CN109309199B - 一种锂离子电池负极红磷/碳纳米管复合材料制备方法 - Google Patents

一种锂离子电池负极红磷/碳纳米管复合材料制备方法 Download PDF

Info

Publication number
CN109309199B
CN109309199B CN201710615647.9A CN201710615647A CN109309199B CN 109309199 B CN109309199 B CN 109309199B CN 201710615647 A CN201710615647 A CN 201710615647A CN 109309199 B CN109309199 B CN 109309199B
Authority
CN
China
Prior art keywords
red phosphorus
carbon nano
nano tube
dispersion liquid
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710615647.9A
Other languages
English (en)
Other versions
CN109309199A (zh
Inventor
孙黎
张以河
张雨
张德扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences Beijing
Original Assignee
China University of Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences Beijing filed Critical China University of Geosciences Beijing
Priority to CN201710615647.9A priority Critical patent/CN109309199B/zh
Publication of CN109309199A publication Critical patent/CN109309199A/zh
Application granted granted Critical
Publication of CN109309199B publication Critical patent/CN109309199B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种锂离子电池负极红磷/碳纳米管复合材料制备方法。所述方法通过低温液相法,借助红磷和碳纳米管在溶剂中的表面电性差异,使红磷均匀吸附于碳纳米管管壁,获得均匀的红磷/碳纳米管复合材料。所述方法包括提纯红磷、制备红磷分散液、制备碳纳米管分散液、分散液混合、提纯反应产物和冷冻干燥等步骤。本发明所述的制备方法简单、环境友好;所得到的红磷/碳纳米管复合材料中,红磷为无定形纳米颗粒,并均匀附着在碳纳米管表面,具有较高的利用率,显著地提高了锂离子电池的比容量以及循环充放电稳定性。

Description

一种锂离子电池负极红磷/碳纳米管复合材料制备方法
技术领域
本发明属于复合材料技术领域,具体涉及一种将无定形的红磷负载在碳纳米管表面制备方法,并将所获得的红磷/碳纳米管复合材料用于锂离子电池的负极材料。
背景技术
现代社会的发展以能源消耗为其重要特征。高效的储能系统是可持续再生能源工业、消费电子产业、交通行业的核心支柱。锂离子电池以其比能量高、电池电压高、工作温度范围宽、储存寿命长等优点,在当今储能工业占据核心地位,广泛应用于军事和民用小型电器中,如移动电话、笔记本电脑、摄像机、照相机等。锂离子电池使用石墨材料作为负极,磷酸铁锂、钴酸锂、锰酸锂等含锂金属氧化物作为正极,利用锂离子在正负极之间的“摇椅效应”来贡献容量。自从索尼公司在20世纪90年代发明商用的锂离子电池以来,其在手机和笔记本等轻便电子设备市场中一直占据主导地位。实用锂离子电池的负极材料石墨的比容量较低,倍率性能有限,难以满足当今社会对于储能系统越来越高的要求。寻找新的高容量密度的负极材料成为锂离子电池提高能量密度的关键。
在众多潜在的电极材料中,红磷具有高比容量(2595mAh g-1)、成本低廉、环境相容性好等优势,使其作为一类负极材料备受关注。目前,红磷作为锂离子电池负极材料存在的问题主要在于红磷在充放电过程中的体积膨胀较大(490%),因而将其与其它材料(尤其是碳材料)进行复合,以提高其导电性,容纳其体积膨胀,成为重要方法。在众多碳材料中,碳纳米管可形成三维的束缚网络结构,其与红磷缠绕交联在一起,可有效容纳红磷的体积膨胀,缓冲电极中的应力,从而获得稳定性较高的红磷/碳纳米管复合材料。
现有的红磷与碳纳米管复合的工艺分为两类,一类是通过球磨工艺将两者机械混合,然而,在球磨过程中,碳纳米管被打断导致碎裂,从而不能有效发挥对红磷的束缚作用。另一类是通过高温处理,将红磷在高于450度的温度升华,使得红磷蒸气均匀沉积在碳纳米管的管壁上,该方法的缺点在于降温的过程中形成的白磷易燃,有一定的危险性,而白磷的去除则需要用到二硫化碳等有毒试剂,安全隐患较大。
本发明通过低温液相法,借助红磷和碳纳米管在溶剂中表面电性差异,使红磷均匀吸附于碳纳米管管壁,获得均匀的红磷/碳纳米管复合材料。所制备的复合材料在作为锂离子电池的负极材料时,具有较高的比容量和优越的循环性能。
发明内容
为了解决现有的红磷与碳纳米管复合工艺存在的问题,本发明提供一种锂离子电池负极红磷/碳纳米管复合材料的制备方法。所述方法通过低温液相法,借助红磷和碳纳米管在溶剂中的表面电性差异,使红磷均匀吸附于碳纳米管管壁,获得均匀的红磷/碳纳米管复合材料。通过所述方法制备的复合材料在作为锂离子电池的负极材料时,具有较高的比容量和优越的循环性能。
为实现上述目标,本发明采用以下技术方案:
一种锂离子电池负极红磷/碳纳米管复合材料的制备方法,所述方法通过低温液相法,借助红磷和碳纳米管在溶剂中表面电性差异,使红磷均匀吸附于碳纳米管管壁,获得均匀的红磷/碳纳米管复合材料。
所述方法包括以下步骤:
1)提纯红磷:将红磷在去离子水中球磨,在200℃下水热处理12h后真空烘干;
2)制备红磷分散液:将步骤1)所获得的红磷分散在乙醇/去离子水的混合溶剂中,超声分散30~120min,得到均匀的红磷分散液;
3)制备碳纳米管分散液:将碳纳米管分散在乙醇/去离子水的混合溶剂中,超声分散30~120min,得到均匀的碳纳米管分散液;
4)分散液混合:将上述步骤2)制备的红磷分散液加入到步骤3)制备的碳纳米管分散液中,继续超声分散5~120min;
5)提纯反应产物:将所获得的混合液静置后将上层清液移除,将下层沉积的固相物质离心水洗数次,并去除溶剂;
6)冷冻干燥:将步骤5)所获得的混合物在-80℃冷冻,通过冷冻干燥机冻干,得到红磷/碳纳米管复合材料。
优选的,所述步骤2)和3)所述的混合溶剂中,乙醇与水的体积比为1:5-1:1。
红磷在混合溶剂中的zeta电位为负,碳纳米管在混合溶剂中的zeta电位为正。
在红磷分散液和碳纳米管分散液混合后,由于表面电性的差异,无定形的红磷纳米颗粒被均匀吸附在碳纳米管的表面,所获得红磷-碳纳米管复合体系的密度明显大于水的密度,从而在容器中发生沉积。
优选的,红磷分散液和碳纳米管分散液的浓度为0.1~10g/L。
优选的,按照摩尔份数计,复合材料中红磷与碳纳米管的添加量为:红磷与碳纳米管的质量比为1:2~4:1。
本发明的优点和有益效果为:本发明所述的制备方法简单、环境友好;所得到的红磷/碳纳米管复合材料中,红磷为无定形纳米颗粒,并均匀附着在碳纳米管表面,具有较高的利用率,显著地提高了锂离子电池的比容量以及循环充放电稳定性。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1为所述实施例1制备的红磷/碳纳米管复合材料的XRD曲线图。
图2为所述实施例1中的碳纳米管分散液,红磷分散液和混合分散液的照片。
图3为所述实施例1制备的红磷/碳纳米管复合材料的SEM图。
图4为所述实施例1制备的红磷/碳纳米管复合材料的TEM图。
图5为所述实施例1制备的红磷/碳纳米管复合材料与红磷材料的循环曲线。
具体实施方式
实施例1
1)提纯红磷:将红磷在去离子水中球磨,在200℃下水热处理12h后真空烘干;
2)制备红磷分散液:从步骤1)所获得的红磷中称取80mg分散到50mL乙醇/去离子水(体积比1:3)的混合溶液中,超声分散30min,得到均匀的红磷分散液;
3)制备碳纳米管分散液:将20mg碳纳米管在50mL乙醇/去离子水(体积比1:3)的混合溶液中超声分散30min,得到均匀的碳纳米管分散液;
4)分散液混合:将上述步骤2)制备的红磷分散液加入到步骤3)制备的碳纳米管分散液中,继续超声分散15min,得到均匀的混合溶液;
5)提纯反应产物:将所获得的混合液静置1h后,将上层清液移除,将下层沉积的固相物质离心水洗数次,并去除溶剂;
6)冷冻干燥:将步骤5)所获得的混合物在-80℃冷冻,通过冷冻干燥机冻干,得到红磷/碳纳米管复合材料。
参见附图1,此图为本实施例制备的红磷/碳纳米管复合材料的XRD曲线图,从图中可以看出制备的红磷/碳纳米管复合材料含有无定形的红磷和碳纳米管。
参见附图2,此图为本实施例制备过程中的红磷分散液、碳纳米管分散液和混合分散液的照片,从图中可以看出,两种分散液混合后,烧杯底部形成了均匀的红磷-碳纳米管复合沉积物。这是由于红磷吸附到碳纳米管表面,使得红磷-碳纳米管复合体系的密度变大,从而发生了沉积现象。
参见附图3,此图为本实施例制备的红磷/碳纳米管复合材料的SEM图,从图中可以看出制备的红磷/碳纳米管复合材料中,没有大块的红磷团聚。
参见附图4,此图为本实施例制备的红磷/碳纳米管复合材料的TEM图,从图中可以看出制备的红磷/碳纳米管复合材料形成了均匀的复合材料结构;在该结构中,无定形的红磷纳米颗粒附着于碳纳米管表面,具有较强的结合力。
参见附图5,此图为本实施例制备的红磷/碳纳米管复合材料的循环曲线,从图中可以看出制备的红磷/碳纳米管复合材料表现出良好的循环性能;所制备的红磷/碳纳米管复合材料在200mA/g的电流下,经过120次循环仍保持969mAh g-1的比容量,明显高于纯红磷的比容量。
实施例2
1)提纯红磷:将红磷在去离子水中球磨,在200℃下水热处理12h后真空烘干;
2)制备红磷分散液:从步骤1)所获得的红磷中称取80mg分散到50mL乙醇/去离子水(体积比1:3)的混合溶液中,超声分散30min,得到均匀的红磷分散液;
3)制备碳纳米管分散液:将10mg碳纳米管在50mL乙醇/去离子水(体积比1:3)的混合溶液中超声分散30min,得到均匀的碳纳米管分散液;
4)分散液混合:将上述步骤2)制备的红磷分散液加入到步骤3)制备的碳纳米管分散液中,继续超声分散15min,得到均匀的混合溶液;
5)提纯反应产物:将所获得的混合液静置1h后,将上层清液移除,将下层沉积的固相物质离心水洗数次,并去除溶剂;
6)冷冻干燥:将步骤5)所获得的混合物在-80℃冷冻,通过冷冻干燥机冻干,得到红磷/碳纳米管复合材料。
实施例3
1)提纯红磷:将红磷在去离子水中球磨,在200℃下水热处理12h后真空烘干;
2)制备红磷分散液:从步骤1)所获得的红磷中称取80mg分散到50mL乙醇/去离子水(体积比1:3)的混合溶液中,超声分散30min,得到均匀的红磷分散液;
3)制备碳纳米管分散液:将30mg碳纳米管在50mL乙醇/去离子水(体积比1:3)的混合溶液中超声分散30min,得到均匀的碳纳米管分散液;
4)分散液混合:将上述步骤2)制备的红磷分散液加入到步骤3)制备的碳纳米管分散液中,继续超声分散5min,得到均匀的混合溶液;
5)提纯反应产物:将所获得的混合液静置1h后,将上层清液移除,将下层沉积的固相物质离心水洗数次,并去除溶剂;
6)冷冻干燥:将步骤5)所获得的混合物在-80℃冷冻,通过冷冻干燥机冻干,得到红磷/碳纳米管复合材料。
最后应说明的是:上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所述领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (1)

1.一种锂离子电池负极红磷/碳纳米管复合材料制备方法,其特征在于:所述方法通过低温液相法,借助红磷和碳纳米管在溶剂中的表面电性差异,使红磷均匀吸附于碳纳米管管壁,获得均匀的红磷/碳纳米管复合材料;
具体方法包括以下步骤:
1)提纯红磷:将红磷在去离子水中球磨,在200℃下水热处理12h,水洗后真空烘干;
2)制备红磷分散液:将步骤1)所获得的红磷分散在乙醇/去离子水的混合溶剂中,超声分散30~120min,得到均匀的红磷分散液;
3)制备碳纳米管分散液:将碳纳米管分散在乙醇/去离子水的混合溶剂中,超声分散30~120min,得到均匀的碳纳米管分散液;
4)分散液混合:将上述步骤2)制备的红磷分散液加入到步骤3)制备的碳纳米管分散液中,继续超声分散5~120min;
5)提纯反应产物:将所获得的混合液静置后将上层清液移除,将下层沉积的固相物质离心水洗数次,并去除溶剂;
6)冷冻干燥:将步骤5)所获得的混合物在-80℃冷冻,通过冷冻干燥机冻干,得到红磷/碳纳米管复合材料;
其中,步骤2)和3)所述的混合溶剂中,乙醇与水的体积比为1:5-1:1;
红磷分散液和碳纳米管分散液的浓度为0.1~10g/L;
按照摩尔份数计,复合材料中红磷与碳纳米管的添加量为:红磷与碳纳米管的质量比为1:2~4:1;
红磷在混合溶剂中的zeta电位为负,碳纳米管在混合溶剂中的zeta电位为正;
在红磷分散液和碳纳米管分散液混合后,由于表面电性的差异,无定形的红磷纳米颗粒被均匀吸附在碳纳米管的表面,所获得红磷-碳纳米管复合体系的密度明显大于水的密度,从而在容器中发生沉积。
CN201710615647.9A 2017-07-26 2017-07-26 一种锂离子电池负极红磷/碳纳米管复合材料制备方法 Active CN109309199B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710615647.9A CN109309199B (zh) 2017-07-26 2017-07-26 一种锂离子电池负极红磷/碳纳米管复合材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710615647.9A CN109309199B (zh) 2017-07-26 2017-07-26 一种锂离子电池负极红磷/碳纳米管复合材料制备方法

Publications (2)

Publication Number Publication Date
CN109309199A CN109309199A (zh) 2019-02-05
CN109309199B true CN109309199B (zh) 2021-07-13

Family

ID=65201803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710615647.9A Active CN109309199B (zh) 2017-07-26 2017-07-26 一种锂离子电池负极红磷/碳纳米管复合材料制备方法

Country Status (1)

Country Link
CN (1) CN109309199B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212185B (zh) * 2019-06-04 2021-01-05 中国地质大学(北京) 一种Sn-P-CNT复合材料及其制备锂离子电池负极材料的用途
CN111403747B (zh) * 2020-03-27 2021-09-07 陕西科技大学 一种自立式P/CNTs复合柔性薄膜及其制备方法和应用
CN113381014B (zh) * 2021-06-08 2023-03-03 西安亚弘泰新能源科技有限公司 一种超低温锂离子电池负极材料的制备方法
CN113839026B (zh) * 2021-10-18 2023-03-24 苏州大学 一种锂离子电池负极复合材料及其制备方法
CN116283363A (zh) * 2023-03-21 2023-06-23 重庆长安新能源汽车科技有限公司 高能量密度的快充石墨复合材料、制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184861A (ja) * 2008-02-05 2009-08-20 Seoul National Univ Industry Foundation 黒燐及び黒燐炭素複合体の製造方法、製造された黒燐及び黒燐炭素複合体及びそれを含むリチウム二次電池とその使用方法
CN101604752A (zh) * 2009-07-22 2009-12-16 北京化工大学 一种锂离子电池磷/碳复合负极材料及其制备方法
CN105098154A (zh) * 2015-07-09 2015-11-25 天津工业大学 一种红磷包覆碳纳米管复合离子电池负极材料的制备方法
CN105702939A (zh) * 2016-04-27 2016-06-22 中国科学院化学研究所 一种磷碳复合材料及其制备方法和应用
CN105845906A (zh) * 2016-04-08 2016-08-10 清华大学 含磷负极复合材料及其制备方法以及锂离子电池
CN106711408A (zh) * 2015-11-13 2017-05-24 中国科学院金属研究所 柔性锂离子电池黑磷纳米片-石墨烯复合薄膜负极及制备
CN107293725A (zh) * 2017-07-18 2017-10-24 深圳市泽纬科技有限公司 一种纳米红磷与石墨烯复合负极材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184861A (ja) * 2008-02-05 2009-08-20 Seoul National Univ Industry Foundation 黒燐及び黒燐炭素複合体の製造方法、製造された黒燐及び黒燐炭素複合体及びそれを含むリチウム二次電池とその使用方法
CN101604752A (zh) * 2009-07-22 2009-12-16 北京化工大学 一种锂离子电池磷/碳复合负极材料及其制备方法
CN105098154A (zh) * 2015-07-09 2015-11-25 天津工业大学 一种红磷包覆碳纳米管复合离子电池负极材料的制备方法
CN106711408A (zh) * 2015-11-13 2017-05-24 中国科学院金属研究所 柔性锂离子电池黑磷纳米片-石墨烯复合薄膜负极及制备
CN105845906A (zh) * 2016-04-08 2016-08-10 清华大学 含磷负极复合材料及其制备方法以及锂离子电池
CN105702939A (zh) * 2016-04-27 2016-06-22 中国科学院化学研究所 一种磷碳复合材料及其制备方法和应用
CN107293725A (zh) * 2017-07-18 2017-10-24 深圳市泽纬科技有限公司 一种纳米红磷与石墨烯复合负极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Phosphorus Nanoparticles Encapsulated in Graphene Scrolls as a High‐Performance Anode for Sodium‐Ion Batteries;Longkai Pei;《ChemElectroChem》;20150717(第6期);补充材料实验部分,摘要,附图1 *
过渡金属磷化物Co2P与Fe2P纳米颗粒水热合成及表征;黄河;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20140330;第16-18页 *

Also Published As

Publication number Publication date
CN109309199A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
US20220376235A1 (en) Composite Negative Electrode Material and Method for Preparing Composite Negative Electrode Material, Negative Electrode Plate of Lithium Ion Secondary Battery, and Lithium Ion Secondary Battery
CN109309199B (zh) 一种锂离子电池负极红磷/碳纳米管复合材料制备方法
US9437870B2 (en) Nano-silicon composite lithium ion battery anode material coated with poly (3,4-ethylenedioxythiophene) as carbon source and preparation method thereof
JP5754855B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
CN107331888A (zh) 一种含有硅碳材料负极片的锂离子电池及其制备方法
CN110492084B (zh) 一种核壳结构的球状负极复合材料Si@MXene及其制备方法
Sun et al. Fe2O3/CNTs composites as anode materials for lithium-ion batteries
CN105489866B (zh) 一种锂离子电池及其负极复合材料和制备方法
CN111146427A (zh) 一种以聚苯胺为碳源制备中空核壳结构纳米硅碳复合材料的方法及应用该材料的二次电池
CN108134070B (zh) 一种高容量石墨烯/硅复合负极材料及制备方法
CN103346302A (zh) 一种锂电池硅碳纳米管复合负极材料及其制备方法与应用
CN109767928B (zh) 氟掺杂碳包覆氧化硅纳米颗粒@碳纳米管复合材料的合成方法及其应用
CN101609884A (zh) 一种锂离子电池负极材料SnS2的制备方法
WO2017008615A1 (zh) 一种气相沉积制备改性硅基负极材料的方法
CN106410153A (zh) 一种氮化钛包覆钛酸镍复合材料及其制备方法和应用
Liu et al. Blended spherical lithium iron phosphate cathodes for high energy density lithium–ion batteries
Qin et al. Improving the performance of Li–S batteries by reinforced PPy wrapping over acetylene black-coated sulfur
Dong et al. Exploring the practical applications of silicon anodes: a review of silicon-based composites for lithium-ion batteries
CN108899528B (zh) 一种锂离子电池负极材料P+TiO2+CNT的制备方法
CN113690420B (zh) 一种氮硫掺杂硅碳复合材料及其制备方法和应用
CN111384370B (zh) 一种高容量密度锂离子电池负极
CN105206802A (zh) 富锂磺化石墨烯-纳米氧化硅负极材料及其制法与应用
CN105047917A (zh) 一种磷酸铁锂电池正极材料的制备方法
CN109309198B (zh) 一种锂离子电池负极红磷/石墨烯复合材料制备方法
CN108336319B (zh) 一种硅碳负极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant