電池電極、および非水系電池
KR102230563B1 (ko) 전극 바인더용 공중합체 및 리튬 이온 이차 전지
KR20180090335A (ko) 이차 전지 전극용 수계 바인더 조성물, 이차 전지 전극용 슬러리, 바인더, 이차 전지 전극 및 이차 전지
JP7272272B2 (ja) 非水系電池電極用スラリーの製造方法
JP7415924B2 (ja) 非水系電池電極用バインダー用共重合体、および非水系電池電極製造用スラリー
WO2016199653A1 (ja) 非水系電池電極用バインダー用組成物、非水系電池電極用バインダー、非水系電池電極用組成物、非水系電池電極、及び非水系電池
JP7416239B2 (ja) 非水系二次電池電極用バインダー及び非水系二次電池電極用スラリー
WO2022250080A1 (ja) 非水系二次電池電極バインダー、及び非水系二次電池電極
TWI838574B (zh) 電極黏合劑用共聚物及鋰離子二次電池
JP6868751B1 (ja) 非水系二次電池電極、電極スラリー、及び非水系二次電池
WO2021246376A1 (ja) 非水系二次電池電極用バインダー及び非水系二次電池電極用スラリー
WO2023127311A1 (ja) 非水系二次電池用バインダー重合体、非水系二次電池用バインダー組成物および非水系二次電池電極
JP2023164051A (ja) 非水系二次電池電極用バインダーおよび非水系二次電池電極
WO2021131278A1 (ja) 非水系二次電池電極、電極スラリー、及び非水系二次電池
JP2023176321A (ja) 非水系二次電池用電極スラリーの製造方法、及び非水系二次電池電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280035503.5

Country of ref document: CN

Ref document number: 2023523504

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22811350

Country of ref document: EP

Kind code of ref document: A1