TWI838574B - 電極黏合劑用共聚物及鋰離子二次電池 - Google Patents

電極黏合劑用共聚物及鋰離子二次電池 Download PDF

Info

Publication number
TWI838574B
TWI838574B TW109130008A TW109130008A TWI838574B TW I838574 B TWI838574 B TW I838574B TW 109130008 A TW109130008 A TW 109130008A TW 109130008 A TW109130008 A TW 109130008A TW I838574 B TWI838574 B TW I838574B
Authority
TW
Taiwan
Prior art keywords
mass
copolymer
monomer
electrode
structural unit
Prior art date
Application number
TW109130008A
Other languages
English (en)
Other versions
TW202126711A (zh
Inventor
倉田智規
Yuma Tanaka
奇瑞達 康納路斯潘
花充
Original Assignee
日商力森諾科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商力森諾科股份有限公司 filed Critical 日商力森諾科股份有限公司
Publication of TW202126711A publication Critical patent/TW202126711A/zh
Application granted granted Critical
Publication of TWI838574B publication Critical patent/TWI838574B/zh

Links

Abstract

提供一種抑制含電極活性物質之漿料中的凝集物之發生,抑制被形成在集電體上的電極活性物質層的龜裂之發生,同時,電極活性物質層對集電體的剝離強度為高的電極用黏合劑用共聚物及使用該電極黏合劑用共聚物的鋰離子二次電池電極用漿料。電極黏合劑用共聚物含有:式(1)所表示的單體(A)由來之結構單位;和從(甲基)丙烯酸及其鹽所成的群中所選擇出來的至少1種單體(B)由來之結構單位;和式(2)所表示的單體(C)由來之結構單位;和僅具有1個乙烯性不飽和鍵,且n-辛醇/水分配係數LogP為未滿2.0之親水性單體(D)由來之結構單位;和僅具有1個乙烯性不飽和鍵,且n-辛醇/水分配係數LogP為2.0以上之疏水性單體(E)由來之結構單位。

Description

電極黏合劑用共聚物及鋰離子二次電池
本發明係有關於電極黏合劑用共聚物及鋰離子二次電池。
使用非水系電解質的二次電池(非水系二次電池)係在高電壓化、小型化、輕量化方面,較使用水系電解質的二次電池為優良。因此,非水系二次電池係被廣泛使用來作為筆記型電腦、行動電話、電動工具、電子/通信機器的電源。又,最近就環境車輛應用的觀點來看,於電動車或油電混合車用途上,亦會使用非水系電池,但高輸出化、高容量化、長壽命化等係被強烈要求。非水系二次電池可舉出鋰離子二次電池作為代表例子。
非水系二次電池係具備:以金屬氧化物等為活性物質之正極、以石墨等之碳材料為活性物質之負極、與以碳酸酯類或難燃性之離子液體為中心之非水系電解液溶劑。非水系二次電池係為,藉由離子在正極與負極之間移動,以進行電池之充放電的二次電池。詳言之,正極係藉由將由金屬氧化物與黏合劑所成之漿料塗布於鋁箔等之正極集電體表面並乾燥後,切斷為適當的大小而得到。負極係藉由將由碳材料與黏合劑所成之漿料塗布於銅箔等之負極集電體表面並乾燥後,切斷為適當的大小而得到。黏合劑係扮演於正極及負極中使活性物質彼此及活性物質與集電體黏結,防止活性物質由集電體剝離的角色。
作為黏合劑,廣為人知的有以有機溶劑系之N-甲基-2-吡咯啶酮(NMP)為溶劑的聚偏二氟乙烯(PVDF)系黏合劑。但是,該黏合劑係活性物質彼此及活性物質與集電體的黏結性低,實際上使用時需要多量的黏合劑。因此,係有非水系二次電池之容量降低的缺點。又,由於是使用高價的有機溶劑也就是NMP來作為溶劑,因此難以抑制製造成本。
作為解決這些問題的方法,水分散系黏合劑之開發正在進行。作為水分散系黏合劑係有例如,合併使用羧基甲基纖維素(CMC)作為增黏劑的苯乙烯-丁二烯橡膠(SBR)系之水分散體,已為人知。
專利文獻1中係揭露,含有丙烯酸鈉-N-乙烯基乙醯胺共聚物的黏貼材用黏著劑組成物。又,專利文獻2中係揭露,含有丙烯酸鈉-N-乙烯基乙醯胺(55/45(莫耳比))共聚物的含水凝膠體用組成物。
專利文獻3中係揭露,含有丙烯酸鈉-N-乙烯基乙醯胺共聚物(共聚合比:丙烯酸鈉/N-乙烯基乙醯胺=10/90質量比)的非水系電池電極用黏合劑。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2005-336166號公報 [專利文獻2]日本特開2006-321792號公報 [專利文獻3]國際公開第2017/150200號
[發明所欲解決之課題]
然而,專利文獻1中所記載的SBR系黏合劑必須合併使用增黏劑之羧基甲基纖維素,漿料製作步驟複雜。且於該黏合劑中,活性物質彼此、及活性物質與集電體之黏結性亦不夠,以少量的黏合劑來生產電極時,係有於切斷集電體之步驟中活性物質一部分剝離的問題。
專利文獻1及2中所揭露的丙烯酸鈉-N-乙烯基乙醯胺共聚物,含有多量之來自N-乙烯基乙醯胺的成分。將如此之聚合物與負極活性物質及水混合而作為電極用漿料時,漿料中容易產生凝集物。
專利文獻3中所揭露的非水系電池電極用黏合劑中,在膜厚大、亦即單位面積重量大的電極中,會有經常發生龜裂之課題。
於是,本發明之目的在於提供一種,抑制含電極活性物質之漿料中的凝集物之發生,抑制被形成在集電體上的電極活性物質層的龜裂之發生,同時,電極活性物質層對集電體的剝離強度高的電極黏合劑用共聚物及使用該電極黏合劑用共聚物的鋰離子二次電池。 [用以解決課題之手段]
為了解決上述課題,本發明係如以下[1]~[11]所述。
[1] 一種電極黏合劑用共聚物,其係為含有: 式(1)所表示的單體(A)由來之結構單位(a);和 從(甲基)丙烯酸及其鹽所成的群中所選擇出來的至少1種單體(B)由來之結構單位(b);和 式(2)所表示的單體(C)由來之結構單位(c);和 非單體(A)、(B)、(C)之任一者,僅具有1個乙烯性不飽和鍵,n-辛醇/水分配係數LogP為未滿2.0的親水性單體(D)由來之結構單位(d);和 非單體(A)、(B)、(C)之任一者,僅具有1個乙烯性不飽和鍵,n-辛醇/水分配係數LogP為2.0以上的疏水性單體(E)由來之結構單位(e) 的共聚物,其特徵為, 若令將該共聚物中所含之結構單位(b)置換成丙烯酸鈉由來之結構單位所算出的各成分之含有率為換算含有率,則 前述單體(A)由來之結構單位(a)之換算含有率係為0.5質量%以上20.0質量%以下,前述單體(C)由來之結構單位(c)之換算含有率係為0.3質量%以上18.0質量%以下,前述親水性單體(D)由來之結構單位(d)之換算含有率係為0.5質量%以上15.0質量%以下,及前述疏水性單體(E)由來之結構單位(e)之換算含有率係為2.5質量%以上20.0質量%以下; 前述單體(C)由來之結構單位(c)及前述親水性單體(D)由來之結構單位(d)的合計之換算含有率係為2.5質量%以上20.0質量%以下; (式中,R1 、R2 係各自獨立為氫原子或碳數1以上5以下之烷基); (式中,R3 、R4 、R6 係各自獨立為氫原子或碳數1以上5以下之烷基;R5 係為碳數1以上5以下之烷基,且碳數比R4 還多;n係1以上之整數,m係0以上之整數,且n+m≧20)。 [2] 如[1]所記載之電極黏合劑用共聚物,其中,前述親水性單體(D)係為從以下之(i)~(iii)所成的群中所選擇出來的至少1種之化合物: (i)(甲基)丙烯醯氧基以外之部分的碳原子之數量為2以下的(甲基)丙烯酸烷酯; (ii)(甲基)丙烯醯氧基以外之部分係為具有極性基的碳原子之數量為3以上之烴鏈,且於該烴鏈中,每1個極性基的形成極性基的碳原子以外的碳原子之數量係為8個以下的(甲基)丙烯酸酯;及 (iii)具有(甲基)丙烯醯基及醯胺鍵的化合物。 [3] 如[1]或[2]所記載之電極黏合劑用共聚物,其中,前述疏水性單體(E)係為(甲基)丙烯醯氧基以外之部分的碳數為3以上的(甲基)丙烯酸烷酯。 [4] 如[1]~[3]之任一項所記載之電極黏合劑用共聚物,其中,於前述式(2)中,n+m≦500。 [5] 如[1]~[4]之任一項所記載之電極黏合劑用共聚物,其中,於前述式(2)中,n+m≧30。 [6] 如[1]~[5]之任一項所記載之電極黏合劑用共聚物,其中,前述單體(A)係為N-乙烯基甲醯胺或N-乙烯基乙醯胺。 [7] 如[1]~[6]之任一項所記載之電極黏合劑用共聚物,其中,重量平均分子量係為100萬以上1000萬以下。 [8] 如[1]~[7]之任一項所記載之電極黏合劑用共聚物,其中,前述單體(B)由來之結構單位(b)之換算含有率係為40.0質量%以上94.5質量%以下。 [9] 一種電極形成用漿料,其含有: 如[1]~[8]之任一項所記載之電極黏合劑用共聚物;和 電極活性物質;和 水性介質。 [10] 如[9]所記載之電極形成用漿料,其中,前述電極活性物質係含有矽及矽化合物之至少一者。 [11] 如[9]或[10]所記載之電極形成用漿料,其中,前述電極黏合劑用共聚物之含有率係為,相對於前述電極活性物質與導電助劑與前述電極黏合劑用共聚物的合計質量,而為0.5質量%以上7.0質量%以下。 [12] 一種電極,其具有: 集電體;和 電極活性物質層,其含有:被形成在前述集電體表面上的如[1]~[8]之任一項所記載之電極黏合劑用共聚物及電極活性物質。 [13] 如[12]所記載之電極,其中,前述電極活性物質含有矽及矽化合物之至少一者。 [14] 一種鋰離子二次電池,其具備[12]或[13]所記載之電極。 [發明效果]
若依據本發明則可提供一種,抑制含電極活性物質之漿料中的凝集物之發生,抑制被形成在集電體上的電極活性物質層的龜裂之發生,同時,電極活性物質層對集電體的剝離強度高的電極黏合劑用共聚物及使用該電極黏合劑用共聚物的鋰離子二次電池。
以下詳細說明本發明的實施形態。本實施形態所述之電池係為,在充放電時在正極與負極之間會伴隨著離子之移動的二次電池。正極係具備正極活性物質,負極係具備負極活性物質。這些電極活性物質係為可插入及脫離(Intercaration及Deintercalation)離子的材料。作為具有如此構成的二次電池的理想例子,可舉出鋰離子二次電池。
所謂「(甲基)丙烯酸」,係指甲基丙烯酸與丙烯酸之一方或雙方。所謂「(甲基)丙烯酸單體」,係指甲基丙烯酸單體與丙烯酸單體之一方或雙方。所謂「(甲基)丙烯酸酯」,係指甲基丙烯酸酯與丙烯酸酯之一方或雙方。
<1.電極黏合劑用共聚物(P)> 本實施形態所述之電極黏合劑用共聚物(P)(以下有時候簡稱為「共聚物(P)」或「黏合劑用共聚物(P)」),係為了使後述的電極活性物質彼此、及電極活性物質與集電體做黏結,而被使用。本實施形態所述的共聚物(P),係含有:後述的式(1)所表示的單體(A)由來之結構單位(a);和從(甲基)丙烯酸及其鹽所成的群中所選擇出來的至少1種單體(B)由來之結構單位(b);和後述的式(2)所表示的單體(C)由來之結構單位(c);和親水性單體(D)由來之結構單位(d);和疏水性單體(E)由來之結構單位(e)。又,共聚物(P),係在可達成本發明目的之範圍內,亦可含有結構單位(a)、(b)、(c)、(d)、及(e)之任一者均不相當的其他化合物由來之結構單位。
共聚物(P)係未經由共價鍵而做實質性交聯為理想。為了成為未實質交聯的構成,需要使交聯性單體由來之結構單位變少,或是不含有。至於交聯性單體的詳細的說明、及具體的含有量,係在共聚物(P)之各結構單位之含有率的說明中後述。
共聚物(P)的重量平均分子量係為100萬以上為理想,150萬以上為較理想,200萬以上則更加理想。又,共聚物(P)的重量平均分子量係為1000萬以下為理想,750萬以下為較理想,500萬以下則更加理想。又,此處,所謂重量平均分子量係為,使用凝膠滲透層析(GPC)所算出之普魯蘭多糖(pullulan)換算值。
<1-1.單體(A)> 單體(A)係為以下的式(1)所表示的化合物。單體(A)係亦可包含有式(1)所表示的複數種類之化合物。
式(1)中,R1 、R2 係各自獨立為氫原子或碳數1以上5以下之烷基。R1 、R2 係各自獨立為氫原子或碳數1以上3以下之烷基為理想,R1 、R2 係各自獨立為氫原子或甲基為較理想。
R1 、R2 之組合的更加理想的具體例子係為,R1 :H、R2 :H(亦即單體(A)為N-乙烯基甲醯胺),或R1 :H、R2 :CH3 (亦即單體(A)為N-乙烯基乙醯胺)。
<1-2.單體(B)> 單體(B)係為(甲基)丙烯酸及其鹽所成的群中所選擇出來的至少1種。為了調整pH,單體(B)的主成分係為(甲基)丙烯酸鹽為理想。作為(甲基)丙烯酸鹽,理想為(甲基)丙烯酸鈉、(甲基)丙烯酸鉀、(甲基)丙烯酸銨。其中又以(甲基)丙烯酸鈉、(甲基)丙烯酸銨為較理想,丙烯酸鈉則最為理想。(甲基)丙烯酸鹽係例如可將(甲基)丙烯酸以氫氧化物、及氨水等進行中和而得到,但其中就獲得容易性的觀點而言,以氫氧化鈉進行中和為理想。此外,單體(B)中所含之主成分,係在單體(B)中含有60質量%以上為理想,含有80質量%以上為較理想,含有95質量%以上則更加理想。
<1-3.單體(C)> 單體(C)係為以下的式(2)所表示的化合物。單體(C)係亦可包含有式(2)所表示的複數種類之化合物。
式(2)中,R3 、R4 、R6 係各自獨立為氫原子或碳數1以上5以下之烷基。R3 、R4 、R6 係各自獨立為氫原子或碳數1以上3以下之烷基為理想,R3 、R4 、R6 係各自獨立為氫原子或甲基為較理想。R6 係為甲基則更加理想。R5 係為碳數1以上5以下之烷基,且碳數比R4 還多。
式(2)中,n係1以上之整數,m係0以上之整數,且n+m≧20。這是為了,將共聚物(P)當作電極活性物質所需之黏合劑來製作電極的情況下,要提升電極的可撓性,並抑制龜裂發生的緣故。從此觀點來看,n+m≧30為理想,n+m≧40為較理想。又,n+m≦500為理想,n+m≦200為較理想,n+m≦150則更加理想。這是由於黏合劑的黏結力會變得更高的緣故。
此外,在式(2)中雖然限定為,含R4 之結構單位是含有n個及含R5 之結構單位是含有m個,但這些結構單位的排列係無限定。亦即,m≧1的情況,在式(2)中,各個結構單位亦可具有全部或一部分呈連續的區塊結構,亦可由2個結構單位交互排列的結構等之帶有週期性規則性而排列的結構,亦可由2個結構單位做隨機排列的結構。作為式(2)之共聚物的理想形態,係為帶有週期性規則性而排列的結構,或隨機排列的結構。這是為了抑制形成式(2)的分子鏈內,各結構單位之分布的偏頗。作為式(2)之共聚物的較理想形態,係為隨機排列的結構。這是因為,不使用特殊觸媒而藉由自由基聚合起始劑就可聚合,可降低製造成本的緣故。
於式(2)中,作為R3 、R4 、R5 、R6 、n、m之組合的理想例子,可舉出以下表1之例子。
式(2)中m=0為較理想。作為m=0之單體(C)之例子可舉出聚乙二醇的單(甲基)丙烯酸酯,更具體而言,可舉出甲氧基聚乙二醇(甲基)丙烯酸酯(例如表1的單體c1、c2)等。作為甲氧基聚乙二醇甲基丙烯酸酯之一例係可舉出EVONIK INDUSTRIES製的VISIOMER(註冊商標)MPEG2005 MA W。於該產品中,R3 =CH3 ,R4 =H,R6 =CH3 ,n=45,m=0。作為甲氧基聚乙二醇甲基丙烯酸酯的其他例子,係可舉出EVONIK INDUSTRIES製的VISIOMER(註冊商標)MPEG5005 MA W。於該產品中,R3 =CH3 ,R4 =H,R6 =CH3 ,n=113,m=0。
作為m=0之單體(C)之別的例子可舉出聚丙二醇的單(甲基)丙烯酸酯,更具體而言,可舉出甲氧基聚丙二醇(甲基)丙烯酸酯(例如表1的單體c3、c4)等。
<1-4.親水性單體(D)> 親水性單體(D)係為僅具有1個乙烯性不飽和鍵,n-辛醇/水分配係數LogP為未滿2.0之化合物。又,親水性單體(D),係不具有式(1)及式(2)之任一結構,也非(甲基)丙烯酸及其鹽之任一者。亦即,親水性單體(D),係不是上述單體(A)、(B)、(C)之任一者。親水性單體(D),係具有(甲基)丙烯醯基為理想,具有(甲基)丙烯醯氧基為較理想。
此外,親水性單體(D)係於以下的說明中,有時候會表示成單體(D)。n-辛醇/水分配係數LogP係規定為,依照JIS Z 7260-117所評價之值。
親水性單體(D)是具有(甲基)丙烯醯氧基的情況下,係為從以下之(i)~(iii)所成的群中所選擇出來的至少1種之化合物為較理想。 (i)(甲基)丙烯醯氧基以外之部分的碳原子之數量為2以下的(甲基)丙烯酸烷酯。 (ii)(甲基)丙烯醯氧基以外之部分係為具有極性基的碳原子之數量為3以上之烴鏈,且於該烴鏈中,每1個極性基的形成極性基的碳原子以外的碳原子之數量係為8個以下的(甲基)丙烯酸酯。 (iii)具有(甲基)丙烯醯基及醯胺鍵的化合物。
滿足(i)之條件的單體(D)係為丙烯酸甲酯(LogP=0.80)、丙烯酸乙酯(LogP=1.32)、甲基丙烯酸甲酯(LogP=1.38)、及甲基丙烯酸乙酯(LogP=1.94)。
作為滿足(ii)之條件的單體(D)所具有的極性基係可舉出羧基、羥基等。
作為具有羧基的單體(D)之具體例係可舉出例如:β‐丙烯酸羧基乙酯(LogP=0.31)等。
作為具有羥基的單體(D)之具體例係可舉出例如:丙烯酸-2-羥基乙酯(LogP=0.01)、甲基丙烯酸-2-羥基乙酯(LogP=0.43)、丙烯酸-2-羥基丙酯(LogP=0.36)、甲基丙烯酸-2-羥基丙酯(LogP=0.78)、4-羥基丁基丙烯酸酯(LogP=0.59)等。
作為滿足(iii)之條件的單體(D)之具體例係可舉出例如:丙烯醯胺(LogP=-0.56)、甲基丙烯醯胺(LogP=-0.14)、N-甲基丙烯醯胺(LogP=-0.59)、N-甲基甲基丙烯醯胺(LogP=-0.17)、N-乙基丙烯醯胺(LogP=-0.08)、N-乙基甲基丙烯醯胺(LogP=0.34)、N-丙基丙烯醯胺(LogP=0.43)、N-異丙基甲基丙烯醯胺(LogP=0.70)、N,N-二甲基丙烯醯胺(LogP=-0.14)、N-羥甲基丙烯醯胺(LogP=-1.38)、N-羥甲基甲基丙烯醯胺(LogP=-0.96)、N-羥乙基丙烯醯胺(LogP=-1.37)、N-羥乙基甲基丙烯醯胺(LogP=-0.95)、N-(2-羥丙基)丙烯醯胺(LogP=-1.37)、N-(2-羥丙基)甲基丙烯醯胺(LogP=0.95)、雙丙酮丙烯醯胺(LogP=0.04)、N-(二甲胺基甲基)丙烯醯胺(LogP=-0.47)、N-(二甲胺基甲基)甲基丙烯醯胺(LogP=-0.14)、N-(二甲胺基乙基)丙烯醯胺(LogP=-0.28)、N-(二甲胺基甲基)甲基丙烯醯胺(LogP=0.14)、N-(二甲胺基丙基)丙烯醯胺(LogP=-0.24)、N-(二甲胺基甲基)甲基丙烯醯胺(LogP=0.18)、2-丙烯醯胺-2-甲基丙磺酸(LogP=-2.05)等。
作為(i)~(iii)以外之單體(D)係可舉出伊康酸(LogP=-0.08)、馬來酸(LogP=-0.45)、富馬酸(LogP=  -0.45)、巴豆酸(LogP=0.66)等。
<1-5.疏水性單體(E)> 疏水性單體(E)係為僅具有1個乙烯性不飽和鍵,n-辛醇/水分配係數LogP為2.0以上之化合物。又,疏水性單體(E),係不具有式(1)及式(2)之任一結構,也非(甲基)丙烯酸及其鹽之任一者。亦即,疏水性單體(E),係不是上述單體(A)、(B)、(C)之任一者。疏水性單體(E),係具有(甲基)丙烯醯基為理想,具有(甲基)丙烯醯氧基為較理想。這是為了,於疏水性單體(E)中會容易生成自由基,可使聚合反應效率良好地進行,結果而言可降低共聚物(P)的製造成本的緣故。此外,疏水性單體(E)在以下的說明中,有時候是表示成單體(E)。
單體(E)係為,(甲基)丙烯醯氧基以外之部分的碳數為3以上的(甲基)丙烯酸烷酯為理想。
作為單體(E)之具體例係可舉出例如:甲基丙烯酸n-丙酯(LogP=2.23)、甲基丙烯酸異丙酯(LogP=2.07)、丙烯酸n-丁酯(LogP=2.32)、甲基丙烯酸n-丁酯(LogP=2.74)、丙烯酸tert-丁酯(LogP=2.06)、甲基丙烯酸tert-丁酯(LogP=2.48)、丙烯酸異丁酯(LogP=2.16)、甲基丙烯酸異丁酯(LogP=2.58)、丙烯酸-2-乙基己酯(LogP=4.20)、甲基丙烯酸-2-乙基己酯(LogP=4.62)、丙烯酸十八酯(LogP=9.45)、甲基丙烯酸十八酯(LogP=9.87)、丙烯酸環己烷(LogP=2.76)、甲基丙烯酸環己烷(LogP=3.18)、(甲基)丙烯酸異壬酯、丙烯酸異莰酯(LogP=4.03)、甲基丙烯酸異莰酯(LogP=4.45)等。
<1-6.共聚物(P)中的結構單位之含有率> 以下說明共聚物(P)中的各結構單位之含有率。此處,共聚物(P)中的各結構單位之含有率,係將共聚物(P)中所含之結構單位(b),置換成丙烯酸鈉由來之結構單位,而算出來的值。以下將如此所被算出的含有率,稱作換算含有率。例如,若令結構單位(a)~(e)的質量為Ma~Me,令把結構單位(b)置換成丙烯酸鈉由來之結構單位的質量為Mb1,則在共聚物(P)是由結構單位(a)~(e)所成的情況下,結構單位(a)之換算含有率係為100×Ma/(Ma+Mb1+Mc+Md+Me)[質量%]。又,此時的結構單位(b)之換算含有率係為100×Mb1/(Ma+Mb1+Mc+Md+Me)[質量%]。
結構單位(a)之換算含有率係為0.5質量%以上,而1.0質量%以上為理想,3.0質量%以上為較理想。這是為了,後述的電極形成用漿料製作時的電極活性物質或導電助劑的分散性優良,能夠製作塗布性良好的電極形成用漿料的緣故。結構單位(a)之換算含有率係為20.0質量%以下,而15.0質量%以下為理想,12.5質量%以下為較理想。這是為了,抑制後述的電極的龜裂之發生,提升電極的生產性的緣故。
結構單位(b)之換算含有率((甲基)丙烯酸與(甲基)丙烯酸鹽之合計量),係為40.0質量%以上為理想,60.0質量%以上為較理想,70.0質量%以上則更加理想。這是為了,能夠獲得對集電體的剝離強度高的電極活性物質層的緣故。結構單位(b)之換算含有率((甲基)丙烯酸與(甲基)丙烯酸鹽之合計量),係為94.5質量%以下為理想,93.0質量%以下為較理想,90.0質量%以下則更加理想。這是為了,後述的電極形成用漿料製作時的電極活性物質、導電助劑等之固形分的分散性會更為提升的緣故。
結構單位(c)之換算含有率係為0.3質量%以上,而0.5質量%以上為理想,1.0質量%以上為較理想。這是為了,抑制後述的電極的龜裂之發生,提升電極的生產性的緣故。結構單位(c)之換算含有率係為18.0質量%以下,而15.0質量%以下為理想,11.0質量%以下為較理想。這是為了可以防止聚合中的膠體化的緣故。於式(2)中,n+m≧40的情況下,結構單位(c)之換算含有率係為0.5質量%以上5.0質量%以下為理想。這是為了,藉由含有於式(2)中n+m較大的單體(C)由來之結構單位(c),就能以少量的單體(C)來抑制後述的電極之龜裂的緣故。
結構單位(d)之換算含有率係為0.5質量%以上,而0.9質量%以上為理想,3.0質量%以上為較理想。結構單位(d)之換算含有率係為15.0質量%以下,而10.0質量%以下為理想,7.0質量%以下為較理想。這是為了能夠抑制聚合中發生析出物的緣故。
結構單位(e)之換算含有率係為2.5質量%以上,而3.0質量%以上為理想,4.0質量%以上為較理想。這是為了,共聚物(P)作為黏合劑而能夠在電極中獲得充分的黏結力,提升後述的電極之剝離強度的緣故。結構單位(e)之換算含有率係為20.0質量%以下,而16.0質量%以下為理想,12.0質量%以下為較理想。這是為了能夠獲得高分子量的共聚物(P),也是為了能夠抑制聚合中發生析出物的緣故。
結構單位(c)與結構單位(d)之合計之換算含有率係為2.5質量%以上,而2.8質量%以上為較理想,5.0質量%以上則更加理想。這是為了提升共聚物(P)之水溶性的緣故。結構單位(c)與結構單位(d)之合計之換算含有率係為20.0質量%以下,而17.0質量%以下為較理想,13.0質量%以下則更加理想。若為2.5質量%以上,則後述的電極之剝離強度會變得良好;若為20.0質量%以下,則可抑制聚合中發生析出物。
交聯性單體所由來之結構單位,係在能夠讓後述的電極形成用漿料中所被使用之量的共聚物(P)溶解於後述之水性介質的範圍內,亦可含有。但是,在共聚物(P)中不要含有交聯性單體所由來之結構單位,係為理想。此處所謂「交聯性單體所由來之結構單位」,係指構成了作為共聚物(P)之交聯部分的結構單位。作為如此的結構單位係可舉出例如:在分子內具有複數聚合性之乙烯性不飽和鍵的單體所由來之結構單位、藉由促使官能基發生反應而形成了交聯結構的一對單體所由來之結構單位等。此外,此處所舉出的後者的例子中,該結構單位即使具有藉由觸媒等而會發生反應的官能基,在共聚物(P)中,只要實際上不發生交聯,則該結構單位就不算是「交聯性單體所由來之結構單位」。例如,羥基與羧基所致之酯化反應,係需要添加濃硫酸等之觸媒,而只要不添加這類觸媒,具有羥基之單體及具有羧基之單體,於本發明中就不是交聯性單體。
<1-7.電極黏合劑用共聚物(P)之製造方法> 共聚物(P)的合成,係在水性介質中藉由自由基聚合而進行為理想。作為聚合法係可適用例如:將使用於聚合的單體全部一次饋入來進行聚合之方法、或一面連續供給使用於聚合的單體而一面進行聚合之方法等。共聚物(P)之合成時所使用的全單體中的各單體之含有率,係視為共聚物(P)中的該單體所對應之結構單位之含有率。例如,共聚物(P)之合成時所使用的全單體中的單體(A)之含有率,係為所欲合成之共聚物(P)中的結構單位(a)之含有率。各結構單位之換算含有率,係置換成與聚合時所使用之單體(B)相等莫耳的丙烯酸鈉,而算出。自由基聚合,係在30~90℃之溫度下進行為理想。此外,共聚物(P)之聚合方法的具體例子,於後述實施例中詳細說明。
作為自由基聚合起始劑係可舉出例如:過硫酸銨、過硫酸鉀、過氧化氫、t-丁基氫過氧化物、偶氮化合物等,但不限於此。作為偶氮化合物係可舉出例如:2,2’-偶氮雙(2-甲基丙脒)2鹽酸鹽。於水中進行聚合時,使用水溶性之聚合起始劑為理想。又,亦可因應需要而於聚合之際合併使用自由基聚合起始劑與還原劑,來進行氧化還原聚合。作為還元劑係可舉出亞硫酸氫鈉、甲醛次硫酸氫鈉(rongalite)、抗壞血酸等。
作為水性介質是使用水為理想,但只要不損及所得之黏合劑用共聚物的聚合安定性,亦可使用在水中添加了親水性之溶媒來作為水性介質。作為添加至水中的親水性溶媒可舉出甲醇、乙醇及N-甲基吡咯啶酮等。
<1-8.電極黏合劑組成物(Q)> 本實施形態的電極黏合劑組成物(Q)(以下有時候簡稱為「黏合劑組成物(Q)」),係含有電極黏合劑用共聚物(P)、和水性介質。電極黏合劑組成物(Q)的固形分,係為電極黏合劑。亦即,本實施形態的電極黏合劑,係含有電極黏合劑用共聚物(P)。本實施形態的電極黏合劑,係為電極黏合劑用共聚物(P)為理想。
<2.電極形成用漿料> 在本實施形態的電極形成用漿料(以下有時候簡稱為「漿料」)中,黏合劑用共聚物(P)、與電極活性物質,是溶解或分散於水性介質中。黏合劑用共聚物(P),係溶解於水性介質中為理想(含有黏合劑用共聚物(P)與水性介質的組成物,係為黏合劑組成物(Q))。這是為了,在漿料的乾燥後,讓黏合劑用共聚物(P)能夠在電極活性物質的粒子表面形成為層的緣故。本實施形態的漿料,亦可因應需要而含有導電助劑、增黏劑等,但為了使漿料製作步驟簡單化,不含增黏劑是比較理想。用來調製漿料所需之方法,係只要能使各材料均勻溶解、分散,則無特別限制。作為調製漿料的方法雖然並無特別限定,但可舉出例如使用攪拌式、旋轉式、或振盪式等之混合裝置,將必要成分予以混合的方法。
漿料中的非揮發分理想係為30質量%以上,較理想係為40質量%以上。這是為了以較少的漿料的量來形成較多的電極活性物質層的緣故。漿料中的非揮發分理想係為70質量%以下,較理想係為60質量%以下。這是為了容易調整漿料的緣故。非揮發分係藉由,於直徑5cm之鋁皿中秤量1g漿料,並在大氣壓下,在乾燥器內一面使空氣循環,一面在130℃下乾燥1小時後,剩餘的成分相對於乾燥前的漿料之質量(1g)的質量比率(%)。非揮發分係可藉由水性介質的量來調整。
<2-1.黏合劑用共聚物(P)之含有率> 漿料中所含之黏合劑用共聚物(P)之含有率,係相對於電極活性物質(後述)與導電助劑(後述)與黏合劑用共聚物(P)的合計質量,而為0.5質量%以上為理想,1.0質量%以上為較理想,2.0質量%以上則更加理想。這是為了,要能夠藉由黏合劑用共聚物(P),而確保電極活性物質間、及電極活性物質與集電體間的黏結性的緣故。漿料中所含之黏合劑用共聚物(P)之含有率,係相對於電極活性物質與導電助劑與黏合劑用共聚物(P)的合計質量,而為7.0質量%以下為理想,5.0質量%以下為較理想,4.0質量%以下則更加理想。這是為了,可以增大從漿料所形成的電極活性物質層的充放電容量,也可降低在作成電池時的內部電阻的緣故。
<2-2.電極活性物質> 作為鋰離子二次電池的負極活性物質之例子係可舉出導電性聚合物、碳材料、鈦酸鋰、矽、矽化合物等。作為導電性聚合物可舉出聚乙炔、聚吡咯等。作為碳材料可舉出石油焦碳、瀝青焦碳、石碳焦碳等之焦碳;有機化合物的碳化物、碳纖維、乙炔黑等之碳黑;人造石墨、天然石墨等之石墨等。作為矽化合物係可舉出SiOx (0.1≦x≦2.0)等。又,作為電極活性物質亦可使用含有Si與黑鉛的複合材料(Si/黑鉛)等。這些活性物質之中,就單位體積的能量密度較大的觀點來看,又以使用碳材料、鈦酸鋰、矽、矽化合物為佳。又,若是焦碳、有機化合物的碳化物、黑鉛等之碳材料、SiOx (0.1≦x≦2.0)、Si、Si/黑鉛等之矽含有材料,則黏合劑用共聚物(P)所致之黏結性提升效果係為顯著。例如,作為人造石墨的具體例子係可舉出SCMG(註冊商標)-XRs(昭和電工(股)製)。此外,作為負極活性物質,亦可將這裡所舉出的材料,做2種類以上的複合化。
又,作為導電助劑,亦可添加碳黑、氣相法碳纖維等於漿料中。作為氣相法碳纖維的具體例子係可舉出VGCF(註冊商標)-H(昭和電工(股))。
作為鋰離子二次電池的正極活性物質之例子係可舉出:鈷酸鋰(LiCoO2 );含鎳的鋰複合氧化物;尖晶石型錳酸鋰(LiMn2 O4 );橄欖石型磷酸鐵鋰;TiS2 、MnO2 、MoO3 、V2 O5 等之氧族元素(chalcogen)化合物。正極活性物質係可單獨含有這些化合物之任一者,或亦可含有複數種。又,亦可使用其他鹼金屬的氧化物。作為含鎳的鋰複合氧化物係可舉出Ni-Co-Mn系之鋰複合氧化物、Ni-Mn-Al系之鋰複合氧化物、Ni-Co-Al系之鋰複合氧化物等。作為正極活性物質之具體例係可舉出LiNi1/3 Mn1/3 Co1/3 O2 、LiNi3/5 Mn1/5 Co1/5 等。
<2-3.水性介質> 漿料的水性介質,係為水、水以外之水性介質、或這些的混合物。漿料的水性介質係可使用,黏合劑用共聚物(P)之聚合時所使用的水性介質。黏合劑用共聚物(P)之聚合時所使用的水性介質亦可直接使用,亦可在聚合時所使用的水性介質中再添加入水性介質,將聚合所需之水性介質置換成新的水性介質。
<3.電極> 本實施形態的電極係具有:集電體、和被形成在集電體之表面的電極活性物質層。作為電極的形狀係可舉出例如層合體或捲繞體,但無特別限定。集電體,係厚度0.001~0.5mm之薄片狀之金屬為理想,作為金屬係可舉出鐵、銅、鋁、鎳、不鏽鋼等,但並無特別限定。
電極活性物質層係含有電極活性物質與黏合劑用共聚物(P)。例如,將上述漿料塗布於集電體上,並使其乾燥,而形成電極活性物質層後,藉由切斷成適當大小即可製造電極。
作為將漿料塗布於集電體上的方法係可舉出例如:逆輥法、同向輥法、刮板法、刮刀法、擠出法、簾流法、凹版法、棒塗法、浸漬法及擠壓法等。這些之中又以刮板法、刮刀法、或擠出法為理想,使用刮板來進行塗布則較為理想。這是為了對於漿料的黏性等之各種物性及乾燥性而言為合適,以獲得表面狀態良好之塗布膜的緣故。
漿料可僅塗布於集電體之單面,亦可塗布於兩面。將漿料塗布於集電體兩面的情況下,亦可一次塗布單面,亦可兩面同時塗布。又,漿料可於集電體之表面連續地塗布,亦可間歇性地塗布。漿料的塗布量、塗布範圍,係可隨應於電池的大小等,而適宜地決定。乾燥後的電極活性物質層的單位面積重量,係4~20mg/cm2 為理想,6~16mg/cm2 為較理想。
已被塗布之漿料的乾燥方法並無特別限定,但例如可單獨或組合使用熱風、真空、(遠)紅外線、電子束、微波及低溫風。乾燥溫度係40℃以上180℃以下為理想,乾燥時間係1分鐘以上30分鐘以下為理想。
形成有電極活性物質層的集電體,係亦可為了作為電極而切斷成為適當的大小或形狀。形成有電極活性物質層之集電體的切斷方法並無特殊限定,但例如可使用切割機(slitter)、雷射、切割線、切斷器(cutter)、湯姆森刀片等。
形成有電極活性物質層之集電體的切斷前或後,亦可因應需要而對其進行壓製。藉此可使電極活性物質對電極更為強固地黏結,進而可使電極變薄而使非水系電池的精巧化成為可能。壓製的方法係可使用一般的方法,尤其是以使用模具壓製法或輥壓製法為理想。壓製壓力並無特別限定,但以不會因為壓製導致鋰離子等對電極活性物質的摻雜/去摻雜造成影響之範圍也就是0.5~5t/cm2 為理想。
<4.電池> 作為本實施形態所述之電池的理想之一例,雖然針對鋰離子二次電池做說明,但電池的構成係不限於此處所說明者。此處所說明的例子所述之鋰離子二次電池,係將正極、負極、電解液、與因應需要之隔離膜等之零件收容於外裝體者,正極與負極當中之一方或雙方係使用藉由上述方法所製作之電極。
<4-1.電解液> 作為電解液,係使用具有離子傳導性的非水系之液體。作為電解液係可舉出將電解質溶解於有機溶媒而成的溶液、離子液體等,但降低製造成本,獲得內部電阻低的電池,而以前者為理想。
作為電解質係可使用鹼金屬鹽,可隨應於電極活性物質之種類等而適宜選擇。作為電解質係可舉出例如:LiClO4 、LiBF6 、LiPF6 、LiCF3 SO3 、LiCF3 CO2 、LiAsF6 、LiSbF6 、LiB10 Cl10 、LiAlCl4 、LiCl、LiBr、LiB(C2 H5 )4 、CF3 SO3 Li、CH3 SO3 Li、LiCF3 SO3 、LiC4 F9 SO3 、Li(CF3 SO2 )2 N、脂肪族羧酸鋰等。又,作為電解質,亦可使用其他鹼金屬鹽。
作為用來溶解電解質的有機溶劑雖無特別限定,但可舉出例如:碳酸伸乙酯(EC)、碳酸伸丙酯(PC)、碳酸二乙酯(DEC)、碳酸甲基乙酯(MEC)、碳酸二甲酯(DMC)、碳酸氟伸乙酯(FEC)、碳酸伸乙烯酯(VC)等之碳酸酯化合物;乙腈等之腈化合物;乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、丙酸丙酯等之羧酸酯。這些有機溶媒係可1種單獨使用,亦可組合2種以上使用。
<4-2.外裝體> 作為外裝體,係可適宜使用金屬或鋁層疊材等。電池的形狀可為錢幣型、鈕扣型、薄片型、圓筒型、方型、扁平型等任意形狀。 [實施例]
以下揭露關於黏合劑用共聚物(P)(黏合劑)、負極用漿料、電極、電池的實施例及比較例,以更詳細說明本發明。此外,本發明並不限定於此等。
<1.黏合劑用共聚物(P)之合成> 實施例1~4及比較例1~14中所使用的單體之構成,示於表2。至於單體之構成以外,實施例1~4及比較例1~14中的共聚物(P)之製造方法係為相同。單體及試藥的細節如以下所述。單體是以溶液方式而被使用的情況下,表中的單體之使用量係表示不含溶媒的該單體本身的量。
單體(A-1):N-乙烯基乙醯胺(NVA)(昭和電工(股)製) 單體(B-1):丙烯酸鈉(AaNa)(28.5質量%水溶液) 單體(C-1):甲氧基聚乙二醇甲基丙烯酸酯(EVONIK INDUSTRIES製;VISIOMER(註冊商標)MPEG2005 MA W)(式(2)中的R3 =CH3 ,R4 =H,R6 =CH3 ,n=45,m=0,m+n=45)的50.0質量%水溶液 親水性單體(D-1):甲基丙烯酸-2-羥基乙酯(LogP=0.43) 親水性單體(D-2):甲氧基聚乙二醇甲基丙烯酸酯(共榮社化學股份有限公司製,LIGHT ESTER 130MA,式(2)中的R3 =CH3 ,R4 =H,R6 =CH3 ,n=9,m=0,m+n=9)(LogP<2) 親水性單體(D-3):丙烯酸乙酯(LogP=1.32) 疏水性單體(E-1):丙烯酸-n-丁酯(LogP=2.32) 聚合起始劑:2,2’-偶氮雙(2-甲基丙脒)2鹽酸鹽(和光純藥工業公司製;V-50)及過硫酸銨(和光純藥工業公司製)
在安裝有冷卻管、溫度計、攪拌機、滴液漏斗的可分離式燒瓶中,將表2所示之組成的單體100質量份、V-50 0.2質量份、過硫酸銨0.05質量份、水693質量份,在30℃下予以饋入。使其升溫至80℃,進行4小時聚合。其後,加水以使非揮發分變成10.0質量%(考慮單體(B-1)中所含的水而調節水的添加量),調製出黏合劑組成物Q1~Q4、及CQ1~CQ14。於以下的說明中,有時候會將「黏合劑用共聚物P1~P4、及CP1~CP14之各者」當作「共聚物(P)」,以及將「黏合劑組成物Q1~Q4、及CQ1~CQ14之各者」當作「黏合劑組成物(Q)」。
<2.針對黏合劑組成物的測定> 針對共聚物(P)及黏合劑組成物(Q)進行以下之測定。測定結果如表2所示。
<2-1.非揮發分> 於直徑5cm之鋁皿中將黏合劑組成物(Q)秤量1g,在大氣壓下,在乾燥器內一面使空氣循環,一面在130℃下乾燥1小時。將乾燥後的殘餘部分之質量進行秤量,算出相對於乾燥前之樣本之質量的比率(質量%)。
<2-2.重量平均分子量> 共聚物(P)的重量平均分子量,係使用凝膠滲透層析(GPC)而用以下的條件進行測定。
GPC裝置:GPC-101(昭和電工(股)製)) 溶媒:0.1M NaNO3 水溶液 樣本管柱:Shodex Column Ohpak SB-806 HQ (8.0mmI.D.×300mm)×2 參考管柱:Shodex Column Ohpak SB-800 RL (8.0mmI.D.×300mm)×2 管柱溫度:40℃ 樣本濃度:0.1質量% 偵測器:RI-71S(島津製作所股份有限公司製) 泵浦:DU-H2000(島津製作所股份有限公司製) 壓力:1.3MPa 流量:1ml/min 分子量標準品:普魯蘭多糖(P-5、P-10、P-20、P-50、P-100、P-200、P-400、P-800、P-1300、P-2500(昭和電工(股)製))
<2-3.黏度> 黏合劑組成物(Q)的黏度,係使用Brookfield型黏度計(東機產業製),以液溫23℃,旋轉數10rpm,No.5、No.6及No.7之任一種轉子來進行測定。此外,轉子係隨應於各個樣本的黏度而做選擇。
<2-4.pH> 黏合劑組成物(Q)的pH,係在液溫23℃之狀態下,使用pH計(東亞DKK製)來進行計測。
<3.電池、及電池製作所需之各構成的評價> <3-1.電池的製作> (負極用漿料之調整) 將作為石墨的SCMG(註冊商標)-XRs(昭和電工(股)製)76.8質量份、一氧化矽(SiO)(Sigma-Aldrich製)19.2質量份、VGCF(註冊商標)-H(昭和電工(股))1質量份、黏合劑組成物(Q)30質量份(含共聚物(P)3質量份、水27質量份)、及水20質量份,加以混合。混合係使用攪拌式混合裝置(自轉公轉攪拌混合機)以2000旋轉/分鐘進行4分間鐘混揉而進行。在所得到的混合物中,再加入水53質量份,以上述混合裝置,再以2000旋轉/分鐘混合4分鐘,調製成負極用漿料。
(負極的製作) 將已調製的負極用漿料,在厚度10μm之銅箔(集電體)的單面,以乾燥後的單位面積重量會成為8mg/cm2 的方式,使用刮板進行塗布。將塗布了負極用漿料的銅箔,在60℃下乾燥10分鐘乾燥後,再於100℃下乾燥5分鐘而製作已被形成有負極活性物質層的負極薄片。將該負極薄片使用模具壓製以壓製壓10kN/cm2 進行壓製。將已被壓製的負極薄片切出成22mm×22mm,安裝上導電接頭而製作成負極。
(正極的製作) 將LiNi1/3 Mn1/3 Co1/3 O2 90質量份、乙炔黑5質量份、及聚偏二氟乙烯5質量份予以混合,其後,將N-甲基吡咯烷酮100質量份予以混合而調製成正極用漿料(固形分中的LiNi1/3 Mn1/3 Co1/3 O2 之比率係為0.90)。
將已調製的正極用漿料,以刮板法在厚度20μm之鋁箔(集電體)的單面,以乾燥後的單位面積重量會成為22.5mg/cm2 (22.5×10-3 g/cm2 )的方式,使用刮板進行塗布。將已被塗布有正極用漿料的鋁箔,在120℃下乾燥5分鐘後,藉由輥壓製而進行壓製,製作出被形成有厚度100μm之正極活性物質層的正極薄片。將所得到的正極薄片切出成20mm×20mm(2.0cm×2.0cm),安裝上導電接頭而製作成正極。
所製作的正極的理論電容量,係藉由正極用漿料的乾燥後之單位面積重量(22.5×10-3 g/cm2 )×正極用漿料的塗布面積(2.0cm×2.0cm)×LiNi1/3 Mn1/3 Co1/3 O2 的作為正極活性物質之電容量(160mAh/g)×固形分中的LiNi1/3 Mn1/3 Co1/3 O2 之比率(0.90)而被求出,所被算出的值係為13mAh。
(電解液的調製) 在碳酸伸乙酯(EC)與碳酸乙基甲酯(EMC)與碳酸氟伸乙酯(FEC)以體積比(混合前)30:60:10混合而得的混合溶媒中,以使得LiPF6 成為1.0mol/L、碳酸伸乙烯酯(VC)成為1.0質量%之濃度的方式予以溶解,調製成電解液。
(電池的組裝) 介隔著由聚烯烴多孔性薄膜所成的隔離膜,以使得正極與負極的活性物質會互相對向之方式而加以配設,收納於鋁層疊外裝體(電池包)中。在該外裝體之中注入電解液,以真空熱封機封裝,獲得層疊型電池。
<3-2.電池製作所需之各構成的評價> 將各實施例及比較例之負極用漿料外觀、電極性能、電池性能,進行評價。評價方法係如以下所述,評價結果係如表2所示。
(負極用漿料外觀) 將上述的電池製作時所調整的負極用漿料以目視來確認外觀,以測微計來測定凝集物的尺寸。漿料10g中若有最長尺寸1mm以上之凝集物則標示×,若無則標示○。
(負極外觀) 以目視觀察負極薄片之表面並確認外觀,計數5cm×20cm之長方形之範圍內的龜裂之數量。
(負極活性物質層之剝離強度) 於23℃中,將已被形成在負極薄片上的負極活性物質層、與SUS板使用雙面膠帶(NITTOTAPE(註冊商標) No5,日東電工(股)製)進行貼合。以剝離寬度25mm、剝離速度100mm/min進行180°剝離而將所得到的值當作剝離強度。
<3-3.電池性能之評價> (初期效率) 電池的初期效率之測定,是在25℃之條件下,用以下的程序而進行。首先,以0.2C之電流進行充電(CC充電)直到變成4.2V為止,接著,以4.2V之電壓進行充電(CV充電)直到電流變成0.05C為止。放置30分鐘後,以0.2C之電流進行放電(CC放電)直到電壓變成2.75V為止。將CC充電、CV充電、及CC放電之一連串之操作視為1循環,重複做了5循環。將第n循環之CC充電及CV充電中的電流的時間積分值的和當作第n循環之充電容量(mAh),將第n循環之CC放電中的電流的時間積分值當作第n循環之放電容量(mAh)。將第4循環及第5循環之放電容量之平均值當作初期放電容量,使用以下的計算式[1]而算出初期效率。正極理論電容量,係為正極之製作的說明中所求出的值。
初期效率(%)={初期放電容量/13mAh(正極理論電容量)}×100  [1]
(放電容量維持率) 電池的充放電循環試驗,是在25℃之條件下,用以下的程序而進行。首先,以1C之電流進行充電(CC充電)直到電壓變成4.2V為止,接著,以4.2V之電壓進行充電(CV充電)直到電流變成0.05C為止。放置30分鐘後,以1C之電流進行放電(CC放電)直到電壓變成2.75V為止。將CC充電、CV充電、及CC放電之一連串之操作視為1循環。將第n循環之CC充電及CV充電中的電流的時間積分值的和當作第n循環之充電容量(mAh),將第n循環之CC放電中的電流的時間積分值當作第n循環之放電容量(mAh)。電池的第n循環之放電容量維持率,係為第n循環之放電容量相對於第1循環之放電容量的比率(%)。在本實施例及比較例中,是將第100循環之放電容量維持率,進行評價。
<4.評價結果> 由表2可知,實施例1~4所製作的電極黏合劑用共聚物P1~P4,係抑制了含電極活性物質之漿料中的凝集物之發生,抑制被形成在集電體上的電極活性物質層的龜裂之發生,同時,提高了電極活性物質層對集電體的剝離強度。又,在使用電極黏合劑用共聚物P1~P4所製作的電池中,初期效率及放電容量維持率之值係為足夠。
另一方面,未使用單體(C)(D)(E)的比較例1中,所製作的電極中看到了龜裂。在未使用單體(D)(E)的比較例2、未使用單體(E)的比較例3及比較例14中,所製作的電極中雖然未看到龜裂,但剝離強度有所降低。在未使用單體(A)的比較例4中,係在漿料中看到了凝集物。又,無法將電極進行平坦地塗布,無法評價其作為電池的性能。在單體(A)過量使用的比較例5中,係在漿料中看到了凝集物,在藉由塗布而得到的電極表面上也看到了凝集物。在電極表面上也看到了龜裂。
在未使用單體(D)的比較例6、單體(D)過量使用的比較例7中,在黏合劑組成物CQ6、CQ7中分別看到了不溶物。又,於漿料、電極表面看到了凝集物。在單體(C)過量使用的比較例8中,黏合劑組成物CQ8係生成膠狀的沈澱物,無法製作成漿料。在未使用單體(C)的比較例9中,係於黏合劑組成物CQ9中看到了不溶物。又,在電極表面上看到了龜裂。
在單體(E)過量使用的比較例10中,黏合劑組成物CQ10之分子量係為60萬。又,於漿料、電極表面看到了凝集物。在單體(E)的使用量較少的比較例11中,剝離強度變低,無法獲得單體(E)導入之充分效果。
在單體(C)(D)之使用合計量較少的比較例12中,看到了不溶物。又,於漿料、電極表面看到了凝集物,而且在電極表面上也看到了龜裂。
在未使用單體(C)、使用了式(2)中的n數較小之單體(D)的比較例13中,所製作的電極中看到了龜裂。
根據以上的評價結果,將含有實施例之黏合劑與負極活性物質之漿料塗布於集電體並乾燥所得的負極活性物質層,係在外觀上沒有問題,且剝離強度亦為足夠,作為電池時的充放電循環特性也能充分地提高。
因此可知,藉由把本實施例的黏合劑用共聚物作為非水系電池負極用的黏合劑,就可在非水系電池負極中的負極活性物質彼此、及負極活性物質與集電體之間確保足夠的黏結性,同時,作為電池會得到良好的充放電循環特性。
又,這些黏合劑亦可作為非水系電池正極用的黏合劑來使用,可在正極活性物質彼此、及正極活性物質與集電體之間確保足夠的黏結性,同時,可以製作充放電循環特性良好的電池。

Claims (14)

  1. 一種電極黏合劑用共聚物,其係為含有: 式(1)所表示的單體(A)由來之結構單位(a);和 從(甲基)丙烯酸及其鹽所成的群中所選擇出來的至少1種單體(B)由來之結構單位(b);和 式(2)所表示的單體(C)由來之結構單位(c);和 非單體(A)、(B)、(C)之任一者,僅具有1個乙烯性不飽和鍵,n-辛醇/水分配係數LogP為未滿2.0的親水性單體(D)由來之結構單位(d);和 非單體(A)、(B)、(C)之任一者,僅具有1個乙烯性不飽和鍵,n-辛醇/水分配係數LogP為2.0以上的疏水性單體(E)由來之結構單位(e) 的共聚物,其特徵為, 若令將該共聚物中所含之結構單位(b)置換成丙烯酸鈉由來之結構單位所算出的各成分之含有率為換算含有率,則 前述單體(A)由來之結構單位(a)之換算含有率係為0.5質量%以上20.0質量%以下,前述單體(C)由來之結構單位(c)之換算含有率係為0.3質量%以上18.0質量%以下,前述親水性單體(D)由來之結構單位(d)之換算含有率係為0.5質量%以上15.0質量%以下,及前述疏水性單體(E)由來之結構單位(e)之換算含有率係為2.5質量%以上20.0質量%以下; 前述單體(C)由來之結構單位(c)及前述親水性單體(D)由來之結構單位(d)的合計之換算含有率係為2.5質量%以上20.0質量%以下; 其中, (式中,R1 、R2 係各自獨立為氫原子或碳數1以上5以下之烷基); (式中,R3 、R4 、R6 係各自獨立為氫原子或碳數1以上5以下之烷基;R5 係為碳數1以上5以下之烷基,且碳數比R4 還多;n係1以上之整數,m係0以上之整數,且n+m≧20)。
  2. 如請求項1所記載之電極黏合劑用共聚物,其中,前述親水性單體(D)係為從以下之(i)~(iii)所成的群中所選擇出來的至少1種之化合物: (i)(甲基)丙烯醯氧基以外之部分的碳原子數為2以下的(甲基)丙烯酸烷酯; (ii)(甲基)丙烯醯氧基以外之部分係為具有極性基的碳原子數為3以上之烴鏈,且於該烴鏈中,每1個極性基的形成極性基的碳原子以外的碳原子數為8個以下的(甲基)丙烯酸酯;及 (iii)具有(甲基)丙烯醯基及醯胺鍵的化合物。
  3. 如請求項1或2所記載之電極黏合劑用共聚物,其中,前述疏水性單體(E)係為(甲基)丙烯醯氧基以外之部分的碳數為3以上的(甲基)丙烯酸烷酯。
  4. 如請求項1或2所記載之電極黏合劑用共聚物,其中,於前述式(2)中,n+m≦500。
  5. 如請求項1或2所記載之電極黏合劑用共聚物,其中,於前述式(2)中,n+m≧30。
  6. 如請求項1或2所記載之電極黏合劑用共聚物,其中,前述單體(A)係為N-乙烯基甲醯胺或N-乙烯基乙醯胺。
  7. 如請求項1或2所記載之電極黏合劑用共聚物,其中,重量平均分子量係為100萬以上1000萬以下。
  8. 如請求項1或2所記載之電極黏合劑用共聚物,其中,前述單體(B)由來之結構單位(b)之換算含有率係為40.0質量%以上94.5質量%以下。
  9. 一種電極形成用漿料,其含有: 如請求項1或2所記載之電極黏合劑用共聚物;和 電極活性物質;和 水性介質。
  10. 如請求項9所記載之電極形成用漿料,其中,前述電極活性物質含有矽及矽化合物之至少一者。
  11. 如請求項9或10所記載之電極形成用漿料,其中,前述電極黏合劑用共聚物之含有率係為,相對於前述電極活性物質與導電助劑與前述電極黏合劑用共聚物的合計質量,而為0.5質量%以上7.0質量%以下。
  12. 一種電極,其具有: 集電體;和 電極活性物質層,其含有:被形成在前述集電體表面上的如請求項1或2所記載之電極黏合劑用共聚物及電極活性物質。
  13. 如請求項12所記載之電極,其中,前述電極活性物質含有矽及矽化合物之至少一者。
  14. 一種鋰離子二次電池,其具備如請求項12或13所記載之電極。
TW109130008A 2019-09-05 2020-09-02 電極黏合劑用共聚物及鋰離子二次電池 TWI838574B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-162188 2019-09-05
JP2019162188 2019-09-05

Publications (2)

Publication Number Publication Date
TW202126711A TW202126711A (zh) 2021-07-16
TWI838574B true TWI838574B (zh) 2024-04-11

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133492A1 (ja) 2014-03-04 2015-09-11 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133492A1 (ja) 2014-03-04 2015-09-11 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池

Similar Documents

Publication Publication Date Title
JP7338749B2 (ja) 非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、非水系電池電極、および非水系電池
CN114080704B (zh) 电极粘合剂用共聚物以及锂离子二次电池
WO2021108984A1 (zh) 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物
TWI712633B (zh) 非水系電池電極用漿液之製造方法
TWI825125B (zh) 非水系電池電極用黏合劑用共聚物,及非水系電池電極製造用漿料
JP7416239B2 (ja) 非水系二次電池電極用バインダー及び非水系二次電池電極用スラリー
TWI838574B (zh) 電極黏合劑用共聚物及鋰離子二次電池
TWI839581B (zh) 非水系二次電池電極、電極塗料、及非水系二次電池
TWI841798B (zh) 非水系二次電池電極黏合劑、及非水系二次電池電極
TW202211521A (zh) 非水系蓄電池電極用黏合劑及非水系蓄電池電極用漿料
WO2022250080A1 (ja) 非水系二次電池電極バインダー、及び非水系二次電池電極
TW202127714A (zh) 非水系二次電池電極、電極塗料、及非水系二次電池
JP2023164051A (ja) 非水系二次電池電極用バインダーおよび非水系二次電池電極