WO2017057134A1 - リチウムイオン二次電池用正極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2017057134A1
WO2017057134A1 PCT/JP2016/077858 JP2016077858W WO2017057134A1 WO 2017057134 A1 WO2017057134 A1 WO 2017057134A1 JP 2016077858 W JP2016077858 W JP 2016077858W WO 2017057134 A1 WO2017057134 A1 WO 2017057134A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
material layer
lithium
Prior art date
Application number
PCT/JP2016/077858
Other languages
English (en)
French (fr)
Inventor
愛 藤澤
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to EP16851308.3A priority Critical patent/EP3358652B1/en
Priority to CN201680053752.1A priority patent/CN108028361B/zh
Priority to JP2017543184A priority patent/JP6903261B2/ja
Priority to US15/751,187 priority patent/US20200220171A1/en
Publication of WO2017057134A1 publication Critical patent/WO2017057134A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery.
  • lithium ion secondary batteries Since lithium ion secondary batteries have high energy density and excellent charge / discharge cycle characteristics, they are widely used as power sources for small mobile devices such as mobile phones and laptop computers. In recent years, demand for large-capacity batteries that require a large capacity and a long life, such as electric vehicles, hybrid electric vehicles, and the power storage field, has increased due to increased consideration for environmental issues and energy conservation.
  • a lithium ion secondary battery includes a negative electrode including a carbon material capable of occluding and releasing lithium ions as a negative electrode active material, a positive electrode including a lithium composite oxide capable of occluding and releasing lithium ions as a positive electrode active material, and a negative electrode and a positive electrode. And a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent.
  • Patent Document 1 discloses lithium nickel having a specific composition as a positive electrode active material for the purpose of obtaining a battery excellent in high rate discharge characteristics in view of the problem that high rate discharge characteristics are inferior when electrode density increases.
  • the electrode density of the positive electrode is 3.75 to 4.1 g / cm 3
  • the BET specific surface area as the positive electrode is 1.3 to 3.5 m 2 / g
  • a lithium ion secondary battery having a pore volume of 0.005 to 0.02 cm 3 / g is disclosed.
  • an object of the present invention is to provide a lithium ion secondary battery with improved cycle characteristics while having a sufficient energy density, and a positive electrode suitable for the lithium ion secondary battery.
  • a positive electrode for a lithium ion secondary battery comprising a current collector and a positive electrode active material layer on the current collector,
  • the positive electrode active material layer includes a positive electrode active material, a conductive additive, and a binder,
  • the porosity of the positive electrode active material layer is 20% or less
  • the positive electrode active material includes a lithium composite oxide, and the positive electrode active material has a BET specific surface area of 0.1 to 1 m 2 / g;
  • At least a part of the conductive assistant is composed of spherical amorphous carbon particles,
  • a positive electrode for a lithium ion secondary battery is provided in which the content of the conductive auxiliary is 1.8 to 6% by mass with respect to the positive electrode active material.
  • a lithium ion secondary battery including the positive electrode, the negative electrode, and a non-aqueous electrolyte.
  • the present invention it is possible to provide a lithium ion secondary battery having a sufficient energy density and improved cycle characteristics, and a positive electrode suitable for the lithium ion secondary battery.
  • the positive electrode for a lithium ion secondary battery has a current collector and a positive electrode active material layer formed on the current collector.
  • the positive electrode active material layer contains a lithium composite oxide from the viewpoint of increasing the energy density.
  • the lithium composite oxide is preferably a lithium composite oxide containing nickel (lithium nickel composite oxide), and particularly preferably a lithium nickel composite oxide having a layered crystal structure.
  • the positive electrode active material layer may contain an active material other than the lithium composite oxide, but from the viewpoint of energy density, the content of the lithium composite oxide is preferably 80% by mass or more, and 90% by mass or more. More preferred is 95% by mass or more.
  • the lithium nickel composite oxide has the following formula: Li a Ni 1-x M x O 2 (1) (Wherein M is at least one selected from Li, Co, Mn, Mg, and Al, 0 ⁇ a ⁇ 1, 0 ⁇ x ⁇ 0.7) It is preferable that it is a compound represented by these.
  • the positive electrode active material layer may include a lithium manganese composite oxide having a spinel structure as another lithium composite oxide.
  • the lithium manganese composite oxide has the following formula: Li 1 + x Mn 2-xy Me y O 4 (Wherein Me includes at least one selected from the group consisting of Mg, Al, Fe, Co, Ni, and Cu, 0 ⁇ x ⁇ 0.25, 0 ⁇ y ⁇ 0.5) It is preferable that it is a compound represented by these.
  • active material A lithium nickel composite oxide having a layered crystal structure
  • active material B lithium manganese composite oxide having a spinel structure
  • the active material B when used alone, Mn ions are eluted by charge / discharge cycles and high temperature storage, and the capacity tends to deteriorate due to precipitation of the Mn ions on the opposing negative electrode surface.
  • the active material A and the active material B are mixed and used, the active material A having a layered crystal structure functions as a proton scavenger and can suppress elution of Mn ions.
  • a lithium ion secondary battery having a high energy density and a long lifetime can be provided.
  • the mixing ratio (mass ratio A: B) of the active material A and the active material B is preferably 80:20 to 95: 5, and 90:10 to 95 from the viewpoint of obtaining a higher energy density while obtaining a sufficient mixing effect. : 5 is more preferable.
  • the BET specific surface area of the positive electrode active material (based on measurement at 77 K by the nitrogen adsorption method) is preferably in the range of 0.1 to 1 m 2 / g, more preferably 0.3 to 0.5 m 2 / g. .
  • the specific surface area of the positive electrode active material is excessively small, the particle size is large, so that cracking is likely to occur during pressing or cycling during electrode production, and there is a tendency for characteristic deterioration to be noticeable. It becomes difficult.
  • the specific surface area is excessively large, the necessary amount of the conductive auxiliary agent brought into contact with the active material increases, and as a result, it is difficult to increase the energy density.
  • the specific surface area of the positive electrode active material is in the above range, an excellent positive electrode can be obtained from the viewpoint of energy density and cycle characteristics.
  • the average particle diameter of the positive electrode active material is preferably 0.1 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, and further preferably 2 to 25 ⁇ m.
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • a conductive assistant carbon black such as acetylene black is preferable.
  • the conductive assistant preferably contains 80% by mass or more of a conductive assistant composed of spherical amorphous carbon particles, preferably 90% by mass or more, and the conductive assistant consists entirely of spherical amorphous carbon particles.
  • An auxiliary agent may be used.
  • the average particle diameter of the conductive auxiliary agent is 3 as the average particle diameter of secondary particles (primary aggregates) from the viewpoint of obtaining a positive electrode having a sufficient electrode density and reduced contact resistance and charge transfer resistance.
  • 0.5 ⁇ m or less is preferable, 3 ⁇ m or less is more preferable, and 2 ⁇ m or less may be set, and 50 nm or more is preferable and 100 nm or more is more preferable.
  • the average particle diameter of the primary particles is preferably in the range of 5 to 500 nm, more preferably in the range of 10 to 300 nm, and for example, those in the range of 50 to 250 nm can be used.
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the content of the conductive additive in the positive electrode active material layer is preferably 1.8% by mass or more, more preferably 2% by mass or more, and preferably 6% by mass or less, and preferably 5% by mass or less with respect to the positive electrode active material. More preferred is 4.5% by mass or less. If the content of the conductive additive is large, the contact resistance and the charge transfer resistance tend to decrease, but if the electrode density is high (porosity is low), the charge transfer resistance is reversed if the content of the conductive additive is large. It tends to be higher. On the other hand, when the content of the conductive auxiliary agent is small, the contact resistance tends to increase.
  • the content of the conductive additive is in the above range, even if the porosity of the positive electrode active material layer is a low value described later (that is, the electrode density is high), the contact resistance is low and the charge transfer resistance is low. It is possible to obtain an electrode that can suppress an increase in
  • the positive electrode active material layer can be formed as follows. First, it can be formed by preparing a slurry containing a positive electrode active material, a conductive additive, a binder and a solvent, applying the slurry onto a positive electrode current collector, drying, and pressing. N-methyl-2-pyrrolidone (NMP) can be used as a slurry solvent used in preparing the positive electrode.
  • NMP N-methyl-2-pyrrolidone
  • binder those usually used as a binder for positive electrodes such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) can be used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the content of the binder in the positive electrode active material layer is preferably 1 to 15% by mass, more preferably 1 to 10% by mass, from the viewpoints of binding force and energy density which are in a trade-off relationship.
  • a higher proportion of the positive electrode active material in the positive electrode active material layer is preferable because the capacity per mass increases.
  • a conductive auxiliary agent from the viewpoint of electrode strength.
  • a binder it is preferable to add a binder. If the proportion of the conductive auxiliary agent is too small, it becomes difficult to maintain sufficient conductivity, and the resistance of the electrode is likely to increase. When the ratio of the binder is too small, it becomes difficult to maintain the adhesive force with the current collector, the active material, and the conductive additive, and electrode peeling may occur.
  • the porosity of the positive electrode active material layer (not including the current collector) constituting the positive electrode is preferably 20% or less, more preferably 19% or less, and even more preferably 18.3% or less.
  • the porosity is high (that is, the electrode density is low), the contact resistance and the charge transfer resistance tend to increase. Therefore, it is preferable to reduce the porosity in this way, and as a result, the electrode density can also be increased.
  • the porosity is if the porosity is too low (the electrode density is too high), the contact resistance will be low, but depending on the amount of conductive aid, the charge transfer resistance will increase or the rate characteristics will deteriorate, It is desirable to ensure porosity. From this viewpoint, the porosity is preferably 12% or more, more preferably 13% or more, and may be set to 16% or more.
  • the “particle volume” (volume occupied by particles contained in the active material layer) in the above formula can be calculated by the following formula.
  • Particle volume (Weight per unit area of active material layer ⁇ area of active material layer ⁇ content ratio of particles) ⁇ true density of particles
  • area of active material layer is the side opposite to the current collector side (separator side) ) Plane area.
  • the thickness of the positive electrode active material layer is not particularly limited, and can be appropriately set according to desired characteristics. For example, it can be set thick from the viewpoint of energy density, and thin from the viewpoint of output characteristics. Can be set.
  • the thickness of the positive electrode active material layer can be appropriately set, for example, in the range of 10 to 250 ⁇ m, preferably 20 to 200 ⁇ m, and more preferably 40 to 180 ⁇ m.
  • the current collector for the positive electrode aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • the shape include foil, flat plate, and mesh.
  • an aluminum foil can be suitably used.
  • a lithium ion secondary battery includes the positive electrode, the negative electrode, and a non-aqueous electrolyte.
  • a separator can be provided between the positive electrode and the negative electrode.
  • a plurality of pairs of positive and negative electrodes can be provided.
  • the negative electrode active material materials capable of inserting and extracting lithium, such as lithium metal, carbonaceous material, and Si-based material, can be used.
  • the carbonaceous material include graphite, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, and carbon nanohorn.
  • Si-based material Si, SiO 2 , SiOx (0 ⁇ x ⁇ 2), a Si-containing composite material, or the like may be used, or a composite containing two or more of these may be used.
  • melt cooling method liquid quenching method, atomization method, vacuum deposition method, sputtering method, plasma CVD method, photo CVD method, thermal CVD method, sol-gel method, etc.
  • a negative electrode can be formed.
  • a carbonaceous material or Si-based material is used as the negative electrode active material
  • a carbonaceous material (or Si-based material) and a binder such as polyvinylidene fluoride (PVDF) are mixed and dispersed and kneaded in a solvent such as NMP.
  • the negative electrode can be obtained by applying the obtained slurry onto a negative electrode current collector, drying, and pressing as necessary.
  • a negative electrode can be obtained by forming a thin film to be a current collector by a method such as vapor deposition, CVD, or sputtering.
  • the negative electrode produced in this way has a negative electrode current collector and a negative electrode active material layer formed on the current collector.
  • the average particle size of the negative electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, further preferably 5 ⁇ m or more, from the viewpoint of input / output characteristics, from the viewpoint of suppressing side reactions during charge / discharge and suppressing reduction in charge / discharge efficiency. And from the viewpoint of electrode production (smoothness of electrode surface, etc.), it is preferably 80 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the negative electrode active material layer may contain a conductive aid as necessary.
  • a conductive material generally used as a negative electrode conductive auxiliary agent such as carbonaceous material such as carbon black, ketjen black, and acetylene black can be used.
  • the binder for the negative electrode is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer.
  • PVdF polyvinylidene fluoride
  • Examples include rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, isoprene rubber, butadiene rubber, and fluororubber. .
  • NMP N-methyl-2-pyrrolidone
  • water carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, and polyvinyl alcohol can be used as a thickener.
  • the content of the binder for the negative electrode is preferably in the range of 0.5 to 30% by mass as the content with respect to the negative electrode active material from the viewpoint of the binding force and energy density which are in a trade-off relationship,
  • the range of ⁇ 25% by mass is more preferred, and the range of 1 ⁇ 20% by mass is more preferred.
  • the negative electrode current collector copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • a nonaqueous electrolytic solution in which a lithium salt is dissolved in one or two or more nonaqueous solvents can be used.
  • Non-aqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate; ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), etc.
  • Chain carbonates Aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; ⁇ -lactones such as ⁇ -butyrolactone; 1,2-ethoxyethane (DEE), ethoxymethoxyethane (EME), etc.
  • chain ethers such as tetrahydrofuran and 2-methyltetrahydrofuran.
  • One of these non-aqueous solvents can be used alone, or a mixture of two or more can be used.
  • lithium salt dissolved in the nonaqueous solvent is not particularly limited, for example LiPF 6, LiAsF 6, LiAlCl 4 , LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , and lithium bisoxalatoborate are included. These lithium salts can be used individually by 1 type or in combination of 2 or more types. Moreover, a polymer component may be included as a non-aqueous electrolyte. The concentration of the lithium salt can be set in the range of 0.8 to 1.2 mol / L, preferably 0.9 to 1.1 mol / L.
  • a porous resin film, a woven fabric, a non-woven fabric, or the like can be used as the separator.
  • the resin constituting the porous film include polyolefin resins such as polypropylene and polyethylene, polyester resins, acrylic resins, styrene resins, and nylon resins.
  • a polyolefin-based microporous membrane is preferable because of its excellent ion permeability and performance of physically separating the positive electrode and the negative electrode.
  • the separator may be formed with a layer containing inorganic particles.
  • the inorganic particles include insulating oxides, nitrides, sulfides, carbides, etc. Among them, TiO. 2 or Al 2 O 3 is preferably included.
  • a case made of a flexible film, a can case, or the like can be used. From the viewpoint of reducing the weight of the battery, it is preferable to use a flexible film.
  • a film in which a resin layer is provided on the front and back surfaces of a metal layer serving as a base material can be used.
  • a metal layer having a barrier property such as prevention of leakage of the electrolytic solution or entry of moisture from the outside can be selected, and aluminum, stainless steel, or the like can be used.
  • a heat-fusible resin layer such as a modified polyolefin is provided.
  • An exterior container is formed by making the heat-fusible resin layers of the flexible film face each other and heat-sealing the periphery of the portion that houses the electrode laminate.
  • a resin layer such as a nylon film or a polyester film can be provided on the surface of the exterior body that is the surface opposite to the surface on which the heat-fusible resin layer is formed.
  • a doctor blade an apparatus for performing various coating methods such as a die coater, a gravure coater, a transfer method, an evaporation method, and the like.
  • a combination of applicators can be used.
  • a die coater In order to form the coated end portion of the active material with high accuracy, it is particularly preferable to use a die coater.
  • the active material application method using a die coater is roughly divided into a continuous application method in which an active material is continuously formed along the longitudinal direction of a long current collector, and an active material application method along the longitudinal direction of the current collector.
  • intermittent application methods in which the application part and the non-application part are alternately and repeatedly formed, and these methods can be selected as appropriate.
  • FIG. 1 shows a cross-sectional view of an example (laminate type) lithium ion secondary battery according to an embodiment of the present invention.
  • the lithium ion secondary battery of this example includes a positive electrode current collector 3 made of a metal such as an aluminum foil and a positive electrode active material layer 1 containing a positive electrode active material provided thereon.
  • a negative electrode current collector 4 made of a metal such as copper foil and a negative electrode active material layer 2 containing a negative electrode active material provided thereon.
  • the positive electrode and the negative electrode are laminated via a separator 5 made of a nonwoven fabric or a polypropylene microporous film so that the positive electrode active material layer 1 and the negative electrode active material layer 2 face each other.
  • This electrode pair is accommodated in a container formed by the outer casings 6 and 7 made of an aluminum laminate film.
  • a positive electrode tab 9 is connected to the positive electrode current collector 3
  • a negative electrode tab 8 is connected to the negative electrode current collector 4, and these tabs are drawn out of the container.
  • An electrolytic solution is injected into the container and sealed. It can also be set as the structure where the electrode group by which the several electrode pair was laminated
  • a positive electrode active material Li a Ni 1-x M x O 2 , M is Co and Mn
  • a graphite having a surface coated with amorphous carbon as a negative electrode active material and PVDF as a binder were mixed to prepare a slurry dispersed in an organic solvent. This was apply
  • a positive electrode sheet was prepared in the same manner as in Example 1 except that the above was changed, and a secondary battery was prepared in the same manner as in Example 1 by using this positive electrode sheet. The obtained secondary battery was subjected to measurement of contact resistance and charge transfer resistance (evaluation of positive electrode) and measurement of capacity retention rate (evaluation of cycle characteristics).
  • a positive electrode sheet was produced in the same manner as in Example 1 except that the above was changed, and a secondary battery was produced in the same manner as in Example 1 using this positive electrode sheet. The obtained secondary battery was subjected to measurement of contact resistance and charge transfer resistance (evaluation of positive electrode) and measurement of capacity retention rate (evaluation of cycle characteristics).
  • Example 1 A positive electrode sheet was produced in the same manner as in Example 1 except that rolling was performed so that the porosity was 33%, and a secondary battery was produced in the same manner as in Example 1 using this positive electrode sheet. The obtained secondary battery was subjected to measurement of contact resistance and charge transfer resistance (evaluation of positive electrode) and measurement of capacity retention rate (evaluation of cycle characteristics).
  • a secondary battery was fabricated in the same manner as in Comparative Example 1 using this positive electrode sheet. The obtained secondary battery was subjected to measurement of contact resistance and charge transfer resistance (evaluation of positive electrode) and measurement of capacity retention rate (evaluation of cycle characteristics).
  • a secondary battery was fabricated in the same manner as in Comparative Example 1 using this positive electrode sheet. The obtained secondary battery was subjected to measurement of contact resistance and charge transfer resistance (evaluation of positive electrode) and measurement of capacity retention rate (evaluation of cycle characteristics).
  • the porosity means a proportion of the apparent volume of the entire active material layer, which is obtained by subtracting the volume occupied by particles such as the active material and the conductive additive. Therefore, it calculated
  • Porosity (%) 100 ⁇ (apparent volume of active material layer ⁇ volume of particle) / (apparent volume of active material layer)
  • the obtained secondary battery was charged to 4.15 V, impedance measurement was performed using a frequency response analyzer and a potentio / galvanostat, and contact resistance and charge transfer resistance were calculated.
  • the obtained secondary battery was subjected to a cycle test under the following conditions. CC-CV charge (upper limit voltage 4.15V, current 1C, CV time 1.5 hours), CC discharge (lower limit voltage 2.5V, current 1C), environmental temperature during charge / discharge: 25 ° C. The ratio of the discharge capacity at the 200th cycle to the discharge capacity at the first cycle was defined as the capacity retention rate.
  • the secondary battery provided with the active material layer has lower contact resistance and increased charge transfer resistance compared to the secondary battery provided with the active material layer having a porosity of greater than 20% (Comparative Examples 1 to 3). It can be seen that the capacity retention rate is high.
  • the conductive auxiliary agent can be present in an appropriate volume ratio with respect to the active material particles in a high density state with a porosity of 20% or less. It is possible to disperse and arrange between them. Therefore, it is possible to obtain a positive electrode with low contact resistance and suppressed increase in charge transfer resistance. By using such a positive electrode, a battery having high energy density and good cycle characteristics can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

集電体と、集電体上の正極活物質層を含むリチウムイオン二次電池用正極であって、正極活物質層は、正極活物質と、導電助剤と、バインダーを含み、正極活物質層の空孔率が20%以下であり、正極活物質がリチウム複合酸化物を含み、この正極活物質のBET比表面積が0.1~1m/gであり、導電助剤の少なくとも一部が球状非晶質カーボン粒子で構成され、導電助剤の含有量が、前記正極活物質に対して1.8~6質量%である、リチウムイオン二次電池用正極。

Description

リチウムイオン二次電池用正極及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用正極及びリチウムイオン二次電池に関するものである。
 リチウムイオン二次電池は、エネルギー密度が高く、充放電サイクル特性に優れるため、携帯電話やノート型パソコン等の小型のモバイル機器用の電源として広く用いられている。また、近年では、環境問題に対する配慮と省エネルギー化に対する意識の高まりから、電気自動車やハイブリッド電気自動車、電力貯蔵分野といった大容量で長寿命が要求される大型電池に対する需要も高まっている。
 一般に、リチウムイオン二次電池は、リチウムイオンを吸蔵放出し得る炭素材料を負極活物質として含む負極と、リチウムイオンを吸蔵放出し得るリチウム複合酸化物を正極活物質として含む正極と、負極と正極とを隔てるセパレータと、非水溶媒にリチウム塩を溶解させた非水電解液とで主に構成されている。
 例えば、特許文献1には、電極密度が上がると高レート放電特性が劣るという課題に鑑み、高レート放電特性が優れた電池を得ることを目的とし、正極活物質として特定の組成を有するリチウムニッケルコバルト複合酸化物を用い、正極の電極密度が3.75~4.1g/cmであり、正極の電極としてのBET比表面積が1.3~3.5m/gであり、正極の細孔体積が0.005~0.02cm/gである、リチウムイオン二次電池が開示されている。
国際公開第2014/017583号
 しかしながら、寿命特性についてはより一層の改善が求められている。そこで、本発明の目的は、十分なエネルギー密度を有しながら、サイクル特性が改善されたリチウムイオン二次電池、及びこれに好適な正極を提供することにある。
 本発明の一態様によれば、集電体と、該集電体上の正極活物質層を含むリチウムイオン二次電池用正極であって、
 前記正極活物質層は、正極活物質と、導電助剤と、バインダーを含み、
 該正極活物質層の空孔率が20%以下であり、
 前記正極活物質がリチウム複合酸化物を含み、該正極活物質のBET比表面積が0.1~1m/gであり、
 前記導電助剤の少なくとも一部が球状非晶質カーボン粒子で構成され、
 前記導電助剤の含有量が、前記正極活物質に対して1.8~6質量%である、リチウムイオン二次電池用正極が提供される。
 本発明の他の態様によれば、上記の正極と、負極と、非水電解液とを含むリチウムイオン二次電池が提供される。
 本発明の実施形態によれば、十分なエネルギー密度を有しながら、サイクル特性が改善されたリチウムイオン二次電池、及びこれに好適な正極を提供することができる。
本発明の実施形態による正極を説明するための模式的断面図である。
 本発明の実施形態によるリチウムイオン二次電池用正極は、集電体と、この集電体上に形成された正極活物質層を有する。
 正極活物質層は、高エネルギー密度化の点から、リチウム複合酸化物を含む。このリチウム複合酸化物としては、ニッケルを含むリチウム複合酸化物(リチウムニッケル複合酸化物)が好ましく、特に層状結晶構造を有するリチウムニッケル複合酸化物を含むことが好ましい。正極活物質層は、リチウム複合酸化物以外の他の活物質を含んでいてもよいが、エネルギー密度の点から、リチウム複合酸化物の含有率は80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。
 リチウムニッケル複合酸化物は、下記式:
  LiNi1-x       (1)
(式中、Mは、Li、Co、Mn、Mg、Alから選ばれる少なくとも一種であり、0<a≦1、0<x<0.7)
で表される化合物であることが好ましい。
 正極活物質層には、他のリチウム複合酸化物として、スピネル構造を有するリチウムマンガン複合酸化物を含んでいてもよい。
 リチウムマンガン複合酸化物は、下記式:
  Li1+xMn2-x-yMe
 (式中、Meは、Mg、Al、Fe、Co、Ni、Cuからなる群から選択される少なくとも1種を含み、0≦x<0.25、0≦y<0.5)
で表される化合物あることが好ましい。
 層状結晶構造を有するリチウムニッケル複合酸化物(以下「活物質A」)とスピネル構造を有するリチウムマンガン複合酸化物(以下「活物質B」)を混合して用いることにより、充放電サイクルによる活物質A粒子の膨張収縮による影響を緩和することができ、剥離に起因する容量低下を抑えることができる。
 また、活物質Bを単独で使用した場合、充放電サイクルや高温保存によってMnイオンが溶出し、そのMnイオンが対向する負極表面に析出することによって容量が劣化する傾向がある。しかし、活物質Aと活物質Bを混合して使用すると、層状結晶構造を有する活物質Aがプロトン補足剤として働き、Mnイオンの溶出を抑制することができる。
 その結果、高エネルギー密度で長寿命なリチウムイオン二次電池を提供することができる。
 活物質Aと活物質Bの混合比(質量比A:B)は、十分な混合効果を得ながらより高いエネルギー密度を得る点から、80:20~95:5が好ましく、90:10~95:5がより好ましい。
 正極活物質のBET比表面積(窒素吸着法による77Kでの測定に基づく)は、0.1~1m/gの範囲にあることが好ましく、0.3~0.5m/gがさらに好ましい。正極活物質の比表面積が過度に小さい場合は、粒径が大きいため、電極作製時のプレス時やサイクル時に割れが生じやすくなり、特性劣化が顕著になる傾向があり、電極の高密度化も困難になる。逆に、比表面積が過度に大きい場合は、活物質に接触させる導電助剤の必要量が増大し、結果、高エネルギー密度化が困難になる。正極活物質の比表面積が、上記の範囲にあることにより、エネルギー密度とサイクル特性の観点から、優れた正極を得ることができる。
 正極活物質の平均粒径は、0.1~50μmが好ましく、1~30μmがより好ましく、2~25μmがさらに好ましい。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。正極活物質の比表面積が前述の範囲にあり、且つ平均粒径が上記の範囲にあることにより、エネルギー密度とサイクル特性の観点から、優れた正極を得ることができる。
 導電助剤は、球状非晶質カーボン粒子で構成された導電助剤を含むことが好ましく、すなわち、球状非晶質カーボン粒子(1次粒子)の凝集体(2次粒子=1次凝集体)を含むことが好ましい。このような導電助剤としては、アセチレンブラック等のカーボンブラックが好ましい。導電助剤は、球状非晶質カーボン粒子で構成された導電助剤を80質量%以上含むことが好ましく、90質量%以上含むことが好ましく、全部が球状非晶質カーボン粒子で構成された導電助剤であってもよい。
 導電助剤の平均粒径は、十分な電極密度を有しながら、接触抵抗と電荷移動抵抗が抑えられた正極を得る観点から、2次粒子(1次凝集体)の平均粒径として、3.5μm以下が好ましく、3μm以下がより好ましく、2μm以下に設定してもよく、また、50nm以上が好ましく、100nm以上がより好ましい。1次粒子の平均粒径は5~500nmの範囲にあることが好ましく、10~300nmの範囲にあることがより好ましく、例えば50~250nmの範囲にあるものを使用できる。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。導電助剤の平均粒径が上記の範囲にあることにより、導電助剤と活物質の接点が十分に形成され、またサイクル中の活物質の膨張収縮に導電助剤が追従できて導電パスが確保できるため、接触抵抗と電荷移動抵抗の上昇を抑えることができ、結果、良好なサイクル特性を得ることができる。
 正極活物質層中の導電助剤の含有量は、正極活物質に対して1.8質量%以上が好ましく、2質量%以上がより好ましく、また6質量%以下が好ましく、5質量%以下がより好ましく、4.5質量%以下がさらに好ましい。導電助剤の含有量が多いと接触抵抗や電荷移動抵抗が下がる傾向にあるが、電極密度が高い(空孔率が低い)場合は導電助剤の含有量が多いと電荷移動抵抗が逆に高くなる傾向にある。一方、導電助剤の含有量が少ないと、接触抵抗が大きくなる傾向がある。導電助剤の含有量が上記の範囲にあると、正極活物質層の空孔率が後述する低い値であっても(すなわち電極密度が高くても)、接触抵抗が低く、且つ電荷移動抵抗の増大を抑えられる電極を得ることができる。
 正極活物質層は、次のようにして形成することができる。まず、正極活物質、導電助剤、バインダー及び溶媒を含むスラリーを調製し、これを正極集電体上に塗布し、乾燥し、プレスすることにより形成することができる。正極作製時に用いるスラリー溶媒としては、N-メチル-2-ピロリドン(NMP)を用いることができる。
 バインダーとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の通常正極用バインダーとして用いられるものを用いることができる。
 正極活物質層中のバインダーの含有量は、トレードオフの関係にある結着力とエネルギー密度の観点から、1~15質量%が好ましく、1~10質量%がより好ましい。
 正極活物質層中の正極活物質の割合が多い方が質量当たりの容量が大きくなるため好ましいが、電極の低抵抗化の点からは導電助剤を添加することが好ましく、電極強度の点からバインダーを添加することが好ましい。導電助剤の割合が少なすぎると十分な導電性を保つことが困難になり、電極の抵抗増加につながりやすくなる。バインダーの割合が少なすぎると集電体や活物質、導電助剤との接着力が保つことが困難になり、電極剥離が生じる場合がある。
 また、正極を構成する正極活物質層(集電体は含まない)の空孔率は、20%以下が好ましく、19%以下がより好ましく、18.3%以下がさらに好ましい。空孔率が高い(すなわち電極密度が低い)と、接触抵抗や電荷移動抵抗が大きくなる傾向があるため、このように空孔率を低くすることが好ましく、結果、電極密度も高めることができる。一方、空孔率が低すぎると(電極密度が高すぎると)、接触抵抗は低くなるが、導電助剤量によっては電荷移動抵抗が高くなったり、レート特性が低下したりするため、ある程度の空孔率を確保することが望ましい。この観点から、空孔率は12%以上あることが好ましく、13%以上がより好ましく、16%以上に設定してもよい。
 正極活物質層の空孔率を上記の範囲に設定し、導電助剤の含有量を上記の範囲に設定することにより、接触抵抗が低く且つ電荷移動抵抗の増大が抑えられた正極が得られ、二次電池のサイクル特性(特に25℃付近のサイクル特性)を向上することができる。
 空孔率とは、活物質層の全体としての見かけの体積のうち、活物質や導電助剤などの粒子が占める体積を引いた残りの体積の占める割合を意味する(下記式を参照)。よって、活物質層の厚さと単位面積当たりの質量、活物質や導電助剤などの粒子の真密度から、計算により求めることができる。
 空孔率=(活物質層の見かけの体積-粒子の体積)/(活物質層の見かけの体積)
 なお、上記式中の「粒子の体積」(活物質層に含まれる粒子の占める体積)は下記式で計算できる。
 粒子の体積=
(活物質層の単位面積当たりの重量×活物質層の面積×その粒子の含有率)÷粒子の真密度
 ここで、「活物質層の面積」は、集電体側とは反対側(セパレータ側)の平面の面積をいう。
 正極活物質層の厚みは特に限定されるものではなく、所望の特性に応じて適宜設定することができる、例えばエネルギー密度の観点からは厚く設定することができ、また出力特性の観点からは薄く設定することができる。正極活物質層の厚みは、例えば10~250μmの範囲で適宜設定でき、20~200μmが好ましく、40~180μmがより好ましい。
 正極用の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金などを用いることができる。その形状としては、箔、平板状、メッシュ状が挙げられる。特にアルミニウム箔を好適に用いることができる。
 本発明の実施形態によるリチウムイオン二次電池は、上記の正極と、負極と、非水電解液を含む。また、正極と負極との間にセパレータを設けることができる。正極と負極の電極対は複数設けることができる。
 負極活物質としては、リチウム金属、炭素質材料、Si系材料などのリチウムを吸蔵、放出できる材料を用いることができる。炭素質材料としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーンなどが挙げられる。Si系材料としては、Si、SiO、SiOx(0<x≦2)、Si含有複合材料などを用いることができ、あるいはこれらの2種以上を含む複合物を用いても構わない。
 負極活物質としてリチウム金属を用いる場合は、融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾル‐ゲル方式、などの方式により負極を形成することができる。
 負極活物質として炭素質材料やSi系材料を用いる場合は、炭素質材料(又はSi系材料)とポリビニリデンフルオライド(PVDF)等のバインダーを混合し、NMP等の溶剤中に分散混錬し、得られたスラリーを負極集電体上に塗布し、乾燥し、必要に応じてプレスすることで負極を得ることができる。また、予め負極活物質層を形成した後に、蒸着法、CVD法、スパッタリング法などの方法により集電体となる薄膜を形成して負極を得ることができる。このようにして作製される負極は、負極用集電体と、この集電体上に形成された負極極活物質層を有する。
 負極活物質の平均粒径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、2μm以上がより好ましく、5μm以上がさらに好ましく、入出力特性の観点や電極作製上の観点(電極表面の平滑性等)から、80μm以下が好ましく、40μm以下がより好ましい。ここで平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。
 負極活物質層は、必要に応じて導電助剤を含有してもよい。この導電助剤としては、カーボンブラック、ケッチェンブラック、アセチレンブラック等の炭素質材料などの一般に負極の導電助剤として使用されている導電性材料を用いることができる。
 負極用のバインダーとしては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、イソプレンゴム、ブタジエンゴム、フッ素ゴムが挙げられる。スラリー溶媒としては、N-メチル-2-ピロリドン(NMP)や水を用いることができる。水を溶媒として用いる場合、さらに増粘剤として、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコールを用いることができる。
 この負極用のバインダーの含有率は、トレードオフの関係にある結着力とエネルギー密度の観点から、負極活物質に対する含有率として0.5~30質量%の範囲にあることが好ましく、0.5~25質量%の範囲がより好ましく、1~20質量%の範囲がさらに好ましい。
 負極集電体としては、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。
 電解質としては、1種又は2種以上の非水溶媒に、リチウム塩を溶解させた非水系電解液を用いることができる。
 非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート等の環状カーボネート類;エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類;γ-ブチロラクトン等のγ-ラクトン類;1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)などの鎖状エーテル類;テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル類が挙げられる。これらの非水溶媒のうちの1種を単独で、または2種以上の混合物を使用することができる。
 非水溶媒に溶解させるリチウム塩としては、特に制限されるものではないが、例えばLiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCFCO、Li(CFSO、LiN(CFSO、リチウムビスオキサラトボレートが挙げられる。これらのリチウム塩は、一種を単独で、または二種以上を組み合わせて使用することができる。また、非水系電解質としてポリマー成分を含んでもよい。リチウム塩の濃度は、0.8~1.2mol/Lの範囲に設定することができ、0.9~1.1mol/Lが好ましい。
 セパレータとしては、樹脂製の多孔質膜、織布、不織布等を用いることができる。多孔質膜を構成する樹脂としては、例えばポリプロピレンやポリエチレン等のポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、またはナイロン樹脂等が挙げられる。特にポリオレフィン系の微多孔膜は、イオン透過性と、正極と負極とを物理的に隔離する性能に優れているため好ましい。また、必要に応じて、セパレータには無機物粒子を含む層を形成してもよく、無機物粒子としては、絶縁性の酸化物、窒化物、硫化物、炭化物などを挙げることができ、なかでもTiOやAlを含むことが好ましい。
 外装容器には可撓性フィルムからなるケースや缶ケース等を用いることができ、電池の軽量化の観点からは可撓性フィルムを用いることが好ましい。
 可撓性フィルムには、基材となる金属層の表裏面に樹脂層が設けられたものを用いることができる。金属層には、電解液の漏出や外部からの水分の浸入を防止する等のバリア性を有するものを選択することができ、アルミニウム、ステンレス鋼などを用いることができる。金属層の少なくとも一方の面には、変性ポリオレフィンなどの熱融着性樹脂層が設けられる。可撓性フィルムの熱融着性樹脂層同士を対向させ、電極積層体を収納する部分の周囲を熱融着することで外装容器が形成される。熱融着性の樹脂層が形成された面と反対側の面となる外装体表面にはナイロンフィルム、ポリエステルフィルムなどの樹脂層を設けることができる。
 電極の作製において、集電体上に活物質層を形成するための装置としては、ドクターブレードや、ダイコータ、グラビアコータ、転写方式、蒸着方式などの様々な塗布方法を実施する装置や、これらの塗布装置の組み合わせを用いることが可能である。活物質の塗布端部を精度良く形成するためには、ダイコータを用いることが特に好ましい。ダイコータによる活物質の塗布方式としては、大別して、長尺の集電体の長手方向に沿って連続的に活物質を形成する連続塗布方式と、集電体の長手方向に沿って活物質の塗布部と未塗布部を交互に繰り返して形成する間欠塗布方式の2種類があり、これらの方式を適宜選択することができる。
 本発明の実施形態によるリチウムイオン二次電池の一例(ラミネート型)の断面図を図1に示す。図1に示すように、本例のリチウムイオン二次電池は、アルミニウム箔等の金属からなる正極集電体3と、その上に設けられた正極活物質を含有する正極活物質層1とからなる正極、及び銅箔等の金属からなる負極集電体4と、その上に設けられた負極活物質を含有する負極活物質層2とからなる負極を有する。正極および負極は、正極活物質層1と負極活物質層2とが対向するように、不織布やポリプロピレン微多孔膜などからなるセパレータ5を介して積層されている。この電極対は、アルミニウムラミネートフィルムからなる外装体6、7で形成された容器内に収容されている。正極集電体3には正極タブ9が接続され、負極集電体4には負極タブ8が接続され、これらのタブは容器の外に引き出されている。容器内には電解液が注入され封止される。複数の電極対が積層された電極群が容器内に収容された構造とすることもできる。
 (実施例1)
 正極活物質に層状結晶構造を有するリチウムニッケル複合酸化物(LiNi1-x、MはCo及びMn)(BET比表面積:0.4m/g)、導電助剤にカーボンブラック(アセチレンブラック、2次粒子径D50=2.5μm、1次粒子径=150nm)、バインダーにポリフッ化ビニリデン(PVDF)を用い、質量比が正極活物質:導電助剤:バインダー=95:2:3となるようにこれらを混合して有機溶媒中に分散させたスラリーを調製した(導電助剤の正極活物質層全体に対する含有量=2質量%、導電助剤の正極活物質に対する含有量=2.1質量%)。これを正極集電体(アルミニウム箔)に塗布し、乾燥し、厚さ70μmの正極活物質層を両面に形成した。これをローラープレス機で圧延し、所定のサイズに加工して空孔率18%の正極シートを得た。
 負極活物質として表面を非晶質炭素で被覆した黒鉛を用い、バインダーとしてPVDFを用い、これらを混合して有機溶媒中に分散したスラリーを調製した。これを負極集電体(銅箔)に塗布し、乾燥し、負極活物質層を両面に形成し、所定のサイズに加工して負極シートを得た。
 作製した正極シート5枚と負極シート6枚を、厚さ25μmのポリプロピレンからなるセパレータを介して交互に積層した。これに負極端子と正極端子を取り付け、アルミラミネートフィルムからなる外装容器に収容し、リチウム塩が溶解した電解液を加え、封止して、積層型二次電池を得た。得られた二次電池について、接触抵抗および電荷移動抵抗の測定(正極の評価)、並びに容量維持率の測定(サイクル特性の評価)を行った。
 なお、電解液の溶媒としてECとDECの混合液(EC/DEC=3/7(体積比))を用い、この混合溶媒にリチウム塩としてLiPFを1mol/L溶解させた。
 (実施例2)
 導電助剤の正極活物質層全体に対する含有量を3質量%(導電助剤の正極活物質に対する含有量=3.1質量%、正極活物質の正極活物質層中の含有率=94質量%)に変えた以外は、実施例1と同様にして正極シートを作製し、この正極シートを用い、実施例1と同様にして二次電池を作製した。得られた二次電池について、接触抵抗および電荷移動抵抗の測定(正極の評価)、並びに容量維持率の測定(サイクル特性の評価)を行った。
 (実施例3)
 導電助剤の正極活物質層全体に対する含有量を4質量%(導電助剤の正極活物質に対する含有量=4.3質量%、正極活物質の正極活物質層中の含有率=93質量%、)に変えた以外は、実施例1と同様にして正極シートを作製し、この正極シートを用い、実施例1と同様にして二次電池を作製した。得られた二次電池について、接触抵抗および電荷移動抵抗の測定(正極の評価)、並びに容量維持率の測定(サイクル特性の評価)を行った。
 (比較例1)
 空孔率が33%になるように圧延した以外は実施例1と同様にして正極シートを作製し、この正極シートを用い、実施例1と同様にして二次電池を作製した。得られた二次電池について、接触抵抗および電荷移動抵抗の測定(正極の評価)、並びに容量維持率の測定(サイクル特性の評価)を行った。
 (比較例2)
 導電助剤の正極活物質層全体に対する含有量を3質量%(導電助剤の正極活物質に対する含有量=3.1質量%)に変えた以外は、比較例1と同様にして正極シートを作製し、この正極シートを用い、比較例1と同様にして二次電池を作製した。得られた二次電池について、接触抵抗および電荷移動抵抗の測定(正極の評価)、並びに容量維持率の測定(サイクル特性の評価)を行った。
 (比較例3)
 導電助剤の正極活物質層全体に対する含有量を4質量%(導電助剤の正極活物質に対する含有量=4.3質量%)に変えた以外は、比較例1と同様にして正極シートを作製し、この正極シートを用い、比較例1と同様にして二次電池を作製した。得られた二次電池について、接触抵抗および電荷移動抵抗の測定(正極の評価)、並びに容量維持率の測定(サイクル特性の評価)を行った。
 (空孔率の決定)
 空孔率とは、前述の通り、活物質層全体の見かけの体積のうち、活物質や導電助剤などの粒子が占める体積を引いた残りの体積が占める割合を意味する。よって、活物質層の厚さと、単位面積当たりの質量、活物質と導電助剤の真密度から、以下の式に従って求めた。
 空孔率(%)=100×(活物質層の見かけの体積-粒子の体積)/(活物質層の見かけの体積)
 (接触抵抗と電荷移動抵抗の測定)
 得られた二次電池を4.15Vまで充電し、周波数応答アナライザおよびポテンショ/ガルバノスタットを用いてインピーダンス測定を行い、接触抵抗と電荷移動抵抗を算出した。
 (容量維持率の測定)
 得られた二次電池について次の条件でサイクル試験を行った。
 CC-CV充電(上限電圧4.15V、電流1C、CV時間1.5時間)、CC放電(下限電圧2.5V、電流1C)、充放電時の環境温度:25℃。
 1サイクル目の放電容量に対する200サイクル目の放電容量の割合を容量維持率とした。
Figure JPOXMLDOC01-appb-T000001
 上記の実施例1~3の評価結果が示すように、導電助剤の含有量が正極活物質に対して1.8~6質量%の範囲にあり、空孔率が20%以下である正極活物質層を備えた二次電池は、空孔率が20%より大きい活物質層を備えた二次電池(比較例1~3)に対して、接触抵抗が低く且つ電荷移動抵抗の増大が抑えられ、容量維持率が高いことが分かる。
 特定のBET比表面積(0.1~1m/g)を持つ正極活物質と、球状非晶質カーボン粒子で構成された導電助剤を用いて形成され、この導電助剤を特定量(1.8~6質量%)含む正極活物質層は、空孔率が20%以下の高密度な状態において、導電助剤が、活物質粒子に対して適度な体積比率で存在でき、活物質粒子間に良好に分散配置できる。そのため、接触抵抗が低く且つ電荷移動抵抗の増大が抑えられた正極を得ることができる。このような正極を用いることにより、エネルギー密度が高く、良好なサイクル特性を有する電池を提供できる。
 以上、実施の形態および実施例を参照して本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2015年9月30日に出願された日本出願特願2015-193413を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 正極活物質層
 2 負極活物質層
 3 正極集電体
 4 負極集電体
 5 セパレータ
 6 ラミネート外装体
 7 ラミネート外装体
 8 負極タブ
 9 正極タブ

Claims (10)

  1.  集電体と、該集電体上の正極活物質層を含むリチウムイオン二次電池用正極であって、
     前記正極活物質層は、正極活物質と、導電助剤と、バインダーを含み、
     該正極活物質層の空孔率が20%以下であり、
     前記正極活物質がリチウム複合酸化物を含み、該正極活物質のBET比表面積が0.1~1m/gであり、
     前記導電助剤の少なくとも一部が球状非晶質カーボン粒子で構成され、
     前記導電助剤の含有量が、前記正極活物質に対して1.8~6質量%である、リチウムイオン二次電池用正極。
  2.  前記正極活物質層の空孔率が12%以上20%以下である、請求項1に記載の正極。
  3.  前記正極活物質層の空孔率が13%以上19%以下である、請求項1に記載の正極。
  4.  前記正極活物質のBET比表面積が0.3~0.5m/gである、請求項1から3のいずれか一項に記載の正極。
  5.  前記リチウム複合酸化物が、層状結晶構造を有するニッケル含有リチウム複合酸化物である、請求項1から4のいずれか一項に記載の正極。
  6.  前記リチウム複合酸化物が、下記式(1)
      LiNi1-x       (1)
    (式中、Mは、Li、Co、Mn、Mg、Alから選ばれる少なくとも一種であり、0<a≦1、0<x<0.7)
    で表される化合物である、請求項5に記載の正極。
  7.  前記導電助剤の含有量が、前記正極活物質に対して2~5質量%である、請求項1から6のいずれか一項に記載の正極。
  8.  前記導電助剤の平均粒径(D50)が3.5μm以下である、請求項1から7のいずれか一項に記載の正極。
  9.  前記導電助剤がカーボンブラックである、請求項1から8のいずれか一項に記載の正極。
  10.  請求項1から9のいずれかに記載の正極と、負極と、非水電解液とを含むリチウムイオン二次電池。
PCT/JP2016/077858 2015-09-30 2016-09-21 リチウムイオン二次電池用正極及びリチウムイオン二次電池 WO2017057134A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16851308.3A EP3358652B1 (en) 2015-09-30 2016-09-21 Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
CN201680053752.1A CN108028361B (zh) 2015-09-30 2016-09-21 用于锂离子二次电池的正极以及锂离子二次电池
JP2017543184A JP6903261B2 (ja) 2015-09-30 2016-09-21 リチウムイオン二次電池用正極及びリチウムイオン二次電池
US15/751,187 US20200220171A1 (en) 2015-09-30 2016-09-21 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-193413 2015-09-30
JP2015193413 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057134A1 true WO2017057134A1 (ja) 2017-04-06

Family

ID=58427407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077858 WO2017057134A1 (ja) 2015-09-30 2016-09-21 リチウムイオン二次電池用正極及びリチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20200220171A1 (ja)
EP (1) EP3358652B1 (ja)
JP (1) JP6903261B2 (ja)
CN (1) CN108028361B (ja)
WO (1) WO2017057134A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023520277A (ja) * 2021-03-05 2023-05-17 寧徳新能源科技有限公司 電気化学装置及び電子装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7057325B2 (ja) * 2019-07-18 2022-04-19 トヨタ自動車株式会社 非水電解質二次電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011002013A1 (ja) * 2009-06-30 2011-01-06 日本ゼオン株式会社 非水電解質二次電池電極用活物質及び非水電解質二次電池
JP2014116217A (ja) * 2012-12-11 2014-06-26 Toyota Industries Corp リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2015135822A (ja) * 2012-09-24 2015-07-27 三洋電機株式会社 密閉型非水電解質二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195844B2 (en) * 2002-03-28 2007-03-27 Tdk Corporation Lithium secondary battery
JP5184846B2 (ja) * 2007-08-28 2013-04-17 株式会社東芝 非水電解液電池および電池パック
JP2012023015A (ja) * 2010-01-08 2012-02-02 Mitsubishi Chemicals Corp リチウム二次電池用正極材料用粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
KR20120112712A (ko) * 2010-02-03 2012-10-11 제온 코포레이션 리튬 이온 이차 전지 부극용 슬러리 조성물, 리튬 이온 이차 전지 부극 및 리튬 이차 전지
US9553310B2 (en) * 2010-10-15 2017-01-24 Toyota Jidosha Kabushiki Kaisha Secondary battery
US9960416B2 (en) * 2010-12-17 2018-05-01 Sumitomo Osaka Cement Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and battery module
CN102509790B (zh) * 2011-10-20 2014-02-12 四川天齐锂业股份有限公司 具有特定形貌结构的磷酸亚铁锂正极材料及锂二次电池
JP2013196781A (ja) * 2012-03-15 2013-09-30 Nissan Motor Co Ltd 電気デバイス用正極およびこれを用いた電気デバイス
KR101570975B1 (ko) * 2012-11-21 2015-11-23 주식회사 엘지화학 리튬 이차전지
US9608261B2 (en) * 2013-03-15 2017-03-28 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6137554B2 (ja) * 2014-08-21 2017-05-31 トヨタ自動車株式会社 非水電解質二次電池および該電池用のセパレータ
WO2016031690A1 (ja) * 2014-08-25 2016-03-03 日産自動車株式会社 電極

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011002013A1 (ja) * 2009-06-30 2011-01-06 日本ゼオン株式会社 非水電解質二次電池電極用活物質及び非水電解質二次電池
JP2015135822A (ja) * 2012-09-24 2015-07-27 三洋電機株式会社 密閉型非水電解質二次電池
JP2014116217A (ja) * 2012-12-11 2014-06-26 Toyota Industries Corp リチウムイオン二次電池用正極及びリチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023520277A (ja) * 2021-03-05 2023-05-17 寧徳新能源科技有限公司 電気化学装置及び電子装置

Also Published As

Publication number Publication date
EP3358652B1 (en) 2020-11-18
EP3358652A1 (en) 2018-08-08
EP3358652A4 (en) 2019-04-10
CN108028361A (zh) 2018-05-11
JP6903261B2 (ja) 2021-07-14
CN108028361B (zh) 2021-05-14
US20200220171A1 (en) 2020-07-09
JPWO2017057134A1 (ja) 2018-07-19

Similar Documents

Publication Publication Date Title
JP6545663B2 (ja) リチウムイオン二次電池用黒鉛系負極活物質材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6903260B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2017082083A1 (ja) リチウムイオン二次電池及びその製造方法
JP6685940B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6560879B2 (ja) リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP7281570B2 (ja) 非水電解液二次電池およびその製造方法
JP6995738B2 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6542755B2 (ja) リチウムイオン二次電池用黒鉛系活物質材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JPWO2018180017A1 (ja) 電池用電極及びリチウムイオン二次電池
JP6697377B2 (ja) リチウムイオン二次電池
JP6808948B2 (ja) 非水系リチウムイオン二次電池用負極、その製法及び非水系リチウムイオン二次電池
JP2010097751A (ja) 非水二次電池
JP2019175657A (ja) リチウムイオン二次電池。
JP2017091886A (ja) 非水電解液二次電池
WO2015025887A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP7270833B2 (ja) 高ニッケル電極シートおよびその製造方法
WO2017056585A1 (ja) 正極活物質、正極およびリチウムイオン二次電池
JP6903261B2 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2019530183A (ja) スペーサ含有電極構造およびその高エネルギー密度および急速充電可能なリチウムイオン電池への応用
WO2018135253A1 (ja) 正極活物質、正極およびリチウムイオン二次電池
JP2018097935A (ja) 炭素質材料、リチウム二次電池および炭素質材料の製造方法
WO2019188092A1 (ja) リチウムイオン二次電池及びその製造方法
JP2017152295A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543184

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE