CN107093733B - 一种抑制锂枝晶增长的锂离子电池负极浆料的制备方法 - Google Patents

一种抑制锂枝晶增长的锂离子电池负极浆料的制备方法 Download PDF

Info

Publication number
CN107093733B
CN107093733B CN201710332449.1A CN201710332449A CN107093733B CN 107093733 B CN107093733 B CN 107093733B CN 201710332449 A CN201710332449 A CN 201710332449A CN 107093733 B CN107093733 B CN 107093733B
Authority
CN
China
Prior art keywords
lithium
ion battery
lithium ion
polyhedral oligomeric
dendrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710332449.1A
Other languages
English (en)
Other versions
CN107093733A (zh
Inventor
刘伟良
张慧
刘振江
李东帅
王一凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Yiwei New Material Co.,Ltd.
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN201710332449.1A priority Critical patent/CN107093733B/zh
Publication of CN107093733A publication Critical patent/CN107093733A/zh
Application granted granted Critical
Publication of CN107093733B publication Critical patent/CN107093733B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/604Polymers containing aliphatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种抑制锂枝晶增长的锂离子电池负极浆料的方法,首先制备出八乙烯基多面体低聚倍半硅氧烷和丙烯酸锂两种单体,接着将两种单体在氮气条件下引发自由基聚合,最后,将碳化后的聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联聚合物制备成负极浆料。本方法流程简单,原料易得,制备出的锂离子电池负极浆料在较高的电流密度下的循环性能十分优异,锂离子电池的使用寿命较长。

Description

一种抑制锂枝晶增长的锂离子电池负极浆料的制备方法
技术领域
本发明属于电池技术领域,具体为锂离子二次电池负极浆料的制备方法,主要涉及聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联结构复合浆料作为抑制锂枝晶增长的锂离子电池负极浆料的制备方法。
背景技术
锂离子电池具有能量密度高、比容量大、质量轻等优异的性能,广泛用于储能系统和电动汽车等。锂金属因其较高的理论比容量3860mAh g-1(相比碳负极372mAh g-1)和较低的电化学电压成为很有吸引力的锂离子电池负极材料,然而在重复的充放电循环中形成了锂枝晶从而限制了锂金属负极的商业化应用。大量的学者探讨各种方法来抑制锂枝晶和改善锂负极表面的固体-电解质界面层的均匀性,因此,制备一个坚固的界面层能够容纳因锂沉积而引起的体积膨胀而不被破坏,且能够抑制枝晶增长而没有阻碍锂离子的传导,这将是一种非常有前景的方法。Chongwu Zhou等利用了具有大比表面积且电导率高的3D碳纳米纤维网格作为负极浆料,在充放电过程中,锂金属直接插入并沉积到碳纳米纤维上,最终观察到平坦的锂金属表面而没有观察到锂枝晶,该材料在1.0mAh·cm-2的电流密度下能够实现300圈循环后平均库伦效率达到99.9%(Nano Research,2016, 9(11),3428-3436)。
多面体低聚倍半硅氧烷包含大量的高能键,具有优异的热稳定性,且笼型无机结构相对稳定难以折叠,将八乙烯基多面体低聚倍半硅氧烷通过聚丙烯酸锂连接,形成星型交联结构复合浆料,经过碳化后涂布在铜箔上能够形成这样一层坚固、纳米多孔、灵活的界面层,成为能够抑制锂枝晶增长的负极浆料。
本发明的目的是将八乙烯基多面体低聚倍半硅氧烷通过聚丙烯酸锂连接形成星型交联结构复合材料,制备成负极浆料,锂离子直接沉积在碳化后的聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联聚合物导电网格上,形成了平坦的锂金属表面,避免生成锂枝晶,且不阻碍锂离子传导,并在一定程度上释放锂离子。该复合浆料制备简单,原料廉价,制备的负极浆料在高电流密度下保持较高的库伦效率。
本发明提供的一种抑制锂枝晶增长的锂离子电池负极浆料的制备方法包括以下步骤:
(1)将乙醇、硅烷偶联剂、去离子水与盐酸按照体积比20:1:1:1在50~60℃条件下机械搅拌8~10h形成均一溶液,通过离心得到白色产物,再用乙醇洗涤6 次,将产物在40~60℃下干燥得到八乙烯基多面体低聚倍半硅氧烷;
(2)将氢氧化锂与丙烯酸按照摩尔比1:1.5~2溶解在甲醇中,磁力搅拌2~6h,将所得溶液与丙酮按照体积比3:20混合,形成沉淀,通过洗涤抽滤得到白色固体产物,然后经冷冻干燥得到丙烯酸锂粉末;
(3)取步骤(1)中制备的八乙烯基多面体低聚倍半硅氧烷与引发剂溶解在二甲基亚砜中,在超声波作用下得到均一溶液A,取步骤(2)中制备的丙烯酸锂与引发剂溶解在二甲基亚砜中,在超声波作用下得到均一溶液B,在氮气氛围下, 65~80℃条件下,将B溶液逐滴滴入到A溶液中,磁力搅拌12~24h,形成白色凝胶,用乙醇离心洗涤4次,在40~60℃条件下干燥得到聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联共聚物;
(4)取步骤(3)中制备的聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联共聚物在充满氩气的管式炉中450~600℃下焙烧2~3h进行碳化,自然冷却至室温,研磨均匀,得到粉末状产物;
(5)取步骤(4)中碳化后的粉末状产物、乙炔黑和聚偏氟乙烯按照质量比7:2:1,滴入N-甲基吡咯烷酮,用球磨机球磨2~4h后,将混合浆料涂布在铜箔上,真空下100~120℃干燥10~14h,得到负极浆料。
进一步的,所述步骤中的硅烷偶联剂为3-(异丁烯酰氯)丙基三甲氧基硅烷、乙烯基三乙氧基硅烷的至少一种。
进一步的,所述步骤中的引发剂为偶氮二异丁腈、偶氮二异庚腈的至少一种。
进一步的,所述步骤中的八乙烯基多面体低聚倍半硅氧烷与聚丙烯酸锂的摩尔比为1:24~40。
本发明的特点是:制备过程简单、流程短、生产成本低,该负极浆料的循环性能十分优异。
具体实施方式
下面结合具体实施方式对本发明作进一步说明。以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例1:
(1)将60ml乙醇、3ml 3-(异丁烯酰氯)丙基三甲氧基硅烷、3ml去离子水与 3ml盐酸在60℃条件下机械搅拌8h形成均一溶液,通过离心得到白色产物,再用乙醇洗涤6次,将产物在60℃下干燥得到八乙烯基多面体低聚倍半硅氧烷;
(2)将2.518g氢氧化锂与12.348g丙烯酸溶解在30ml甲醇中,磁力搅拌4h,将所得溶液倒入200ml丙酮中,形成沉淀,通过抽滤洗涤得到白色固体产物,然后经冷冻干燥得到丙烯酸锂粉末;
(3)取0.078g八乙烯基多面体低聚倍半硅氧烷与0.02g偶氮二异丁腈溶解在 10ml二甲基亚砜中,在超声波作用下得到均一溶液A,取0.435g丙烯酸锂与0.02g 偶氮二异丁腈溶解在10ml二甲基亚砜中,在超声波作用下得到均一溶液B,在氮气氛围中70℃条件下,将B溶液逐滴滴入A溶液中,磁力搅拌12h,形成白色凝胶,用乙醇离心洗涤4次,在40℃条件下干燥得到聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联聚合物;
(4)取步骤(3)中制备的聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联聚合物在充满氩气的管式炉中500℃焙烧2h进行碳化,自然冷却至室温,研磨均匀,得到粉末状产物;
(5)取0.035g步骤(4)中碳化后的粉末产物、0.01g乙炔黑和0.005g聚偏氟乙烯,滴入N-甲基吡咯烷酮,用球磨机球磨4h,将混合浆料涂布在铜箔上,真空下100℃干燥12h,得到负极浆料。
实施例2:(1)将60ml乙醇、3ml乙烯基三乙氧基硅烷、3ml去离子水与 3ml盐酸在50℃条件下机械搅拌10h形成均一溶液,通过离心得到白色产物,再用乙醇洗涤6次,将产物在40℃下干燥得到八乙烯基多面体低聚倍半硅氧烷;
(2)将2.414g氢氧化锂与14.456g丙烯酸溶解在30ml甲醇中,磁力搅拌6h,将所得溶液倒入200ml丙酮中,形成沉淀,通过抽滤洗涤得到白色固体产物,然后经冷冻干燥得到丙烯酸锂粉末;
(3)取0.087g八乙烯基多面体低聚倍半硅氧烷与0.02g偶氮二异庚腈溶解在 10ml二甲基亚砜中,在超声波作用下得到均一溶液A,取0.508g丙烯酸锂与0.02g 偶氮二异庚腈溶解在10ml二甲基亚砜中,在超声波作用下得到均一溶液B,在氮气氛围中75℃条件下,将B溶液逐滴滴入到A溶液中,磁力搅拌16h,形成白色凝胶,用乙醇离心洗涤4次,在50℃条件下干燥得到聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联聚合物;
(4)取步骤(3)中制备的聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联聚合物在充满氩气的管式炉中550℃焙烧3h进行碳化,自然冷却至室温,研磨均匀,得到粉末状产物;
(5)取0.0525g步骤(4)中碳化后的粉末状固体、0.015g乙炔黑和0.0075g聚偏氟乙烯,滴入N-甲基吡咯烷酮,用球磨机球磨4h,将混合浆料涂布在铜箔上,真空下110℃干燥10h,得到负极浆料。
实施例3:(1)将60ml乙醇、3ml乙烯基三乙氧基硅烷、3ml去离子水与 3ml盐酸在50℃条件下机械搅拌7h形成均一溶液,通过离心得到白色产物,再用乙醇洗涤6次,将产物在40℃下干燥得到八乙烯基多面体低聚倍半硅氧烷;
(2)将2.218g氢氧化锂与12.348g丙烯酸溶解在30ml甲醇中,磁力搅拌4h,将所得溶液倒入200ml丙酮中,形成沉淀,通过抽滤洗涤得到白色固体产物,然后经冷冻干燥得到丙烯酸锂粉末;
(3)取0.086g八乙烯基多面体低聚倍半硅氧烷与0.02g偶氮二异庚腈溶解在 10ml二甲基亚砜中,在超声波作用下得到均一溶液A,取0.476g丙烯酸锂与0.02g 偶氮二异庚腈溶解在10ml二甲基亚砜中,在超声波作用下得到均一溶液B,在氮气氛围中75℃条件下,将B溶液逐滴滴入到A溶液中,磁力搅拌12h,形成白色凝胶,用乙醇离心洗涤4次,在50℃条件下干燥得到聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联聚合物;
(4)取步骤(3)中制备的聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联聚合物在充满氩气的管式炉中550℃焙烧2h进行碳化,自然冷却至室温,研磨均匀,得到粉末状产物;
(5)取0.0525g步骤(4)中碳化后的粉末状固体、0.015g乙炔黑和0.0075g聚偏氟乙烯,滴入N-甲基吡咯烷酮,用球磨机球磨4h,将混合浆料涂布在铜箔上,真空下100℃干燥12h,得到负极浆料。

Claims (4)

1.一种抑制锂枝晶增长的锂离子电池负极浆料的制备方法,其特征在于,包括如下步骤:
(1)将乙醇、硅烷偶联剂、去离子水与盐酸按照体积比20:1:1:1在50~60℃条件下机械搅拌8~10h形成均一溶液,通过离心得到白色产物,再用乙醇洗涤6次,将产物在40~60℃下干燥得到八乙烯基多面体低聚倍半硅氧烷;
(2)将氢氧化锂与丙烯酸按照摩尔比1:1.5~2溶解在甲醇中,磁力搅拌2~6h,将所得溶液与丙酮按照体积比3:20混合,形成沉淀,通过洗涤抽滤得到白色固体产物,然后经冷冻干燥得到丙烯酸锂粉末;
(3)取步骤(1)中制备的八乙烯基多面体低聚倍半硅氧烷与引发剂溶解在二甲基亚砜中,在超声波作用下得到均一溶液A,取步骤(2)中制备的丙烯酸锂与引发剂溶解在二甲基亚砜中,在超声波作用下得到均一溶液B,在氮气氛围下,65~80℃条件下,将B溶液逐滴滴入到A溶液中,磁力搅拌12~24h,形成白色凝胶,用乙醇离心洗涤4次,在40~60℃条件下干燥得到聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联共聚物;
(4)取步骤(3)中制备的聚丙烯酸锂/八乙烯基多面体低聚倍半硅氧烷星型交联共聚物在充满氩气的管式炉中,450~600℃焙烧2~3h进行碳化,自然冷却至室温,研磨均匀,得到粉末状产物;
(5)取步骤(4)中碳化后的粉末状产物、乙炔黑和聚偏氟乙烯按照质量比7:2:1,滴入N-甲基吡咯烷酮,用球磨机球磨2~4h后,将混合浆料涂布在铜箔上,真空下100~120℃干燥10~14h,得到负极浆料。
2.根据权利要求1所述的一种抑制锂枝晶增长的锂离子电池负极浆料,其特征在于:步骤(1)所述的硅烷偶联剂为3-(异丁烯酰氯)丙基三甲氧基硅烷、乙烯基三乙氧基硅烷的至少一种。
3.根据权利要求1所述的一种抑制锂枝晶增长的锂离子电池负极浆料,其特征在于:步骤(3)所述的引发剂为偶氮二异丁腈、偶氮二异庚腈的至少一种。
4.根据权利要求1所述的一种抑制锂枝晶增长的锂离子电池负极浆料,其特征在于:步骤(3)所述的八乙烯基多面体低聚倍半硅氧烷与聚丙烯酸锂的摩尔比为1:24~40。
CN201710332449.1A 2017-05-12 2017-05-12 一种抑制锂枝晶增长的锂离子电池负极浆料的制备方法 Active CN107093733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710332449.1A CN107093733B (zh) 2017-05-12 2017-05-12 一种抑制锂枝晶增长的锂离子电池负极浆料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710332449.1A CN107093733B (zh) 2017-05-12 2017-05-12 一种抑制锂枝晶增长的锂离子电池负极浆料的制备方法

Publications (2)

Publication Number Publication Date
CN107093733A CN107093733A (zh) 2017-08-25
CN107093733B true CN107093733B (zh) 2019-07-23

Family

ID=59637306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710332449.1A Active CN107093733B (zh) 2017-05-12 2017-05-12 一种抑制锂枝晶增长的锂离子电池负极浆料的制备方法

Country Status (1)

Country Link
CN (1) CN107093733B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065866B (zh) * 2018-08-02 2021-07-06 武汉理工大学 一种基于硅倍半氧烷的硅碳复合负极材料及其制备方法
CN110429253B (zh) * 2019-07-29 2022-05-06 武汉理工大学 基于硅倍半氧烷的氮掺杂硅碳复合负极材料及其制备方法
CN118073572A (zh) 2019-12-03 2024-05-24 宁德时代新能源科技股份有限公司 二次电池、包括该二次电池的装置、二次电池的制备方法及粘结剂组合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867947A (zh) * 2011-07-06 2013-01-09 东丽纤维研究所(中国)有限公司 基于低聚倍半硅氧烷的碳/硅复合负极材料的制备方法
CN106654366A (zh) * 2016-11-29 2017-05-10 中国电子科技集团公司第十八研究所 一种原位聚合制备塑晶聚合物电解质材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524113B2 (en) * 2010-09-27 2013-09-03 Long Time Technology Corp., LTD. Anode material of lithium-ion secondary battery and preparation method thereof
EP3001494B1 (en) * 2014-09-19 2018-08-15 Samsung Electronics Co., Ltd. Electrolyte, method of preparing the electrolyte, and lithium secondary battery comprising the electrolyte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867947A (zh) * 2011-07-06 2013-01-09 东丽纤维研究所(中国)有限公司 基于低聚倍半硅氧烷的碳/硅复合负极材料的制备方法
CN106654366A (zh) * 2016-11-29 2017-05-10 中国电子科技集团公司第十八研究所 一种原位聚合制备塑晶聚合物电解质材料及其制备方法

Also Published As

Publication number Publication date
CN107093733A (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
JP7175355B2 (ja) ケイ素系負極材料、その製造方法、およびリチウムイオン二次電池における使用
CN105609730B (zh) 一种硅/碳/石墨复合负极材料的制备方法
CN102255079B (zh) 一种锂离子电池负极用锡碳复合材料及其制备方法和锂离子电池
US20140113199A1 (en) Nano-silicon composite lithium ion battery anode material coated with poly (3,4-ethylenedioxythiophene) as carbon source and preparation method thereof
CN108011083B (zh) 一种双网络水凝胶衍生的Si@C/G纳米多孔复合材料的制备方法及其所得材料和应用
CN105453309B (zh) 用于Li-S电池的包含石墨烯的正极材料及其制备方法
CN109309199B (zh) 一种锂离子电池负极红磷/碳纳米管复合材料制备方法
CN107093733B (zh) 一种抑制锂枝晶增长的锂离子电池负极浆料的制备方法
CN104617261A (zh) 一种锂离子电池硅碳纳米管复合负极材料制备方法
CN104362307A (zh) 一种石墨硅基复合负极材料及其制备方法
CN109360971B (zh) 一种微球状硒化锰/碳复合材料的制备方法
CN108448080A (zh) 一种石墨烯包覆硅/金属复合负极材料及其制备方法
CN104362315A (zh) 一种锂离子电池硅碳复合负极材料低成本制备方法
CN109400905B (zh) 一种金属有机骨架Mn-BTC及制备方法和应用
CN109309198B (zh) 一种锂离子电池负极红磷/石墨烯复合材料制备方法
CN105355875A (zh) 一种氧化钨纳米线缠绕复合材料、制备方法和应用
JP2023505307A (ja) リチウムイオン電池用アノードおよびその製造方法
CN109546120A (zh) 一种石墨烯基硅碳复合材料及其制备方法
CN102208622B (zh) 线状纳米碳导电剂包覆磷酸铁锂正极材料的方法
CN101880042B (zh) 用于制备锂离子电池负极的人造石墨微球及其制备方法
CN104282894B (zh) 一种多孔Si/C复合微球的制备方法
CN104916822A (zh) 一种锂离子电池硅碳复合负极材料的制备方法
CN110459732B (zh) 一种硅/石墨烯/碳复合纤维膜负极极片及其制备方法和锂离子电池
CN107026261B (zh) 一种锡钴合金嵌入碳纳米复合材料的制备与应用
CN105702938B (zh) 一种铁基氧化物锂离子电池负极材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201224

Address after: 246001 e-commerce Industrial Park, NO.48 Renmin Road, Yingjiang District, Anqing City, Anhui Province

Patentee after: Wang Zhao

Address before: 250353 College of materials science and engineering, Qilu University of technology, 3501 Daxue Road, Changqing District, Jinan City, Shandong Province

Patentee before: Qilu University of Technology

TR01 Transfer of patent right

Effective date of registration: 20210617

Address after: 102200 423, 4 / F, block a, Xinhua future city building, 175 Litang Road, Changping District, Beijing

Patentee after: Li Qiannan

Address before: 246001 e-commerce Industrial Park, NO.48 Renmin Road, Yingjiang District, Anqing City, Anhui Province

Patentee before: Wang Zhao

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211126

Address after: 350800 98 Minqing, Fujian, Fuzhou

Patentee after: FUZHOU HENONG AGRICULTURAL TECHNOLOGY CO.,LTD.

Address before: 102200 423, 4 / F, block a, Xinhua future city building, 175 Litang Road, Changping District, Beijing

Patentee before: Li Qiannan

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211222

Address after: 257000 north of Gangcheng road and west of Gangxi Second Road, dongyinggang Economic Development Zone, Dongying City, Shandong Province

Patentee after: Shandong Yiwei New Material Co.,Ltd.

Address before: 350800 98 Minqing, Fujian, Fuzhou

Patentee before: FUZHOU HENONG AGRICULTURAL TECHNOLOGY CO.,LTD.

TR01 Transfer of patent right