WO2020111201A1 - リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2020111201A1
WO2020111201A1 PCT/JP2019/046659 JP2019046659W WO2020111201A1 WO 2020111201 A1 WO2020111201 A1 WO 2020111201A1 JP 2019046659 W JP2019046659 W JP 2019046659W WO 2020111201 A1 WO2020111201 A1 WO 2020111201A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
ion secondary
positive electrode
lithium ion
electrode composition
Prior art date
Application number
PCT/JP2019/046659
Other languages
English (en)
French (fr)
Inventor
達也 永井
真一朗 大角
哲哉 伊藤
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2020557837A priority Critical patent/JP7490567B2/ja
Priority to CN201980078547.4A priority patent/CN113169310A/zh
Priority to KR1020217020027A priority patent/KR20210094055A/ko
Priority to EP19888536.0A priority patent/EP3890062B1/en
Priority to US17/295,235 priority patent/US20220013777A1/en
Publication of WO2020111201A1 publication Critical patent/WO2020111201A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • One of the key devices commonly required for these technologies is a battery, and such a battery is required to have a high energy density in order to miniaturize the system.
  • high output characteristics are required to enable stable power supply regardless of the operating environment temperature.
  • good cycle characteristics and the like that can withstand long-term use are also required. Therefore, replacement of conventional lead-acid batteries, nickel-cadmium batteries, and nickel-hydrogen batteries with lithium-ion secondary batteries having higher energy density, output characteristics, and cycle characteristics is rapidly progressing.
  • the basic structure of such a lithium-ion secondary battery is composed of a positive electrode, a negative electrode, a separator, and an electrolyte
  • the positive electrode is generally a positive electrode containing a positive electrode active material such as lithium composite oxide, a conductive material, and a binder. It is composed of a composition and a metal foil current collector such as aluminum.
  • a particulate carbon material such as carbon black is generally used as the conductive material.
  • carbon black has a structure in which primary particles close to a sphere are connected in a beaded shape as a common structure, and such a structure is called a structure.
  • the length of the structure is indirectly evaluated by using the DBP absorption amount measured according to JIS K6217-4:2017. Generally, the larger the DBP absorption amount, the longer the structure and the effect of imparting conductivity. And excellent liquid retention, which is the ability to hold the non-aqueous electrolyte.
  • Patent Document 1 discloses a technique in which a carbon nanofiber electrically bridges an active material and carbon black to form a good conductive path in an electrode and obtain a battery having excellent cycle characteristics. ..
  • carbon black having a small particle size and a long structure that can impart conductivity with a smaller amount of addition is used, a sufficient conductive path is not formed and the content of the active material cannot be increased. Met.
  • Patent Document 2 discloses a technique in which a conductive material is prevented from being unevenly distributed in an electrode and a battery having excellent output characteristics is obtained by using carbon black and carbon nanotubes together. Further, in Patent Document 3, by setting the ratio of the fibrous carbon material to 1 to 20% by weight and the ratio of the granular carbon material to 99 to 80% by weight when the whole conductive material is 100% by weight, the inside of the electrode The technology for obtaining a battery having improved conductivity and excellent cycle characteristics and output characteristics is disclosed. However, in any of the inventions, the technique is based on the premise that a large amount of conductive agent is added, and therefore it is a problem that the content of the active material cannot be increased.
  • Patent Document 4 discloses a technique in which carbon black and graphitized carbon fiber are used in combination to stabilize the conductive path in the positive electrode and obtain a battery having excellent output characteristics and cycle characteristics.
  • Patent Document 5 discloses a technique of obtaining a battery having low resistance, excellent discharge capacity and cycle characteristics by using carbon black and fibrous carbon in combination.
  • the fiber diameter of the fibrous carbon material to be used is large in any of the inventions, in order to form a sufficient conductive path, it is necessary to add a large amount of the fibrous carbon material. Will decrease. Therefore, it is not possible to retain a sufficient amount of electrolytic solution in the vicinity of the active material, and it has been a problem that sufficient output characteristics cannot be obtained when used in a low temperature environment.
  • lithium iron phosphate having an olivine type crystal structure as an active material capable of inserting and extracting lithium ions has a large theoretical capacity (170 mAh/g) and a relatively high electromotive force (compared to Li/Li+anode). It has a voltage of 3.4 to 3.5 V), is thermodynamically stable, and hardly emits oxygen or generates heat up to about 400° C. Therefore, it can be said that it is a preferable positive electrode material from the viewpoint of safety. Furthermore, since it can be manufactured at a low cost from iron, phosphorus, etc., which are rich in resources, it is expected as a powerful positive electrode material.
  • Patent Document 6 discloses a method for producing spherical lithium iron phosphate powder which is inexpensive, has excellent discharge capacity, and is excellent in filling properties in electrodes.
  • an object of the present invention is to provide a positive electrode composition for a lithium ion secondary battery, which can obtain a lithium ion secondary battery with high energy density and excellent cycle characteristics.
  • a specific active material that is, lithium iron phosphate
  • the present invention uses lithium iron phosphate as an active material, carbon black having a small particle diameter as a conductive material, and lithium produced using a positive electrode composition for a lithium ion secondary battery containing carbon nanotubes having a small fiber diameter.
  • the ion secondary battery has been completed by finding that it has high energy density and excellent cycle characteristics.
  • a positive electrode composition for a lithium ion secondary battery comprising an active material capable of inserting and extracting lithium ions, and a conductive material,
  • the active material is lithium iron phosphate
  • the conductive material includes carbon black and carbon nanotubes
  • the content X (unit: mass%) of the carbon black and the content Y (unit: mass%) of the carbon nanotube in the positive electrode composition for a lithium ion secondary battery are the following conditions (A). , (B) are satisfied, The positive electrode composition for lithium ion secondary batteries as described in (1). (A) 1.0 ⁇ (X+Y) ⁇ 3.0 (B) 0.45 ⁇ X/(X+Y) ⁇ 0.55
  • a positive electrode for a lithium ion secondary battery comprising the positive electrode composition for a lithium ion secondary battery according to any one of (1) to (7).
  • a positive electrode composition for a lithium ion secondary battery that can obtain a lithium ion secondary battery having a high energy density and excellent cycle characteristics.
  • a lithium ion secondary battery having a high energy density, a low internal resistance, and excellent output characteristics, cycle characteristics, and low temperature characteristics can be easily obtained.
  • a positive electrode composition for a battery can be provided.
  • the positive electrode composition for a lithium ion secondary battery of the present invention is a positive electrode composition for a lithium ion secondary battery containing an active material capable of occluding and releasing lithium ions and a conductive material, wherein the active material is iron phosphate.
  • the active material is iron phosphate.
  • Lithium, the conductive material includes carbon black and carbon nanotubes, the average primary particle diameter of the carbon black is 39 nm or less, and the average diameter of the carbon nanotubes is 20 nm or less.
  • lithium iron phosphate as the active material in the present invention, one produced by a conventionally known method such as a solid phase method, a liquid phase method or a vapor phase method is used as in lithium iron phosphate as an active material for general batteries. ..
  • a bitumen such as coal pitch or a carbon precursor such as a saccharide may be added at the time of firing to deposit conductive carbon on the surface of lithium iron phosphate.
  • Lithium iron phosphate having conductive carbon deposited on its surface can exhibit higher charge/discharge characteristics than the case without carbon deposition.
  • the average particle diameter D 50 (median diameter) of lithium iron phosphate in the present invention is preferably 1 to 4 ⁇ m.
  • the average particle diameter D 50 is preferably 1 to 4 ⁇ m.
  • the average particle diameter D 50 is a value obtained by dispersing a positive electrode active material using ethanol as a dispersion medium and measuring the particle diameter distribution measuring device according to JIS Z 8825:2013.
  • the content of lithium iron phosphate in the present invention is preferably 95% by mass or more with respect to the positive electrode composition containing lithium iron phosphate, a conductive material, a binder that is a binder, and the like. With such a content, a battery having sufficiently high energy can be easily obtained.
  • the conductive materials in the present invention are carbon black and carbon nanotubes.
  • the carbon black is selected from acetylene black, furnace black, channel black and the like, like carbon black as a general conductive material for batteries. Of these, acetylene black, which is excellent in crystallinity and purity, is preferable.
  • the average primary particle diameter of carbon black in the present invention is 39 nm or less. By setting the average primary particle diameter to 39 nm or less, the number of electrical contacts with the active material and the current collector increases, and a good effect of imparting conductivity can be obtained.
  • the lower limit of the average primary particle diameter of carbon black is not particularly set, but by setting it to, for example, 18 nm or more, the interaction between particles is suppressed, so that it is uniformly dispersed between the positive electrode active materials, and a good conductive path is formed. It is preferable because it can be obtained. From this viewpoint, the average primary particle size of carbon black is more preferably 20 to 35 nm. In the present specification, the average primary particle diameter is a value obtained by averaging circle-equivalent diameters measured on the basis of photographs taken with a transmission electron microscope or the like.
  • the DBP absorption of carbon black in the present invention is preferably 200 to 380 ml/100 g.
  • the DBP absorption amount is 200 ml/100 g or more, the structure when used as a conductive material has a sufficient length and spread, and a good conductive path and liquid retention of the non-aqueous electrolyte can be obtained. Further, by setting the DBP absorption amount to 380 ml/100 g or less, aggregation due to the entanglement of the structures is suppressed, so that the structure is uniformly dispersed between the positive electrode active materials, a good conductive path is formed, and a sufficient non-aqueous electrolyte solution is formed. It is possible to achieve both of the liquid retention properties. From this viewpoint, the DBP absorption of carbon black is more preferably 220 to 300 ml/100 g. In the present specification, the DBP absorption amount is a value measured according to JIS K6217-4:2017.
  • the volume resistivity of carbon black in the present invention is not particularly limited, but the lower it is, the more preferable it is from the viewpoint of conductivity. Specifically, the volume resistivity measured under 7.5 MPa compression is preferably 0.30 ⁇ cm or less, and preferably 0.25 ⁇ cm or less.
  • the ash content and water content of the carbon black in the present invention are not particularly limited, but from the viewpoint of suppressing side reactions, it is preferable that both are small. Specifically, the ash content is preferably 0.04 mass% or less, and the water content is preferably 0.10 mass% or less.
  • the average diameter of the carbon nanotubes in the present invention is 20 nm or less.
  • the average diameter of the carbon nanotubes is more preferably 15 nm or less, and further preferably 10 nm or less.
  • the BET specific surface area of the carbon nanotube is more preferably larger than 200 m 2 /g, and the aspect ratio is more preferably 100 or more.
  • the average diameter and the aspect ratio in this specification refer to a shape measured by an image analysis method using a transmission electron microscope, a reflection electron microscope, an optical microscope, or the like.
  • the aspect ratio is a ratio of average length/average diameter.
  • the BET specific surface area is a value measured by a static capacitance method in accordance with JIS Z 8830:2013 using nitrogen as an adsorbate.
  • the carbon black content X (unit: mass %) and the carbon nanotube content Y (unit: mass %) in the present invention are 1.0 ⁇ (X+Y) ⁇ 3.0 and 0.45 ⁇ X/(X+Y). ) ⁇ 0.55 is preferable.
  • 1.0 ⁇ (X+Y) ⁇ 3.0 it is possible to obtain a sufficient conductivity imparting effect while suppressing the content of the conductive material that is a component that does not contribute to the charge/discharge capacity in the positive electrode composition to be low.
  • 0.45 ⁇ X/(X+Y) ⁇ 0.55 the carbon black in the positive electrode composition forms a conductive path between the active materials and retains the non-aqueous electrolyte solution in the vicinity of the active materials.
  • An electrode structure in which the carbon nanotubes play a role of forming a conductive path on the surface of the active material is formed.
  • the electrode thus obtained has both a good conductive path and ionic conductivity, and good battery characteristics can be obtained when used in a battery.
  • the positive electrode composition for a lithium ion secondary battery of the present invention there is no particular limitation on the production of the positive electrode composition for a lithium ion secondary battery of the present invention, and a conventionally known method can be used.
  • a positive electrode active material, a conductive material, a solvent dispersion solution of a binder is obtained by mixing with a ball mill, a sand mill, a twin-screw kneader, a rotation-revolution agitator, a planetary mixer, a disper mixer, etc. It is manufactured and used in the state of a dispersion liquid dispersed in a dispersion medium.
  • the positive electrode active material and the conductive material those described above may be used.
  • Carbon black and carbon nanotubes may be separately charged into a mixer or may be mixed in advance.
  • polymers such as polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, polyvinyl alcohol, acrylonitrylyl-butadiene copolymer, carboxylic acid-modified (meth)acrylic acid ester copolymer, etc. Is mentioned.
  • polyvinylidene fluoride is preferable from the viewpoint of oxidation resistance.
  • the dispersion medium include water, N-methyl-2-pyrrolidone, cyclohexane, methyl ethyl ketone, methyl isobutyl ketone and the like.
  • N-methyl-2-pyrrolidone is preferable in terms of solubility.
  • the positive electrode composition for a lithium ion secondary battery of the present invention can contain components other than the positive electrode active material, the conductive material, and the binder as long as the effects of the present invention are not impaired.
  • components other than the positive electrode active material, the conductive material, and the binder for example, polyvinyl pyrrolidone, polyvinyl imidazole, polyethylene glycol, polyvinyl alcohol, polyvinyl butyral, carboxymethyl cellulose, acetyl cellulose, a carboxylic acid-modified (meth)acrylic acid ester copolymer, or the like may be contained for the purpose of improving dispersibility.
  • the method for producing the positive electrode for a lithium-ion secondary battery of the present invention is not particularly limited, and a conventionally known method for producing a positive electrode may be used.
  • the following method can be used for production. That is, after applying the dispersion liquid onto a metal foil current collector such as aluminum, the dispersion medium contained in the positive electrode composition of the present invention is removed by heating, and the positive electrode composition for a lithium ion secondary battery is a current collector. It can be obtained by forming a film on the surface. Further, the current collector and the electrode mixture layer are pressed by a roll press or the like to be in close contact with each other, whereby the desired positive electrode for a lithium ion secondary battery can be obtained.
  • the method for producing the lithium-ion secondary battery of the present invention is not particularly limited, and any known publicly known method for producing a secondary battery may be used.
  • the following method may be used. That is, by arranging a polyolefin microporous film serving as an insulating layer between the positive electrode and the negative electrode, and pouring until the nonaqueous electrolyte solution is sufficiently dyed in the void portions of the positive electrode, the negative electrode and the polyolefin microporous film. It can be made.
  • the lithium-ion secondary battery of the present invention is not particularly limited, and examples thereof include portable AV devices such as digital cameras, video cameras, portable audio players, portable liquid crystal televisions, notebook personal computers, smart phones, and mobile information terminals such as mobile PCs. In addition, it can be used in a wide range of fields such as portable game machines, electric tools, electric bicycles, hybrid cars, electric cars, and electric power storage systems.
  • the positive electrode composition for a lithium ion secondary battery of the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
  • the average primary particle size of carbon black was measured by the following method. Using a transmission electron microscope JEM-2000FX (manufactured by JEOL Ltd.), five 100,000-fold images were taken, and the equivalent circle diameter was determined by image analysis for 20 or more randomly selected primary particles, and the value was calculated. The arithmetic average was obtained as the "average primary particle size".
  • the average diameter and aspect ratio of carbon nanotubes were measured by the following methods. Using a transmission electron microscope JEM-2000FX (manufactured by JEOL Ltd.), 10 images of 200,000 times were taken, and the diameter and length of 20 or more randomly extracted carbon nanotubes were obtained by image analysis. The average diameter and aspect ratio were obtained by calculating the average value.
  • Example 1> Lithium iron phosphate having an average particle diameter D 50 of 4 ⁇ m as an active material (manufactured by Aleees, trade name “M121”), carbon black having an average primary particle diameter of 18 nm and a DBP absorption amount of 310 ml/100 g as a conductive material (Denka Corporation). (Trade name "SAB", described as “acetylene black-A” in Table 1), and N-methyl-2-pyrrolidone dispersion of carbon nanotubes having an average diameter of 9 nm and a BET specific surface area of 243 m 2 /g.
  • the positive electrode composition for a lithium ion secondary battery was obtained by applying the dispersion liquid of the positive electrode composition for a lithium ion secondary battery to an aluminum foil having a thickness of 20 ⁇ m using a baker-type applicator, drying, and then pressing and cutting. It was
  • Lithium-ion secondary battery negative electrode composition [graphite (Shenzen BTR, trade name "AGP-2A") 96% by mass, carbon black (Denka, trade name "Li-400”) 1.0% by mass, Sodium carboxymethylcellulose 1.0% by mass, styrene-butadiene copolymer 2.0% by mass] is applied to a 10 ⁇ m-thick copper foil using a baker-type applicator and dried, and then pressed and cut to obtain a lithium ion electrolyte. A negative electrode for a secondary battery was obtained.
  • Lithium ion secondary battery After laminating and stacking the positive electrode, the separator, and the negative electrode together, they are packed with an aluminum laminate film, pre-sealed, subsequently injected with an electrolytic solution, battery formatted, and vacuum sealed to obtain a laminated lithium ion secondary battery. It was
  • Example 2 The carbon black of Example 1 has an average primary particle size of 23 nm and a DBP absorption amount of 270 ml/100 g (trade name "Li-435" manufactured by Denka Co., Ltd., described as “acetylene black-B” in Table 1). ), the content was changed to 1.0% by mass, the dispersed mass of the carbon nanotube dispersion was changed to 1.0% by mass, and the dissolved mass of the N-methyl-2-pyrrolidone solution of polyvinylidene fluoride was changed.
  • Example 3 The carbon black of Example 1 has an average primary particle diameter of 35 nm and a DBP absorption amount of 228 ml/100 g (trade name "Li-100” manufactured by Denka Co., Ltd., described as “acetylene black-C” in Table 1). ), the content thereof was changed to 1.65% by mass, the dispersed mass of the carbon nanotube dispersion was changed to 1.35% by mass, and polyvinylidene fluoride N-methyl-2-pyrrolidone was used as a binder.
  • a dispersion of a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary were prepared in the same manner as in Example 1, except that the solution was changed to 2.0% by mass. A battery was produced and each evaluation was performed. The results are shown in Table 1.
  • Example 4 A lithium ion secondary battery was manufactured in the same manner as in Example 2 except that the active material of Example 2 was changed to lithium iron phosphate having an average particle diameter D 50 of 1 ⁇ m (manufactured by Pulead, trade name “P600A”). A dispersion of the positive electrode composition, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced and each evaluation was performed. The results are shown in Table 1.
  • Example 5 The N-methyl-2-pyrrolidone dispersion of carbon nanotubes of Example 2 having an average diameter of 15 nm and a BET specific surface area of 207 m 2 /g (manufactured by CNano, trade name "LB100", shown in Table 1) CNT-B”), except that the dispersion liquid of the positive electrode composition for a lithium ion secondary battery, the positive electrode for a lithium ion secondary battery, and the lithium ion secondary battery were produced in the same manner as in Example 2. Then, each evaluation was carried out. The results are shown in Table 1.
  • Example 6 A lithium ion secondary battery was prepared in the same manner as in Example 2 except that the content of carbon black in Example 2 was changed to 0.8% by mass and the dispersed mass of the carbon nanotube dispersion was changed to 1.2% by mass. A dispersion of the battery positive electrode composition, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced and each evaluation was performed. The results are shown in Table 1.
  • Example 7 The content of carbon black of Example 2 was changed to 1.2% by mass, the dispersed mass of the carbon nanotube dispersion was changed to 0.6% by mass, and N-methyl-2- of polyvinylidene fluoride as a binder was used.
  • a dispersion of a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were prepared in the same manner as in Example 2 except that the pyrrolidone solution was changed to 2.2% by mass. A secondary battery was produced and each evaluation was performed. The results are shown in Table 1.
  • Example 8> A lithium ion secondary battery was prepared in the same manner as in Example 2 except that the carbon black content in Example 2 was changed to 0.4% by mass and the dispersed mass of the carbon nanotube dispersion was changed to 0.4% by mass. A dispersion of the battery positive electrode composition, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced and each evaluation was performed. The results are shown in Table 1.
  • Example 9 The active material of Example 2 was changed to lithium iron phosphate having an average particle diameter D 50 of 5 ⁇ m (manufactured by SIGMA-ALDRICH), and the content of carbon black was changed to 1.75% by mass to prepare a carbon nanotube dispersion liquid.
  • a dispersion of the positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were prepared in the same manner as in Example 2 except that the dispersed mass was changed to 1.75% by mass. It was produced and each evaluation was performed. The results are shown in Table 1.
  • Example 1 For a lithium ion secondary battery in the same manner as in Example 2 except that the content of carbon black in Example 2 was changed to 2.0% by mass and the dispersed mass of the carbon nanotube dispersion was changed to 0% by mass. A dispersion of the positive electrode composition, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced and each evaluation was performed. The results are shown in Table 2.
  • Example 2 For a lithium ion secondary battery in the same manner as in Example 1 except that the content of carbon black in Example 1 was changed to 0% by mass and the dispersed mass of the carbon nanotube dispersion was changed to 2.0% by mass. A dispersion of the positive electrode composition, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced and each evaluation was performed. The results are shown in Table 2.
  • Example 3 The carbon black of Example 2 has an average primary particle diameter of 48 nm and a DBP absorption amount of 177 ml/100 g (trade name "Li-400" manufactured by Denka Co., Ltd., described as "acetylene black-D” in Table 2). ) Except that the same method as in Example 2 was used to prepare a dispersion liquid of the positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery, and to perform each evaluation. did. The results are shown in Table 1.
  • Example 4 Except that the carbon nanotubes of Example 2 were changed to carbon nanotubes having an average diameter of 25 nm and a BET specific surface area of 100 m 2 /g (Wako Chemical Co., Ltd., described as “CNT-C” in Table 1). In the same manner as in Example 2, a dispersion liquid of a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced and each evaluation was performed. The results are shown in Table 2.
  • the lithium ion secondary battery produced using the positive electrode composition for a lithium ion secondary battery of the present invention has a high energy density and excellent cycle characteristics.
  • the internal resistance was small and the output characteristics and low temperature characteristics were excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

リチウムイオンを吸蔵及び放出可能な活物質と、導電材を含むリチウムイオン二次電池用正極組成物であって、前記活物質がリン酸鉄リチウムであり、前記導電材がカーボンブラック及びカーボンナノチューブを含み、前記カーボンブラックの平均一次粒子径が39nm以下であり、前記カーボンナノチューブの平均直径が20nm以下であることを特徴とするリチウムイオン二次電池用正極組成物。

Description

リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池に関する。
 環境・エネルギー問題の高まりから、化石燃料への依存度を減らす低炭素社会の実現に向けた技術の開発が盛んに行われている。このような技術開発の例としては、ハイブリッド電気自動車や電気自動車等の低公害車の開発、太陽光発電や風力発電等の自然エネルギー発電・蓄電システムの開発、電力を効率よく供給し、送電ロスを減らす次世代送電網の開発等があり、多岐に渡っている。
 これらの技術に共通して必要となるキーデバイスの一つが電池であり、このような電池に対しては、システムを小型化するための高いエネルギー密度が求められる。また、使用環境温度に左右されずに安定した電力の供給を可能にするための高い出力特性が求められる。さらに、長期間の使用に耐えうる良好なサイクル特性等も求められる。そのため、従来の鉛蓄電池、ニッケル-カドミウム電池、ニッケル-水素電池から、より高いエネルギー密度、出力特性及びサイクル特性を有するリチウムイオン二次電池への置き換えが急速に進んでいる。
 このようなリチウムイオン二次電池の基本構成は、正極、負極、セパレーター、電解質からなり、正極は、一般的には、リチウム複合酸化物等の正極活物質、導電材、結着剤を含む正極組成物、及びアルミニウム等の金属箔集電体からなる。導電材には、一般的に、カーボンブラック等の粒子状炭素材料が用いられる。
 ところで、カーボンブラックは、その共通の構造として、球形に近い1次粒子が数珠状に繋がりあった構造を有しており、このような構造をストラクチャと呼ぶ。ストラクチャの長さは、JIS K6217-4:2017に準拠して測定されるDBP吸収量を用いて間接的に評価され、一般的にDBP吸収量が大きいほどストラクチャが長く、導電性を付与する効果と、非水電解液を保持する能力である保液性が優れる。
 近年ではこのリチウムイオン二次電池のエネルギー密度の更なる向上が求められている。このため電極中で充放電容量に寄与しない成分である導電材の含有量をより少なくし、活物質の含有量を多くすることが求められている。この課題を解決する手段として、カーボンブラック等の粒子状炭素材料よりも高いアスペクト比を有し、より少ない添加量で導電性を付与することができる、繊維状炭素材料をカーボンブラックと併用する技術が提案されている。
 特許文献1では、カーボンナノファイバが活物質とカーボンブラックとの電気的な橋渡しを行うことにより、電極中に良好な導電経路が作られ、サイクル特性に優れた電池を得る技術が開示されている。しかし、より少ない添加で導電性の付与が可能な、粒子径が小さくストラクチャの長いカーボンブラックを用いた場合には、十分な導電経路が形成されず、活物質の含有量を増やせないことが課題であった。
 特許文献2では、カーボンブラックとカーボンナノチューブを併用することで、電極中に導電材が偏在することを防ぎ、出力特性に優れた電池を得る技術が開示されている。また、特許文献3では、導電材全体を100重量%としたときの繊維状炭素材料の割合を1~20重量%、粒状炭素材料の割合を99~80重量%とすることで、電極内での導電性が向上し、サイクル特性、出力特性に優れた電池を得る技術が開示されている。しかし、何れの発明によっても多量の導電剤を添加することを前提とした技術であるため、活物質の含有量を増やせないことが課題であった。
 特許文献4では、カーボンブラックと黒鉛化カーボンファイバーを併用することで、正極中の導電経路を安定なものとし、出力特性、サイクル特性に優れた電池を得る技術が開示されている。また、特許文献5では、カーボンブラックと繊維状炭素を併用することで、抵抗が低く、放電容量、サイクル特性に優れた電池を得る技術が開示されている。しかし、何れの発明によっても、使用する繊維状炭素材料の繊維径が太いため、十分な導電経路を形成させるには、繊維状炭素材料を多量に添加する必要があり、併用するカーボンブラックの割合が少なくなってしまう。そのため、活物質の近傍に十分な電解液を保持させることができないので、低温環境使用時に十分な出力特性が得られないことが課題であった。
 ところで、リチウムイオンを吸蔵及び放出可能な活物質として、オリビン型結晶構造を持つリン酸鉄リチウムは、理論容量が大きく(170mAh/g)、比較的高い起電力(対Li/Li+負極にて約3.4~3.5V)を有し、更に熱力学的に安定であり、400℃程度まで酸素放出や発熱がほとんどないため、安全性の観点からも好ましい正極材料であると言える。 更に、資源的に豊富な鉄・リン等から安価に製造できるため、有力な正極材料として期待されている。特許文献6には、安価で放電容量に優れ、かつ電極中の充填性に優れる球形状のリン酸鉄リチウム粉の製造方法が開示されている。
国際公開第2013/179909号 特開2007-80652号公報 特開平11-176446号公報 特開2001-126733号公報 特開2010-238575号公報 特開2014-201459号公報
 しかしながら、リン酸鉄リチウムを活物質として使用する場合、カーボンブラックとカーボンナノチューブを併用することの可否、及び最適な組成については、検討がなされていなかった。また、前述のように、高いエネルギー密度や良好なサイクル特性が要求される中、カーボンブラックとカーボンナノチューブを併用するに際しては、さらなる工夫が必要となった。
 本発明は、上記問題と実情に鑑み、エネルギー密度が高く、かつサイクル特性に優れたリチウムイオン二次電池を得ることができるリチウムイオン二次電池用正極組成物を提供することを目的とする。
 本発明者らは鋭意研究の結果、特定の活物質、すなわち、リン酸鉄リチウムに対して、粒子径が小さくストラクチャの長いカーボンブラックと繊維径が細く、かつ特定のBET比表面積とアスペクト比を有するカーボンナノチューブを導電材として用いることにより、上記課題が解決できることを見出した。
 具体的には、本発明は活物質としてリン酸鉄リチウム、導電材として粒子径が小さいカーボンブラックと、繊維径が細いカーボンナノチューブを含むリチウムイオン二次電池用正極組成物を用いて製造したリチウムイオン二次電池は、エネルギー密度が高く、サイクル特性に優れることを見出し、完成されたものである。
 すなわち、本願発明は以下のように特定される。
(1)リチウムイオンを吸蔵及び放出可能な活物質と、導電材を含むリチウムイオン二次電池用正極組成物であって、
 前記活物質がリン酸鉄リチウムであり、
 前記導電材がカーボンブラック及びカーボンナノチューブを含み、
 前記カーボンブラックの平均一次粒子径が39nm以下であり、前記カーボンナノチューブの平均直径が20nm以下であることを特徴とするリチウムイオン二次電池用正極組成物。
(2)前記リチウムイオン二次電池用正極組成物中の前記カーボンブラックの含有量X(単位:質量%)、及び前記カーボンナノチューブの含有量Y(単位:質量%)が、下記条件(A)、(B)を満たすことを特徴とする(1)に記載のリチウムイオン二次電池用正極組成物。
 (A)1.0≦(X+Y)≦3.0
 (B)0.45≦{X/(X+Y)}≦0.55
(3)前記カーボンブラックのDBP吸収量が200~380ml/100gであることを特徴とする(1)又は(2)に記載のリチウムイオン二次電池用正極組成物。
(4)前記カーボンナノチューブのBET比表面積が170m2/g以上であり、アスペクト比が50以上であることを特徴とする(1)~(3)のいずれか1項に記載のリチウムイオン二次電池用正極組成物。
(5)前記リン酸鉄リチウムの平均粒子径D50が、1~4μmであることを特徴とする(1)~(4)のいずれか1項に記載のリチウムイオン二次電池用正極組成物。
(6)前記カーボンナノチューブの平均直径が10nm以下であることを特徴とする(1)~(5)のいずれか1項に記載のリチウムイオン二次電池用正極組成物。
(7)前記リチウムイオン二次電池用正極組成物中、前記リン酸鉄リチウムが95質量%以上含まれることを特徴とする(1)~(6)のいずれか1項に記載のリチウムイオン二次電池用正極組成物。
(8)(1)~(7)のいずれか1項に記載のリチウムイオン二次電池用正極組成物を含むリチウムイオン二次電池用正極。
(9)(8)に記載のリチウムイオン二次電池用正極を備えたリチウムイオン二次電池。
 本発明によれば、エネルギー密度が高く、かつサイクル特性に優れたリチウムイオン二次電池を得ることができるリチウムイオン二次電池用正極組成物を提供することができる。
 また、本発明の好適な実施態様によれば、エネルギー密度が高く、内部抵抗が小さく、出力特性、サイクル特性、低温特性に優れたリチウムイオン二次電池を簡便に得ることができるリチウムイオン二次電池用正極組成物を提供することができる。
リチウムイオン二次電池の基本構成の一例を示す図である。
 以下、本発明を詳細に説明する。本発明のリチウムイオン二次電池用正極組成物は、リチウムイオンを吸蔵及び放出可能な活物質と、導電材を含むリチウムイオン二次電池用正極組成物であって、前記活物質がリン酸鉄リチウムであり、前記導電材がカーボンブラック及びカーボンナノチューブを含み、前記カーボンブラックの平均一次粒子径が39nm以下であり、前記カーボンナノチューブの平均直径が20nm以下である。
 本発明における活物質であるリン酸鉄リチウムは、一般の電池用活物質としてのリン酸鉄リチウム同様、固相法、液相法、気相法など従来公知の方法により製造したものが用いられる。また、焼成時に石炭ピッチなどのビチューメン類や糖類などの炭素前駆体を添加し、リン酸鉄リチウムの表面に、導電性炭素を析出させたものを用いても良い。表面に導電性炭素を析出させたリン酸鉄リチウムは、炭素析出のない場合よりもさらに高い充放電特性を示すことが可能になる。
 本発明におけるリン酸鉄リチウムの平均粒子径D50(メジアン径)は、1~4μmであることが好ましい。このような範囲の平均粒子径D50にすることで、得られる正極内で活物質の充填率が良くなり、高エネルギー密度の正極が得られ易くなる。また、後述する導電材の特長を引き出し易くなり、極めて少ない添加量の導電材で、高出力の電池が得られ易くなる。さらに、得られる電池を充放電する際に電解液の分解を抑制し、良好なサイクル特性が得られ易くなる。なお本明細書において平均粒子径D50とは、エタノールを分散媒として正極活物質を分散させたものを、JIS Z 8825:2013に準拠してレーザー回折/散乱式粒度分布測定装置により測定した値である。また、本発明におけるリン酸鉄リチウムの含有量は、リン酸鉄リチウム、導電材及び結着材であるバインダーなどを含む正極組成物に対して、95質量%以上であることが好ましい。このような含有量とすることで、十分に高いエネルギーを有する電池が得られ易くなる。
 本発明における導電材は、カーボンブラック、及びカーボンナノチューブである。カーボンブラックは、一般の電池用導電材としてのカーボンブラック同様、アセチレンブラック、ファーネスブラック、チャンネルブラックなどの中から選ばれるものである。中でも、結晶性及び純度に優れるアセチレンブラックが好ましい。
 本発明におけるカーボンブラックの平均一次粒子径は39nm以下である。平均一次粒子径を39nm以下とすることで、活物質及び集電体との電気的接点が多くなり、良好な導電性付与効果が得られる。カーボンブラックの平均一次粒子径の下限は特に設けないが、例えば18nm以上とすることで、粒子間の相互作用が抑制されるため、正極活物質の間に均一に分散され、良好な導電経路が得られるので好ましい。この観点から、カーボンブラックの平均一次粒子径は20~35nmであることがより好ましい。なお、本明細書において平均一次粒子径とは、透過型電子顕微鏡などで撮影した写真をもとに測定した円相当径を平均した値である。
 本発明におけるカーボンブラックのDBP吸収量は200~380ml/100gとすることが好ましい。DBP吸収量を200ml/100g以上とすることで、導電材として使用される際のストラクチャが十分な長さと広がりを持ち、良好な導電経路と非水電解液の保液性が得られる。また、DBP吸収量を380ml/100g以下とすることで、ストラクチャ同士の絡み合いによる凝集が抑えられるため、正極活物質の間に均一に分散され、良好な導電経路の形成と十分な非水電解液の保液性を両立することができる。この観点から、カーボンブラックのDBP吸収量は220~300ml/100gであることがより好ましい。なお、本明細書においてDBP吸収量とは、JIS K6217-4:2017に準拠して測定した値である。
 本発明におけるカーボンブラックの体積抵抗率はとくに限定されるものではないが、導電性の観点から低いほど好ましい。具体的には、7.5MPa圧縮下で測定した体積抵抗率は0.30Ω・cm以下が好ましく、0.25Ω・cm以下が好ましい。
 本発明におけるカーボンブラックの灰分及び水分は特に限定されるものではないが、副反応の抑制の観点から、どちらも少ないほど好ましい。具体的には、灰分は0.04質量%以下が好ましく、水分は0.10質量%以下が好ましい。
 本発明におけるカーボンナノチューブの平均直径は20nm以下である。カーボンナノチューブの平均直径を20nm以下とすることで、活物質表面との電気的接点が多くなり、良好な導電経路が得られる。この観点から、カーボンナノチューブの平均直径は15nm以下であることがより好ましく、10nm以下であることがより好ましい。また、カーボンナノチューブのBET比表面積を170m2/g以上とし、アスペクト比を50以上にすることで、活物質の表面に間断の少ない導電経路を効率良く形成することができるのでより好ましい。この観点から、カーボンナノチューブのBET比表面積は200m2/gより大きいことがさらに好ましく、アスペクト比は100以上であることがさらに好ましい。なお、本明細書における平均直径とアスペクト比とは、透過型電子顕微鏡、反射型電子顕微鏡、光学顕微鏡などを用いて、画像解析法で測定される形状のことである。なお、アスペクト比とは、平均長さ/平均直径の比のことである。さらに、本明細書においてBET比表面積とは、吸着質として窒素を使用し、JIS Z 8830:2013に準拠して静的容量法により測定した値である。
 本発明におけるカーボンブラックの含有量X(単位:質量%)及びカーボンナノチューブの含有量Y(単位:質量%)は1.0≦(X+Y)≦3.0かつ0.45≦{X/(X+Y)}≦0.55であることが好ましい。1.0≦(X+Y)≦3.0とすることで、正極組成物中で充放電容量に寄与しない成分である導電材の含有量を低く抑えつつ、十分な導電性付与効果が得られる。また、0.45≦{X/(X+Y)}≦0.55とすることで、正極組成物中でカーボンブラックが活物質間の導電経路形成と活物質の近傍に非水電解液を保液する役割を担い、カーボンナノチューブが活物質表面の導電経路形成を担う電極構造が形成される。これにより得られる電極は、良好な導電経路とイオン伝導性を併せ持ち、電池に用いた時に良好な電池特性が得られる。
 本発明のリチウムイオン二次電池用正極組成物の製造には、特に制限は無く、従来公知の方法を用いることができる。例えば、正極活物質、導電材、結着剤の溶媒分散溶液をボールミル、サンドミル、二軸混練機、自転公転式攪拌機、プラネタリーミキサー、ディスパーミキサー等により混合することで得られ、一般的には、分散媒に分散させた分散液の状態で製造及び使用される。正極活物質及び導電材としては、既述したものを用いれば良い。カーボンブラックとカーボンナノチューブは別々に混合器に投入しても、あるいは事前に混合しておいても良い。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-ブタジエン共重合体、ポリビニルアルコール、アクリロニトリリル-ブタジエン共重合体、カルボン酸変性(メタ)アクリル酸エステル共重合体等の高分子が挙げられる。これらの中では、耐酸化性の点でポリフッ化ビニリデンが好ましい。分散媒としては、水、N-メチル-2-ピロリドン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。結着剤としてポリフッ化ビニリデンを使用する際には、溶解性の点でN-メチル-2-ピロリドンが好ましい。
 また、本発明のリチウムイオン二次電池用正極組成物は、本発明の効果を損なわない範囲で、正極活物質、導電材、結着剤以外の成分を含むことができる。例えば、分散性を向上させる目的でポリビニルピロリドン、ポリビニルイミダゾール、ポリエチレングリコール、ポリビニルアルコール、ポリビニルブチラール、カルボキシメチルセルロース、アセチルセルロース又はカルボン酸変性(メタ)アクリル酸エステル共重合体などを含んでいても良い。
 本発明のリチウムイオン二次電池用正極の作製方法には、特に制限は無く、従来公知の正極作製方法を用いて行えば良いが、例えば以下の方法により作製することができる。すなわち、前記分散液をアルミニウム等の金属箔集電体上に塗布した後、加熱により本発明の正極組成物に含まれる分散媒を除去し、リチウムイオン二次電池用正極組成物が集電体表面に製膜することで得られる。さらに集電体と電極合材層をロールプレス等により加圧して密着させることにより、目的とするリチウムイオン二次電池用正極を得ることができる。
 本発明のリチウムイオン二次電池の作製方法にも、特に制限は無く、従来公知の二次電池の作製方法を用いて行えば良いが、例えば以下の方法により作製することもできる。すなわち、正極と負極との間に絶縁層となるポリオレフィン製微多孔膜を配し、正極、負極及びポリオレフィン製微多孔膜の空隙部分に非水電解液が十分に染込むまで注液することで作製することができる。
 本発明のリチウムイオン二次電池は、特に限定されないが、例えば、デジタルカメラ、ビデオカメラ、ポータブルオーディオプレイヤー、携帯液晶テレビ等の携帯AV機器、ノート型パソコン、スマートフォン、モバイルPC等の携帯情報端末、その他、携帯ゲーム機器、電動工具、電動式自転車、ハイブリッド自動車、電気自動車、電力貯蔵システム等の幅広い分野において使用することができる。
 以下、実施例及び比較例により、本発明のリチウムイオン二次電池用正極組成物を詳細に説明する。しかし、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 以下の実施例及び比較例においては、カーボンブラックの平均一次粒子径を以下の手法で測定した。透過電子顕微鏡JEM-2000FX(日本電子社製)を用いて10万倍の画像5枚を撮影し、無作為に抽出した20個以上の一次粒子について画像解析により円相当径を求め、その値を算術平均したものを「平均一次粒子径」として得た。
 またカーボンナノチューブの平均直径とアスペクト比は以下の手法で測定した。透過電子顕微鏡JEM-2000FX(日本電子社製)を用いて20万倍の画像10枚を撮影し、無作為に抽出した20個以上のカーボンナノチューブについて画像解析により直径と長さを求め、それらの平均値を算出することによって平均直径とアスペクト比を得た。
<実施例1>
(リチウムイオン二次電池用正極組成物)
 活物質として平均粒子径D50が4μmのリン酸鉄リチウム(Aleees社製、商品名「M121」)、導電材として平均一次粒子径が18nm、DBP吸収量が310ml/100gのカーボンブラック(デンカ社製、商品名「SAB」、表1中にて「アセチレンブラック-A」と記載)、及び平均直径が9nm、BET比表面積が243m2/gのカーボンナノチューブのN-メチル-2-ピロリドン分散液(CNano社製、商品名「LB107」、表1中にて「CNT-A」と記載)を用意した。前記カーボンブラック0.45質量%、前記カーボンナノチューブを分散質量で0.55質量%、及び結着剤としてポリフッ化ビニリデンのN-メチル-2-ピロリドン溶液を溶質量で1.0質量%に対して、残部をリン酸鉄リチウム(すなわちこの例では98.0質量%)として混合した。さらに分散媒としてN-メチル-2-ピロリドンを加えて混合し、リチウムイオン二次電池用正極組成物の分散液を得た。
(リチウムイオン二次電池用正極)
 前記リチウムイオン二次電池用正極組成物の分散液を、ベーカー式アプリケーターを用いて厚さ20μmのアルミニウム箔に塗布、乾燥し、その後、プレス、裁断して、リチウムイオン二次電池用正極を得た。
(リチウムイオン二次電池用負極)
 リチウムイオン二次電池用負極組成物[黒鉛(Shenzhen BTR社製、商品名「AGP-2A」)96質量%、カーボンブラック(デンカ社製、商品名「Li-400」)1.0質量%、カルボキシメチルセルロースナトリウム1.0質量%、スチレン-ブタジエン共重合体2.0質量%]をベーカー式アプリケーターを用いて厚さ10μm銅箔に塗布、乾燥し、その後、プレス、裁断して、リチウムイオン二次電池用負極を得た。
(リチウムイオン二次電池)
  前記正極、セパレーター、前記負極を共に重ね、積層した後、アルミラミネートフィルムでパック、プレシーリングし、続いて電解液を注入し、バッテリーフォーマッティング、真空シーリングして、ラミネート型リチウムイオン二次電池を得た。
[内部抵抗]
 作製したリチウムイオン二次電池を、電圧範囲2.1~4.1Vで5サイクル、充電/放電した後、周波数範囲10MHz~0.001Hz、振動電圧5mVでインピーダンス解析を行った。本実施例の内部抵抗は25.4mΩであった。
[出力特性(5C放電時の容量維持率)]
 作製したリチウムイオン二次電池を、25℃において4.1V、0.2C制限の定電流定電圧充電をした後、0.2Cの定電流で2.1Vまで放電した。次いで、放電電流を0.2C、5Cと変化させ、各放電電流に対する放電容量を測定した。そして、0.2C放電時に対する5C放電時の容量維持率を計算した。本実施例の5C放電時の容量維持率は92.4%であった。
[サイクル特性(サイクル容量維持率)]
 作製したリチウムイオン電池を、25℃において4.1V、1C制限の定電流定電圧充電をした後、1Cの定電流で2.1Vまで放電した。充電及び放電のサイクルを繰り返し行い、1サイクル目の放電容量に対する500サイクル目の放電容量の比率を求めてサイクル容量維持率とした。本実施例のサイクル容量維持率は90.4%であった。
[低温出力特性(-20℃放電時の容量維持率)]
 作製したリチウムイオン二次電池を、25℃において4.1V、0.2C制限の定電流定電圧充電をした後、1Cの定電流で2.1Vまで放電した。次いで、-20℃において4.1V、0.2C制限の定電流定電圧充電をした後、1Cの定電流で2.1Vまで放電した。そして、25℃放電時に対する-20℃放電時の容量維持率を計算した。本実施例の-20℃放電時の容量維持率は75.1%であった。
<実施例2>
 実施例1のカーボンブラックを平均一次粒子径が23nm、DBP吸収量が270ml/100gのカーボンブラック(デンカ社製、商品名「Li-435」、表1中にて「アセチレンブラック-B」と記載)に変更し、その含有量を1.0質量%に変更し、カーボンナノチューブ分散液の分散質量を1.0質量%に変更し、ポリフッ化ビニリデンのN-メチル-2-ピロリドン溶液の溶質量を2.0質量%に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例3>
 実施例1のカーボンブラックを平均一次粒子径が35nm、DBP吸収量が228ml/100gのカーボンブラック(デンカ社製、商品名「Li-100」、表1中にて「アセチレンブラック-C」と記載)に変更し、その含有量を1.65質量%に変更し、カーボンナノチューブ分散液の分散質量を1.35質量%に変更し、結着剤としてポリフッ化ビニリデンのN-メチル-2-ピロリドン溶液を溶質量で2.0質量%に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例4>
 実施例2の活物質を平均粒子径D50が1μmのリン酸鉄リチウム(Pulead社製、商品名「P600A」)に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例5>
 実施例2のカーボンナノチューブを平均直径が15nm、BET比表面積が207m2/gのカーボンナノチューブのN-メチル-2-ピロリドン分散液(CNano社製、商品名「LB100」、表1中にて「CNT-B」と記載)に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例6>
 実施例2のカーボンブラックの含有量を0.8質量%に変更し、カーボンナノチューブ分散液の分散質量を1.2質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例7>
 実施例2のカーボンブラックの含有量を1.2質量%に変更し、カーボンナノチューブ分散液の分散質量を0.6質量%に変更し、結着剤としてポリフッ化ビニリデンのN-メチル-2-ピロリドン溶液を溶質量で2.2質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例8>
 実施例2のカーボンブラックの含有量を0.4質量%に変更し、カーボンナノチューブ分散液の分散質量を0.4質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例9>
 実施例2の活物質を平均粒子径D50が5μmのリン酸鉄リチウム(SIGMA-ALDRICH社製)に変更し、カーボンブラックの含有量を1.75質量%に変更し、カーボンナノチューブ分散液の分散質量を1.75質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<比較例1>
 実施例2のカーボンブラックの含有量を2.0質量%に変更し、カーボンナノチューブ分散液の分散質量を0質量%に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表2に示す。
<比較例2>
 実施例1のカーボンブラックの含有量を0質量%に変更し、カーボンナノチューブ分散液の分散質量を2.0質量%に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表2に示す。
<比較例3>
 実施例2のカーボンブラックを、平均一次粒子径48nm、DBP吸収量が177ml/100gのカーボンブラック(デンカ社製、商品名「Li-400」、表2中にて「アセチレンブラック-D」と記載)に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<比較例4>
 実施例2のカーボンナノチューブを、平均直径が25nm、BET比表面積が100m2/gのカーボンナノチューブ(ワコーケミカル社製、表1中にて「CNT-C」と記載)に変更した以外は、実施例2と同様な方法でリチウムイオン二次電池用正極組成物の分散液、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、本発明のリチウムイオン二次電池用正極組成物を用いて作製したリチウムイオン二次電池は、エネルギー密度が高く、サイクル特性に優れることがわかった。加えて、内部抵抗が小さく、出力特性、低温特性にも優れることが分かった。
1・・・正極
2・・・負極
3・・・ポリオレフィン製微多孔膜
4・・・アルミラミネート外装
5・・・正極アルミタブ
6・・・負極ニッケルタブ

Claims (9)

  1.  リチウムイオンを吸蔵及び放出可能な活物質と、導電材を含むリチウムイオン二次電池用正極組成物であって、
     前記活物質がリン酸鉄リチウムであり、
     前記導電材がカーボンブラック及びカーボンナノチューブを含み、
     前記カーボンブラックの平均一次粒子径が39nm以下であり、前記カーボンナノチューブの平均直径が20nm以下であることを特徴とするリチウムイオン二次電池用正極組成物。
  2.  前記リチウムイオン二次電池用正極組成物中の前記カーボンブラックの含有量X(単位:質量%)、及び前記カーボンナノチューブの含有量Y(単位:質量%)が、下記条件(A)、(B)を満たすことを特徴とする請求項1に記載のリチウムイオン二次電池用正極組成物。
     (A)1.0≦(X+Y)≦3.0
     (B)0.45≦{X/(X+Y)}≦0.55
  3.  前記カーボンブラックのDBP吸収量が200~380ml/100gであることを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極組成物。
  4.  前記カーボンナノチューブのBET比表面積が170m2/g以上であり、アスペクト比が50以上であることを特徴とする請求項1~3のいずれか1項に記載のリチウムイオン二次電池用正極組成物。
  5.  前記リン酸鉄リチウムの平均粒子径D50が、1~4μmであることを特徴とする請求項1~4のいずれか1項に記載のリチウムイオン二次電池用正極組成物。
  6.  前記カーボンナノチューブの平均直径が10nm以下であることを特徴とする請求項1~5のいずれか1項に記載のリチウムイオン二次電池用正極組成物。
  7.  前記リチウムイオン二次電池用正極組成物中、前記リン酸鉄リチウムが95質量%以上含まれることを特徴とする請求項1~6のいずれか1項に記載のリチウムイオン二次電池用正極組成物。
  8.  請求項1~7のいずれか1項に記載のリチウムイオン二次電池用正極組成物を含むリチウムイオン二次電池用正極。
  9.  請求項8に記載のリチウムイオン二次電池用正極を備えたリチウムイオン二次電池。
PCT/JP2019/046659 2018-11-28 2019-11-28 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池 WO2020111201A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020557837A JP7490567B2 (ja) 2018-11-28 2019-11-28 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
CN201980078547.4A CN113169310A (zh) 2018-11-28 2019-11-28 锂离子二次电池用正极组合物、锂离子二次电池用正极以及锂离子二次电池
KR1020217020027A KR20210094055A (ko) 2018-11-28 2019-11-28 리튬 이온 이차 전지용 정극 조성물, 리튬 이온 이차 전지용 정극, 및 리튬 이온 이차 전지
EP19888536.0A EP3890062B1 (en) 2018-11-28 2019-11-28 Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
US17/295,235 US20220013777A1 (en) 2018-11-28 2019-11-28 Composition for lithium ion secondary battery positive electrode, lithium ion secondary battery positive electrode, and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018222843 2018-11-28
JP2018-222843 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020111201A1 true WO2020111201A1 (ja) 2020-06-04

Family

ID=70853842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046659 WO2020111201A1 (ja) 2018-11-28 2019-11-28 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20220013777A1 (ja)
EP (1) EP3890062B1 (ja)
JP (1) JP7490567B2 (ja)
KR (1) KR20210094055A (ja)
CN (1) CN113169310A (ja)
WO (1) WO2020111201A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422049A (zh) * 2021-06-25 2021-09-21 湖北亿纬动力有限公司 一种磷酸铁锂正极极片及其制备方法和应用
JP2022165058A (ja) * 2021-04-19 2022-10-31 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
WO2023167235A1 (ja) * 2022-03-03 2023-09-07 株式会社Gsユアサ 蓄電素子及び蓄電装置
WO2023233789A1 (ja) * 2022-05-30 2023-12-07 デンカ株式会社 正極組成物、正極、電池、正極形成用塗液の製造方法、正極の製造方法及び電池の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230268478A1 (en) * 2022-02-18 2023-08-24 GM Global Technology Operations LLC Methods for fabicating high capacity electrodes
CN115312701B (zh) * 2022-09-29 2023-02-10 比亚迪股份有限公司 一种正极片及锂离子电池

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176446A (ja) 1997-12-15 1999-07-02 Hitachi Ltd リチウム二次電池
JP2001126733A (ja) 1999-10-27 2001-05-11 Sony Corp 非水電解質電池
JP2007080652A (ja) 2005-09-14 2007-03-29 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
JP2010238575A (ja) 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法
WO2013179909A1 (ja) 2012-05-31 2013-12-05 三菱マテリアル株式会社 リチウムイオン二次電池の電極及びその電極用ペーストの調製方法並びにその電極の作製方法
WO2014051067A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 リチウムイオン二次電池
JP2014201459A (ja) 2013-04-02 2014-10-27 Jfeケミカル株式会社 リン酸鉄リチウムの製造方法
JP2015056282A (ja) * 2013-09-12 2015-03-23 八千代工業株式会社 高分子固体電解質電池
WO2016024525A1 (ja) * 2014-08-11 2016-02-18 電気化学工業株式会社 電極用導電性組成物、それを用いた電極及びリチウムイオン二次電池
JP2017059297A (ja) * 2015-09-14 2017-03-23 日立マクセル株式会社 非水二次電池
JP2017182989A (ja) * 2016-03-29 2017-10-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極合剤スラリー、非水電解質二次電池用正極、及び非水電解質二次電池
WO2018021073A1 (ja) * 2016-07-28 2018-02-01 デンカ株式会社 電極用導電性樹脂組成物及び電極組成物、並びにそれを用いた電極及びリチウムイオン電池
WO2018047454A1 (ja) * 2016-09-07 2018-03-15 デンカ株式会社 電極用導電性組成物およびそれを用いた電極、電池

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176446A (ja) 1997-12-15 1999-07-02 Hitachi Ltd リチウム二次電池
JP2001126733A (ja) 1999-10-27 2001-05-11 Sony Corp 非水電解質電池
JP2007080652A (ja) 2005-09-14 2007-03-29 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
JP2010238575A (ja) 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法
WO2013179909A1 (ja) 2012-05-31 2013-12-05 三菱マテリアル株式会社 リチウムイオン二次電池の電極及びその電極用ペーストの調製方法並びにその電極の作製方法
WO2014051067A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 リチウムイオン二次電池
JP2014201459A (ja) 2013-04-02 2014-10-27 Jfeケミカル株式会社 リン酸鉄リチウムの製造方法
JP2015056282A (ja) * 2013-09-12 2015-03-23 八千代工業株式会社 高分子固体電解質電池
WO2016024525A1 (ja) * 2014-08-11 2016-02-18 電気化学工業株式会社 電極用導電性組成物、それを用いた電極及びリチウムイオン二次電池
JP2017059297A (ja) * 2015-09-14 2017-03-23 日立マクセル株式会社 非水二次電池
JP2017182989A (ja) * 2016-03-29 2017-10-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極合剤スラリー、非水電解質二次電池用正極、及び非水電解質二次電池
WO2018021073A1 (ja) * 2016-07-28 2018-02-01 デンカ株式会社 電極用導電性樹脂組成物及び電極組成物、並びにそれを用いた電極及びリチウムイオン電池
WO2018047454A1 (ja) * 2016-09-07 2018-03-15 デンカ株式会社 電極用導電性組成物およびそれを用いた電極、電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022165058A (ja) * 2021-04-19 2022-10-31 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
JP7288479B2 (ja) 2021-04-19 2023-06-07 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
CN113422049A (zh) * 2021-06-25 2021-09-21 湖北亿纬动力有限公司 一种磷酸铁锂正极极片及其制备方法和应用
WO2023167235A1 (ja) * 2022-03-03 2023-09-07 株式会社Gsユアサ 蓄電素子及び蓄電装置
WO2023233789A1 (ja) * 2022-05-30 2023-12-07 デンカ株式会社 正極組成物、正極、電池、正極形成用塗液の製造方法、正極の製造方法及び電池の製造方法

Also Published As

Publication number Publication date
CN113169310A (zh) 2021-07-23
JP7490567B2 (ja) 2024-05-27
EP3890062A4 (en) 2022-04-27
JPWO2020111201A1 (ja) 2021-10-21
US20220013777A1 (en) 2022-01-13
KR20210094055A (ko) 2021-07-28
EP3890062A1 (en) 2021-10-06
EP3890062B1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
JP5882516B2 (ja) リチウム二次電池
WO2020111201A1 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP7337049B2 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP4834030B2 (ja) リチウム二次電池用正極及びこれを用いたリチウム二次電池
JP5611453B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP2012146590A (ja) 非水電解質二次電池用正極、その正極の製造方法、及び非水電解質二次電池
WO2018179934A1 (ja) 負極材料および非水電解質二次電池
JP2011204564A (ja) 電極活物質の製造方法
JP4120439B2 (ja) リチウムイオン2次電池
JP7223999B2 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP2006344395A (ja) リチウム二次電池用正極及びその利用と製造
US20220393148A1 (en) Negative electrode and nonaqueous electrolyte secondary battery including the same
US20220399535A1 (en) Negative electrode and nonaqueous electrolyte secondary battery including the same
US20230290955A1 (en) Carbon-based conductive agent, secondary battery, and electrical device
Joshi Silicon/graphite/graphene Hybrid Anodes Via Air Controlled Electrospraying for Lithium Ion Batteries
JP2016201228A (ja) 活物質およびそれを用いた電池
CN116093257A (zh) 锂离子二次电池用负极、其制备方法及包含其的锂离子二次电池
CN116031384A (zh) 锂离子二次电池用正极组合物、锂离子二次电池用正极和锂离子二次电池
CN116565119A (zh) 正极极片、二次电池及其制备方法和含有二次电池的装置
JP2004134255A (ja) 電池用正極材料、正極、電池及び電池用正極材料の製造方法
JP2014078341A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217020027

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019888536

Country of ref document: EP

Effective date: 20210628