WO2019188092A1 - リチウムイオン二次電池及びその製造方法 - Google Patents

リチウムイオン二次電池及びその製造方法 Download PDF

Info

Publication number
WO2019188092A1
WO2019188092A1 PCT/JP2019/009135 JP2019009135W WO2019188092A1 WO 2019188092 A1 WO2019188092 A1 WO 2019188092A1 JP 2019009135 W JP2019009135 W JP 2019009135W WO 2019188092 A1 WO2019188092 A1 WO 2019188092A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
secondary battery
lithium
negative electrode
Prior art date
Application number
PCT/JP2019/009135
Other languages
English (en)
French (fr)
Inventor
牧子 高橋
Original Assignee
株式会社エンビジョンAescエナジーデバイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンビジョンAescエナジーデバイス filed Critical 株式会社エンビジョンAescエナジーデバイス
Publication of WO2019188092A1 publication Critical patent/WO2019188092A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery and a manufacturing method thereof.
  • lithium ion secondary batteries Since lithium ion secondary batteries have high energy density and excellent charge / discharge cycle characteristics, they are widely used as power sources for small mobile devices such as mobile phones and laptop computers. Also, in recent years, due to consideration for environmental problems and increased awareness of energy saving, a large capacity and long life such as a storage battery for a vehicle such as an electric vehicle or a hybrid electric vehicle, and a power storage system such as a household power storage system are required. Demand for large power supplies is also increasing.
  • Patent Document 1 discloses a composition formula LiNi 1-X in which the peak intensity at an interplanar spacing of 4.72 ⁇ 0.03 ⁇ ⁇ ⁇ ⁇ is 1.2 times or more of the peak intensity at an interplanar spacing of 2.03 ⁇ 0.02 ⁇ ⁇ ⁇ ⁇ in X-ray analysis.
  • a composite oxide given by M X O 2 (M is an element that can be a cation other than Ni that partially replaces Ni in LiNiO 2 , 0 ⁇ X ⁇ 0.5) as a positive electrode active material;
  • a lithium battery containing lithium or a compound thereof as a negative electrode active material is described.
  • the invention described in this patent document aims to solve the problem that the charge / discharge capacity of the high-voltage part is insufficient and the storage characteristics are poor, and to provide a lithium battery having a large charge / discharge energy and excellent storage characteristics. Yes.
  • Patent Document 2 includes a positive electrode using a composite oxide containing lithium as a positive electrode active material, a negative electrode using a carbonaceous material that can be doped / dedoped with lithium as a negative electrode active material, and a non-aqueous electrolyte.
  • the positive electrode active material is represented by Li 1-x Ni y Co 1-y O 2 (0.50 ⁇ y ⁇ 1.00), and the x value at the end of charging is
  • a non-aqueous electrolyte secondary battery comprising a lithium / nickel / cobalt composite oxide set to 0.65 ⁇ x ⁇ 0.92 is described.
  • An object of the invention described in this patent document is to provide a non-aqueous electrolyte secondary battery capable of obtaining excellent cycle characteristics while ensuring battery capacity and having a large accumulated energy until the end of its life. It is said.
  • the intensity of the diffraction line on the (003) plane I 003 expressed by the composition formula LiMn x Ni 1-x O 2 (0.05 ⁇ x ⁇ 0.3) and (003) and ( positive electrode and the lithium capable of absorbing and desorbing carbon containing lithium composite oxide ratio I 003 / I 104 is 1.0 or more and 1.6 or less between the intensity I 104 of diffraction line 104) plane as the positive electrode active material
  • a lithium secondary battery having a negative electrode including a material as a negative electrode active material is described.
  • An object of the invention described in this patent document is to provide a lithium secondary battery having good cycle characteristics.
  • Patent Document 4 includes a positive electrode including a lithium nickel composite oxide having a layered rock salt structure as a positive electrode active material, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, an electrolyte, and an exterior body.
  • the nickel composite oxide is represented by a composition formula LiNi x M 1-x O 2 (x represents a value of 0.75 to 1, and M represents at least one metal element occupying nickel sites other than Ni).
  • a lithium ion secondary battery is described that has a crystal phase with a face spacing d (003) greater than the face spacing d (003) during full discharge when fully charged.
  • An object of the invention described in this patent document is to provide a lithium secondary battery having good input / output characteristics.
  • an object of the present invention is to provide a lithium ion secondary battery having a high energy density and good cycle characteristics.
  • a positive electrode including a lithium nickel composite oxide having a layered rock salt structure as a positive electrode active material, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, an electrolytic solution, and an exterior body are provided.
  • a lithium ion secondary battery characterized by being in the range of ° to 0.3 ° is provided.
  • a positive electrode including a lithium nickel composite oxide having a layered rock salt structure as a positive electrode active material, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, an electrolyte, and an outer package
  • a method for producing a lithium ion secondary battery comprising: Forming a positive electrode; Forming a negative electrode; Containing the positive electrode, the negative electrode, and the electrolytic solution in the outer package;
  • a lithium ion secondary battery includes a positive electrode including a lithium nickel composite oxide having a layered rock salt structure as a positive electrode active material, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, an electrolyte, Includes exterior body.
  • the present inventor has found that a secondary battery excellent in cycle characteristics can be obtained while securing a high energy density, and has completed the present invention.
  • one of the main features is that a lithium nickel composite oxide having a layered rock salt structure represented by the following composition formula is used as the positive electrode active material.
  • the nickel content (x) is a high content of 0.75 or more, it contributes to higher energy density.
  • the metal elements other than nickel occupying nickel sites are cobalt (Co) and aluminum (Al), and these contain at a ratio (y, z) in the above composition formula, thereby contributing to improvement of cycle characteristics. is doing.
  • x, y, and z are preferably 0.75 ⁇ x ⁇ 0.90, 0.05 ⁇ y ⁇ 0.20, and 0.02 ⁇ z ⁇ 0.15, respectively. More preferably, .75 ⁇ x ⁇ 0.85, 0.10 ⁇ y ⁇ 0.20, and 0.02 ⁇ z ⁇ 0.10.
  • the lithium ion secondary battery according to the embodiment of the present invention has, as one of main features, the H2 phase (003) peak position P2 (2 ⁇ ) at the time of full charge and the H1 phase at the time of complete discharge by X-ray diffraction.
  • the crystal structure can be stabilized by making the c-axis lengths as close as possible during charging and discharging, and as a result, cycle characteristics can be improved.
  • This difference ⁇ 2 ⁇ is preferably in the range of ⁇ 0.2 ° to 0.2 °, and more preferably in the range of ⁇ 0.2 ° to 0.1 °.
  • the charging upper limit voltage of the lithium ion secondary battery according to the present embodiment is in the range of 4.25 to 4.45 V (vs. Li / Li + ) when the lithium nickel composite oxide represented by the above composition formula is used.
  • it is in the range of 4.25 to 4.4 V (vs. Li / Li + ), more preferably in the range of 4.25 to 4.35 V (vs. Li / Li + ).
  • a high energy density can be realized.
  • the charging upper limit voltage is set to be within a range of 3 °.
  • This charging upper limit voltage is preferably set so that ⁇ 2 ⁇ is in the range of ⁇ 0.2 ° to 0.2 °, and is set so that ⁇ 2 ⁇ is in the range of ⁇ 0.2 ° to 0.1 °. It is more preferable. Further, it is preferable to set the range of the charging upper limit voltage 4.25 ⁇ 4.45V (vs.Li/Li +), set in the range of 4.25 ⁇ 4.4V (vs.Li/Li +) It is more preferable to set it in the range of 4.25 to 4.35 V (vs. Li / Li + ).
  • the nickel content (x) is a high content of 0.75 or more, which contributes to a higher energy density.
  • the metal elements other than nickel occupying nickel sites are cobalt (Co) and aluminum (Al), and they are contained in the ratios (y, z) of the above composition formula, thereby contributing to improvement of cycle characteristics.
  • x, y, and z are preferably 0.75 ⁇ x ⁇ 0.90, 0.05 ⁇ y ⁇ 0.20, and 0.02 ⁇ z ⁇ 0.15, respectively.
  • the crystal structure can be stabilized by making the c-axis length as close as possible during charge and discharge, and as a result, cycle characteristics can be improved.
  • the electrolytic solution preferably contains at least one selected from fluorinated ether, fluorinated phosphate ester, and cyclic sulfonate ester. These components can improve the oxidation resistance of the electrolytic solution, and can suppress an increase in the amount of gas generated due to an increase in charging voltage and an increase in resistance at the electrode (particularly on the positive electrode side).
  • the lithium nickel composite oxide in the positive electrode can be analyzed by an X-ray diffraction method.
  • X-ray analysis method in-situ XRD (X-ray diffraction) measurement focusing on diffraction from the (003) plane of the lithium nickel composite oxide can be performed.
  • an X-ray diffraction pattern can be obtained by irradiating X-rays in the process of charging a cell by applying a voltage.
  • FIG. 2 shows an X-ray diffraction pattern (the horizontal axis is the diffraction angle (2 ⁇ ) and the vertical axis is the diffraction intensity) obtained in Examples described later.
  • the H1 phase (003) peak when 2 ⁇ before charging (during complete discharge) is around 20.1 °
  • the strength decreases with increasing voltage. Accordingly, the H2 phase (003) peak appears on the low angle side (within 2 ⁇ of 19.5 to 20 °) with respect to the H1 phase (003) peak position, and the intensity gradually increases.
  • the H2 phase (003) peak shifts to the higher angle side as it approaches 4.4V, and overlaps the H1 phase (003) peak position near 4.4V. Further, when the voltage is increased, the H2 phase (003) peak is shifted to a higher angle side than the H1 phase (003) peak. At 5.2 V, the H3 phase (003) peak can be observed as a shoulder on the high angle side.
  • Such a change in the H2 phase (003) peak accompanying the charging voltage indicates that the c-axis extends at the beginning of charging and contracts at the end of charging.
  • the H2 phase (003) peak position (2 ⁇ ) coincides with the H1 phase (003) peak position (2 ⁇ ) in the discharged state.
  • the voltage in the matched state is the upper limit voltage (end voltage)
  • 1.54 mm
  • is preferably in the range of ⁇ 0.3 ° to 0.3 °, more preferably in the range of ⁇ 0.2 ° to 0.2 °, and ⁇ 0.2 ° to A range of 0.1 ° is particularly preferable.
  • full charge means that the battery voltage has reached the upper limit voltage
  • complete discharge means that the battery voltage has reached the lower limit voltage (end voltage).
  • the upper limit voltage and lower limit voltage are generally determined theoretically depending on the battery material, but in order to suppress battery deterioration, a voltage lower than the theoretical upper limit voltage can be set as the upper limit voltage. A voltage exceeding the voltage can be set as the lower limit voltage.
  • the charging rate (SOC) is the ratio (%) of the remaining capacity to the full charge capacity.
  • the full charge capacity is the total amount of electric charge that is discharged when the battery is completely discharged from a full charge at a specified temperature (for example, 25 ° C.) and a constant current. The amount of charge can be obtained by integrating the current (constant).
  • the full charge capacity can be the full charge capacity at the time of initial charge (Initial Full Charge Charge Capacity).
  • the lower limit voltage in the lithium ion secondary battery and the method for producing the same is preferably in the range of 2 to 3.5 V (vs. Li / Li + ), preferably in the range of 2 to 3 V (vs. Li / Li + ). More preferably, it is in the range of 2.5 to 3 V (vs. Li / Li + ).
  • the lithium ion secondary battery according to the embodiment of the present invention can have the following preferred configuration.
  • the positive electrode preferably has a structure including a current collector and a positive electrode active material layer formed on the current collector.
  • the positive electrode active material layer contains the lithium nickel composite oxide having the above layered rock salt structure from the viewpoint of increasing the energy density.
  • the positive electrode active material layer may contain an active material other than this lithium nickel composite oxide, but from the viewpoint of energy density, the content of this lithium nickel composite oxide is preferably 80% by mass or more. More preferably, it is more preferably 95% by mass or more.
  • the BET specific surface area of the positive electrode active material (based on measurement at 77 K by the nitrogen adsorption method) is preferably in the range of 0.1 to 1 m 2 / g, more preferably 0.3 to 0.5 m 2 / g. .
  • the specific surface area of the positive electrode active material is excessively small, the particle size is large, so that cracking is likely to occur during pressing or cycling during electrode production, and there is a tendency for characteristic deterioration to be noticeable. It becomes difficult.
  • the specific surface area is excessively large, the necessary amount of the conductive auxiliary agent brought into contact with the active material increases, and as a result, it is difficult to increase the energy density.
  • the specific surface area of the positive electrode active material is in the above range, an excellent positive electrode can be obtained from the viewpoint of energy density and cycle characteristics.
  • the average particle diameter of the positive electrode active material is preferably 0.1 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, and further preferably 2 to 25 ⁇ m.
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the positive electrode active material layer can be formed as follows. First, it can be formed by preparing a slurry containing a positive electrode active material, a binder, and a solvent (and optionally a conductive auxiliary agent), applying the slurry onto a positive electrode current collector, drying it, and pressing it as necessary. N-methyl-2-pyrrolidone (NMP) can be used as a slurry solvent used in preparing the positive electrode.
  • NMP N-methyl-2-pyrrolidone
  • binder those that can be used as a normal positive electrode binder, such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), can be used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the content of the binder in the positive electrode active material layer is preferably 1 to 15% by mass, more preferably 1 to 10% by mass, from the viewpoints of binding force and energy density which are in a trade-off relationship.
  • a higher proportion of the positive electrode active material in the positive electrode active material layer is preferable because the capacity per mass increases.
  • a conductive auxiliary agent from the viewpoint of electrode strength.
  • a binder it is preferable to add a binder. If the proportion of the conductive auxiliary agent is too small, it becomes difficult to maintain sufficient conductivity, and the resistance of the electrode is likely to increase. When the ratio of the binder is too small, it becomes difficult to maintain the adhesive force with the current collector, the active material, and the conductive additive, and electrode peeling may occur.
  • Examples of the conductive aid include carbon black such as acetylene black.
  • the content of the conductive additive in the active material layer can be set in the range of 1 to 10% by mass.
  • the porosity of the positive electrode active material layer (not including the current collector) constituting the positive electrode is preferably 30% or less, and more preferably 20% or less.
  • the porosity is high (that is, the electrode density is low), the contact resistance and the charge transfer resistance tend to increase. Therefore, it is preferable to reduce the porosity in this way, and as a result, the electrode density can also be increased.
  • the porosity is too low (the electrode density is too high), the contact resistance will be low, but the charge transfer resistance will be high and the rate characteristics will be lowered, so a certain degree of porosity will be secured. It is desirable. From this viewpoint, the porosity is preferably 10% or more, more preferably 12% or more, and may be set to 15% or more.
  • the “particle volume” (volume occupied by particles contained in the active material layer) in the above formula can be calculated by the following formula.
  • Particle volume (Weight per unit area of active material layer ⁇ area of active material layer ⁇ content ratio of particles) ⁇ true density of particles
  • area of active material layer is the side opposite to the current collector side (separator side) ) Plane area.
  • the thickness of the positive electrode active material layer is not particularly limited, and can be appropriately set according to desired characteristics. For example, it can be set thick from the viewpoint of energy density, and thin from the viewpoint of output characteristics. Can be set.
  • the thickness of the positive electrode active material layer can be appropriately set, for example, in the range of 10 to 250 ⁇ m, preferably 20 to 200 ⁇ m, and more preferably 40 to 180 ⁇ m.
  • the current collector for the positive electrode aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • the shape include foil, flat plate, and mesh.
  • an aluminum foil can be suitably used.
  • a lithium ion secondary battery includes the positive electrode, the negative electrode, and a non-aqueous electrolyte (for example, an electrolytic solution in which a lithium salt is dissolved).
  • a separator can be provided between the positive electrode and the negative electrode.
  • a plurality of pairs of positive and negative electrodes can be provided.
  • the negative electrode active material materials capable of inserting and extracting lithium, such as lithium metal, carbonaceous material, and Si-based material, can be used.
  • the carbonaceous material include graphite, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, and carbon nanohorn.
  • Si-based material Si, SiO 2 , SiOx (0 ⁇ x ⁇ 2), a Si-containing composite material, or the like may be used, or a composite containing two or more of these may be used.
  • melt cooling method liquid quenching method, atomization method, vacuum deposition method, sputtering method, plasma CVD method, photo CVD method, thermal CVD method, sol-gel method, etc.
  • a negative electrode can be formed.
  • a carbonaceous material or Si-based material is used as the negative electrode active material
  • a carbonaceous material (or Si-based material) and a binder such as polyvinylidene fluoride (PVDF) are mixed and dispersed and kneaded in a solvent such as NMP.
  • the negative electrode can be obtained by applying the obtained slurry onto a negative electrode current collector, drying, and pressing as necessary.
  • a negative electrode can be obtained by forming a thin film to be a current collector by a method such as vapor deposition, CVD, or sputtering.
  • the negative electrode produced in this way has a negative electrode current collector and a negative electrode active material layer formed on the current collector.
  • the average particle size of the negative electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, further preferably 5 ⁇ m or more, from the viewpoint of input / output characteristics, from the viewpoint of suppressing side reactions during charge / discharge and suppressing reduction in charge / discharge efficiency. And from the viewpoint of electrode production (smoothness of the electrode surface, etc.), it is preferably 80 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the average particle diameter means a particle diameter (median diameter: D 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
  • the negative electrode active material layer may contain a conductive aid as necessary.
  • a conductive material generally used as a negative electrode conductive auxiliary agent such as carbonaceous material such as carbon black, ketjen black, and acetylene black can be used.
  • the binder for the negative electrode is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer.
  • PVdF polyvinylidene fluoride
  • Examples include rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, isoprene rubber, butadiene rubber, and fluorine rubber. .
  • NMP N-methyl-2-pyrrolidone
  • water carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, and polyvinyl alcohol can be used as a thickener.
  • the content of the binder for the negative electrode is preferably in the range of 0.5 to 30% by mass as the content with respect to the negative electrode active material from the viewpoint of the binding force and energy density which are in a trade-off relationship,
  • the range of ⁇ 25% by mass is more preferred, and the range of 1 ⁇ 20% by mass is more preferred.
  • the negative electrode current collector copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • Electrode As the electrolytic solution, a nonaqueous electrolytic solution in which a lithium salt is dissolved in one or two or more nonaqueous solvents can be used.
  • Non-aqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, butylene carbonate; ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), etc.
  • Chain carbonates Aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; ⁇ -lactones such as ⁇ -butyrolactone; 1,2-ethoxyethane (DEE), ethoxymethoxyethane (EME), etc.
  • chain ethers such as tetrahydrofuran and 2-methyltetrahydrofuran.
  • One of these non-aqueous solvents can be used alone, or a mixture of two or more can be used.
  • lithium salt dissolved in the nonaqueous solvent is not particularly limited, for example LiPF 6, LiAsF 6, LiAlCl 4 , LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (SO 2 F) 2 , and lithium bisoxalatoborate are included. These lithium salts can be used individually by 1 type or in combination of 2 or more types. Moreover, a polymer component may be included as a non-aqueous electrolyte. The concentration of the lithium salt can be set in the range of 0.8 to 1.2 mol / L, and preferably 0.9 to 1.1 mol / L.
  • the electrolytic solution preferably contains an oxidation resistance improver.
  • the oxidation resistance improver preferably contains at least one selected from a fluorinated ether compound, a fluorinated phosphate ester compound, and a cyclic sulfonate ester.
  • fluorinated ether compound examples include the following fluorine-containing chain ether compounds.
  • the fluorine-containing chain ether compound is a compound in which part or all of hydrogen in the chain ether compound is substituted with fluorine.
  • fluorine-containing chain ether compound When the fluorine-containing chain ether compound is used, the oxidation resistance of the electrolytic solution is increased, and is particularly suitable for a battery including a positive electrode that operates at a high potential.
  • Fluorine-containing chain ether compounds have higher oxidation resistance as the number of fluorine substitutions increases. However, when the number of fluorine substitutions is too large, reductive decomposition tends to occur, and the electrolyte solution decomposes on the negative electrode side.
  • the ratio of the number of fluorine atoms to the sum of the number of hydrogen atoms and the number of fluorine atoms in the fluorine-containing chain ether compound is preferably 30% or more and 95% or less, and 40% or more and 90% or less. More preferably, it is 50% or more and 85% or less.
  • the number of carbon atoms of the fluorine-containing chain ether compound is not particularly limited, but is preferably 4 or more and 10 or less, and more preferably 5 or more and 10 or less.
  • the boiling point and melting point of the fluorine-containing chain ether compound vary depending on the number of carbon atoms, but it is preferable that the total number of carbon atoms is 4 or more because the liquid is in the temperature range of actual operation of the secondary battery. Further, it is preferable that the total number of carbon atoms is 10 or less because the viscosity does not become too high and good conductivity of lithium ions can be obtained.
  • the alkyl group bonded to the oxygen atom of the fluorine-containing chain ether compound may be linear or branched, but is preferably linear.
  • fluorine-containing chain ether compound examples include 2,2,3,3,3-pentafluoropropyl 1,1,2,2-tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl 2, 2,2-trifluoroethyl ether, 1H, 1H, 2'H, 3H-decafluorodipropyl ether, 1,1,1,2,3,3-hexafluoropropyl-2,2-difluoroethyl ether, isopropyl 1,1,2,2-tetrafluoroethyl ether, propyl 1,1,2,2-tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether 1H, 1H, 5H-perfluoropentyl-1,1,2,2-tetrafluoroethyl ether, 1H, 1H, 2′H-perfluoro Propyl ether,
  • 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether 1H, 1H, 2'H, 3H-decafluorodipropyl ether, 1H, 1H, 5H- Octafluoropentyl 1,1,2,2-tetrafluoroethyl ether, ethyl 1,1,2,3,3,3-hexafluoropropyl ether, 1H, 1H, 2′H-perfluorodipropyl ether, bis ( 2,2,3,3-tetrafluoropropyl) ether is preferred, and 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether is more preferred.
  • the fluorinated ether is preferably a compound represented by the following formula. H- (CY 1 Y 2 -CY 3 Y 4 ) n -CH 2 O-CY 5 Y 6 -CY 7 Y 8 -H
  • n is 1, 2, 3 or 4.
  • Y 1 to Y 8 are each independently a fluorine atom or a hydrogen atom. However, at least one of Y 1 to Y 4 is a fluorine atom, and at least one of Y 5 to Y 8 is a fluorine atom. Y 1 to Y 4 may be independent for each unit of n.
  • the content of the fluorine-containing chain ether compound (the total content when used in combination with the fluorine-containing phosphate compound) is determined based on the solvent (this fluorine-containing chain ether compound and the fluorine-containing phosphate ester compound) constituting the electrolyte solution. In the range of 1 to 95% by volume, preferably 5% by volume or more, more preferably 10% by volume or more, particularly preferably 20% by volume or more, and 90% by volume or less. More preferably, it is 80 volume% or less, and you may set to 70 volume% or less.
  • By sufficiently containing 1% by volume or more of the fluorine-containing chain ether compound oxidation resistance can be improved, and low temperature characteristics and electrical conductivity can be improved.
  • compatibility with other solvent components can be improved, and battery characteristics can be stably obtained.
  • the fluorine-containing phosphate compound used in the present invention is preferably a compound represented by the following formula (3).
  • R 31 , R 32 and R 33 each independently represents an alkyl group having 1 to 5 carbon atoms or a fluorine-substituted alkyl group having 1 to 5 carbon atoms, and at least one of these is fluorine-substituted It is an alkyl group.
  • the oxidation resistance of the electrolytic solution can be enhanced, and the compatibility with other solvent components and the ionic conductivity of the electrolytic solution can be enhanced.
  • a fluorine-containing phosphate compound is used as an electrolyte solution solvent for a battery including a positive electrode that operates at a high potential, decomposition of the electrolyte solution at a high potential is suppressed, which is preferable.
  • the fluorine-containing phosphate ester compound has higher oxidation resistance as the number of fluorine substitutions increases.
  • the ratio of the number of fluorine atoms to the sum of the number of hydrogen atoms and the number of fluorine atoms in the fluorine-containing phosphate compound is preferably 30% or more and 100% or less, and 35% or more and 95% or less. More preferably, it is 40% or more and 90% or less.
  • a fluorine-containing phosphate compound represented by the following formula (3-1) is particularly preferable.
  • each Ra independently represents a fluorine-substituted alkyl group having 1 to 4 carbon atoms. ]
  • the three Ra are preferably the same fluorine-substituted alkyl group, and Ra preferably has 1 to 3 carbon atoms. Further, Ra preferably has at least one fluorine atom bonded to each carbon atom.
  • fluorine-containing phosphate compound used in the present invention examples include 2,2,2-trifluoroethyldimethyl phosphate, bis (trifluoroethyl) methyl phosphate, bis (trifluoroethyl) ethyl phosphate, and phosphoric acid.
  • Tris (trifluoromethyl), pentafluoropropyldimethyl phosphate, heptafluorobutyldimethyl phosphate, trifluoroethyl methyl ethyl phosphate, pentafluoropropyl methyl ethyl phosphate, heptafluorobutyl methyl ethyl phosphate, trifluoroethyl phosphate Methylpropyl, pentafluoropropylmethylpropyl phosphate, heptafluorobutylmethylpropyl phosphate, trifluoroethylmethylbutyl phosphate, pentafluoropropylmethylbutyl phosphate, heptafluorobutylmethylbutyl phosphate, Trifluoroethyl diethyl phosphate, pentafluoropropyl diethyl phosphate, heptafluorobutyl diethyl
  • tris phosphate (2,2,2-trifluoroethyl) and tris phosphate (1H, 1H-heptafluorobutyl) are preferable, and tris phosphate (2,2,2-trifluoroethyl) is particularly preferable. preferable.
  • fluorine-containing phosphate ester compounds can be used singly or in combination of two or more.
  • the content of the fluorine-containing phosphate ester compound (the total content when used in combination with the above-mentioned fluorine-containing chain ether) is the solvent constituting the electrolyte (this fluorine-containing phosphate ester compound and the fluorine-containing chain ether are solvents) 1 to 95% by volume, preferably 5% by volume or more, more preferably 10% by volume or more, particularly preferably 20% by volume or more, and more preferably 90% by volume or less.
  • 80 volume% or less is more preferable, and you may set to 70 volume% or less.
  • the oxidation resistance can be improved, and the low-temperature characteristics and conductivity can also be improved.
  • the compatibility with other solvent components can be improved and the battery characteristics can be stably obtained.
  • Cyclic sulfonic acid compound As the cyclic sulfonic acid compound, a compound represented by the following formula (5) or (6) can be used.
  • R 101 and R 102 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms.
  • n is 1, 2, 3, or 4.
  • R 201 , R 202 , R 203 and R 204 each independently represent a hydrogen atom, a fluorine atom or an alkyl group having 1 to 4 carbon atoms.
  • n is 1, 2, 3, or 4.
  • cyclic sulfonate ester examples include 1,3-propane sultone, 1,2-propane sultone, 1,4-butane sultone, 1,2-butane sultone, 1,3-butane sultone, 2,4-butane sultone, 1,3 A monosulfonic acid ester such as pentane sultone; ethylenemethane disulfonic acid ester (EMDS) represented by the following formula, ⁇ -methylethylenemethane disulfonic acid ester ( ⁇ Me-EMDS) represented by the following formula, and methylenemethane disulfone represented by the following formula Examples thereof include acid esters (MMDS) and disulfonic acid esters such as ⁇ -methylmethylenemethane disulfonic acid ester (3MDT) represented by the following formula.
  • EMDS ethylenemethane disulfonic acid ester
  • ⁇ Me-EMDS ⁇ -methylethylenemethane disulfonic acid ester
  • cyclic disulfonic acid esters include compounds represented by the following formula (BDT).
  • 1,3-propane sultone, 1,4-butane sultone, methylene methane disulfonate (MMDS), ethylene methane disulfonate (EMDS), ⁇ -methyl ethylene methane disulfonate ( ⁇ Me-EMDS), ⁇ -methyl Methylene methane disulfonic acid ester (3MDT) and BDT are preferable, 1,3-propane sultone, 1,4-butane sultone, methylene methane disulfonic acid ester (MMDS), ethylene methane disulfonic acid ester (EMDS), ⁇ -methyl ethylene methane disulfonic acid Esters ( ⁇ Me-EMDS) and ⁇ -methylmethylenemethane disulfonate (3MDT) are more preferable, and MMDS and 1,3-propane sultone are particularly preferable.
  • MMDS and 1,3-propane sultone are particularly preferable.
  • the content of the cyclic sulfonic acid ester in the electrolytic solution is preferably 0.01 to 10% by mass, and more preferably 0.1 to 5% by mass.
  • a coating can be more effectively formed on the positive electrode surface to suppress decomposition of the electrolytic solution.
  • the content of the cyclic sulfonic acid ester is 10% by mass or less, the viscosity and conductivity of the electrolytic solution can be adjusted within a more appropriate range, and sufficient initial capacity can be secured by charging at 20 ° C.
  • the electrolyte solution in the present embodiment preferably contains a carbonate compound as a non-aqueous solvent, and the above-mentioned cyclic carbonate compound or chain carbonate compound can be used as the carbonate compound.
  • the carbonate compound preferably contains at least a cyclic carbonate compound.
  • the content of the cyclic carbonate compound in the total solvent is preferably 5% by volume or more, more preferably 10% by volume or more, preferably 70% by volume or less, more preferably 50% by volume or less, and further preferably 40% by volume or less. .
  • the content of the chain carbonate compound is not particularly limited, but from the viewpoint of lowering the viscosity of the electrolyte, 1 to 90% by volume in the solvent constituting the electrolyte In view of obtaining a sufficient addition effect, it is preferably 3% by volume or more, more preferably 70% by volume or less from the viewpoint of obtaining a sufficient blending effect with another solvent, and 50% by volume or less. More preferred is 30% by volume or less.
  • the electrolytic solution in the present embodiment preferably contains at least one selected from a fluorinated ether, a fluorinated phosphate ester, and a cyclic sulfonate ester, and a cyclic carbonate compound. At least one of the fluorinated ether and the fluorinated phosphate ester is preferable. More preferably, it contains a cyclic sulfonate ester and a cyclic carbonate compound. Since the cyclic carbonate compound has a large relative dielectric constant, the ion dissociation property of the electrolytic solution is improved. Further, since the viscosity of the electrolytic solution is lowered, the ion mobility is improved.
  • a cyclic carbonate compound when used as the electrolytic solution, the cyclic carbonate compound tends to be decomposed and a gas composed of CO 2 tends to be generated.
  • gas tends to be generated. Therefore, in this embodiment, a battery using a positive electrode active material that operates at a relatively high potential by using an electrolytic solution containing at least one selected from fluorinated ethers, fluorinated phosphate esters, and cyclic sulfonate esters. Even so, the effect of improving the cycle characteristics can be obtained. This is presumed to be an effect obtained not only by the fluorinated ether or fluorinated phosphate ester acting as a solvent but also by assisting the formation of a film of the cyclic sulfonate ester.
  • a porous resin film, a woven fabric, a non-woven fabric, or the like can be used as the separator.
  • the resin constituting the porous film include polyolefin resins such as polypropylene and polyethylene, polyester resins, acrylic resins, styrene resins, and nylon resins.
  • a polyolefin-based microporous membrane is preferable because of its excellent ion permeability and performance of physically separating the positive electrode and the negative electrode.
  • the separator may be formed with a layer containing inorganic particles.
  • the inorganic particles include insulating oxides, nitrides, sulfides, carbides, etc. Among them, TiO. 2 or Al 2 O 3 is preferably included.
  • Anterior body A case made of a flexible film, a can case, or the like can be used for the exterior body (exterior container), and a flexible film is preferably used from the viewpoint of reducing the weight of the battery.
  • a film in which a resin layer is provided on the front and back surfaces of a metal layer serving as a substrate can be used.
  • a metal layer having a barrier property such as prevention of leakage of the electrolytic solution or entry of moisture from the outside can be selected, and aluminum, stainless steel, or the like can be used.
  • a heat-fusible resin layer such as a modified polyolefin is provided.
  • An exterior container is formed by making the heat-fusible resin layers of the flexible film face each other and heat-sealing the periphery of the portion that houses the electrode laminate.
  • a resin layer such as a nylon film or a polyester film can be provided on the surface opposite to the surface on which the heat-fusible resin layer is formed.
  • FIG. 1 shows a cross-sectional view of an example (laminated type) lithium ion secondary battery according to an embodiment of the present invention.
  • the lithium ion secondary battery of this example includes a positive electrode current collector 3 made of a metal such as an aluminum foil and a positive electrode active material layer 1 containing a positive electrode active material provided thereon.
  • a negative electrode current collector 4 made of a metal such as copper foil and a negative electrode active material layer 2 containing a negative electrode active material provided thereon.
  • the positive electrode and the negative electrode are laminated via a separator 5 made of a nonwoven fabric or a polypropylene microporous film so that the positive electrode active material layer 1 and the negative electrode active material layer 2 face each other.
  • This electrode pair is accommodated in a container formed of exterior films 6 and 7 made of an aluminum laminate film.
  • a positive electrode tab 9 is connected to the positive electrode current collector 3
  • a negative electrode tab 8 is connected to the negative electrode current collector 4, and these tabs are drawn out of the container.
  • An electrolytic solution is injected into the container and sealed. It can also be set as the structure where the electrode group by which the several electrode pair was laminated
  • In-situ XRD measurement of positive electrode active material In-situ XRD measurement was performed as follows for the lithium nickel composite oxide having a layered rock salt structure used in this example, comparative reference example, and comparative example. Table 1 shows ⁇ 2 ⁇ obtained from the measurement results.
  • Lithium nickel composite oxide composition formula: LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.87 Co 0.1 Al 0.03 O 2 , or LiNi 0.8 Co 0.1 Mn 0 0.1 O 2
  • a conductive aid a binder, and a solvent (NMP)
  • NMP solvent
  • the positive electrode and the counter electrode were laminated via a separator, and a beryllium plate was further arranged on the positive electrode current collector side to produce a cell with a beryllium window.
  • a solution obtained by dissolving 1 mol / L lithium hexafluorophosphate (LiPF 6 ) in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio EC: DEC 3: 7) is used. It was.
  • FIG. 2 shows in-situ XRD measurement results focusing on diffraction from the (003) plane of a lithium nickel composite oxide (composition formula: LiNi 0.8 Co 0.15 Al 0.05 O 2 ). This figure shows results in the range of 3.0 to 5.2 V (vs. Li / Li + ).
  • the reaction desorption of lithium ions
  • H1 The peak of the first phase (H1) is observed from the initial charge (near 3.0 V (vs. Li / Li + )) to near 4.1 V (vs. Li / Li + ), and the peak position changes during that time.
  • the peak intensity gradually decreases.
  • the second phase (H2) peak occurs on the low angle side until it reaches 3.9 V (vs. Li / Li + ) for a while after the start of charging, and then the intensity gradually increases. It moves from the vicinity of 4.2 V (vs.
  • a positive electrode current collector aluminum foil
  • a graphite having a surface coated with amorphous carbon as a negative electrode active material and PVDF as a binder were mixed to prepare a slurry dispersed in an organic solvent. This was applied to a negative electrode current collector (copper foil) and dried to form negative electrode active material layers on both sides. This was rolled with a roller press and processed into a predetermined size to obtain a negative electrode sheet.
  • One positive electrode sheet and two negative electrode sheets thus prepared were alternately laminated via a separator made of polypropylene having a thickness of 25 ⁇ m.
  • a negative electrode terminal and a positive electrode terminal were attached thereto, accommodated in an outer container made of an aluminum laminate film, and an electrolyte solution in which a lithium salt was dissolved was added and sealed to obtain a laminated lithium ion secondary battery.
  • the obtained battery was subjected to a charge / discharge test as follows to determine the capacity retention rate. The results are shown in Table 1.
  • Example 2 A secondary battery was produced in the same manner as in Example 1 except that the charge upper limit voltage was as shown in Table 1, and a charge / discharge cycle test was performed. The results are shown in Table 1 together with the results of Example 1.
  • Example 5 The positive electrode active material is converted into a lithium nickel composite oxide ((composition formula: LiNi 0.87 Co 0.1 Al 0.03 O 2 ) (BET specific surface area: 0.46 m 2 / g)) having a high nickel content.
  • a battery was produced in the same manner as in Example 1 except that the charge upper limit voltage was as shown in Table 1, and a charge / discharge cycle test was performed. The results are shown in Table 1.
  • the secondary batteries of Examples 1 to 4 are superior in capacity and cycle characteristics to the secondary batteries of Comparative Reference Examples 1 and 2.
  • the secondary battery of Example 5 is superior in capacity and cycle characteristics to the secondary batteries of Comparative Reference Examples 3 and 4.
  • the absolute value of ⁇ 2 ⁇ in Examples 1 to 4 is smaller than the absolute value of ⁇ 2 ⁇ in Comparative Reference Examples 1 and 2
  • the absolute value of ⁇ 2 ⁇ in Example 5 is smaller than the absolute value of ⁇ 2 ⁇ in Comparative Reference Examples 3 and 4. I understand that it is small.
  • the secondary battery of Comparative Example 2 having a charging upper limit voltage of 4.3V is larger in capacity than the secondary battery of Comparative Example 1 having a charging upper limit voltage of 4.1V. It can be seen that the cycle characteristics are inferior. Moreover, it turns out that the secondary battery of the comparative example 2 whose charge upper limit voltage is 4.3V is inferior in capacity maintenance rate compared with Example 2 and 5 whose charge upper limit voltage is the same 4.3V. Thus, it can be seen that in the case of a normal secondary battery, the cycle characteristics are low when the charging voltage is increased to around 4.3V. In the n-situ XRD measurement of the positive electrode active material used in Comparative Example 2, the H2 phase (003) peak disappeared and the H3 phase (003) peak was observed at 4.3 V.

Abstract

層状岩塩型構造を有するリチウムニッケル複合酸化物を正極活物質として含む正極と、リチウムイオンを吸蔵放出できる負極活物質を含む負極と、電解液と、外装体を含み、前記リチウムニッケル複合酸化物は、組成式LiNiCoAl(0.75≦x≦0.95、0.03≦y≦0.20、0.02≦z≦0.15、x+y+z=1)で表され、X線回折法による満充電時のH2相(003)ピーク位置(2θ)と完全放電時のH1相(003)ピーク位置(2θ)との差Δ2θ(λ=1.54Å)が-0.3°~0.3°の範囲にあることを特徴とするリチウムイオン二次電池。高いエネルギー密度でサイクル特性が良好なリチウムイオン二次電池を提供する。

Description

リチウムイオン二次電池及びその製造方法
 本発明は、リチウムイオン二次電池及びその製造方法に関するものである。
 リチウムイオン二次電池は、エネルギー密度が高く、充放電サイクル特性に優れるため、携帯電話やノート型パソコン等の小型のモバイル機器用の電源として広く用いられている。また、近年では、環境問題に対する配慮と省エネルギー化に対する意識の高まりから、電気自動車やハイブリッド電気自動車等の車両用の蓄電池、家庭用蓄電システム等の電力貯蔵システムといった大容量で長寿命が要求される大型電源への需要も高まっている。
 リチウムイオン二次電池の特性改善のために種々の検討が行われている。
 特許文献1には、X線解析分析において面間隔2.03±0.02Åのピーク強度に対する面間隔4.72±0.03Åのピーク強度が1.2倍以上である組成式LiNi1-X(MはLiNiOのNiを部分的に置換するNi、Co以外の陽イオンとなり得る元素、0<X≦0.5)で与えられる複合酸化物を正極活物質として含有し、リチウムまたはその化合物を負極活物質として含むリチウム電池が記載されている。この特許文献に記載された発明は、高電圧部の充放電容量が不十分、保存特性が悪いという課題を解決し、充放電エネルギーが大きく保存特性に優れたリチウム電池を提供することを目的としている。
 特許文献2には、リチウムを含む複合酸化物を正極活物質とする正極と、リチウムをドープ・脱ドープし得る炭素質材料を負極活物質とする負極と、非水電解液とを具備してなる非水電解液二次電池において、上記正極活物質がLi1-xNiCo1-y(0.50≦y≦1.00)で表され、且つ充電終止時のx値が0.65≦x≦0.92に設定されるリチウム・ニッケル・コバルト複合酸化物からなることを特徴とする非水電解液二次電池が記載されている。この特許文献に記載された発明は、電池容量を確保しつつ、優れたサイクル特性を得ることができ、寿命に到達するまでの積算エネルギーが大きな非水電解液二次電池を提供することを目的としている。
 特許文献3には、組成式LiMnNi1-x(0.05≦x≦0.3)で表され、粉末X線回折法による(003)面の回折線の強度I003と(104)面の回折線の強度I104との比I003/I104が1.0以上1.6以下であるリチウム複合酸化物を正極活物質として含む正極と、リチウムを吸蔵・放出可能な炭素材料を負極活物質として含む負極と、を有するリチウム二次電池が記載されている。この特許文献に記載された発明は、サイクル特性の良好なリチウム二次電池を提供することを目的としている。
 特許文献4には、層状岩塩構造を有するリチウムニッケル複合酸化物を正極活物質して含む正極と、リチウムイオンを吸蔵放出できる負極活物質を含む負極と、電解質と、外装体を含み、前記リチウムニッケル複合酸化物は、組成式LiNi1-x(xは0.75~1の数値を示し、MはNi以外のニッケルサイトを占める少なくとも一種の金属元素を示す)で表され、満充電時に、完全放電時の面間隔d(003)より大きい面間隔d(003)の結晶相を有する、リチウムイオン二次電池が記載されている。この特許文献に記載された発明は、入出力特性の良好なリチウム二次電池を提供することを目的としている。
特開平6-215800号公報 特開平7-320721号公報 特開2000-294240号公報 WO2017/082083号
 しかしながら、リチウムイオン二次電池のサイクル特性についてより一層の改善が求められている。そこで、本発明の目的は、高いエネルギー密度でサイクル特性が良好なリチウムイオン二次電池を提供することにある。
 本発明の一態様によれば、層状岩塩型構造を有するリチウムニッケル複合酸化物を正極活物質として含む正極と、リチウムイオンを吸蔵放出できる負極活物質を含む負極と、電解液と、外装体を含み、
 前記リチウムニッケル複合酸化物は、組成式LiNiCoAl(0.75≦x≦0.95、0.03≦y≦0.20、0.02≦z≦0.15、x+y+z=1)で表され、
 X線回折法による満充電時のH2相(003)ピーク位置(2θ)と完全放電時のH1相(003)ピーク位置(2θ)との差Δ2θ(λ=1.54Å)が-0.3°~0.3°の範囲にあることを特徴とするリチウムイオン二次電池が提供される。
 本発明の他の態様によれば、層状岩塩型構造を有するリチウムニッケル複合酸化物を正極活物質として含む正極と、リチウムイオンを吸蔵放出できる負極活物質を含む負極と、電解液と、外装体を含むリチウムイオン二次電池の製造方法であって、
 正極を形成する工程と、
 負極を形成する工程と、
 前記正極と前記負極と前記電解液を前記外装体に収容する工程を有し、
 前記リチウムニッケル複合酸化物は、組成式LiNiCoAl(0.75≦x≦0.95、0.03≦y≦0.20、0.02≦z≦0.15、x+y+z=1)で表され、
 X線回折法による前記リチウムニッケル複合酸化物の満充電時のH2相(003)ピーク位置(2θ)と完全放電時のH1相(003)ピーク位置(2θ)との差Δ2θ(λ=1.54Å)が-0.3°~0.3°の範囲にあるように充電上限電圧を設定することを特徴とする、リチウムイオン二次電池の製造方法が提供される。
 本発明の実施形態によれば、高いエネルギー密度でサイクル特性が良好なリチウムイオン二次電池を提供することができる。
本発明の実施形態によるリチウムイオン二次電池の一例を説明するための断面図である。 リチウムニッケル複合酸化物を用いて作製したセルのIn-situ XRDの測定結果を示す図である。
 本発明の実施形態によるリチウムイオン二次電池は、層状岩塩型構造を有するリチウムニッケル複合酸化物を正極活物質として含む正極と、リチウムイオンを吸蔵放出できる負極活物質を含む負極と、電解質と、外装体を含む。
 一般に充電電圧を高くすると、エネルギー密度が高くなり、充電容量を向上することができる。しかしながら、充電電圧を高くすると、サイクル特性が低下する傾向がある。本発明者は、この問題に着目し、鋭意検討した結果、高いエネルギー密度を確保しながら、サイクル特性に優れた二次電池が得られることを見いだし、本発明を完成した。
 すなわち、本発明の実施形態によるリチウムイオン二次電池は、主な特徴の一つとして、正極活物質として、下記組成式で示される層状岩塩型構造を有するリチウムニッケル複合酸化物を用いることにある。
 LiNiCoAl
 (0.75≦x≦0.95、0.03≦y≦0.20、0.02≦z≦0.15、x+y+z=1)
 このリチウムニッケル複合酸化物において、ニッケル含有量(x)は0.75以上の高含有量であるため、高エネルギー密度化に寄与している。また、ニッケルサイトを占めるニッケル以外の金属元素がコバルト(Co)とアルミニウム(Al)であり、これらが上記組成式の比率(y、z)で含有していることにより、サイクル特性の向上に寄与している。上記の組成式におけるx、y、zは、それぞれ、0.75≦x≦0.90、0.05≦y≦0.20、0.02≦z≦0.15であることが好ましく、0.75≦x≦0.85、0.10≦y≦0.20、0.02≦z≦0.10であることがより好ましい。
 さらに、本発明の実施形態によるリチウムイオン二次電池は、主な特徴の一つとして、X線回折法による満充電時のH2相(003)ピーク位置P2(2θ)と完全放電時のH1相(003)ピーク位置P1(2θ)との差(P2-P1)=Δ2θ(λ=1.54Å)が-0.3°~0.3°の範囲にある。充電時と放電時のc軸長をできるだけ近づけることで結晶構造を安定化でき、結果、サイクル特性を向上することができる。この差Δ2θは、-0.2°~0.2°の範囲にあることが好ましく、-0.2°~0.1°の範囲にあることがより好ましい。
 また本実施形態によるリチウムイオン二次電池の充電上限電圧は、上記組成式で示されるリチウムニッケル複合酸化物を用いた場合、4.25~4.45V(vs.Li/Li)の範囲にあることが好ましく、4.25~4.4V(vs.Li/Li)の範囲にあることがより好ましく、4.25~4.35V(vs.Li/Li)の範囲にあることがさらに好ましい。このような高い充電上限電圧を有し、上記組成式の高ニッケル含有量と相俟って、高いエネルギー密度を実現することができる。
 また、本発明の実施形態によるリチウムイオン二次電池の製造方法の主な特徴は、正極活物質として、組成式LiNiCoAl(0.75≦x≦0.95、0.03≦y≦0.20、0.02≦z≦0.15、x+y+z=1)で表されるリチウムニッケル複合酸化物を用い、X線回折法による前記リチウムニッケル複合酸化物の満充電時のH2相(003)ピーク位置(2θ)と完全放電時のH1相(003)ピーク位置(2θ)との差(P2-P1)=Δ2θ(λ=1.54Å)が-0.3°~0.3°の範囲にあるように充電上限電圧を設定することにある。この充電上限電圧は、Δ2θが-0.2°~0.2°の範囲にあるように設定することが好ましく、Δ2θが-0.2°~0.1°の範囲にあるように設定することがより好ましい。また、この充電上限電圧は4.25~4.45V(vs.Li/Li)の範囲に設定することが好ましく、4.25~4.4V(vs.Li/Li)の範囲に設定することがより好ましく、4.25~4.35V(vs.Li/Li)の範囲に設定することがさらに好ましい。
 上記の通り、本実施形態による製造方法では、リチウムニッケル複合酸化物において、ニッケル含有量(x)は0.75以上の高含有量であるため、高エネルギー密度化に寄与している。また、ニッケルサイトを占めるニッケル以外の金属元素がコバルト(Co)とアルミニウム(Al)であり、上記組成式の比率(y、z)で含有していることにより、サイクル特性の向上に寄与している。上記の組成式におけるx、y、zは、それぞれ、0.75≦x≦0.90、0.05≦y≦0.20、0.02≦z≦0.15であることが好ましく、0.75≦x≦0.85、0.10≦y≦0.20、0.02≦z≦0.10であることがより好ましい。また、充放電サイクルにおいて、充電時と放電時のc軸長をできるだけ近づけることで結晶構造を安定化でき、その結果、サイクル特性を向上することができる。
 本発明の実施形態によるリチウムイオン二次電池は、電解液が、フッ素化エーテル、フッ素化リン酸エステル、環状スルホン酸エステルから選ばれる少なくとも1種を含むことが好ましい。これらの成分は、電解液の耐酸化性を高めることができ、充電電圧の上昇に伴うガス発生量の増大や電極(特に正極側)での抵抗上昇を抑えることができる。
 本発明の実施形態において、正極中のリチウムニッケル複合酸化物は、X線回折法により分析することができる。このX線解析法として、リチウムニッケル複合酸化物の(003)面からの回折に注目したIn-situ XRD(X‐ray diffraction)測定を行うことができる。このIn-situ XRD測定では、セルに電圧をかけて充電する過程においてX線を照射してX線回折パターンを得ることができる。
 図2に後述の実施例で得られたX線回折パターン(横軸が回折角度(2θ)、縦軸が回折強度)を示す。セルに3.0~5.2V vs. Li/Li+の範囲で電圧をかけて充電する過程で、充電開始前(完全放電時)の2θが20.1°付近のH1相(003)ピークは電圧上昇とともに強度が弱くなる。これに伴い、H1相(003)ピーク位置に対して低角度側(2θが19.5~20°の領域内)にH2相(003)ピークが出現し、徐々に強度が強くなる。さらに電圧が上昇すると、4.4Vに近づくにしたがってH2相(003)ピークは高角度側にシフトし、4.4V付近でH1相(003)ピーク位置に重なる。さらに、電圧が上昇すると、H2相(003)ピークは、H1相(003)ピークよりも高角度側へシフトしている。なお、5.2VではH3相(003)ピークが高角度側にショルダーとして観察できる。
 充電電圧に伴うH2相(003)ピークのこのような変化は、c軸が充電初期に伸びて充電最後に縮むことを示している。そして4.4V付近ではH2相(003)ピーク位置(2θ)は放電状態のH1相(003)ピーク位置(2θ)と一致している。この一致した状態の電圧が上限電圧(終止電圧)であれば、満充電時と完全放電時のc軸長を一致させることができ、結晶構造を安定化できる。したがって、このような結晶構造の安定化を達成する観点から、満充電時のH2相(003)ピーク位置(2θ)と完全放電時のH1相(003)ピーク位置(2θ)との差Δ2θ(λ=1.54Å)が-0.3°~0.3°の範囲にあることが好ましく、-0.2°~0.2°の範囲にあることがより好ましく、-0.2°~0.1°の範囲にあることが特に好ましい。
 なお、満充電とは、電池の電圧が上限電圧となった状態を意味し、完全放電とは、電池の電圧が下限電圧(終止電圧)となった状態を意味する。上限電圧および下限電圧は、一般に電池の材料で理論的な値が決まるが、電池の劣化を抑えるために、理論的な上限電圧を下回る電圧を上限電圧として設定することができ、理論的な下限電圧を上回る電圧を下限電圧として設定することができる。
 また、充電率(SOC)は、満充電容量に対する残容量の比率(%)である。満充電容量は、満充電から規定の温度(例えば25℃)と一定電流で完全放電した際に放電した総電荷量である。電荷量は電流(一定)を積分することで求めることができる。満充電容量は初回充電時の満充電容量(Initial Full Charge Capacity)とすることができる。
 上記のリチウムイオン二次電池およびその製造方法における下限電圧は、2~3.5V(vs.Li/Li+)の範囲にあることが好ましく、2~3V(vs.Li/Li+)の範囲にあることがより好ましく、2.5~3V(vs.Li/Li+)の範囲にあることがさらに好ましい。
 本発明の実施形態によるリチウムイオン二次電池は、次の好適な構成をとることができる。
 (正極)
 正極は、集電体と、この集電体上に形成された正極活物質層を含む構造を有することが好ましい。
 正極活物質層は、高エネルギー密度化の点から、上記の層状岩塩構造を有するリチウムニッケル複合酸化物を含む。正極活物質層は、このリチウムニッケル複合酸化物以外の他の活物質を含んでいてもよいが、エネルギー密度の点から、このリチウムニッケル複合酸化物の含有率は80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。
 正極活物質のBET比表面積(窒素吸着法による77Kでの測定に基づく)は、0.1~1m/gの範囲にあることが好ましく、0.3~0.5m/gがさらに好ましい。正極活物質の比表面積が過度に小さい場合は、粒径が大きいため、電極作製時のプレス時やサイクル時に割れが生じやすくなり、特性劣化が顕著になる傾向があり、電極の高密度化も困難になる。逆に、比表面積が過度に大きい場合は、活物質に接触させる導電助剤の必要量が増大し、結果、高エネルギー密度化が困難になる。正極活物質の比表面積が、上記の範囲にあることにより、エネルギー密度とサイクル特性の観点から、優れた正極を得ることができる。
 正極活物質の平均粒径は、0.1~50μmが好ましく、1~30μmがより好ましく、2~25μmがさらに好ましい。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。正極活物質の比表面積が前述の範囲にあり、且つ平均粒径が上記の範囲にあることにより、エネルギー密度とサイクル特性の観点から、優れた正極を得ることができる。
 正極活物質層は、次のようにして形成することができる。まず、正極活物質、バインダー及び溶媒(さらに必要により導電助剤)を含むスラリーを調製し、これを正極集電体上に塗布し、乾燥し、必要によりプレスすることにより形成することができる。正極作製時に用いるスラリー溶媒としては、N-メチル-2-ピロリドン(NMP)を用いることができる。
 バインダーとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の通常正極用バインダーとして使用できるものを用いることができる。
 正極活物質層中のバインダーの含有量は、トレードオフの関係にある結着力とエネルギー密度の観点から、1~15質量%が好ましく、1~10質量%がより好ましい。
 正極活物質層中の正極活物質の割合が多い方が質量当たりの容量が大きくなるため好ましいが、電極の低抵抗化の点からは導電助剤を添加することが好ましく、電極強度の点からバインダーを添加することが好ましい。導電助剤の割合が少なすぎると十分な導電性を保つことが困難になり、電極の抵抗増加につながりやすくなる。バインダーの割合が少なすぎると集電体や活物質、導電助剤との接着力が保つことが困難になり、電極剥離が生じる場合がある。
 導電助剤としては、アセチレンブラック等のカーボンブラックが挙げられる。導電助剤の活物質層中の含有量は、1~10質量%の範囲に設定できる。
 また、正極を構成する正極活物質層(集電体は含まない)の空孔率は、30%以下が好ましく、20%以下がより好ましい。空孔率が高い(すなわち電極密度が低い)と、接触抵抗や電荷移動抵抗が大きくなる傾向があるため、このように空孔率を低くすることが好ましく、結果、電極密度も高めることができる。一方、空孔率が低すぎると(電極密度が高すぎると)、接触抵抗は低くなるが、電荷移動抵抗が高くなったり、レート特性が低下したりするため、ある程度の空孔率を確保することが望ましい。この観点から、空孔率は10%以上が好ましく、12%以上がより好ましく、15%以上に設定してもよい。
 空孔率とは、活物質層の全体としての見かけの体積のうち、活物質や導電助剤などの粒子が占める体積を引いた残りの体積の占める割合を意味する(下記式を参照)。よって、活物質層の厚さと単位面積当たりの質量、活物質や導電助剤などの粒子の真密度から、計算により求めることができる。
 空孔率=(活物質層の見かけ体積-粒子の体積)/(活物質層の見かけの体積)
 なお、上記式中の「粒子の体積」(活物質層に含まれる粒子の占める体積)は下記式で計算できる。
 粒子の体積=
(活物質層の単位面積当たりの重量×活物質層の面積×その粒子の含有率)÷粒子の真密度
 ここで、「活物質層の面積」は、集電体側とは反対側(セパレータ側)の平面の面積をいう。
 正極活物質層の厚みは特に限定されるものではなく、所望の特性に応じて適宜設定することができる、例えばエネルギー密度の観点からは厚く設定することができ、また出力特性の観点からは薄く設定することができる。正極活物質層の厚みは、例えば10~250μmの範囲で適宜設定でき、20~200μmが好ましく、40~180μmがより好ましい。
 正極用の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金などを用いることができる。その形状としては、箔、平板状、メッシュ状が挙げられる。特にアルミニウム箔を好適に用いることができる。
 本発明の実施形態によるリチウムイオン二次電池は、上記の正極と、負極と、非水電解質(例えばリチウム塩が溶解した電解液)を含む。また、正極と負極との間にセパレータを設けることができる。正極と負極の電極対は複数設けることができる。
 (負極)
 負極活物質としては、リチウム金属、炭素質材料、Si系材料などのリチウムを吸蔵、放出できる材料を用いることができる。炭素質材料としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーンなどが挙げられる。Si系材料としては、Si、SiO、SiOx(0<x≦2)、Si含有複合材料などを用いることができ、あるいはこれらの2種以上を含む複合物を用いても構わない。
 負極活物質としてリチウム金属を用いる場合は、融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾル‐ゲル方式、などの方式により負極を形成することができる。
 負極活物質として炭素質材料やSi系材料を用いる場合は、炭素質材料(又はSi系材料)とポリビニリデンフルオライド(PVDF)等のバインダーを混合し、NMP等の溶剤中に分散混錬し、得られたスラリーを負極集電体上に塗布し、乾燥し、必要に応じてプレスすることで負極を得ることができる。また、予め負極活物質層を形成した後に、蒸着法、CVD法、スパッタリング法などの方法により集電体となる薄膜を形成して負極を得ることができる。このようにして作製される負極は、負極用集電体と、この集電体上に形成された負極極活物質層を有する。
 負極活物質の平均粒径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、2μm以上がより好ましく、5μm以上がさらに好ましく、入出力特性の観点や電極作製上の観点(電極表面の平滑性等)から、80μm以下が好ましく、40μm以下がより好ましい。ここで平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:D50)を意味する。
 負極活物質層は、必要に応じて導電助剤を含有してもよい。この導電助剤としては、カーボンブラック、ケッチェンブラック、アセチレンブラック等の炭素質材料などの一般に負極の導電助剤として使用されている導電性材料を用いることができる。
 負極用のバインダーとしては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、イソプレンゴム、ブタジエンゴム、フッ素ゴムが挙げられる。スラリー溶媒としては、N-メチル-2-ピロリドン(NMP)や水を用いることができる。水を溶媒として用いる場合、さらに増粘剤として、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコールを用いることができる。
 この負極用のバインダーの含有率は、トレードオフの関係にある結着力とエネルギー密度の観点から、負極活物質に対する含有率として0.5~30質量%の範囲にあることが好ましく、0.5~25質量%の範囲がより好ましく、1~20質量%の範囲がさらに好ましい。
 負極集電体としては、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。
 (電解液)
 電解液としては、1種又は2種以上の非水溶媒に、リチウム塩を溶解させた非水系電解液を用いることができる。
 非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート等の環状カーボネート類;エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類;γ-ブチロラクトン等のγ-ラクトン類;1,2-エトキシエタン(DEE)、エトキシメトキシエタン(EME)などの鎖状エーテル類;テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル類が挙げられる。これらの非水溶媒のうちの1種を単独で、または2種以上の混合物を使用することができる。
 非水溶媒に溶解させるリチウム塩としては、特に制限されるものではないが、例えばLiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCFCO、Li(CFSO、LiN(CFSO、LiN(SOF)、リチウムビスオキサラトボレートが挙げられる。これらのリチウム塩は、一種を単独で、または二種以上を組み合わせて使用することができる。また、非水系電解質としてポリマー成分を含んでもよい。リチウム塩の濃度は、0.8~1.2mol/Lの範囲に設定することができ、0.9~1.1mol/Lが好ましい。
 (耐酸化性向上剤)
 高電圧でのガス発生、抵抗上昇を抑える点から、電解液には耐酸化性向上剤を含有することが好ましい。耐酸化性向上剤として、フッ素化エーテル化合物、フッ素化リン酸エステル化合物、環状スルホン酸エステルから選ばれる少なくとも1種を含むことが好ましい。
 (フッ素化エーテル化合物)
 フッ素化エーテル化合物としては、以下のフッ素含有鎖状エーテル化合物が挙げられる。
 フッ素含有鎖状エーテル化合物は、鎖状エーテル化合物の水素の一部または全部がフッ素で置換された化合物である。フッ素含有鎖状エーテル化合物を用いると、電解液の耐酸化性が高くなり、特に、高電位で動作する正極を含む電池に好適である。フッ素含有鎖状エーテル化合物は、フッ素の置換数が多いほど耐酸化性は高まるが、フッ素の置換数が多すぎると、還元分解が起きやすくなって、負極側で電解液が分解したり、他の電解液溶媒と相溶しなくなったりする場合がある。したがって、フッ素含有鎖状エーテル化合物中の水素原子の数とフッ素原子の数の和に対するフッ素原子の数の比が、30%以上95%以下であることが好ましく、40%以上90%以下であることがより好ましく、50%以上85%以下であることがさらに好ましい。
 フッ素含有鎖状エーテル化合物の炭素数は、特に限定されないが、4以上10以下であることが好ましく、5以上10以下であることがより好ましい。フッ素含有鎖状エーテル化合物の沸点および融点は、その炭素数によって変化するが、炭素数の総和が4以上であると、二次電池の実動作の温度範囲で液体であるため好ましい。また、炭素数の総和が10以下であると、粘度が高くなりすぎず、リチウムイオンの良好な伝導性が得られるため好ましい。フッ素含有鎖状エーテル化合物の酸素原子に結合するアルキル基は直鎖状であっても分岐鎖状であってもよいが、直鎖状であることが好ましい。
 フッ素含有鎖状エーテル化合物としては、例えば、2,2,3,3,3-ペンタフルオロプロピル1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル、1H,1H,2’H,3H-デカフルオロジプロピルエーテル、1,1,1,2,3,3-ヘキサフルオロプロピル-2,2-ジフルオロエチルエーテル、イソプロピル1,1,2,2-テトラフルオロエチルエーテル、プロピル1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテル、1H,1H,5H-パーフルオロペンチル-1,1,2,2-テトラフルオロエチルエーテル、1H,1H,2’H-パーフルオロジプロピルエーテル、1H-パーフルオロブチル-1H-パーフルオロエチルエーテル、メチルパーフルオロペンチルエーテル、メチルパーフルオロへキシルエーテル、メチル1,1,3,3,3-ペンタフルオロ-2-(トリフルオロメチル)プロピルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピル2,2,2-トリフルオロエチルエーテル、エチルノナフルオロブチルエーテル、エチル1,1,2,3,3,3-ヘキサフルオロプロピルエーテル、1H,1H,5H-オクタフルオロペンチル1,1,2,2-テトラフルオロエチルエーテル、1H,1H,2’H-パーフルオロジプロピルエーテル、ヘプタフルオロプロピル1,2,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル、エチルノナフルオロブチルエーテル、メチルノナフルオロブチルエーテル、ビス(2,2,3,3-テトラフルオロプロピル)エーテルが挙げられる。これらは耐電圧と沸点などの観点から適宜選択することができ、一種を単独で使用しても二種以上を併用してもよい。これらの中でも、1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテル、1H,1H,2’H,3H-デカフルオロジプロピルエーテル、1H,1H,5H-オクタフルオロペンチル1,1,2,2-テトラフルオロエチルエーテル、エチル1,1,2,3,3,3-ヘキサフルオロプロピルエーテル、1H,1H,2’H-パーフルオロジプロピルエーテル、ビス(2,2,3,3-テトラフルオロプロピル)エーテルが好ましく、1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテルがより好ましい。
 また、耐電圧性と他の電解質との相溶性の観点から、フッ素化エーテルは、下記式で表される化合物であることが好ましい。
 H-(CY-CY-CHO-CY-CY-H
 上記の式において、nは1、2、3または4である。Y~Yは、それぞれ独立に、フッ素原子または水素原子である。ただし、Y~Yの少なくとも1つはフッ素原子であり、Y~Yの少なくとも1つはフッ素原子である。Y~Yは、nの単位毎にそれぞれ独立していてもよい。
 フッ素含有鎖状エーテル化合物の含有量(フッ素含有リン酸エステル化合物と併用する場合は合計の含有量)は、電解液を構成する溶媒(このフッ素含有鎖状エーテル化合物およびフッ素含有リン酸エステル化合物を溶媒として含む)中、1~95体積%の範囲にあることが好ましく、5体積%以上がより好ましく、10体積%以上がさらに好ましく、20体積%以上が特に好ましく、また、90体積%以下がより好ましく、80体積%以下がさらに好ましく、70体積%以下に設定してもよい。フッ素含有鎖状エーテル化合物を1体積%以上十分に含有させることにより、耐酸化性を向上でき、低温特性や導電率を向上することもできる。また、フッ素含有鎖状エーテル化合物の含有量を溶媒中95体積%以下にすることにより、他の溶媒成分との相溶性を高め、電池特性を安定的に得ることができる。
 (フッ素化リン酸エステル化合物)
 本発明に用いるフッ素含有リン酸エステル化合物は、下記式(3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(3)中、R31、R32およびR33は、それぞれ独立に、炭素数1~5のアルキル基又は炭素数1~5のフッ素置換アルキル基を示し、これらのうち少なくとも一つがフッ素置換アルキル基である。
 フッ素含有リン酸エステル化合物を電解液に含有することにより、電解液の耐酸化性を高めることができ、また、他の溶媒成分との相溶性、および電解液のイオン伝導性を高めることができる。特に、高電位で動作する正極を含む電池にフッ素含有リン酸エステル化合物を電解液溶媒として用いると、高電位における電解液の分解が抑制され好適である。フッ素含有リン酸エステル化合物は、フッ素の置換数が多いほど耐酸化性は高まるが、フッ素の置換数が多すぎると、還元分解が起きやすくなって、負極側で電解液が分解したり、他の電解液溶媒と相溶しなくなったりする場合がある。したがって、フッ素含有リン酸エステル化合物中の水素原子の数とフッ素原子の数の和に対するフッ素原子の数の比が、30%以上100%以下であることが好ましく、35%以上95%以下であることがより好ましく、40%以上90%以下であることがさらに好ましい。式(3)で表される化合物のうち、下記式(3-1)で表されるフッ素含有リン酸エステル化合物が特に好ましい。
 O=P(OCHRa)     (3-1)
 [式(3-1)中、Raは、それぞれ独立に、炭素数1~4のフッ素置換アルキル基を示す。]
 式(3-1)中、3つのRaは同じフッ素置換アルキル基であることが好ましく、Raは炭素数が1~3であることがより好ましい。さらに、Raは、各炭素原子にフッ素原子が少なくとも一つ結合していることが好ましい。
 本発明に用いるフッ素含有リン酸エステル化合物としては、例えば、リン酸2,2,2-トリフルオロエチルジメチル、リン酸ビス(トリフルオロエチル)メチル、リン酸ビス(トリフルオロエチル)エチル、リン酸トリス(トリフルオロメチル)、リン酸ペンタフルオロプロピルジメチル、リン酸ヘプタフルオロブチルジメチル、リン酸トリフルオロエチルメチルエチル、リン酸ペンタフルオロプロピルメチルエチル、リン酸ヘプタフルオロブチルメチルエチル、リン酸トリフルオロエチルメチルプロピル、リン酸ペンタフルオロプロピルメチルプロピル、リン酸ヘプタフルオロブチルメチルプロピル、リン酸トリフルオロエチルメチルブチル、リン酸ペンタフルオロプロピルメチルブチル、リン酸ヘプタフルオロブチルメチルブチル、リン酸トリフルオロエチルジエチル、リン酸ペンタフルオロプロピルジエチル、リン酸ヘプタフルオロブチルジエチル、リン酸トリフルオロエチルエチルプロピル、リン酸ペンタフルオロプロピルエチルプロピル、リン酸ヘプタフルオロブチルエチルプロピル、リン酸トリフルオロエチルエチルブチル、リン酸ペンタフルオロプロピルエチルブチル、リン酸ヘプタフルオロブチルエチルブチル、リン酸トリフルオロエチルジプロピル、リン酸ペンタフルオロプロピルジプロピル、リン酸ヘプタフルオロブチルジプロピル、リン酸トリフルオロエチルプロピルブチル、リン酸ペンタフルオロプロピルプロピルブチル、リン酸ヘプタフルオロブチルプロピルブチル、リン酸トリフルオロエチルジブチル、リン酸ペンタフルオロプロピルジブチル、リン酸ヘプタフルオロブチルジブチル、リン酸トリス(2,2,3,3-テトラフルオロプロピル)、リン酸トリス(2,2,3,3,3-ペンタフルオロプロピル)、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1H,1H-ヘプタフルオロブチル)、リン酸トリス(1H,1H,5H-オクタフルオロペンチル)が挙げられる。これらのうち、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸トリス(1H,1H-ヘプタフルオロブチル)が好ましく、リン酸トリス(2,2,2-トリフルオロエチル)が特に好ましい。
 これらフッ素含有リン酸エステル化合物は、一種を単独で又は二種以上を併用して用いることができる。
 フッ素含有リン酸エステル化合物の含有量(上記フッ素含有鎖状エーテルと併用する場合は合計の含有量)は、電解液を構成する溶媒(このフッ素含有リン酸エステル化合物およびフッ素含有鎖状エーテルを溶媒として含む)中、1~95体積%の範囲であることが好ましく、5体積%以上がより好ましく、10体積%以上がさらに好ましく、20体積%以上が特に好ましく、また、90体積%以下がより好ましく、80体積%以下がさらに好ましく、70体積%以下に設定してもよい。フッ素含有リン酸エステル化合物を1体積%以上十分に含有させることにより、耐酸化性を向上でき、低温特性や導電率を向上することもできる。また、フッ素含有リン酸エステル化合物の含有量を溶媒中95体積%以下にすることにより、他の溶媒成分との相溶性を高め、電池特性を安定的に得ることができる。
 (環状スルホン酸化合物)
 環状スルホン酸化合物としては、下記式(5)又は(6)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000002
 式(5)中、R101及びR102は、それぞれ独立に、水素原子、フッ素原子、又は炭素数1~4のアルキル基を示す。nは1、2、3、又は4である。
Figure JPOXMLDOC01-appb-C000003
 式(6)中、R201、R202、R203及びR204は、それぞれ独立に、水素原子、フッ素原子、又は炭素数1~4のアルキル基を示す。nは1、2、3、又は4である。
 環状スルホン酸エステルとしては、例えば、1,3-プロパンスルトン、1,2-プロパンスルトン、1,4-ブタンスルトン、1,2-ブタンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,3-ペンタンスルトン等のモノスルホン酸エステル;下記式で示されるエチレンメタンジスルホン酸エステル(EMDS)、下記式で示されるαメチルエチレンメタンジスルホン酸エステル(αMe-EMDS)、下記式で示されるメチレンメタンジスルホン酸エステル(MMDS)、下記式で示されるαメチルメチレンメタンジスルホン酸エステル(3MDT)等のジスルホン酸エステルなどが挙げられる。
Figure JPOXMLDOC01-appb-C000004
 また、その他の環状ジスルホン酸エステルとしては下記式で表される化合物(BDT)も挙げられる。
Figure JPOXMLDOC01-appb-C000005
 これらの中でも、1,3-プロパンスルトン、1,4-ブタンスルトン、メチレンメタンジスルホン酸エステル(MMDS)、エチレンメタンジスルホン酸エステル(EMDS)、αメチルエチレンメタンジスルホン酸エステル(αMe-EMDS)、αメチルメチレンメタンジスルホン酸エステル(3MDT)、BDTが好ましく、1,3-プロパンスルトン、1,4-ブタンスルトン、メチレンメタンジスルホン酸エステル(MMDS)、エチレンメタンジスルホン酸エステル(EMDS)、αメチルエチレンメタンジスルホン酸エステル(αMe-EMDS)、αメチルメチレンメタンジスルホン酸エステル(3MDT)がより好ましく、特にMMDS及び1,3-プロパンスルトンが好ましい。
 環状スルホン酸エステルの電解液中の含有量は、0.01~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。環状スルホン酸エステルの含有量が0.01質量%以上の場合、正極表面に被膜をより効果的に形成して電解液の分解を抑制することができる。環状スルホン酸エステルの含有量が10質量%以下の場合、電解液の粘度や導電性をより適正な範囲内に調整でき、20℃での充電で十分な初期容量を確保することができる。
 本実施形態における電解液は、非水溶媒として、カーボネート化合物を含むことが好ましく、カーボネート化合物としては前述の環状カーボネート化合物や鎖状カーボネート化合物を用いることができる。カーボネート化合物としては環状カーボネート化合物を少なくとも含むことが好ましい。環状カーボネート化合物を用いることにより、電解液のイオン解離性が向上し、また電解液の粘度が下がる。そのため、イオン移動度を向上することができる。環状カーボネート化合物の全溶媒中の含有量は、5体積%以上が好ましく、10体積%以上がより好ましく、また70体積%以下が好ましく、50体積%以下がより好ましく、40体積%以下がさらに好ましい。
 カーボネート化合物として鎖状カーボネートを含む場合、鎖状カーボネート化合物の含有量は、特に限定されるものではないが、電解液の粘度を下げる観点から、電解液を構成する溶媒において、1~90体積%の範囲であることが好ましく、十分な添加効果を得る観点から3体積%以上がより好ましく、他の溶媒との十分な配合効果を得る点から70体積%以下がより好ましく、50体積%以下がより好ましく、30体積%以下がさらに好ましい。
 本実施形態における電解液は、フッ素化エーテル、フッ素化リン酸エステル、環状スルホン酸エステルから選ばれる少なくとも1種と、環状カーボネート化合物を含むことが好ましく、フッ素化エーテル及びフッ素化リン酸エステルの少なくとも一方と、環状スルホン酸エステルと、環状カーボネート化合物を含むことがより好ましい。環状カーボネート化合物は、比誘電率が大きいため電解液のイオン解離性が向上し、さらに、電解液の粘度が下がるのでイオン移動度が向上するという利点がある。しかし、環状カーボネート化合物を電解液として用いると、環状カーボネート化合物が分解してCOからなるガスが発生しやすい傾向がある。とくに4.5V以上の電位で動作する正極活物質を含む二次電池の場合は、ガスが発生しやすい傾向がある。そこで、本実施形態では、フッ素化エーテル、フッ素化リン酸エステル、環状スルホン酸エステルから選ばれる少なくとも1種を含む電解液を用いることにより、比較的高い電位で動作する正極活物質を用いた電池であってもサイクル特性の向上効果を得ることができる。これは、フッ素化エーテルやフッ素化リン酸エステルが溶媒として働くだけでなく、環状スルホン酸エステルの被膜形成を補助することにより得られる効果と推測される。
 (セパレータ)
 セパレータとしては、樹脂製の多孔質膜、織布、不織布等を用いることができる。多孔質膜を構成する樹脂としては、例えばポリプロピレンやポリエチレン等のポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、またはナイロン樹脂等が挙げられる。特にポリオレフィン系の微多孔膜は、イオン透過性と、正極と負極とを物理的に隔離する性能に優れているため好ましい。また、必要に応じて、セパレータには無機物粒子を含む層を形成してもよく、無機物粒子としては、絶縁性の酸化物、窒化物、硫化物、炭化物などを挙げることができ、なかでもTiOやAlを含むことが好ましい。
 (外装体)
 外装体(外装容器)には可撓性フィルムからなるケースや缶ケース等を用いることができ、電池の軽量化の観点からは可撓性フィルムを用いることが好ましい。
 可撓性フィルムには、基材となる金属層の表裏面に樹脂層が設けられたものを用いることができる。金属層には、電解液の漏出や外部からの水分の浸入を防止する等のバリア性を有するものを選択することができ、アルミニウム、ステンレス鋼などを用いることができる。金属層の少なくとも一方の面には、変性ポリオレフィンなどの熱融着性樹脂層が設けられる。可撓性フィルムの熱融着性樹脂層同士を対向させ、電極積層体を収納する部分の周囲を熱融着することで外装容器が形成される。熱融着性の樹脂層が形成された面と反対側の面にはナイロンフィルム、ポリエステルフィルムなどの樹脂層を設けることができる。
 (電極の作製)
 電極の作製において、集電体上に活物質層を形成するための装置としては、ドクターブレードや、ダイコータ、グラビアコータ、転写方式、蒸着方式などの様々な塗布方法を実施する装置や、これらの塗布装置の組み合わせを用いることが可能である。活物質の塗布端部を精度良く形成するためには、ダイコータを用いることが特に好ましい。ダイコータによる活物質の塗布方式としては、大別して、長尺の集電体の長手方向に沿って連続的に活物質を形成する連続塗布方式と、集電体の長手方向に沿って活物質の塗布部と未塗布部を交互に繰り返して形成する間欠塗布方式の2種類があり、これらの方式を適宜選択することができる。
 (リチウムイオン二次電池の構成例)
 本発明の実施形態によるリチウムイオン二次電池の一例(ラミネート型)の断面図を図1に示す。図1に示すように、本例のリチウムイオン二次電池は、アルミニウム箔等の金属からなる正極集電体3と、その上に設けられた正極活物質を含有する正極活物質層1とからなる正極、及び銅箔等の金属からなる負極集電体4と、その上に設けられた負極活物質を含有する負極活物質層2とからなる負極を有する。正極および負極は、正極活物質層1と負極活物質層2とが対向するように、不織布やポリプロピレン微多孔膜などからなるセパレータ5を介して積層されている。この電極対は、アルミニウムラミネートフィルムからなる外装フィルム6、7で形成された容器内に収容されている。正極集電体3には正極タブ9が接続され、負極集電体4には負極タブ8が接続され、これらのタブは容器の外に引き出されている。容器内には電解液が注入され封止される。複数の電極対が積層された電極群が容器内に収容された構造とすることもできる。
 以下に実施例を挙げて本発明をさらに説明する。
 (正極活物質のIn-situ XRD測定)
 本実施例、比較参考例および比較例に用いた層状岩塩型構造を有するリチウムニッケル複合酸化物について、次のようにして、In-situ XRD測定を行った。測定結果から求めたΔ2θを表1に示す。
 リチウムニッケル複合酸化物(組成式:LiNi0.8Co0.15Al0.05、LiNi0.87Co0.1Al0.03、又はLiNi0.8Co0.1Mn0.1)と、導電助剤、バインダー、溶媒(NMP)を混合してスラリーを形成し、これをAl箔上に塗布し乾燥して正極を得た。この正極と対極(金属リチウム)をセパレータを介して積層し、さらに正極集電体側にベリリウム板を配置して、ベリリウム窓付きのセルを作製した。電解液は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(容量比EC:DEC=3:7)に1mol/Lの六弗化リン酸リチウム(LiPF)を溶解した溶液を用いた。
 このセルに3.0~5.2V(vs. Li/Li+)の範囲で電圧をかけて充電する過程で、ベリリウム板側からX線を照射してXRD測定を行った。
 図2に、リチウムニッケル複合酸化物(組成式:LiNi0.8Co0.15Al0.05)の(003)面からの回折に注目したIn-situ XRDの測定結果を示す。この図は、3.0~5.2V(vs. Li/Li+)の範囲の結果を示している。縦軸は強度(任意単位:arb. unit)を示し、横軸は2θ(λ=1.54Å)である。
 この図に示されるように、充電の過程において3種類の相(H1、H2、H3)を経由して反応(リチウムイオンの脱離)が進行していることが分かる。充電初期(3.0V(vs. Li/Li+)付近)から4.1V(vs. Li/Li+)付近まで第1相(H1)のピークが観測され、その間、ピーク位置が変化することなく、徐々にピークの強度が小さくなっている。また、充電開始後しばらくして3.9V(vs. Li/Li+)付近に至るまでの間に低角側に第2相(H2)のピークが生じ、その後、徐々に強度が大きくなり、4.2V(vs. Li/Li+)付近あたりから高角側へ移動し、4.4V(vs. Li/Li+)付近で、第1相(H1)のピーク位置と重なっている。その後、第2相(H2)のピークは、第1相(H1)のピーク位置より高角度側へ移動している。さらに5V(vs. Li/Li+)を超えたあたりで、高角側に第3相(H3)が生じている。4.4V(vs. Li/Li+)を超えたあたり、すなわち、第2相(H2)のピークが第1相(H1)のピーク位置を大きく超えると相変化(構造変化)が大きくなり、サイクル特性低下の原因になると考えられる。
 本願発明による二次電池は、X線回折法による満充電時のH2相(003)ピーク位置(2θ)と完全放電時のH1相(003)ピーク位置(2θ)との差Δ2θ(λ=1.54Å)が-0.3°~0.3°の範囲にあるため、上記のような相変化が大きくなる前の状態が維持され良好なサイクル特性を得ることができる。
 (電池の作製とサイクル特性の評価)
 層状岩塩構造を有するリチウムニッケル複合酸化物を正極活物質として用いて次のようにしてリチウムイオン二次電池を作製し、サイクル特性を評価した。
 (実施例1)
 正極活物質に層状岩塩型構造を有するリチウムニッケル複合酸化物(組成式:LiNi0.8Co0.15Al0.05)(BET比表面積:0.46m/g)、導電助剤にカーボンブラック、バインダーにポリフッ化ビニリデン(PVDF)を用い、質量比が正極活物質:導電助剤:バインダー=93:4:3となるようにこれらを混合して有機溶媒中に分散させたスラリーを調製した。これを正極集電体(アルミニウム箔)に塗布し、乾燥し、正極活物質層を両面に形成した。これをローラープレス機で圧延し、所定のサイズに加工して正極シートを得た。
 負極活物質として表面を非晶質炭素で被覆した黒鉛を用い、バインダーとしてPVDFを用い、これらを混合して有機溶媒中に分散したスラリーを調製した。これを負極集電体(銅箔)に塗布し、乾燥し、負極活物質層を両面に形成した。これをローラープレス機で圧延し、所定のサイズに加工して負極シートを得た。
 作製した正極シート1枚と負極シート2枚を、厚さ25μmのポリプロピレンからなるセパレータを介して交互に積層した。これに負極端子と正極端子を取り付け、アルミラミネートフィルムからなる外装容器に収容し、リチウム塩が溶解した電解液を加え、封止して、積層型のリチウムイオン二次電池を得た。なお、電解液の溶媒としてECとDECの混合液(EC/DEC=3/7(体積比))を用い、この混合溶媒にリチウム塩としてLiPFを1mol/L溶解させた。
 得られた電池について、次のようにして、充放電試験を行って容量維持率を求めた。結果を表1に示す。
 (充放電サイクル試験)
 45℃で、充放電サイクル試験(Cycle-Rate:1C、CC-CV充電、定電圧充電時間:2.5時間、充電電圧(上限電圧):表1に記載、CC放電、下限電圧:2.5V)を行い、300サイクルまでの試験を行った。初回の放電容量に対する300サイクル後の放電容量の割合を容量維持率(%)とした。結果を表1に示す。
 (実施例2~4)
 充電上限電圧を表1に示す通りとした以外は、実施例1と同様にして二次電池を作製し、充放電サイクル試験を行った。その結果を実施例1の結果と併せて表1に示す。
 (実施例5)
 正極活物質を、ニッケルの含有率が高いリチウムニッケル複合酸化物((組成式:LiNi0.87Co0.1Al0.03)(BET比表面積:0.46m/g))に代え、充電上限電圧を表1に示す通りとした以外は実施例1と同様にして電池を作製し、充放電サイクル試験を行った。結果を表1に示す。
 (比較例1及び2)
 正極活物質を、Mnを含有するリチウムニッケル複合酸化物(NCM:LiNi0.8Co0.1Mn0.1)に代え、充電上限電圧を表1に示す通りとした以外は、実施例1と同様にして二次電池を作製し、充放電サイクル試験を行った。結果を表1に示す。
 (比較参考例1及び2)
 充電上限電圧を表1に示す通りとした以外は、実施例1と同様にして二次電池を作製し、充放電サイクル試験を行った。その結果を実施例1の結果と併せて表1に示す。
 (比較参考例3及び4)
 充電上限電圧を表1に示す通りとした以外は、実施例5と同様にして二次電池を作製し、充放電サイクル試験を行った。その結果を実施例1の結果と併せて表1に示す。
Figure JPOXMLDOC01-appb-T000006
 表1に示すように、比較参考例1及び2の二次電池に対して実施例1~4の二次電池は、容量とサイクル特性が優れることが分かる。同様に、比較参考例3及び4の二次電池に対して実施例5の二次電池は、容量とサイクル特性が優れることが分かる。また、実施例1~4のΔ2θの絶対値は、比較参考例1及び2のΔ2θの絶対値より小さく、実施例5のΔ2θの絶対値は、比較参考例3及び4のΔ2θの絶対値より小さいことが分かる。
 また、表1に示すように、充電上限電圧が4.1Vの比較例1の二次電池に対して、充電上限電圧が4.3Vの比較例2の二次電池は、容量は大きいが、サイクル特性が劣ることが分かる。また、充電上限電圧が4.3Vの比較例2の二次電池は、充電上限電圧が同じ4.3Vの実施例2及び5に比べて容量維持率が劣ることが分かる。このように、通常の二次電池では充電電圧を4.3V付近まで上げるとサイクル特性が低いことが分かる。なお、比較例2で用いた正極活物質のn-situ XRD測定では、4.3VにおいてH2相(003)ピークが消失し、H3相(003)ピークが観測された。
 以上、実施形態及び実施例を参照して本発明を説明したが、本発明は上記実施形態及び実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲(スコープ)内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2018年3月30日に出願された日本出願特願2018-068679を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 正極活物質層
 2 負極活物質層
 3 正極集電体
 4 負極集電体
 5 セパレータ
 6 ラミネート外装フィルム
 7 ラミネート外装フィルム
 8 負極タブ
 9 正極タブ

Claims (6)

  1.  層状岩塩型構造を有するリチウムニッケル複合酸化物を正極活物質として含む正極と、リチウムイオンを吸蔵放出できる負極活物質を含む負極と、電解液と、外装体を含み、
     前記リチウムニッケル複合酸化物は、組成式LiNiCoAl(0.75≦x≦0.95、0.03≦y≦0.20、0.02≦z≦0.15、x+y+z=1)で表され、
     X線回折法による満充電時のH2相(003)ピーク位置(2θ)と完全放電時のH1相(003)ピーク位置(2θ)との差Δ2θ(λ=1.54Å)が-0.3°~0.3°の範囲にあることを特徴とするリチウムイオン二次電池。
  2.  充電上限電圧が4.25~4.45V(vs.Li/Li)の範囲にある、請求項1に記載のリチウムイオン二次電池。
  3.  前記電解液が、フッ素化エーテル、フッ素化リン酸エステル、環状スルホン酸エステルから選ばれる少なくとも1種含む、請求項1又は2に記載のリチウムイオン二次電池。
  4.  層状岩塩型構造を有するリチウムニッケル複合酸化物を正極活物質として含む正極と、リチウムイオンを吸蔵放出できる負極活物質を含む負極と、電解液と、外装体を含むリチウムイオン二次電池の製造方法であって、
     正極を形成する工程と、
     負極を形成する工程と、
     前記正極と前記負極と前記電解液を前記外装体に収容する工程を有し、
     前記リチウムニッケル複合酸化物は、組成式LiNiCoAl(0.75≦x≦0.95、0.03≦y≦0.20、0.02≦z≦0.15、x+y+z=1)で表され、
     X線回折法による前記リチウムニッケル複合酸化物の満充電時のH2相(003)ピーク位置(2θ)と完全放電時のH1相(003)ピーク位置(2θ)との差Δ2θ(λ=1.54Å)が-0.3°~0.3°の範囲にあるように充電上限電圧を設定することを特徴とする、リチウムイオン二次電池の製造方法。
  5.  前記充電上限電圧を4.25~4.45V(vs.Li/Li)の範囲に設定する、請求項4に記載のリチウムイオン二次電池の製造方法。
  6.  前記電解液が、フッ素化エーテル、フッ素化リン酸エステル、環状スルホン酸エステルから選ばれる少なくとも1種を含む、請求項4又は5に記載のリチウムイオン二次電池の製造方法。
PCT/JP2019/009135 2018-03-30 2019-03-07 リチウムイオン二次電池及びその製造方法 WO2019188092A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068679 2018-03-30
JP2018068679A JP2019179682A (ja) 2018-03-30 2018-03-30 リチウムイオン二次電池及びその製造方法

Publications (1)

Publication Number Publication Date
WO2019188092A1 true WO2019188092A1 (ja) 2019-10-03

Family

ID=68058116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009135 WO2019188092A1 (ja) 2018-03-30 2019-03-07 リチウムイオン二次電池及びその製造方法

Country Status (2)

Country Link
JP (1) JP2019179682A (ja)
WO (1) WO2019188092A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003308880A (ja) * 2002-04-16 2003-10-31 Japan Storage Battery Co Ltd リチウム二次電池の製造方法
JP2008501220A (ja) * 2004-05-28 2008-01-17 エルジー・ケム・リミテッド 4.35v以上級のリチウム2次電池
WO2013183655A1 (ja) * 2012-06-05 2013-12-12 日本電気株式会社 リチウム二次電池
JP2016001567A (ja) * 2014-06-12 2016-01-07 日本電気株式会社 電解液およびそれを用いた二次電池
WO2017082083A1 (ja) * 2015-11-10 2017-05-18 Necエナジーデバイス株式会社 リチウムイオン二次電池及びその製造方法
WO2018048156A1 (ko) * 2016-09-06 2018-03-15 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003308880A (ja) * 2002-04-16 2003-10-31 Japan Storage Battery Co Ltd リチウム二次電池の製造方法
JP2008501220A (ja) * 2004-05-28 2008-01-17 エルジー・ケム・リミテッド 4.35v以上級のリチウム2次電池
WO2013183655A1 (ja) * 2012-06-05 2013-12-12 日本電気株式会社 リチウム二次電池
JP2016001567A (ja) * 2014-06-12 2016-01-07 日本電気株式会社 電解液およびそれを用いた二次電池
WO2017082083A1 (ja) * 2015-11-10 2017-05-18 Necエナジーデバイス株式会社 リチウムイオン二次電池及びその製造方法
WO2018048156A1 (ko) * 2016-09-06 2018-03-15 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBERT, ROSA ET AL.: "Activation Mechanism of LiNi0.80Co0.15Al0.05O2: Surface and Bulk Operando Electrochemical, Differential Electrochemical Mass Spectrometry, and X-ray Diffraction Analyses", CHEMISTRY OF MATERIALS, vol. 27, no. 2, 18 December 2014 (2014-12-18) - 2015, pages 526 - 536, XP055639408 *

Also Published As

Publication number Publication date
JP2019179682A (ja) 2019-10-17

Similar Documents

Publication Publication Date Title
CN110137442B (zh) 基于石墨的负电极活性材料、负电极和锂离子二次电池
JP2021536104A (ja) 負極材料及び該負極材料を含む負極、並びに電気化学装置
JP6398985B2 (ja) リチウムイオン二次電池
JP6685940B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5582587B2 (ja) リチウムイオン二次電池
WO2017082083A1 (ja) リチウムイオン二次電池及びその製造方法
JP7281570B2 (ja) 非水電解液二次電池およびその製造方法
WO2014133165A1 (ja) リチウムイオン二次電池
JP2010129192A (ja) リチウムイオン二次電池及びその製造方法
US20130280599A1 (en) Electricity storage device
JP6697377B2 (ja) リチウムイオン二次電池
CN105449189B (zh) 锂二次电池
WO2016021596A1 (ja) リチウム二次電池およびその製造方法
WO2015025887A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
US11349125B2 (en) Spacer included electrodes structure and its application for high energy density and fast chargeable lithium ion batteries
KR101872086B1 (ko) 비수 전해질 이차 전지의 제조 방법
WO2019188092A1 (ja) リチウムイオン二次電池及びその製造方法
CN108028361B (zh) 用于锂离子二次电池的正极以及锂离子二次电池
JP2022548359A (ja) 電気化学装置及びそれを含む電子装置
US11837698B2 (en) Electrochemical device and electronic device
JP2015095319A (ja) リチウムイオン二次電池
KR20240032565A (ko) 음극 및 이를 포함하는 리튬 이차전지
JP2015099771A (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP2016058203A (ja) リチウムイオン二次電池用添加剤およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778239

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19778239

Country of ref document: EP

Kind code of ref document: A1