WO2021108984A1 - 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物 - Google Patents

二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物 Download PDF

Info

Publication number
WO2021108984A1
WO2021108984A1 PCT/CN2019/122666 CN2019122666W WO2021108984A1 WO 2021108984 A1 WO2021108984 A1 WO 2021108984A1 CN 2019122666 W CN2019122666 W CN 2019122666W WO 2021108984 A1 WO2021108984 A1 WO 2021108984A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
group
polymer matrix
carbon atoms
negative electrode
Prior art date
Application number
PCT/CN2019/122666
Other languages
English (en)
French (fr)
Inventor
钟泽
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2019/122666 priority Critical patent/WO2021108984A1/zh
Priority to JP2022513130A priority patent/JP2022545913A/ja
Priority to CN202410212762.1A priority patent/CN118073572A/zh
Priority to CN201980065954.1A priority patent/CN113273005B/zh
Priority to KR1020227007001A priority patent/KR102658100B1/ko
Priority to EP19955318.1A priority patent/EP4024533B1/en
Publication of WO2021108984A1 publication Critical patent/WO2021108984A1/zh
Priority to US17/746,917 priority patent/US11978905B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/064Copolymers with monomers not covered by C08L33/06 containing anhydride, COOH or COOM groups, with M being metal or onium-cation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/066Copolymers with monomers not covered by C08L33/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/064Copolymers with monomers not covered by C09D133/06 containing anhydride, COOH or COOM groups, with M being metal or onium-cation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/066Copolymers with monomers not covered by C09D133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the technical field of secondary batteries, and specifically relates to a secondary battery, a device including the secondary battery, a preparation method of the secondary battery, and a binder composition.
  • Secondary batteries represented by lithium ion secondary batteries have high charge and discharge performance, no memory effect, and are environmentally friendly, and are widely used in electric vehicles and consumer electronic products. With the rapid popularity of new energy vehicles, the demand for power secondary batteries has exploded. The market has also put forward higher requirements for the service life of secondary batteries. Therefore, it is indeed necessary to provide a new technology that can further improve the cycle life of the secondary battery.
  • the present application provides a secondary battery with a relatively high cycle life, a device including the secondary battery, a preparation method of the secondary battery, and a binder composition that can improve the cycle life of the secondary battery.
  • the first aspect of the present application provides a secondary battery, which includes an adhesive, the adhesive is used to bond a first substance and a second substance, and the adhesive includes an adhesive
  • the composition is a polymer obtained by crosslinking
  • the binder composition includes a crosslinkable polymer matrix and a crosslinking agent
  • the crosslinkable polymer matrix includes the monomer unit represented by formula (I)
  • the crosslinking agent includes a compound represented by formula (II);
  • R 1 , R 2 and R 3 are each independently selected from H, a linear or branched alkyl group having 1 to 8 carbon atoms;
  • the R 4 is a polar group containing active hydrogen
  • the R 5 is a group reactive to the R 4;
  • the R 6 is selected from H, a substituted or unsubstituted hydrocarbon group having 1 to 8 carbon atoms;
  • n is an even number greater than or equal to 4, 2 ⁇ m ⁇ n, preferably m ⁇ 3.
  • a second aspect of the present application provides a device including the secondary battery according to the first aspect of the present application.
  • a third aspect of the present application provides a binder composition, which includes a crosslinkable polymer matrix and a crosslinking agent, the crosslinkable polymer matrix includes a monomer unit represented by formula (I), and the crosslinkable Co-agents include compounds represented by formula (II);
  • R 1 , R 2 and R 3 are each independently selected from H, a linear or branched alkyl group having 1 to 8 carbon atoms;
  • the R 4 is a polar group containing active hydrogen
  • the R 5 is a group reactive to the R 4;
  • the R 6 is selected from H, a substituted or unsubstituted hydrocarbon group having 1 to 8 carbon atoms;
  • n is an even number greater than or equal to 4, 2 ⁇ m ⁇ n, preferably m ⁇ 3.
  • the fourth aspect of the present application provides a method for preparing a secondary battery.
  • the method includes bonding a first substance and a second substance with a binder, the binder comprising a crosslinkable polymer matrix and a crosslinking agent.
  • R 1 , R 2 and R 3 are each independently selected from H, a linear or branched alkyl group having 1 to 8 carbon atoms;
  • the R 4 is a polar group containing active hydrogen
  • the R 5 is a group reactive to the R 4;
  • the R 6 is selected from H, a substituted or unsubstituted hydrocarbon group having 1 to 8 carbon atoms;
  • n is an even number greater than or equal to 4, 2 ⁇ m ⁇ n, preferably m ⁇ 3.
  • the secondary battery provided in this application uses an adhesive to bond the first substance and the second substance.
  • the binder is obtained by crosslinking a binder composition comprising a crosslinkable polymer matrix and a crosslinking agent.
  • the cross-linkable polymer matrix includes a monomer unit represented by formula (I), which has a polar group containing active hydrogen, which makes the binder and the first substance and the second substance have a comparative Good affinity, so that there is a strong interaction between the first substance and the second substance.
  • the crosslinking agent includes a compound represented by the formula (II), which has two or more groups reactive with the active hydrogen-containing polar group of the monomer unit to allow the binder composition to pass through Cross-linking forms a good cross-linked structure, thereby greatly improving the interaction force between the first substance and the second substance. Therefore, a strong bond is formed between the first substance and the second substance in the secondary battery, so that the structural stability and cycle life of the battery can be improved.
  • the binding effect of the binder enables the formation of strong interaction between the negative electrode active material particles, thereby greatly improving the negative electrode Cohesion. Therefore, the expansion problem of the negative pole piece during the cold press forming and the charging and discharging cycle of the secondary battery is effectively alleviated, so its cycle life and safety performance can be improved.
  • the binding effect of the binder makes the negative electrode active material and the negative electrode current collector have a higher binding force, so the negative electrode active material is effective It is bonded to the negative electrode current collector, so that the negative electrode pole piece has a higher bonding strength, and it is not prone to the risk of film peeling and powder falling.
  • the negative pole piece causes less volume change during the charge and discharge cycle, and can reduce the cycle expansion of the battery. Therefore, the cycle life and safety performance of the battery can be improved.
  • FIG. 1 is a schematic diagram of a secondary battery provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a battery module provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a battery pack provided by an embodiment of the present application.
  • Fig. 4 is an exploded view of Fig. 3.
  • Fig. 5 is a schematic diagram of a device provided by an embodiment of the present application.
  • any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with other lower limits to form an unspecified range, and any upper limit can be combined with any other upper limit to form an unspecified range.
  • every point or single value between the end points of the range is included in the range. Therefore, each point or single numerical value can be used as its own lower limit or upper limit in combination with any other point or single numerical value or in combination with other lower or upper limits to form an unspecified range.
  • the secondary battery has become the preferred power source of the device due to its advantages of high energy density, convenient carrying, no memory effect, and environmental friendliness.
  • a secondary battery is provided.
  • the secondary battery includes a positive pole piece, a negative pole piece, a separator, and an electrolyte.
  • active ions are inserted and extracted back and forth between the positive pole piece and the negative pole piece.
  • the isolation film is arranged between the positive pole piece and the negative pole piece to play a role of isolation.
  • the electrolyte conducts ions between the positive pole piece and the negative pole piece.
  • the present application provides a secondary battery, which includes a binder, which is used to bond a first substance and a second substance, and can ensure a good bonding effect between the first substance and the second substance .
  • the binder includes a polymer obtained by crosslinking a binder composition, and the binder composition includes a crosslinkable polymer matrix and a crosslinking agent.
  • the crosslinkable polymer matrix includes a monomer unit represented by formula (I)
  • the crosslinking agent includes a compound represented by formula (II);
  • R 1 , R 2 and R 3 are each independently selected from H, a linear or branched alkyl group having 1 to 8 carbon atoms;
  • the R 4 is a polar group containing active hydrogen
  • the R 5 is a group reactive to the R 4;
  • the R 6 is selected from H, a substituted or unsubstituted hydrocarbon group having 1 to 8 carbon atoms;
  • n is an even number greater than or equal to 4, 2 ⁇ m ⁇ n, preferably m ⁇ 3.
  • the monomer unit represented by formula (I) is the basic structural unit of the crosslinkable polymer matrix.
  • R 1 is selected from H, linear or branched alkyl having 1 to 8 carbon atoms, preferably selected from H, linear or branched alkyl having 1 to 4 carbon atoms.
  • R 1 can be selected from H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, N-heptyl, n-octyl, etc.
  • R 1 is selected from H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl; more preferably, R 1 is selected from H, methyl Group and ethyl group are particularly preferably H.
  • R 1 When R 1 is selected from a linear or branched alkyl group having 1 to 8 carbon atoms, the alkyl group may also have one or more hydrogens replaced by other elements or groups.
  • Other elements can be, but are not limited to, F, Cl, O, etc.
  • Other groups can be, but are not limited to, hydroxyl, amino, phenyl, methoxy and the like.
  • R 2 is selected from H, linear or branched alkyl having 1 to 8 carbon atoms, preferably selected from H, linear or branched alkyl having 1 to 4 carbon atoms.
  • R 2 can be selected from H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, N-heptyl, n-octyl, etc.
  • R 2 is selected from H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl; more preferably, R 2 is selected from H, methyl Group, ethyl, n-propyl, isopropyl.
  • R 2 When R 2 is selected from a linear or branched alkyl group having 1 to 8 carbon atoms, the alkyl group may also have one or more hydrogens substituted by other elements or groups.
  • Other elements can be, but are not limited to, F, Cl, O, etc.
  • Other groups can be, but are not limited to, hydroxyl, amino, phenyl, methoxy and the like.
  • R 3 is selected from H, linear or branched alkyl having 1 to 8 carbon atoms, preferably selected from H, linear or branched alkyl having 1 to 4 carbon atoms.
  • R 3 can be selected from H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, N-heptyl, n-octyl, etc.
  • R 3 is selected from H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl; more preferably, R 3 is selected from H, methyl Group and ethyl group are particularly preferably H or methyl group.
  • R 3 When R 3 is selected from a linear or branched alkyl group having 1 to 8 carbon atoms, the alkyl group may also have one or more hydrogens replaced by other elements or groups.
  • Other elements can be, but are not limited to, F, Cl, O, etc.
  • Other groups can be, but are not limited to, hydroxyl, amino, phenyl, methoxy and the like.
  • R 4 is selected from -(R 1 ) a -X.
  • the R 7 is selected from H, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and is preferably selected from H, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms.
  • R 7 can be selected from H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, etc.
  • R 7 is selected from H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl.
  • R 7 When R 7 is selected from a substituted alkyl group having 1 to 6 carbon atoms, the alkyl group may have one or more hydrogens substituted by other elements or groups.
  • Other elements can be, but are not limited to, F, Cl, O, etc.
  • Other groups can be, but are not limited to, hydroxyl, phenyl, and amine groups.
  • the a is 0 or 1
  • the R 1 is selected from a phenylene group, a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms
  • the X is selected from -COOH, -SO 3 H, -SO 2 H, hydroxyl, mercapto, amino.
  • R 1 is selected from phenylene, substituted or unsubstituted alkylene having 1 to 4 carbon atoms
  • X is selected from -COOH and hydroxyl.
  • R 1 when a is 1, R 1 may be selected from phenylene, methylene, ethylene, propylene, isopropylene, butylene, isobutylene, sec-butylene , Tert-butylene, pentylene, isopentylene, hexylene.
  • R 1 is selected from phenylene, methylene, ethylene, propylene, isopropylene, butylene, isobutylene, sec-butylene, tert-butylene; more preferably, R 1 is selected from phenylene, methylene, and ethylene.
  • one or several hydrogens may be replaced by other elements or groups.
  • the element can be, but is not limited to, F, Cl, O and the like.
  • the group can be, but is not limited to, a hydroxyl group, a phenyl group, an amino group, and the like.
  • These groups have high reactivity and strong polarity, which can further enhance the interaction between the first substance and the second substance and improve the bonding strength.
  • R 4 is selected from -COOH or -OH.
  • the monomer unit represented by formula (I) can be selected from one or more of the following monomer units a to d.
  • the crosslinkable polymer matrix may be a homopolymer or a copolymer, and the copolymer may be a random copolymer, a block copolymer, an alternating copolymer, or a graft copolymer.
  • the crosslinkable polymer matrix may be a copolymer of monomer units with different acidity and basicity. This can not only enhance the interaction between the first substance and the second substance, but also enhance the stability of the binder during the battery cycle, so that the first substance and the second substance can maintain a strong interaction for a long time.
  • the crosslinkable polymer matrix includes one of a copolymer of monomer units a and d, a copolymer of monomer units c and d, and a copolymer of monomer units b, c and d. Or several; more preferably, the crosslinkable polymer matrix includes a copolymer of monomer units b, c and d.
  • crosslinkable polymer matrix may optionally include one or more of the following monomer units shown in III-1 and III-2.
  • the cross-linkable polymer matrix further includes the monomer unit III-1, it can further provide excellent dispersion performance for the particulate material, thereby more stabilizing the slurry and improving the processing performance of the film.
  • the cross-linkable polymer matrix also includes the monomer unit III-2, the affinity between the binder and the first substance and the second substance can be further improved, thereby further improving the relationship between the first substance and the second substance. Interaction.
  • the compound represented by formula (II) is a crosslinking agent.
  • n is an even number greater than or equal to 4 and less than or equal to 18, preferably an even number greater than or equal to 8 and less than or equal to 12.
  • the cross-linkable polymer matrix and the cross-linking agent have a higher cross-linking reaction efficiency, and the cross-linking structure is improved, thereby further enhancing the force between the first substance and the second substance.
  • R 5 may be selected from -(R 2 ) b -Y, said b is 0 or 1, and said R 2 is selected from carbon atoms of 1. ⁇ 12 linear or branched alkylene, said Y is selected from halogen, alkenyl, azide, amino, carboxyl, aldehyde, hydroxyl, sulfonic acid, sulfinic acid, phenolic hydroxyl, epoxy .
  • the R 2 may be selected from methylene, ethylene, propylene, isopropylidene, butylene, isobutylene, sec-butylene, butylene Tert-butyl, pentylene, isopentylene, hexylene, heptylene, octylene.
  • R 2 is selected from methylene, ethylene, propylene, isopropylene, butylene, isobutylene, sec-butylene, and tert-butylene.
  • one or several hydrogens may be replaced by other elements or groups.
  • Other elements can be, but are not limited to, F, Cl, O, etc.
  • Other groups can be, but are not limited to, hydroxyl, phenyl, amine and the like.
  • R 2 is selected from linear or branched alkylene having 1 to 8 carbon atoms; more preferably, R 2 is selected from linear or branched alkylene having 1 to 4 carbon atoms.
  • Y is selected from amino group, carboxyl group, hydroxyl group, epoxy group.
  • R 5 is selected from halogen, alkenyl, azide, amino, carboxyl, aldehyde, hydroxyl, sulfonic, sulfinic, phenolic, and epoxy; more preferably, R 5 is selected from amino group, carboxyl group, hydroxyl group, epoxy group.
  • the R 5 group has high reactivity and strong polarity, which can further enhance the interaction between the first substance and the second substance, and improve the bonding strength.
  • the R 6 in the compound represented by formula (II), can be selected from H, a substituted or unsubstituted hydrocarbon group having 1 to 8 carbon atoms; preferably, R 6 is selected from H, A substituted or unsubstituted hydrocarbon group having 1 to 4 carbon atoms.
  • R 6 can be selected from H, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, n-hexyl, N-heptyl, n-octyl, etc.; preferably, R 6 is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl; more preferably, R 6 is selected from H, methyl, ethyl, n-propyl, isopropyl.
  • one or several hydrogens may be replaced by other elements or groups.
  • the element can be, but is not limited to, F, Cl, O and the like.
  • the group can be, but is not limited to, a hydroxyl group, an amino group, and the like.
  • the secondary battery of the present application uses an adhesive to bond the first substance and the second substance.
  • the binder includes a polymer obtained by crosslinking the aforementioned binder composition.
  • the binder composition includes a crosslinkable polymer matrix and a crosslinking agent.
  • the cross-linkable polymer matrix includes a monomer unit represented by formula (I), which has a polar group containing active hydrogen, which makes the binder and the first substance and the second substance have a comparative Good affinity, so that there is a strong interaction between the first substance and the second substance.
  • the crosslinking agent includes a compound represented by the formula (II), which has two or more groups reactive with the active hydrogen-containing polar group of the monomer unit to allow the binder composition to pass through Cross-linking forms a good cross-linked structure, thereby greatly improving the interaction force between the first substance and the second substance. Therefore, a strong bond can be formed between the first substance and the second substance in the secondary battery, so that the structural stability and cycle life of the battery can be improved.
  • the polymer obtained by crosslinking the binder composition has a three-dimensional crosslinked network structure. In this way, the bonding effect between the first substance and the second substance is significantly enhanced.
  • the adhesive further includes other adhesive materials.
  • the binder may also include styrene butadiene rubber, sodium carboxymethyl cellulose, polyvinylidene fluoride, polyvinylidene fluoride copolymer, polytetrafluoroethylene, polystyrene, polyacrylonitrile, polyacrylonitrile, etc.
  • styrene butadiene rubber sodium carboxymethyl cellulose
  • polyvinylidene fluoride polyvinylidene fluoride copolymer
  • polytetrafluoroethylene polystyrene
  • polyacrylonitrile polyacrylonitrile
  • polyacrylonitrile polyacrylonitrile
  • the binder may also include styrene butadiene rubber, sodium carboxymethyl cellulose, polyacrylic acid, sodium polyacrylate, polyvinyl alcohol, sodium alginate, polymethacrylic acid, and carboxymethyl chitosan One or more of them.
  • one or more of the positive pole piece, the negative pole piece and the separator of the secondary battery include the polymer obtained by cross-linking the binder composition described in the present application.
  • the positive pole piece, the negative pole piece, and the separator when one or more of the positive pole piece, the negative pole piece, and the separator contains the polymer crosslinked by the binder composition described in this application, it may also contain other Bonding material.
  • Other bonding materials can be as described above.
  • the negative pole piece includes the polymer obtained by cross-linking the binder composition as described in the present application.
  • the negative membrane of the negative pole piece includes the polymer obtained by crosslinking the binder composition as described in the present application.
  • the force between the particles of the negative electrode active material can be significantly enhanced, thereby significantly reducing the rebound of the negative electrode.
  • the negative electrode membrane may further include other binding materials.
  • Other bonding materials can be as described above.
  • the negative electrode membrane may further include one or more of styrene-butadiene rubber and sodium carboxymethyl cellulose.
  • the mass ratio of the cross-linked binder composition in the negative electrode film is ⁇ 0.5%, ⁇ 0.6%, or ⁇ 1.0%; furthermore, it can be ⁇ 4.0%, ⁇ 3.0%, ⁇ 2.0%.
  • the mass ratio of the cross-linked binder composition in the negative electrode film is within an appropriate range, which can effectively exert the above-mentioned effects of the binder and at the same time enable the secondary battery to have a higher energy density. More preferably, the mass ratio of the cross-linked binder composition in the negative electrode film is 1.0%-3.0%.
  • the negative pole piece of the secondary battery of the present application includes a negative electrode current collector and a negative electrode membrane provided on at least one surface of the negative electrode current collector.
  • the negative electrode current collector has two opposite surfaces in its own thickness direction, and the negative electrode film is laminated on either or both of the two opposite surfaces of the negative electrode current collector.
  • the negative electrode current collector can be made of materials with good electrical conductivity and mechanical strength. In some embodiments, copper foil may be used as the negative electrode current collector.
  • the negative electrode membrane includes a negative electrode active material.
  • the negative electrode active material may include silicon-based materials (such as elemental silicon, silicon-oxygen compounds, silicon-carbon composites, silicon nitrogen compounds, silicon alloys, etc.), graphite materials (such as artificial graphite, natural graphite), tin-based materials, etc.
  • silicon-based materials such as elemental silicon, silicon-oxygen compounds, silicon-carbon composites, silicon nitrogen compounds, silicon alloys, etc.
  • graphite materials such as artificial graphite, natural graphite
  • tin-based materials etc.
  • One of the materials such as elemental tin, tin oxide compounds, tin alloys, etc.
  • mesophase micro-carbon spheres (MCMB) mesophase micro-carbon spheres (MCMB), hard carbon, soft carbon, lithium titanate, and other metals that can form alloys with active ions Or several.
  • the negative electrode film also includes a binder.
  • the binder may include the aforementioned polymer obtained by cross-linking the binder composition.
  • the solid particulate materials in the negative electrode membrane such as negative electrode active material, conductive agent, etc.
  • it also makes the negative electrode membrane and the negative electrode current collector have a higher binding force.
  • the negative electrode film is effectively bonded to the negative current collector, so that the negative electrode has a higher strength, and it is not prone to the risk of film peeling and powder falling.
  • the rebound problem of the negative pole piece during the cold press forming and the charge-discharge cycle of the secondary battery is effectively alleviated, and the expansion of the negative pole piece during the battery cycle is significantly reduced.
  • the volume change of the battery is significantly reduced, so its energy density, cycle life and safety performance can be improved.
  • the binder may also include other binder materials that can be used for the negative electrode membrane.
  • the binder may also include styrene butadiene rubber (SBR), sodium carboxymethyl cellulose (CMC-Na), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyvinyl alcohol (PVA), alginic acid Sodium (SA), polymethacrylic acid (PMAA), carboxymethyl chitosan (CMCS), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), ethylene-vinyl acetate copolymer (EVA), One or more of polyvinyl alcohol (PVA) and polyvinyl butyral (PVB), such as styrene butadiene rubber, sodium carboxymethyl cellulose, polyacrylic acid, sodium polyacrylate, polyvinyl alcohol, alginic acid One or more of sodium, polymethacrylic acid and carboxymethyl chitosan.
  • SBR styren
  • binder composition of the present application By using the binder composition of the present application and other binding materials, it is possible to obtain a higher bonding effect while making the negative electrode film and the negative electrode sheet have appropriate strength and flexibility, thereby having better Processing performance.
  • the negative electrode membrane optionally further includes a conductive agent.
  • the conductive agent used for the negative electrode membrane can be selected from one or more of graphite, superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers .
  • a functional coating may be provided between the negative electrode current collector and the negative electrode membrane, or on the surface of the negative electrode membrane away from the negative electrode current collector.
  • the functional coating may include the polymer obtained by cross-linking the binder composition as described in the present application.
  • the functional coating may also include other functional materials (for example, conductive agent, ceramic particles, etc.). This application does not limit the specific types of functional materials, and can be selected according to actual functional requirements. Since the binder composition described in the present application has a strong binding effect after crosslinking, it can make the interaction between the components in the functional coating or between the functional coating and the negative electrode current collector and/or the negative electrode film Has a high adhesive force. As a result, the functional coating can better exert its performance.
  • the positive pole piece of the secondary battery of the present application includes a positive electrode current collector and a positive electrode membrane provided on at least one surface of the positive electrode current collector and including a positive electrode active material.
  • the positive electrode current collector has two opposite surfaces in its own thickness direction, and the positive electrode film is laminated on either or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector can be made of materials with good electrical conductivity and mechanical strength. In some embodiments, the positive electrode current collector may be an aluminum foil.
  • the secondary battery may be a lithium ion secondary battery.
  • the positive electrode active material can be selected from lithium transition metal oxides and modified materials thereof, and the modified material can be doping modification and/or coating modification of lithium transition metal oxide.
  • the lithium transition metal oxide can be selected from the group consisting of lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, and olivine structures.
  • One or more of lithium phosphates One or more of lithium phosphates.
  • the positive electrode active material of the secondary battery may be selected from LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM111), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM523), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622), LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811), LiNi 0.85 Co 0.15 Al 0.05 O 2 , LiFePO 4 (LFP) and LiMnPO 4 One or more.
  • the positive electrode film also includes a binder.
  • the binder may include the aforementioned polymer obtained by cross-linking the binder composition.
  • the solid particulate materials such as the positive electrode active material, the conductive agent, etc.
  • the positive electrode film and the positive electrode current collector have a higher binding force.
  • the positive electrode film is effectively bonded to the positive current collector, so that the positive electrode has a higher strength, and the risk of film peeling and powder falling is less likely to occur.
  • the adhesive may further include other adhesive materials that can be used for the positive electrode membrane.
  • the binder may also include styrene butadiene rubber (SBR), sodium carboxymethyl cellulose (CMC-Na), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyvinyl alcohol (PVA), alginic acid Sodium (SA), polymethacrylic acid (PMAA), carboxymethyl chitosan (CMCS), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), ethylene-vinyl acetate copolymer (EVA), One or more of polyvinyl alcohol (PVA) and polyvinyl butyral (PVB), such as polyvinylidene fluoride, polytetrafluoroethylene, ethylene-vinyl acetate copolymer, polyvinyl alcohol and polyvinyl alcohol One or more of butyral.
  • SBR styrene butadiene rubber
  • CD-Na
  • a conductive agent is optionally included in the positive electrode film.
  • the type of conductive agent is not specifically limited, and those skilled in the art can make a selection according to actual needs.
  • the conductive agent used for the positive electrode film may include one or more of graphite, superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • a functional coating may be provided between the positive electrode current collector and the positive electrode membrane, or on the surface of the positive electrode membrane away from the positive electrode current collector.
  • the functional coating may include the polymer obtained by cross-linking the binder composition as described in the present application.
  • the functional coating may also include other functional materials (for example, conductive agent, ceramic particles, etc.). This application does not limit the specific types of functional materials, and can be selected according to actual functional requirements. Since the binder composition described in the present application has a strong bonding effect after cross-linking, it can make the interaction between the components in the functional coating or between the functional coating and the positive electrode current collector and/or the positive electrode membrane Has a high adhesive force. As a result, the functional coating can better exert its performance.
  • the secondary battery of the present application also contains an electrolyte.
  • the electrolyte conducts ions between the positive pole piece and the negative pole piece.
  • the type of electrolyte in this application and it can be selected according to requirements.
  • the electrolyte may be selected from at least one of solid electrolytes and liquid electrolytes (ie, electrolytes).
  • an electrolyte is used as the electrolyte.
  • the electrolyte includes electrolyte salt and solvent.
  • the electrolyte is soaked in the cell to conduct ions.
  • the battery cell may be a cell with a laminated structure formed by stacking a positive pole piece, a separator film, and a negative pole piece in sequence, or a roll formed by stacking a positive pole piece, a separator film, and a negative pole piece in sequence and winding. Winding structure cell.
  • the electrolyte salt may be selected from LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate), LiClO 4 (lithium perchlorate), LiAsF 6 (lithium hexafluoroarsenate), LiFSI (bisfluorosulfonate) Lithium imide), LiTFSI (lithium bistrifluoromethanesulfonimide), LiTFS (lithium trifluoromethanesulfonate), LiDFOB (lithium difluorooxalate), LiBOB (lithium bisoxalate), LiPO 2 F 2 (Lithium difluorophosphate), LiDFOP (lithium difluorodioxalate phosphate) and LiTFOP (lithium tetrafluorooxalate phosphate) one or more.
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroborate
  • the solvent may be selected from ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), Dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethylene propyl carbonate (EPC), butylene carbonate (BC), fluoroethylene carbonate (FEC), methyl formate (MF), methyl acetate Ester (MA), ethyl acetate (EA), propyl acetate (PA), methyl propionate (MP), ethyl propionate (EP), propyl propionate (PP), methyl butyrate (MB) , Ethyl butyrate (EB), 1,4-butyrolactone (GBL), sulfolane (SF), dimethyl sulfone (MSM), methyl ethyl sulfone (EMS) and diethyl sulfone (ESE) one
  • the electrolyte may also optionally include additives.
  • the additives can include negative electrode film-forming additives, positive electrode film-forming additives, and additives that can improve certain battery performance, such as additives that improve battery overcharge performance, additives that improve battery high-temperature performance, and battery low-temperature performance. Additives, etc.
  • the electrolyte may also be a solid electrolyte, such as a polymer electrolyte.
  • the use of electrolyte and some secondary batteries that use solid electrolytes also include separators.
  • the isolation film is arranged between the positive pole piece and the negative pole piece to play a role of isolation.
  • the isolation film includes a substrate, and optionally includes providing a functional coating on at least one surface of the substrate.
  • the functional coating can be used to improve the heat resistance, mechanical strength, etc. of the isolation film.
  • the functional coating may also include other functional materials (for example, ceramic particles, other polymers, etc.).
  • any well-known porous structure isolation membrane substrate with good chemical stability and mechanical stability can be selected.
  • the material of the isolation film substrate can be selected from one or more of glass fiber, non-woven fabric, polyethylene, and polypropylene.
  • the isolation film can be a single-layer film or a multilayer composite film. When the isolation film is a multilayer composite film, the materials of each layer can be the same or different.
  • the functional coating of the isolation film may include the polymer obtained by cross-linking the binder composition as described above in this application. Because the polymer has a strong bonding effect, it can make the components in the functional coating or between the functional coating and the substrate have a high bonding force. As a result, the functional coating can better exert the effect of improving the performance of the isolation membrane.
  • the secondary battery may include an outer package and a battery cell encapsulated in the outer package.
  • the number of battery cells in the secondary battery can be one or several, which can be adjusted according to requirements.
  • the outer packaging of the secondary battery may be a soft bag (for example, a bag type, and the material may be plastic, such as polypropylene PP, polybutylene terephthalate PBT, polybutylene succinate One or more of esters, PBS, etc.), or hard shell (such as aluminum shell, etc.).
  • a soft bag for example, a bag type
  • the material may be plastic, such as polypropylene PP, polybutylene terephthalate PBT, polybutylene succinate One or more of esters, PBS, etc.), or hard shell (such as aluminum shell, etc.).
  • Fig. 1 shows a secondary battery 5 with a square structure as an example.
  • the secondary battery can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be multiple, and the specific number can be adjusted according to the application and capacity of the battery module.
  • Fig. 2 is a battery module 4 as an example.
  • a plurality of secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4. Of course, it can also be arranged in any other manner. Furthermore, the plurality of secondary batteries 5 can be fixed by fasteners.
  • the battery module 4 may further include a housing having an accommodating space, and a plurality of secondary batteries 5 are accommodated in the accommodating space.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be adjusted according to the application and capacity of the battery pack.
  • Figures 3 and 4 show the battery pack 1 as an example. 3 and 4, the battery pack 1 may include a battery box and a plurality of battery modules 4 provided in the battery box.
  • the battery box includes an upper box body 2 and a lower box body 3.
  • the upper box body 2 can be covered on the lower box body 3 and forms a closed space for accommodating the battery module 4.
  • a plurality of battery modules 4 can be arranged in the battery box in any manner.
  • This application also provides a method for preparing a secondary battery.
  • the method includes using a binder composition in one or more of the positive pole piece, the negative pole piece and the separator, and the binder composition is A cross-linking reaction occurs after heat treatment, the binder composition includes a cross-linkable polymer matrix and a cross-linking agent, the cross-linkable polymer matrix includes a monomer unit represented by formula (I), and the cross-linking agent includes The compound represented by formula (II);
  • R 1 , R 2 and R 3 are each independently selected from H, a linear or branched alkyl group having 1 to 8 carbon atoms;
  • the R 4 is a polar group containing active hydrogen
  • the R 5 is a group reactive to the R 4;
  • the R 6 is selected from H, a substituted or unsubstituted hydrocarbon group having 1 to 8 carbon atoms;
  • n is an even number greater than or equal to 4, 2 ⁇ m ⁇ n, preferably m ⁇ 3.
  • the temperature at which the aforementioned adhesive composition is heat-treated to cause crosslinking may be 60°C to 160°C, preferably 60°C to 140°C, and more preferably 80°C to 120°C.
  • the crosslinkable polymer matrix and the crosslinking agent are crosslinked at a heating temperature of 60°C to 160°C, 60°C to 140°C, or 80°C to 120°C to form a polymer with a three-dimensional crosslinked network structure.
  • the preparation of the secondary battery further includes the step of assembling the negative pole piece, the positive pole piece, the separator and the electrolyte to form a secondary battery.
  • the positive pole piece, the separator film, and the negative pole piece can be wound or laminated in order, so that the separator film is located between the positive pole piece and the negative pole piece to isolate the battery cell;
  • the electric core is placed in an outer package, and electrolyte is injected and sealed to obtain a secondary battery.
  • the preparation method of the secondary battery includes using the binder composition of the present application in the negative electrode sheet.
  • the steps of using the binder composition of the present application to prepare a negative pole piece are as follows:
  • the negative electrode active material, the binder composition described in this application, and the optional conductive agent can be dispersed in a solvent, which can be deionized water to form a uniform negative electrode slurry material.
  • a solvent which can be deionized water
  • the negative electrode active material and other additional materials can be added to the solution. It is also possible to add the components of the binder, the negative electrode active material and other additives to the solvent respectively to obtain the negative electrode slurry.
  • the drying temperature may be 60°C to 160°C, 60°C to 140°C, or 80°C to 120°C, or 95°C to 120°C.
  • the R 4 group of the cross-linkable polymer matrix and the R 5 group of the cross-linking agent undergo a cross-linking reaction to form a cross-linked structure.
  • a device in a second aspect of the present application, includes the secondary battery of the first aspect of the present application, and the secondary battery provides power to the device.
  • the device can be, but is not limited to, mobile devices (such as mobile phones, laptop computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf Vehicles, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • the device can select a secondary battery, a battery module, or a battery pack according to its usage requirements.
  • Figure 5 is a device as an example.
  • the device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle, etc.
  • a battery pack or a battery module can be used.
  • the device may be a mobile phone, a tablet computer, a notebook computer, and the like.
  • the device is generally required to be thin and light, and a secondary battery can be used as a power source.
  • the application provides a binder composition.
  • the binder composition includes a crosslinkable polymer matrix and a crosslinking agent, the crosslinkable polymer matrix includes one or more of the monomer units represented by formula (I), and the crosslinking agent includes formula ( II) The compound shown;
  • R 1 , R 2 and R 3 are each independently selected from H, a linear or branched alkyl group having 1 to 8 carbon atoms;
  • the R 4 is a polar group containing active hydrogen
  • the R 5 is a group reactive to the R 4;
  • the R 6 is selected from H, a substituted or unsubstituted hydrocarbon group having 1 to 8 carbon atoms;
  • n is an even number greater than or equal to 4, 2 ⁇ m ⁇ n, preferably m ⁇ 3.
  • the weight of the crosslinkable polymer matrix accounts for ⁇ 70%, ⁇ 75%, ⁇ 80%, ⁇ 85%, or ⁇ 90%; further, ⁇ 99%, ⁇ 98%, ⁇ 97%, ⁇ 96%, or ⁇ 95%.
  • the weight ratio of the crosslinkable polymer matrix is 75%-95%, more preferably 85%-95%. In this way, the binder can form a good cross-linked three-dimensional network, thereby effectively exerting the effect of the binder.
  • the weight average molecular weight of the crosslinkable polymer matrix may be 200,000 to 800,000, preferably 400,000 to 600,000.
  • the polymer binder material has an appropriate molecular weight, which can make it have good solubility in polar solvents (such as water), and at the same time make the resulting solution have appropriate viscosity, which is beneficial to solid phase materials (such as negative electrode active materials). , Conductive agent, etc.) Disperse uniformly in the solution.
  • the molecular weight of the crosslinkable polymer matrix can be measured in a conventional manner in the art.
  • the measurement can be performed using laser light scattering technology, which is well known to those skilled in the art.
  • the viscosity of the 10% by weight aqueous solution containing the binder composition is 150 mPa ⁇ s to 20000 mPa ⁇ s, preferably 600 mPa ⁇ s to 5000 mPa ⁇ s, more preferably 600 mPa ⁇ s to 4000 mPa ⁇ s s.
  • the binder composition is used to prepare the film or coating slurry (such as negative electrode slurry)
  • the solid phase material such as negative electrode active material, conductive agent, etc.
  • the viscosity of the 10% by weight aqueous solution containing the binder composition can be measured by a conventional method in the art.
  • a viscometer such as the DV2T viscometer of Brookfield, USA
  • 1 g of the binder composition is dissolved in 9 g of deionized water, and the viscosity of the resulting solution is measured, which is recorded as the viscosity of a 10% by weight aqueous solution containing the binder composition.
  • the pH of the 10% by weight aqueous solution containing the binder composition is> 7, preferably 7.5 to 10.5, more preferably 8.0 to 10.0.
  • the cross-linkable polymer matrix has an appropriate content of active hydrogen, which can improve the cross-linked structure and at the same time make the binder have higher stability.
  • the pH of the crosslinkable polymer matrix can be adjusted by introducing monomer units with different acidity and basicity.
  • the pH of the crosslinkable polymer matrix can be measured in a conventional manner in the art. As an example, 1 g of the binder composition is dissolved in 9 g of deionized water, and the pH of the resulting solution is measured, which is recorded as the pH of a 10% by weight aqueous solution containing the binder composition.
  • both the cross-linkable polymer matrix and the cross-linking agent can be prepared by methods known in the art or obtained commercially.
  • one or more of the monomers corresponding to the monomer unit represented by formula (I) can be polymerized in the presence of an initiator to obtain a crosslinkable polymer matrix.
  • the type of the initiator is not particularly limited, and can be conventionally selected in the field.
  • the initiator can be selected from azo initiators (such as azobisisobutyronitrile, azobisisobutylamidine hydrochloride, azobisisobuimidazoline hydrochloride, azobiscyano At least one of valeric acid, azobisisopropyl imidazoline, etc.).
  • the polymerization conditions and the amount of initiator are not particularly limited, and can be selected according to the specific types of monomers and initiators.
  • the crosslinkable polymer matrix A used in the following embodiments is selected from A 1 to A 6 . among them:
  • a 1 A homopolymer of monomer unit c, with a molecular weight of 450,000. Can be purchased from TCI Company.
  • a 2 is: a copolymer of monomer unit b, monomer unit c, and monomer unit d.
  • the polymerization reaction is carried out in the presence of the salt, and the amount of the initiator used is 0.5 parts by weight relative to 100 parts by weight of the above three monomers.
  • the polymerization temperature is 25° C. to 35° C.
  • the polymerization pressure is 101 kPa
  • the polymerization time is 2 to 4 hours.
  • the crosslinkable polymer matrix A 2 is prepared , and the weight average molecular weight of A 2 is 450,000.
  • a 3 is: a copolymer of monomer unit c and monomer unit d.
  • the polymerization temperature is 25° C. to 35° C.
  • the polymerization pressure is 101 kPa
  • the polymerization time is 2 to 4 hours.
  • the crosslinkable polymer matrix A 3 is prepared , and the weight average molecular weight of A 3 is 550,000.
  • a 4 is: a copolymer of monomer unit a and monomer unit d.
  • the amount of initiator used is 0.5 parts by weight.
  • the polymerization temperature is 25°C to 35°C
  • the polymerization pressure is normal pressure
  • the polymerization time is 2 to 4 hours.
  • the crosslinkable polymer matrix A 4 is prepared , and the weight average molecular weight of A 4 is 600,000.
  • a 5 is: a copolymer of monomer unit b, monomer unit d and monomer unit III-1.
  • the polymerization reaction is carried out in the presence of, and the amount of initiator is 0.5 parts by weight relative to 100 parts by weight of the above three monomers.
  • the polymerization temperature is 25°C to 35°C
  • the polymerization pressure is normal pressure
  • the polymerization time is 2 to 4 hours.
  • a crosslinkable polymer matrix A 5 is obtained , and the weight average molecular weight of A 5 is 500,000.
  • a 6 is: a copolymer of monomer unit b, monomer unit d, and monomer unit III-2.
  • the polymerization reaction is carried out in the presence of, and the amount of initiator is 0.5 parts by weight relative to 100 parts by weight of the above three monomers.
  • the polymerization temperature is 25°C to 35°C
  • the polymerization pressure is normal pressure
  • the polymerization time is 2 to 4 hours.
  • the crosslinkable polymer matrix A 6 is prepared , and the weight average molecular weight of A 6 is 350,000.
  • the crosslinking agent B used in the following examples is selected from the following B 1 to B 3 (B 1 to B 3 can be purchased from Gelest Company).
  • the negative active material artificial graphite, conductive agent Super P, the above-prepared binder composition, styrene-butadiene rubber SBR, and sodium carboxymethyl cellulose CMC-Na are in an appropriate amount at a weight ratio of 96:1:1:1.5:0.5
  • the deionized water is fully stirred and mixed to form a uniform negative electrode slurry; the negative electrode slurry is coated on the surface of the negative electrode current collector copper foil, dried and cold pressed to obtain a negative electrode pole piece.
  • the temperature at which the negative electrode coating is dried is 80°C to 150°C.
  • the positive electrode active material LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM523), the conductive agent Super P, and the binder PVDF are fully stirred and mixed in an appropriate amount of NMP at a weight ratio of 96:2:2 to form a uniform positive electrode slurry Material; coating the positive electrode slurry on the surface of the positive electrode current collector aluminum foil, after drying and cold pressing, the positive electrode piece is obtained.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • PE polyethylene
  • the battery cell is obtained.
  • the battery cell is packed into the outer packaging, baked to remove water, added the above electrolyte and packaged, and undergoes chemical conversion, aging, etc. After the process,
  • a secondary battery was obtained.
  • Example 1 The difference from Example 1 is that the binder in the negative pole piece is changed to obtain a different secondary battery. See Table 1 for details.
  • Capacity retention rate at the 1000th cycle (discharge capacity at the 1000th cycle/discharge capacity at the first cycle) ⁇ 100%.
  • the weight ratio A:B represents: the weight ratio of the crosslinkable polymer matrix and the crosslinking agent in the binder composition
  • the weight ratio of A+B means: the weight ratio of the crosslinkable polymer matrix and the crosslinking agent in the negative electrode coating;
  • SBR weight percentage means: the weight percentage of SBR in the negative electrode coating
  • the weight percentage of CMC-Na means: the weight percentage of CMC-Na in the negative electrode coating.
  • the binder composition of the present application includes the cross-linkable polymer matrix and the cross-linking agent, and the negative electrode adopts the binder composition
  • the negative electrode active material particles of the pole piece have a strong interaction force, so the cohesion of the negative pole piece is significantly improved.
  • the negative pole piece also has a higher binding force.
  • the cycle life of the secondary battery using the negative pole piece is significantly improved, and the cycle expansion force is significantly reduced.
  • Comparative Example 1 uses conventional SBR and CMC-Na as the binder
  • Comparative Example 2 uses a cross-linkable polymer matrix
  • SBR and CMC-Na as the binder
  • Comparative Example 3 uses a cross-linking agent, SBR and CMC-Na As a binder, the interaction force between the negative electrode active material particles is low, so the cohesion of the negative electrode piece is low.
  • the battery using the negative pole piece has a poor cycle life and a high cycle expansion force.
  • the weight ratio of the crosslinkable polymer matrix and the crosslinking agent in the binder composition is appropriate, which can further increase the cohesion of the negative pole piece and further improve the cycle of the battery. Life and low cycle expansion performance.
  • the negative pole piece can have a higher cohesive force while also making the battery Has a higher cycle life and lower cycle expansion force.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cell Separators (AREA)

Abstract

一种二次电池(5)、包括该二次电池(5)的装置、二次电池(5)的制备方法及粘结剂组合物。二次电池(5)包括粘结剂,用于粘结第一物质和第二物质,所述粘结剂包括由粘结剂组合物经交联得到的聚合物,所述粘结剂组合物包括可交联聚合物基体和交联剂,所述可交联聚合物基体包括式(I)所示的单体单元中的一种或几种,所述交联剂包括式(II)所示的化合物;其中,所述R 1、R 2和R 3各自独立地选自H、碳原子数为1~8的直链或支链烷基;所述R 4为含活性氢的极性基团;所述R 5为对所述R 4呈反应活性的基团;所述R 6选自H、碳原子数为1~8的取代或非取代的烃基;所述n为大于等于4的偶数,2≤m≤n。该二次电池(5)的循环寿命得到有效提升。

Description

二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物 技术领域
本申请属于二次电池技术领域,具体涉及一种二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物。
背景技术
以锂离子二次电池为代表的二次电池具备较高的充放电性能,且无记忆效应、环境友好,被广泛地应用于电动汽车以及消费类电子产品中。随着新能源汽车的迅速普及,动力型二次电池的需求量呈爆发式增长。市场对二次电池的使用寿命也提出了更高的要求。因此,确有必要提供一种能进一步提高二次电池循环寿命的新技术。
发明内容
本申请提供一种具有较高循环寿命的二次电池、包括该二次电池的装置、二次电池的制备方法及可提高二次电池循环寿命的粘结剂组合物。
为了实现上述目的,本申请第一方面提供一种二次电池,其包括粘结剂,所述粘结剂用于粘结第一物质和第二物质,所述粘结剂包括由粘结剂组合物经交联得到的聚合物,所述粘结剂组合物包括可交联聚合物基体和交联剂,所述可交联聚合物基体包括式(I)所示的单体单元中的一种或几种,所述交联剂包括式(II)所示的化合物;
Figure PCTCN2019122666-appb-000001
Figure PCTCN2019122666-appb-000002
其中,所述R 1、R 2和R 3各自独立地选自H、碳原子数为1~8的直链或支链烷基;
所述R 4为含活性氢的极性基团;
所述R 5为对所述R 4呈反应活性的基团;
所述R 6选自H、碳原子数为1~8的取代或非取代的烃基;
所述n为大于等于4的偶数,2≤m≤n,优选为m≥3。
本申请第二方面提供一种装置,其包括根据本申请第一方面所述的二次电池。
本申请第三方面提供一种粘结剂组合物,其包括可交联聚合物基体和交联剂,所述可交联聚合物基体包括式(I)所示的单体单元,所述交联剂包括式(II)所示的化合物;
Figure PCTCN2019122666-appb-000003
Figure PCTCN2019122666-appb-000004
其中,所述R 1、R 2和R 3各自独立地选自H、碳原子数为1~8的直链或支链烷基;
所述R 4为含活性氢的极性基团;
所述R 5为对所述R 4呈反应活性的基团;
所述R 6选自H、碳原子数为1~8的取代或非取代的烃基;
所述n为大于等于4的偶数,2≤m≤n,优选为m≥3。
本申请第四方面提供一种二次电池的制备方法,所述方法包括使用粘结剂粘结第一物质和第二物质,所述粘结剂包括由可交联聚合物基体和交联剂经交联得到的聚合物,所述可交联聚合物基体包括式(I)所示的单体单元中的一种或几种,所述交联剂包括式(II)所示的化合物;
Figure PCTCN2019122666-appb-000005
Figure PCTCN2019122666-appb-000006
其中,所述R 1、R 2和R 3各自独立地选自H、碳原子数为1~8的直链或支链烷基;
所述R 4为含活性氢的极性基团;
所述R 5为对所述R 4呈反应活性的基团;
所述R 6选自H、碳原子数为1~8的取代或非取代的烃基;
所述n为大于等于4的偶数,2≤m≤n,优选为m≥3。
本申请所提供的二次电池采用粘结剂粘结第一物质和第二物质。粘结剂由包含可交联聚合物基体和交联剂的粘结剂组合物经交联得到。可交联聚合物基体包括式(I)所 示的单体单元,该单体单元具有含活性氢的极性基团,这使得粘结剂与第一物质和第二物质之间均具有较好的亲和性,从而使第一物质和第二物质之间具有较强的相互作用。尤其是,交联剂包括式(II)所示的化合物,其具有两个以上的与所述单体单元的含活性氢极性基团呈反应活性的基团,使粘结剂组合物经交联形成良好的交联结构,由此能大幅度提高第一物质和第二物质之间的相互作用力。因此,二次电池中的第一物质和第二物质之间形成牢固粘合,使电池的结构稳定性及循环寿命均能得到提升。
尤其是,当第一物质和第二物质均为负极活性材料时,通过粘结剂的粘合作用使得负极活性材料颗粒之间能形成很强的相互作用,由此能大幅度提高负极极片的内聚力。因此,负极极片在冷压成型以及二次电池的充放电循环过程中的膨胀问题得到有效缓解,因此其循环寿命和安全性能均能得到提升。
当第一物质为负极活性材料,第二物质为负极集流体时,通过粘结剂的粘合作用使得负极活性材料与负极集流体之间具有较高的粘结力,由此负极活性材料有效粘接于负极集流体上,使负极极片具有较高的粘结强度,且其不易发生脱膜、掉粉的风险。该负极极片在充放电循环过程中引起的体积变化较小,能降低电池的循环膨胀。因此,电池的循环寿命和安全性能均能得到提升。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例提供的一种二次电池的示意图。
图2是本申请实施例提供的一种电池模块的示意图。
图3是本申请实施例提供的一种电池包的示意图。
图4是图3的分解图。
图5是本申请实施例提供的一种装置的示意图。
其中,附图标记说明如下:
1、电池包;
2、上箱体;
3、下箱体;
4、电池模块;
5、二次电池。
具体实施方式
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合实施例对本申请进行进一步详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本申请,并非为了限定本申请。
为了简便,本文仅明确地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本文的描述中,需要说明的是,除非另有说明,“以上”、“以下”为包含本数,“一种或几种”中“几种”的含义是两种或两种以上。
本申请的上述发明内容并不意欲描述本申请中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过一系列实施例提供了指导,这些实施例可以以各种组合形式使用。在各个实例中,列举仅作为代表性组,不应解释为穷举。
电能作为一种经济、实用、清洁且容易控制和转换的能量形式,被越来越多地应用于各种装置中。二次电池因其具有高能量密度、携带方便、无记忆效应、环境友好等优势,成为装置的电源优选项。
[二次电池]
因此,在本申请的第一方面提供一种二次电池。
二次电池包括正极极片、负极极片、隔离膜和电解质。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。隔离膜设置在正极极片和负极极片之间起到隔离的作用。电解质在正极极片和负极极片之间起到传导离子的作用。
在实际生产和应用中,常常需要使用粘结剂来实现二次电池中第一物质和第二物 质的粘合。第一物质和第二物质之间的粘合性能对二次电池的性能(如循环寿命等)具有重要影响,进而会影响装置的工作性能和工作效率。本申请提供一种二次电池,其包括粘结剂,所述粘结剂用于粘结第一物质和第二物质,可确保第一物质和第二物质之间具有较好的粘结效果。
本申请所提供的二次电池中,所述粘结剂包括由粘结剂组合物经交联得到的聚合物,所述粘结剂组合物包括可交联聚合物基体和交联剂,所述可交联聚合物基体包括式(I)所示的单体单元,所述交联剂包括式(II)所示的化合物;
Figure PCTCN2019122666-appb-000007
Figure PCTCN2019122666-appb-000008
其中,所述R 1、R 2和R 3各自独立地选自H、碳原子数为1~8的直链或支链烷基;
所述R 4为含活性氢的极性基团;
所述R 5为对所述R 4呈反应活性的基团;
所述R 6选自H、碳原子数为1~8的取代或非取代的烃基;
所述n为大于等于4的偶数,2≤m≤n,优选为m≥3。
本申请的二次电池中,式(I)所示的单体单元是可交联聚合物基体的基本结构单元。在一些实施例中,R 1选自H、碳原子数为1~8的直链或支链烷基,优选地选自H、碳原子数为1~4的直链或支链烷基。例如,R 1可选自H、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基等。优选地,R 1选自H、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基;更优选地,R 1选自H、甲基、乙基,尤其优选为H。
当R 1选自碳原子数为1~8的直链或支链烷基时,所述烷基还可以有一个或几个的氢被其他元素或基团取代。其他元素可以但不限于是F、Cl、O等。其他基团可以但不限于是羟基、胺基、苯基、甲氧基等。
在一些实施例中,R 2选自H、碳原子数为1~8的直链或支链烷基,优选地选自H、碳原子数为1~4的直链或支链烷基。例如,R 2可选自H、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基等。优选地,R 2选自H、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁 基、叔丁基;更优选地,R 2选自H、甲基、乙基、正丙基、异丙基。
当R 2选自碳原子数为1~8的直链或支链烷基时,所述烷基还可以有一个或几个的氢被其他元素或基团取代。其他元素可以但不限于是F、Cl、O等。其他基团可以但不限于是羟基、胺基、苯基、甲氧基等。
在一些实施例中,R 3选自H、碳原子数为1~8的直链或支链烷基,优选地选自H、碳原子数为1~4的直链或支链烷基。例如,R 3可选自H、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基等。优选地,R 3选自H、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基;更优选地,R 3选自H、甲基、乙基,尤其优选为H或甲基。
当R 3选自碳原子数为1~8的直链或支链烷基时,所述烷基还可以有一个或几个的氢被其他元素或基团取代。其他元素可以但不限于是F、Cl、O等。其他基团可以但不限于是羟基、胺基、苯基、甲氧基等。
在一些实施例中,R 4选自
Figure PCTCN2019122666-appb-000009
-(R 1) a-X。
所述R 7选自H、碳原子数为1~6的取代或非取代的烷基,优选地选自H、碳原子数为1~4的取代或非取代烷基。例如,R 7可选自H、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、正己基等。优选地,R 7选自H、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基。
当R 7选自碳原子数为1~6的取代的烷基时,所述烷基还可以有一个或几个的氢被其他元素或基团取代。其他元素可以但不限于是F、Cl、O等。其他基团可以但不限于是羟基、苯基、胺基。
所述a为0或1,所述R 1选自亚苯基、碳原子数为1~6的取代或非取代的亚烷基,所述X选自-COOH、-SO 3H、-SO 2H、羟基、巯基、氨基。优选地,R 1选自亚苯基、碳原子数为1~4的取代或非取代的亚烷基,X选自-COOH、羟基。
在一些实施例中,当a为1时,R 1可选自亚苯基、亚甲基、亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚仲丁基、亚叔丁基、亚戊基、亚异戊基、亚己基。优选地,R 1选自亚苯基、亚甲基、亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚仲丁基、亚叔丁基;更优选地,R 1选自亚苯基、亚甲基、亚乙基。
在R 1中,还可以有一个或几个的氢被其他元素或基团取代。所述元素可以但不限 于是F、Cl、O等。所述基团可以但不限于是羟基、苯基、胺基等。
这些基团具有较高的反应活性和较强的极性,能进一步增强第一物质和第二物质之间的相互作用,提高其粘合强度。
在一些优选的实施例中,R 4选自
Figure PCTCN2019122666-appb-000010
-COOH或-OH。
在一些优选的实施例中,式(I)所示的单体单元可选自下述a~d的单体单元中一种或几种。
Figure PCTCN2019122666-appb-000011
在一些实施例中,可交联聚合物基体可以是均聚物或共聚物,共聚物可以是无规共聚物、嵌段共聚物、交替共聚物、接枝共聚物。
在一些优选的实施例中,可交联聚合物基体可以是具有不同酸碱性的单体单元的共聚物。这样既能增强第一物质和第二物质之间的相互作用,又能增强粘结剂在电池循环过程中的稳定性,从而使第一物质和第二物质之间能长期保持强相互作用。
在一些优选的实施例中,可交联聚合物基体包括单体单元a和d的共聚物、单体单元c和d的共聚物、单体单元b、c和d的共聚物中的一种或几种;更优选地,所述可交联聚合物基体包括单体单元b、c和d的共聚物。
进一步地,所述可交联聚合物基体还可选的包括下述III-1和III-2所示的单体单元中的一种或几种。
Figure PCTCN2019122666-appb-000012
本发明人发现,当可交联聚合物基体还包括单体单元III-1时,能进一步为颗粒物材料提供优异的分散性能,从而更加稳定浆料,提升膜层加工性能。当可交联聚合物 基体还包括单体单元III-2时,能进一步提高粘结剂与第一物质和第二物质之间的亲和性,从而进一步提高第一物质和第二物质之间的相互作用。
本申请的二次电池中,式(II)所示的化合物是交联剂。在一些实施例中,在式(II)所示的化合物中,n为大于等于4且小于等于18的偶数,优选为大于等于8且小于等于12的偶数。并且优选为m≥3,或m≥5,或m=n。这样,可交联聚合物基体与交联剂之间具有较高的交联反应效率,改善交联结构,从而能进一步增强第一物质和第二物质之间的作用力。
在一些实施例中,在式(II)所示的化合物中,R 5可选自-(R 2) b-Y,所述b为0或1,所述R 2选自碳原子数为1~12的直链或支链亚烷基,所述Y选自卤素、烯基、叠氮基、氨基、羧基、醛基、羟基、磺酸基、亚磺酸基、酚羟基、环氧基。
在一些实施例中,当b为1时,所述R 2可选自亚甲基、亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚仲丁基、亚叔丁基、亚戊基、亚异戊基、亚己基、亚庚基、亚辛基。优选地,R 2选自亚甲基、亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚仲丁基、亚叔丁基。
在R 2中,还可以有一个或几个的氢被其他元素或基团取代。其他元素可以但不限于是F、Cl、O等。其他基团可以但不限于是羟基、苯基、胺基等。
优选地,R 2选自碳原子数为1~8的直链或支链亚烷基;更优选地,R 2选自碳原子数为1~4的直链或支链亚烷基。
优选地,Y选自氨基、羧基、羟基、环氧基。
在一些优选的实施例中,R 5选自卤素、烯基、叠氮基、氨基、羧基、醛基、羟基、磺酸基、亚磺酸基、酚羟基、环氧基;更优选地,R 5选自氨基、羧基、羟基、环氧基。
R 5基团具有较高的反应活性和较强的极性,能进一步增强第一物质和第二物质之间的相互作用,提高其粘合强度。
在一些实施例中,在式(II)所示的化合物中,所述R 6可选自H、碳原子数为1~8的取代或非取代的烃基;优选地,R 6选自H、碳原子数为1~4的取代或非取代的烃基。例如,R 6可选自H、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、正己基、正庚基、正辛基等;优选地,R 6选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基;更优选地,R 6选自H、甲 基、乙基、正丙基、异丙基。
在R 6中,还可以有一个或几个的氢被其他元素或基团取代。所述元素可以但不限于是F、Cl、O等。所述基团可以但不限于是羟基、胺基等。
本申请的二次电池采用粘结剂粘结第一物质和第二物质。粘结剂包括由上述粘结剂组合物经交联得到的聚合物。粘结剂组合物包括可交联聚合物基体和交联剂。可交联聚合物基体包括式(I)所示的单体单元,该单体单元具有含活性氢的极性基团,这使得粘结剂与第一物质和第二物质之间均具有较好的亲和性,从而使第一物质和第二物质之间具有较强的相互作用。尤其是,交联剂包括式(II)所示的化合物,其具有两个以上的与所述单体单元的含活性氢极性基团呈反应活性的基团,使粘结剂组合物经交联形成良好的交联结构,由此能大幅度提高第一物质和第二物质之间的相互作用力。因此,二次电池中的第一物质和第二物质之间能形成牢固粘合,使得电池的结构稳定性及循环寿命均能得到提升。
在一些实施例中,粘结剂组合物经交联得到的聚合物具有三维交联网络结构。这样,第一物质和第二物质之间的粘结作用得到显著增强。
在一些实施例中,所述粘结剂还包括其它粘结材料。作为一个示例,所述粘结剂还可包括丁苯橡胶、羧甲基纤维素钠、聚偏氟乙烯、聚偏氟乙烯共聚物、聚四氟乙烯、聚苯乙烯、聚丙烯腈、聚酰亚胺、聚丙烯酸、聚丙烯酸钠、聚乙烯醇、海藻酸钠、聚甲基丙烯酸和羧甲基壳聚糖中的一种或几种。作为另一个示例,所述粘结剂还可包括丁苯橡胶、羧甲基纤维素钠、聚丙烯酸、聚丙烯酸钠、聚乙烯醇、海藻酸钠、聚甲基丙烯酸和羧甲基壳聚糖中的一种或几种。
根据本申请的二次电池,所述二次电池的正极极片、负极极片及隔离膜中的一个或几个包括本申请所述的由粘结剂组合物交联得到的聚合物。
在一些实施例中,当所述正极极片、负极极片及隔离膜中的一个或几个包含本申请所述的由粘结剂组合物交联得到的聚合物时,其还可以包含其它粘结材料。其它粘结材料可以如上文所述。
在一些优选的实施例中,所述负极极片包括本申请所述的由粘结剂组合物交联得到的聚合物。
在一些优选的实施例中,所述负极极片的负极膜片包括本申请所述的由粘结剂组合物交联得到的聚合物。当负极膜片中包括所述聚合物时,能显著增强负极活性材料 颗粒之间的作用力,从而显著降低负极极片的反弹。
在一些实施例中,负极膜片还可进一步包括其它粘结材料。其它粘结材料可以如上文所述。例如,负极膜片还可进一步地包括丁苯橡胶和羧甲基纤维素钠中的一种或几种。
优选地,经交联的粘结剂组合物在所述负极膜片中的质量占比≥0.5%,≥0.6%,或≥1.0%;进一步可以≤4.0%,≤3.0%,≤2.0%。经交联的粘结剂组合物在所述负极膜片中的质量占比在适当范围内,能在有效发挥粘结剂的上述效果的同时,使二次电池具有较高的能量密度。更优选地,经交联的粘结剂组合物在所述负极膜片中的质量占比为1.0%~3.0%。
[负极极片]
本申请的二次电池的负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜片。作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜片层合设置在负极集流体相对的两个表面中的任意一者或两者上。
负极集流体可采用具有良好导电性及机械强度的材质。在一些实施例中,负极集流体可以采用铜箔。
负极膜片包括负极活性材料。本申请对负极活性材料的种类没有特别的限制,可根据实际需求进行选择。在一些实施例中,负极活性材料可包括硅基材料(如单质硅、硅氧化合物、硅碳复合物、硅氮化合物、硅合金等)、石墨材料(如人造石墨、天然石墨)、锡基材料(如单质锡、锡氧化合物、锡合金等)、中间相微碳球(简写为MCMB)、硬碳、软碳、钛酸锂、以及其它能与活性离子形成合金的金属中的一种或几种。
负极膜片还包括粘结剂。在一些优选的实施例中,所述粘结剂可包括前述的由粘结剂组合物交联得到的聚合物。通过上述聚合物的粘合作用使负极膜片中的固体颗粒材料(例如负极活性材料、导电剂等)之间能形成较强的相互作用,由此能提高负极膜片的内聚力。同时,还使得负极膜片与负极集流体之间具有较高的粘结力。由此,负极膜片有效粘接于负极集流体上,使负极极片具有较高的强度,且其不易发生脱膜、掉粉的风险。因此,负极极片在冷压成型以及二次电池的充放电循环过程中的反弹问题得到有效缓解,明显减小电池在循环过程中的负极极片膨胀。电池的体积变化明显降低,因此其能量密度、循环寿命和安全性能均能得到提升。
在一些实施例中,所述粘结剂还可包括可用于负极膜片的其它粘结材料。作为示 例,粘结剂还可包括丁苯橡胶(SBR)、羧甲基纤维素钠(CMC-Na)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)、羧甲基壳聚糖(CMCS)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、乙烯-醋酸乙烯酯共聚物(EVA)、聚乙烯醇(PVA)和聚乙烯醇缩丁醛(PVB)中的一种或几种,例如包括丁苯橡胶、羧甲基纤维素钠、聚丙烯酸、聚丙烯酸钠、聚乙烯醇、海藻酸钠、聚甲基丙烯酸和羧甲基壳聚糖中的一种或几种。优选地,所述粘结剂还可包括丁苯橡胶和羧甲基纤维素钠。
通过使用本申请的粘结剂组合物和其它粘结材料,能在获得较高的粘结效果的同时,使负极膜片和负极极片兼具适当的强度和柔韧性,从而具有较好的加工性能。
在一些实施例中,负极膜片还可选地包括导电剂。作为示例,用于负极膜片的导电剂可以选自石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯和碳纳米纤维中的一种或几种。
在一些实施例中,可选的,在负极集流体与负极膜片之间,或在负极膜片远离负极集流体的表面上还可以设置功能涂层。功能涂层可包括本申请所述的由粘结剂组合物交联得到的聚合物。可选的,功能涂层中还可以包括其它功能材料(例如导电剂、陶瓷颗粒等)。本申请对功能材料的具体种类不做限制,可以根据实际的功能需求进行选择。由于本申请所述的粘结剂组合物在交联后具有较强的粘结作用,可使功能涂层中的各组分之间或功能涂层与负极集流体和/或负极膜片之间具有较高的粘结力。由此,能使功能涂层更好地发挥其性能。
本文中关于粘结剂或粘结剂组合物的优选方案,同样适用于此处的负极极片,并构成负极极片的各个具体的实施方式。为说明书简要起见,在此不作赘述。
[正极极片]
本申请的二次电池的正极极片包括正极集流体以及设置在正极集流体至少一个表面上且包括正极活性材料的正极膜片。作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜片层合设置在正极集流体相对的两个表面中的任意一者或两者上。
正极集流体可采用具有良好导电性及机械强度的材质。在一些实施例中,正极集流体可以采用为铝箔。
本申请对正极活性材料的具体种类不做具体限制,可以采用本领域已知的能够用 于二次电池正极的材料,本领域技术人员可以根据实际需求进行选择。
在一些实施例中,二次电池可以是锂离子二次电池。正极活性材料可选自锂过渡金属氧化物及其改性材料,改性材料可以是对锂过渡金属氧化物进行掺杂改性和/或包覆改性。例如,锂过渡金属氧化物可选自锂钴氧化物、锂镍氧化物、锂锰氧化物、锂镍锰氧化物、锂镍钴锰氧化物、锂镍钴铝氧化物及橄榄石结构的含锂磷酸盐中的一种或几种。
作为示例,二次电池的正极活性材料可选自LiCoO 2、LiNiO 2、LiMnO 2、LiMn 2O 4、LiNi 1/3Co 1/3Mn 1/3O 2(NCM111)、LiNi 0.5Co 0.2Mn 0.3O 2(NCM523)、LiNi 0.6Co 0.2Mn 0.2O 2(NCM622)、LiNi 0.8Co 0.1Mn 0.1O 2(NCM811)、LiNi 0.85Co 0.15Al 0.05O 2、LiFePO 4(LFP)和LiMnPO 4中的一种或几种。
正极膜片中还包括粘结剂。在一些优选的实施例中,所述粘结剂可包括前述的由粘结剂组合物交联得到的聚合物。通过上述聚合物的粘合作用使正极膜片中的固体颗粒材料(例如正极活性材料、导电剂等)之间能形成较强的相互作用,由此能提高正极膜片的内聚力。同时,还使得正极膜片与正极集流体之间具有较高的粘结力。由此,正极膜片有效粘接于正极集流体,使正极极片具有较高的强度,且其不易发生脱膜、掉粉的风险。
在一些实施例中,所述粘结剂还可包括可用于正极膜片的其它粘结材料。作为示例,粘结剂还可包括丁苯橡胶(SBR)、羧甲基纤维素钠(CMC-Na)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)、羧甲基壳聚糖(CMCS)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、乙烯-醋酸乙烯酯共聚物(EVA)、聚乙烯醇(PVA)和聚乙烯醇缩丁醛(PVB)中的一种或几种,例如包括聚偏氟乙烯、聚四氟乙烯、乙烯-醋酸乙烯酯共聚物、聚乙烯醇和聚乙烯醇缩丁醛中的一种或几种。
在一些实施例中,正极膜片中还可选地包括导电剂。对导电剂的种类不做具体限制,本领域技术人员可以根据实际需求进行选择。作为示例,用于正极膜片的导电剂可以包括石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或几种。
在一些实施例中,可选的,在正极集流体与正极膜片之间,或在正极膜片远离正极集流体的表面上还可以设置功能涂层。功能涂层可包括本申请所述的由粘结剂组合 物交联得到的聚合物。可选的,功能涂层中还可以包括其它功能材料(例如导电剂、陶瓷颗粒等)。本申请对功能材料的具体种类不做限制,可以根据实际的功能需求进行选择。由于本申请所述的粘结剂组合物在交联后具有较强的粘结作用,可以使得功能涂层中的各组分之间或功能涂层与正极集流体和/或正极膜片之间具有较高的粘结力。由此,能使功能涂层更好地发挥其性能。
本文中关于粘结剂或粘结剂组合物的优选方案,同样适用于此处的正极极片,并构成正极极片的各个具体的实施方式。为说明书简要起见,在此不作赘述。
[电解质]
本申请的二次电池还包含电解质。电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以选自固态电解质及液态电解质(即电解液)中的至少一种。
在一些实施例中,电解质采用电解液。电解液包括电解质盐和溶剂。电解液浸润于电芯中进行传导离子。例如,电芯可以是由正极极片、隔离膜和负极极片依次叠片形成的叠片结构电芯,或者是正极极片、隔离膜和负极极片依次叠片并经卷绕形成的卷绕结构电芯。
在一些实施例中,电解质盐可选自LiPF 6(六氟磷酸锂)、LiBF 4(四氟硼酸锂)、LiClO 4(高氯酸锂)、LiAsF 6(六氟砷酸锂)、LiFSI(双氟磺酰亚胺锂)、LiTFSI(双三氟甲磺酰亚胺锂)、LiTFS(三氟甲磺酸锂)、LiDFOB(二氟草酸硼酸锂)、LiBOB(二草酸硼酸锂)、LiPO 2F 2(二氟磷酸锂)、LiDFOP(二氟二草酸磷酸锂)及LiTFOP(四氟草酸磷酸锂)中的一种或几种。
在一些实施例中,溶剂可选自碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸亚丁酯(BC)、氟代碳酸亚乙酯(FEC)、甲酸甲酯(MF)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、丙酸甲酯(MP)、丙酸乙酯(EP)、丙酸丙酯(PP)、丁酸甲酯(MB)、丁酸乙酯(EB)、1,4-丁内酯(GBL)、环丁砜(SF)、二甲砜(MSM)、甲乙砜(EMS)及二乙砜(ESE)中的一种或几种。
在一些实施例中,电解液中还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂,也可以包括正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温性能的添加剂、改善电池低温性能的 添加剂等。
在一些实施例中,电解质也可采用固态电解质,如聚合物电解质等。
[隔离膜]
采用电解液以及一些采用固态电解质的二次电池中,还包括隔离膜。隔离膜设置在正极极片和负极极片之间起到隔离的作用。所述隔离膜包括基材,还可选的包括在所述基材的至少一个表面上设置功能涂层。所述功能涂层可用于改善隔离膜的耐热性能、机械强度等。可选的,功能涂层中还可包括其它功能材料(例如陶瓷颗粒、其它聚合物等)。本申请对隔离膜基材的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜基材。在一些实施例中,隔离膜基材的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯中的一种或几种。隔离膜可以是单层薄膜或多层复合薄膜。隔离膜为多层复合薄膜时,各层的材料可以相同或不同。
在一些优选的实施例中,在隔离膜的功能涂层中可包括本申请前述的由粘结剂组合物交联得到的聚合物。由于所述聚合物具有较强的粘结作用,能使得功能涂层中的各组分之间,或功能涂层与基材之间具有较高的粘结力。由此,功能涂层能更好地发挥改善隔离膜性能的效果。
本文中关于粘结剂或粘结剂组合物的优选方案同样适用于此处的隔离膜,并构成隔离膜的各个具体的实施方式。为说明书简要起见,在此不作赘述。
在一些实施例中,二次电池可包括外包装和封装在外包装内的电芯。二次电池中电芯的数量可以为一个或几个,可以根据需求来调节。
在一些实施例中,二次电池的外包装可以是软包(例如袋式,其材质可以是塑料,如聚丙烯PP、聚对苯二甲酸丁二醇酯PBT、聚丁二酸丁二醇酯PBS等中的一种或几种),也可以是硬壳(例如铝壳等)。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。如图1是作为一个示例的方形结构的二次电池5。
在一些实施例中,二次电池可组装成电池模块,电池模块所含二次电池的数量可以为多个,具体数量可根据电池模块的应用和容量进行调节。
图2是作为一个示例的电池模块4。参照图2,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可包括具有容纳空间的壳体,多个二次电池5容纳于该容纳空间。
在一些实施例中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可根据电池包的应用和容量进行调节。
图3和图4是作为一个示例的电池包1。参照图3和图4,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
[制备方法]
本申请还提供一种二次电池的制备方法,所述方法包括在正极极片、负极极片及隔离膜中的一个或几个中使用粘结剂组合物,所述粘结剂组合物经热处理而发生交联反应,所述粘结剂组合物包括可交联聚合物基体和交联剂,可交联聚合物基体包括式(I)所示的单体单元,所述交联剂包括式(II)所示的化合物;
Figure PCTCN2019122666-appb-000013
Figure PCTCN2019122666-appb-000014
其中,所述R 1、R 2和R 3各自独立地选自H、碳原子数为1~8的直链或支链烷基;
所述R 4为含活性氢的极性基团;
所述R 5为对所述R 4呈反应活性的基团;
所述R 6选自H、碳原子数为1~8的取代或非取代的烃基;
所述n为大于等于4的偶数,2≤m≤n,优选为m≥3。
在一些实施例中,对前述的粘结剂组合物进行热处理使其发生交联的温度可以为60℃~160℃,优选为60℃~140℃,更优选为80℃~120℃。例如,可交联聚合物基体和交联剂在60℃~160℃,60℃~140℃,或80℃~120℃的加热温度下发生交联,形成具有三维交联网络结构的聚合物。
在一些实施例中,二次电池的制备还包括将负极极片、正极极片、隔离膜和电解质组装形成二次电池的步骤。
在一些实施例中,可以将正极极片、隔离膜、负极极片按顺序卷绕或叠片,使隔离膜处于正极极片与负极极片之间起到隔离的作用,得到电芯;将电芯置于外包装中,注入电解液并封口,得到二次电池。
在一些优选的实施例中,所述二次电池的制备方法包括在负极极片中使用本申请的粘结剂组合物。
在一些更优选的实施例中,采用本申请的粘结剂组合物制备负极极片的步骤如下:
S10,提供负极浆料,所述负极浆料包括负极活性材料、本申请所述的粘结剂组合物、以及可选的导电剂。
在一些实施例中,在步骤S10,可以将负极活性材料、本申请所述的粘结剂组合物、以及可选的导电剂分散于溶剂中,溶剂可以是去离子水,形成均匀的负极浆料。对它们的加入顺序没有特别的限制。例如,可以先得到粘结剂组合物的溶液,之后将负极活性材料和其它添加材料加入溶液中。还可以将粘结剂的各组分、负极活性材料和其它添加剂分别加入溶剂中,得到负极浆料。
S20,将负极浆料涂覆在负极集流体的至少一个表面,得到负极膜层。
S30,在加热的条件下对所述负极涂层进行干燥,以除去溶剂、且使所述可交联聚合物基体和交联剂发生交联反应。
在一些实施例中,在步骤S30,烘干的温度可以为60℃~160℃,60℃~140℃,或80℃~120℃,或95℃~120℃。在加热条件下,可交联聚合物基体的R 4基团和交联剂的R 5基团发生交联反应形成交联结构。
S40,干燥后的负极涂层经冷压等工序后,得到负极极片。
本文中关于粘结剂或粘结剂组合物的优选方案同样适用于此处的制备方法,并构成制备方法的各个具体的实施方式。为说明书简要起见,在此不作赘述。
[装置]
在本申请的第二方面提供一种装置,所述装置包括本申请第一方面的二次电池,所述二次电池为所述装置提供电源。所述装置可以但不限于是移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
所述装置可根据其使用需求来选择二次电池、电池模块或电池包。
图5是作为一个示例的装置。该装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
[粘结剂组合物]
本申请提供一种粘结剂组合物。所述粘结剂组合物包括可交联聚合物基体和交联剂,可交联聚合物基体包括式(I)所示的单体单元中的一种或几种,交联剂包括式(II)所示的化合物;
Figure PCTCN2019122666-appb-000015
Figure PCTCN2019122666-appb-000016
其中,所述R 1、R 2和R 3各自独立地选自H、碳原子数为1~8的直链或支链烷基;
所述R 4为含活性氢的极性基团;
所述R 5为对所述R 4呈反应活性的基团;
所述R 6选自H、碳原子数为1~8的取代或非取代的烃基;
所述n为大于等于4的偶数,2≤m≤n,优选为m≥3。
本文中关于粘结剂组合物的具体方案和优选方案如前文所讨论,同样适用于此处。为说明书简要起见,在此不作赘述。
在一些实施例中,在所述粘结剂组合物中,基于所述可交联聚合物基体和交联剂的总重量,所述可交联聚合物基体的重量占比≥70%,≥75%,≥80%,≥85%,或≥90%;进一步地≤99%,≤98%,≤97%,≤96%,或≤95%。优选地,基于可交联聚合物基体和交联剂的总重量,可交联聚合物基体的重量占比为75%~95%,更优选为85%~95%。这样,粘结剂能形成良好的交联三维网络,从而有效发挥粘结剂的效果。
在一些实施例中,所述可交联聚合物基体的重均分子量可以为20万~80万,优选为40万~60万。高分子粘结材料具有适当的分子量,能使其在极性溶剂(如水)中具有良好的溶解性的同时,还能使所得溶液具有适当的粘度,有利于使固相材料(如负 极活性材料、导电剂等)在溶液中均匀分散。
可交联聚合物基体的分子量可采用本领域的常规方式测量。例如,可以利用激光光散射技术进行测量,该技术是本领域技术人员熟知的。
在一些实施例中,含所述粘结剂组合物的10重量%浓度水溶液的粘度为150mPa·s~20000mPa·s,优选为600mPa·s~5000mPa·s,更优选为600mPa·s~4000mPa·s。这样,采用该粘结剂组合物制备膜片或涂层的浆料(如负极浆料)时,固相材料(如负极活性材料、导电剂等)能在浆料中更均匀地分散。
含所述粘结剂组合物的10重量%浓度水溶液的粘度可采用本领域常规方式测量。例如,可利用粘度计(如美国博勒飞(Brookfield)公司的DV2T型粘度计)测量,该技术是本领域技术人员熟知的。作为示例,将1g所述粘结剂组合物溶解在9g去离子水中,测定所得溶液的粘度,记为含所述粘结剂组合物的10重量%浓度水溶液的粘度。
在一些实施例中,含所述粘结剂组合物的10重量%浓度水溶液的pH>7,优选为7.5~10.5,更优选为8.0~10.0。发明人发现,该可交联聚合物基体具有适当含量的活性氢,能改进交联结构的同时,使粘结剂具有较高的稳定性。
在一些实施例中,可以通过引入具有不同酸碱性的单体单元,来调节可交联聚合物基体的pH。
可交联聚合物基体的pH可采用本领域的常规方式测量。作为示例,将1g所述粘结剂组合物溶解在9g去离子水中,测定所得溶液的pH,记为含所述粘结剂组合物的10重量%浓度水溶液的pH。
在一些实施例中,可交联聚合物基体和交联剂均可以采用本领域已知的方法制备得到或通过商购获得。
在一些实施例中,可以将式(I)所示的单体单元对应的单体中的一种或几种在引发剂存在的条件下进行聚合反应,得到可交联聚合物基体。所述引发剂的种类没有特别的限定,可以为本领域的常规选择。例如,所述引发剂可选自偶氮类引发剂(例如偶氮二异丁腈、偶氮二异丁基脒盐酸盐、偶氮二异丁咪唑啉盐酸盐、偶氮二氰基戊酸、偶氮二异丙基咪唑啉等)中的至少一种。所述聚合条件以及引发剂的用量没有特别的限定,可以根据单体和引发剂的具体种类进行选择。
实施例
下述实施例更具体地描述了本申请公开的内容,这些实施例仅仅用于阐述性说 明,因为在本申请公开内容的范围内进行各种修改和变化对本领域技术人员来说是明显的。除非另有声明,以下实施例中所报道的所有份、百分比、和比值都是基于重量计,而且实施例中使用的所有试剂都可商购获得或是按照常规方法进行合成获得,并且可直接使用而无需进一步处理,以及实施例中使用的仪器均可商购获得。
一、可交联聚合物基体和交联剂:
1、用于以下各实施例的可交联聚合物基体A选自A 1~A 6。其中:
(1)A 1:单体单元c的均聚物,分子量为45万。可购自TCI公司。
(2)A 2为:单体单元b、单体单元c和单体单元d的共聚物。
制备方法:将CH 2=C(CH 3)COOH、CH 2=CHCONH 2、CH 2=CHOH按照摩尔比为20:65:15的比例进行投料,在引发剂偶氮二异丁基脒盐酸盐的存在下进行聚合反应,相对于100重量份的上述三种单体,引发剂的用量为0.5重量份。聚合温度为25℃~35℃,聚合压力为101kPa,聚合时间为2~4小时,制备得到可交联聚合物基体A 2,A 2的重均分子量为45万。
(3)A 3为:单体单元c和单体单元d的共聚物。
制备方法:将CH 2=CHCONH 2和CH 2=CHOH按照摩尔比为85:15的比例进行投料,在引发剂偶氮二异丁基脒盐酸盐的存在下进行聚合反应,相对于100重量份的上述二种单体,引发剂的用量为0.5重量份。聚合温度为25℃~35℃,聚合压力为101kPa,聚合时间为2~4小时,制备得到可交联聚合物基体A 3,A 3的重均分子量为55万。
(4)A 4为:单体单元a和单体单元d的共聚物。
制备方法:将CH 2=CHCOOH和CH 2=CHOH按照摩尔比为85:15的比例进行投料,在引发剂偶氮二异丁基脒盐酸盐的存在下进行聚合反应,相对于100重量份的上述二种单体,引发剂的用量为0.5重量份。聚合温度为25℃~35℃,聚合压力为常压,聚合时间为2~4小时,制备得到可交联聚合物基体A 4,A 4的重均分子量为60万。
(5)A 5为:单体单元b、单体单元d和单体单元III-1的共聚物。
制备方法:将CH 2=C(CH 3)COOH、CH 2=CHOH、CH 2=CHCOONa按照摩尔比为70:15:15的比例进行投料,在引发剂偶氮二异丁基脒盐酸盐的存在下进行聚合反应,相对于100重量份的上述三种单体,引发剂的用量为 0.5重量份。聚合温度为25℃~35℃,聚合压力为常压,聚合时间为2~4小时,得到可交联聚合物基体A 5,A 5的重均分子量为50万。
(6)A 6为:单体单元b、单体单元d和单体单元III-2的共聚物。
制备方法:将CH 2=C(CH 3)COOH、CH 2=CHOH、CH 2=CHCN按照摩尔比为70:15:15的比例进行投料,在引发剂偶氮二异丁基脒盐酸盐的存在下进行聚合反应,相对于100重量份的上述三种单体,引发剂的用量为0.5重量份。聚合温度为25℃~35℃,聚合压力为常压,聚合时间为2~4小时,制备得到可交联聚合物基体A 6,A 6的重均分子量为35万。
2、用于以下各实施例的交联剂B选自下述B 1~B 3(B 1~B 3可购自Gelest公司)。
B 1
Figure PCTCN2019122666-appb-000017
B 2
Figure PCTCN2019122666-appb-000018
B 3
Figure PCTCN2019122666-appb-000019
二、电池的制备
实施例1
粘结剂组合物的制备
取上述的可交联聚合物基体A 1与交联剂B 1,按质量比95:5进行物理混合,得到本申请的粘结剂组合物。
负极极片的制备
将负极活性材料人造石墨、导电剂Super P、上述制备的粘结剂组合物、丁苯橡胶SBR、羧甲基纤维素钠CMC-Na按96:1:1:1.5:0.5的重量比在适量的去离子水中充分搅拌混合,使其形成均匀的负极浆料;将负极浆料涂覆于负极集流体铜箔的表面上,经干燥、冷压后,得到负极极片。负极涂层进行干燥的温度为80℃~150℃。
正极极片的制备
将正极活性材料LiNi 0.5Co 0.2Mn 0.3O 2(NCM523)、导电剂Super P、粘结剂PVDF按96:2:2的重量比在适量的NMP中充分搅拌混合,使其形成均匀的正极浆料;将正极浆料涂覆于正极集流体铝箔的表面上,经干燥、冷压后,得 到正极极片。
电解液的制备
将碳酸亚乙酯(EC)、碳酸甲乙酯(EMC)、碳酸二乙酯(DEC)按体积比1:1:1混合,然后将LiPF 6均匀溶解在上述溶液中得到电解液,其中LiPF 6的浓度为1mol/L。
隔离膜
采用聚乙烯(PE)薄膜。
二次电池的制备
将正极极片、隔离膜、负极极片按顺序叠好,经卷绕后得到电芯,将电芯装入外包装中,烘烤除水,加入上述电解液并封装,经化成、老化等工序后,
得到二次电池。
实施例2~19和对比例1~3
与实施例1不同的是,改变负极极片中的粘结剂,以得到不同的二次电池。详见表1。
测试部分
1、负极极片内聚力测试:
取单面涂布、冷压后的负极极片,裁成长100mm、宽10mm的待测样品。取一条宽度25mm的不锈钢板,贴双面胶(宽度11mm),将待测样品粘贴在不锈钢板上的双面胶上,其中负极集流体与双面胶粘接;用2000g压辊在样品表面来回滚压三次(300mm/min)。之后在负极膜片表面粘贴宽10mm、厚50μm的胶带,用2000g压辊在其表面来回滚压三次(300mm/min)。将胶带180度弯折,手动将胶带与负极膜片剥开25mm,将该样品固定在Instron 336型拉力试验机上,使剥离面与试验机力线保持一致(即进行180°剥离),以300mm/min连续剥离,得到负极极片的内聚力曲线,取平稳段的均值作为剥离力F 0,则被测试负极极片的内聚力为:F=F 0/待测样品的宽度,F的计量单位:N/m。
2、电池循环性能测试
在25℃的环境中,进行第一次充电和放电,在0.5C(即2h内完全放掉理论容量的电流值)的充电电流下进行恒流和恒压充电,直到上限电压为4.25V。然后,在0.5C的放电电流下进行恒流放电,直到最终电压为2.8V,记录首次放电容量值。随后,进行 1000次的充电和放电循环,记录循环过程中的放电容量值,并计算循环容量保持率。
第1000次循环的容量保持率=(第1000次循环的放电容量/首次循环的放电容量)×100%。
3、电池循环膨胀力测试
将电池装配到钢板夹具中,使电池的底部及侧面4个面紧贴钢板夹具,通过调节钢板预紧力2000N,在钢板夹具和电池之间放置压力传感器,连接到电脑,测试电池在循环1000圈后的膨胀力数值。
表1
Figure PCTCN2019122666-appb-000020
表1中:
重量比A:B表示:粘结剂组合物中可交联聚合物基体和交联剂的重量比;
A+B重量占比表示:可交联聚合物基体和交联剂在负极涂层中的重量占比;
SBR重量占比表示:SBR在负极涂层中的重量占比;
CMC-Na重量占比表示:CMC-Na在负极涂层中的重量占比。
由实施例1-19与对比例1-3的比较可以看出,本申请的粘结剂组合物包括所述的可交联聚合物基体和交联剂,采用该粘结剂组合物的负极极片的负极活性材料颗粒之间具有很强的相互作用力,因此负极极片的内聚力得到显著提高。同时,负极极片还具有较高的粘结力。采用该负极极片的二次电池的循环寿命明显提升,且循环膨胀力明显降低。
对比例1采用常规的SBR和CMC-Na作为粘结剂,对比例2采用可交联聚合物基体、SBR和CMC-Na作为粘结剂,对比例3采用交联剂、SBR和CMC-Na作为粘结剂,负极活性材料颗粒之间的相互作用力较低,因此负极极片的内聚力较低。采用该负极极片的电池的循环寿命较差、且循环膨胀力较高。
由实施例1-6的结果可以看出,选用合适的可交联聚合物基体,能进一步提高负极极片的内聚力,且进一步改善电池的循环寿命和低循环膨胀性能。
由实施例2、7和8的结果可以看出,选用合适的交联剂,能进一步提高负极极片的内聚力,且进一步改善电池的循环寿命和低循环膨胀性能。
由实施例2和9-14的结果可以看出,粘结剂组合物中可交联聚合物基体和交联剂的重量比适当,能进一步提高负极极片的内聚力,且进一步改善电池的循环寿命和低循环膨胀性能。
由实施例2和15-19的结果可以看出,通过合理搭配可交联聚合物基体和交联剂与SBR和CMC-Na,能使负极极片具有较高的内聚力的同时,还使电池具有较高的循环寿命和较低的循环膨胀力。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种二次电池,包括粘结剂,所述粘结剂用于粘结第一物质和第二物质,所述粘结剂包括由粘结剂组合物经交联得到的聚合物,所述粘结剂组合物包括可交联聚合物基体和交联剂,所述可交联聚合物基体包括式(I)所示的单体单元中的一种或几种,所述交联剂包括式(II)所示的化合物;
    Figure PCTCN2019122666-appb-100001
    其中,所述R 1、R 2和R 3各自独立地选自H、碳原子数为1~8的直链或支链烷基;
    所述R 4为含活性氢的极性基团;
    所述R 5为对所述R 4呈反应活性的基团;
    所述R 6选自H、碳原子数为1~8的取代或非取代的烃基;
    所述n为大于等于4的偶数,2≤m≤n,优选为m≥3。
  2. 根据权利要求1所述的二次电池,其中,所述聚合物具有三维交联网络结构。
  3. 根据权利要求1所述的二次电池,其中,
    所述R 4选自
    Figure PCTCN2019122666-appb-100002
    -(R 1) a-X;
    所述R 7选自H、碳原子数为1~6的取代或非取代的烷基;
    所述a为0或1,所述R 1选自亚苯基、碳原子数为1~6的取代或非取代的亚烷基,所述X选自-COOH、-SO 3H、-SO 2H、羟基、巯基、氨基。
  4. 根据权利要求3所述的二次电池,其中,
    所述R 7选自H、碳原子数为1~4的取代或非取代的烷基;和/或,
    所述R 1选自亚苯基、碳原子数为1~4的取代或非取代的亚烷基,所述X选自-COOH、羟基。
  5. 根据权利要求3或4所述的二次电池,其中,所述R 4选自
    Figure PCTCN2019122666-appb-100003
    -COOH或-OH。
  6. 根据权利要求1-5任一项所述的二次电池,其中,所述式(I)所示的单体单元包括下述a~d中的一种或几种,
    Figure PCTCN2019122666-appb-100004
  7. 根据权利要求6所述的二次电池,其中,所述可交联聚合物基体包括单体单元a和d的共聚物、单体单元c和d的共聚物、单体单元b、c和d的共聚物中的一种或几种;优选地,所述可交联聚合物基体包括单体单元b、c和d的共聚物。
  8. 根据权利要求1-7任一项所述的二次电池,其中,所述可交联聚合物基体还包括下述III-1和III-2所示的单体单元中的一种或几种,
    Figure PCTCN2019122666-appb-100005
  9. 根据权利要求1所述的二次电池,其中,
    所述R 5选自-(R 2) b-Y,所述b为0或1,所述R 2选自碳原子数为1~8的直链或支链亚烷基,所述Y选自卤素、烯基、叠氮基、氨基、羧基、醛基、羟基、磺酸基、亚磺酸基、酚羟基、环氧基;
    优选地,所述R 5选自-(R 2) b-Y,所述b为0或1,所述R 2选自碳原子数为1~4的直链或支链亚烷基,所述Y选自氨基、羧基、羟基、环氧基。
  10. 根据权利要求1-9任一项所述的二次电池,其中,所述粘结剂还包括丁苯橡胶、羧甲基纤维素钠、聚偏氟乙烯、聚偏氟乙烯共聚物、聚四氟乙烯、聚苯乙烯、聚 丙烯腈、聚酰亚胺、聚丙烯酸、聚丙烯酸钠、聚乙烯醇、海藻酸钠、聚甲基丙烯酸和羧甲基壳聚糖中的一种或几种。
  11. 根据权利要求1-10任一项所述的二次电池,其中,所述二次电池包括正极极片、负极极片及隔离膜,所述正极极片、负极极片及隔离膜中的一个或几个包括所述聚合物;优选地,所述负极极片包括所述聚合物。
  12. 根据权利要求11所述的二次电池,其中,所述负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜片,所述负极膜片包括所述聚合物,经交联的所述粘结剂组合物在所述负极膜片中的质量占比≥0.5%,优选为1.0%~3.0%。
  13. 一种装置,包括根据权利要求1-12任一项所述的二次电池。
  14. 一种粘结剂组合物,包括可交联聚合物基体和交联剂,所述可交联聚合物基体包括式(I)所示的单体单元中的一种或几种,所述交联剂包括式(II)所示的化合物;
    Figure PCTCN2019122666-appb-100006
    其中,所述R 1、R 2和R 3各自独立地选自H、碳原子数为1~8的直链或支链烷基;
    所述R 4为含活性氢的极性基团;
    所述R 5为对所述R 4呈反应活性的基团;
    所述R 6选自H、碳原子数为1~8的取代或非取代的烃基;
    所述n为大于等于4的偶数,2≤m≤n,优选为m≥3。
  15. 根据权利要求14所述的粘结剂组合物,其中,所述可交联聚合物基体的重均分子量为20万~80万,优选为40万~60万。
  16. 根据权利要求14或15所述的粘结剂组合物,其中,基于所述可交联聚合物基体和交联剂的总重量,所述可交联聚合物基体的重量占比≥70%,优选为75%~95%,更优选为85%~95%。
  17. 根据权利要求14-16任一项所述的粘结剂组合物,其中,所述粘结剂组合物还满足下述(1)-(2)中的一种或几种:
    (1)所述粘结剂组合物的10重量%浓度水溶液的粘度为150mPa·s~20000 mPa·s,优选为600mPa·s~4000mPa·s;
    (2)所述粘结剂组合物的10重量%浓度水溶液的pH>7,优选为7.5~10.5。
  18. 一种二次电池的制备方法,包括使用粘结剂粘结第一物质和第二物质,所述粘结剂包括由可交联聚合物基体和交联剂经交联得到的聚合物,所述可交联聚合物基体包括式(I)所示的单体单元中的一种或几种,所述交联剂包括式(II)所示的化合物;
    Figure PCTCN2019122666-appb-100007
    其中,所述R 1、R 2和R 3各自独立地选自H、碳原子数为1~8的直链或支链烷基;
    所述R 4为含活性氢的极性基团;
    所述R 5为对所述R 4呈反应活性的基团;
    所述R 6选自H、碳原子数为1~8的取代或非取代的烃基;
    所述n为大于等于4的偶数,2≤m≤n,优选为m≥3。
  19. 根据权利要求18所述的制备方法,其中,所述可交联聚合物基体和交联剂在加热条件下交联;优选地,所述加热的温度为60℃~160℃。
PCT/CN2019/122666 2019-12-03 2019-12-03 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物 WO2021108984A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2019/122666 WO2021108984A1 (zh) 2019-12-03 2019-12-03 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物
JP2022513130A JP2022545913A (ja) 2019-12-03 2019-12-03 二次電池、二次電池を含む装置、二次電池の製造方法及び接着剤組成物
CN202410212762.1A CN118073572A (zh) 2019-12-03 2019-12-03 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物
CN201980065954.1A CN113273005B (zh) 2019-12-03 2019-12-03 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物
KR1020227007001A KR102658100B1 (ko) 2019-12-03 2019-12-03 이차 전지, 이차 전지를 포함하는 장치, 이차 전지의 제조 방법 및 접착제 조성물
EP19955318.1A EP4024533B1 (en) 2019-12-03 2019-12-03 Binder composition and preparation method for secondary battery
US17/746,917 US11978905B2 (en) 2019-12-03 2022-05-17 Secondary battery, apparatus containing the secondary battery, method for the preparation of the secondary battery, and binder composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122666 WO2021108984A1 (zh) 2019-12-03 2019-12-03 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/746,917 Continuation US11978905B2 (en) 2019-12-03 2022-05-17 Secondary battery, apparatus containing the secondary battery, method for the preparation of the secondary battery, and binder composition

Publications (1)

Publication Number Publication Date
WO2021108984A1 true WO2021108984A1 (zh) 2021-06-10

Family

ID=76220892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122666 WO2021108984A1 (zh) 2019-12-03 2019-12-03 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物

Country Status (6)

Country Link
US (1) US11978905B2 (zh)
EP (1) EP4024533B1 (zh)
JP (1) JP2022545913A (zh)
KR (1) KR102658100B1 (zh)
CN (2) CN118073572A (zh)
WO (1) WO2021108984A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116799437A (zh) * 2023-08-18 2023-09-22 荣耀终端有限公司 电池及电子设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793937A (zh) * 2021-08-27 2021-12-14 西华大学 锂电池/钠电池/钾电池用粘结剂、其制备方法、含该粘结剂的电极和电池
CN115960280B (zh) * 2021-10-12 2023-12-26 宁德时代新能源科技股份有限公司 一种粘结剂化合物及其制备方法
CN115842095A (zh) * 2022-07-06 2023-03-24 宁德时代新能源科技股份有限公司 粘结剂、电极极片、电池和用电装置
CN115286804B (zh) * 2022-09-30 2023-03-31 宁德时代新能源科技股份有限公司 Bab型嵌段共聚物、制备方法、粘结剂、正极极片、二次电池及用电装置
WO2024077507A1 (zh) * 2022-10-12 2024-04-18 宁德时代新能源科技股份有限公司 粘结组合物、电极浆料、电极极片、二次电池及用电装置
CN117125714B (zh) * 2023-10-27 2024-03-29 宁德时代新能源科技股份有限公司 硅基材料及其制备方法、负极极片、电池和用电设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238923A (ja) * 2002-02-19 2003-08-27 Lintec Corp 粘接着剤形成用組成物、粘接着剤及び粘接着シート
CN101147284A (zh) * 2005-03-23 2008-03-19 日本瑞翁株式会社 非水电解质二次电池电极用粘合剂、电极以及非水电解质二次电池
CN103539888A (zh) * 2013-09-11 2014-01-29 郑州轻工业学院 有机无机杂化水凝胶及其制备方法与应用
CN105637682A (zh) * 2013-10-28 2016-06-01 日本瑞翁株式会社 锂离子二次电池负极用浆料组合物、锂离子二次电池用负极、锂离子二次电池、以及制造方法
CN108933260A (zh) * 2017-05-23 2018-12-04 宁德时代新能源科技股份有限公司 水溶性电极粘结剂、电极片及其制备方法以及电化学储能装置
JP2019057487A (ja) 2017-02-28 2019-04-11 荒川化学工業株式会社 リチウムイオン電池用バインダー水溶液、リチウムイオン電池用スラリー及びその製造方法、リチウムイオン電池用電極、リチウムイオン電池用セパレータ、リチウムイオン電池用セパレータ/電極積層体、並びにリチウムイオン電池
US10454086B2 (en) * 2015-03-31 2019-10-22 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR20190132031A (ko) * 2018-05-18 2019-11-27 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329911A (ja) * 1993-05-18 1994-11-29 Showa Denko Kk コーティング用組成物
US8097683B2 (en) * 2007-07-10 2012-01-17 The United States Of America As Represented By The Secretary Of The Navy Polyhedral oligomeric silsesquioxane and carborane containing network polymers
JP2016033918A (ja) * 2014-07-29 2016-03-10 富士フイルム株式会社 全固体二次電池、電池用電極シート、電池用電極シートの製造方法、固体電解質組成物、固体電解質組成物の製造方法、および全固体二次電池の製造方法
KR102439851B1 (ko) * 2014-11-21 2022-09-01 삼성에스디아이 주식회사 이차전지용 세퍼레이터 및 이를 포함하는 이차전지
US10319972B2 (en) * 2014-11-21 2019-06-11 Samsung Sdi Co., Ltd. Separator for rechargeable battery and rechargeable battery including the same
CN108368407B (zh) * 2015-12-18 2020-03-24 3M创新有限公司 可固化的粘合剂组合物以及由其制造的粘合带和产品
US10741846B2 (en) * 2016-05-09 2020-08-11 Samsung Electronics Co., Ltd. Negative electrode for lithium metal battery and lithium metal battery comprising the same
CN107093733B (zh) * 2017-05-12 2019-07-23 齐鲁工业大学 一种抑制锂枝晶增长的锂离子电池负极浆料的制备方法
CN108493387B (zh) * 2018-04-23 2021-05-07 东莞市魔方新能源科技有限公司 电池隔膜涂层用粘接剂及其制备方法
CN110492092B (zh) * 2019-07-24 2021-08-10 宁波双鹿新能源科技有限公司 一种锌锰电池及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238923A (ja) * 2002-02-19 2003-08-27 Lintec Corp 粘接着剤形成用組成物、粘接着剤及び粘接着シート
CN101147284A (zh) * 2005-03-23 2008-03-19 日本瑞翁株式会社 非水电解质二次电池电极用粘合剂、电极以及非水电解质二次电池
CN103539888A (zh) * 2013-09-11 2014-01-29 郑州轻工业学院 有机无机杂化水凝胶及其制备方法与应用
CN105637682A (zh) * 2013-10-28 2016-06-01 日本瑞翁株式会社 锂离子二次电池负极用浆料组合物、锂离子二次电池用负极、锂离子二次电池、以及制造方法
US10454086B2 (en) * 2015-03-31 2019-10-22 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including the same
JP2019057487A (ja) 2017-02-28 2019-04-11 荒川化学工業株式会社 リチウムイオン電池用バインダー水溶液、リチウムイオン電池用スラリー及びその製造方法、リチウムイオン電池用電極、リチウムイオン電池用セパレータ、リチウムイオン電池用セパレータ/電極積層体、並びにリチウムイオン電池
CN108933260A (zh) * 2017-05-23 2018-12-04 宁德时代新能源科技股份有限公司 水溶性电极粘结剂、电极片及其制备方法以及电化学储能装置
KR20190132031A (ko) * 2018-05-18 2019-11-27 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024533A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116799437A (zh) * 2023-08-18 2023-09-22 荣耀终端有限公司 电池及电子设备
CN116799437B (zh) * 2023-08-18 2023-10-31 荣耀终端有限公司 电池及电子设备

Also Published As

Publication number Publication date
US11978905B2 (en) 2024-05-07
CN113273005B (zh) 2024-03-22
JP2022545913A (ja) 2022-11-01
KR20220042427A (ko) 2022-04-05
US20220278331A1 (en) 2022-09-01
EP4024533B1 (en) 2023-12-27
EP4024533A4 (en) 2022-11-16
KR102658100B1 (ko) 2024-04-16
CN113273005A (zh) 2021-08-17
CN118073572A (zh) 2024-05-24
EP4024533A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
WO2021108984A1 (zh) 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物
WO2022141448A1 (zh) 电化学装置、电子装置及电化学装置的制备方法
WO2022141508A1 (zh) 一种电化学装置和电子装置
CN114080704B (zh) 电极粘合剂用共聚物以及锂离子二次电池
US20230307649A1 (en) Electrochemical apparatus and electronic apparatus
WO2021108990A1 (zh) 二次电池及其制备方法和共聚物和装置
WO2023123087A1 (zh) 一种水系正极极片及包含该极片的二次电池及用电装置
KR20210032386A (ko) 비수계 전지 전극용 바인더용 공중합체, 및 비수계 전지 전극 제조용 슬러리
WO2023004633A1 (zh) 一种电池、电池模块、电池包和用电装置
WO2022110042A1 (zh) 一种电化学装置和电子装置
KR101616721B1 (ko) 접착력이 향상된 바인더 및 상기 바인더를 포함하는 리튬 이차전지
CN115552666A (zh) 非水系二次电池电极用粘合剂和非水系二次电池电极用浆料
TWI838574B (zh) 電極黏合劑用共聚物及鋰離子二次電池
WO2022246630A1 (zh) 二次电池、其制备方法和包含其的装置、以及粘结剂配方
WO2024040572A1 (zh) 用于正极极片的水性粘接剂以及由其制备的正极极片
WO2024113081A1 (zh) 粘结剂、极片、二次电池和用电装置
CN117143545B (zh) 粘结剂及其制备方法、负极极片、电池和用电装置
WO2024077507A1 (zh) 粘结组合物、电极浆料、电极极片、二次电池及用电装置
WO2024082336A1 (zh) 聚合物、导电浆料、正极极片、二次电池和用电装置
JP7514314B2 (ja) バインダー、導電接着剤およびそれを含む二次電池
WO2023225901A1 (zh) 隔离膜及其制备方法、二次电池、电池模块、电池包及用电装置
WO2024045126A1 (zh) 一种粘结剂、隔膜及使用该隔膜的锂离子电池
WO2024050810A1 (zh) 一种粘结剂组合物及由其制备的电极极片
WO2023123480A1 (zh) 一种粘结剂及其应用
WO2024031327A1 (zh) 负极极片及二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022513130

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227007001

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019955318

Country of ref document: EP

Effective date: 20220401

NENP Non-entry into the national phase

Ref country code: DE