WO2014042080A1 - エネルギー貯蔵デバイス電極用複合集電体および電極 - Google Patents

エネルギー貯蔵デバイス電極用複合集電体および電極 Download PDF

Info

Publication number
WO2014042080A1
WO2014042080A1 PCT/JP2013/074010 JP2013074010W WO2014042080A1 WO 2014042080 A1 WO2014042080 A1 WO 2014042080A1 JP 2013074010 W JP2013074010 W JP 2013074010W WO 2014042080 A1 WO2014042080 A1 WO 2014042080A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
current collector
composite current
branched structure
carbon atoms
Prior art date
Application number
PCT/JP2013/074010
Other languages
English (en)
French (fr)
Inventor
佑紀 柴野
滋 三井
卓司 吉本
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201380047677.4A priority Critical patent/CN104620429A/zh
Priority to KR1020157009291A priority patent/KR102013167B1/ko
Priority to EP13837911.0A priority patent/EP2897203A4/en
Priority to US14/428,074 priority patent/US10193160B2/en
Priority to JP2014535522A priority patent/JP5765487B2/ja
Publication of WO2014042080A1 publication Critical patent/WO2014042080A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G10/00Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/18Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or their halogen derivatives only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a composite current collector for an energy storage device electrode and an electrode, and more specifically to a secondary battery represented by a lithium ion secondary battery, a composite current collector for a capacitor, and an electrode using the same. .
  • the lithium ion secondary battery is a secondary battery that has been developed most vigorously at present because it has a high energy density, a high voltage, and has no memory effect during charging and discharging.
  • the development of electric vehicles has been actively promoted due to recent efforts for environmental problems, and higher performance has been demanded for secondary batteries as power sources.
  • a lithium ion secondary battery contains a positive electrode and a negative electrode capable of occluding and releasing lithium, and a separator interposed between them in a container, and an electrolyte solution (liquid in the case of a lithium ion polymer secondary battery) therein. It has a structure filled with a gel-like or all solid electrolyte instead of the electrolyte.
  • a positive electrode and a negative electrode are generally layered on a current collector such as a copper foil or an aluminum foil, with an active material capable of inserting and extracting lithium, a conductive material mainly composed of a carbon material, and a composition containing a polymer binder. It is formed by laminating.
  • This binder is used to bond an active material and a conductive material, and further to the metal foil, and is a fluorine-based resin soluble in N-methylpyrrolidone (NMP) such as polyvinylidene fluoride (PVdF) or an olefin-based heavy polymer.
  • NMP N-methylpyrrolidone
  • PVdF polyvinylidene fluoride
  • olefin-based heavy polymer Combined aqueous dispersions are commercially available.
  • the lithium ion secondary battery is also expected to be applied as a power source for electric vehicles and the like, and a longer life and safety than ever before are required.
  • the adhesive strength of the binder to the current collector cannot be said to be sufficient, and part of the active material or conductive material peels off from the current collector during the manufacturing process such as the electrode plate cutting process or the winding process.
  • this may cause a minute short circuit and a variation in battery capacity.
  • the contact resistance between the electrode mixture and the current collector increases due to the volume change of the electrode mixture due to the swelling of the binder due to the electrolytic solution and the volume change due to the lithium occlusion and release of the active material after long-term use.
  • Patent Document 1 discloses a technique in which a conductive layer containing carbon as a conductive filler is used as a binder layer and disposed between a current collector and an electrode mixture, and includes a conductive binder layer.
  • a composite current collector hereinafter also simply referred to as a composite current collector
  • the contact resistance between the current collector and the electrode mixture can be reduced, and the capacity reduction during high-speed discharge can be suppressed. It has been shown that battery degradation can also be suppressed.
  • Patent Document 2 and Patent Document 3 disclose similar techniques.
  • carbon particles are used as the conductive filler, but since the carbon particles do not have a binding action on the current collector, a binding layer is produced using a polymer as a matrix.
  • the binding force improves as the polymer content increases.
  • the contact between the carbon particles is decreased, so that the resistance of the binder layer is rapidly increased, and as a result, the resistance of the entire battery is increased.
  • CNT carbon nanotube
  • MWCNT multi-walled carbon nanotubes
  • a conductive binding layer is formed on an aluminum foil, whereby the cycle life of a lithium ion secondary battery can be improved. It has been reported.
  • the dispersing ability of the dispersant used when forming the conductive binder layer containing MWCNT in Patent Document 4 is low, and it is necessary to perform spray coating a plurality of times in order to obtain a layer having a sufficient film thickness. was there.
  • the present invention has been made in view of such circumstances, and a composite current collector for an energy storage device electrode having a carbon nanotube-containing conductive binder layer having excellent adhesion to a current collector substrate, and the composite current collector
  • An object is to provide an electrode comprising a body.
  • the present inventors have used CNT dispersant having a specific structure, so that CNTs are well dispersed in the layer and adhere to the current collector substrate.
  • the present invention was completed by finding that a highly conductive conductive binder layer was obtained.
  • alkyl group which may have a branched structure having 1 to 5 carbon atoms, an alkoxy group which may have a branched structure having 1 to 5 carbon atoms, a carboxyl group, a sulfo group, a phosphoric acid group, a phosphonic acid group, Or a salt thereof.
  • R 5 to R 38 are each independently a hydrogen atom, a halogen atom, an alkyl group which may have a branched structure having 1 to 5 carbon atoms, or a branched structure having 1 to 5 carbon atoms
  • R 39 to R 62 are each independently a hydrogen atom, a halogen atom, an alkyl group which may have a branched structure of 1 to 5 carbon atoms, or a branched structure of 1 to 5 carbon atoms.
  • Haloalkyl group, phenyl group, OR 63 , COR 63 , NR 63 R 64 , COOR 65 (in these formulas, R 63 and R 64 each independently represents a hydrogen atom or a carbon atom number)
  • R 1 represents an alkyl group which may have a branched structure of 1 to 5, a haloalkyl group which may have a branched structure of 1 to 5 carbon atoms, or a phenyl group
  • R 65 represents 1 to 5 carbon atoms.
  • a carboxyl group, a sulfo group, a phosphate group Represents a phosphonic acid group or a salt thereof.
  • the hyperbranched polymer is a carboxyl group, a sulfo group, a phosphoric acid group, a phosphonic acid group, or a salt thereof in at least one aromatic ring of the repeating unit represented by the formula (1) or the formula (2).
  • a composite current collector for an energy storage device electrode having at least one selected acidic group; 3.
  • the hyperbranched polymer is a composite current collector for an energy storage device electrode according to any one of 1 to 3 having a repeating unit represented by the formula (12): (Wherein R 5 to R 8 represent a hydrogen atom, a carboxyl group, a sulfo group, a phosphoric acid group, a phosphonic acid group, or a salt thereof, and Z 1 and Z 2 represent the same meaning as described above.) 5. 4 a current collector for an energy storage device electrode, wherein R 5 to R 8 are all hydrogen atoms, 6).
  • the current collector substrate is made of at least one selected from copper, aluminum, nickel, gold, silver, and alloys thereof, and has a thickness of 1 to 100 ⁇ m, and the composite current collector for an energy storage device electrode of any one of 1 to 10 , 12
  • the conductive binding layer comprises a dispersion containing the hyperbranched polymer, carbon nanotubes, and optionally a matrix polymer, and an organic solvent and / or water, on the current collecting substrate, an inkjet method, a casting method, Energy of any of 1 to 11 formed by applying and drying by dip coating, bar coating, blade coating, roll coating, gravure coating, flexographic printing, slit die coating, or spray coating Composite current collector for storage device electrode, 13.
  • An energy storage device comprising: a composite current collector for an energy storage device electrode according to any one of 1 to 12; and an active material layer formed on the conductive binding layer of the composite current collector. electrode, 14
  • a secondary battery comprising thirteen electrodes for energy storage devices, 15.
  • a capacitor comprising thirteen electrodes for energy storage devices; 16.
  • a composition for forming a conductive binder layer comprising a highly branched polymer having a repeating unit represented by formula (1) or formula (2) and a carbon nanotube;
  • Ar 1 ⁇ Ar 3 each independently represents any of the divalent organic group represented by the formula (3) ⁇ (7)
  • Z 1 and Z 2 are each independently a hydrogen atom, an alkyl group optionally having a branched structure of 1 to 5 carbon atoms, or any monovalent organic represented by formulas (8) to (11) Represents a group (provided that Z 1 and Z 2 do not simultaneously become the alkyl group), and in formula (2), R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, or a carbon atom.
  • alkyl group which may have a branched structure having 1 to 5 carbon atoms, an alkoxy group which may have a branched structure having 1 to 5 carbon atoms, a carboxyl group, a sulfo group, a phosphoric acid group, a phosphonic acid group, Or a salt thereof.
  • R 5 to R 38 are each independently a hydrogen atom, a halogen atom, an alkyl group which may have a branched structure having 1 to 5 carbon atoms, or a branched structure having 1 to 5 carbon atoms
  • R 39 to R 62 are each independently a hydrogen atom, a halogen atom, an alkyl group which may have a branched structure of 1 to 5 carbon atoms, or a branched structure of 1 to 5 carbon atoms.
  • Haloalkyl group, phenyl group, OR 63 , COR 63 , NR 63 R 64 , COOR 65 (in these formulas, R 63 and R 64 each independently represents a hydrogen atom or a carbon atom number)
  • R 1 represents an alkyl group which may have a branched structure of 1 to 5, a haloalkyl group which may have a branched structure of 1 to 5 carbon atoms, or a phenyl group
  • R 65 represents 1 to 5 carbon atoms.
  • a carboxyl group, a sulfo group, a phosphate group Represents a phosphonic acid group or a salt thereof.
  • macromolecule used as a matrix is provided.
  • a conductive binder layer having a high CNT concentration can be obtained. This means that the electrical resistance of the conductive binder layer can be lowered, and in particular, in applications that require a large current instantaneously, such as electric vehicle applications, current can be taken out without causing a voltage drop.
  • a secondary battery having a long life can be manufactured.
  • FIG. 4 is a 1 H-NMR spectrum diagram of PTPA-PBA-SO 3 H obtained in Synthesis Example 2.
  • FIG. 6 is a 13 C-NMR spectrum of PTPA-PBA-SO 3 H obtained in Synthesis Example 2.
  • FIG. It is a figure which shows the cycling characteristics of the discharge capacity of the lithium ion secondary battery produced in Example 16 and Comparative Examples 14-16. It is a figure which shows the cycling characteristics of the discharge capacity of the lithium ion secondary battery produced in Example 17 and Comparative Example 17.
  • FIG. It is a figure which shows the rate dependence of the discharge capacity of the lithium ion secondary battery produced in Example 17 and Comparative Example 17. It is a figure which shows the cycle rate characteristic of the discharge capacity of the lithium ion secondary battery produced in Examples 18 and 19 and Comparative Examples 18-20.
  • FIG. 5 is a diagram showing cycle rate characteristics of discharge capacity of lithium ion secondary batteries produced in Example 20 and Comparative Example 21. It is a figure which shows the discharge curve when the discharge rate of the lithium ion secondary battery produced in Example 20 and Comparative Example 21 is 10C. It is a figure which shows the discharge curve in the case of the discharge rate 10C of the lithium ion secondary battery produced in Example 21, 22 and the comparative example 22. FIG. It is a figure which shows the discharge curve at the discharge rate 5C of the lithium ion secondary battery produced in Examples 23 and 24 and Comparative Example 23.
  • a composite current collector for an energy storage device electrode includes a current collector substrate, a hyperbranched polymer having a repeating unit represented by the above formula (1) or formula (2) formed on the substrate, and A conductive binder layer containing carbon nanotubes.
  • the energy storage device include various energy storage devices such as an electric double layer capacitor, a lithium secondary battery, a lithium ion secondary battery, a proton polymer battery, a nickel hydrogen battery, and a lead storage battery.
  • a double layer capacitor and a lithium ion secondary battery are preferable.
  • the hyperbranched polymer represented by the above formulas (1) and (2) is a polymer containing a triarylamine structure as a branch point, more specifically, triarylamines and aldehydes and / or ketones under acidic conditions. It is a polymer obtained by condensation polymerization below.
  • this highly branched polymer is considered to have a high affinity for the conjugated structure of CNT through ⁇ - ⁇ interaction derived from the aromatic ring of the triarylamine structure, a high dispersibility of CNT is expected.
  • this highly branched polymer has a branched structure, so that it has a high solubility that cannot be seen in a straight chain, and is excellent in thermal stability.
  • the average molecular weight of the hyperbranched polymer is not particularly limited, but the weight average molecular weight is preferably 1,000 to 2,000,000. If the weight average molecular weight of the polymer is less than 1,000, there is a possibility that the dispersibility of CNTs is remarkably lowered or the dispersibility cannot be exhibited. On the other hand, if the weight average molecular weight exceeds 2,000,000, handling in the dispersion treatment may become extremely difficult. Highly branched polymers having a weight average molecular weight of 2,000 to 1,000,000 are more preferred.
  • the weight average molecular weight in this invention is a measured value (polystyrene conversion) by gel permeation chromatography.
  • Ar 1 to Ar 3 each independently represents any divalent organic group represented by the above formulas (3) to (7).
  • a substituted or unsubstituted phenylene group represented by the formula (3) is preferred.
  • R 1 to R 38 each independently represents a hydrogen atom, a halogen atom, an alkyl group which may have a branched structure having 1 to 5 carbon atoms, or carbon An alkoxy group, a carboxyl group, a sulfo group, a phosphoric acid group, a phosphonic acid group, or a salt thereof, which may have a branched structure having 1 to 5 atoms.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • examples of the alkyl group which may have a branched structure having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, and n-pentyl group.
  • alkoxy group which may have a branched structure having 1 to 5 carbon atoms
  • examples of the alkoxy group which may have a branched structure having 1 to 5 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group And n-pentoxy group.
  • Salts of carboxyl group, sulfo group, phosphoric acid group and phosphonic acid group include alkali metal salts such as sodium and potassium; group 2 metal salts such as magnesium and calcium; ammonium salts; propylamine, dimethylamine, triethylamine, ethylenediamine, etc.
  • Z 1 and Z 2 are each independently a hydrogen atom, an alkyl group which may have a branched structure having 1 to 5 carbon atoms, or the above formula ( 8) to any one of the monovalent organic groups represented by (11) (wherein Z 1 and Z 2 are not simultaneously the above alkyl group), Z 1 and Z 2 are Independently, a hydrogen atom, a 2- or 3-thienyl group, and a group represented by the above formula (8) are preferable, and in particular, one of Z 1 and Z 2 is a hydrogen atom, and the other is a hydrogen atom, More preferred are 2- or 3-thienyl groups, groups represented by the above formula (8), particularly those in which R 41 is a phenyl group, or R 41 is a methoxy group.
  • R 41 is a phenyl group
  • an acidic group may be introduced onto the phenyl group when a method for introducing an acidic group after polymer production is used in the acidic group introduction method described later.
  • alkyl group which may have a branched structure having 1 to 5 carbon atoms include those similar to those exemplified above.
  • R 39 to R 62 each independently represent a hydrogen atom, a halogen atom, an alkyl group which may have a branched structure having 1 to 5 carbon atoms, or the number of carbon atoms A haloalkyl group optionally having 1 to 5 branched structures, a phenyl group, OR 63 , COR 63 , NR 63 R 64 , COOR 65 (wherein R 63 and R 64 each independently represents hydrogen atom, an alkyl group which may have a branched structure of 1 to 5 carbon atoms, optionally haloalkyl group which may have a branched structure of 1 to 5 carbon atoms or a phenyl group, R 65 is Represents an alkyl group which may have a branched structure having 1 to 5 carbon atoms, a haloalkyl group which may have a branched structure having 1 to 5 carbon atoms, or a phenyl group), a
  • examples of the haloalkyl group which may have a branched structure having 1 to 5 carbon atoms include difluoromethyl group, trifluoromethyl group, bromodifluoromethyl group, 2-chloroethyl group, 2-bromoethyl group, 1, 1-difluoroethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 2-chloro-1,1,2-trifluoroethyl group, pentafluoroethyl group, 3-bromopropyl group, 2,2,3,3-tetrafluoropropyl group, 1,1,2,3,3,3-hexafluoropropyl group, 1,1,1,3,3,3-hexafluoro Examples include propan-2-yl group, 3-bromo-2-methylpropyl group, 4-bromobutyl group, perfluoropentyl group and the like.
  • the hyperbranched polymer used in the present invention is in at least one aromatic ring of the repeating unit represented by the formula (1) or (2), It is preferable to have at least one acidic group selected from a carboxyl group, a sulfo group, a phosphoric acid group, a phosphonic acid group, and salts thereof.
  • aldehyde compound used for the production of the hyperbranched polymer examples include formaldehyde, paraformaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, isobutyraldehyde, valeraldehyde, capronaldehyde, 2-methylbutyraldehyde, hexylaldehyde, undecylaldehyde, 7 -Saturated aliphatic aldehydes such as methoxy-3,7-dimethyloctylaldehyde, cyclohexanecarboxaldehyde, 3-methyl-2-butyraldehyde, glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, adipinealdehyde; acrolein, methacrolein Unsaturated fatty aldehydes such as: furfural, pyridine al
  • benzaldehyde tolylaldehyde, trifluoromethylbenzaldehyde, phenylbenzaldehyde, salicylaldehyde, anisaldehyde, acetoxybenzaldehyde, terephthalaldehyde, acetylbenzaldehyde, formylbenzoic acid, methyl formylbenzoate, aminobenzaldehyde, N, N-dimethylaminobenzaldehyde N, N-diphenylaminobenzaldehyde, naphthyl aldehyde, anthryl aldehyde, aromatic aldehydes such as phenanthryl aldehyde, aralkyl aldehydes such as phenylacetaldehyde, 3-phenylpropionaldehyde, and the like. It is particularly preferable to use aromatic aldehydes.
  • Examples of the ketone compound used in the production of the hyperbranched polymer include alkyl aryl ketones and diaryl ketones, such as acetophenone, propiophenone, diphenyl ketone, phenyl naphthyl ketone, dinaphthyl ketone, phenyl tolyl ketone, and ditolyl ketone. Etc.
  • the hyperbranched polymer used in the present invention includes, for example, a triarylamine compound that can give the above-described triarylamine skeleton as represented by the following formula (A), and the following formula, for example: It can be obtained by condensation polymerization of an aldehyde compound and / or a ketone compound as shown in (B) in the presence of an acid catalyst.
  • a bifunctional compound (C) such as phthalaldehyde such as terephthalaldehyde is used as the aldehyde compound, not only the reaction shown in Scheme 1 but also the reaction shown in Scheme 2 below occurs.
  • a hyperbranched polymer having a crosslinked structure in which two functional groups contribute to the condensation reaction may be obtained.
  • an aldehyde compound and / or a ketone compound can be used at a ratio of 0.1 to 10 equivalents with respect to 1 equivalent of the aryl group of the triarylamine compound.
  • the acid catalyst include mineral acids such as sulfuric acid, phosphoric acid and perchloric acid; organic sulfonic acids such as p-toluenesulfonic acid and p-toluenesulfonic acid monohydrate; carboxylic acids such as formic acid and oxalic acid. Etc. can be used.
  • the amount of the acid catalyst to be used is variously selected depending on the kind thereof, but is usually 0.001 to 10,000 parts by mass, preferably 0.01 to 1,000 parts by mass with respect to 100 parts by mass of the triarylamines. Part, more preferably 0.1 to 100 parts by weight.
  • the above condensation reaction can be carried out without a solvent, it is usually carried out using a solvent.
  • Any solvent that does not inhibit the reaction can be used.
  • cyclic ethers such as tetrahydrofuran and 1,4-dioxane; N, N-dimethylformamide (DMF), N, N-dimethylacetamide ( DMAc), amides such as N-methyl-2-pyrrolidone (NMP); ketones such as methyl isobutyl ketone and cyclohexanone; halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene; benzene, And aromatic hydrocarbons such as toluene and xylene.
  • solvents can be used alone or in combination of two or more.
  • cyclic ethers are preferred.
  • the acid catalyst used is a liquid such as formic acid, the acid catalyst can also serve as a solvent.
  • the reaction temperature during the condensation is usually 40 to 200 ° C.
  • the reaction time is variously selected depending on the reaction temperature, but is usually about 30 minutes to 50 hours.
  • the weight average molecular weight Mw of the polymer obtained as described above is usually 1,000 to 2,000,000, preferably 2,000 to 1,000,000.
  • the obtained hyperbranched polymer may be introduced by a method of treating with a reagent capable of introducing an acidic group on the aromatic ring, but the latter method may be used in consideration of the ease of production. preferable.
  • the method for introducing the acidic group onto the aromatic ring is not particularly limited, and may be appropriately selected from conventionally known various methods according to the type of the acidic group. For example, when a sulfo group is introduced, a technique of sulfonation using an excessive amount of sulfuric acid can be used.
  • CNTs used together with the hyperbranched polymer (CNT dispersant) described above are generally produced by an arc discharge method, a chemical vapor deposition method (CVD method), a laser ablation method, etc.
  • the CNT used may be obtained by any method.
  • single-walled CNT hereinafter referred to as SWCNT in which one carbon film (graphene sheet) is wound in a cylindrical shape and two-layered CNT in which two graphene sheets are wound in a concentric shape.
  • DWCNT multi-layer CNT
  • MWCNT multi-layer CNT
  • SWCNT, DWCNT, and MWCNT are each a single unit, Or a combination of several can be used.
  • the conductive binder layer provided in the composite current collector of the present invention can be prepared from the composition for forming a conductive binder layer containing the hyperbranched polymer and CNTs.
  • the conductive binder layer forming composition may further contain an organic solvent having the ability to dissolve the hyperbranched polymer.
  • organic solvent examples include ethers such as tetrahydrofuran (THF), diethyl ether, and 1,2-dimethoxyethane (DME); halogenated hydrocarbons such as methylene chloride, chloroform, and 1,2-dichloroethane; Amides such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP); Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; methanol Alcohols such as ethanol, isopropanol and n-propanol; aliphatic hydrocarbons such as n-heptane, n-hexane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethylene glycol Examples include
  • organic solvents are used alone or in combination of two or more. be able to.
  • NMP, DMF, THF, methanol, and isopropanol are preferable because the ratio of isolated dispersion of CNTs can be improved.
  • glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether; ketones such as acetone, methyl ethyl ketone, and cyclohexanone It is desirable to include a small amount of propylene glycol, isopropanol, NMP and the like.
  • the method for preparing the conductive binder layer forming composition is arbitrary.
  • the highly branched polymer dispersing agent
  • the highly branched polymer and CNT are mixed as appropriate, and the highly branched polymer is solid.
  • it can be prepared by melting it and then mixing it with CNTs.
  • a solvent what is necessary is just to mix a hyperbranched polymer, CNT, and a solvent in arbitrary orders, and to prepare a composition.
  • Examples of the dispersion treatment include mechanical treatment, wet treatment using a ball mill, bead mill, jet mill, and the like, and ultrasonic treatment using a bath-type or probe-type sonicator.
  • the time for the dispersion treatment is arbitrary, but is preferably about 1 minute to 10 hours, and more preferably about 5 minutes to 5 hours.
  • the highly branched polymer used in the present invention is excellent in the dispersibility of CNTs, a composition in which CNTs are isolated and dispersed at a high concentration can be obtained without performing heat treatment before the dispersion treatment, You may heat-process as needed.
  • the mixing ratio of the hyperbranched polymer and CNT can be about 1,000: 1 to 1: 100 in terms of mass ratio.
  • the concentration of the hyperbranched polymer in the composition using the solvent is not particularly limited as long as it is a concentration capable of dispersing CNTs in the solvent, but in the present invention, 0.001 to It is preferably about 30% by mass, and more preferably about 0.002 to 20% by mass.
  • the concentration of CNTs in the composition is arbitrary as long as at least a part of the CNTs is isolated and dispersed, but in the present invention, it is preferably about 0.0001 to 20% by mass in the composition. More preferably, the content is about 0.001 to 10% by mass.
  • the dispersant is attached to the surface of the CNT to form a composite.
  • a polymer serving as a matrix may be added to the conductive binder layer forming composition.
  • the blending ratio is not particularly limited, but is preferably about 0.0001 to 99% by mass in the composition, and more preferably about 0.001 to 90% by mass.
  • known binders used for electrodes for energy storage devices can be used.
  • PVdF polyvinylidene fluoride
  • polytetrafluoroethylene polytetrafluoroethylene
  • tetrafluoroethylene-hexafluoropropylene copolymer Polymer vinylidene fluoride-hexafluoropropylene copolymer [P (VDF-HFP)] vinylidene fluoride-trichloroethylene copolymer [P (VDF-CTFE)]
  • polyvinyl alcohol polyimide
  • ethylene-propylene -Conductive polymers such as diene terpolymers, styrene-butadiene rubber, carboxymethylcellulose (CMC), polyacrylic acid (PAA), polyaniline, and the like.
  • CMC carboxymethylcellulose
  • PAA polyacrylic acid
  • polyolefin resins such as PE (polyethylene), PP (polypropylene), EVA (ethylene-vinyl acetate copolymer), EEA (ethylene-ethyl acrylate copolymer); PS ( Polystyrene resins such as polystyrene), HIPS (high impact polystyrene), AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene-styrene copolymer), MS (methyl methacrylate-styrene copolymer); polycarbonate Resin; Vinyl chloride resin; Polyamide resin; Polyurethane resin; (Meth) acrylic resin such as PMMA (Polymethylmethacrylate); PET (Polyethylene terephthalate), Polybutylene terephthalate, Polyethylene naphthalate, Polybutylene Polyester resin such as tarate, PLA (polylactic acid), poly-3-hydroxybutyric acid, polycaprol
  • the composition may be prepared by mixing a dispersant, CNT, a polymer to be a matrix, and, if necessary, a solvent by a mixing device or a kneading device to form a composite.
  • a mixing device or a kneading device include various mixers and single-screw or twin-screw extruders.
  • the mixing / kneading temperature and time at this time are arbitrary and are appropriately selected according to the polymer or solvent to be used as a matrix.
  • the CNT concentration in the composition using the polymer as a matrix is arbitrary because it changes in the mechanical, electrical, thermal characteristics, etc. required for the thin film (binding layer). Is preferably about 0.0001 to 30% by mass, more preferably 0.001 to 20% by mass in the composition.
  • the said composition for electroconductive binder layer formation may contain the crosslinking agent soluble in the solvent mentioned above which can raise
  • cross-linking agents include melamine-based, substituted urea-based, or polymer systems thereof, and these cross-linking agents can be used alone or in admixture of two or more.
  • the crosslinking agent has at least two cross-linking substituents, such as CYMEL (registered trademark), methoxymethylated glycoluril, butoxymethylated glycoluril, methylolated glycoluril, methoxymethylated melamine, butoxymethyl.
  • Melamine methylolated melamine, methoxymethylated benzoguanamine, butoxymethylated benzoguanamine, methylolated benzoguanamine, methoxymethylated urea, butoxymethylated urea, methylolated urea, methoxymethylated thiourea, methoxymethylated thiourea, methylolated thio
  • Examples include compounds such as urea, and condensates of these compounds.
  • the amount of the crosslinking agent added varies depending on the organic solvent used, the substrate used, the required viscosity, the required film shape, etc., but is 0.001 to 80% by mass, preferably 0, based on the highly branched polymer. 0.01 to 50% by mass, more preferably 0.05 to 40% by mass.
  • These cross-linking agents may cause a cross-linking reaction due to self-condensation. However, these cross-linking agents cause a cross-linking reaction with the above-mentioned highly branched polymer. Cross-linking reaction is promoted.
  • a catalyst for promoting the crosslinking reaction p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid, naphthalenecarboxylic acid It is possible to add acidic compounds such as acids and / or thermal acid generators such as 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate, and organic sulfonic acid alkyl esters. it can.
  • the addition amount of the catalyst is 0.0001 to 20% by mass, preferably 0.0005 to 10% by mass, and more preferably 0.001 to 3% by mass with respect to the CNT dispersant (highly branched polymer).
  • the viscosity of the composition for forming a conductive binder layer of the present invention is appropriately determined according to the coating method used, and includes, for example, an inkjet method, a casting method, a dip coating method, a bar coating method, a gravure coating method, When applying by flexographic printing method or spray coating method, etc., about 1 to 1,000 mPa ⁇ s is 100 to 100,000 mPa when applying by blade coating method, roll coating method, slit die coating method or screen printing method. -About s is suitable.
  • the viscosity of the composition can be adjusted by changing the amount, type, and the like of the solid component (CNT, dispersant, etc.) and solvent, but a thickener may be used to increase the viscosity.
  • Such thickeners include carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, xanthan gum, guar gum, sodium alginate, carrageenan, pectin, locust bean gum and other proteins, and proteins such as albumin and casein, Examples thereof include synthetic polymers such as polyacrylic acid and salts thereof, cross-linked products, polyglycol compounds, polyvinyl alcohol compounds, polyether compounds, polyamide compounds and polyester compounds, and inorganic fine particles such as silica sol.
  • the addition amount of the thickener may be appropriately determined in consideration of the balance between the film thickness to be produced and the coating method within a range of about 0.01 to 20% by mass with respect to the entire composition.
  • the current collector substrate can be appropriately selected from those conventionally used as a current collector for energy storage device electrodes, for example, copper, aluminum, nickel, gold, silver, and their Thin films such as alloys, carbon materials, metal oxides, and conductive polymers can be used.
  • the thickness is not particularly limited, but is preferably 1 to 100 ⁇ m in the present invention.
  • the composite current collector of the present invention is produced by applying the above-described composition for forming a conductive binder layer on a current collector substrate, and naturally or heat-drying the composition to form a conductive binder layer. Can do.
  • the thickness of the conductive binder layer is not particularly limited, but is preferably 0.05 to 10 ⁇ m in consideration of reducing the internal resistance.
  • the coating method include spin coating, dip coating, flow coating, ink jet, spray coating, bar coating, gravure coating, slit die coating, roll coating, flexographic printing, transfer printing, Brush coating, blade coating method, air knife coating method, screen printing method, etc.
  • inkjet method casting method, dip coating method, bar coating method, blade coating method, roll coating method,
  • the gravure coating method, flexographic printing method, spray coating method, and slit die coating method are suitable.
  • the temperature for drying by heating is also arbitrary, but is preferably about 50 to 200 ° C, more preferably about 80 to 150 ° C.
  • the electrode of the present invention can be produced by forming an active material layer on the conductive binder layer of the composite current collector.
  • an active material the various active materials conventionally used for the electrode for energy storage devices can be used.
  • a chalcogen compound capable of adsorbing and releasing lithium ions or a lithium ion-containing chalcogen compound, a polyanionic compound, a simple substance of sulfur and a compound thereof may be used as a positive electrode active material. it can.
  • Examples of the chalcogen compound that can adsorb and desorb lithium ions include FeS 2 , TiS 2 , MoS 2 , V 2 O 6 , V 6 O 13 , and MnO 2 .
  • Examples of the lithium ion-containing chalcogen compound include LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiMo 2 O 4 , LiV 3 O 8 , LiNiO 2 , Li x Ni y M 1-y O 2 (where M is Co Represents at least one metal element selected from Mn, Ti, Cr, V, Al, Sn, Pb, and Zn, 0.05 ⁇ x ⁇ 1.10, 0.5 ⁇ y ⁇ 1.0) Etc.
  • Examples of the polyanionic compound include LiFePO 4 .
  • Examples of the sulfur compound include Li 2 S and rubeanic acid.
  • the negative electrode active material constituting the negative electrode at least one element selected from alkali metals, alkali alloys, and elements of Groups 4 to 15 of the periodic table that occlude / release lithium ions, oxides, sulfides, nitrides Or a carbon material capable of reversibly occluding and releasing lithium ions can be used.
  • the alkali metal include Li, Na, and K
  • examples of the alkali metal alloy include metals Li, Li—Al, Li—Mg, Li—Al—Ni, Na, Na—Hg, and Na—Zn. Can be mentioned.
  • Examples of the simple substance of at least one element selected from Group 4 to 15 elements of the periodic table that store and release lithium ions include silicon, tin, aluminum, zinc, and arsenic.
  • examples of the oxide include tin silicon oxide (SnSiO 3 ), lithium bismuth oxide (Li 3 BiO 4 ), lithium zinc oxide (Li 2 ZnO 2 ), and lithium titanium oxide (Li 4 Ti 5 O 12 ).
  • examples of the sulfide include lithium iron sulfide (Li x FeS 2 (0 ⁇ x ⁇ 3)), lithium copper sulfide (Li x CuS (0 ⁇ x ⁇ 3)), and the like.
  • the carbon material capable of reversibly occluding and releasing lithium ions include graphite, carbon black, coke, glassy carbon, carbon fiber, carbon nanotube, or a sintered body thereof.
  • a carbonaceous material can be used as an active material.
  • the carbonaceous material include activated carbon and the like, for example, activated carbon obtained by carbonizing a phenol resin and then activating treatment.
  • a conductive additive can also be added to the electrode of the present invention.
  • the conductive assistant include carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, natural graphite, artificial graphite, titanium oxide, ruthenium oxide, aluminum, nickel and the like.
  • the active material layer can be formed by applying the electrode slurry containing the active material, the binder polymer, and, if necessary, the solvent described above onto the conductive binder layer and naturally or by heating and drying.
  • the binder polymer can be appropriately selected from known materials and used, for example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene.
  • VDF-HFP vinylidene fluoride-chloroethylene trifluoride copolymer
  • P (VDF-CTFE) vinylidene fluoride-chloroethylene trifluoride copolymer
  • polyvinyl alcohol polyimide
  • ethylene-propylene-diene terpolymer polyimide
  • styrene -Conductive polymers such as butadiene rubber, carboxymethyl cellulose (CMC), polyacrylic acid (PAA), polyaniline and the like.
  • the added amount of the binder polymer is preferably 0.1 to 20 parts by mass, particularly 1 to 10 parts by mass with respect to 100 parts by mass of the active material.
  • the solvent examples include organic solvents and water exemplified in the hyperbranched polymer, and may be appropriately selected according to the type of the binder, but NMP is preferable in the case of a water-insoluble binder such as PVdF. In the case of a water-soluble binder such as PAA, water is preferable.
  • Examples of the method for applying the electrode slurry include the same method as that for the conductive binder layer forming composition described above.
  • the temperature for drying by heating is also arbitrary, but is preferably about 50 to 200 ° C, more preferably about 80 to 150 ° C.
  • An energy storage device includes the above-described electrodes, and more specifically, includes at least a pair of positive and negative electrodes, a separator interposed between these electrodes, and an electrolyte. At least one of the positive and negative electrodes is composed of the above-described electrode for energy storage device. Since this energy storage device is characterized by the use of the above-mentioned electrode for energy storage device as an electrode, other device constituent members such as separators and electrolytes may be appropriately selected from known materials and used. it can. Examples of the separator include a cellulose separator and a polyolefin separator.
  • the electrolyte may be either liquid or solid, and may be either aqueous or non-aqueous.
  • the electrode for an energy storage device of the present invention is practically sufficient even when applied to a device using a non-aqueous electrolyte. Performance can be demonstrated.
  • non-aqueous electrolyte examples include a non-aqueous electrolyte obtained by dissolving an electrolyte salt in a non-aqueous organic solvent.
  • electrolyte salt examples include lithium salts such as lithium tetrafluoroborate, lithium hexafluorophosphate, lithium perchlorate, and lithium trifluoromethanesulfonate; tetramethylammonium hexafluorophosphate, tetraethylammonium hexafluorophosphate, tetrapropylammonium hexa
  • examples thereof include quaternary ammonium salts such as fluorophosphate, methyltriethylammonium hexafluorophosphate, tetraethylammonium tetrafluoroborate, tetraethylammonium perchlorate and the like.
  • non-aqueous organic solvent examples include alkylene carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate; dialkyl carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; nitriles such as acetonitrile; and amides such as dimethylformamide.
  • alkylene carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate
  • dialkyl carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate
  • nitriles such as acetonitrile
  • amides such as dimethylformamide.
  • composite current collector of the present invention can also be used as a cathode of an aluminum electrolytic capacitor or a solid electrolytic capacitor.
  • Measuring solvent DMSO-d 6 (deuterated dimethyl sulfoxide) Reference substance: Tetramethylsilane (0.00ppm) (5) 13 C-NMR spectrum apparatus: JNM-ECA700 manufactured by JEOL Ltd. Measuring solvent: DMSO-d 6 Reference substance: DMSO-d 6 (39.5 ppm) (6) Ion chromatography (sulfur quantitative analysis) Device: ICS-1500, manufactured by Dionex Column: IonPacAG12A + IonPacAS12A manufactured by Dionex Solvent: (NaHCO 3 2.7 mmol + Na 2 CO 3 0.3 mmol) / L aqueous solution Detector: Electric conductivity (7) Probe type ultrasonic irradiation device (dispersion treatment) Apparatus: UIP1000 manufactured by Hielscher Ultrasonics (8) Wire bar coater (preparation of thin film) Equipment: PM-9050MC manufactured by SMT Co., Ltd.
  • the mixture was heated to 85 ° C. with stirring and dissolved, and polymerization was started. After reacting for 6 hours, the reaction mixture was allowed to cool to 60 ° C.
  • the reaction mixture was diluted with 560 g of THF, and 80 g of 28% by mass aqueous ammonia was added.
  • the reaction solution was reprecipitated by adding it to a mixed solution of 2,000 g of acetone and 400 g of methanol.
  • the deposited precipitate was filtered and dried under reduced pressure, and then the obtained solid was redissolved in 640 g of THF and reprecipitated again by adding it to a mixed solution of 2,000 g of acetone and 400 g of water.
  • the deposited precipitate was filtered and dried under reduced pressure at 130 ° C.
  • PTPA-PBA had a weight average molecular weight Mw measured in terms of polystyrene by GPC of 17,000 and a polydispersity Mw / Mn of 3.82 (where Mn is a number measured under the same conditions). Represents the average molecular weight).
  • Mw weight average molecular weight measured in terms of polystyrene by GPC
  • Mn polydispersity Mw / Mn of 3.82 (where Mn is a number measured under the same conditions). Represents the average molecular weight).
  • the 5% weight loss temperature measured by TG-DTA was 531 ° C.
  • Tg glass transition temperature
  • PTPA-PBA-SO 3 H a highly branched polymer PTPA-PBA-SO 3 H (hereinafter simply referred to as PTPA-PBA-SO 3 H) as a purple powder.
  • the 1 H-NMR spectrum of the obtained PTPA-PBA-SO 3 H is shown in FIG. 1, and the 13 C-NMR spectrum is shown in FIG.
  • the sulfur atom content of PTPA-PBA-SO 3 H calculated from sulfur quantitative analysis was 6.4% by mass.
  • the sulfo group content of PTPA-PBA-SO 3 H obtained from this result was one per repeating unit of the highly branched polymer PTPA-PBA.
  • This mixture was subjected to ultrasonic treatment for 30 minutes at room temperature (approximately 25 ° C.) using a probe-type ultrasonic irradiation device, and a black MWCNT-containing dispersion liquid (conductive binder layer) in which MWCNT was uniformly dispersed without any precipitate.
  • a forming composition A1 was obtained.
  • a solution obtained by adding 0.5 mL of methanol to 2 mL of the obtained MWCNT-containing dispersion A1 is uniformly spread on a copper foil (thickness 20 ⁇ m) as a current collecting substrate with a wire bar coater (No. 12, wet film thickness 27.4 ⁇ m).
  • the composite current collector was torn and the cross section was observed by SEM, the thickness of the conductive binder layer was 300 nm.
  • the resulting MWCNT-containing dispersion X1 (2 mL) and 0.5 mL of PG were uniformly spread on a copper foil with a wire bar coater (No. 12, wet film thickness 27.4 ⁇ m), then dried at 120 ° C. for 5 minutes to conduct electricity An adhesive binding layer was formed to produce a composite current collector Y1.
  • the composite current collector was torn and the cross section was observed by SEM, the thickness of the conductive binder layer was 200 nm.
  • the adhesion between the conductive binder layer and the current collector substrate was evaluated by the following procedure.
  • the conductive binder layers of the composite current collectors B1, Y1, and Y2 were cross-cut at 1 mm intervals in the vertical and horizontal directions to perform 100 mass cuts. That is, 100 crosses of 1 mm square were formed by this cross cut.
  • an adhesive tape manufactured by Nichiban, CT-12S2P was affixed to the crosscut portion, and the tape was peeled off.
  • the evaluation of adhesion was made by ⁇ when it was not peeled off at all, and x when part or all was peeled off. The evaluation results are shown in Table 1.
  • the conductive binder layer of the composite current collector B1 produced in Example 1 showed high adhesion to the copper foil as the current collector substrate, and did not peel at all, whereas Comparative Example 1
  • the conductive binder layers of the composite current collectors Y1 and Y2 prepared in 2 and 2 have low adhesion to copper and were peeled from the current collector substrate. This is because PTPA-PBA-SO 3 H contained as a dispersant in dispersion A1 also functions as a binder for the current collector substrate, but PVP, which is a general carbon nanotube dispersant, has a similar function. This is probably because they do not have it.
  • PVdF polyvinylidene fluoride
  • the binder layer and the conductive binder layer were cross-cut, and the adhesiveness was evaluated using an adhesive tape.
  • a PVdF thin film was formed on a copper foil (unmodified copper foil) as a current collecting substrate, and the adhesion was evaluated (Comparative Example 3). .
  • the evaluation results are shown in Table 2.
  • the conductive binder layer of the composite current collector B1 produced in Example 1 showed high adhesion with PVdF as the binder, and did not peel at all, whereas in Comparative Examples 1 and 2
  • the conductive binder layers and unmodified copper foils of the produced composite current collectors Y1 and Y2 had low adhesion to PVdF, and peeling was recognized.
  • PTPA-PBA-SO 3 H contained as a dispersant in dispersion A1 also functions as a binder for PVdF, but PVP as a general carbon nanotube dispersant has a similar function. It is thought that there is not.
  • This mixture was subjected to ultrasonic treatment at room temperature (approximately 25 ° C.) for 30 minutes using a probe-type ultrasonic irradiation device, and a dispersion liquid in which MWCNT was uniformly dispersed without a precipitate was prepared.
  • 13.5 g of the obtained dispersion liquid and 6.8 g of the matrix polymer solution were mixed to obtain a black MWCNT-containing dispersion liquid (composition for forming a conductive binder layer) A2.
  • 2 mL of the obtained MWCNT-containing dispersion A2 was uniformly spread on a copper foil with a wire bar coater (No. 12, wet film thickness 27.4 ⁇ m), and then dried at 120 ° C. for 20 minutes to form a conductive binder layer.
  • a composite current collector B2 was produced. When the composite current collector was torn and the cross section was observed by SEM, the thickness of the conductive binder layer was 700 nm.
  • Example 3 A composite current collector B3 was produced in the same manner as in Example 2 except that an aluminum foil (thickness 20 ⁇ m) was used instead of the copper foil. When the composite current collector was torn and the cross section was observed by SEM, the thickness of the conductive binder layer was 650 nm.
  • Example 4 First, 6.2 g of emeraldine-based polyaniline (Mw: 53,000, Mn: 19,000, hereinafter referred to as EB) synthesized by the method described in Reference Example 1 of Japanese Patent No. 2855206 was added to 200.0 g of NMP, A homodisper (Primix Co., Ltd.) was used for 30 minutes at 5,000 rpm to prepare an NMP dispersion of polyaniline, while n-propylamine (Tokyo Chemical Industry Co., Ltd.) 0 g and 4.0 g of ethylene glycol monobutyl ether (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as EGMBE) were mixed to prepare an amine solution.
  • EB emeraldine-based polyaniline
  • Example 5 A composite current collector B5 was produced in the same manner as in Example 4 except that an aluminum foil was used instead of the copper foil.
  • the composite current collector was torn and the cross section was observed by SEM, the thickness of the conductive binder layer was 350 nm.
  • Example 6 First, 2.0 g of polyurethane (PU, P22SRNAT, manufactured by Nippon Miractolan Co., Ltd.) and 48.0 g of NMP were mixed and dissolved by stirring at 80 ° C. for 1 hour to prepare a matrix polymer solution. 1.875 g of the obtained matrix polymer solution, 3.75 g of a dispersion in which the MWCNT produced in Example 2 was uniformly dispersed, and 1.875 g of cyclohexanone were mixed, and a black MWCNT-containing dispersion (conductive binder) Layer forming composition) A4 was obtained. 2 mL of the obtained MWCNT-containing dispersion A4 was uniformly spread on a copper foil with a wire bar coater (No.
  • a composite current collector B6 was produced. When the composite current collector was torn and the cross section was observed by SEM, the thickness of the conductive binder layer was 500 nm.
  • Example 7 First, 0.6 g of polyacrylic acid (PAA, manufactured by Aldrich, Mv ⁇ 450,000) was mixed with 14.4 g of purified water and dissolved by stirring at 80 ° C. for 1 hour to prepare a matrix polymer solution. As a dispersant, 0.50 g of PTPA-PBA-SO 3 H synthesized in Synthesis Example 2 was dissolved in 49.00 g of methanol as a dispersion medium, and 0.50 g of MWCNT was added to this solution.
  • PAA polyacrylic acid
  • This mixture was subjected to ultrasonic treatment at room temperature (approximately 25 ° C.) for 30 minutes using a probe-type ultrasonic irradiation device, and a dispersion liquid in which MWCNT was uniformly dispersed without a precipitate was prepared.
  • 13.5 g of the obtained dispersion liquid and 6.8 g of the matrix polymer solution were mixed to obtain a black MWCNT-containing dispersion liquid (composition for forming a conductive binder layer) A5.
  • this MWCNT-containing dispersion A5 was uniformly spread on a copper foil with a wire bar coater, it was dried at 120 ° C. for 5 minutes to form a conductive binder layer, thereby producing a composite current collector B7.
  • the composite current collector was torn and the cross section was observed by SEM, the thickness of the conductive binder layer was 400 nm.
  • Example 8 A composite current collector B8 was produced in the same manner as in Example 7 except that aluminum foil was used instead of copper foil. When the composite current collector was torn and the cross section was observed by SEM, the thickness of the conductive binder layer was 400 nm.
  • Example 9 First, 0.05 g of polyacrylic acid (PAA, manufactured by Aldrich, Mv-450,000) was mixed with 4.95 g of methanol and dissolved by stirring for 12 hours at room temperature to prepare a matrix polymer solution. Next, 5 g of the MWCNT-containing dispersion A1 prepared in Example 1 and 5 g of the matrix polymer solution were mixed. And 2 mL of this obtained mixture and 0.5 mL of methanol were mixed, and black MWCNT containing dispersion liquid (composition for electroconductive binder layer formation) A6 was obtained.
  • PAA polyacrylic acid
  • Example 10 Polyacrylic acid (PAA, manufactured by Aldrich, Mv ⁇ 450,000) and 2-propanol were mixed and stirred to prepare a matrix polymer solution having a polyacrylic acid concentration of 4 wt%.
  • PAA polyacrylic acid
  • 2-propanol 2-propanol
  • MWCNT MWCNT
  • This mixture was subjected to ultrasonic treatment at room temperature (approximately 25 ° C.) for 30 minutes using a probe-type ultrasonic irradiation device, and a dispersion liquid in which MWCNT was uniformly dispersed without a precipitate was prepared.
  • 3 g of the obtained dispersion, 2.7 g of the matrix polymer solution, 0.09 g of TPA-B80E (80% by mass, manufactured by Asahi Kasei Co., Ltd.), which is a solution containing blocked isocyanate as a crosslinking agent, and 2-propanol 0.21 g was mixed to obtain MWCNT-containing dispersion liquid (composition for forming conductive binder layer) A7.
  • Example 11 A composite current collector B11 was produced in the same manner as in Example 10, except that 0.09 g of 2-propanol was used instead of 0.09 g of TPA-B80E, which was a solution containing a blocked isocyanate. When the composite current collector was torn and the cross section was observed by SEM, the thickness of the conductive binder layer was 500 nm.
  • Example 12 As a dispersant, 1.60 g of PTPA-PBA-SO 3 H synthesized in Synthesis Example 2 was dissolved in 17.6 g of 2-propanol as a dispersion medium and 52.9 g of water, and MWCNT (“NC7000” manufactured by Nanocyl) was added to this solution. 1.60 g of outer diameter 10 nm) and 6.20 g of polyacrylic acid aqueous solution (25%, manufactured by Toagosei Co., Ltd., A-10H) were added.
  • This mixture was subjected to ultrasonic treatment at room temperature (approximately 25 ° C.) for 30 minutes using a probe-type ultrasonic irradiation device, and a dispersion liquid in which MWCNT was uniformly dispersed without a precipitate was prepared.
  • a liquid (composition for forming a conductive binder layer) A8 was obtained.
  • MWCNT-containing dispersion A8 After 2 mL of MWCNT-containing dispersion A8 was uniformly spread on a current collector aluminum foil (thickness 20 ⁇ m) with a wire bar coater (No. 12, wet film thickness 27.4 ⁇ m), dried at 120 ° C. for 20 minutes to conduct electricity An adhesive binding layer was formed to produce a composite current collector B12.
  • Example 13 To 5 mL of MWCNT-containing dispersion A7 produced in Example 10, 0.40 g of polyacrylic acid aqueous solution (25%, manufactured by Toagosei Co., Ltd., A-10H) and 4.6 g of 2-propanol were added and stirred to contain MWCNT. Dispersion A9 was obtained. 2 mL of MWCNT-containing dispersion A9 was uniformly spread on a current collector aluminum foil (thickness 20 ⁇ m) with a wire bar coater (No. 12, wet film thickness 27.4 ⁇ m), and then dried at 120 ° C. for 20 minutes to conduct electricity. An adhesive binding layer was formed to produce a composite current collector B13. The viscosity of MWCNT-containing dispersion A9, which is a composition to which a thickener was added, was 11 mPa ⁇ s.
  • Comparative Example 4 A composite current collector Y3 was produced in the same manner as in Comparative Example 1 except that an aluminum foil (thickness 20 ⁇ m) was used instead of the copper foil as the current collector substrate. When the composite current collector was torn and the cross section was observed by SEM, the thickness of the conductive binder layer was 200 nm.
  • a composite current collector Y4 was produced in the same manner as in Comparative Example 2 except that an aluminum foil (thickness 20 ⁇ m) was used instead of the copper foil as the current collecting substrate.
  • the composite current collector was torn and the cross section was observed by SEM, the thickness of the conductive binder layer was 200 nm.
  • a conductive binder layer can be suitably formed, and further, a composition to which a crosslinking agent or a thickener is added is used. Even if it is a case, it turns out that the film-forming property is not impaired.
  • the viscosity of the composition is required to be adjusted according to the coating method. It is possible to adjust the viscosity not only by changing the concentration of CNT and CNT, but also by adding an appropriate thickening agent. It is possible to obtain a low viscosity MWCNT-containing dispersion suitable for gravure printing or bar coating.
  • the conductive binder layers of the composite current collectors B2 to B11 produced in Examples 2 to 11 showed high adhesion to the copper foil or aluminum foil as the current collector substrate, and did not peel at all.
  • the conductive binder layers of the composite current collectors Y3 and Y4 produced by the composite current produced in Comparative Examples 4 and 5 were peeled from the aluminum foil. Therefore, PTPA-PBA and PTPA-PBA-SO 3 H not only function as a carbon nanotube dispersant, but also form a conductive thin film having high adhesion to the current collector substrate with a composition containing them. On the other hand, it can be seen that PVP which is a general carbon nanotube dispersant cannot form such a thin film.
  • the conductive binder layers prepared from the dispersions containing NMP as the dispersion medium included in the composite current collectors B2 to B6 prepared in Examples 2 to 6 showed high resistance to water, and Examples 7 to 9,
  • the conductive binder layer produced from the dispersion liquid containing MeOH, IPA, etc. included in the composite current collectors B7 to 9, 11 produced in No. 11 exhibits high resistance to NMP, and the composite produced in Example 10
  • a conductive binder layer prepared from a dispersion containing a cross-linking agent using MeOH, IPA, or the like of the current collector B10 as a dispersion medium showed high resistance to both NMP and water.
  • a conductive binder layer having high adhesion to a metal foil as a current collecting substrate can be produced.
  • an alcohol solvent such as water or isopropanol is used as a dispersion medium.
  • binder solution an NMP solution of polyvinylidene fluoride (PVdF) (12% by mass, Kureha Co., Ltd., KF polymer L # 1120, wet film thickness 100 ⁇ m) or an aqueous solution of PAA (Aldrich, Mv ⁇ 450,000) (4 mass) %, Wet film thickness 500 ⁇ m).
  • PVdF polyvinylidene fluoride
  • PAA Aldrich, Mv ⁇ 450,000
  • the conductive binder layers of the composite current collectors B4, B6 to B9 showed high adhesion to the binder and did not peel at all.
  • the conductive binder layers of the composite current collectors Y3 and Y4 were not modified. Copper foil and aluminum foil had low adhesion to the binder, and peeling was observed. From these results, it can be seen that a conductive binder layer having high adhesion to a metal foil as a current collecting substrate can be produced even when a water-based binder and a polymer as a matrix are added.
  • PAA that can impart binding properties to an aluminum foil is used as a matrix polymer. It can be seen that a dispersion liquid with good dispersibility can be produced, and that the composite current collector produced using the dispersion liquid has a high binding property to PVdF which is generally used as a binder.
  • the previously prepared electrode slurry S1 was uniformly (wet film thickness 50 ⁇ m (dry film thickness 10 ⁇ m), 100 ⁇ m (dry) (After film thickness 16 ⁇ m), 200 ⁇ m (film thickness after drying 27 ⁇ m), 300 ⁇ m (film thickness after drying 38 ⁇ m)), dried at 80 ° C. for 30 minutes and then at 120 ° C. for 30 minutes to be on the conductive binder layer An active material layer was formed, and electrodes C1 to C4 were produced.
  • Electrodes Z1 to Z4 were produced in the same manner as in Example 14 except that the composite current collector Y1 produced in Comparative Example 1 was used instead of the composite current collector B1.
  • Electrodes Z5 to 8 were produced in the same manner as in Example 14 except that the composite current collector Y2 produced in Comparative Example 2 was used instead of the composite current collector B1.
  • Electrodes Z9 to 12 were produced in the same manner as in Example 14 except that unmodified copper foil was used in place of the composite current collector B1.
  • the adhesion between the conductive binder layer and the active material layer was evaluated by the following procedure. According to the same method as above, the active material layer and / or the conductive binder layer was cross-cut, and an adhesive tape (manufactured by Nichiban, CT-12S2P) was attached to the cross-cut portion, and the tape was peeled off. This operation was performed for each of the three electrodes. Table 5 shows the evaluation results. In Table 5, the fractional denominator is the number of electrodes prepared (3), which is the number of electrodes that were not peeled off at all by the peel test.
  • the conductive binder layer containing PTPA-PBA-SO 3 H included in the electrodes C1 to C4 prepared in Example 14 has high adhesion to PVdF which is a binder contained in the active material layer. While the active material layers C1 to C4 were not peeled off, the conductive binding layers of the electrodes Z1 to Z8 produced in Comparative Examples 10 and 11 contained a material having high adhesion to the binder. Since the electrodes Z9 to 12 produced in Comparative Example 12 did not have a conductive binder layer, most of the active material layers of the electrodes Z1 to 12 were peeled off.
  • the electrode slurry S2 prepared earlier was uniformly (wet film thickness 100 ⁇ m (dry film thickness 10 ⁇ m), 200 ⁇ m (dried) by the doctor blade method). After developing to a film thickness of 20 ⁇ m and a film thickness of 300 ⁇ m (film thickness after drying of 50 ⁇ m)), drying is performed at 80 ° C. for 30 minutes and then at 120 ° C. for 30 minutes to form an active material layer on the conductive binder layer. ⁇ 7 were produced.
  • Electrodes Z13 to Z15 were produced in the same manner as in Example 15 except that a copper foil (unmodified copper foil) as a current collecting substrate was used instead of the composite current collector B6.
  • the adhesion between the conductive binder layer and the active material layer was evaluated by the following procedure. According to the same method as above, the active material layer and / or the conductive binder layer was cross-cut, and an adhesive tape (manufactured by Nichiban, CT-12S2P) was attached to the cross-cut portion, and the tape was peeled off. This operation was performed for each of the three electrodes. Table 6 shows the evaluation results. In Table 6, the fractional denominator is the number of electrodes produced (3), and the numerator is the number of electrodes that were not removed at all in the peel test.
  • the conductive binder layer containing PTPA-PBA included in the electrodes C5 to 7 prepared in Example 15 has high adhesion to PAA as a binder contained in the active material layer. While no peeling of the active material layer was observed, the conductive binder layers included in the electrodes Z13 to 15 prepared in Comparative Example 13 did not contain a material having high adhesion to the binder. Most of the active material layers of Z13 to 15 were peeled off.
  • the obtained electrode slurry S3 was spread uniformly (wet film thickness 25 ⁇ m) on the conductive binder layer of the composite current collector B1 produced in Example 1 by the doctor blade method, then at 80 ° C. for 30 minutes, then 120 Drying was performed at a temperature of 30 ° C. for 30 minutes to form an active material layer (film thickness after drying: 10 ⁇ m) on the conductive binder layer, and an electrode C8 was produced.
  • the lithium ion secondary battery was produced as follows using the electrode C8.
  • the electrode C8 was punched out into a disk shape having a diameter of 10 mm, and the mass was measured. Then, the electrode C8 was vacuum dried at 100 ° C. for 15 hours, and transferred to a glove box filled with argon. In the case of a 2032 type coin cell (made by Hosen Co., Ltd.), a stack of 6 lithium foils (made by Honjo Chemical Co., Ltd., thickness 0.17 mm) punched out to a diameter of 14 mm was installed.
  • Electrolytic solution (made by Kishida Chemical Co., Ltd., ethylene carbonate: diethyl carbonate (1: 1, volume ratio), impregnated with 1 mol / L of lithium hexafluorophosphate as an electrolyte) was impregnated for 24 hours or more, and punched out to a diameter of 16 mm.
  • One separator (Celguard Co., Ltd., 2400) was stacked. Further, from the top, the electrode C8 was stacked with the surface coated with the active material facing down. After dropping one drop of the electrolytic solution, an upper lid and a gasket welded with a washer and a spacer were placed thereon and sealed with a coin cell caulking machine. Then, it was left to stand for 24 hours to obtain a secondary battery for testing.
  • Example 14 A lithium ion secondary battery was produced in the same manner as in Example 16 except that the composite current collector Y1 produced in Comparative Example 1 was used instead of the composite current collector B1.
  • Example 15 A lithium ion secondary battery was produced in the same manner as in Example 16 except that the composite current collector Y2 produced in Comparative Example 2 was used instead of the composite current collector B1.
  • Example 16 A lithium ion secondary battery was produced in the same manner as in Example 16 except that a copper foil (unmodified copper foil), which was a current collector substrate, was used instead of the composite current collector B1.
  • Example 17 As a dispersant, 0.50 g of PTPA-PBA-SO 3 H synthesized in Synthesis Example 2 was dissolved in 49.00 g of methanol as a dispersion medium, and 0.50 g of MWCNT was added to this solution. This mixture was subjected to ultrasonic treatment at room temperature (approximately 25 ° C.) for 30 minutes using a probe-type ultrasonic irradiation device to obtain a black MWCNT-containing dispersion A10 in which MWCNTs were uniformly dispersed without sediment. 2 mL of the obtained MWCNT-containing dispersion A10 was uniformly spread on a copper foil with a wire bar coater (No.
  • the obtained electrode slurry S4 was spread uniformly (wet film thickness 200 ⁇ m) on the conductive binder layer of the composite current collector B14 by the doctor blade method, and then dried at 80 ° C. for 30 minutes and then at 120 ° C. for 30 minutes. Then, an active material layer (film thickness after drying: 60 ⁇ m) was formed on the conductive binder layer, and an electrode C9 was produced.
  • the lithium ion secondary battery was produced by the method similar to Example 16 except having used electrode C9 instead of electrode C8.
  • Example 17 A lithium ion secondary battery was produced in the same manner as in Example 17 except that a copper foil (unmodified copper foil), which was a current collector substrate, was used instead of the composite current collector B14.
  • Example 18 A composite current collector B15 was produced in the same manner as in Example 1 except that an aluminum foil (thickness 20 ⁇ m) was used as the current collecting substrate. When the composite current collector was torn and the cross section was observed by SEM, the thickness of the conductive binder layer was 300 nm.
  • lithium iron phosphate (LFP, TATUNG FINE CHEMICALS CO., 17.3 g) as an active material
  • NMP solution of PVdF (12% by mass, 12.8 g) as a binder
  • acetylene black (AB, electrochemical) as a conductive auxiliary agent Industrial Co., Ltd., Denka Black, 0.384 g) and NMP (9.54 g) were mixed with a homodisper at 3,500 rpm for 1 minute.
  • a thin film swirl type high speed mixer was used to perform a mixing process at a peripheral speed of 20 m / second for 60 seconds, followed by defoaming at 1,000 rpm for 2 minutes using an autorotation / revolution mixer.
  • a concentration of 48% by mass, LFP: PVdF: AB 90: 8: 2 (mass ratio)) was prepared.
  • the obtained electrode slurry S5 was spread uniformly (wet film thickness 200 ⁇ m) on the conductive binder layer of the composite current collector B15 by the doctor blade method, and then dried at 80 ° C. for 30 minutes and then at 120 ° C. for 30 minutes. Then, an active material layer (film thickness after drying: 60 ⁇ m) was formed on the conductive binder layer, and an electrode C10 was produced. And the lithium ion secondary battery was produced by the method similar to Example 17 except having used electrode C10 instead of electrode C9.
  • Example 19 A lithium ion secondary battery was produced in the same manner as in Example 18 except that the composite current collector B9 produced in Example 9 was used instead of the composite current collector B15.
  • Example 18 A lithium ion secondary battery was produced in the same manner as in Example 18 except that the composite current collector Y3 produced in Comparative Example 4 was used instead of the composite current collector B15.
  • Example 20 A lithium ion secondary battery was produced in the same manner as in Example 18 except that an aluminum foil (unmodified aluminum foil) as a current collecting substrate was used instead of the composite current collector B15.
  • the obtained electrode slurry S6 was spread uniformly (wet film thickness 200 ⁇ m) on the conductive binder layer of the composite current collector B8 produced in Example 8 by the doctor blade method, then at 80 ° C. for 30 minutes, and then 120 An active material layer (film thickness after drying: 60 ⁇ m) was formed on the conductive binder layer by drying at 30 ° C. for 30 minutes, thereby preparing an electrode C11.
  • the lithium ion secondary battery was produced by the method similar to Example 17 except having used electrode C11 instead of electrode C9.
  • Example 21 A lithium ion secondary battery was produced in the same manner as in Example 20, except that an aluminum foil (unmodified aluminum foil) as a current collector substrate was used instead of the composite current collector B8.
  • Example 21 A lithium ion secondary battery was produced in the same manner as in Example 20, except that the composite current collector B10 produced in Example 10 was used instead of the composite current collector B8. In addition, the slurry of another batch produced by the method similar to Example 20 was used for formation of a conductive binder layer.
  • Example 22 A lithium ion secondary battery was produced in the same manner as in Example 21, except that the composite current collector B11 produced in Example 11 was used instead of the composite current collector B10.
  • Example 22 A lithium ion secondary battery was produced in the same manner as in Example 21 except that an aluminum foil (unmodified aluminum foil) as a current collecting substrate was used instead of the composite current collector B10.
  • Example 23 A lithium ion secondary battery was produced in the same manner as in Example 18 except that the composite current collector B12 produced in Example 12 was used instead of the composite current collector B15. In addition, the slurry of another batch produced by the method similar to Example 18 was used for formation of a conductive binder layer.
  • Example 24 A lithium ion secondary battery was produced in the same manner as in Example 23 except that the composite current collector B13 produced in Example 13 was used instead of the composite current collector B12.
  • Example 23 A lithium ion secondary battery was produced in the same manner as in Example 23, except that an aluminum foil (unmodified aluminum foil) as a current collector substrate was used instead of the composite current collector B12.
  • Example 25 First, in the same manner as in Example 18, except that lithium manganate (LiMn 2 O 4 , hereinafter referred to as LMO, manufactured by Hosen Co., Ltd., 17.3 g) was used as the active material instead of lithium iron phosphate, Slurry S7 was prepared.
  • the lithium ion secondary battery was prepared in the same manner as in Example 18 except that the electrode slurry S7 was used instead of the electrode slurry S5 and the composite current collector B13 produced in Example 13 was used instead of the composite current collector B15.
  • a secondary battery was produced. (Film thickness after drying of active material layer 55 ⁇ m)
  • Example 24 A lithium ion secondary battery was produced in the same manner as in Example 25 except that an aluminum foil (unmodified aluminum foil), which was a current collecting substrate, was used instead of the composite current collector B13.
  • Example 16 compared with Comparative Example 16, the number of cycles at which the discharge capacity starts to decrease from about 2,000 mAh / g is large, and the adhesion is improved by the presence of the MWCNT layer between the active material layer and the current collector substrate. It can be seen that the battery life is improved. On the other hand, since the comparative examples 14 and 15 have insufficient adhesion of the MWCNT layer, their lifetimes are shorter than when unmodified copper foil is used. As described above, it can be seen that the life of the silicon negative electrode can be improved by using a dispersant having high adhesion to the current collector substrate.
  • Example 17 For the lithium ion secondary batteries produced in Example 17 and Comparative Example 17, the physical properties of the electrode as the negative electrode were evaluated.
  • a cycle test was performed under the following conditions. The cycle characteristics of the discharge capacity are shown in FIG. Current: 0.2C constant current charge / discharge (Gr capacity was 372 mAh / g) ⁇ Cutoff voltage: 1.50V-0.01V ⁇ Temperature: Room temperature
  • Example 17 In both Example 17 and Comparative Example 17, a discharge capacity of about the theoretical capacity of Gr was obtained up to about 50 cycles, and no deterioration was observed in either case. This shows that the MWCNT layer does not undergo reductive decomposition even in a low voltage environment near 0 V with respect to lithium, and can be applied as a negative electrode of a lithium ion battery.
  • Example 17 and Comparative Example 17 there was a tendency for the discharge capacity to decrease as the discharge rate increased, but the degree was similar to Example 17 and Comparative Example 17. This indicates that the MWCNT layer does not work as a main resistance component, and it can be seen that the MWCNT layer can be applied as a negative electrode of a lithium ion battery that performs high-speed charge / discharge.
  • FIG. 6 shows the cycle rate characteristics of the discharge capacity
  • FIG. 7 shows the discharge curve at the discharge rate of 10C.
  • -Current 0.5C constant current charge, 0.5C, 3C, 5C, 10C constant current discharge (LFP capacity is 170 mAh / g, discharge rate is increased every 5 cycles, and finally the discharge rate is 0 .. back to 5C)
  • the provision of the conductive binder layer increases the capacity retention rate during high rate discharge compared to during low rate discharge.
  • FIG. 7 it can be seen that by using the composite current collector B9 having high resistance to NMP and high adhesion to PVdF, the voltage during discharge can be kept high.
  • Example 20 With respect to the lithium ion secondary batteries produced in Example 20 and Comparative Example 21, the physical properties of the electrode as the positive electrode were evaluated.
  • a charge / discharge test was performed under the following conditions.
  • FIG. 8 shows the cycle rate characteristics of the discharge capacity
  • FIG. 9 shows the discharge curve at the discharge rate of 10C.
  • -Current 0.5C constant current charge, 0.5C, 3C, 5C, 10C constant current discharge (LFP capacity is 170 mAh / g, discharge rate is increased every 5 cycles, and finally the discharge rate is 0 .. back to 5C)
  • Temperature Room temperature
  • Example 20 in both Example 20 and Comparative Example 21, a discharge capacity of about 90% of the theoretical capacity was obtained at 0.5 C, and no deterioration was observed in the discharge capacity even after 25 cycles.
  • Example 20 the voltage during discharge is higher than that in Comparative Example 21.
  • the adhesion is improved by the presence of the MWCNT layer between the active material layer and the current collector substrate, and the interface resistance is low, that is, the energy that can be extracted during discharge. Is increasing.
  • a lithium ion secondary battery with higher output can be manufactured by introducing the MWCNT layer.
  • FIG. 10 shows a discharge curve at a discharge rate of 10C.
  • -Current 0.5C constant current charge, 0.5C, 3C, 5C, 10C constant current discharge (LFP capacity is 170 mAh / g, discharge rate is increased every 5 cycles, and finally the discharge rate is 0 .. back to 5C)
  • Cutoff voltage 4.50V-2.00V ⁇ Temperature: Room temperature
  • FIG. 12 shows the cycle rate characteristics of the discharge capacity
  • FIG. 13 shows the discharge curve when the discharge rate is 5C.
  • -Current 0.5C constant current charge, 0.5C, 3C, 5C, 10C constant current discharge (LMO capacity is 137mAh / g, discharge rate is increased every 5 cycles, and finally the discharge rate is 0 .. back to 5C)
  • Cutoff voltage 4.30V-2.00V ⁇ Temperature: Room temperature
  • a lithium ion secondary battery using LMO also has a capacity retention rate during high rate discharge with respect to low rate discharge by providing a conductive binder layer. Further, as shown in FIG. 13, it can be seen that the voltage during discharge can be kept high by using the composite current collector B13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 例えば下記式で示される高分岐ポリマー分散剤は、集電基板に対して高い密着性を有しているため、カーボンナノチューブの濃度が高い導電性結着層を形成でき、この導電性結着層を備えたエネルギー貯蔵デバイス電極用複合集電体を用いることで、特に電気自動車用途など瞬間的に大電流が必要な用途において電圧降下を起こすことなく電流を取り出すことができると同時に、サイクル寿命が長いエネルギー貯蔵デバイスを作製することが可能になる。

Description

エネルギー貯蔵デバイス電極用複合集電体および電極
 本発明は、エネルギー貯蔵デバイス電極用複合集電体および電極に関し、さらに詳述すると、リチウムイオン二次電池に代表される二次電池や、キャパシタ用の複合集電体およびそれを用いた電極に関する。
 スマートフォンやデジタルカメラ、携帯ゲーム機などの携帯電子機器の小型軽量化や高機能化の要求に伴い、近年、高性能電池の開発が積極的に進められており、充電により繰り返し使用できる二次電池の需要が大きく伸びている。
 中でも、リチウムイオン二次電池は、高エネルギー密度、高電圧を有し、また充放電時におけるメモリー効果が無いことなどから、現在最も精力的に開発が進められている二次電池である。
 また、近年の環境問題への取り組みから、電気自動車の開発も活発に進められており、その動力源としての二次電池には、より高い性能が求められるようになってきている。
 ところで、リチウムイオン二次電池は、リチウムを吸蔵、放出できる正極と負極と、これらの間に介在するセパレータを容器内に収容し、その中に電解液(リチウムイオンポリマー二次電池の場合は液状電解液の代わりにゲル状または全固体型の電解質)を満たした構造を有する。
 正極および負極は、一般的に、リチウムを吸蔵、放出できる活物質と、主に炭素材料からなる導電材、さらにポリマーバインダーを含む組成物を、銅箔やアルミニウム箔などの集電体上に層状に積層して形成される。このバインダーは、活物質と導電材、さらにこれらと金属箔を接着するために用いられ、ポリフッ化ビニリデン(PVdF)などのN-メチルピロリドン(NMP)に可溶なフッ素系樹脂や、オレフィン系重合体の水分散体などが市販されている。
 上述したように、リチウムイオン二次電池は電気自動車などの動力源としての応用も期待されており、これまで以上の長寿命や安全性が求められている。
 しかし、上述したバインダーの集電体に対する接着力は十分とは言えず、電極板の裁断工程や巻回工程等の製造工程時に、活物質や導電材の一部が集電体から剥離、脱落し、微小短絡や電池容量のばらつきを生じる原因となる。
 さらに、長期間の使用により、電解液によるバインダーの膨潤や、活物質のリチウム吸蔵、放出による体積変化に伴う電極合材の体積変化により、電極合材と集電体間の接触抵抗が増大したり、活物質や導電材の一部が集電体から剥離、脱落したりすることによる電池容量の劣化が起こるという問題や、さらには安全性の点で問題があった。
 特に、近年では正極系では固溶体系、負極系ではケイ素などの合金系といった、充放電容量が既存のものより大きく、そのために充放電による体積変化も大きい活物質の開発が進められており、上述した電極合材の集電体からの剥離は、早急に解決すべき問題であるといえる。
 上記課題を解決する試みとして、集電体と電極合材との間に導電性の結着層を挿入する手法が開発されている。
 例えば、特許文献1では、炭素を導電性フィラーとする導電層を結着層として、集電体と電極合材との間に配設する技術が開示されており、導電性結着層を備えた複合集電体(以下、単に複合集電体とも称する)を用いることで、集電体と電極合材の間の接触抵抗を低減でき、かつ、高速放電時の容量減少も抑制でき、さらに電池の劣化をも抑制できることが示されている。また、特許文献2や特許文献3でも同様の技術が開示されている。
 これらの例では、炭素粒子を導電性フィラーとして用いているが、炭素粒子は集電体に対する結着作用は有しないことから、マトリックスとなるポリマーを用いて結着層を作製しているため、当然ながら、その結着力はポリマーの含有量が大きくなるにつれて向上する。しかしながら、ポリマーの含有量が大きくなると、炭素粒子間の接触が減少するため、結着層の抵抗は急激に増加し、結果として電池全体の抵抗が増加するという問題があった。
 このような課題を解決するために、導電性フィラーとしてカーボンナノチューブ(以下、CNTとも略記する)のような繊維状炭素を用いる例が報告されている。
 例えば、特許文献4では、CNTとして多層カーボンナノチューブ(以下、MWCNTとも略記する)を用い、アルミ箔上に導電性結着層を形成することで、リチウムイオン二次電池のサイクル寿命を向上し得ることが報告されている。しかしながら、特許文献4でMWCNTを含有する導電性結着層を形成する際に用いている分散剤の分散能は低く、十分な膜厚の層を得るためには複数回のスプレーコートをする必要があった。
 CNTを塗布プロセスにより成膜するためには、一般的に溶剤中にCNTを均一に分散させる必要があり、CNTを化学プロセスにより表面改質する手法や、ポリマーなどの分散剤を併用する手法が存在する。この中で、分散剤を併用する手法は、CNTの優れた電気特性を悪化させないため、導電性フィラーとして用いる場合には好ましい方法といえる。
 しかし、CNTを高濃度に分散させ得る分散剤は二次電池に用いられる集電体に対する密着性が低く、優れた導電性結着層を得るためには、集電体に対する密着性を有するポリマーなどを添加する必要がある。このような場合には、導電性結着層中のCNTの濃度が低下するため、結果的に導電性が低下するという問題がある。
特開平9-097625号公報 特開2000-011991号公報 特開平11-149916号公報 特開2009-170410号公報
 本発明は、このような事情に鑑みてなされたものであり、集電基板に対する密着性に優れたカーボンナノチューブ含有導電性結着層を有するエネルギー貯蔵デバイス電極用複合集電体およびこの複合集電体を備えて構成される電極を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、特定の構造を有するCNT分散剤を用いることで、その層内でCNTが良好に分散され、かつ集電基板に対する密着性の高い導電性結着層が得られることを見出し、本発明を完成した。
 すなわち、本発明は、
1. 集電基板と、この基板上に形成された、式(1)または式(2)で表される繰り返し単位を有する高分岐ポリマーおよびカーボンナノチューブを含む導電性結着層と、を備えることを特徴とするエネルギー貯蔵デバイス電極用複合集電体、
Figure JPOXMLDOC01-appb-C000009
[式(1)および(2)中、Ar1~Ar3は、それぞれ独立して、式(3)~(7)で表されるいずれかの二価の有機基を表し、Z1およびZ2は、それぞれ独立して、水素原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、または式(8)~(11)で表されるいずれかの一価の有機基を表し(ただし、Z1およびZ2が同時に前記アルキル基となることはない。)、式(2)中、R1~R4は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいアルコキシ基、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。
Figure JPOXMLDOC01-appb-C000010
(式中、R5~R38は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいアルコキシ基、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。)
Figure JPOXMLDOC01-appb-C000011
{式中、R39~R62は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、フェニル基、OR63、COR63、NR6364、COOR65(これらの式中、R63およびR64は、それぞれ独立して、水素原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、またはフェニル基を表し、R65は、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、またはフェニル基を表す。)、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。}]
2. 前記高分岐ポリマーが、前記式(1)または式(2)で表される繰り返し単位の少なくとも1つの芳香環中に、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩から選ばれる少なくとも1種の酸性基を有する1のエネルギー貯蔵デバイス電極用複合集電体、
3. 前記酸性基が、スルホ基またはその塩である1または2のエネルギー貯蔵デバイス電極用複合集電体、
4. 前記高分岐ポリマーが、式(12)で表される繰り返し単位を有する1~3のいずれかのエネルギー貯蔵デバイス電極用複合集電体、
Figure JPOXMLDOC01-appb-C000012
(式中、R5~R8は、水素原子、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表し、Z1およびZ2は、前記と同じ意味を表す。)
5. R5~R8が、すべて水素原子である4のエネルギー貯蔵デバイス電極用複合集電体、
6. 前記Z2が、水素原子である1~5のいずれかのエネルギー貯蔵デバイス電極用複合集電体、
7. 前記Z1が、水素原子、チエニル基、または前記式(8)で表される一価の有機基である6のエネルギー貯蔵デバイス電極用複合集電体、
8. 前記高分岐ポリマーが、式(13)または式(14)で表される繰り返し単位を有する4のエネルギー貯蔵デバイス電極用複合集電体、
Figure JPOXMLDOC01-appb-C000013
9. 前記導電性結着層が、さらにマトリックスとなる高分子を含む1~8のいずれかのエネルギー貯蔵デバイス電極用複合集電体、
10. 前記導電性結着層が、厚み0.05~10μmである1~9のいずれかのエネルギー貯蔵デバイス電極用複合集電体、
11. 前記集電基板が、銅、アルミニウム、ニッケル、金、銀およびそれらの合金から選ばれる少なくとも1種からなり、厚み1~100μmである1~10のいずれかのエネルギー貯蔵デバイス電極用複合集電体、
12. 前記導電性結着層が、前記高分岐ポリマー、カーボンナノチューブ、必要に応じてマトリックス高分子、並びに有機溶媒および/または水を含む分散液を、前記集電基板上に、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スリットダイコート法、またはスプレーコート法により塗布し、乾燥して形成された1~11のいずれかのエネルギー貯蔵デバイス電極用複合集電体、
13. 1~12のいずれかのエネルギー貯蔵デバイス電極用複合集電体と、この複合集電体の前記導電性結着層上に形成された活物質層とを備えることを特徴とするエネルギー貯蔵デバイス用電極、
14. 13のエネルギー貯蔵デバイス用電極を備える二次電池、
15. 13のエネルギー貯蔵デバイス用電極を備えるキャパシタ、
16. 式(1)または式(2)で表される繰り返し単位を有する高分岐ポリマーおよびカーボンナノチューブを含むことを特徴とする導電性結着層形成用組成物、
Figure JPOXMLDOC01-appb-C000014
[式(1)および(2)中、Ar1~Ar3は、それぞれ独立して、式(3)~(7)で表されるいずれかの二価の有機基を表し、Z1およびZ2は、それぞれ独立して、水素原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、または式(8)~(11)で表されるいずれかの一価の有機基を表し(ただし、Z1およびZ2が同時に前記アルキル基となることはない。)、式(2)中、R1~R4は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいアルコキシ基、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。
Figure JPOXMLDOC01-appb-C000015
(式中、R5~R38は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいアルコキシ基、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。)
Figure JPOXMLDOC01-appb-C000016
{式中、R39~R62は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、フェニル基、OR63、COR63、NR6364、COOR65(これらの式中、R63およびR64は、それぞれ独立して、水素原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、またはフェニル基を表し、R65は、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、またはフェニル基を表す。)、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。}]
17. さらにマトリックスとなる高分子を含む16の導電性結着層形成用組成物
を提供する。
 本発明によれば、分散剤自体が集電基板に対して高い密着性を有するため、CNTの濃度が高い導電性結着層を得ることができる。このことは、導電性結着層の電気抵抗を低くできることを意味し、特に電気自動車用途など瞬間的に大電流が必要な用途において電圧降下を起こすことなく電流を取り出すことができると同時に、サイクル寿命が長い二次電池を作製することが可能になる。
合成例2で得られたPTPA-PBA-SO3Hの1H-NMRスペクトル図である。 合成例2で得られたPTPA-PBA-SO3Hの13C-NMRスペクトル図である。 実施例16および比較例14~16で作製したリチウムイオン二次電池の放電容量のサイクル特性を示す図である。 実施例17および比較例17で作製したリチウムイオン二次電池の放電容量のサイクル特性を示す図である。 実施例17および比較例17で作製したリチウムイオン二次電池の放電容量のレート依存性を示す図である。 実施例18,19および比較例18~20で作製したリチウムイオン二次電池の放電容量のサイクル・レート特性を示す図である。 実施例18,19および比較例18~20で作製したリチウムイオン二次電池の放電レート10Cのときの放電曲線を示す図である。 実施例20および比較例21で作製したリチウムイオン二次電池の放電容量のサイクル・レート特性を示す図である。 実施例20および比較例21で作製したリチウムイオン二次電池の放電レート10Cのときの放電曲線を示す図である。 実施例21,22および比較例22で作製したリチウムイオン二次電池の放電レート10Cのときの放電曲線を示す図である。 実施例23,24および比較例23で作製したリチウムイオン二次電池の放電レート5Cのときの放電曲線を示す図である。 実施例25および比較例24で作製したリチウムイオン二次電池の放電容量のサイクル・レート特性を示す図である。 実施例25および比較例24で作製したリチウムイオン二次電池の放電レート5Cのときの放電曲線を示す図である。
 以下、本発明についてさらに詳しく説明する。
 本発明に係るエネルギー貯蔵デバイス電極用複合集電体は、集電基板と、この基板上に形成された、上記式(1)または式(2)で表される繰り返し単位を有する高分岐ポリマーおよびカーボンナノチューブを含む導電性結着層と、を備えるものである。
 本発明において、エネルギー貯蔵デバイスとしては、電気二重層キャパシタ、リチウム二次電池、リチウムイオン二次電池、プロトンポリマー電池、ニッケル水素電池、鉛蓄電池等の各種エネルギー貯蔵デバイスが挙げられるが、中でも、電気二重層キャパシタ、リチウムイオン二次電池用が好ましい。
 上記式(1)および(2)で示される高分岐ポリマーは、トリアリールアミン構造を分岐点として含有するポリマー、より詳細には、トリアリールアミン類とアルデヒド類および/またはケトン類とを酸性条件下で縮合重合することで得られるポリマーである。
 この高分岐ポリマーは、トリアリールアミン構造の芳香環由来のπ-π相互作用を通してCNTの有する共役構造に対して高い親和性を示すと考えられるため、CNTの高い分散能が期待されると共に、上記トリアリールアミン類とアルデヒド類および/またはケトン類から選ばれる共モノマーとの組み合わせや条件により、様々な骨格のデザインや官能基導入、分子量や分布の制御、さらには機能付与を行うことが可能であるなどの特徴を有する。また、この高分岐ポリマーは、分岐構造を有することで直鎖状のものでは見られない高溶解性をも有しているとともに、熱安定性にも優れている。
 上記高分岐ポリマーの平均分子量は特に限定されるものではないが、重量平均分子量が1,000~2,000,000であることが好ましい。当該ポリマーの重量平均分子量が1,000未満であると、CNTの分散能が著しく低下する、または分散能を発揮しなくなる虞がある。一方、重量平均分子量が2,000,000を超えると、分散処理における取り扱いが極めて困難となる虞がある。重量平均分子量が2,000~1,000,000の高分岐ポリマーがより好ましい。
 なお、本発明における重量平均分子量は、ゲル浸透クロマトフラフィーによる測定値(ポリスチレン換算)である。
 上記式(1)および(2)において、Ar1~Ar3は、それぞれ独立して、上記式(3)~(7)で表されるいずれかの二価の有機基を表すが、特に、式(3)で示される置換または非置換のフェニレン基が好ましい。
 上記式(2)~(7)において、R1~R38は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、または炭素原子数1~5の分岐構造を有していてもよいアルコキシ基、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。
 ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 炭素原子数1~5の分岐構造を有していてもよいアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。
 炭素原子数1~5の分岐構造を有していてもよいアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基等が挙げられる。
 カルボキシル基、スルホ基、リン酸基およびホスホン酸基の塩としては、ナトリウム,カリウムなどのアルカリ金属塩;マグネシウム,カルシウム等の2族金属塩;アンモニウム塩;プロピルアミン、ジメチルアミン、トリエチルアミン、エチレンジアミンなどの脂肪族アミン塩;イミダゾリン、ピペラジン、モルホリンなどの脂環式アミン塩;アニリン、ジフェニルアミンなどの芳香族アミン塩;ピリジニウム塩等が挙げられる。
 また、式(1)および(2)において、Z1およびZ2は、それぞれ独立して、水素原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、または上記式(8)~(11)で表されるいずれかの一価の有機基を表す(ただし、Z1およびZ2が同時に上記アルキル基となることはない。)が、Z1およびZ2としては、それぞれ独立して、水素原子、2-または3-チエニル基、上記式(8)で示される基が好ましく、特に、Z1およびZ2のいずれか一方が水素原子で、他方が、水素原子、2-または3-チエニル基、上記式(8)で示される基、特にR41がフェニル基のもの、またはR41がメトキシ基のものがより好ましい。
 なお、R41がフェニル基の場合、後述する酸性基導入法において、ポリマー製造後に酸性基を導入する手法を用いた場合、このフェニル基上に酸性基が導入される場合もある。
 上記炭素原子数1~5の分岐構造を有していてもよいアルキル基としては、上記で例示したものと同様のものが挙げられる。
 式(8)~(11)において、R39~R62は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、フェニル基、OR63、COR63、NR6364、COOR65(これらの式中、R63およびR64は、それぞれ独立して、水素原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、またはフェニル基を表し、R65は、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、またはフェニル基を表す。)、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。
 ここで、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基としては、ジフルオロメチル基、トリフルオロメチル基、ブロモジフルオロメチル基、2-クロロエチル基、2-ブロモエチル基、1,1-ジフルオロエチル基、2,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、2-クロロ-1,1,2-トリフルオロエチル基、ペンタフルオロエチル基、3-ブロモプロピル基、2,2,3,3-テトラフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル基、3-ブロモ-2-メチルプロピル基、4-ブロモブチル基、パーフルオロペンチル基等が挙げられる。
 なお、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基としては、上記式(2)~(7)で例示した基と同様のものが挙げられる。
 特に、集電基板との密着性をより向上させることを考慮すると、本発明で用いる高分岐ポリマーは、式(1)または(2)で表される繰り返し単位の少なくとも1つの芳香環中に、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、およびそれらの塩から選ばれる少なくとも1種の酸性基を有するものであることが好ましい。
 上記高分岐ポリマーの製造に用いられるアルデヒド化合物としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、バレルアルデヒド、カプロンアルデヒド、2-メチルブチルアルデヒド、ヘキシルアルデヒド、ウンデシルアルデヒド、7-メトキシ-3,7-ジメチルオクチルアルデヒド、シクロヘキサンカルボキシアルデヒド、3-メチル-2-ブチルアルデヒド、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジピンアルデヒドなどの飽和脂肪族アルデヒド類;アクロレイン、メタクロレインなどの不飽和脂肪族アルデヒド類;フルフラール、ピリジンアルデヒド、チオフェンアルデヒドなどのヘテロ環式アルデヒド類;ベンズアルデヒド、トリルアルデヒド、トリフルオロメチルベンズアルデヒド、フェニルベンズアルデヒド、サリチルアルデヒド、アニスアルデヒド、アセトキシベンズアルデヒド、テレフタルアルデヒド、アセチルベンズアルデヒド、ホルミル安息香酸、ホルミル安息香酸メチル、アミノベンズアルデヒド、N,N-ジメチルアミノベンズアルデヒド、N,N-ジフェニルアミノベンズアルデヒド、ナフチルアルデヒド、アントリルアルデヒド、フェナントリルアルデヒドなどの芳香族アルデヒド類、フェニルアセトアルデヒド、3-フェニルプロピオンアルデヒドなどのアラルキルアルデヒド類等が挙げられる。特に芳香族アルデヒド類を用いることが好ましい。
 また、上記高分岐ポリマーの製造に用いられるケトン化合物としては、アルキルアリールケトン、ジアリールケトン類であり、例えば、アセトフェノン、プロピオフェノン、ジフェニルケトン、フェニルナフチルケトン、ジナフチルケトン、フェニルトリルケトン、ジトリルケトン等が挙げられる。
 本発明に用いられる高分岐ポリマーは、下記スキーム1に示されるように、例えば、下記式(A)で示されるような、上述したトリアリールアミン骨格を与え得るトリアリールアミン化合物と、例えば下記式(B)で示されるようなアルデヒド化合物および/またはケトン化合物とを、酸触媒の存在下で縮合重合して得られる。
 なお、アルデヒド化合物として、例えば、テレフタルアルデヒド等のフタルアルデヒド類のような、二官能化合物(C)を用いる場合、スキーム1で示される反応が生じるだけではなく、下記スキーム2で示される反応が生じ、2つの官能基が共に縮合反応に寄与した、架橋構造を有する高分岐ポリマーが得られる場合もある。
Figure JPOXMLDOC01-appb-C000017
(式中、Ar1~Ar3、およびZ1~Z2は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000018
(式中、Ar1~Ar3、およびR1~R4は、上記と同じ意味を表す。)
 上記縮合重合反応では、トリアリールアミン化合物のアリール基1当量に対して、アルデヒド化合物および/またはケトン化合物を0.1~10当量の割合で用いることができる。
 上記酸触媒としては、例えば、硫酸、リン酸、過塩素酸などの鉱酸類;p-トルエンスルホン酸、p-トルエンスルホン酸一水和物などの有機スルホン酸類;ギ酸、シュウ酸などのカルボン酸類等を用いることができる。
 酸触媒の使用量は、その種類によって種々選択されるが、通常、トリアリールアミン類100質量部に対して、0.001~10,000質量部、好ましくは、0.01~1,000質量部、より好ましくは0.1~100質量部である。
 上記の縮合反応は無溶媒でも行えるが、通常溶媒を用いて行われる。溶媒としては反応を阻害しないものであれば全て使用することができ、例えば、テトラヒドロフラン、1,4-ジオキサンなどの環状エーテル類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)などのアミド類;メチルイソブチルケトン、シクロヘキサノンなどのケトン類;塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼンなどのハロゲン化炭化水素類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類等が挙げられる。これら溶媒は、それぞれ単独で、または2種以上混合して用いることができる。特に、環状エーテル類が好ましい。
 また、使用する酸触媒が、例えばギ酸のような液状のものであるならば、酸触媒に溶媒としての役割を兼ねさせることもできる。
 縮合時の反応温度は、通常40~200℃である。反応時間は反応温度によって種々選択されるが、通常30分間から50時間程度である。
 以上のようにして得られる重合体の重量平均分子量Mwは、通常1,000~2,000,000、好ましくは、2,000~1,000,000である。
 高分岐ポリマーに酸性基を導入する場合、ポリマー原料である、上記トリアリールアミン化合物、アルデヒド化合物、ケトン化合物の芳香環上に予め導入し、これを用いて高分岐ポリマーを製造する方法で導入しても、得られた高分岐ポリマーを、その芳香環上に酸性基を導入可能な試薬で処理する方法で導入してもよいが、製造の簡便さを考慮すると、後者の手法を用いることが好ましい。
 後者の手法において、酸性基を芳香環上に導入する手法としては、特に制限はなく、酸性基の種類に応じて従来公知の各種方法から適宜選択すればよい。
 例えば、スルホ基を導入する場合、過剰量の硫酸を用いてスルホン化する手法などを用いることができる。
 以上で説明した高分岐ポリマー(CNT分散剤)とともに用いられるCNTは、一般的に、アーク放電法、化学気相成長法(CVD法)、レーザー・アブレーション法等によって作製されるが、本発明に使用されるCNTはいずれの方法で得られたものでもよい。また、CNTには1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT(以下、SWCNTと記載)と、2枚のグラフェン・シートが同心円状に巻かれた2層CNT(以下、DWCNTと記載)と、複数のグラフェン・シートが同心円状に巻かれた多層CNT(以下、MWCNTと記載)とがあるが、本発明においては、SWCNT、DWCNT、MWCNTをそれぞれ単体で、または複数を組み合わせて使用できる。
 上記の方法でSWCNT、DWCNTやMWCNTを作製する際には、同時にフラーレンやグラファイト、非晶性炭素が副生産物として生成し、またニッケル、鉄、コバルト、イットリウムなどの触媒金属も残存するので、これらの不純物の除去、精製を必要とする場合がある。不純物の除去には、硝酸、硫酸などによる酸処理とともに超音波処理が有効である。しかし、硝酸、硫酸などによる酸処理ではCNTを構成するπ共役系が破壊され、CNT本来の特性が損なわれてしまう可能性があるため、適切な条件で精製して使用することが望ましい。
 本発明の複合集電体が備える導電性結着層は、上記高分岐ポリマーとCNTとを含む導電性結着層形成用組成物から作製することができる。
 この場合、導電性結着層形成用組成物は、さらに上記高分岐ポリマーの溶解能を有する有機溶媒を含んでいてもよい。
 このような有機溶媒としては、例えば、テトラヒドロフラン(THF)、ジエチルエーテル、1,2-ジメトキシエタン(DME)などのエーテル類;塩化メチレン、クロロホルム、1,2-ジクロロエタンなどのハロゲン化炭化水素類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)などのアミド類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;メタノール、エタノール、イソプロパノール、n-プロパノールなどのアルコール類;n-ヘプタン、n-ヘキサン、シクロヘキサンなどの脂肪族炭化水素類;ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルなどのグリコールエーテル類;エチレングリコール、プロピレングリコールなどのグリコール類等が挙げられ、これらの有機溶媒は、それぞれ単独で、または2種以上混合して用いることができる。
 特に、CNTの孤立分散の割合を向上させ得るという点から、NMP、DMF、THF、メタノール、イソプロパノールが好ましい。さらに、用いる溶媒によっては、組成物の成膜性を向上し得る添加剤として、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルなどのグリコールエーテル類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類、プロピレングリコール、イソプロパノール、NMP等を、少量含むことが望ましい。
 なお、上記高分岐ポリマーを用いた場合は、アルコール類、グリコール類、グリコールエーテル類等の親水性溶媒を用いた場合でも分散性および成膜性が良好となる。
 さらに、上記親水性溶媒と水との混合溶媒とした場合でも、分散性、成膜性が低下することがない。
 上記導電性結着層形成用組成物の調製法は任意であり、高分岐ポリマー(分散剤)が液状の場合には、高分岐ポリマーとCNTとを適宜混合し、高分岐ポリマーが固体の場合には、これを溶融させた後、CNTと混合して調製することができる。
 また、溶媒を用いる場合には、高分岐ポリマー、CNT、溶媒を任意の順序で混合して組成物を調製すればよい。
 この際、高分岐ポリマー、CNTおよび溶媒からなる混合物を分散処理することが好ましく、この処理により、CNTの孤立分散の割合をより向上させることができる。分散処理としては、機械的処理である、ボールミル、ビーズミル、ジェットミルなどを用いた湿式処理や、バス型やプローブ型のソニケータを用いる超音波処理が挙げられる。
 分散処理の時間は任意であるが、1分間から10時間程度が好ましく、5分間から5時間程度がより好ましい。
 なお、本発明で用いる高分岐ポリマーは、CNTの分散能に優れているため、分散処理前等に加熱処理を施さなくとも、CNTが高濃度で孤立分散した組成物を得ることができるが、必要に応じて加熱処理を施しても構わない。
 上記導電性結着層形成用組成物における、高分岐ポリマーとCNTとの混合比率は、質量比で1,000:1~1:100程度とすることができる。
 また、溶媒を使用した組成物中における高分岐ポリマーの濃度は、CNTを溶媒に分散させ得る濃度であれば特に限定されるものではないが、本発明においては、組成物中に0.001~30質量%程度とすることが好ましく、0.002~20質量%程度とすることがより好ましい。
 さらに、この組成物中におけるCNTの濃度は、少なくともCNTの一部が孤立分散する限りにおいて任意であるが、本発明においては、組成物中に0.0001~20質量%程度とすることが好ましく、0.001~10質量%程度とすることがより好ましい。
 以上のようにして調製された導電性結着層形成用組成物中では、分散剤がCNTの表面に付着して複合体を形成しているものと推測される。
 さらに、上記導電性結着層形成用組成物には、マトリックスとなる高分子を添加してもよい。その配合割合は、特に限定されるものではないが、組成物中に、0.0001~99質量%程度とすることが好ましく、0.001~90質量%程度とすることがより好ましい。
 マトリックスとなる高分子としては、エネルギー貯蔵デバイス用電極に用いられている公知のバインダーを用いることができ、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体〔P(VDF-HFP)〕、フッ化ビニリデン-塩化3フッ化エチレン共重合体〔P(VDF-CTFE)〕、ポリビニルアルコール、ポリイミド、エチレン-プロピレン-ジエン三元共重合体、スチレン-ブタジエンゴム、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PAA)、ポリアニリン等の導電性高分子などが挙げられる。また、上述した以外にも、例えば、PE(ポリエチレン)、PP(ポリプロピレン)、EVA(エチレン-酢酸ビニル共重合体)、EEA(エチレン-アクリル酸エチル共重合体)などのポリオレフィン系樹脂;PS(ポリスチレン)、HIPS(ハイインパクトポリスチレン)、AS(アクリロニトリル-スチレン共重合体)、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)、MS(メタクリル酸メチル-スチレン共重合体)などのポリスチレン系樹脂;ポリカーボネート樹脂;塩化ビニル樹脂;ポリアミド樹脂;ポリウレタン樹脂;PMMA(ポリメチルメタクリレート)などの(メタ)アクリル樹脂;PET(ポリエチレンテレフタレート)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、PLA(ポリ乳酸)、ポリ-3-ヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート/アジペートなどのポリエステル樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンサルファイド樹脂;ポリビニルアルコール樹脂;ポリグルコール酸;変性でんぷん;酢酸セルロース、三酢酸セルロース;キチン、キトサン;リグニン等の熱可塑性樹脂や、ポリアニリンおよびその半酸化体であるエメラルジンベース;ポリチオフェン;ポリピロール;ポリフェニレンビニレン;ポリフェニレン;ポリアセチレン等の導電性高分子、さらにはエポキシ樹脂;ウレタンアクリレート;フェノール樹脂;メラミン樹脂;尿素樹脂;アルキド樹脂等の熱硬化性樹脂や光硬化性樹脂などが挙げられる。なお、これらのマトリックス樹脂を硬化させることができる硬化剤を含んでいてもよい。
 この場合、組成物の調製は、分散剤、CNT、マトリックスとなる高分子、必要に応じて溶媒を、混合装置や混練装置により混合して複合化すればよい。混合装置や混練装置としては、各種ミキサや、単軸または二軸押出機などが挙げられる。この際の混合・混練温度、時間は任意であり、マトリックスとなる高分子や溶媒に応じて適宜選択される。
 また、マトリックスとなる高分子を用いた組成物中におけるCNT濃度は、薄膜(結着層)に要求される機械的、電気的、熱的特性などにおいて変化するため任意であるが、本発明においては、組成物中に0.0001~30質量%程度とすることが好ましく、0.001~20質量%とすることがより好ましい。
 なお、上記導電性結着層形成用組成物は、高分岐ポリマーと架橋反応を起こすことができる、上述した溶媒に可溶な架橋剤を含んでいてもよい。
 このような架橋剤としては、メラミン系、置換尿素系、またはそれらのポリマー系等が挙げられ、これら架橋剤は、それぞれ単独で、または2種以上混合して用いることができる。なお、好ましくは、少なくとも2個の架橋形成置換基を有する架橋剤であり、CYMEL(登録商標)、メトキシメチル化グリコールウリル、ブトキシメチル化グリコールウリル、メチロール化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メチロール化メラミン、メトキシメチル化ベンゾグアナミン、ブトキシメチル化ベンゾグアナミン、メチロール化ベンゾグアナミン、メトキシメチル化尿素、ブトキシメチル化尿素、メチロール化尿素、メトキシメチル化チオ尿素、メトキシメチル化チオ尿素、メチロール化チオ尿素等の化合物、およびこれらの化合物の縮合体が例として挙げられる。
 架橋剤の添加量は、使用する有機溶媒、使用する基材、要求される粘度、要求される膜形状などにより変動するが、高分岐ポリマーに対して0.001~80質量%、好ましくは0.01~50質量%、さらに好ましくは0.05~40質量%である。これら架橋剤は自己縮合による架橋反応を起こすこともあるが、上記高分岐ポリマーと架橋反応を起こすものであり、高分岐ポリマー中に架橋性置換基が存在する場合はそれらの架橋性置換基により架橋反応が促進される。
 本発明では、架橋反応を促進するための触媒としてとして、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムp-トルエンスルホン酸、サリチル酸、スルホサリチル酸、クエン酸、安息香酸、ヒドロキシ安息香酸、ナフタレンカルボン酸等の酸性化合物、および/または2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、有機スルホン酸アルキルエステル等の熱酸発生剤を添加する事ができる。
 触媒の添加量はCNT分散剤(高分岐ポリマー)に対して、0.0001~20質量%、好ましくは0.0005~10質量%、より好ましくは0.001~3質量%である。
 本発明の導電性結着層形成用組成物の粘度は、用いる塗布方法に応じて適宜決定されるものであり、例えば、インクジェット法、キャスティング法、ディップコート法、バーコート法、グラビアコート法、フレキソ印刷法、またはスプレーコート法等で塗布する場合、1~1,000mPa・s程度が、ブレードコート法、ロールコート法、スリットダイコート法やスクリーン印刷法等で塗布する場合、100~100,000mPa・s程度が好適である。
 組成物の粘度は、固形分成分(CNT、分散剤等)や溶媒の量、種類等を変更することで調整できるが、粘度を増加させるため、増粘剤を用いてもよい。
 このような増粘剤としてはカルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、キサンタンガム、グアーガム、アルギン酸ナトリウム、カラギーナン、ペクチン、ローカストビーンガム等の多糖類や、アルブミン、カゼイン等のたんぱく質類、ポリアクリル酸やその塩、架橋物、ポリグリコール系化合物、ポリビニルアルコール系化合物、ポリエーテル系化合物、ポリアミド系化合物、ポリエステル系化合物等の合成高分子、シリカゾル等の無機微粒子などが挙げられる。
 増粘剤の添加量は、組成物全体に対して概ね0.01~20質量%程度の範囲内で、作製する膜厚と塗布法とのバランス等を勘案して適宜決定すればよい。
 一方、集電基板としては、従来、エネルギー貯蔵デバイス用電極の集電体として用いられているものから適宜選択して用いることができ、例えば、銅、アルミニウム、ニッケル、金、銀、およびそれらの合金やカーボン材料、金属酸化物、導電性高分子等の薄膜を用いることができる。
 その厚みは特に限定されるものではないが、本発明においては、1~100μmが好ましい。
 本発明の複合集電体は、集電基板上に、上述した導電性結着層形成用組成物を塗布し、これを自然または加熱乾燥し、導電性結着層を形成して作製することができる。
 この場合、導電性結着層の厚みとしては、特に限定されるものではないが、内部抵抗を低減することを考慮すると、0.05~10μmが好ましい。
 塗布方法としては、例えば、スピンコート法、ディップコート法、フローコート法、インクジェット法、スプレーコート法、バーコート法、グラビアコート法、スリットダイコート法、ロールコート法、フレキソ印刷法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法、スクリーン印刷法などが挙げられるが、作業効率等の点から、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、スリットダイコート法が好適である。
 加熱乾燥する場合の温度も任意であるが、50~200℃程度が好ましく、80~150℃程度がより好ましい。
 本発明の電極は、上記複合集電体の導電性結着層上に、活物質層を形成して作製することができる。
 ここで、活物質としては、従来、エネルギー貯蔵デバイス用電極に用いられている各種活物質を用いることができる。
 例えば、リチウム二次電池やリチウムイオン二次電池の場合、正極活物質としてリチウムイオンを吸着・離脱可能なカルコゲン化合物またはリチウムイオン含有カルコゲン化合物、ポリアニオン系化合物、硫黄単体およびその化合物等を用いることができる。
 このようなリチウムイオンを吸着離脱可能なカルコゲン化合物としては、例えばFeS2、TiS2、MoS2、V26、V613、MnO2等が挙げられる。
 リチウムイオン含有カルコゲン化合物としては、例えばLiCoO2、LiMnO2、LiMn24、LiMo24、LiV38、LiNiO2、LixNiy1-y2(但し、Mは、Co、Mn、Ti、Cr,V、Al、Sn、Pb、およびZnから選ばれる少なくとも1種以上の金属元素を表し、0.05≦x≦1.10、0.5≦y≦1.0)などが挙げられる。
 ポリアニオン系化合物としては、例えばLiFePO4等が挙げられる。
 硫黄化合物としては、例えばLi2S、ルベアン酸等が挙げられる。
 一方、上記負極を構成する負極活物質としては、アルカリ金属、アルカリ合金、リチウムイオンを吸蔵・放出する周期表4~15族の元素から選ばれる少なくとも1種の単体、酸化物、硫化物、窒化物、またはリチウムイオンを可逆的に吸蔵・放出可能な炭素材料を使用することができる。
 アルカリ金属としては、Li、Na、K等が挙げられ、アルカリ金属合金としては、例えば金属Li、Li-Al、Li-Mg、Li-Al-Ni、Na、Na-Hg、Na-Zn等が挙げられる。
 リチウムイオンを吸蔵放出する周期表4~15族の元素から選ばれる少なくとも1種の元素の単体としては、例えば、ケイ素やスズ、アルミニウム、亜鉛、砒素等が挙げられる。
 同じく酸化物としては、例えば、スズケイ素酸化物(SnSiO3)、リチウム酸化ビスマス(Li3BiO4)、リチウム酸化亜鉛(Li2ZnO2)、リチウム酸化チタン(Li4Ti512)等が挙げられる。
 同じく硫化物としては、リチウム硫化鉄(LixFeS2(0≦x≦3))、リチウム硫化銅(LixCuS(0≦x≦3))等が挙げられる。
 同じく窒化物としては、リチウム含有遷移金属窒化物が挙げられ、具体的には、LixyN(M=Co、Ni、Cu、0≦x≦3、0≦y≦0.5)、リチウム鉄窒化物(Li3FeN4)等が挙げられる。
 リチウムイオンを可逆的に吸蔵・放出可能な炭素材料としては、グラファイト、カーボンブラック、コークス、ガラス状炭素、炭素繊維、カーボンナノチューブ、またはこれらの焼結体等が挙げられる。
 また、電気二重層キャパシタの場合、活物質として炭素質材料を用いることができる。
 この炭素質材料としては、活性炭等が挙げられ、例えば、フェノール樹脂を炭化後、賦活処理して得られた活性炭が挙げられる。
 なお、本発明の電極には、上記活物質の他に、導電助剤を添加することもできる。導電助剤としては、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウイスカー、炭素繊維、天然黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム、アルミニウム、ニッケルなどが挙げられる。
 活物質層は、以上で説明した活物質、バインダーポリマーおよび必要に応じて溶媒を含む電極スラリーを、導電性結着層上に塗布し、自然または加熱乾燥して形成することができる。
 バインダーポリマーとしては、公知の材料から適宜選択して用いることができ、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体〔P(VDF-HFP)〕、フッ化ビニリデン-塩化3フッ化エチレン共重合体〔P(VDF-CTFE)〕、ポリビニルアルコール、ポリイミド、エチレン-プロピレン-ジエン三元共重合体、スチレン-ブタジエンゴム、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PAA)、ポリアニリン等の導電性高分子などが挙げられる。
 なお、バインダーポリマーの添加量は、活物質100質量部に対して、0.1~20質量部、特に、1~10質量部が好ましい。
 溶媒としては、上記高分岐ポリマーで例示した有機溶媒や水が挙げられ、それらの中からバインダーの種類に応じて適宜選択すればよいが、PVdF等の非水溶性のバインダーの場合はNMPが好適であり、PAA等の水溶性のバインダーの場合は水が好適である。
 電極スラリーの塗布方法としては、上述した導電性結着層形成用組成物と同様の手法が挙げられる。
 また、加熱乾燥する場合の温度も任意であるが、50~200℃程度が好ましく、80~150℃程度がより好ましい。
 本発明に係るエネルギー貯蔵デバイスは、上述した電極を備えたものであり、より具体的には、少なくとも一対の正負極と、これら各極間に介在するセパレータと、電解質とを備えて構成され、正負極の少なくとも一方が、上述したエネルギー貯蔵デバイス用電極から構成される。
 このエネルギー貯蔵デバイスは、電極に上述したエネルギー貯蔵デバイス用電極を用いることにその特徴があるため、その他のデバイス構成部材であるセパレータや、電解質などは、公知の材料から適宜選択して用いることができる。
 セパレータとしては、例えば、セルロース系セパレータ、ポリオレフィン系セパレータなどが挙げられる。
 電解質としては、液体、固体のいずれでもよく、また水系、非水系のいずれでもよいが、本発明のエネルギー貯蔵デバイス用電極は、非水系電解質を用いたデバイスに適用した場合にも実用上十分な性能を発揮させ得る。
 非水系電解質としては、電解質塩を非水系有機溶媒に溶かしてなる非水系電解液が挙げられる。
 電解質塩としては、4フッ化硼酸リチウム、6フッ化リン酸リチウム、過塩素酸リチウム、トリフルオロメタンスルホン酸リチウム等のリチウム塩;テトラメチルアンモニウムヘキサフルオロホスフェート、テトラエチルアンモニウムヘキサフルオロホスフェート、テトラプロピルアンモニウムヘキサフルオロホスフェート、メチルトリエチルアンモニウムヘキサフルオロホスフェート、テトラエチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムパークロレート等の4級アンモニウム塩などが挙げられる。
 非水系有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等のアルキレンカーボネート;ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート;アセトニトリルなどのニトリル類、ジメチルホルムアミドなどアミド類等が挙げられる。
 なお、本発明の複合集電体は、アルミ電解コンデンサや固体電解コンデンサの陰極としても用いることができる。
 以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、実施例で用いた測定装置は以下のとおりである。
(1)GPC(ゲル浸透クロマトグラフィー)
 装置:東ソー(株)製 HLC-8200 GPC
 カラム:Shodex KF-804L+KF-805L
 カラム温度:40℃
 溶媒:テトラヒドロフラン
 検出器:UV(254nm)
 検量線:標準ポリスチレン
(2)示差熱天秤(TG-DTA)
 装置:(株)リガク製 TG-8120
 昇温速度:10℃/分
 測定温度:25℃-750℃
(3)UV/Vis照射示差走査熱量計(Photo-DSC)
 装置:(株)NETZSCH製 Photo-DSC 204 F1 Phoenix
 昇温速度:40℃/分
 測定温度:25℃-350℃
(4)1H-NMRスペクトル
 装置:日本電子(株)製 JNM-ECA700
 測定溶媒:DMSO-d6(重水素化ジメチルスルホキシド)
 基準物質:テトラメチルシラン(0.00ppm)
(5)13C-NMRスペクトル
 装置:日本電子(株)製 JNM-ECA700
 測定溶媒:DMSO-d6
 基準物質:DMSO-d6(39.5ppm)
(6)イオンクロマトグラフィー(イオウ定量分析)
 装置:ダイオネクス社製 ICS-1500
 カラム:ダイオネクス社製 IonPacAG12A + IonPacAS12A
 溶媒:(NaHCO32.7mmol+Na2CO30.3mmol)/L水溶液
 検出器:電気伝導度
(7)プローブ型超音波照射装置(分散処理)
 装置:Hielscher Ultrasonics社製 UIP1000
(8)ワイヤーバーコーター(薄膜作製)
 装置:株式会社エスエムテー製 PM-9050MC
(9)充放電測定装置(二次電池評価)
 装置:北斗電工株式会社製 HJ1001SM8A
(10)走査電子顕微鏡(SEM)(膜厚測定)
 装置:日本電子株式会社製 JSM-7400F
(11)マイクロメーター(バインダー、活性層の膜厚測定)
 装置:株式会社ミツトヨ製 IR54
(12)E型粘度計(MWCNT含有分散液の粘度測定)
 装置:VISCONIC ED形((株)トキメック製)
(13)ホモディスパー(電極スラリーの混合)
 装置:T.K.ロボミックス(ホモディスパー2.5型(φ32)付き)(プライミクス(株)製) 
(14)薄膜旋回型高速ミキサ(電極スラリーの混合)
 装置:フィルミクス40型(プライミクス(株)製)
(15)自転・公転ミキサ(電極スラリーの脱泡)
 装置:あわとり錬太郎(ARE-310)((株)シンキー製)
[1]分散剤(トリアリールアミン系高分岐ポリマー)の合成
[合成例1]PTPA-PBAの合成
Figure JPOXMLDOC01-appb-C000019
 窒素下、1L四口フラスコに、トリフェニルアミン[Zhenjiang Haitong Chemical Industry Co.,Ltd.製]80.0g(326mmol)、4-フェニルベンズアルデヒド[三菱ガス化学(株)製,4-BPAL]118.8g(652mmol(トリフェニルアミンに対して2.0eq))、パラトルエンスルホン酸一水和物[江南化工(株)製]12.4g(65mmol(トリフェニルアミンに対して0.2eq))、および1,4-ジオキサン160gを仕込んだ。この混合物を撹拌しながら85℃まで昇温し、溶解させ、重合を開始した。6時間反応させた後、反応混合物を60℃まで放冷した。この反応混合物をTHF560gで希釈し、28質量%アンモニア水80gを加えた。その反応溶液をアセトン2,000gおよびメタノール400gの混合溶液へ投入することで再沈殿させた。析出した沈殿物をろ過し、減圧乾燥した後、得られた固体をTHF640gに再溶解させ、アセトン2,000gおよび水400gの混合溶液へ投入することで再度再沈殿させた。析出した沈殿物をろ過し、130℃で6時間減圧乾燥して、高分岐ポリマーPTPA-PBA115.1gを得た。
 得られたPTPA-PBAの、GPCによるポリスチレン換算で測定される重量平均分子量Mwは17,000、多分散度Mw/Mnは3.82であった(ここでMnは同条件で測定される数平均分子量を表す。)。また、TG-DTAにより測定した5%重量減少温度は531℃、DSCにより測定したガラス転移温度(Tg)は159℃であった。
[合成例2]PTPA-PBA-SO3Hの合成
Figure JPOXMLDOC01-appb-C000020
 窒素下、500mL四口フラスコに、合成例1で合成したPTPA-PBA2.0gおよび硫酸[関東化学(株)製]50gを仕込んだ。この混合物を撹拌しながら40℃まで昇温して溶解させ、スルホン化を開始した。8時間反応させた後、反応混合物を50℃まで昇温して、さらに1時間反応させた。この反応混合物を、純水250gへ投入することで再沈殿させた。沈殿物をろ過し、これを純水250gに加えて12時間静置した。沈殿物をろ過し、50℃で8時間減圧乾燥することで、紫色粉末として高分岐ポリマーPTPA-PBA-SO3H(以下、単にPTPA-PBA-SO3Hという)2.7gを得た。
 得られたPTPA-PBA-SO3Hの1H-NMRスペクトルを図1に、13C-NMRスペクトルを図2にそれぞれ示す。また、イオウ定量分析から算出したPTPA-PBA-SO3Hのイオウ原子含有量は6.4質量%であった。この結果から求めたPTPA-PBA-SO3Hのスルホ基含有量は、高分岐ポリマーPTPA-PBAの1繰り返し単位当り1個であった。
[2]導電性結着層形成用組成物を用いた複合集電体の製造および導電性結着層と集電基板との密着性
[実施例1]
 分散剤として合成例2で合成したPTPA-PBA-SO3H0.25gを、分散媒であるメタノール49.50gに溶解させ、この溶液へMWCNT(昭和電工(株)製“VGCF-X”外径15nm)0.25gを添加した。この混合物に、プローブ型超音波照射装置を用いて室温(およそ25℃)で30分間超音波処理を行い、沈降物がなくMWCNTが均一に分散した黒色のMWCNT含有分散液(導電性結着層形成用組成物)A1を得た。
 得られたMWCNT含有分散液A1 2mLにメタノール0.5mL加えたものを、集電基板である銅箔(厚み20μm)にワイヤーバーコーター(No.12、ウェット膜厚27.4μm)で均一に展開後、120℃で5分乾燥して導電性結着層を形成し、複合集電体B1を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは300nmであった。
[比較例1]
 分散剤としてポリビニルピロリドン(PVP、東京化成工業(株)製、Mw~10000)0.25gを、分散媒であるプロピレングリコール(PG、純正化学(株)製)49.50gに溶解させ、この溶液へMWCNT0.25gを添加した。この混合物に、プローブ型超音波照射装置を用いて室温(およそ25℃)で15分間超音波処理を行い、沈降物がなくMWCNTが均一に分散した黒色のMWCNT含有分散液X1を得た。
 得られたMWCNT含有分散液X1 2mLにPG0.5mL加えたものを銅箔にワイヤーバーコーター(No.12、ウェット膜厚27.4μm)で均一に展開後、120℃で5分乾燥して導電性結着層を形成し、複合集電体Y1を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは200nmであった。
[比較例2]
 分散媒としてプロピレングリコール49.50gの代わりにN-メチルピロリドン(純正化学(株)製、純正特級)(以下、NMPという)49.50gを用いた以外は、比較例1と同様でMWCNT含有分散液X2を得た。
 得られたMWCNT分散液X2 2mLにシクロヘキサノン0.5mL加えたものを銅箔にワイヤーバーコーター(No.12、ウェット膜厚27.4μm)で均一に展開後、120℃で5分乾燥して導電性結着層を形成し、複合集電体Y2を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは200nmであった。
 実施例1および比較例1,2で作製した各複合集電体B1,Y1,Y2を用いて、導電性結着層と集電基板との密着性の評価を次の手順により行った。
 複合集電体B1,Y1,Y2の導電性結着層を縦横それぞれ1mm間隔でクロスカットを行うことにより、100マスカットを行った。即ち、このクロスカットにより、1mm四方のマス目を100個形成した。次いで、このクロスカット部分に粘着テープ(ニチバン製、CT-12S2P)を貼り付けて、そのテープを剥離した。そして、この際、まったく剥がれなかった場合に○、一部または全部が剥がれた場合に×とし、密着性評価を行った。評価の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000021
 剥離試験において、実施例1で作製した複合集電体B1の導電性結着層は、集電基板である銅箔との高い密着性を示し、全く剥離しなかったのに対し、比較例1および2で作製した複合集電体Y1およびY2の導電性結着層は、銅に対する密着性が低く、集電基板から剥離した。これは、分散液A1に分散剤として含まれるPTPA-PBA-SO3Hが、集電基板に対する結着剤としても機能するが、一般的なカーボンナノチューブ分散剤であるPVPは、同様の機能を有さないためと考えられる。
[3]導電性結着層とバインダーとの密着性評価
 実施例1および比較例1,2で作製した各複合集電体B1,Y1,Y2を用いて、バインダーであるポリフッ化ビニリデン(PVdF、12質量%NMP溶液、(株)クレハ、KFポリマー L#1120)との密着性の評価を次の手順により行った。
 まず、各複合集電体上に、ドクターブレード法により、PVdF溶液を均一(200μm)に展開し、80℃で30分、次いで120℃で30分乾燥してPVdFの薄膜を形成した。この際に形成される薄膜の厚みは10μmであった。
 そして、上記と同様の方法に従い、バインダー層および導電性結着層にクロスカットを行い、粘着テープを用いて密着性の評価を行った。また、比較のために、同様の方法に従い、集電基板である銅箔(未修飾の銅箔)の上に、PVdFの薄膜を形成して、密着性の評価を行った(比較例3)。評価の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000022
 剥離試験において、実施例1で作製した複合集電体B1の導電性結着層は、バインダーであるPVdFとの高い密着性を示し、全く剥離しなかったのに対し、比較例1および2で作製した複合集電体Y1およびY2の導電性結着層や未修飾の銅箔は、PVdFに対する密着性が低く、剥離が認められた。これは、分散液A1に分散剤として含まれるPTPA-PBA-SO3Hが、PVdFに対する結着剤としても機能するが、一般的なカーボンナノチューブ分散剤であるPVPは、同様の機能を有さないためと考えられる。
[4]マトリックスポリマーを含む導電性結着層形成用組成物を用いた複合集電体の製造
[実施例2]
 まず、ポリメタクリル酸メチル(PMMA、Aldrich製、Mw~120,000)0.6gとNMP14.4gを混合し、80℃で1時間撹拌して溶解させ、マトリックスポリマー溶液を作製した。
 次いで、分散剤として合成例1で合成したPTPA-PBA0.50gを、分散媒であるNMP49.00gに溶解させ、この溶液へMWCNT0.50gを添加した。この混合物に、プローブ型超音波照射装置を用いて室温(およそ25℃)で30分間超音波処理を行い、沈降物がなくMWCNTが均一に分散した分散液を作製した。
 得られた分散液13.5gと上記マトリックスポリマー溶液6.8gとを混合して、黒色のMWCNT含有分散液(導電性結着層形成用組成物)A2を得た。
 得られたMWCNT含有分散液A2 2mLを銅箔にワイヤーバーコーター(No.12、ウェット膜厚27.4μm)で均一に展開後、120℃で20分乾燥して導電性結着層を形成し、複合集電体B2を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは700nmであった。
[実施例3]
 銅箔の代わりにアルミ箔(厚み20μm)を用いた以外は、実施例2と同様の方法で複合集電体B3を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは650nmであった。
[実施例4]
 まず、NMP200.0gに、特許第2855206号公報の参考例1記載の方法にて合成したエメラルジンベース型ポリアニリン(Mw:53,000、Mn:19,000、以下EBという)6.2gを加え、ホモディスパー(プライミクス(株)製)を用いて5,000rpmで30分間処理を行い、ポリアニリンのNMP分散液を作製し、その一方で、n-プロピルアミン(東京化成工業(株)製)1.0g、エチレングリコールモノブチルエーテル(東京化成工業(株)製、以下EGMBEという)4.0gを混合して、アミン溶液を作製した。
 そして、上記NMP分散液100.3g、上記アミン溶液0.2g、NMP1.0g、EGMBE10.5gを1時間スターラーで混合し、マトリックスポリマー溶液を作製した。
 得られたマトリックスポリマー溶液18.2gと、実施例2で作製したMWCNTが均一に分散した分散液18.2gとを混合し、黒色のMWCNT含有分散液(導電性結着層形成用組成物)A3を得た。
 得られたMWCNT含有分散液A3 2mLを銅箔にワイヤーバーコーターで均一に展開後、120℃で20分乾燥して導電性結着層を形成し、複合集電体B4を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは400nmであった。
[実施例5]
 銅箔の代わりにアルミ箔を用いた以外は、実施例4と同様の方法で複合集電体B5を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは350nmであった。
[実施例6]
 まず、ポリウレタン(PU、日本ミラクトラン(株)製、P22SRNAT)2.0gとNMP48.0gを混合し、80℃で1時間撹拌して溶解させ、マトリックスポリマー溶液を作製した。
 得られたマトリックスポリマー溶液1.875gと、実施例2で作製したMWCNTが均一に分散した分散液3.75gと、シクロヘキサノン1.875gとを混合し、黒色のMWCNT含有分散液(導電性結着層形成用組成物)A4を得た。
 得られたMWCNT含有分散液A4 2mLを銅箔にワイヤーバーコーター(No.12、ウェット膜厚27.4μm)で均一に展開後、120℃で20分乾燥して導電性結着層を形成し、複合集電体B6を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは500nmであった。
[実施例7]
 まず、ポリアクリル酸(PAA、Aldrich製、Mv~450,000)0.6gを精製水14.4gと混合し、80℃で1時間撹拌して溶解させ、マトリックスポリマー溶液を作製した。
 分散剤として合成例2で合成したPTPA-PBA-SO3H0.50gを、分散媒であるメタノール49.00gに溶解させ、この溶液へMWCNT0.50gを添加した。この混合物に、プローブ型超音波照射装置を用いて室温(およそ25℃)で30分間超音波処理を行い、沈降物がなくMWCNTが均一に分散した分散液を作製した。
 得られた分散液13.5gと、上記マトリックスポリマー溶液6.8gとを混合し、黒色のMWCNT含有分散液(導電性結着層形成用組成物)A5得た。
 このMWCNT含有分散液A5 2mLを銅箔にワイヤーバーコーターで均一に展開後、120℃で5分乾燥して導電性結着層を形成し、複合集電体B7を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは400nmであった。
[実施例8]
 銅箔の代わりにアルミ箔を用いた以外は、実施例7と同様の方法により複合集電体B8を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは400nmであった。
[実施例9]
 まず、ポリアクリル酸(PAA、Aldrich製、Mv~450,000)0.05gをメタノール4.95gと混合し、室温で12時間撹拌して溶解させ、マトリックスポリマー溶液を作製した。
 次いで、実施例1で作製したMWCNT含有分散液A1 5gと、上記マトリックスポリマー溶液5gとを混合した。そして、この得られた混合物2mLと、メタノール0.5mLとを混合し、黒色のMWCNT含有分散液(導電性結着層形成用組成物)A6を得た。
 得られたMWCNT含有分散液A6 2mLを、集電基板であるアルミ箔(厚み20μm)にワイヤーバーコーター(No.12、ウェット膜厚27.4μm)で均一に展開後、120℃で5分乾燥して導電性結着層を形成し、複合集電体B9を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは300nmであった。
[実施例10]
 まず、ポリアクリル酸(PAA、Aldrich製、Mv~450,000)と2-プロパノールとを混合して撹拌し、ポリアクリル酸の濃度が4wt%であるマトリックスポリマー溶液を作製した。
 次いで、分散剤として合成例2で合成したPTPA-PBA-SO3H0.50gを、分散媒である2-プロパノール43gおよび水6.0gに溶解させ、この溶液へMWCNT(Nanocyl社製“NC7000”外径10nm)0.50gを添加した。
 この混合物に、プローブ型超音波照射装置を用いて室温(およそ25℃)で30分間超音波処理を行い、沈降物がなくMWCNTが均一に分散した分散液を作製した。
 得られた分散液3gと、上記マトリックスポリマー溶液2.7gと、架橋剤としてのブロックイソシアネートを含む溶液であるTPA-B80E(80質量%、旭化成(株)製)0.09gと、2-プロパノール0.21gとを混合し、MWCNT含有分散液(導電性結着層形成用組成物)A7を得た。
 得られたMWCNT含有分散液A7 2mLを、集電体であるアルミ箔(厚み20μm)にワイヤーバーコーター(No.12、ウェット膜厚27.4μm)で均一に展開後、120℃で20分乾燥して導電性結着層を形成し、複合集電体B10を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは500nmであった。
[実施例11]
 ブロックイソシアネートを含む溶液であるTPA-B80E 0.09gの代わりに2-プロパノール0.09gを用いた以外は、実施例10と同様の方法で複合集電体B11を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは500nmであった。
[実施例12]
 分散剤として合成例2で合成したPTPA-PBA-SO3H1.60gを、分散媒である2-プロパノール17.6gおよび水52.9gに溶解させ、この溶液へMWCNT(Nanocyl社製“NC7000”外径10nm)1.60gおよびポリアクリル酸水溶液(25%、東亞合成(株)製、A-10H)6.20gを添加した。この混合物に、プローブ型超音波照射装置を用いて室温(およそ25℃)で30分間超音波処理を行い、沈降物がなくMWCNTが均一に分散した分散液を作製した。
 得られた分散液3 8gに、キサンタンガム溶液(2%、KELTROL CG-SFT、三晶(株)製、2-プロパノール:水=1:3(質量比))8gを加え撹拌し、MWCNT含有分散液(導電性結着層形成用組成物)A8を得た。
 MWCNT含有分散液A8 2mLを、集電体であるアルミ箔(厚み20μm)にワイヤーバーコーター(No.12、ウェット膜厚27.4μm)で均一に展開後、120℃で20分乾燥して導電性結着層を形成し、複合集電体B12を作製した。
 なお、増粘剤を加えた組成物であるMWCNT含有分散液A8の粘度は、3100mPa・sであった。
[実施例13]
 実施例10で製造したMWCNT含有分散液A7 5mLに、ポリアクリル酸水溶液(25%、東亞合成(株)製、A-10H)0.40gおよび2-プロパノール4.6gを加え撹拌し、MWCNT含有分散液A9を得た。
 MWCNT含有分散液A9 2mLを、集電体であるアルミ箔(厚み20μm)にワイヤーバーコーター(No.12、ウェット膜厚27.4μm)で均一に展開後、120℃で20分乾燥して導電性結着層を形成し、複合集電体B13を作製した。
 なお、増粘剤を加えた組成物であるMWCNT含有分散液A9の粘度は、11mPa・sであった。
[比較例4]
 集電基板として銅箔の代わりにアルミ箔(厚み20μm)を用いた以外は、比較例1と同様にして複合集電体Y3を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは200nmであった。
[比較例5]
 集電基板として銅箔の代わりにアルミ箔(厚み20μm)を用いた以外は、比較例2と同様にして複合集電体Y4を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは200nmであった。
[比較例6]
 まず、ポリアクリル酸(PAA、Aldrich製、Mv~450,000)0.05gをPG4.95gと混合し、室温で12時間撹拌して溶解させ、マトリックスポリマー溶液を作製した。
 次いで、比較例1で作製したMWCNT含有分散液X1 5gと、上記マトリックスポリマー溶液5gとを混合したところ、MWCNTが凝集したため、MWCNT含有分散液を得ることができず、そのために導電性結着層を得られなかった。
[比較例7]
 まず、ポリアクリル酸(PAA、Aldrich製、Mv~450,000)0.05gをNMP4.95gと混合し、室温で12時間撹拌して溶解させ、マトリックスポリマー溶液を作製した。
 次いで、比較例2で作製したMWCNT含有分散液X2 5gと、上記マトリックスポリマー溶液5gとを混合したところ、MWCNTが凝集したため、MWCNT含有分散液を得ることができず、そのために導電性結着層を得られなかった。
 以上のことから、本発明の導電性結着層形成用組成物を用いることで、導電性結着層が好適に形成でき、さらには、架橋剤や増粘剤を加えた組成物を用いた場合であっても、その成膜性が損なわれないことがわかる。
 特に、いわゆる湿式法によって成膜する場合において再現性よく成膜するためには、組成物の粘度は塗布法に応じて調節することが求められるが、本発明においては、溶媒の種類、分散剤やCNTの濃度等を変更することによってだけでなく、適切な増粘剤を加えることによっても粘度調整が可能であり、スリットダイコート法やスクリーン印刷法などに好適な高粘度のMWCNT含有分散液や、グラビア印刷法やバーコート法などに好適な低粘度のMWCNT含有分散液を得ることが可能である。
[5]導電性結着層と集電基板との密着性評価および導電性結着層の耐溶剤性
 実施例2~11で作製した複合集電体B2~B11および比較例4,5で作製した複合集電体Y3,Y4をそれぞれ用いて、次の手順により、導電性結着層と集電基板との密着性評価および導電性結着層の耐溶剤性評価を行った。
 上記と同様の方法に従い、複合集電体B2~B11,Y3およびY4の導電性結着層にクロスカットを行い、粘着テープを用いて密着性の評価を行い、また、NMPまたは水を染み込ませた綿棒を導電性結着に接触させて往復させ、この際に、MWCNT層が剥がれ落ちない場合に○、剥がれ落ちた場合に×とし、耐溶剤性を評価した。評価結果を表3に示す。なお、表3には、比較例6,7に関する組成も参考として示した。
Figure JPOXMLDOC01-appb-T000023
 実施例2~11で作製した複合集電体B2~B11の導電性結着層は、集電基板である銅箔またはアルミ箔との高い密着性を示し、全く剥離しなかったのに対し、比較例4,5で作製した複合集電で作製した複合集電体Y3,Y4の導電性結着層は、アルミ箔から剥離した。
 これらのことから、PTPA-PBAやPTPA-PBA-SO3Hが、カーボンナノチューブの分散剤として機能するだけでなく、これらを含む組成物によって集電基板に対する高い密着性を有する導電性薄膜を形成できるのに対し、一般的なカーボンナノチューブ分散剤であるPVPは、そのような薄膜を形成できないことがわかる。
 また、実施例2~6で作製した複合集電体B2~B6が有するNMPを分散媒とする分散液から作製した導電性結着層は、水に対する高い耐性を示し、実施例7~9,11で作製した複合集電体B7~9,11が有するMeOH、IPA等を分散媒とする分散液から作製した導電性結着層は、NMPに対する高い耐性を示し、実施例10で作製した複合集電体B10が有するMeOH、IPA等を分散媒とし、架橋剤を含む分散液から作製した導電性結着層は、NMPと水の両方に対する高い耐性を示した。
 これらの結果から、マトリックスとなる高分子を添加した場合でも、集電基板である金属箔に対する高い密着性を有する導電性結着層が製造でき、特に、水、イソプロパノール等アルコール系溶媒を分散媒とする導電性結着層形成用組成物に架橋剤を加えることで、NMPと水の両方に対する高い耐性を示す薄膜を与える組成物が実現できることがわかる。
[6]マトリックスポリマーを含む導電性結着層とバインダーとの密着性評価
 実施例4,6~9で作製した複合集電体B4,B6~B9および比較例4,5で作製した複合集電体Y3,Y4をそれぞれ用いて、マトリックスポリマーを含む導電性結着層と、バインダーとの密着性の評価を次の手順により行った。
 各複合集電体上に、ドクターブレード法により、バインダー溶液を均一に展開し、80℃で30分、次いで120℃で30分乾燥してバインダーの薄膜を形成した。
 バインダー溶液としては、ポリフッ化ビニリデン(PVdF)のNMP溶液(12質量%、(株)クレハ、KFポリマー L#1120、ウェット膜厚100μm)またはPAA(アルドリッチ、Mv~45万)の水溶液(4質量%、ウェット膜厚500μm)を用いた。この際に形成される薄膜の厚みは、PVdFでは5μm、PAAでは16μmであった。
 そして、上記と同様の方法に従い、バインダー層および導電性結着層にクロスカットを行い、粘着テープを用いて密着性を評価した。また、比較のために、同様の方法に従い、集電基板である銅箔(未修飾の銅箔),アルミ箔(未修飾のアルミ箔)の上に、バインダーの薄膜をそれぞれ形成し、密着性を評価した(比較例8,9)。評価の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000024
 複合集電体B4,B6~B9の導電性結着層は、バインダーとの高い密着性を示し、全く剥離しなかったが、複合集電体Y3,Y4の導電性結着層や未修飾の銅箔、アルミ箔は、バインダーとの密着性が低く、剥離が認められた。これらの結果から、水系バインダー、マトリックスとなる高分子を添加した場合でも、添加しない場合と同様に、集電基板である金属箔に対する高い密着性を有する導電性結着層が製造できることがわかる。
 また、PTPA-PBA-SO3Hと組み合わせて用いた場合に特にアルミ箔に対して結着性を付与できるPAAをマトリックスポリマーとして用いることで、水系の溶媒を分散媒とした場合であっても良好な分散性の分散液を作製することができ、さらにそれを用いて作製した複合集電体は、バインダーとして一般的なPVdFに対する結着性も高いことが分かる。
[7]電極の作製および導電性結着層と活物質層との密着性評価
[実施例14]
 まず、活物質としてグラファイト(Gr、日本黒鉛(株)製、CGB-15、5.2g)、バインダーとしてPVdFのNMP溶液(12質量%、54.1g)、導電助剤としてアセチレンブラック(AB、電気化学工業(株)製、デンカブラック、1.3g)をビーズミル(ジルコニアビーズ、φ0.5mm、2,000rpm、30分)にて混合し、電極スラリーS1(固形分濃度21.4質量%、Gr:PVdF:AB=40:50:10(質量比))を作製した。
 実施例1で作製した複合集電体B1の導電性結着層上に、ドクターブレード法により、先に調製した電極スラリーS1を均一(ウェット膜厚50μm(乾燥後膜厚10μm)、100μm(乾燥後膜厚16μm)、200μm(乾燥後膜厚27μm)、300μm(乾燥後膜厚38μm))に展開後、80℃で30分、次いで120℃で30分乾燥して導電性結着層上に活物質層が形成し、電極C1~4を作製した。
[比較例10]
 複合集電体B1の代わりに比較例1で作製した複合集電体Y1を用いた以外は、実施例14と同様の方法で電極Z1~4を作製した。
[比較例11]
 複合集電体B1の代わりに比較例2で作製した複合集電体Y2を用いた以外は、実施例14と同様の方法で電極Z5~8を作製した。
[比較例12]
 複合集電体B1の代わりに未修飾の銅箔を用いた以外は、実施例14と同様の方法で電極Z9~12を作製した。
 実施例14および比較例10~12で作製した電極C1~4,Z1~Z12を用いて、導電性結着層と活物質層との密着性の評価を次の手順により行った。
 上記と同様の方法に従い、活物質層および/または導電性結着層にクロスカットを行い、このクロスカット部分に粘着テープ(ニチバン製、CT-12S2P)を貼り付けて、そのテープを剥離した。各電極3枚ずつにこの操作を行った。
 表5に評価結果を示す。なお、表5中、分数の分母は、作製した電極の枚数(3枚)を、分子に剥離試験でまったく剥がれなかった電極の枚数である。
Figure JPOXMLDOC01-appb-T000025
 剥離試験において、実施例14で作製した電極C1~4が有するPTPA-PBA-SO3Hを含む導電性結着層は、活物質層に含まれるバインダーであるPVdFに対する密着性が高いため、電極C1~C4の活物質層の剥離は認められなかったのに対し、比較例10,11で作製した電極Z1~8が有する導電性結着層は、バインダーとの高密着性を有する物質が含まれておらず、比較例12で作製した電極Z9~12は導電性結着層を有しないため、電極Z1~12の大半の活物質層が剥離した。
[実施例15]
 活物質としてケイ素(Si、(株)高純度化学研究所製、SIE23PB、5.46g)、バインダーとしてPAAの水溶液(4質量%、53.55g)、増粘剤としてナトリウムカルボキシメチルセルロース(NaCMC、アズワン(株)製、CMF-150、0.378g)、導電助剤としてアセチレンブラック(AB、電気化学工業(株)製、デンカブラック、0.42g)をビーズミル(ジルコニアビーズ、φ0.5mm、2,000rpm、30分)にて混合し、電極スラリーS2(固形分濃度14質量%、Si:PAA:NaCMC:AB=65:25.5:4.5:5(質量比))を作製した。
 実施例6で作製した複合集電体B6の導電性結着層上に、ドクターブレード法により、先に調製した電極スラリーS2を均一(ウェット膜厚100μm(乾燥後膜厚10μm)、200μm(乾燥後膜厚20μm)、300μm(乾燥後膜厚50μm))に展開後、80℃で30分、次いで120℃で30分乾燥して導電性結着層上に活物質層を形成し、電極C5~7を作製した。
[比較例13]
 複合集電体B6の代わりに集電基板である銅箔(未修飾の銅箔)を用いた以外は、実施例15と同様の方法で電極Z13~15を作製した。
 実施例15および比較例13で作製した電極C5~7,Z13~Z15を用いて、導電性結着層と活物質層との密着性の評価を次の手順により行った。
 上記と同様の方法に従い、活物質層および/または導電性結着層にクロスカットを行い、このクロスカット部分に粘着テープ(ニチバン製、CT-12S2P)を貼り付けて、そのテープを剥離した。各電極3枚ずつにこの操作を行った。
 表6に評価結果を示す。なお、表6中、分数の分母は作製した電極の枚数(3枚)であり、分子は剥離試験でまったく剥がれなかった電極の枚数である。
Figure JPOXMLDOC01-appb-T000026
 剥離試験において、実施例15で作製した電極C5~7が有するPTPA-PBAを含む導電性結着層は、活物質層に含まれるバインダーであるPAAに対する密着性が高いため、電極C5~7の活物質層の剥離は認められなかったのに対し、比較例13で作製した電極Z13~15が有する導電性結着層は、バインダーとの高密着性を有する物質が含まれていないため、電極Z13~15の大半の活物質層が剥離した。
 以上のことから、電極スラリーの分散媒に対する高耐性、集電基板である金属箔との高密着性、バインダーとの高密着性という条件が揃えば、導電性結着層と電極との密着性、導電性結着層と活物質層との密着性が高くなり、その結果、集電基板上に形成した薄膜が脱落しにくい、耐久性に優れた電極が製造できることがわかる。
[8]リチウムイオン二次電池作製
[実施例16]
 活物質としてケイ素(Si、(株)高純度化学研究所製、SIE23PB、24.0g)、バインダーとしてPAAの水溶液(8質量%、25.5g)、増粘剤としてナトリウムカルボキシメチルセルロース(NaCMC、アズワン(株)製、CMF-150、0.360g)、導電助剤としてアセチレンブラック(AB、電気化学工業(株)製、デンカブラック、3.59g)をビーズミル(ジルコニアビーズ、φ0.5mm、2,000rpm、30分)にて混合し、電極スラリーS3(固形分濃度50質量%、Si:PAA:NaCMC:AB=80:6.8:1.2:12(質量比))を作製した。
 得られた電極スラリーS3を、ドクターブレード法により実施例1で作製した複合集電体B1の導電性結着層上に均一(ウェット膜厚25μm)に展開後、80℃で30分、次いで120℃で30分乾燥して導電性結着層上に活物質層(乾燥後膜厚10μm)を形成し、電極C8を作製した。
 そして、電極C8を用い、リチウムイオン二次電池を以下のようにして作製した。
 電極C8を直径10mmの円盤状に打ち抜き、質量を測定した後、100℃で15時間真空乾燥し、アルゴンで満たされたグローブボックスに移した。
 2032型のコインセル(宝泉(株)製)のケースに、直径14mmに打ち抜いたリチウム箔(本荘ケミカル(株)製、厚み0.17mm)を6枚重ねたものを設置し、その上に、電解液(キシダ化学(株)製、エチレンカーボネート:ジエチルカーボネート(1:1、体積比)、電解質であるリチウムヘキサフルオロホスフェートを1mol/L含む)を24時間以上染み込ませた、直径16mmに打ち抜いたセパレータ(セルガード(株)製、2400)を一枚重ねた。さらに上から、活物質を塗布した面を下にして電極C8を重ねた。電解液を1滴滴下したのち、ワッシャーとスペーサーを溶接した上蓋とガスケットを乗せて、コインセルかしめ機で密封した。その後24時間静置し、試験用の二次電池とした。
[比較例14]
 複合集電体B1の代わりに比較例1で作製した複合集電体Y1を用いた以外は、実施例16と同様の方法でリチウムイオン二次電池を作製した。
[比較例15]
 複合集電体B1の代わりに比較例2で作製した複合集電体Y2を用いた以外は、実施例16と同様の方法でリチウムイオン二次電池を作製した。
[比較例16]
 複合集電体B1の代わりに集電基板である銅箔(未修飾の銅箔)を用いた以外は、実施例16と同様の方法でリチウムイオン二次電池を作製した。
[実施例17]
 分散剤として合成例2で合成したPTPA-PBA-SO3H0.50gを、分散媒であるメタノール49.00gに溶解させ、この溶液へMWCNT0.50gを添加した。この混合物に、プローブ型超音波照射装置を用いて室温(およそ25℃)で30分間超音波処理を行い、沈降物がなくMWCNTが均一に分散した黒色のMWCNT含有分散液A10を得た。
 得られたMWCNT含有分散液A10 2mLを銅箔にワイヤーバーコーター(No.12、ウェット膜厚27.4μm)で均一に展開後、120℃で5分乾燥して導電性結着層を形成し、複合集電体B14を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは700nmであった。
 一方、活物質としてグラファイト(Gr、日本黒鉛(株)製、CGB-15、12.7g)、バインダーとしてPVdFのNMP溶液(12質量%、45.7g)、導電助剤としてアセチレンブラック(AB、電気化学工業(株)製、デンカブラック、1.8g)をビーズミル(ジルコニアビーズ、φ0.5mm、2,000rpm、30分)にて混合し、電極スラリーS4(固形分濃度30.2質量%、Gr:PVdF:AB=70:20:10(質量比))を作製した。
 得られた電極スラリーS4を、ドクターブレード法により複合集電体B14の導電性結着層上に均一(ウェット膜厚200μm)に展開後、80℃で30分、次いで120℃で30分乾燥して導電性結着層上に活物質層(乾燥後膜厚60μm)を形成し、電極C9を作製した。
 そして、電極C8の代わりに電極C9を用いた以外は、実施例16と同様の方法でリチウムイオン二次電池を作製した。
[比較例17]
 複合集電体B14の代わりに集電基板である銅箔(未修飾の銅箔)を用いた以外は、実施例17と同様の方法でリチウムイオン二次電池を作製した。
[実施例18]
 集電基板としてアルミ箔(厚み20μm)を用いた以外は、実施例1と同様にして複合集電体B15を作製した。複合集電体を裂いて、SEMにより断面を観察したところ、導電性結着層の厚みは300nmであった。
 一方、活物質としてリン酸鉄リチウム(LFP、TATUNG FINE CHEMICALS CO.、17.3g)、バインダーとしてPVdFのNMP溶液(12質量%、12.8g)、導電助剤としてアセチレンブラック(AB、電気化学工業(株)製、デンカブラック、0.384g)およびNMP(9.54g)を、ホモディスパーにて、3,500rpmで1分間混合した。次いで、薄膜旋回型高速ミキサを用いて周速:20m/秒で60秒間の混合処理をし、さらに自転・公転ミキサにて1,000rpmで2分間脱泡することで、電極スラリーS5(固形分濃度48質量%、LFP:PVdF:AB=90:8:2(質量比))を作製した。
 得られた電極スラリーS5を、ドクターブレード法により複合集電体B15の導電性結着層上に均一(ウェット膜厚200μm)に展開後、80℃で30分、次いで120℃で30分乾燥して導電性結着層上に活物質層(乾燥後膜厚60μm)を形成し、電極C10を作製した。
 そして、電極C9の代わりに電極C10を用いた以外は、実施例17と同様の方法でリチウムイオン二次電池を作製した。
[実施例19]
 複合集電体B15の代わりに実施例9で作製した複合集電体B9を用いた以外は、実施例18と同様の方法でリチウムイオン二次電池を作製した。
[比較例18]
 複合集電体B15の代わりに比較例4で作製した複合集電体Y3を用いた以外は、実施例18と同様の方法でリチウムイオン二次電池を作製した。
[比較例19]
 複合集電体B15の代わりに比較例5で作製した複合集電体Y4を用いた以外は、実施例18と同様の方法でリチウムイオン二次電池を作製した。
[比較例20]
 複合集電体B15の代わりに集電基板であるアルミ箔(未修飾のアルミ箔)を用いた以外は、実施例18と同様の方法でリチウムイオン二次電池を作製した。
[実施例20]
 活物質としてリン酸鉄リチウム(LFP、TATUNG FINE CHEMICALS CO.、7.48g)、バインダーとしてPVdFのNMP溶液(12質量%、5.85g)、導電助剤としてアセチレンブラック(AB、電気化学工業(株)製、デンカブラック、0.61g)およびNMP(11.2g)を乳鉢にて20分混合し、電極スラリーS6(固形分濃度35質量%、LFP:PVdF:AB=85:8:7(質量比))を作製した。
 得られた電極スラリーS6を、ドクターブレード法により実施例8で作製した複合集電体B8の導電性結着層上に均一(ウェット膜厚200μm)に展開後、80℃で30分、次いで120℃で30分乾燥して導電性結着層上に活物質層(乾燥後膜厚60μm)を形成し、電極C11を作製した。
 そして、電極C9の代わりに電極C11を用いた以外は、実施例17と同様の方法でリチウムイオン二次電池を作製した。
[比較例21]
 複合集電体B8の代わりに集電基板であるアルミ箔(未修飾のアルミ箔)を用いた以外は、実施例20と同様の方法でリチウムイオン二次電池を作製した。
[実施例21]
 複合集電体B8の代わりに実施例10で作製した複合集電体B10を用いた以外は、実施例20と同様の方法でリチウムイオン二次電池を作製した。なお、導電性結着層の形成には、実施例20と同様の方法で作製した別バッチのスラリーを用いた。
[実施例22]
 複合集電体B10の代わりに実施例11で作製した複合集電体B11を用いた以外は、実施例21と同様の方法でリチウムイオン二次電池を作製した。
[比較例22]
 複合集電体B10の代わりに集電基板であるアルミ箔(未修飾のアルミ箔)を用いた以外は、実施例21と同様の方法でリチウムイオン二次電池を作製した。
[実施例23]
 複合集電体B15の代わりに実施例12で作製した複合集電体B12を用いた以外は、実施例18と同様の方法でリチウムイオン二次電池を作製した。なお、導電性結着層の形成には、実施例18と同様の方法で作製した別バッチのスラリーを用いた。
[実施例24]
 複合集電体B12の代わりに実施例13で作製した複合集電体B13を用いた以外は、実施例23と同様の方法でリチウムイオン二次電池を作製した。
[比較例23]
 複合集電体B12の代わりに集電基板であるアルミ箔(未修飾のアルミ箔)を用いた以外は、実施例23と同様の方法でリチウムイオン二次電池を作製した。
[実施例25]
 まず、リン酸鉄リチウムの代わりにマンガン酸リチウム(LiMn24、以下LMO、宝泉(株)製、17.3g)を活物質として用いた以外は実施例18と同様の方法で、電極スラリーS7を調製した。
 そして、電極スラリーS5の代わりに電極スラリーS7を用い、複合集電体B15の代わりに実施例13で作製した複合集電体B13を用いた以外は、実施例18と同様の方法でリチウムイオン二次電池を作製した。(活物質層の乾燥後膜厚55μm)
[比較例24]
 複合集電体B13の代わりに集電基板であるアルミ箔(未修飾のアルミ箔)を用いた以外は、実施例25と同様の方法でリチウムイオン二次電池を作製した。
[9]リチウムイオン二次電池の負極としての評価
 実施例16および比較例14~16で作製したリチウムイオン二次電池について、電極の負極としての物性を評価した。下記の条件でサイクル試験を行った。放電容量のサイクル特性を図3に示す。
・電流:0.1C定電流充放電(1サイクル目のみ0.01Vでの定電流定電圧充電、Siの容量を4200mAh/gとした)
・カットオフ電圧:1.50V-0.01V
・充電容量:活物質の重量を基準とし、2,000mAh/gまで
・温度:室温
 実施例16は比較例16と比較して、放電容量が約2,000mAh/gから下がり始めるサイクル数が大きく、活物質層と集電基板間にMWCNT層があることで密着性が向上し、電池の寿命が向上していることが分かる。一方、比較例14および15は、MWCNT層の密着性が不十分であるため、未修飾の銅箔を用いた場合よりも寿命が短くなっている。以上のように、集電基板に対する密着性の高い分散剤を用いることで、ケイ素負極の寿命を向上させることができることがわかる。
 実施例17および比較例17で作製したリチウムイオン二次電池について、電極の負極としての物性を評価した。まず、MWCNT層の安定性を評価するために、下記の条件でサイクル試験を行った。放電容量のサイクル特性を図4に示す。
・電流:0.2C定電流充放電(Grの容量を372mAh/gとした)
・カットオフ電圧:1.50V-0.01V
・温度:室温
 実施例17および比較例17ともに、50サイクル程度までGrの理論容量程度の放電容量が得られ、どちらも劣化は見られなかった。このことから、MWCNT層はリチウムに対して0V付近の低電圧環境でも還元分解が起こらず、リチウムイオン電池の負極として適用可能であることがわかる。
 続いて、セル抵抗に対するMWCNT層の影響を評価するために、下記の条件でレート試験を行った。放電容量のレート依存性を図5に示す。
・電流:0.3C定電流充電、0.3C、3C、5C、10C定電流放電(Grの容量を372mAh/gとし、5サイクルごとの放電レートを上昇させた)
・カットオフ電圧:1.50V-0.01V
・温度:室温
 実施例17および比較例17ともに、放電レートの増大とともに、放電容量が低下する傾向が見られたが、その程度は実施例17と比較例17は同程度であった。このことは、MWCNT層が主要な抵抗成分として働いてはいないことを示しており、高速充放電を行うリチウムイオン電池の負極として適用可能であることがわかる。
[10]リチウムイオン二次電池の正極としての評価
 実施例18,19および比較例18~20で作製したリチウムイオン二次電池について、電極の正極としての物性を下記の条件で評価した。放電容量のサイクル・レート特性を図6に、放電レート10Cのときの放電曲線を図7に示す。
・電流:0.5C定電流充電、0.5C、3C、5C、10C定電流放電(LFPの容量を170mAh/gとし、5サイクルごとの放電レートを上昇させたのち、最後に放電レートを0.5Cに戻した)
・カットオフ電圧:4.50V-2.00V
・温度:室温
 図6に示されるように、導電性結着層を備えることで、低レート放電時に対する高レート放電時の容量維持率が高くなることが分かる。また、図7に示されるように、NMPに対する耐性が高く、かつPVdFに対する密着性の高い複合集電体B9を用いることで、放電時の電圧を高く保つことができることがわかる。
 実施例20および比較例21で作製したリチウムイオン二次電池について、電極の正極としての物性を評価した。MWCNT層の安定性と、セル抵抗に対するMWCNT層の影響を同時に評価するために、下記の条件で充放電試験を行った。放電容量のサイクル・レート特性を図8に、放電レート10Cのときの放電曲線を図9に示す。
・電流:0.5C定電流充電、0.5C、3C、5C、10C定電流放電(LFPの容量を170mAh/gとし、5サイクルごとの放電レートを上昇させたのち、最後に放電レートを0.5Cに戻した)
・カットオフ電圧:4.50V-2.00V
・温度:室温
 図8に示されるように、実施例20および比較例21ともに、0.5C時に理論容量の90%程度の放電容量が得られ、25サイクル後でも放電容量に劣化は見られなかった。このことから、MWCNT層はリチウムに対して4.5V付近の高電圧環境でも酸化分解が起こらず、リチウムイオン電池の正極として適用可能であることがわかる。
 さらに、図9に示されるように、実施例20では放電時の電圧が比較例21よりも高い。この結果は、比較例21に比べて実施例20では、活物質層と集電基板間にMWCNT層があることで密着性が向上し、界面抵抗が低くなっていること、すなわち放電時に取り出せるエネルギーが増大していることを意味している。以上のように、MWCNT層を導入することで、より出力の高いリチウムイオン二次電池が作製できることがわかる。
 実施例21、22および比較例22で作製したリチウムイオン二次電池について、電極の正極としての物性を下記の条件で評価した。放電レート10Cのときの放電曲線を図10に示す。
・電流:0.5C定電流充電、0.5C、3C、5C、10C定電流放電(LFPの容量を170mAh/gとし、5サイクルごとの放電レートを上昇させたのち、最後に放電レートを0.5Cに戻した)
・カットオフ電圧:4.50V-2.00V
・温度:室温
 図10に示されるように、架橋剤を含んでいる複合集電体B10を用いても、架橋剤を含んでいない複合集電体B11と同様に、無垢のアルミ箔に比べて放電時の電圧が高く、界面抵抗の低下が見られることが分かる。
 実施例23、24および比較例23で作製したリチウムイオン二次電池について、電極の正極としての物性を下記の条件で評価した。放電レート5Cのときの放電曲線を図11に示す。
・電流:0.5C定電流充電、0.5C、3C、5C、10C定電流放電(LFPの容量を170mAh/gとし、5サイクルごとの放電レートを上昇させたのち、最後に放電レートを0.5Cに戻した)
・カットオフ電圧:4.50V-2.00V
・温度:室温
 図11に示されるように、増粘剤の有無に関わらず、複合集電体を用いることで、無垢のアルミ箔に比べて放電時の電圧が高く、界面抵抗の低下が見られることが分かる。
 実施例25および比較例24で作製したリチウムイオン二次電池について、電極の正極としての物性を下記の条件で評価した。放電容量のサイクル・レート特性を図12に、放電レート5Cのときの放電曲線を図13に示す。
・電流:0.5C定電流充電、0.5C、3C、5C、10C定電流放電(LMOの容量を137mAh/gとし、5サイクルごとの放電レートを上昇させたのち、最後に放電レートを0.5Cに戻した)
・カットオフ電圧:4.30V-2.00V
・温度:室温
 図12に示されるように、LMOを用いたリチウムイオン二次電池においても、導電性結着層を備えることで、低レート放電時に対する高レート放電時の容量維持率が高くなることが分かる。また、図13に示されるように、複合集電体B13を用いることで、放電時の電圧を高く保つことができることがわかる。

Claims (17)

  1.  集電基板と、この基板上に形成された、式(1)または式(2)で表される繰り返し単位を有する高分岐ポリマーおよびカーボンナノチューブを含む導電性結着層と、を備えることを特徴とするエネルギー貯蔵デバイス電極用複合集電体。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)および(2)中、Ar1~Ar3は、それぞれ独立して、式(3)~(7)で表されるいずれかの二価の有機基を表し、Z1およびZ2は、それぞれ独立して、水素原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、または式(8)~(11)で表されるいずれかの一価の有機基を表し(ただし、Z1およびZ2が同時に前記アルキル基となることはない。)、式(2)中、R1~R4は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいアルコキシ基、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R5~R38は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいアルコキシ基、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。)
    Figure JPOXMLDOC01-appb-C000003
    {式中、R39~R62は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、フェニル基、OR63、COR63、NR6364、COOR65(これらの式中、R63およびR64は、それぞれ独立して、水素原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、またはフェニル基を表し、R65は、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、またはフェニル基を表す。)、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。}]
  2.  前記高分岐ポリマーが、前記式(1)または式(2)で表される繰り返し単位の少なくとも1つの芳香環中に、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩から選ばれる少なくとも1種の酸性基を有する請求項1記載のエネルギー貯蔵デバイス電極用複合集電体。
  3.  前記酸性基が、スルホ基またはその塩である請求項1または2記載のエネルギー貯蔵デバイス電極用複合集電体。
  4.  前記高分岐ポリマーが、式(12)で表される繰り返し単位を有する請求項1~3のいずれか1項記載のエネルギー貯蔵デバイス電極用複合集電体。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R5~R8は、水素原子、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表し、Z1およびZ2は、前記と同じ意味を表す。)
  5.  前記R5~R8が、すべて水素原子である請求項4記載のエネルギー貯蔵デバイス電極用複合集電体。
  6.  前記Z2が、水素原子である請求項1~5のいずれか1項記載のエネルギー貯蔵デバイス電極用複合集電体。
  7.  前記Z1が、水素原子、チエニル基、または前記式(8)で表される一価の有機基である請求項6記載のエネルギー貯蔵デバイス電極用複合集電体。
  8.  前記高分岐ポリマーが、式(13)または式(14)で表される繰り返し単位を有する請求項4記載のエネルギー貯蔵デバイス電極用複合集電体。
    Figure JPOXMLDOC01-appb-C000005
  9.  前記導電性結着層が、さらにマトリックスとなる高分子を含む請求項1~8のいずれか1項記載のエネルギー貯蔵デバイス電極用複合集電体。
  10.  前記導電性結着層が、厚み0.05~10μmである請求項1~9のいずれか1項記載のエネルギー貯蔵デバイス電極用複合集電体。
  11.  前記集電基板が、銅、アルミニウム、ニッケル、金、銀およびそれらの合金から選ばれる少なくとも1種からなり、厚み1~100μmである請求項1~10のいずれか1項記載のエネルギー貯蔵デバイス電極用複合集電体。
  12.  前記導電性結着層が、前記高分岐ポリマー、カーボンナノチューブ、必要に応じてマトリックス高分子、並びに有機溶媒および/または水を含む分散液を、前記集電基板上に、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スリットダイコート法、またはスプレーコート法により塗布し、乾燥して形成された請求項1~11のいずれか1項記載のエネルギー貯蔵デバイス電極用複合集電体。
  13.  請求項1~12のいずれか1項記載のエネルギー貯蔵デバイス電極用複合集電体と、この複合集電体の前記導電性結着層上に形成された活物質層とを備えることを特徴とするエネルギー貯蔵デバイス用電極。
  14.  請求項13記載のエネルギー貯蔵デバイス用電極を備える二次電池。
  15.  請求項13記載のエネルギー貯蔵デバイス用電極を備えるキャパシタ。
  16.  式(1)または式(2)で表される繰り返し単位を有する高分岐ポリマーおよびカーボンナノチューブを含むことを特徴とする導電性結着層形成用組成物。
    Figure JPOXMLDOC01-appb-C000006
    [式(1)および(2)中、Ar1~Ar3は、それぞれ独立して、式(3)~(7)で表されるいずれかの二価の有機基を表し、Z1およびZ2は、それぞれ独立して、水素原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、または式(8)~(11)で表されるいずれかの一価の有機基を表し(ただし、Z1およびZ2が同時に前記アルキル基となることはない。)、式(2)中、R1~R4は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいアルコキシ基、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。
    Figure JPOXMLDOC01-appb-C000007
    (式中、R5~R38は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいアルコキシ基、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。)
    Figure JPOXMLDOC01-appb-C000008
    {式中、R39~R62は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、フェニル基、OR63、COR63、NR6364、COOR65(これらの式中、R63およびR64は、それぞれ独立して、水素原子、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、またはフェニル基を表し、R65は、炭素原子数1~5の分岐構造を有していてもよいアルキル基、炭素原子数1~5の分岐構造を有していてもよいハロアルキル基、またはフェニル基を表す。)、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、またはそれらの塩を表す。}]
  17.  さらにマトリックスとなる高分子を含む請求項16記載の導電性結着層形成用組成物。
PCT/JP2013/074010 2012-09-14 2013-09-06 エネルギー貯蔵デバイス電極用複合集電体および電極 WO2014042080A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380047677.4A CN104620429A (zh) 2012-09-14 2013-09-06 用于储能器件电极的复合集电体和电极
KR1020157009291A KR102013167B1 (ko) 2012-09-14 2013-09-06 에너지 저장 디바이스 전극용 복합 집전체 및 전극
EP13837911.0A EP2897203A4 (en) 2012-09-14 2013-09-06 COMPOSITE CURRENT COLLECTOR FOR ELECTRODE OF ENERGY STORAGE DEVICE, AND ELECTRODE
US14/428,074 US10193160B2 (en) 2012-09-14 2013-09-06 Composite current collector for energy storage device electrode, and electrode
JP2014535522A JP5765487B2 (ja) 2012-09-14 2013-09-06 エネルギー貯蔵デバイス電極用複合集電体および電極

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-202596 2012-09-14
JP2012202596 2012-09-14

Publications (1)

Publication Number Publication Date
WO2014042080A1 true WO2014042080A1 (ja) 2014-03-20

Family

ID=50278193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074010 WO2014042080A1 (ja) 2012-09-14 2013-09-06 エネルギー貯蔵デバイス電極用複合集電体および電極

Country Status (7)

Country Link
US (1) US10193160B2 (ja)
EP (1) EP2897203A4 (ja)
JP (1) JP5765487B2 (ja)
KR (1) KR102013167B1 (ja)
CN (2) CN104620429A (ja)
TW (1) TWI609522B (ja)
WO (1) WO2014042080A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3028088A1 (fr) * 2014-11-03 2016-05-06 Hutchinson Electrodes conductrices et leur procede de fabrication
WO2016194747A1 (ja) * 2015-06-04 2016-12-08 日産化学工業株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
WO2017119288A1 (ja) * 2016-01-07 2017-07-13 日産化学工業株式会社 エネルギー貯蔵デバイス用電極
WO2018101308A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
WO2018101307A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 薄膜およびエネルギー貯蔵デバイス電極用アンダーコート箔
WO2018101294A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 導電性炭素材料分散液
WO2018101299A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 導電性組成物
WO2018101301A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 カーボンナノチューブ含有薄膜
WO2018101305A1 (ja) 2016-12-02 2018-06-07 日産化学工業株式会社 エネルギー貯蔵デバイス用アンダーコート層およびエネルギー貯蔵デバイス電極用アンダーコート箔
JP2018532246A (ja) * 2016-03-21 2018-11-01 エルジー・ケム・リミテッド 二次電池用電極集電体の製造方法およびその方法により製造された電極集電体を含む電極
JPWO2018101306A1 (ja) * 2016-12-02 2018-11-29 日産化学株式会社 薄膜およびエネルギー貯蔵デバイス電極用アンダーコート箔
WO2019054301A1 (ja) * 2017-09-15 2019-03-21 日産化学株式会社 スルホ基含有高分岐ポリマーの精製方法及びその製造方法
JP2019523973A (ja) * 2016-06-07 2019-08-29 ユニヴェルシテ ド リエージュUniversite De Liege 電気化学蓄電装置用の電極を製造する方法
WO2019188537A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188539A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188535A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 導電性炭素材料分散液
WO2019188550A1 (ja) * 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188556A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
WO2019188540A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188558A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
WO2019188559A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
WO2019188538A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2020040078A1 (ja) 2018-08-23 2020-02-27 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成用組成物、エネルギー貯蔵デバイス電極用複合集電体、エネルギー貯蔵デバイス電極、及びエネルギー貯蔵デバイス
WO2020171074A1 (ja) 2019-02-21 2020-08-27 日産化学株式会社 電池材料および電極材料
WO2021172308A1 (ja) * 2020-02-27 2021-09-02 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成用組成物
KR20210130176A (ko) 2019-02-21 2021-10-29 닛산 가가쿠 가부시키가이샤 에너지 저장 디바이스 전극용 박막 형성용 조성물
JP7374134B2 (ja) 2018-09-28 2023-11-06 エルジー エナジー ソリューション リミテッド 電気化学素子用分離膜及びこれを製造する方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047778A1 (ja) * 2015-09-17 2017-03-23 日本電気株式会社 樹脂組成物
EP3386021B1 (en) * 2015-12-01 2023-05-31 Nissan Chemical Corporation Nonaqueous secondary cell
KR102110800B1 (ko) * 2016-10-26 2020-05-14 주식회사 엘지화학 카본 나노 튜브 시트를 포함하고 있는 이차전지용 전극
EP3327837A1 (en) 2016-11-23 2018-05-30 Eidgenössische Materialprüfungs- und Forschungsanstalt EMPA Li-ion based electrochemical energy storage cell
WO2018101300A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 導電性炭素材料含有薄膜の製造方法
CN108559092B (zh) * 2018-03-14 2021-02-26 上海交通大学 碳材料分散剂及其制备方法以及含有该分散剂的稳定的碳材料的水性分散体
KR102420594B1 (ko) * 2018-05-24 2022-07-13 주식회사 엘지에너지솔루션 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
EP3799666A4 (en) * 2018-06-13 2022-04-20 Tortech Nano Fibers Ltd CARBON NANOTUBE (CNT)-METAL COMPOSITE PRODUCTS AND METHODS OF PRODUCTION THEREOF
CN109119637B (zh) * 2018-08-06 2021-06-29 珠海冠宇电池股份有限公司 集流体涂层、极片、锂离子电池及其制备方法
CN110444765B (zh) * 2019-08-12 2021-09-21 苏州大学 三聚氰胺交联聚乙烯醇水凝胶在锂电池硅负极材料中的应用
JPWO2021106591A1 (ja) * 2019-11-29 2021-06-03
US10981794B1 (en) * 2020-03-24 2021-04-20 Yazaki Corporation Stable aqueous dispersion of carbon
CN112615066A (zh) * 2020-12-17 2021-04-06 北京大学深圳研究生院 一种混合凝胶聚合物电解质、其制备方法及全固态锌离子电池
JP7328954B2 (ja) * 2020-12-28 2023-08-17 プライムプラネットエナジー&ソリューションズ株式会社 非水電解液二次電池用電極の製造方法および製造装置
KR102622814B1 (ko) * 2021-05-17 2024-01-10 동원시스템즈 주식회사 이차전지 집전체용 수계 카본코팅액

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997625A (ja) 1995-09-29 1997-04-08 Seiko Instr Inc 非水電解質二次電池およびその製造方法
JP2855206B2 (ja) 1989-02-10 1999-02-10 日東電工株式会社 ポリアニリンからなる多孔質選択性透過膜及びその製造方法
JPH11149916A (ja) 1997-11-18 1999-06-02 Matsushita Electric Ind Co Ltd 有機電解質電池
JP2000011991A (ja) 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd 有機電解液二次電池
JP2007165054A (ja) * 2005-12-12 2007-06-28 Nec Corp 蓄電デバイス
JP2009170410A (ja) 2008-01-15 2009-07-30 Samsung Electronics Co Ltd 電極、リチウム電池、電極製造方法及び電極コーティング用組成物
JP2010163570A (ja) * 2009-01-19 2010-07-29 Nissan Chem Ind Ltd カーボンナノチューブ分散・可溶化剤
WO2011065395A1 (ja) * 2009-11-25 2011-06-03 日産化学工業株式会社 カーボンナノチューブ分散剤

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542163A (en) * 1993-04-19 1996-08-06 Chang; On K. Electrically-conducting adhesion-promoter
JP2001255566A (ja) * 2000-03-10 2001-09-21 Showa Denko Kk フォトリフラクティブ材料組成物及びこれを用いたフォトリフラクティブ素子及びホログラム
KR100798205B1 (ko) * 2003-08-01 2008-01-24 캠브리지 디스플레이 테크놀로지 리미티드 전기발광 소자
KR100952277B1 (ko) 2007-03-05 2010-04-12 도요 잉키 세이조 가부시끼가이샤 전지용 조성물
US20100133483A1 (en) * 2007-05-09 2010-06-03 Naotoshi Nakashima Carbon nanotube solubilizer
EP2284235B1 (en) * 2008-06-02 2016-08-31 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof
WO2009155267A1 (en) * 2008-06-20 2009-12-23 Mysticmd, Inc. Anode, cathode, grid and current collector material for reduced weight battery and process for production thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855206B2 (ja) 1989-02-10 1999-02-10 日東電工株式会社 ポリアニリンからなる多孔質選択性透過膜及びその製造方法
JPH0997625A (ja) 1995-09-29 1997-04-08 Seiko Instr Inc 非水電解質二次電池およびその製造方法
JPH11149916A (ja) 1997-11-18 1999-06-02 Matsushita Electric Ind Co Ltd 有機電解質電池
JP2000011991A (ja) 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd 有機電解液二次電池
JP2007165054A (ja) * 2005-12-12 2007-06-28 Nec Corp 蓄電デバイス
JP2009170410A (ja) 2008-01-15 2009-07-30 Samsung Electronics Co Ltd 電極、リチウム電池、電極製造方法及び電極コーティング用組成物
JP2010163570A (ja) * 2009-01-19 2010-07-29 Nissan Chem Ind Ltd カーボンナノチューブ分散・可溶化剤
WO2011065395A1 (ja) * 2009-11-25 2011-06-03 日産化学工業株式会社 カーボンナノチューブ分散剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2897203A4

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10438752B2 (en) 2014-11-03 2019-10-08 Hutchinson Conductive electrodes and their manufacturing process
WO2016071217A1 (fr) * 2014-11-03 2016-05-12 Hutchinson Electrodes conductrices et leur procede de fabrication
FR3028088A1 (fr) * 2014-11-03 2016-05-06 Hutchinson Electrodes conductrices et leur procede de fabrication
JPWO2016194747A1 (ja) * 2015-06-04 2017-09-28 日産化学工業株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
JP2018049847A (ja) * 2015-06-04 2018-03-29 日産化学工業株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
WO2016194747A1 (ja) * 2015-06-04 2016-12-08 日産化学工業株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
US11251435B2 (en) 2015-06-04 2022-02-15 Nissan Chemical Industries, Ltd. Undercoat foil for energy storage device electrode
JP7035496B2 (ja) 2015-06-04 2022-03-15 日産化学株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
WO2017119288A1 (ja) * 2016-01-07 2017-07-13 日産化学工業株式会社 エネルギー貯蔵デバイス用電極
KR20180101461A (ko) 2016-01-07 2018-09-12 닛산 가가쿠 가부시키가이샤 에너지 저장 디바이스용 전극
US10749172B2 (en) 2016-01-07 2020-08-18 Nissan Chemical Industries, Ltd. Electrode for energy storage devices
JP2018532246A (ja) * 2016-03-21 2018-11-01 エルジー・ケム・リミテッド 二次電池用電極集電体の製造方法およびその方法により製造された電極集電体を含む電極
CN108780896A (zh) * 2016-03-21 2018-11-09 株式会社Lg化学 用于二次电池的电极集电器的制造方法和包含使用所述方法制造的电极集电器的电极
US10483549B2 (en) 2016-03-21 2019-11-19 Lg Chem, Ltd. Method of manufacturing electrode current collector for secondary battery and electrode including electrode current collector manufactured using the method
JP2019523973A (ja) * 2016-06-07 2019-08-29 ユニヴェルシテ ド リエージュUniversite De Liege 電気化学蓄電装置用の電極を製造する方法
JPWO2018101305A1 (ja) * 2016-12-02 2018-11-29 日産化学株式会社 エネルギー貯蔵デバイス電極およびエネルギー貯蔵デバイス
JP7110986B2 (ja) 2016-12-02 2022-08-02 日産化学株式会社 導電性組成物
JPWO2018101307A1 (ja) * 2016-12-02 2018-11-29 日産化学株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
KR20190087536A (ko) 2016-12-02 2019-07-24 닛산 가가쿠 가부시키가이샤 에너지 저장 디바이스용 언더코트층 및 에너지 저장 디바이스 전극용 언더코트박
JP2019140119A (ja) * 2016-12-02 2019-08-22 日産化学株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
JP2019140110A (ja) * 2016-12-02 2019-08-22 日産化学株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
JPWO2018101306A1 (ja) * 2016-12-02 2018-11-29 日産化学株式会社 薄膜およびエネルギー貯蔵デバイス電極用アンダーコート箔
JPWO2018101301A1 (ja) * 2016-12-02 2019-10-24 日産化学株式会社 カーボンナノチューブ含有薄膜
KR20230162126A (ko) 2016-12-02 2023-11-28 닛산 가가쿠 가부시키가이샤 에너지 저장 디바이스용 언더코트층 및 에너지 저장 디바이스 전극용 언더코트박
JPWO2018101308A1 (ja) * 2016-12-02 2019-10-24 日産化学株式会社 エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
JP7047807B2 (ja) 2016-12-02 2022-04-05 日産化学株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
WO2018101305A1 (ja) 2016-12-02 2018-06-07 日産化学工業株式会社 エネルギー貯蔵デバイス用アンダーコート層およびエネルギー貯蔵デバイス電極用アンダーコート箔
WO2018101301A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 カーボンナノチューブ含有薄膜
WO2018101299A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 導電性組成物
JPWO2018101299A1 (ja) * 2016-12-02 2019-10-24 日産化学株式会社 導電性組成物
WO2018101294A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 導電性炭素材料分散液
WO2018101307A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 薄膜およびエネルギー貯蔵デバイス電極用アンダーコート箔
WO2018101308A1 (ja) * 2016-12-02 2018-06-07 日産化学工業株式会社 エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
JPWO2019054301A1 (ja) * 2017-09-15 2020-10-15 日産化学株式会社 スルホ基含有高分岐ポリマーの精製方法及びその製造方法
WO2019054301A1 (ja) * 2017-09-15 2019-03-21 日産化学株式会社 スルホ基含有高分岐ポリマーの精製方法及びその製造方法
WO2019188540A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188537A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188539A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188559A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
WO2019188535A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 導電性炭素材料分散液
WO2019188558A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
CN111886718A (zh) * 2018-03-29 2020-11-03 日产化学株式会社 储能器件的底涂层形成用组合物
KR20200135499A (ko) 2018-03-29 2020-12-02 닛산 가가쿠 가부시키가이샤 에너지 저장 디바이스의 언더코트층 형성용 조성물
KR20200135498A (ko) 2018-03-29 2020-12-02 닛산 가가쿠 가부시키가이샤 에너지 저장 디바이스의 언더코트층 형성용 조성물
JPWO2019188540A1 (ja) * 2018-03-29 2021-04-08 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188550A1 (ja) * 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188538A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188556A1 (ja) 2018-03-29 2019-10-03 日産化学株式会社 エネルギー貯蔵デバイス用電極及びエネルギー貯蔵デバイス
JP7424291B2 (ja) 2018-08-23 2024-01-30 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成用組成物、エネルギー貯蔵デバイス電極用複合集電体、エネルギー貯蔵デバイス電極、及びエネルギー貯蔵デバイス
WO2020040078A1 (ja) 2018-08-23 2020-02-27 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成用組成物、エネルギー貯蔵デバイス電極用複合集電体、エネルギー貯蔵デバイス電極、及びエネルギー貯蔵デバイス
JP7374134B2 (ja) 2018-09-28 2023-11-06 エルジー エナジー ソリューション リミテッド 電気化学素子用分離膜及びこれを製造する方法
KR20210130176A (ko) 2019-02-21 2021-10-29 닛산 가가쿠 가부시키가이샤 에너지 저장 디바이스 전극용 박막 형성용 조성물
WO2020171074A1 (ja) 2019-02-21 2020-08-27 日産化学株式会社 電池材料および電極材料
US11670777B2 (en) 2020-02-27 2023-06-06 Nissan Chemical Corporation Thin film forming composition for energy storage device electrodes
KR20220149553A (ko) 2020-02-27 2022-11-08 닛산 가가쿠 가부시키가이샤 에너지 저장 디바이스 전극용 박막 형성용 조성물
WO2021172308A1 (ja) * 2020-02-27 2021-09-02 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成用組成物

Also Published As

Publication number Publication date
KR102013167B1 (ko) 2019-08-22
EP2897203A1 (en) 2015-07-22
CN110540736A (zh) 2019-12-06
TWI609522B (zh) 2017-12-21
JP5765487B2 (ja) 2015-08-19
TW201424104A (zh) 2014-06-16
KR20150058303A (ko) 2015-05-28
US10193160B2 (en) 2019-01-29
CN104620429A (zh) 2015-05-13
EP2897203A4 (en) 2016-06-01
US20150228982A1 (en) 2015-08-13
JPWO2014042080A1 (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
JP5765487B2 (ja) エネルギー貯蔵デバイス電極用複合集電体および電極
US20190312281A1 (en) Carbon nanotube-containing thin film
EP3550646B1 (en) Undercoat layer for energy storage device, and undercoat foil for energy storage device electrode
JP7110986B2 (ja) 導電性組成物
JP7359156B2 (ja) 活物質複合体形成用組成物、活物質複合体、および活物質複合体の製造方法
WO2019188545A1 (ja) 導電性薄膜形成用組成物
CN112956051A (zh) 活性物质复合材料形成用组合物、活性物质复合材料及其制造方法
EP3780191A1 (en) Undercoat foil for energy storage device electrode
EP3780159A1 (en) Composition for forming undercoat layer of energy storage device
EP3780158A1 (en) Energy storage device electrode and energy storage device
WO2019188547A1 (ja) 導電性薄膜形成用分散液
TW202005150A (zh) 能量儲藏裝置之底塗層形成用組成物
JP7318638B2 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JP7318637B2 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物
EP3783697A1 (en) Composition for forming undercoat layer of energy storage device
WO2019188541A1 (ja) エネルギー貯蔵デバイスのアンダーコート層

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535522

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14428074

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157009291

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013837911

Country of ref document: EP