WO2021172308A1 - エネルギー貯蔵デバイス電極用薄膜形成用組成物 - Google Patents

エネルギー貯蔵デバイス電極用薄膜形成用組成物 Download PDF

Info

Publication number
WO2021172308A1
WO2021172308A1 PCT/JP2021/006734 JP2021006734W WO2021172308A1 WO 2021172308 A1 WO2021172308 A1 WO 2021172308A1 JP 2021006734 W JP2021006734 W JP 2021006734W WO 2021172308 A1 WO2021172308 A1 WO 2021172308A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thin film
energy storage
storage device
polymer
Prior art date
Application number
PCT/JP2021/006734
Other languages
English (en)
French (fr)
Inventor
麻里 矢島
宅磨 長▲濱▼
高大 忰山
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to US17/802,771 priority Critical patent/US11670777B2/en
Priority to JP2022503627A priority patent/JPWO2021172308A1/ja
Priority to KR1020227032945A priority patent/KR20220149553A/ko
Publication of WO2021172308A1 publication Critical patent/WO2021172308A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C09D123/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C09D123/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composition for forming a thin film for an energy storage device electrode.
  • the development of high-performance batteries has been actively promoted in response to the demand for smaller size, lighter weight, and higher functionality of portable electronic devices such as smartphones, digital cameras, and portable game machines, and secondary batteries that can be used repeatedly by charging.
  • Demand is growing significantly.
  • the lithium ion secondary battery is currently the most vigorously developed secondary battery because it has a high energy density, a high voltage, and has no memory effect during charging / discharging.
  • the development of electric vehicles is being actively promoted, and higher performance is required for secondary batteries as a power source for the development of electric vehicles.
  • a positive electrode and a negative electrode capable of storing and discharging lithium and a separator interposed between them are housed in a container, and an electrolytic solution (liquid in the case of a lithium ion polymer secondary battery) is contained therein. It has a structure filled with a gel-like or all-solid-state electrolyte instead of an electrolytic solution.
  • a composition containing an active material capable of occluding and releasing lithium, a conductive material mainly composed of a carbon material, and a polymer binder is generally applied onto a current collector such as a copper foil or an aluminum foil.
  • a current collector such as a copper foil or an aluminum foil.
  • This binder is used to bond the active material to the conductive material, and further to the metal foil, and is soluble in N-methylpyrrolidone (NMP) such as polyvinylidene fluoride (PVdF), or an olefin-based weight.
  • NMP N-methylpyrrolidone
  • PVdF polyvinylidene fluoride
  • olefin-based weight Combined aqueous dispersions and the like are commercially available.
  • the adhesive strength of the above-mentioned binder to the current collector is not sufficient, and a part of the active material or the conductive material is peeled off or dropped from the current collector during the manufacturing process such as the electrode cutting process or the winding process. , It causes a minute short circuit and variation in battery capacity. Furthermore, with long-term use, the contact resistance between the electrode mixture and the current collector increases due to the swelling of the binder due to the electrolytic solution and the volume change of the electrode mixture due to the volume change due to occlusion and release of the active material. In addition, there is a problem that the battery capacity deteriorates due to a part of the active material or the conductive material peeling off or falling off from the current collector, and there is also a problem in terms of safety.
  • Patent Document 1 discloses a technique of arranging a conductive layer using carbon as a conductive filler as an undercoat layer between a current collector and an electrode mixture layer.
  • a composite current collector provided with an undercoat layer the contact resistance between the current collector and the electrode mixture layer can be reduced, the capacity reduction during high-speed discharge can be suppressed, and the battery can be deteriorated. It has been shown that it can be suppressed.
  • Patent Document 2 and Patent Document 3 also disclose similar techniques.
  • Patent Document 4 and Patent Document 5 disclose an undercoat layer using carbon nanotubes (hereinafter, also abbreviated as CNT) as a conductive filler.
  • CNT carbon nanotubes
  • the present invention has been made in view of such circumstances, and can be suitably used for forming a conductive thin film, and particularly in an energy storage device, the adhesion between the current collector and the electrode mixture layer can be improved. It is an object of the present invention to provide a composition for forming a thin film for an energy storage device electrode, which can provide an undercoat layer that can be improved and exerts an effect of lowering resistance and an effect of suppressing an increase in resistance.
  • a composition containing a conductive carbon material, a dispersant, a solvent and a polymer having a specific partial structure in a side chain is a current collector.
  • the present invention has been completed by finding that it is possible to provide an undercoat layer that improves the adhesion between the electrode mixture layer and exhibits the effect of lowering the resistance and the effect of suppressing the increase in resistance.
  • the present invention provides the following composition for forming a thin film for an energy storage device electrode.
  • a composition for forming a thin film for an energy storage device electrode which comprises a conductive carbon material, a dispersant, a solvent, and a polymer having a partial structure represented by the following formula (P1) in a side chain.
  • P1 a partial structure represented by the following formula (P1) in a side chain.
  • L represents -O- or -NH-
  • R represents an alkylene group having 1 to 20 carbon atoms
  • T represents a substituted or unsubstituted amino group
  • a nitrogen-containing hetero having 2 to 20 carbon atoms. It represents an aryl group or a nitrogen-containing aliphatic heterocyclic group having 2 to 20 carbon atoms, and * represents a bond.
  • the composition for forming a thin film for an energy storage device electrode wherein the partial structure represented by the formula (P1) is represented by any of the following formulas (P1-1) to (P1-3). (In the formula, L, T and * are the same as above.) 3. 3. 2. The composition for forming a thin film for an energy storage device electrode, wherein the partial structure represented by the formula (P1) is represented by any of the following formulas (P2-1) to (P2-3). (In the formula, * is the same as above.) 4. The composition for forming a thin film for an energy storage device electrode of 1.
  • the polymer is a polymer containing a repeating unit represented by the following formula (C1-1) or (C1-2).
  • R c1 and R c2 independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, R m represents a hydrogen atom or a methyl group, and n represents a natural number. , R, T and * are the same as above.
  • the dispersant contains a polymer having an oxazoline group in the side chain or a triarylamine-based highly branched polymer. 7.
  • a composite current collector for electrodes of an energy storage device comprising 8 undercoat layers.
  • An electrode for an energy storage device including a composite current collector for the electrode of the energy storage device.
  • An energy storage device comprising 10 electrodes for an energy storage device. 12. Eleven energy storage devices that are lithium-ion batteries.
  • the composition for forming a thin film for an energy storage device electrode of the present invention is suitable as a composition for forming an undercoat layer that joins a current collector constituting an electrode of an energy storage device and an electrode mixture layer.
  • an undercoat layer is formed on the current collector using the composition, the adhesion between the electrode mixture and the current collector can be improved, and the characteristics of the obtained battery can be improved. Can be done.
  • composition for forming a thin film for an energy storage device electrode (hereinafter, simply referred to as a composition) according to the present invention has a partial structure represented by the following formula (P1) in a conductive carbon material, a dispersant, a solvent and a side chain. It is characterized by containing a polymer (hereinafter, may be referred to as a P1 polymer).
  • L represents -O- or -NH-
  • R represents an alkylene group having 1 to 20 carbon atoms
  • T represents a substituted or unsubstituted amino group
  • a nitrogen-containing heteroaryl having 2 to 20 carbon atoms Represents a group or a nitrogen-containing aliphatic heterocyclic group having 2 to 20 carbon atoms. * Represents a bond.
  • the alkylene group having 1 to 20 carbon atoms may be linear, branched or cyclic, and may be, for example, a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentylene group or a hexylene group.
  • Examples thereof include a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group, a pentadecylene group, a hexadecylene group, a heptadecylene group, an octadecylene group, a nonadesilene group and an eikosanylene group.
  • an alkylene group having 1 to 10 carbon atoms is preferable, an alkylene group having 1 to 8 carbon atoms is more preferable, and an alkylene group having 1 to 3 carbon atoms is even more preferable.
  • the group represented by the following (A1) is preferable.
  • R a1 and R a2 independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a phenyl group. * Is the same as above.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and may be, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group or s.
  • Chain alkyl group cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group, bicyclooctyl Examples thereof include a cyclic alkyl group having 3 to 20 carbon atoms such as a group, a bicyclononyl group and a bicyclodecyl group.
  • R a1 and R a2 are preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or a phenyl group, more preferably a hydrogen atom, an alkyl group or a phenyl group having 1 to 5 carbon atoms, and even more preferably a methyl group. Further, R a1 and R a2 may be the same or different from each other, but it is more preferable that they are the same group.
  • nitrogen-containing heteroaryl group having 2 to 20 carbon atoms examples include 1-imidazolyl group, 2-imidazolyl group, 4-imidazolyl group, 1-pyridyl group, 2-pyridyl group, 3-pyridyl group and 4-pyridyl group.
  • Examples of the nitrogen-containing aliphatic heterocyclic group having 2 to 20 carbon atoms include a group having an aziridine ring, a group having an azetidine ring, a group having a pyrrolidine ring, a group having a piperidine ring, and a group having a hexamethyleneimine ring. Examples thereof include a group having an imidazolidine ring, a group having a piperazine ring, and a group having a pyrazolidine ring.
  • nitrogen-containing aliphatic heterocyclic group examples include aziridine-1-yl group, aziridine-2-yl group, azetidine-1-yl group, azetidine-2-yl group, azetidine-3-yl group, and pyrrolidine.
  • Preferred embodiments of the partial structure represented by the formula (P1) include, but are not limited to, those represented by the following formulas (P1-1) to (P1-3).
  • partial structure represented by the formula (P1) include, but are not limited to, those represented by the following formulas (P2-1) to (P2-3).
  • the partial structure represented by the above (P1) may be directly bonded to the main chain of the polymer or may be bonded via a spacer group such as an alkylene group, but may be directly bonded to the main chain of the polymer. It is preferable to have.
  • Examples of the above-mentioned P1 polymer include, but are not limited to, a polymer containing a repeating unit represented by the following formula (C1-1) or (C1-2).
  • R c1 and R c2 independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, R m represents a hydrogen atom or a methyl group, and n represents a natural number. , R, T and * are the same as above.
  • Examples of the alkyl group having 1 to 20 carbon atoms include the same alkyl groups as those exemplified in the above description of R c1 and R c2.
  • R c1 and R c2 are preferably a hydrogen atom and an alkyl group having 1 to 10 carbon atoms, more preferably a hydrogen atom and an alkyl group having 1 to 5 carbon atoms, and even more preferably a methyl group.
  • the R c1 and R c2 may be the same or different from each other, but it is more preferable that they are the same group.
  • Preferred embodiments of the P1 polymer include, but are not limited to, repeating units represented by the following formulas (C2-1) to (C2-6).
  • P1 polymer examples include, but are not limited to, those containing repeating units represented by the following formulas (C3-1) to (C3-3).
  • the average molecular weight of the P1 polymer is not particularly limited, but the weight average molecular weight (Mw) is preferably 1,000 to 2,000,000, more preferably 2,000 to 1,000,000.
  • the weight average molecular weight is a value converted to sodium polystyrene sulfonate by gel permeation chromatography.
  • the P1 polymer preferably contains the side chain represented by the formula (P1) in 10 to 100 mol% of all repeating units from the viewpoint of obtaining a thin film having high adhesion with good reproducibility. 30 to 100 mol% is more preferable, and 50 to 100 mol% is even more preferable.
  • the P1 polymer contains a repeating unit for imparting another function as a repeating unit other than the repeating unit represented by the formula (P1) as long as the effect of the present invention is not impaired. May be good.
  • a repeating unit include a repeating unit having a cross-linking reactive group that causes a cross-linking reaction with a dispersant, and preferably a repeating unit represented by the following formula (P3).
  • R d represents a cross-linking reactive group.
  • R m , n and * are the same as above.
  • R d examples include a carboxy group, an aromatic thiol group, a phenol group and the like, but a carboxy group is preferable.
  • the content thereof is preferably 10 to 70 mol%, more preferably 20 to 70 mol%, and more preferably 30 to 70 mol% in all the repeating units. More preferred.
  • the repeating unit represented by the following formula (D1) As a repeating unit other than the repeating unit represented by yet another formula (P1), in the polymer containing the repeating unit represented by the formula (C1-1), for example, the repeating unit represented by the following formula (D1). The unit is mentioned.
  • the polymer may partially contain a repeating unit represented by the formula (C1-1') described later as an unreacted site of a copolymer of isobutylene and maleic anhydride, which are raw materials thereof. ..
  • the repeating unit represented by the following formula (D2) can be mentioned.
  • the amount of the P1 polymer added varies depending on the solvent used, the base material used, the required viscosity, the required film shape, and the like, but is preferably 10 to 1 with respect to 100 parts by mass of the conductive carbon material described later. It is 000 parts by mass, more preferably 30 to 800 parts by mass, and even more preferably 40 to 500 parts by mass.
  • the P1 polymer is a method of polymerizing a monomer obtained by reacting a compound having a carboxy group or an acid anhydride group (monomer raw material) with a compound represented by the following formula (Q1), or a carboxy group or acid in a side chain. It can be obtained by reacting a polymer having an anhydride group with a compound represented by the following formula (Q1).
  • L' represents an amino group or a hydroxy group.
  • R and T are the same as above.
  • Preferred embodiments of the compound represented by the formula (Q1) include, but are not limited to, those represented by the following formulas (Q1-1) to (Q1-3).
  • Specific examples of the compound represented by the formula (Q1) include 1- (3-aminopropyl) imidazole, 1- (3-hydroxypropyl) imidazole, N, N-dimethyl-1,3-propanediamine, and the like. Examples include N, N-dimethylethanolamine.
  • Examples of the monomer raw material include maleic anhydride and (meth) acrylic acid.
  • Examples of the polymer having a carboxy group or an acid anhydride group in the side chain include a polymer of maleic anhydride, a copolymer of an alkene having 2 to 10 carbon atoms such as isobutylene and maleic anhydride, and (meth) acrylic acid.
  • a copolymer of isobutylene and maleic anhydride represented by the following formula (C1-1') and a polymer of (meth) acrylic acid represented by the following formula (C1-2') are used. preferable.
  • the solvent used in the above reaction is not particularly limited as long as it can disperse or dissolve the raw materials used.
  • examples of such a solvent include dimethylsulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), hexamethylphosphate triamide, acetonitrile, acetone, alcohols ( Methanol, ethanol, 1-propanol, 2-propanol, etc.), glycols (ethylene glycol, triethylene glycol, etc.), cellosolves (ethylcellosolve, methylcellosolve, etc.), polyhydric alcohols (glycerin, pentaerythritol, etc.), tetrahydrofuran , Toluene, ethyl acetate, butyl acetate, benzene, toluene, xylene, pentane, hexane, heptane, chloro
  • N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-2-pyrrolidone are preferable from the viewpoint of reaction temperature and reaction concentration.
  • These solvents may be appropriately selected depending on the raw materials used.
  • the solvent may be used alone or in combination of two or more.
  • the compounding ratio of the polymer (C1-1') and N, N-dimethyl-1,3-propanediamine was such that all the acid anhydride groups in the polymer (C1-1') were N, N-dimethyl. It is preferable that the amount of -1,3-propanediamine can be reacted, and 1 to 3 mol of N, N-dimethyl-1,3-propanediamine is added to 1 mol of the repeating unit of the polymer (C1-1'). It is preferably 1 to 2 mol, and more preferably 1 to 2 mol.
  • the reaction temperature of the above reaction is usually 40 to 200 ° C.
  • the reaction time is variously selected depending on the reaction temperature, but is usually about 30 minutes to 50 hours.
  • the obtained polymer may be used as it is, or diluted or concentrated, or the polymer may be isolated by an appropriate means and then dissolved in an appropriate solvent before use.
  • the solvent include the above-mentioned solvents.
  • a monomer (C3-3') is synthesized by esterifying (meth) acrylic acid and N, N-dimethylethanolamine (first step). Then, by polymerizing the obtained monomer (C3-3') in a solution (second step), a polymer containing a repeating unit represented by the formula (C3-3) can be synthesized. If a commercially available product can be obtained as the above-mentioned monomer (C3-3'), the commercially available product may be used as it is and carried out from the second stage.
  • the solvent used in the first step reaction is not particularly limited as long as it can disperse or dissolve the raw materials used.
  • examples of such a solvent include the same solvents as those mentioned in Scheme 1 above, and may be appropriately selected depending on the raw materials used.
  • the solvent may be used alone or in combination of two or more.
  • an acid or a base can be used as a catalyst.
  • specific examples include inorganic acids such as hydrochloric acid, sulfuric acid, nitrate and phosphoric acid; organic carboxylic acids such as acetic acid, propionic acid, phthalic acid and benzoic acid; methylsulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid and trifluoromethane.
  • Organic sulfonic acids such as sulfonic acid; hydroxide of alkali metal or alkaline earth metal such as sodium hydroxide, potassium hydroxide, magnesium hydroxide; alkali metal or alkaline soil such as sodium hydrogen carbonate, potassium carbonate, calcium hydrogen carbonate Examples thereof include carbonates and hydrogen carbonates of similar metals.
  • the monomer (C3-3') obtained in the first step is polymerized in a solvent.
  • the polymerization method is not particularly limited, and can be appropriately selected from the polymerization methods usually used in the polymerization of acrylic polymers. Examples of the polymerization method include a solution polymerization method, an emulsion polymerization method, and a suspension polymerization method. Moreover, you may use an initiator at the time of polymerization.
  • the obtained polymer may be used as it is, or diluted or concentrated, or the polymer may be isolated by an appropriate means and then dissolved in an appropriate solvent before use.
  • the solvent include the above-mentioned solvents.
  • the conductive carbon material is not particularly limited, and is known as a conductive carbon material such as carbon black, Ketjen black, acetylene black, carbon whisker, carbon nanotube (CNT), carbon fiber, natural graphite, and artificial graphite. Although it can be appropriately selected and used from the above, CNT is particularly preferable from the viewpoint of conductivity, dispersibility, availability and the like.
  • the CNTs are generally produced by an arc discharge method, a chemical vapor deposition method (CVD method), a laser ablation method, or the like, but the CNTs used in the present invention may be obtained by any method. .. Further, the CNT has a single-walled CNT in which one carbon film (graphene sheet) is wound in a cylindrical shape (hereinafter, also abbreviated as SWCNT) and two layers in which two graphene sheets are wound concentrically. There are CNTs (hereinafter, also abbreviated as DWCNTs) and multi-walled CNTs (MWCNTs) in which a plurality of graphene sheets are wound concentrically. In the present invention, SWCNTs, DWCNTs, and MWCNTs are used alone or in plurality. Can be used in combination.
  • SWCNTs, DWCNTs, and MWCNTs are used alone or in plurality. Can be used in combination.
  • the dispersant can be appropriately selected from those conventionally used as dispersants for conductive carbon materials such as CNT, and for example, carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), acrylic resin emulsion, and water-soluble.
  • CMC carboxymethyl cellulose
  • PVP polyvinylpyrrolidone
  • Acrylic resin emulsion and water-soluble.
  • Sexual acrylic polymer styrene emulsion, silicon emulsion, acrylic silicon emulsion, fluororesin emulsion, EVA emulsion, vinyl acetate emulsion, vinyl chloride emulsion, urethane resin emulsion, Triarylamine-based highly branched polymer according to International Publication No. 2014/042080.
  • a dispersant containing a polymer having an oxazoline group in the side chain described in International Publication No. 2015/0299949 it is preferable to use a dispersant containing the triarylamine-based highly branched polymer described in International Publication No. 2014/042080.
  • the polymer having an oxazoline group in the side chain (hereinafter referred to as oxazoline polymer) is obtained by radically polymerizing an oxazoline monomer having a polymerizable carbon-carbon double bond-containing group at the 2-position as shown in the formula (1).
  • the above X represents a polymerizable carbon-carbon double bond-containing group, and R 1 to R 4 independently have a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms, and 6 to 20 carbon atoms. It represents an aryl group or an aralkyl group having 7 to 20 carbon atoms.
  • the polymerizable carbon-carbon double bond-containing group contained in the oxazoline monomer is not particularly limited as long as it contains a polymerizable carbon-carbon double bond, but is a chain containing a polymerizable carbon-carbon double bond.
  • a state hydrocarbon group is preferable, and for example, an alkenyl group having 2 to 8 carbon atoms such as a vinyl group, an allyl group, and an isopropenyl group is preferable.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkyl group having 1 to 5 carbon atoms may be linear, branched or cyclic, and may be, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group or a sec-butyl group. , Tert-Butyl group, n-pentyl group, cyclohexyl group and the like.
  • Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, a xsilyl group, a trill group, a biphenyl group, and a naphthyl group.
  • Examples of the aralkyl group having 7 to 20 carbon atoms include a benzyl group, a phenylethyl group and a phenylcyclohexyl group.
  • Examples of the oxazoline monomer having a polymerizable carbon-carbon double bond-containing group at the 2-position represented by the formula (1) include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, and 2-vinyl.
  • the oxazoline polymer is also water-soluble.
  • a water-soluble oxazoline polymer may be a homopolymer of the oxazoline monomer represented by the above formula (1), but has a hydrophilic functional group with the above oxazoline monomer in order to further enhance the solubility in water (meth).
  • Examples of the (meth) acrylic monomer having a hydrophilic functional group include (meth) acrylic acid, 2-hydroxyethyl acrylate, methoxypolyethylene glycol acrylate, a monoesterified product of acrylate and polyethylene glycol, and 2-amino acrylate.
  • Ethyl and its salts 2-hydroxyethyl methacrylate, methoxypolyethylene glycol methacrylate, monoesteride of methacrylic acid and polyethylene glycol, 2-aminoethyl methacrylate and its salts, sodium (meth) acrylate, (meth) acrylic
  • acrylic examples thereof include ammonium acid, (meth) acrylic nitrile, (meth) acrylamide, N-methylol (meth) acrylamide, N- (2-hydroxyethyl) (meth) acrylamide, sodium styrene sulfonate, etc., which are used alone. Alternatively, two or more types may be used in combination. Among these, methoxypolyethylene glycol (meth) acrylic acid and a monoesterified product of (meth) acrylic acid and polyethylene glycol are preferable.
  • oxazoline monomer and other monomers other than the (meth) acrylic monomer having a hydrophilic functional group can be used in combination as long as the CNT dispersibility of the oxazoline polymer is not adversely affected.
  • Other monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, and perfluoro (meth) acrylate.
  • (Meta) acrylic acid ester monomers such as ethyl and phenyl (meth) acrylate; olefin monomers such as ethylene, propylene, butene and penten; haloolefin monomers such as vinyl chloride, vinylidene chloride and vinyl fluoride; styrene, ⁇ -Styrene-based monomers such as methylstyrene; carboxylic acid vinyl ester-based monomers such as vinyl acetate and vinyl propionate; vinyl ether-based monomers such as methylvinyl ether and ethyl vinyl ether, etc.
  • the above may be used in combination.
  • the content of the oxazoline monomer is preferably 10% by mass or more, more preferably 20% by mass or more, from the viewpoint of further enhancing the CNT dispersibility of the obtained oxazoline polymer. It is preferable, and 30% by mass or more is even more preferable.
  • the upper limit of the content of the oxazoline monomer in the monomer component is 100% by mass, and in this case, a homopolymer of the oxazoline monomer can be obtained.
  • the content of the (meth) acrylic monomer having a hydrophilic functional group in the monomer component is preferably 10% by mass or more, more preferably 20% by mass or more, from the viewpoint of further increasing the water solubility of the obtained oxazoline polymer. , 30% by mass or more is even more preferable.
  • the content of other monomers in the monomer component is in a range that does not affect the CNT dispersibility of the obtained oxazoline polymer, and it cannot be unconditionally determined because it differs depending on the type. It may be appropriately set in the range of preferably 5 to 95% by mass, more preferably 10 to 90% by mass.
  • the average molecular weight of the oxazoline polymer is not particularly limited, but the weight average molecular weight is preferably 1,000 to 2,000,000, more preferably 2,000 to 1,000,000.
  • the weight average molecular weight is a polystyrene-equivalent value obtained by gel permeation chromatography.
  • the oxazoline polymer that can be used in the present invention can be synthesized by synthesizing the above-mentioned monomer by a conventionally known radical polymerization, but it can also be obtained as a commercially available product.
  • commercially available products include Epocross WS-300 (manufactured by Nippon Catalyst Co., Ltd., solid content concentration 10% by mass, aqueous solution) and Epocross WS-700 (manufactured by Nippon Catalyst Co., Ltd., solid content concentration 25% by mass).
  • a triarylamine-based highly branched polymer obtained by condensation polymerization of triarylamines and aldehydes and / or ketones represented by the following formulas (2) and (3) under acidic conditions is also suitable. Used for.
  • Ar 1 to Ar 3 independently represent any of the divalent organic groups represented by the formulas (4) to (8), and in particular, the formulas.
  • the substituted or unsubstituted phenylene group represented by (4) is preferable.
  • Z 1 and Z 2 are independently hydrogen atoms, linear or branched alkyl groups having 1 to 5 carbon atoms, or formulas (9) to (9) to ( It represents any monovalent organic group represented by 12) (however, Z 1 and Z 2 do not simultaneously become the above alkyl group).
  • R 101 to R 138 independently have a hydrogen atom, a halogen atom, a linear or branched alkyl group having 1 to 5 carbon atoms, and 1 to 5 carbon atoms. Represents a linear or branched alkoxy group, or a carboxyl group, a sulfo group, a phosphoric acid group, a phosphonic acid group, or a salt thereof.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the linear or branched alkyl group having 1 to 5 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and an n-pentyl group. Group etc. can be mentioned.
  • linear or branched alkoxy group having 1 to 5 carbon atoms examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group and an n-. Pentoxy groups and the like can be mentioned.
  • salts of carboxyl group, sulfo group, phosphoric acid group and phosphonic acid group include alkali metal salts such as sodium and potassium; Group 2 metal salts such as magnesium and calcium; ammonium salts; propylamine, dimethylamine, triethylamine, ethylenediamine and the like.
  • alkali metal salts such as sodium and potassium
  • Group 2 metal salts such as magnesium and calcium
  • ammonium salts propylamine, dimethylamine, triethylamine, ethylenediamine and the like.
  • Alicyclic amine salts such as imidazoline, piperazine and morpholin; aromatic amine salts such as aniline and diphenylamine; pyridinium salts and the like.
  • R 139 to R 162 are independently hydrogen atom, halogen atom, linear or branched alkyl group having 1 to 5 carbon atoms, and 1 to 5 carbon atoms.
  • Linear or branched haloalkyl group, phenyl group, OR 163 , COR 163 , NR 163 R 164 , COOR 165 In these formulas, R 163 and R 164 are independent hydrogen atoms and carbon atoms, respectively.
  • R 165 is a linear or branched alkyl group having 1 to 5 carbon atoms.
  • R 165 represents a linear or branched alkyl group having 1 to 5 carbon atoms.
  • linear or branched haloalkyl group having 1 to 5 carbon atoms a difluoromethyl group, a trifluoromethyl group, a bromodifluoromethyl group, a 2-chloroethyl group, a 2-bromoethyl group, and 1,1-difluoro Ethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2-tetrafluoroethyl group, 2-chloro-1,1,2-trifluoroethyl group, pentafluoroethyl group, 3-bromo Propyl group, 2,2,3,3-tetrafluoropropyl group, 1,1,2,3,3,3-hexafluoropropyl group, 1,1,1,3,3,3-hexafluoropropane-2 -Il group, 3-bromo-2-methylpropyl group, 4-bromobutyl group, perfluoropentyl group and the like can be mentioned. Examples
  • Z 1 and Z 2 independent hydrogen atoms, 2- or 3-thienyl groups, and groups represented by the formula (9) are preferable, and in particular, either Z 1 or Z 2 is a hydrogen atom.
  • a hydrogen atom, a 2- or 3-thienyl group, a group represented by the formula (9), particularly one in which R 141 is a phenyl group or one in which R 141 is a methoxy group is more preferable.
  • R 141 is a phenyl group
  • an acidic group may be introduced on the phenyl group when the method of introducing the acidic group after polymer production is used in the acidic group introduction method described later.
  • the highly branched polymer has a carboxyl group, which is contained in at least one aromatic ring of the repeating unit represented by the formula (2) or (3).
  • Those having at least one acidic group selected from a sulfo group, a phosphoric acid group, a phosphonic acid group, and a salt thereof are preferable, and those having a sulfo group or a salt thereof are more preferable.
  • aldehyde compound used in the production of the highly branched polymer examples include formaldehyde, paraformaldehyde, acetaldehyde, propyl aldehyde, butyl aldehyde, isobutyl aldehyde, barrel aldehyde, capron aldehyde, 2-methyl butyl aldehyde, hexyl aldehyde, undecyl aldehyde, and 7 -Saturated aliphatic aldehydes such as methoxy-3,7-dimethyloctyl aldehyde, cyclohexanecarboxyaldehyde, 3-methyl-2-butyl aldehyde, glioxal, malon aldehyde, succin aldehyde, glutal aldehyde, adipine aldehyde; Unsaturated aliphatic aldehydes such as; heterocyclic aldehydes such as
  • the ketone compounds used in the production of the highly branched polymer include alkylaryl ketones and diaryl ketones.
  • alkylaryl ketones For example, acetophenone, propiophenone, diphenyl ketone, phenylnaphthyl ketone, dinaphthyl ketone, phenyltril ketone and ditril ketone. And so on.
  • the highly branched polymer used in the present invention can be produced, for example, according to the method described in International Publication No. 2014/042080.
  • the average molecular weight of the highly branched polymer is not particularly limited, but the weight average molecular weight is preferably 1,000 to 2,000,000, more preferably 2,000 to 1,000,000.
  • highly branched polymer examples include those represented by the following formulas, but are not limited thereto.
  • the mixing ratio of CNT and the dispersant can be about 1,000: 1 to 1: 100 in terms of mass ratio.
  • the amount of the dispersant added is not particularly limited as long as it can disperse the CNTs in the solvent, but is preferably 5 to 700 parts by mass, more preferably 10 to 10 parts by mass with respect to 100 parts by mass of the conductive carbon material. It is 500 parts by mass, more preferably 20 to 300 parts by mass.
  • composition of the present invention may contain a cross-linking agent that causes a cross-linking reaction with the dispersant used and a cross-linking agent that self-crosslinks, as long as the effects of the present invention are not impaired.
  • cross-linking agents are preferably dissolved in the solvent used.
  • cross-linking agent for the triarylamine-based highly branched polymer examples include melamine-based, substituted urea-based, and polymer-based cross-linking agents thereof, and these cross-linking agents may be used alone or in admixture of two or more. Can be used. It should be noted that preferably, it is a cross-linking agent having at least two cross-linking substituents, and is CYMEL (registered trademark), methoxymethylated glycol uryl, butoxymethylated glycol uryl, methylolated glycol uril, methoxymethylated melamine, butoxymethyl.
  • CYMEL registered trademark
  • Examples include compounds such as urea and condensates of these compounds.
  • the cross-linking agent for the oxazoline polymer is particularly limited as long as it is a compound having two or more functional groups reactive with the oxazoline group such as a carboxyl group, a hydroxyl group, a thiol group, an amino group, a sulfic acid group and an epoxy group.
  • a compound having two or more carboxyl groups is preferable.
  • compounds having a functional group such as a sodium salt, a potassium salt, a lithium salt, or an ammonium salt of a carboxylic acid, which causes a cross-linking reaction due to the above-mentioned functional group being generated in the presence of an acid catalyst or heating during thin film formation, are also cross-linked. It can be used as an agent.
  • compounds that cause a cross-linking reaction with an oxazoline group include synthetic polymers such as polyacrylic acid and its copolymers that exhibit cross-linking reactivity in the presence of an acid catalyst, and metal salts of natural polymers such as carboxymethyl cellulose and alginic acid.
  • synthetic polymers such as polyacrylic acid and its copolymers that exhibit cross-linking reactivity in the presence of an acid catalyst
  • metal salts of natural polymers such as carboxymethyl cellulose and alginic acid.
  • ammonium salts of the above synthetic polymers and natural polymers that exhibit cross-linking reactivity by heating include ammonium salts of the above synthetic polymers and natural polymers that exhibit cross-linking reactivity by heating.
  • sodium polyacrylate that exhibits cross-linking reactivity in the presence of an acid catalyst or under heating conditions Lithium polyacrylate, ammonium polyacrylate, sodium carboxymethyl cellulose, lithium carboxymethyl cellulose, ammonium carboxymethyl cellulose and the like are preferable
  • a compound that causes a cross-linking reaction with such an oxazoline group can also be obtained as a commercially available product.
  • a commercially available product for example, sodium polyacrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., degree of polymerization 2) , 700-7,500), sodium carboxymethyl cellulose (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), sodium alginate (manufactured by Kanto Kagaku Co., Ltd., first grade deer), Aron A-30 (ammonium polyacrylate, Toa Synthetic) Examples thereof include, manufactured by Co., Ltd., solid content concentration of 32% by mass, aqueous solution), DN-800H (carboxymethyl cellulose ammonium, manufactured by Daicel Finechem Co., Ltd.) and ammonium alginate (manufactured by Kimika Co., Ltd.).
  • Examples of the self-crosslinking agent include an aldehyde group for a hydroxyl group, an epoxy group, a vinyl group, an isocyanate group, an alkoxy group, and a carboxyl group for an aldehyde group, an amino group, an isocyanate group, an epoxy group, and an amino group.
  • Compounds that have cross-reactive functional groups that react with each other in the same molecule such as isocyanate groups and aldehyde groups, hydroxyl groups that react with the same cross-functional functional groups (dehydration condensation), mercapto groups (disulfide bonds), Examples thereof include compounds having an ester group (Kreisen condensation), a silanol group (dehydration condensation), a vinyl group, an acrylic group and the like.
  • the self-crosslinking cross-linking agent include a polyfunctional acrylate, a tetraalkoxysilane, a monomer having a blocked isocyanate group, and at least one of a hydroxyl group, a carboxylic acid, and an amino group, which exhibit cross-linking reactivity in the presence of an acid catalyst.
  • examples thereof include block copolymers of monomers having.
  • Such a self-crosslinking cross-linking agent can also be obtained as a commercially available product, and as such a commercially available product, for example, in the case of polyfunctional acrylate, A-9300 (ethoxylated isocyanuric acid triacrylate, Shin-Nakamura Chemical Industry Co., Ltd.
  • the amount of the cross-linking agent added varies depending on the solvent used, the base material used, the required viscosity, the required film shape, etc., but is preferably 5 with respect to 100 parts by mass of the conductive carbon material. It is ⁇ 1,000 parts by mass, more preferably 10 to 800 parts by mass, and even more preferably 20 to 500 parts by mass.
  • These cross-linking agents may cause a cross-linking reaction by self-condensation, but they cause a cross-linking reaction with the dispersant, and if cross-linking substituents are present in the dispersant, the cross-linking reaction is carried out by those cross-linking substituents. Is promoted.
  • the solvent used for preparing the composition of the present invention is not particularly limited, and examples thereof include water and a hydrophilic solvent.
  • the hydrophilic solvent is an organic solvent that is optionally mixed with water, for example, ethers such as tetrahydrofuran (THF); N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl.
  • Amides such as -2-pyrrolidone (NMP); ketones such as acetone; alcohols such as methanol, ethanol, n-propanol and isopropanol; glycols such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether and propylene glycol monomethyl ether.
  • Organic solvents such as glycols such as ethylene glycol and propylene glycol can be mentioned. These solvents can be used alone or in admixture of two or more. In particular, water, NMP, DMF, THF, methanol, ethanol, n-propanol, isopropanol, n-butanol, and t-butanol are preferable from the viewpoint that the ratio of isolated dispersion of CNT can be improved. Further, it is preferable to contain methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol and ethylene glycol monobutyl ether from the viewpoint of improving coatability. In addition, it is preferable to contain water from the viewpoint that the cost can be reduced. These solvents may be used alone or in admixture of two or more for the purpose of increasing the proportion of isolated dispersion, increasing the coatability, and reducing the cost.
  • a polymer serving as a matrix may be added to the composition of the present invention.
  • the matrix polymer include polyvinylidene fluoride (PVdF), polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer [P (VDF-HFP)], and foot.
  • Fluorine-based resins such as vinylidene chloride-ethylene trifluoride copolymer [P (VDF-CTFE)]; polyvinylpyrrolidone, ethylene-propylene-diene ternary copolymer, PE (polyethylene), PP (polypropylene), EVA (Ethethylene-vinyl acetate copolymer), EEA (ethylene-ethyl acrylate copolymer) and other polyolefin resins; PS (polystyrene), HIPS (high impact polystyrene), AS (acrylonitrile-styrene copolymer), ABS Polystyrene resins such as (acrylonitrile-butadiene-styrene copolymer), MS (methyl methacrylate-styrene copolymer), styrene-butadiene rubber; polycarbonate resin; vinyl chloride resin; polyamide resin; polyimide resin; sodium polyacrylate , (Meta
  • the matrix polymer is also water-soluble, for example, sodium polyacrylate, sodium carboxymethyl cellulose, water-soluble.
  • the matrix polymer is also water-soluble, for example, sodium polyacrylate, sodium carboxymethyl cellulose, water-soluble.
  • examples thereof include sex cellulose ether, sodium alginate, polyvinyl alcohol, polystyrene sulfonic acid, polyethylene glycol and the like, and sodium polyacrylate, sodium carboxymethyl cellulose and the like are particularly preferable.
  • the matrix polymer can also be obtained as a commercially available product, and such commercially available products include, for example, sodium polyacrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., degree of polymerization 2,700 to 7,500), carboxy.
  • the amount of the matrix polymer added is not particularly limited, but is preferably about 0.0001 to 99% by mass, preferably about 0.001 to 90% by mass in the composition. Is more preferable.
  • the method for preparing the composition of the present invention is not particularly limited, but a dispersion liquid is prepared by mixing CNT, a dispersant, a solvent and a P1 polymer, a matrix polymer used as necessary, and the like in any order. It may be prepared.
  • the P1 polymer has a cross-linking reactive group such as a carboxy group and there is a concern that an unintended cross-linking reaction may occur between the cross-linking reactive group and the dispersant, the above-mentioned cross-linking reactivity Part or all of the groups may be neutralized with a base such as ammonia. Further, it is preferable to disperse the mixture, and this treatment can further improve the dispersion ratio of CNTs.
  • dispersion treatment examples include wet treatment using a ball mill, bead mill, jet mill, etc., which is a mechanical treatment, and ultrasonic treatment using a bath type or probe type sonicator. In particular, wet treatment using a jet mill. And ultrasonic treatment are suitable.
  • the time of the dispersion treatment is arbitrary, but it is preferably about 1 minute to 10 hours, more preferably about 5 minutes to 5 hours. At this time, heat treatment may be performed if necessary.
  • any component such as a matrix polymer may be added after preparing a mixture consisting of CNT, a dispersant and a solvent.
  • the solid content concentration of the composition is not particularly limited, but is preferably 20% by mass or less, preferably 15% by mass, in consideration of forming the undercoat layer with a desired basis weight and film thickness.
  • the following is more preferable, 10% by mass or less is further preferable, and 5% by mass or less is further preferable.
  • the lower limit thereof is arbitrary, but from a practical point of view, 0.1% by mass or more is preferable, 0.5% by mass or more is more preferable, and 1% by mass or more is even more preferable.
  • the solid content is the total amount of components other than the solvent constituting the composition.
  • composition described above can be applied to at least one surface of the current collector and naturally or heat-dried to form an undercoat layer to prepare an undercoat foil (composite current collector).
  • a current collector conventionally used as an electrode for an energy storage device can be used.
  • copper, aluminum, titanium, stainless steel, nickel, gold, silver and alloys thereof, carbon materials, metal oxides, conductive polymers and the like can be used, but welding such as ultrasonic welding is applied.
  • a metal foil made of copper, aluminum, titanium, stainless steel or an alloy thereof.
  • the thickness of the current collector is not particularly limited, but in the present invention, it is preferably 1 to 100 ⁇ m.
  • Examples of the coating method of the composition include spin coating method, dip coating method, flow coating method, inkjet method, casting method, spray coating method, bar coating method, gravure coating method, slit coating method, roll coating method, and flexo printing.
  • Examples include the method, transfer printing method, brush coating, blade coating method, air knife coating method, die coating method, etc., but from the viewpoint of work efficiency, the inkjet method, casting method, dip coating method, bar coating method, blade coating method, etc. , Roll coating method, gravure coating method, flexo printing method, spray coating method, and die coating method are preferable.
  • the temperature at the time of heating and drying is also arbitrary, but is preferably about 50 to 200 ° C, more preferably about 80 to 150 ° C.
  • the thickness of the undercoat layer is preferably 1 nm to 10 ⁇ m, more preferably 1 nm to 1 ⁇ m, and even more preferably 1 to 500 nm, in consideration of reducing the internal resistance of the obtained device.
  • the thickness of the undercoat layer can be determined by, for example, cutting a test piece of an appropriate size from the undercoat foil, exposing the cross section by a method such as tearing it by hand, and observing with a microscope such as a scanning electron microscope (SEM). It can be obtained from the portion where the undercoat layer is exposed in the cross-sectional portion.
  • Basis weight of the undercoat layer per one surface of the current collector is not particularly limited as long as it satisfies the above thickness is preferably 1,000 mg / m 2 or less, more preferably 500 mg / m 2, 300 mg / M 2 or less is even more preferable, and 200 / m 2 or less is even more preferable.
  • the basis weight of the undercoat layer per surface of the current collector is preferably 1 mg / m 2 or more, more preferably 5 mg / m /. It is m 2 or more, more preferably 10 mg / m 2 or more, still more preferably 15 mg / m 2 or more.
  • the amount of the undercoat layer is the ratio of the mass (mg) of the undercoat layer to the area (m 2 ) of the undercoat layer.
  • the area is undercoat. It is the area of only the coat layer, and does not include the area of the current collector exposed between the undercoat layers formed in a pattern.
  • the mass of the undercoat layer for example, a test piece having an appropriate size is cut out from the undercoat foil, the mass W0 thereof is measured, then the undercoat layer is peeled from the undercoat foil, and the undercoat layer is peeled off.
  • the mass W1 of the undercoat layer is measured and calculated from the difference (W0-W1), or the mass W2 of the current collector is measured in advance and then the mass W3 of the undercoat foil on which the undercoat layer is formed is measured. , It can be calculated from the difference (W3-W2).
  • Examples of the method of peeling the undercoat layer include a method of immersing the undercoat layer in a solvent in which the undercoat layer dissolves or swells, and wiping the undercoat layer with a cloth or the like.
  • the basis weight and film thickness can be adjusted by a known method.
  • the solid content concentration of the coating liquid (composition for forming the undercoat layer) for forming the undercoat layer, the number of coatings, and the coating liquid inlet of the coating machine It can be adjusted by changing the clearance etc. If you want to increase the basis weight and film thickness, increase the solid content concentration, increase the number of applications, and increase the clearance. If you want to reduce the basis weight and film thickness, lower the solid content concentration, reduce the number of coatings, and reduce the clearance.
  • the electrode for an energy storage device of the present invention can be produced by forming an electrode mixture layer on the undercoat layer.
  • the energy storage device in the present invention include various energy storage devices such as electric double layer capacitors, lithium secondary batteries, lithium ion secondary batteries, proton polymer batteries, nickel hydrogen batteries, aluminum solid capacitors, electrolytic capacitors, and lead storage batteries.
  • the undercoat foil of the present invention can be particularly preferably used for electric double layer capacitors and lithium ion secondary batteries.
  • the electrode mixture layer can be formed by applying an electrode slurry prepared by combining an active material, a binder polymer and, if necessary, a solvent on the undercoat layer, and naturally or by heating and drying.
  • the active material various active materials conventionally used for electrodes for energy storage devices can be used.
  • a chalcogen compound or a lithium ion-containing interchalcogen compound, a polyanion compound, a simple substance of sulfur and its compound, etc. which can adsorb and desorb lithium ions as a positive electrode active material. can.
  • Examples of the chalcogen compound capable of adsorbing and removing such lithium ions include FeS 2 , TiS 2 , MoS 2 , V 2 O 6 , V 6 O 13 , Mn O 2, and the like.
  • Examples of the lithium ion-containing chalcogen compounds e.g., LiCoO 2, LiMnO 2, LiMn 2 O 4, LiMo 2 O 4, LiV 3 O 8, LiNiO 2, Li x Ni y M 1-y O 2 ( where, M is Represents at least one metal element selected from Co, Mn, Ti, Cr, V, Al, Sn, Pb, and Zn, 0.05 ⁇ x ⁇ 1.10, 0.5 ⁇ y ⁇ 1.0.
  • Etc. can be mentioned.
  • Examples of the polyanion compound include LiFePO 4 and the like.
  • the sulfur compounds for example, Li 2 S, etc. rubeanic acid.
  • the negative electrode active material constituting the negative electrode at least one element selected from the elements of Groups 4 to 15 of the periodic table that occlude and release alkali metals, alkali alloys, and lithium ions, oxides, sulfides, and nitrides.
  • a material or a carbon material capable of reversibly occluding and releasing lithium ions can be used.
  • Examples of the alkali metal include Li, Na, K and the like, and examples of the alkali metal alloy include Li-Al, Li-Mg, Li-Al-Ni, Na-Hg, Na-Zn and the like.
  • Examples of a simple substance of at least one element selected from the elements of Groups 4 to 15 of the periodic table that occlude and release lithium ions include silicon, tin, aluminum, zinc, and arsenic.
  • oxides include silicon monoxide (SiO), silicon dioxide (SiO 2 ), tin silicon oxide (SnSiO 3 ), bismuth lithium oxide (Li 3 BiO 4 ), zinc lithium oxide (Li 2 ZnO 2 ), and lithium.
  • Examples thereof include titanium oxide (Li 4 Ti 5 O 12 ) and titanium oxide.
  • examples of the sulfide include lithium iron sulfide (Li x FeS 2 (0 ⁇ x ⁇ 3)) and lithium copper sulfide (Li x CuS (0 ⁇ x ⁇ 3)).
  • Examples of the carbon material capable of reversibly storing and releasing lithium ions include graphite, carbon black, coke, glassy carbon, carbon fibers, carbon nanotubes, and sintered bodies thereof.
  • a carbonaceous material can be used as an active material.
  • this carbonaceous material include activated carbon, and examples thereof include activated carbon obtained by carbonizing a phenol resin and then activating it.
  • the binder polymer it can be appropriately selected from known materials and used.
  • polyvinylidene fluoride (PVdF) polyvinylpyrrolidone
  • PVdF polyvinylidene fluoride
  • polyvinylpyrrolidone polytetrafluoroethylene
  • tetrafluoroethylene-hexafluoropropylene copolymer vinylidene fluoride- Hexafluoropropylene copolymer [P (VDF-HFP)]
  • polyvinylidene alcohol polyimide
  • ethylene-propylene-diene ternary common weight examples thereof include coalescence, styrene-butadiene rubber, carboxymethyl cellulose (CMC), polyacrylic acid (PAA), polyaniline, polyimide, and polyamide.
  • the amount of the binder polymer added is preferably 0.1 to 40 parts by
  • the solvent examples include the solvents exemplified in the solvents for the above compositions, which may be appropriately selected depending on the type of binder, but in the case of a water-insoluble binder such as PVdF, NMP is preferable. Yes, in the case of a water-soluble binder such as PAA, water is suitable.
  • the electrode slurry may contain a conductive material.
  • the conductive material include carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, natural graphite, artificial graphite, titanium oxide, ruthenium oxide, aluminum, nickel and the like.
  • Examples of the method for applying the electrode slurry include the same method as the method for applying the composition described above.
  • the temperature for heating and drying is also arbitrary, but is preferably about 50 to 400 ° C, more preferably about 80 to 150 ° C.
  • the electrodes may be pressed if necessary.
  • the press pressure is preferably 30 kN / cm or less.
  • the pressing method a generally adopted method can be used, but a die pressing method and a roll pressing method are particularly preferable.
  • the press pressure is not particularly limited, but is preferably 10 kN / cm or less, and more preferably 5 kN / cm or less.
  • the energy storage device includes the above-mentioned electrodes for the energy storage device, and more specifically, includes at least a pair of positive and negative electrodes, a separator interposed between each of these electrodes, and an electrolyte. At least one of the positive and negative electrodes is composed of the electrodes for the energy storage device described above.
  • this energy storage device is characterized by using the above-mentioned electrode for the energy storage device as an electrode, other device components such as a separator and an electrolyte can be appropriately selected from known materials and used. can.
  • the separator include a cellulose-based separator and a polyolefin-based separator.
  • the electrolyte may be either liquid or solid, and may be either aqueous or non-aqueous, but the electrode for the energy storage device of the present invention is practically sufficient when applied to a device using a non-aqueous electrolyte. It can demonstrate its performance.
  • the non-aqueous electrolyte include a non-aqueous electrolyte solution obtained by dissolving an electrolyte salt in a non-aqueous organic solvent.
  • lithium salts such as lithium tetrafluoride borate, lithium hexafluoride phosphate, lithium perchlorate, and lithium trifluoromethanesulfonate; tetramethylammonium hexafluorophosphate, tetraethylammonium hexafluorophosphate, and tetrapropylammonium hexaphate.
  • Quaternary ammonium salts such as fluorophosphate, methyltriethylammonium hexafluorophosphate, tetraethylammonium tetrafluoroborate, tetraethylammonium perchlorate, lithium imide such as lithium bis (trifluoromethanesulfonyl) imide, and lithium imide such as lithium bis (fluorosulfonyl) imide can be mentioned. Be done.
  • non-aqueous organic solvent examples include alkylene carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate; dialkyl carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate; nitriles such as acetonitrile and amides such as dimethylformamide. ..
  • the form of the energy storage device is not particularly limited, and cells of various conventionally known forms such as a cylindrical type, a flat winding angular type, a laminated square type, a coin type, a flat winding laminated type, and a laminated laminated type can be used. Can be adopted.
  • the electrode for the energy storage device of the present invention described above may be punched into a predetermined disk shape and used.
  • one electrode is installed on a lid to which a washer and a spacer of a coin cell are welded, and a separator of the same shape impregnated with an electrolytic solution is superposed on the electrode. It can be manufactured by stacking the electrodes for the energy storage device of the present invention with the mixture layer facing down, placing the case and the gasket, and sealing with a coin cell caulking machine.
  • the electrode mixture layer When applied to the laminated laminate type, the electrode mixture layer is welded to the metal tab at the portion (welded portion) where the electrode mixture layer is not formed in the electrode formed on a part or the entire surface of the undercoat layer.
  • the obtained electrode structure may be used.
  • the number of electrodes constituting the electrode structure may be one or more, but in general, a plurality of positive and negative electrodes are used.
  • the plurality of electrodes for forming the positive electrode are preferably stacked one by one with the plurality of electrodes for forming the negative electrode, and at that time, the above-mentioned separator is interposed between the positive electrode and the negative electrode. Is preferable.
  • the material of the metal tab is not particularly limited as long as it is generally used for energy storage devices, and for example, metals such as nickel, aluminum, titanium and copper; stainless steel, nickel alloys, aluminum alloys, etc. Examples thereof include alloys such as titanium alloys and copper alloys, but in consideration of welding efficiency, those containing at least one metal selected from aluminum, copper and nickel are preferable.
  • the shape of the metal tab is preferably foil-like, and the thickness thereof is preferably about 0.05 to 1 mm.
  • a known method used for welding metals can be used, and specific examples thereof include TIG welding, spot welding, laser welding, ultrasonic welding, etc., and electrodes are used in ultrasonic welding. And metal tabs are preferably welded together.
  • a method of ultrasonic welding for example, a method of arranging a plurality of electrodes between an anvil and a horn, arranging a metal tab in the welded portion and applying ultrasonic waves to weld them all at once, or a method of welding electrodes together. Examples thereof include a method of welding first and then welding a metal tab.
  • the metal tab and the electrode are welded at the welded portion, but also a plurality of electrodes are ultrasonically welded to each other.
  • the pressure, frequency, output, processing time, etc. at the time of welding are not particularly limited, and may be appropriately set in consideration of the material to be used, the presence / absence of the undercoat layer, the basis weight, and the like.
  • the electrode structure produced as described above is stored in a laminate pack, the above-mentioned electrolytic solution is injected, and then heat-sealed to obtain a laminate cell.
  • the devices used are as follows. (1) Freeze-dryer (drying of compounds) FDU-2100, manufactured by Tokyo Rika Kikai Co., Ltd. (2) Probe type ultrasonic irradiation device UIP1000 manufactured by Hielscher Ultrasonics (3) Wire bar coater (undercoat layer formation) PM-9050MC manufactured by SMT Co., Ltd. (4) Homo disper (mixing of electrode slurry) Made by Primix Corporation, T.K. K.
  • Adhesive / film peeling analyzer (adhesive force measurement) Kyowa Interface Science Co., Ltd., VPA-3 (10) Ultrasonic welding machine (welding of electrode tabs) Made by Emerson Japan, Ltd., 2000X (11)
  • Desktop type / manual / thick gusset bag sealer (Lamicelle seal) Made by Fuji Impulse Co., Ltd., T-230K
  • Vacuum packing machine (vacuum seal of Lamicelle) Made by TOSEI Co., Ltd., V-307G II
  • Charge / discharge measuring device (secondary battery evaluation) 580 battery test system manufactured by Scribner Associates Inc.
  • Dispersion Liquid 2 WS-700 which is an aqueous solution containing 0.5 g (100 parts by mass) of TC-2010 (manufactured by Toda Kogyo Co., Ltd., multilayer CNT), which is a conductive carbon material, and an oxazoline polymer. (Made by Nippon Catalyst Co., Ltd., solid content concentration: 25.0% by mass) 2.0 g (100 parts by mass), 40.15 g of pure water, 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) 7 .35 g was mixed. The obtained mixture was subjected to ultrasonic treatment for 30 minutes using a probe-type ultrasonic irradiation device to prepare a dispersion liquid 2 in which the conductive carbon material was uniformly dispersed.
  • TC-2010 manufactured by Toda Kogyo Co., Ltd., multilayer CNT
  • oxazoline polymer o
  • Dispersion Liquid 3 WS which is an aqueous solution containing 0.5 g (100 parts by mass) of FloTube 6121 (manufactured by Jiangsu Cnano Technology Co., Ltd., multilayer CNT) which is a conductive carbon material and an oxazoline polymer.
  • -300 manufactured by Nippon Catalyst Co., Ltd., solid content concentration: 10.0% by mass
  • 37.15 g of pure water and 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) ) 7.35 g was mixed.
  • the obtained mixture was subjected to ultrasonic treatment for 30 minutes using a probe-type ultrasonic irradiation device to prepare a dispersion liquid 3 in which the conductive carbon material was uniformly dispersed.
  • dispersion liquid 4 WS which is an aqueous solution containing 0.5 g (100 parts by mass) of FloTube 6121 (manufactured by Jiangsu Cnano Technology Co., Ltd., multilayer CNT) which is a conductive carbon material and an oxazoline polymer.
  • -700 manufactured by Nippon Catalyst Co., Ltd., solid content concentration: 25.0% by mass
  • 40.15 g of pure water, 2-propanol manufactured by Junsei Chemical Co., Ltd., special grade reagent
  • composition A1 for thin film formation in which 50 parts by mass of compound 1 is mixed with dispersion liquid 1, pure water and 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) are mixed to make the solid content concentration 1% by mass.
  • dispersion liquid 1 pure water
  • 2-propanol manufactured by Junsei Chemical Co., Ltd., special grade reagent
  • the thin film forming composition A1 was a black ink in which CNTs were uniformly dispersed.
  • Examples 1-2 to 1-4 The thin film forming compositions A2 to A4 were prepared in the same manner as in Example 1-1 except that the blending amount of each P1 polymer was changed as shown in Table 1 and the solid content concentration was adjusted to 1% by mass. ..
  • the thin film forming compositions A2 to A4 were all black inks in which CNTs were uniformly dispersed.
  • Table 1 summarizes the compositions of the thin film forming compositions A1 to A4.
  • Example 2-1 100 parts by mass of compound 1, 50 parts by mass of Aron A-30 (manufactured by Toa Synthetic Co., Ltd., solid content concentration: 31.6% by mass), pure water, 2-propanol (Junsei Chemical Co., Ltd.) Co., Ltd., Reagent Special Grade) was mixed to prepare a thin film forming composition B1 having a solid content concentration of 1% by mass.
  • Example 2-2 The thin film forming composition B2 was prepared in the same manner as in Example 2-1 except that the blending amount of Aron A-30 was changed to 100 parts by mass and the solid content concentration was adjusted to 1% by mass.
  • compositions of the thin film forming compositions B1 and B2 are summarized in Table 2.
  • Example 3-1 The thin film forming composition C1 was prepared in the same manner as in Example 1-4 except that the compound 1 was changed to the compound 2.
  • composition of the thin film forming composition C1 is summarized in Table 3.
  • Example 1-1 A thin film forming composition a1 was prepared in the same manner as in Example 1-1 except that compound 1 was changed to Isovan 110 (manufactured by Kuraray Co., Ltd.).
  • Compound 2 was changed to Isovan 110, which is a comparative product of P1 polymer, and the blending amounts of each were changed as shown in Table 4, and the solid content concentration was adjusted to 1% by mass.
  • the thin film forming compositions a2 to a4 were prepared in the same manner.
  • Table 4 summarizes the compositions of the thin film forming compositions a1 to a4.
  • Composition for thin film formation in which 76 parts by mass of Aron A-30, pure water, and 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) are mixed in dispersion 1 to make the solid content concentration 1% by mass.
  • Object b1 was prepared.
  • Comparative Example 2-3 Comparative example except that pure water and 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) were mixed to make the solid content concentration 1% by mass without adding Aron A-30 to the dispersion liquid 1.
  • the thin film forming composition b3 was prepared in the same manner as in 2-1.
  • Table 5 summarizes the compositions of the thin film forming compositions b1 to b3.
  • Example 4-1 Composition D1 for forming a thin film in which 50 parts by mass of compound 1 is mixed with dispersion liquid 2, pure water and 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) are mixed to have a solid content concentration of 1% by mass.
  • Examples 4-2 to 4-4 The thin film forming compositions D2 to D4 were prepared in the same manner as in Example 4-1 except that the blending amount of each P1 polymer was changed as shown in Table 5 and the solid content concentration was adjusted to 1% by mass. ..
  • Table 6 summarizes the compositions of the thin film forming compositions D1 to D4.
  • Table 7 summarizes the compositions of the thin film forming compositions c1 and c2.
  • Examples 5-2, 5-3 The thin film forming compositions E2 and E3 were prepared in the same manner as in Example 5-1 except that the blending amounts of the P1 polymers were changed as shown in Table 7 and the solid content concentration was adjusted to 1% by mass. ..
  • Table 8 summarizes the compositions of the thin film forming compositions E1 to E3.
  • Example 6-1 50 parts by mass of compound 1 in the dispersion liquid 4, pure water, and 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) are mixed to make the solid content concentration 1% by mass of the thin film forming composition F1.
  • Examples 6-2 to 6-4 The blending amount of each P1 polymer was changed as shown in Table 8, and pure water and 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) were mixed to adjust the solid content concentration to 1% by mass.
  • the compositions F2 to F4 for forming a thin film were prepared in the same manner as in Example 6-1 except for the above.
  • Table 9 summarizes the compositions of the thin film forming compositions F1 to F3.
  • Example 7-1 100 parts by mass of compound 3 was mixed with the dispersion liquid 5, NMP and butyl cellosolve (manufactured by Junsei Chemical Co., Ltd., special grade reagent) were mixed to prepare a thin film forming composition G1 having a solid content concentration of 1% by mass. ..
  • Example 7-1 Example 7-1, except that NMP and butyl cellosolve (manufactured by Junsei Chemical Co., Ltd., special grade reagent) were mixed without adding P1 polymer to the dispersion liquid 5 and the solid content concentration was adjusted to 1% by mass.
  • the thin film forming composition d1 was prepared in the same manner.
  • Example 4-2 A thin film forming composition d2 was prepared in the same manner as in Example 7-1 except that Compound 3 was changed to Isovan 18 (manufactured by Kuraray Co., Ltd.), which is a comparative product of P1 polymer.
  • Table 10 summarizes the compositions of the thin film forming compositions G1, d1 and d2.
  • Example 8-1 Composition H1 for thin film formation in which 50 parts by mass of compound 1 is mixed with dispersion liquid 3, pure water and 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) are mixed to have a solid content concentration of 2% by mass.
  • dispersion liquid 3 pure water and 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) are mixed to have a solid content concentration of 2% by mass.
  • Example 8-2 to 8-4 The blending amount of each P1 polymer was changed as shown in Table 10, and pure water and 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) were mixed to adjust the solid content concentration to 2% by mass.
  • the compositions H2 to H4 for forming a thin film were prepared in the same manner as in Example 8-1 except for the above.
  • compositions of the thin film forming compositions H1 to H4 are summarized in Table 11.
  • Example 9-1 Composition I1 for forming a thin film in which 50 parts by mass of compound 1 is mixed with a dispersion liquid 4, pure water and 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) are mixed to have a solid content concentration of 2% by mass.
  • Example 9-2 to 9-4 The blending amount of each P1 polymer was changed as shown in Table 11, and pure water and 2-propanol (manufactured by Junsei Chemical Co., Ltd., special grade reagent) were mixed to adjust the solid content concentration to 2% by mass.
  • the compositions I2 to I4 for forming a thin film were prepared in the same manner as in Example 9-1 except for the above.
  • compositions of the thin film forming compositions I1 to I4 are summarized in Table 12.
  • Example 10-1 Manufacture of electrodes and evaluation of adhesion
  • the thin film forming composition A1 was uniformly developed on a copper foil (thickness 15 ⁇ m) as a current collector using OSP-13 with a wire bar coater, and then dried at 120 ° C. for 20 minutes to form a thin film (undercoat layer). ) was formed to prepare a composite current collector.
  • the obtained composite current collector was a laminate (estimated basis weight: 100 mg / m 2 ) in which the surface of the copper foil was uniformly covered with a conductive carbon material.
  • the estimated basis weight means the amount of basis weight expected when a composition for forming a thin film having a predetermined solid content concentration is applied onto a current collector using a predetermined wire bar coater (hereinafter,). Similarly).
  • the assumed basis weight amount when the composition for forming a thin film having a solid content concentration of 1% by mass is used is as follows.
  • OSP-13 (wet film thickness 13 ⁇ m): 100 mg / m 2
  • OSP-6 wet film thickness 6 ⁇ m): 50 mg / m 2
  • OSP-3 wet film thickness 3 ⁇ m
  • the estimated basis weight when the composition for forming a thin film having a solid content concentration of 2% by mass is used is as follows.
  • Silicon manufactured by Japan NER Co., Ltd. 13.5 g as active material, polyacrylic acid (PAA, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 3.6 g as binder, acetylene black (AB, Denka Co., Ltd.) as conductive aid ), 0.9 g and 42.0 g of water were mixed in a homodisper at 3,000 rpm for 5 minutes. Next, a bead mill is used to mix the mixture at 2,000 rpm for 30 minutes, and then a rotation / revolution mixer is used to defoam the bubbles at 1,000 rpm for 2 minutes to obtain an electrode slurry (solid content concentration: 30% by mass, silicon: PAA: AB).
  • Example 10-2 A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that OSP-6 was used instead of OSP-13 in the wire bar coater. Details are shown in Table 13.
  • Example 10-3 A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that OSP-3 was used instead of OSP-13 in the wire bar coater. Details are shown in Table 13.
  • Example 10-4 A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that the thin film forming composition A2 was used instead of the thin film forming composition A1. Details are shown in Table 13.
  • Example 10-5 A composite current collector and electrodes were produced in the same manner as in Example 10-4, except that OSP-6 was used instead of OSP-13 in the wire bar coater. Details are shown in Table 13.
  • Example 10-6 A composite current collector and electrodes were produced in the same manner as in Example 10-4, except that OSP-3 was used instead of OSP-13 in the wire bar coater. Details are shown in Table 13.
  • Example 10-7 to 10-8 A composite current collector and an electrode were produced in the same manner as in Example 10-1 except that the thin film forming compositions A3 to A4 were used instead of the thin film forming composition A1. Details are shown in Table 13.
  • Examples 11-1 to 11-2 A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that the thin film forming compositions B1 and B2 were used instead of the thin film forming composition A1. Details are shown in Table 14.
  • Example 12-1 The thin film forming composition C1 was uniformly developed on a copper foil (thickness 15 ⁇ m) as a current collector using OSP-13 with a wire bar coater, and then dried at 110 ° C. for 20 minutes to form a thin film (undercoat layer). ) was formed to prepare a composite current collector.
  • the obtained composite current collector was a laminate (estimated basis weight: 100 mg / m 2 ) in which the surface of the copper foil was uniformly covered with a conductive carbon material.
  • an electrode mixture layer was formed on the undercoat layer of the obtained composite current collector in the same procedure as in Example 10-1 to prepare an electrode. Details are shown in Table 15.
  • Example 6-1 A composite current collector and electrodes were produced in the same manner as in Example 12-1 except that the thin film forming composition b1 was used instead of the thin film forming composition C1. Details are shown in Table 17.
  • Comparative Example 6-2 A composite current collector and electrodes were produced in the same manner as in Comparative Example 6-1 except that OSP-6 was used instead of OSP-13 in the wire bar coater. Details are shown in Table 17.
  • Example 6-3 A composite current collector and electrodes were produced in the same manner as in Example 12-1 except that the thin film forming composition b2 was used instead of the thin film forming composition C1. Details are shown in Table 17.
  • Comparative Example 6-4 A composite current collector and electrodes were produced in the same manner as in Comparative Example 6-3, except that OSP-6 was used instead of OSP-13 in the wire bar coater. Details are shown in Table 17.
  • Example 6-5 A composite current collector and electrodes were produced in the same manner as in Example 12-1 except that the thin film forming composition b3 was used instead of the thin film forming composition C1. Details are shown in Table 17.
  • Examples 13-1 to 13-4 A composite current collector and electrodes were produced in the same manner as in Example 12-1 except that the thin film forming compositions D1 to D4 were used instead of the thin film forming composition C1. Details are shown in Table 18.
  • Example 7-1 A composite current collector and electrodes were produced in the same manner as in Example 12-1 except that the thin film forming composition c1 was used instead of the thin film forming composition C1. Details are shown in Table 19.
  • Example 7-2 A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that the thin film forming composition c2 was used instead of the thin film forming composition A1. Details are shown in Table 19.
  • Example 14-1 to 14-3 A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that the thin film forming compositions E1 to E3 were used instead of the thin film forming composition A1. Details are shown in Table 20.
  • Example 15-1 to 15-4 A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that the thin film forming compositions F1 to F4 were used instead of the thin film forming composition A1. Details are shown in Table 21.
  • Example 16-1 A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that the thin film forming composition G1 was used instead of the thin film forming composition A1. Details are shown in Table 22.
  • Examples 17-1 to 17-4 A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that the thin film forming compositions H1 to H4 were used instead of the thin film forming composition A1. Details are shown in Table 23.
  • Example 18-1 to 18-4 A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that the thin film forming compositions I1 to I4 were used instead of the thin film forming composition A1. Details are shown in Table 24.
  • Example 19-1 Silicon monoxide (SiO, manufactured by Osaka Titanium Technologies Co., Ltd.) 6.92 g as active material, graphite (CGB-10, manufactured by Nippon Graphite Co., Ltd.) 16.15 g, lithium polyacrylate (PAALI) 7.96 g as binder , 1.59 g of acetylene black (AB, manufactured by Denka Co., Ltd.), 1.06 g of carbon nanotubes (VGCF, manufactured by Showa Denko Co., Ltd.), and 26.32 g of water as conductive aids at 8,000 rpm at 8,000 rpm. Mixed for minutes.
  • SiO Silicon monoxide
  • CGB-10 manufactured by Nippon Graphite Co., Ltd.
  • PAALI lithium polyacrylate
  • VGCF carbon nanotubes
  • a thin film swirl type high-speed mixer is used to perform a mixing process at a peripheral speed of 20 m / sec for 60 seconds, and the rotation / revolution mixer is defoamed at 1,000 rpm for 2 minutes to obtain an electrode slurry (solid content concentration 44 mass).
  • the obtained electrode slurry was developed on the composite current collector obtained in Example 10-4 using an applicator (wet film thickness: 90 ⁇ m), dried at 80 ° C. for 30 minutes, and then dried at 120 ° C. for 30 minutes under.
  • An electrode mixture layer (dry film thickness of about 45 ⁇ m) was formed on the coat layer, and further pressure-bonded with a roll press machine at a press pressure of 0.125 kN / cm to prepare an electrode.
  • LCO lithium cobalt oxide
  • AB acetylene black
  • PVdF polyvinylidene fluoride
  • grain size 16.5 mg / m 2
  • a positive electrode was placed on the laminated film, a separator (Celguard # 2400 manufactured by Cellguard Co., Ltd.) and an electrode D were superposed on the positive electrode, and fixed with imide tape.
  • the laminate cell was sealed, leaving a part to be the injection port of the electrolytic solution.
  • the mixture was vacuum-sealed. Then, the mixture was allowed to stand for 5 hours to prepare three secondary batteries for testing.
  • Example 19-2 to 19-4 Same as in Example 19-1 except that the composite current collectors obtained in Examples 10-8, 13-4, 14-1, 14-3 or 15-2 were used as the current collectors, respectively. Made three secondary batteries for testing
  • composition for thin film formation-2 [Examples 20-1, 20-2]
  • the thin film forming compositions J1 and J2 were prepared in the same manner as in Example 5-1 except that the types and blending amounts of the P1 polymers were changed as shown in Table 27 and the solid content concentration was adjusted to 1% by mass. Prepared.
  • the thin film forming compositions J1 and J2 were both black inks in which CNTs were uniformly dispersed.
  • compositions of the thin film forming compositions J1 and J2 are summarized in Table 27.
  • Examples 21-1, 21-2 The thin film forming compositions K1 and K2 were prepared in the same manner as in Example 5-1 except that the types and blending amounts of the P1 polymers were changed as shown in Table 28 and the solid content concentration was adjusted to 1% by mass. Prepared. The thin film forming compositions K1 and K2 were both black inks in which CNTs were uniformly dispersed.
  • compositions of the thin film forming compositions K1 and K2 are summarized in Table 28.
  • Example 22-1 The thin film forming composition L1 was prepared in the same manner as in Example 5-1 except that the type and blending amount of the P1 polymer were changed as shown in Table 29 and the solid content concentration was adjusted to 1% by mass.
  • the thin film forming composition L1 was a black ink in which CNTs were uniformly dispersed.
  • composition of the thin film forming composition L1 is summarized in Table 29.
  • Example 23-1 Manufacture of electrodes and evaluation of adhesion force-2 [Example 23-1] A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that the thin film forming composition J1 was used instead of the thin film forming composition A1. Details are shown in Table 30.
  • Example 23-2 A composite current collector and electrodes were produced in the same manner as in Example 23-1 except that OSP-6 was used instead of OSP-13 in the wire bar coater. Details are shown in Table 30.
  • Example 23-3 A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that the thin film forming composition J2 was used instead of the thin film forming composition A1. Details are shown in Table 30.
  • Example 23-4 A composite current collector and electrodes were produced in the same manner as in Example 23-3, except that OSP-6 was used instead of OSP-13 in the wire bar coater. Details are shown in Table 30.
  • Examples 24-1, 24-2 A composite current collector and electrodes were produced in the same manner as in Example 10-2, except that the thin film forming compositions K1 and K2 were used instead of the thin film forming composition A1. Details are shown in Table 31.
  • Example 25-1 A composite current collector and electrodes were produced in the same manner as in Example 10-1 except that the thin film layer forming composition L1 was used instead of the thin film forming composition A1. Details are shown in Table 32.
  • Example 25-2 A composite current collector and electrodes were produced in the same manner as in Example 25-1 except that OSP-6 was used instead of OSP-13 in the wire bar coater. Details are shown in Table 32.
  • the electrode produced in the above example was subjected to a peeling test in the same procedure as the procedure described in [1-4] above, and the adhesion force was calculated. The results are also shown in Tables 30-32.
  • Example 26-1 Three secondary batteries for testing were produced in the same manner as in Example 19-1 except that the composite current collectors obtained in Example 23-1 were used as the current collectors.
  • Example 26-1 The characteristics of the secondary battery produced in Example 26-1 were evaluated.
  • a charge / discharge test was performed under the conditions shown in Table 25 in the order of battery aging and cycle characteristic evaluation using a charge / discharge measuring device. .. The results obtained are shown in Table 33.
  • Electrodes were produced in the same manner as in Example 27-1 except that a solid SUS foil (thickness 15 ⁇ m) was used as the composite current collector. Details are shown in Table 34.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

導電性炭素材料、分散剤、溶媒および側鎖に下記式(P1)で表される部分構造を有するポリマーを含むエネルギー貯蔵デバイス電極用薄膜形成用組成物を提供する。(式中、Lは、-O-または-NH-を表し、Rは、炭素数1~20のアルキレン基を表し、Tは、置換または非置換アミノ基、炭素数2~20の含窒素ヘテロアリール基または炭素数2~20の含窒素脂肪族複素環基を表し、*は、結合手を表す。)

Description

エネルギー貯蔵デバイス電極用薄膜形成用組成物
 本発明は、エネルギー貯蔵デバイス電極用薄膜形成用組成物に関する。
 スマートフォン、デジタルカメラ、携帯ゲーム機等の携帯電子機器の小型軽量化や高機能化の要求に伴い、近年、高性能電池の開発が積極的に進められており、充電により繰り返し使用できる二次電池の需要が大きく伸びている。中でも、リチウムイオン二次電池は、高エネルギー密度、高電圧を有し、また充放電時におけるメモリー効果が無いこと等から、現在最も精力的に開発が進められている二次電池である。また、近年の環境問題への取り組みから、電気自動車の開発も活発に進められており、その動力源としての二次電池には、より高い性能が求められるようになってきている。
 ところで、リチウムイオン二次電池は、リチウムを吸蔵、放出できる正極と負極と、これらの間に介在するセパレータを容器内に収容し、その中に電解液(リチウムイオンポリマー二次電池の場合は液状電解液の代わりにゲル状または全固体型の電解質)を満たした構造を有する。
 正極および負極は、一般的に、リチウムを吸蔵、放出できる活物質と、主に炭素材料からなる導電材、さらにポリマーバインダーを含む組成物を、銅箔やアルミニウム箔等の集電体上に塗布することで製造される。このバインダーは、活物質と導電材、さらにこれらと金属箔を接着するために用いられ、ポリフッ化ビニリデン(PVdF)等のN-メチルピロリドン(NMP)に可溶なフッ素系樹脂や、オレフィン系重合体の水分散体等が市販されている。
 しかし、上述したバインダーの集電体に対する接着力は十分とは言えず、電極の裁断工程や巻回工程等の製造工程時に、活物質や導電材の一部が集電体から剥離、脱落し、微小短絡や電池容量のばらつきを生じる原因となる。さらに、長期間の使用により、電解液によるバインダーの膨潤や、活物質のリチウム吸蔵、放出による体積変化に伴う電極合材の体積変化により、電極合材と集電体間の接触抵抗が増大したり、活物質や導電材の一部が集電体から剥離、脱落したりすることによる電池容量の劣化が起こるという問題や、安全性の点で問題もある。
 上記課題を解決する試みとして、集電体と電極合材層との間の密着性を高め、接触抵抗を低下させることで電池を低抵抗化する技術として、集電体と電極合材層との間に導電性のアンダーコート層を介在させる方法が開発されている。例えば、特許文献1では、炭素を導電性フィラーとする導電層をアンダーコート層として、集電体と電極合材層との間に配設する技術が開示されている。アンダーコート層を備えた複合集電体を用いることで、集電体と電極合材層の間の接触抵抗を低減でき、かつ、高速放電時の容量減少も抑制でき、さらに電池の劣化をも抑制できることが示されている。また、特許文献2や特許文献3でも同様の技術が開示されている。特許文献4や特許文献5では、カーボンナノチューブ(以下、CNTとも略記する)を導電性フィラーとしたアンダーコート層が開示されている。
 しかしながら、二次電池の更なる性能向上を図るために、集電体と電極合材層との間の密着性をより向上させることが求められている。
特開平9-097625号公報 特開2000-011991号公報 特開平11-149916号公報 国際公開第2014/042080号 国際公開第2015/029949号
 本発明は、このような事情に鑑みてなされたものであり、導電性薄膜の形成に好適に使用し得、特にエネルギー貯蔵デバイスにおいて、集電体と電極合材層との間の密着性を向上させ、低抵抗化効果および抵抗上昇抑制効果を発揮するアンダーコート層を与え得るエネルギー貯蔵デバイス電極用薄膜形成用組成物を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、導電性炭素材料、分散剤、溶媒および側鎖に特定の部分構造を有するポリマーを含む組成物が、集電体と電極合材層との間の密着性を向上させ、低抵抗化効果および抵抗上昇抑制効果を発揮するアンダーコート層を与え得ることを見出し、本発明を完成させた。
 すなわち、本発明は、下記のエネルギー貯蔵デバイス電極用薄膜形成用組成物を提供する。
1.導電性炭素材料、分散剤、溶媒および側鎖に下記式(P1)で表される部分構造を有するポリマーを含むエネルギー貯蔵デバイス電極用薄膜形成用組成物。
Figure JPOXMLDOC01-appb-C000005
(式中、Lは、-O-または-NH-を表し、Rは、炭素数1~20のアルキレン基を表し、Tは、置換または非置換アミノ基、炭素数2~20の含窒素ヘテロアリール基または炭素数2~20の含窒素脂肪族複素環基を表し、*は、結合手を表す。)
2. 式(P1)で表される部分構造が、下記式(P1-1)~(P1-3)のいずれかで表される1のエネルギー貯蔵デバイス電極用薄膜形成用組成物。
Figure JPOXMLDOC01-appb-C000006
(式中、L、Tおよび*は、上記と同じである。)
3. 式(P1)で表される部分構造が、下記式(P2-1)~(P2-3)のいずれかで表される2のエネルギー貯蔵デバイス電極用薄膜形成用組成物。
Figure JPOXMLDOC01-appb-C000007
(式中、*は、上記と同じである。)
4. 上記ポリマーが、下記式(C1-1)または(C1-2)で表される繰り返し単位を含むポリマーである1のエネルギー貯蔵デバイス電極用薄膜形成用組成物。
Figure JPOXMLDOC01-appb-C000008
(式中、Rc1およびRc2は、それぞれ独立して、水素原子または炭素数1~20のアルキル基を表し、Rmは、水素原子またはメチル基を表し、nは、自然数を表す。L、R、Tおよび*は、上記と同じである。)
5. 上記溶媒が、水および親水性溶媒からなる群より選ばれる1種以上を含む1~4のいずれかのエネルギー貯蔵デバイス電極用薄膜形成用組成物。
6. 上記分散剤が、側鎖にオキサゾリン基を有するポリマーまたはトリアリールアミン系高分岐ポリマーを含む1~5のいずれかのエネルギー貯蔵デバイス電極用薄膜形成用組成物。
7. さらに、架橋剤を含有する1~6のいずれかのエネルギー貯蔵デバイス電極用薄膜形成用組成物。
8. 1~7のいずれかのエネルギー貯蔵デバイス電極用薄膜形成用組成物から得られる薄膜を含むアンダーコート層。
9. 8のアンダーコート層を備えるエネルギー貯蔵デバイスの電極用複合集電体。
10. 9のエネルギー貯蔵デバイスの電極用複合集電体を備えるエネルギー貯蔵デバイス用電極。
11. 10のエネルギー貯蔵デバイス用電極を備えるエネルギー貯蔵デバイス。
12. リチウムイオン電池である11のエネルギー貯蔵デバイス。
 本発明のエネルギー貯蔵デバイス電極用薄膜形成用組成物は、エネルギー貯蔵デバイスの電極を構成する集電体と電極合材層とを接合するアンダーコート層を形成するための組成物として好適であり、当該組成物を用いて上記集電体上にアンダーコート層を形成した場合には、電極合材と集電体間との密着性を向上させることができ、得られる電池の特性を向上させることができる。
 本発明に係るエネルギー貯蔵デバイス電極用薄膜形成用組成物(以下、単に組成物という)は、導電性炭素材料、分散剤、溶媒および側鎖に下記式(P1)で表される部分構造を有するポリマー(以下、P1ポリマーと表記することもある。)を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000009
 式中、Lは、-O-または-NH-を表し、Rは、炭素数1~20のアルキレン基を表し、Tは、置換または非置換アミノ基、炭素数2~20の含窒素ヘテロアリール基または炭素数2~20の含窒素脂肪族複素環基を表す。*は、結合手を表す。
 炭素数1~20のアルキレン基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基、ノナデシレン基、エイコサニレン基等が挙げられる。本発明では、炭素数1~10のアルキレン基が好ましく、炭素数1~8のアルキレン基がより好ましく、炭素数1~3のアルキレン基がより一層好ましい。
 置換または非置換アミノ基としては、下記(A1)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000010
(式中、Ra1およびRa2は、それぞれ独立して、水素原子、炭素数1~20のアルキル基またはフェニル基を表す。*は、上記と同じである。)
 炭素数1~20のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖または分岐鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基が挙げられる。
 上記Ra1およびRa2は、水素原子、炭素数1~10のアルキル基またはフェニル基が好ましく、水素原子、炭素数1~5のアルキル基またはフェニル基がより好ましく、メチル基がより一層好ましい。また、上記Ra1およびRa2は、互いに同一でも異なっていてもよいが、同一の基であることがより好ましい。
 炭素数2~20の含窒素ヘテロアリール基としては、例えば、1-イミダゾリル基、2-イミダゾリル基、4-イミダゾリル基、1-ピリジル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、ピラジン-1-イル基、ピラジン-2-イル基、ピリミジン-1-イル基、ピリミジン-2-イル基、ピリミジン-4-イル基、ピリミジン-5-イル基、ピリダジン-1-イル基、ピリダジン-3-イル基、ピリダジン-4-イル基、ピリダジン-5-イル基、1,2,3-トリアジン-4-イル基、1,2,3-トリアジン-5-イル基、1,2,4-トリアジン-3-イル基、1,2,4-トリアジン-5-イル基、1,2,4-トリアジン-6-イル基、1,3,5-トリアジン-2-イル基、1,2,4,5-テトラジン-3-イル基、1,2,3,4-テトラジン-5-イル基、キノリン-1-イル基、キノリン-2-イル基、キノリン-3-イル基、キノリン-4-イル基、キノリン-5-イル基、キノリン-6-イル基、キノリン-7-イル基、キノリン-8-イル基、イソキノリン-1-イル基、イソキノリン-2-イル基、イソキノリン-3-イル基、イソキノリン-4-イル基、イソキノリン-5-イル基、イソキノリン-6-イル基、イソキノリン-7-イル基、イソキノリン-8-イル基、キノキサリン-1-イル基、キノキサリン-2-イル基、キノキサリン-5-イル基、キノキサリン-6-イル基、キナゾリン-1-イル基、キナゾリン-2-イル基、キナゾリン-3-イル基、キナゾリン-4-イル基、キナゾリン-5-イル基、キナゾリン-6-イル基、キナゾリン-7-イル基、キナゾリン-8-イル基、シンノリン-1-イル基、シンノリン-2-イル基、シンノリン-3-イル基、シンノリン-4-イル基、シンノリン-5-イル基、シンノリン-6-イル基、シンノリン-7-イル基、シンノリン-8-イル基が挙げられる。
 炭素数2~20の含窒素脂肪族複素環基としては、例えば、アジリジン環を有する基、アゼチジン環を有する基、ピロリジン環を有する基、ピペリジン環を有する基、ヘキサメチレンイミン環を有する基、イミダゾリジン環を有する基、ピペラジン環を有する基、ピラゾリジン環を有する基が挙げられる。上記含窒素脂肪族複素環基の具体例としては、アジリジン-1-イル基、アジリジン-2-イル基、アゼチジン-1-イル基、アゼチジン-2-イル基、アゼチジン-3-イル基、ピロリジン-1-イル基、ピロリジン-2-イル基、ピロリジン-3-イル基、ピペリジン-1-イル基、ピペリジン-2-イル基、ピペリジン-3-イル基、ピペリジン-4-イル基、アゼパン-1-イル基、アゼパン-2-イル基、アゼパン-3-イル基、アゼパン-4-イル基、イミダゾリジン-1-イル基、イミダゾリジン-2-イル基、イミダゾリジン-4-イル基、ピペラジン-1-イル基、ピペラジン-2-イル基、ピラゾリジン-1-イル基、ピラゾリジン-3-イル基、ピラゾリジン-4-イル基、ピラゾリジン-5-イル基等が挙げられる。
 式(P1)で表される部分構造の好ましい態様としては、下記式(P1-1)~(P1-3)で表されるものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000011
(式中、L、Tおよび*は、上記と同じである。)
 式(P1)で表される部分構造の具体例としては、下記式(P2-1)~(P2-3)で表されるものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000012
(式中、*は、上記と同じである。)
 上記(P1)で表される部分構造は、ポリマーの主鎖に直接結合していても、アルキレン基等のスペーサー基を介して結合していてもよいが、ポリマーの主鎖に直接結合していることが好ましい。
 上記P1ポリマーの態様としては、下記式(C1-1)または(C1-2)で表される繰り返し単位を含むポリマーが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000013
(式中、Rc1およびRc2は、互いに独立して、水素原子または炭素数1~20のアルキル基を表し、Rmは、水素原子またはメチル基を表し、nは、自然数を表す。L、R、Tおよび*は、上記と同じである。)
 炭素数1~20のアルキル基としては、上記Rc1およびRc2の説明において例示したものと同じものが挙げられる。上記Rc1およびRc2としては、これらの中でも、水素原子、炭素数1~10のアルキル基が好ましく、水素原子、炭素数1~5のアルキル基がより好ましく、メチル基がより一層好ましい。また、上記Rc1およびRc2は、互いに同一でも異なっていてもよいが、同一の基であることがより好ましい。
 上記P1ポリマーの好ましい態様としては、下記式(C2-1)~(C2-6)で表される繰り返し単位を含むものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000014
(式中、L、T、Rm、nおよび*は、上記と同じである。)
 上記P1ポリマーの具体例としては、下記式(C3-1)~(C3-3)で表される繰り返し単位を含むものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000015
(式中、Rm、nおよび*は、上記と同じである。)
 上記P1ポリマーの平均分子量は、特に限定されるものではないが、重量平均分子量(Mw)が1,000~2,000,000が好ましく、2,000~1,000,000がより好ましい。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレンスルホン酸ナトリウム換算値である。
 本発明において、P1ポリマーは、高い密着性を有する薄膜を再現性よく得る観点から、式(P1)で表される側鎖が、全繰り返し単位中10~100モル%に含まれることが好ましく、30~100モル%がより好ましく、50~100モル%がより一層好ましい。
 なお、本発明において、P1ポリマーは、本発明の効果を損なわない範囲で、式(P1)で表される繰り返し単位以外の繰り返し単位として、他の機能を付与するための繰り返し単位を含んでいてもよい。このような繰り返し単位としては、例えば、分散剤と架橋反応を起こす架橋反応性基を有する繰り返し単位が挙げられ、好ましくは下記式(P3)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000016
(式中、Rdは、架橋反応性基を表す。Rm、nおよび*は、上記と同じである。)
 Rdとしては、カルボキシ基、芳香族性チオール基、フェノール基等が挙げられるが、カルボキシ基が好ましい。
 P1ポリマーに式(P3)で表される繰り返し単位を含む場合、その含有量は、全繰り返し単位中10~70モル%が好ましく、20~70モル%がより好ましく、30~70モル%がより一層好ましい。
 さらに別の式(P1)で表される繰り返し単位以外の繰り返し単位としては、式(C1-1)で表される繰り返し単位を含むポリマーにおいては、例えば、下記式(D1)で表される繰り返し単位が挙げられる。また、当該ポリマーには、その原料となるイソブチレンと無水マレイン酸との共重合体の未反応部位として、後述する式(C1-1’)で表される繰り返し単位を一部に含むこともある。式(C1-2)で表される繰り返し単位を含むポリマーにおいては、例えば、下記式(D2)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000017
(式中、nおよび*は、上記と同じである。)
 上記P1ポリマーの添加量は、使用する溶媒、使用する基材、要求される粘度、要求される膜形状等により変動するが、後述する導電性炭素材料100質量部に対して好ましくは10~1,000質量部、より好ましくは30~800質量部、より一層好ましくは40~500質量部である。P1ポリマーの添加量を上記範囲とすることにより、集電体と電極合材層との間の密着性をより向上させることができ、得られる電池の特性を向上させることができる。
 上記P1ポリマーは、カルボキシ基または酸無水物基を有する化合物(モノマー原料)に下記式(Q1)で表される化合物を反応させて得られるモノマーを重合させる方法や、側鎖にカルボキシ基または酸無水物基を有するポリマーに下記式(Q1)で表される化合物を反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000018
(式中、L’は、アミノ基またはヒドロキシ基を表す。RおよびTは、上記と同じである。)
 式(Q1)で表される化合物の好ましい態様としては、下記式(Q1-1)~(Q1-3)で表されるものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000019
(式中、L’およびTは、上記と同じである。)
 式(Q1)で表される化合物の具体例としては、例えば、1-(3-アミノプロピル)イミダゾール、1-(3-ヒドロキシプロピル)イミダゾール、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジメチルエタノールアミンが挙げられる。
 上記モノマー原料としては、例えば、無水マレイン酸、(メタ)アクリル酸が挙げられる。
 側鎖にカルボキシ基または酸無水物基を有するポリマーとしては、例えば、無水マレイン酸の重合体、イソブチレン等の炭素数2~10のアルケンと無水マレイン酸との共重合体、(メタ)アクリル酸の重合体が挙げられる。本発明においては、下記式(C1-1’)で表されるイソブチレンと無水マレイン酸との共重合体、および下記式(C1-2’)で表される(メタ)アクリル酸の重合体が好ましい。
Figure JPOXMLDOC01-appb-C000020
(式中、Rc1、Rc2、Rm、nおよび*は、上記と同じである。)
 上記P1ポリマーとして式(C3-1)で表される繰り返し単位を含むポリマーを合成する場合、例えば、下記スキーム1に示す方法が挙げられる。
Figure JPOXMLDOC01-appb-C000021
(式中、nおよび*は、上記と同じである。)
 スキーム1では、イソブチレンと無水マレイン酸との共重合体(C1-1’)とN,N-ジメチル-1,3-プロパンジアミンとを反応させた後、得られた反応液をアンモニア存在下で所定時間撹拌することにより、式(C3-1)で表される繰り返し単位を含むポリマーを合成することができる。なお、上記イソブチレンと無水マレイン酸との共重合体(C1-1’)は、市販品を使用することができ、例えば、イソバンシリーズ((株)クラレ製:商品名)が挙げられる。
 上記反応で使用する溶媒は、使用する原料を分散または溶解できるものであれば特に限定されるものではない。このような溶媒としては、例えば、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)、ヘキサメチルリン酸トリアミド、アセトニトリル、アセトン、アルコール類(メタノール、エタノール、1-プロパノール、2-プロパノール等)、グリコール類(エチレングリコール、トリエチレングリコール等)、セロソルブ類(エチルセロソルブ、メチルセロソルブ等)、多価アルコール類(グリセリン、ペンタエリスリトール等)、テトラヒドロフラン、トルエン、酢酸エチル、酢酸ブチル、ベンゼン、トルエン、キシレン、ペンタン、ヘキサン、ヘプタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、ヘキサデカン、ベンジルアルコールおよびオレイルアミン等が挙げられる。これらの中でも、反応温度と反応濃度の観点から、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンが好ましい。これらの溶媒は、使用する原料に応じて適宜選択すればよい。上記溶媒は、1種を単独で用いても、2種以上を混合して用いてもよい。
 上記反応において、ポリマー(C1-1’)とN,N-ジメチル-1,3-プロパンジアミンの配合比は、ポリマー(C1-1’)中の酸無水物基の全てがN,N-ジメチル-1,3-プロパンジアミンを反応し得る量とすることが好ましく、ポリマー(C1-1’)の繰り返し単位1モルに対し、N,N-ジメチル-1,3-プロパンジアミンを1~3モルとすることが好ましく、1~2モルとすることがより好ましい。
 上記反応の反応温度は、通常40~200℃である。反応時間は反応温度によって種々選択されるが、通常30分から50時間程度である。
 得られたポリマーは、反応溶液をそのまま、または希釈もしくは濃縮して用いても、当該ポリマーを適宜な手段で単離した後、適宜な溶剤で溶解して用いてもよい。上記溶剤としては、例えば、上述した溶剤が挙げられる。
 上記ポリマーとして式(C3-3)で表される繰り返し単位を含むポリマーを合成する場合、例えば、下記スキーム2に示す方法が挙げられる。
Figure JPOXMLDOC01-appb-C000022
(式中、Rm、nおよび*は、上記と同じである。)
 スキーム2では、まず、(メタ)アクリル酸とN,N-ジメチルエタノールアミンとをエステル化させることでモノマー(C3-3’)を合成する(第1段階)。次いで、得られたモノマー(C3-3’)を溶液中で重合する(第2段階)ことにより、式(C3-3)で表される繰り返し単位を含むポリマーを合成することができる。なお、上記モノマー(C3-3’)として市販品を入手できる場合は、市販品をそのまま使用し、第2段階から実施してもよい。
 上記第1段階の反応において使用する溶媒としては、使用する原料を分散または溶解できるものであれば特に限定されるものではない。このような溶媒としては、上記スキーム1で挙げたものと同じのものが挙げられ、使用する原料に応じて適宜選択すればよい。上記溶媒は、1種を単独で用いても、2種以上を混合して用いてもよい。
 上記反応においては、触媒として酸や塩基を使用することができる。具体例としては、塩酸、硫酸、硝酸、リン酸等の無機酸;酢酸、プロピオン酸、フタル酸、安息香酸等の有機カルボン酸類;メチルスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等の有機スルホン酸類;水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム等のアルカリ金属またはアルカリ土類金属の水酸化物;炭酸水素ナトリウム、炭酸カリウム、炭酸水素カルシウム等のアルカリ金属またはアルカリ土類金属の炭酸塩および炭酸水素塩などが挙げられる。
 第2段階では、第1段階で得られたモノマー(C3-3’)を溶媒中で重合する。その重合方法は、特に限定されず、アクリルポリマーの重合において通常用いられる重合方法から適宜選択できる。重合方法としては、溶液重合法、乳化重合法、懸濁重合法等が挙げられる。また、重合の際には、開始剤を使用してもよい。開始剤としては、市販品を使用することができ、例えば、AIBN、VE-073、V-70、V-65、V-601、V-59、V-40、Vm-110、VA-044、V-046B、V-50、VA-057、VA-061、VA-086、V-501(すべて富士フイルム和光純薬(株)製)が挙げられる。
 得られたポリマーは、反応溶液をそのまま、または希釈もしくは濃縮して用いても、当該ポリマーを適宜な手段で単離した後、適宜な溶剤で溶解して用いてもよい。上記溶剤としては、例えば、上述した溶剤が挙げられる。
 導電性炭素材料としては、特に限定されるものではなく、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウイスカー、カーボンナノチューブ(CNT)、炭素繊維、天然黒鉛、人造黒鉛等の公知の導電性炭素材料から適宜選択して用いることができるが、特に、導電性、分散性、入手性等の観点からCNTが好ましい。
 CNTは、一般的に、アーク放電法、化学気相成長法(CVD法)、レーザー・アブレーション法等によって作製されるが、本発明に使用されるCNTはいずれの方法で得られたものでもよい。また、CNTには1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT(以下、SWCNTとも略記する)と、2枚のグラフェン・シートが同心円状に巻かれた2層CNT(以下、DWCNTとも略記する)と、複数のグラフェン・シートが同心円状に巻かれた多層CNT(MWCNT)とがあるが、本発明においては、SWCNT、DWCNT、MWCNTをそれぞれ単体で、または複数を組み合わせて使用できる。
 なお、上記の方法でSWCNT、DWCNTまたはMWCNTを作製する際には、ニッケル、鉄、コバルト、イットリウム等の触媒金属も残存することがあるため、この不純物を除去するための精製を必要とする場合がある。不純物の除去には、硝酸、硫酸等による酸処理とともに超音波処理が有効である。しかし、硝酸、硫酸等による酸処理ではCNTを構成するπ共役系が破壊され、CNT本来の特性が損なわれてしまう可能性があるため、適切な条件で精製して使用することが望ましい。
 本発明で使用可能なCNTの具体例としては、スパーグロース法CNT〔国立研究開発法人 新エネルギー・産業技術総合開発機構製〕、eDIPS-CNT〔国立研究開発法人 新エネルギー・産業技術総合開発機構製〕、SWNTシリーズ〔(株)名城ナノカーボン製:商品名〕、VGCFシリーズ〔昭和電工(株)製:商品名〕、FloTubeシリーズ〔CNano Technology社製:商品名〕、AMC〔宇部興産(株)製:商品名〕、NANOCYL NC7000シリーズ〔Nanocyl S.A. 社製:商品名〕、Baytubes〔Bayer社製:商品名〕、GRAPHISTRENGTH〔アルケマ社製:商品名〕、MWNT7〔保土谷化学工業(株)製:商品名〕、ハイペリオンCNT〔Hypeprion Catalysis International社製:商品名〕、TCシリーズ〔戸田工業(株)製:商品名〕、FloTubeシリーズ〔Jiangsu Cnano Technology社製:商品名〕等が挙げられる。
 分散剤としては、従来、CNT等の導電性炭素材料の分散剤として用いられているものから適宜選択することができ、例えば、カルボキシメチルセルロース(CMC)、ポリビニルピロリドン(PVP)、アクリル樹脂エマルジョン、水溶性アクリル系ポリマー、スチレンエマルジョン、シリコンエマルジョン、アクリルシリコンエマルジョン、フッ素樹脂エマルジョン、EVAエマルジョン、酢酸ビニルエマルジョン、塩化ビニルエマルジョン、ウレタン樹脂エマルジョン、国際公開第2014/042080号記載のトリアリールアミン系高分岐ポリマー、国際公開第2015/029949号記載の側鎖にオキサゾリン基を有するポリマー等が挙げられるが、本発明においては、国際公開第2015/029949号記載の側鎖にオキサゾリン基を有するポリマーを含む分散剤や、国際公開第2014/042080号記載のトリアリールアミン系高分岐ポリマーを含む分散剤を用いることが好ましい。
 側鎖にオキサゾリン基を有するポリマー(以下、オキサゾリンポリマーという)としては、式(1)に示されるような2位に重合性炭素-炭素二重結合含有基を有するオキサゾリンモノマーをラジカル重合して得られる、オキサゾリン環の2位でポリマー主鎖またはスペーサー基に結合した繰り返し単位を有する、側鎖にオキサゾリン基を有するビニル系ポリマーが好ましい。
Figure JPOXMLDOC01-appb-C000023
 上記Xは、重合性炭素-炭素二重結合含有基を表し、R1~R4は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~5のアルキル基、炭素数6~20のアリール基、または炭素数7~20のアラルキル基を表す。
 オキサゾリンモノマーが有する重合性炭素-炭素二重結合含有基としては、重合性炭素-炭素二重結合を含んでいれば特に限定されるものではないが、重合性炭素-炭素二重結合を含む鎖状炭化水素基が好ましく、例えば、ビニル基、アリル基、イソプロペニル基等の炭素数2~8のアルケニル基などが好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。炭素数1~5のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロヘキシル基等が挙げられる。炭素数6~20のアリール基としては、フェニル基、キシリル基、トリル基、ビフェニル基、ナフチル基等が挙げられる。炭素数7~20のアラルキル基としては、ベンジル基、フェニルエチル基、フェニルシクロヘキシル基等が挙げられる。
 式(1)で示される2位に重合性炭素-炭素二重結合含有基を有するオキサゾリンモノマーとしては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-4-エチル-2-オキサゾリン、2-ビニル-4-プロピル-2-オキサゾリン、2-ビニル-4-ブチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-ビニル-5-エチル-2-オキサゾリン、2-ビニル-5-プロピル-2-オキサゾリン、2-ビニル-5-ブチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-4-エチル-2-オキサゾリン、2-イソプロペニル-4-プロピル-2-オキサゾリン、2-イソプロペニル-4-ブチル-2-オキサゾリン、2-イソプロペニル-5-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2-イソプロペニル-5-プロピル-2-オキサゾリン、2-イソプロペニル-5-ブチル-2-オキサゾリン等が挙げられるが、入手容易性等の点から、2-イソプロペニル-2-オキサゾリンが好ましい。
 また、水系溶媒を用いて組成物を調製することを考慮すると、オキサゾリンポリマーも水溶性であることが好ましい。このような水溶性のオキサゾリンポリマーは、上記式(1)で表されるオキサゾリンモノマーのホモポリマーでもよいが、水への溶解性をより高めるため、上記オキサゾリンモノマーと親水性官能基を有する(メタ)アクリル酸エステル系モノマーとの少なくとも2種のモノマーをラジカル重合させて得られたものであることが好ましい。
 親水性官能基を有する(メタ)アクリル系モノマーとしては、(メタ)アクリル酸、アクリル酸2-ヒドロキシエチル、アクリル酸メトキシポリエチレングリコール、アクリル酸とポリエチレングリコールとのモノエステル化物、アクリル酸2-アミノエチルおよびその塩、メタクリル酸2-ヒドロキシエチル、メタクリル酸メトキシポリエチレングリコール、メタクリル酸とポリエチレングリコールとのモノエステル化物、メタクリル酸2-アミノエチルおよびその塩、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸アンモニウム、(メタ)アクリルニトリル、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、スチレンスルホン酸ナトリウム等が挙げられ、これらは、単独で用いても、2種以上組み合わせて用いてもよい。これらの中でも、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸とポリエチレングリコールとのモノエステル化物が好適である。
 また、オキサゾリンポリマーのCNT分散能に悪影響を及ぼさない範囲で、上記オキサゾリンモノマーおよび親水性官能基を有する(メタ)アクリル系モノマー以外のその他のモノマーを併用することができる。その他のモノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸フェニル等の(メタ)アクリル酸エステルモノマー;エチレン、プロピレン、ブテン、ペンテン等のオレフィン系モノマー;塩化ビニル、塩化ビニリデン、フッ化ビニル等のハロオレフィン系モノマー;スチレン、α-メチルスチレン等のスチレン系モノマー;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル系モノマー;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル系モノマー等が挙げられ、これらはそれぞれ単独で用いても、2種以上組み合わせて用いてもよい。
 本発明で用いるオキサゾリンポリマーの製造に用いられるモノマー成分において、オキサゾリンモノマーの含有率は、得られるオキサゾリンポリマーのCNT分散能をより高めるという点から、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がより一層好ましい。なお、モノマー成分におけるオキサゾリンモノマーの含有率の上限値は100質量%であり、この場合は、オキサゾリンモノマーのホモポリマーが得られる。
 一方、得られるオキサゾリンポリマーの水溶性をより高めるという点から、モノマー成分における親水性官能基を有する(メタ)アクリル系モノマーの含有率は、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がより一層好ましい。
 また、モノマー成分におけるその他の単量体の含有率は、上述のとおり、得られるオキサゾリンポリマーのCNT分散能に影響を与えない範囲であり、また、その種類によって異なるため一概には決定できないが、好ましくは5~95質量%、より好ましくは10~90質量%の範囲で適宜設定すればよい。
 オキサゾリンポリマーの平均分子量は、特に限定されるものではないが、重量平均分子量が1,000~2,000,000が好ましく、2,000~1,000,000がより好ましい。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算値である。
 本発明で使用可能なオキサゾリンポリマーは、上記モノマーを従来公知のラジカル重合にて合成することができるが、市販品として入手することもできる。そのような市販品としては、例えば、エポクロスWS-300((株)日本触媒製、固形分濃度10質量%、水溶液)、エポクロスWS-700((株)日本触媒製、固形分濃度25質量%、水溶液)、エポクロスWS-500((株)日本触媒製、固形分濃度39質量%、水/1-メトキシ-2-プロパノール溶液)、Poly(2-ethyl-2-oxazoline)(Aldrich)、Poly(2-ethyl-2-oxazoline)(AlfaAesar)、Poly(2-ethyl-2-oxazoline)(VWR International,LLC)等が挙げられる。
 なお、溶液として市販されている場合、そのまま使用しても、目的とする溶媒に置換してから使用してもよい。
 また、下記式(2)および(3)で表される、トリアリールアミン類とアルデヒド類および/またはケトン類とを酸性条件下で縮合重合することで得られるトリアリールアミン系高分岐ポリマーも好適に用いられる。
Figure JPOXMLDOC01-appb-C000024
 上記式(2)および(3)において、Ar1~Ar3は、それぞれ独立して、式(4)~(8)で表されるいずれかの二価の有機基を表すが、特に、式(4)で示される置換または非置換のフェニレン基が好ましい。
Figure JPOXMLDOC01-appb-C000025
 また、式(2)および(3)において、Z1およびZ2は、それぞれ独立して、水素原子、炭素数1~5の直鎖または分岐鎖状のアルキル基、または式(9)~(12)で表されるいずれかの一価の有機基を表す(ただし、Z1およびZ2が同時に上記アルキル基となることはない。)。
Figure JPOXMLDOC01-appb-C000026
 上記式(3)~(8)において、R101~R138は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~5の直鎖もしくは分岐鎖状のアルキル基、炭素数1~5の直鎖もしくは分岐鎖状のアルコキシ基、またはカルボキシル基、スルホ基、リン酸基、ホスホン酸基もしくはそれらの塩を表す。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 炭素数1~5の直鎖または分岐鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基等が挙げられる。
 炭素数1~5の直鎖または分岐鎖状のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペントキシ基等が挙げられる。
 カルボキシル基、スルホ基、リン酸基およびホスホン酸基の塩としては、ナトリウム、カリウム等のアルカリ金属塩;マグネシウム、カルシウム等の2族金属塩;アンモニウム塩;プロピルアミン、ジメチルアミン、トリエチルアミン、エチレンジアミン等の脂肪族アミン塩;イミダゾリン、ピペラジン、モルホリン等の脂環式アミン塩;アニリン、ジフェニルアミン等の芳香族アミン塩;ピリジニウム塩などが挙げられる。
 上記式(9)~(12)において、R139~R162は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~5の直鎖もしくは分岐鎖状のアルキル基、炭素数1~5の直鎖もしくは分岐鎖状のハロアルキル基、フェニル基、OR163、COR163、NR163164、COOR165(これらの式中、R163およびR164は、それぞれ独立して、水素原子、炭素数1~5の直鎖もしくは分岐鎖状のアルキル基、炭素数1~5の直鎖もしくは分岐鎖状のハロアルキル基、またはフェニル基を表し、R165は、炭素数1~5の直鎖もしくは分岐鎖状のアルキル基、炭素数1~5の直鎖もしくは分岐鎖状のハロアルキル基、またはフェニル基を表す。)、またはカルボキシル基、スルホ基、リン酸基、ホスホン酸基もしくはそれらの塩を表す。
 ここで、炭素数1~5の直鎖または分岐鎖状のハロアルキル基としては、ジフルオロメチル基、トリフルオロメチル基、ブロモジフルオロメチル基、2-クロロエチル基、2-ブロモエチル基、1,1-ジフルオロエチル基、2,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、2-クロロ-1,1,2-トリフルオロエチル基、ペンタフルオロエチル基、3-ブロモプロピル基、2,2,3,3-テトラフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル基、3-ブロモ-2-メチルプロピル基、4-ブロモブチル基、パーフルオロペンチル基等が挙げられる。
 なお、ハロゲン原子、炭素数1~5の直鎖または分岐鎖状のアルキル基としては、上記式(3)~(8)で例示した基と同様のものが挙げられる。
 Z1およびZ2としては、それぞれ独立して、水素原子、2-または3-チエニル基、式(9)で示される基が好ましく、特に、Z1およびZ2のいずれか一方が水素原子で、他方が、水素原子、2-または3-チエニル基、式(9)で示される基、特にR141がフェニル基のもの、またはR141がメトキシ基のものがより好ましい。
 なお、R141がフェニル基の場合、後述する酸性基導入法において、ポリマー製造後に酸性基を導入する手法を用いた場合、このフェニル基上に酸性基が導入される場合もある。
 特に、集電体との密着性をより向上させることを考慮すると、上記高分岐ポリマーは、式(2)または(3)で表される繰り返し単位の少なくとも1つの芳香環中に、カルボキシル基、スルホ基、リン酸基、ホスホン酸基、およびそれらの塩から選ばれる少なくとも1種の酸性基を有するものが好ましく、スルホ基またはその塩を有するものがより好ましい。
 上記高分岐ポリマーの製造に用いられるアルデヒド化合物としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、バレルアルデヒド、カプロンアルデヒド、2-メチルブチルアルデヒド、ヘキシルアルデヒド、ウンデシルアルデヒド、7-メトキシ-3,7-ジメチルオクチルアルデヒド、シクロヘキサンカルボキシアルデヒド、3-メチル-2-ブチルアルデヒド、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジピンアルデヒド等の飽和脂肪族アルデヒド類;アクロレイン、メタクロレイン等の不飽和脂肪族アルデヒド類;フルフラール、ピリジンアルデヒド、チオフェンアルデヒド等のヘテロ環式アルデヒド類;ベンズアルデヒド、トリルアルデヒド、トリフルオロメチルベンズアルデヒド、フェニルベンズアルデヒド、サリチルアルデヒド、アニスアルデヒド、アセトキシベンズアルデヒド、テレフタルアルデヒド、アセチルベンズアルデヒド、ホルミル安息香酸、ホルミル安息香酸メチル、アミノベンズアルデヒド、N,N-ジメチルアミノベンズアルデヒド、N,N-ジフェニルアミノベンズアルデヒド、ナフチルアルデヒド、アントリルアルデヒド、フェナントリルアルデヒド等の芳香族アルデヒド類、フェニルアセトアルデヒド、3-フェニルプロピオンアルデヒド等のアラルキルアルデヒド類などが挙げられるが、中でも、芳香族アルデヒド類を用いることが好ましい。
 また、上記高分岐ポリマーの製造に用いられるケトン化合物としては、アルキルアリールケトン、ジアリールケトン類であり、例えば、アセトフェノン、プロピオフェノン、ジフェニルケトン、フェニルナフチルケトン、ジナフチルケトン、フェニルトリルケトン、ジトリルケトン等が挙げられる。
 本発明に用いられる高分岐ポリマーは、例えば、国際公開第2014/042080号に記載された方法に従って製造することができる。
 上記高分岐ポリマーの平均分子量は特に限定されるものではないが、重量平均分子量が1,000~2,000,000が好ましく、2,000~1,000,000がより好ましい。
 具体的な高分岐ポリマーとしては、下記式で示されるものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000027
 本発明において、CNTと分散剤との混合比率は、質量比で1,000:1~1:100程度とすることができる。
 また、上記分散剤の添加量は、CNTを溶媒に分散させ得る濃度であれば特に限定さないが、導電性炭素材料100質量部に対して好ましくは5~700質量部、より好ましくは10~500質量部、より一層好ましくは20~300質量部である。
 本発明の組成物には、本発明の効果を損なわない範囲で、用いる分散剤と架橋反応を起こす架橋剤や、自己架橋する架橋剤を含んでいてもよい。これらの架橋剤は、使用する溶媒に溶解することが好ましい。
 トリアリールアミン系高分岐ポリマーの架橋剤としては、例えば、メラミン系、置換尿素系、またはそれらのポリマー系架橋剤等が挙げられ、これら架橋剤は、それぞれ単独で、または2種以上混合して用いることができる。なお、好ましくは、少なくとも2個の架橋形成置換基を有する架橋剤であり、CYMEL(登録商標)、メトキシメチル化グリコールウリル、ブトキシメチル化グリコールウリル、メチロール化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メチロール化メラミン、メトキシメチル化ベンゾグアナミン、ブトキシメチル化ベンゾグアナミン、メチロール化ベンゾグアナミン、メトキシメチル化尿素、ブトキシメチル化尿素、メチロール化尿素、メトキシメチル化チオ尿素、メトキシメチル化チオ尿素、メチロール化チオ尿素等の化合物、およびこれらの化合物の縮合体が例として挙げられる。
 オキサゾリンポリマーの架橋剤としては、例えば、カルボキシル基、水酸基、チオール基、アミノ基、スルフィン酸基、エポキシ基等のオキサゾリン基との反応性を有する官能基を2個以上有する化合物であれば特に限定されるものではないが、カルボキシル基を2個以上有する化合物が好ましい。なお、薄膜形成時の加熱や、酸触媒の存在下で上記官能基が生じて架橋反応を起こす官能基、例えば、カルボン酸のナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩等を有する化合物も架橋剤として用いることができる。
 オキサゾリン基と架橋反応を起こす化合物の具体例としては、酸触媒の存在下で架橋反応性を発揮する、ポリアクリル酸やそのコポリマー等の合成高分子およびカルボキシメチルセルロースやアルギン酸といった天然高分子の金属塩、加熱により架橋反応性を発揮する、上記合成高分子および天然高分子のアンモニウム塩等が挙げられるが、特に、酸触媒の存在下や加熱条件下で架橋反応性を発揮するポリアクリル酸ナトリウム、ポリアクリル酸リチウム、ポリアクリル酸アンモニウム、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースリチウム、カルボキシメチルセルロースアンモニウム等が好ましい。
 このようなオキサゾリン基と架橋反応を起こす化合物は、市販品として入手することもでき、そのような市販品としては、例えば、ポリアクリル酸ナトリウム(富士フイルム和光純薬(株)製、重合度2,700~7,500)、カルボキシメチルセルロースナトリウム(富士フイルム和光純薬(株)製)、アルギン酸ナトリウム(関東化学(株)製、鹿1級)、アロンA-30(ポリアクリル酸アンモニウム、東亞合成(株)製、固形分濃度32質量%、水溶液)、DN-800H(カルボキシメチルセルロースアンモニウム、ダイセルファインケム(株)製)アルギン酸アンモニウム((株)キミカ製)等が挙げられる。
 自己架橋する架橋剤としては、例えば、水酸基に対してアルデヒド基、エポキシ基、ビニル基、イソシアネート基、アルコキシ基、カルボキシル基に対してアルデヒド基、アミノ基、イソシアネート基、エポキシ基、アミノ基に対してイソシアネート基、アルデヒド基などの、互いに反応する架橋性官能基を同一分子内に有している化合物や、同じ架橋性官能基同士で反応する水酸基(脱水縮合)、メルカプト基(ジスルフィド結合)、エステル基(クライゼン縮合)、シラノール基(脱水縮合)、ビニル基、アクリル基などを有している化合物などが挙げられる。
 自己架橋する架橋剤の具体例としては、酸触媒の存在下で架橋反応性を発揮する多官能アクリレート、テトラアルコキシシラン、ブロックイソシアネート基を有するモノマーおよび水酸基、カルボン酸、アミノ基の少なくとも1つを有するモノマーのブロックコポリマーなどが挙げられる。
 このような自己架橋する架橋剤は、市販品として入手することもでき、そのような市販品としては、例えば、多官能アクリレートでは、A-9300(エトキシ化イソシアヌル酸トリアクリレート、新中村化学工業(株)製)、A-GLY-9E(Ethoxylated glycerine triacrylate(EO9mol)、新中村化学工業(株)製)、A-TMMT(ペンタエリスリトールテトラアクリレート、新中村化学工業(株)製)、テトラアルコキシシランでは、テトラメトキシシラン(東京化成工業(株)製)、テトラエトキシシラン(東横化学(株)製)、ブロックイソシアネート基を有するポリマーでは、エラストロンシリーズE-37、H-3、H38、BAP、NEW BAP-15、C-52、F-29、W-11P、MF-9、MF-25K(第一工業製薬(株)製)等が挙げられる。
 架橋剤を添加する場合、その添加量は、使用する溶媒、使用する基材、要求される粘度、要求される膜形状等により変動するが、導電性炭素材料100質量部に対して好ましくは5~1,000質量部、より好ましくは10~800質量部、より一層好ましくは20~500質量部である。これら架橋剤は、自己縮合による架橋反応を起こすこともあるが、分散剤と架橋反応を起こすものであり、分散剤中に架橋性置換基が存在する場合はそれらの架橋性置換基により架橋反応が促進される。
 本発明の組成物の調製に用いる溶媒としては、特に限定されず、水または親水性溶媒が挙げられる。親水性溶媒とは水と任意に混合する有機溶媒であり、例えば、テトラヒドロフラン(THF)等のエーテル類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)等のアミド類;アセトン等のケトン類;メタノール、エタノール、n-プロパノール、イソプロパノール等のアルコール類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;エチレングリコール、プロピレングリコール等のグリコール類等の有機溶媒が挙げられる。これらの溶媒は、1種単独でまたは2種以上を混合して用いることができる。特に、CNTの孤立分散の割合を向上させ得るという点から、水、NMP、DMF、THF、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、t-ブタノールが好ましい。また塗工性を向上させ得るという点から、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、t-ブタノール、エチレングリコールモノブチルエーテルを含むことが好ましい。またコストを下げ得るという点からは、水を含むことが好ましい。これらの溶媒は、孤立分散の割合を増やすこと、塗工性を上げること、コストを下げることを目的として、1種単独でまたは2種以上を混合して用いることができる。
 本発明の組成物には、マトリックスとなるポリマーを添加してもよい。マトリックスポリマーとしては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体〔P(VDF-HFP)〕、フッ化ビニリデン-塩化3フッ化エチレン共重合体〔P(VDF-CTFE)〕等のフッ素系樹脂;ポリビニルピロリドン、エチレン-プロピレン-ジエン三元共重合体、PE(ポリエチレン)、PP(ポリプロピレン)、EVA(エチレン-酢酸ビニル共重合体)、EEA(エチレン-アクリル酸エチル共重合体)等のポリオレフィン系樹脂;PS(ポリスチレン)、HIPS(ハイインパクトポリスチレン)、AS(アクリロニトリル-スチレン共重合体)、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)、MS(メタクリル酸メチル-スチレン共重合体)、スチレン-ブタジエンゴム等のポリスチレン系樹脂;ポリカーボネート樹脂;塩化ビニル樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリアクリル酸ナトリウム、PMMA(ポリメチルメタクリレート)等の(メタ)アクリル樹脂;PET(ポリエチレンテレフタレート)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、PLA(ポリ乳酸)、ポリ-3-ヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート/アジペート等のポリエステル樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンサルファイド樹脂;ポリビニルアルコール樹脂;ポリグルコール酸;変性でんぷん;酢酸セルロース、カルボキシメチルセルロース、三酢酸セルロース;キチン、キトサン;リグニン等の熱可塑性樹脂や、ポリアニリンおよびその半酸化体であるエメラルジンベース;ポリチオフェン;ポリピロール;ポリフェニレンビニレン;ポリフェニレン;ポリアセチレン等の導電性高分子、さらにはエポキシ樹脂;ウレタンアクリレート;フェノール樹脂;メラミン樹脂;尿素樹脂;アルキド樹脂等の熱硬化性樹脂や光硬化性樹脂などが挙げられる。これらのうち、本発明の導電性炭素材料分散液においては、溶媒として水を用いることが好適であることから、マトリックスポリマーとしても水溶性のもの、例えば、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウム、水溶性セルロースエーテル、アルギン酸ナトリウム、ポリビニルアルコール、ポリスチレンスルホン酸、ポリエチレングリコール等が挙げられるが、特に、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウム等が好適である。
 マトリックスポリマーは、市販品として入手することもでき、そのような市販品としては、例えば、ポリアクリル酸ナトリウム(富士フイルム和光純薬(株)製、重合度2,700~7,500)、カルボキシメチルセルロースナトリウム(富士フイルム和光純薬(株)製)、アルギン酸ナトリウム(関東化学(株)製、鹿1級)、メトローズSHシリーズ(ヒドロキシプロピルメチルセルロース、信越化学工業(株)製)、メトローズSEシリーズ(ヒドロキシエチルメチルセルロース、信越化学工業(株)製)、JC-25(完全ケン化型ポリビニルアルコール、日本酢ビ・ポバール(株)製)、JM-17(中間ケン化型ポリビニルアルコール、日本酢ビ・ポバール(株)製)、JP-03(部分ケン化型ポリビニルアルコール、日本酢ビ・ポバール(株)製)、ポリスチレンスルホン酸(Aldrich社製、固形分濃度18質量%、水溶液)等が挙げられる。
 マトリックスポリマーを添加する場合、その添加量は、特に限定されるものではないが、組成物中に、0.0001~99質量%程度とすることが好ましく、0.001~90質量%程度とすることがより好ましい。
 本発明の組成物の調製法は、特に限定されるものではないが、CNT、分散剤、溶媒およびP1ポリマー、並びに必要に応じて用いられるマトリックスポリマー等を任意の順序で混合して分散液を調製すればよい。この際、P1ポリマーがカルボキシ基等の架橋反応性基を有していて、この架橋反応性基と分散剤との間で意図しない架橋反応が起こることが懸念される場合は、上記架橋反応性基の一部または全部をアンモニア等の塩基で中和してもよい。また、混合物を分散処理することが好ましく、この処理により、CNTの分散割合をより向上させることができる。分散処理としては、機械的処理である、ボールミル、ビーズミル、ジェットミル等を用いる湿式処理や、バス型やプローブ型のソニケータを用いる超音波処理が挙げられるが、特に、ジェットミルを用いた湿式処理や超音波処理が好適である。
 分散処理の時間は任意であるが、1分から10時間程度が好ましく、5分から5時間程度がより好ましい。この際、必要に応じて加熱処理を施しても構わない。
 なお、マトリックスポリマー等の任意成分を用いる場合、これらは、CNT、分散剤および溶媒からなる混合物を調製した後から加えてもよい。
 本発明において、組成物の固形分濃度は、特に限定されるものではないが、所望の目付量や膜厚でアンダーコート層を形成することを考慮すると、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がより一層好ましく、5質量%以下が更に好ましい。また、その下限は、任意であるが、実用的な観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上がより一層好ましい。
 なお、固形分とは、組成物を構成する溶媒以外の成分の総量である。
 以上で説明した組成物を集電体の少なくとも一方の面に塗布し、これを自然または加熱乾燥し、アンダーコート層を形成してアンダーコート箔(複合集電体)を作製することができる。
 上記集電体としては、従来、エネルギー貯蔵デバイス用電極の集電体として用いられているものを使用することができる。例えば、銅、アルミニウム、チタン、ステンレス、ニッケル、金、銀およびこれらの合金や、カーボン材料、金属酸化物、導電性高分子等を用いることができるが、超音波溶接等の溶接を適用して電極構造体を作製する場合、銅、アルミニウム、チタン、ステンレスまたはこれらの合金からなる金属箔を用いることが好ましい。集電体の厚みは、特に限定されるものではないが、本発明においては、1~100μmが好ましい。
 組成物の塗布方法としては、例えば、スピンコート法、ディップコート法、フローコート法、インクジェット法、キャスティング法、スプレーコート法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、フレキソ印刷法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法、ダイコート法等が挙げられるが、作業効率等の点から、インクジェット法、キャスティング法、ディップコート法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、ダイコート法が好適である。加熱乾燥する場合の温度も任意であるが、50~200℃程度が好ましく、80~150℃程度がより好ましい。
 アンダーコート層の厚みは、得られるデバイスの内部抵抗を低減することを考慮すると、1nm~10μmが好ましく、1nm~1μmがより好ましく、1~500nmがより一層好ましい。アンダーコート層の膜厚は、例えば、アンダーコート箔から適当な大きさの試験片を切り出し、それを手で裂く等の手法により断面を露出させ、走査電子顕微鏡(SEM)等の顕微鏡観察により、断面部分でアンダーコート層が露出した部分から求めることができる。
 集電体の一面あたりのアンダーコート層の目付量は、上記膜厚を満たす限り特に限定されるものではないが、1,000mg/m2以下が好ましく、500mg/m2以下がより好ましく、300mg/m2以下がより一層好ましく、200/m2以下がさらに好ましい。一方、アンダーコート層の機能を担保して優れた特性の電池を再現性よく得るため、集電体の一面あたりのアンダーコート層の目付量を好ましくは1mg/m2以上、より好ましくは5mg/m2以上、より一層好ましくは10mg/m2以上、さらに好ましくは15mg/m2以上とする。
 なお、アンダーコート層の目付量は、アンダーコート層の面積(m2)に対するアンダーコート層の質量(mg)の割合であり、アンダーコート層がパターン状に形成されている場合、当該面積はアンダーコート層のみの面積であり、パターン状に形成されたアンダーコート層の間に露出する集電体の面積を含まない。
 アンダーコート層の質量は、例えば、アンダーコート箔から適当な大きさの試験片を切り出し、その質量W0を測定し、その後、アンダーコート箔からアンダーコート層を剥離し、アンダーコート層を剥離した後の質量W1を測定し、その差(W0-W1)から算出する、あるいは、予め集電体の質量W2を測定しておき、その後、アンダーコート層を形成したアンダーコート箔の質量W3を測定し、その差(W3-W2)から算出することができる。アンダーコート層を剥離する方法としては、例えばアンダーコート層が溶解、もしくは膨潤する溶剤に、アンダーコート層を浸漬させ、布等でアンダーコート層をふき取るなどの方法が挙げられる。
 目付量や膜厚は、公知の方法で調整することができる。例えば、塗布によりアンダーコート層を形成する場合、アンダーコート層を形成するための塗工液(アンダーコート層形成用組成物)の固形分濃度、塗布回数、塗工機の塗工液投入口のクリアランス等を変えることで調整できる。目付量や膜厚を多くしたい場合は、固形分濃度を高くしたり、塗布回数を増やしたり、クリアランスを大きくしたりする。目付量や膜厚を少なくしたい場合は、固形分濃度を低くしたり、塗布回数を減らしたり、クリアランスを小さくしたりする。
 本発明のエネルギー貯蔵デバイス用電極は、上記アンダーコート層上に、電極合材層を形成して作製することができる。本発明におけるエネルギー貯蔵デバイスとしては、例えば、電気二重層キャパシタ、リチウム二次電池、リチウムイオン二次電池、プロトンポリマー電池、ニッケル水素電池、アルミ固体コンデンサ、電解コンデンサ、鉛蓄電池等の各種エネルギー貯蔵デバイスが挙げられるが、本発明のアンダーコート箔は、特に、電気二重層キャパシタ、リチウムイオン二次電池に好適に用いることができる。
 電極合材層は、活物質、バインダーポリマーおよび必要に応じて溶媒を合わせて作製した電極スラリーを、アンダーコート層上に塗布し、自然または加熱乾燥して形成することができる。
 活物質としては、従来、エネルギー貯蔵デバイス用電極に用いられている各種活物質を用いることができる。例えば、リチウム二次電池やリチウムイオン二次電池の場合、正極活物質としてリチウムイオンを吸着・離脱可能なカルコゲン化合物またはリチウムイオン含有カルコゲン化合物、ポリアニオン系化合物、硫黄単体およびその化合物等を用いることができる。
 このようなリチウムイオンを吸着離脱可能なカルコゲン化合物としては、例えば、FeS2、TiS2、MoS2、V26、V613、MnO2等が挙げられる。
 リチウムイオン含有カルコゲン化合物としては、例えば、LiCoO2、LiMnO2、LiMn24、LiMo24、LiV38、LiNiO2、LixNiy1-y2(但し、Mは、Co、Mn、Ti、Cr、V、Al、Sn、Pb、およびZnから選ばれる少なくとも1種以上の金属元素を表し、0.05≦x≦1.10、0.5≦y≦1.0)等が挙げられる。
 ポリアニオン系化合物としては、例えば、LiFePO4等が挙げられる。
 硫黄化合物としては、例えば、Li2S、ルベアン酸等が挙げられる。
 一方、上記負極を構成する負極活物質としては、アルカリ金属、アルカリ合金、リチウムイオンを吸蔵・放出する周期表4~15族の元素から選ばれる少なくとも1種の単体、酸化物、硫化物、窒化物、またはリチウムイオンを可逆的に吸蔵・放出可能な炭素材料を使用することができる。
 アルカリ金属としては、Li、Na、K等が挙げられ、アルカリ金属合金としては、例えば、Li-Al、Li-Mg、Li-Al-Ni、Na-Hg、Na-Zn等が挙げられる。
 リチウムイオンを吸蔵放出する周期表4~15族の元素から選ばれる少なくとも1種の元素の単体としては、例えば、ケイ素やスズ、アルミニウム、亜鉛、砒素等が挙げられる。
 同じく酸化物としては、一酸化ケイ素(SiO)、二酸化ケイ素(SiO2)、スズケイ素酸化物(SnSiO3)、リチウム酸化ビスマス(Li3BiO4)、リチウム酸化亜鉛(Li2ZnO2)、リチウム酸化チタン(Li4Ti512)、酸化チタン等が挙げられる。
 同じく硫化物としては、リチウム硫化鉄(LixFeS2(0≦x≦3))、リチウム硫化銅(LixCuS(0≦x≦3))等が挙げられる。
 同じく窒化物としては、リチウム含有遷移金属窒化物が挙げられ、具体的には、LixyN(M=Co、Ni、Cu、0≦x≦3、0≦y≦0.5)、リチウム鉄窒化物(Li3FeN4)等が挙げられる。
 リチウムイオンを可逆的に吸蔵・放出可能な炭素材料としては、グラファイト、カーボンブラック、コークス、ガラス状炭素、炭素繊維、カーボンナノチューブ、またはこれらの焼結体等が挙げられる。
 また、電気二重層キャパシタの場合、活物質として炭素質材料を用いることができる。
 この炭素質材料としては、活性炭等が挙げられ、例えば、フェノール樹脂を炭化後、賦活処理して得られた活性炭が挙げられる。
 バインダーポリマーとしては、公知の材料から適宜選択して用いることができ、例えば、ポリフッ化ビニリデン(PVdF)、ポリビニルピロリドン、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体〔P(VDF-HFP)〕、フッ化ビニリデン-塩化3フッ化エチレン共重合体〔P(VDF-CTFE)〕、ポリビニルアルコール、ポリイミド、エチレン-プロピレン-ジエン三元共重合体、スチレン-ブタジエンゴム、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PAA)、ポリアニリン、ポリイミド、ポリアミドが挙げられる。なお、バインダーポリマーの添加量は、活物質100質量部に対して、0.1~40質量部、特に、1~30質量部が好ましい。
 溶媒としては、上記組成物用の溶媒で例示した溶媒が挙げられ、それらの中からバインダーの種類に応じて適宜選択すればよいが、PVdF等の非水溶性のバインダーの場合はNMPが好適であり、PAA等の水溶性のバインダーの場合は水が好適である。
 なお、上記電極スラリーは、導電材を含んでいてもよい。導電材としては、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウイスカー、炭素繊維、天然黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム、アルミニウム、ニッケル等が挙げられる。
 電極スラリーの塗布方法としては、上述した組成物の塗布方法と同様の手法が挙げられる。
 また、加熱乾燥する場合の温度も任意であるが、50~400℃程度が好ましく、80~150℃程度がより好ましい。
 電極は、必要に応じてプレスしてもよい。このとき、プレス圧力は30kN/cm以下が好ましい。プレス法は、一般に採用されている方法を用いることができるが、特に金型プレス法やロールプレス法が好ましい。また、プレス圧力は、特に限定されるものではないが、10kN/cm以下が好ましく、5kN/cm以下がより好ましい。
 本発明に係るエネルギー貯蔵デバイスは、上述したエネルギー貯蔵デバイス用電極を備えたものであり、より具体的には、少なくとも一対の正負極と、これら各極間に介在するセパレータと、電解質とを備えて構成され、正負極の少なくとも一方が、上述したエネルギー貯蔵デバイス用電極から構成される。
 このエネルギー貯蔵デバイスは、電極として上述したエネルギー貯蔵デバイス用電極を用いることにその特徴があるため、その他のデバイス構成部材であるセパレータや、電解質などは、公知の材料から適宜選択して用いることができる。セパレータとしては、例えば、セルロース系セパレータ、ポリオレフィン系セパレータ等が挙げられる。
 電解質としては、液体、固体のいずれでもよく、また水系、非水系のいずれでもよいが、本発明のエネルギー貯蔵デバイス用電極は、非水系電解質を用いたデバイスに適用した場合にも実用上十分な性能を発揮させ得る。非水系電解質としては、電解質塩を非水系有機溶媒に溶かしてなる非水系電解液が挙げられる。
 電解質塩としては、4フッ化硼酸リチウム、6フッ化リン酸リチウム、過塩素酸リチウム、トリフルオロメタンスルホン酸リチウム等のリチウム塩;テトラメチルアンモニウムヘキサフルオロホスフェート、テトラエチルアンモニウムヘキサフルオロホスフェート、テトラプロピルアンモニウムヘキサフルオロホスフェート、メチルトリエチルアンモニウムヘキサフルオロホスフェート、テトラエチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムパークロレート等の4級アンモニウム塩、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド等のリチウムイミドなどが挙げられる。
 非水系有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等のアルキレンカーボネート;ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート;アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類などが挙げられる。
 エネルギー貯蔵デバイスの形態は、特に限定されるものではなく、円筒型、扁平巻回角型、積層角型、コイン型、扁平巻回ラミネート型、積層ラミネート型等の従来公知の各種形態のセルを採用することができる。
 コイン型に適用する場合、上述した本発明のエネルギー貯蔵デバイス用電極を、所定の円盤状に打ち抜いて用いればよい。例えば、リチウムイオン二次電池は、コインセルのワッシャーとスペーサーが溶接されたフタに、一方の電極を設置し、その上に、電解液を含浸させた同形状のセパレータを重ね、さらに上から、電極合材層を下にして本発明のエネルギー貯蔵デバイス用電極を重ね、ケースとガスケットを載せて、コインセルかしめ機で密封して作製することができる。
 積層ラミネート型に適用する場合、電極合材層がアンダーコート層表面の一部または全面に形成された電極における、電極合材層が形成されていない部分(溶接部)で金属タブと溶接して得られた電極構造体を用いればよい。この場合、電極構造体を構成する電極は一枚でも複数枚でもよいが、一般的には、正負極とも複数枚が用いられる。正極を形成するための複数枚の電極は、負極を形成するための複数枚の電極と、一枚ずつ交互に重ねることが好ましく、その際、正極と負極の間には上述したセパレータを介在させることが好ましい。
 金属タブは、複数枚の電極の最も外側の電極の溶接部で溶接しても、複数枚の電極のうち、任意の隣接する2枚の電極の溶接部間に金属タブを挟んで溶接してもよい。金属タブの材質は、一般的にエネルギー貯蔵デバイスに使用されるものであれば、特に限定されるものではなく、例えば、ニッケル、アルミニウム、チタン、銅等の金属;ステンレス、ニッケル合金、アルミニウム合金、チタン合金、銅合金等の合金などが挙げられるが、溶接効率を考慮すると、アルミニウム、銅およびニッケルから選ばれる少なくとも1種の金属を含んで構成されるものが好ましい。金属タブの形状は、箔状が好ましく、その厚さは0.05~1mm程度が好ましい。
 溶接方法は、金属同士の溶接に用いられる公知の方法を用いることができ、その具体例としては、TIG溶接、スポット溶接、レーザー溶接、超音波溶接等が挙げられるが、超音波溶接にて電極と金属タブとを接合することが好ましい。超音波溶接の手法としては、例えば、複数枚の電極をアンビルとホーンとの間に配置し、溶接部に金属タブを配置して超音波をかけて一括して溶接する手法や、電極同士を先に溶接し、その後、金属タブを溶接する手法等が挙げられる。
 本発明では、いずれの手法でも、金属タブと電極とが上記溶接部で溶接されるだけでなく、複数枚の電極同士も互いに超音波溶接されることになる。溶接時の圧力、周波数、出力、処理時間等は、特に限定されるものではなく、用いる材料やアンダーコート層の有無、目付量等を考慮して適宜設定すればよい。
 以上のようにして作製した電極構造体を、ラミネートパックに収納し、上述した電解液を注入した後、ヒートシールすることでラミネートセルが得られる。
 以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、用いた装置は以下のとおりである。
(1)凍結乾燥機(化合物の乾燥)
 東京理化器械(株)製、FDU-2100
(2)プローブ型超音波照射装置
 Hielscher Ultrasonics社製、UIP1000
(3)ワイヤーバーコーター(アンダーコート層形成)
 (株)エスエムテー製、PM-9050MC
(4)ホモディスパー(電極スラリーの混合)
 プライミクス(株)製、T.K.ロボミックス(ホモディスパー2.5型(φ32)付き)
(5)ビーズミル(電極スラリーの混合)
 三菱電機(株)製、FREQROL-E500
(6)薄膜旋回型高速ミキサー(電極スラリーの混合)
 プライミクス(株)製、フィルミクス40型
(7)自転・公転ミキサー(電極スラリーの脱泡)
 (株)シンキー製、あわとり練太郎(ARE-310)
(8)ロールプレス機(電極の圧縮)
 有限会社タクミ技研製、SA-602
(9)粘着・皮膜剥離解析装置(密着力測定)
 協和界面科学(株)製、VPA-3
(10)超音波溶着機(電極タブの溶接)
 日本エマソン(株)製、2000X
(11)卓上型・手動・厚物ガゼット袋用シーラー(ラミセルのシール)
 富士インパルス(株)製、T-230K
(12)真空パック機(ラミセルの真空シール)
 (株)TOSEI製、V-307G II
(13)充放電測定装置(二次電池評価)
 Scribner Associates Inc製、580 battery test system
(14)サイズ排除クロマトグラフィ(SEC)(重量平均分子量の推定)
 (株)島津製作所製、高速液体クロマトグラフ Prominence
 溶離液:5mM四ホウ酸ナトリウム十水和物(pH9.3)
 カラム:東ソー(株)製、TSK gel α6000+東ソー(株)製、TSK gel α4000
 カラム温度:40℃
 検出器:UV(210nm)
 流速:0.5mL/min
 サンプル濃度:0.1%(10μL注入)
[1-1]P1ポリマーの合成
[合成例1]化合物1の合成
 イソバン10((株)クラレ製、Mw:160,000~170,000(カタログ値))2.50gをNMP中、80℃で攪拌し、溶解したことを確認し、40℃まで放冷した。N,N-ジメチル-1,3-プロパンジアミン(東京化成工業(株)製)3.31g(イソバン10の繰り返し単位1モルに対して2モル)とNMP29.80gとの混合物を滴下し、80℃で3時間半攪拌を行いながら反応させた。反応後、40℃まで放冷させ、アンモニア水(28%)(純正化学(株)製、純正一級)1.62gを加え1時間攪拌を行って、ポリマー溶液を得た。2-ブタノン(純正化学(株)製、純正一級):ヘキサン(純正化学(株)製、試薬特級)=3:5(質量比)で再沈殿後、減圧濾過を行った。水に再溶解後、ダイアライシスメンブラン(富士フイルム和光純薬(株)製、サイズ36)で1週間透析を行い、15時間以上の凍結乾燥を経て化合物1を得た。
[合成例2]化合物2の合成
 イソバン10((株)クラレ製、Mw:160,000~170,000(カタログ値))2.50gをNMP中、80℃で攪拌し、溶解したことを確認し、40℃まで放冷した。1-(3-アミノプロピル)イミダゾール(東京化成工業(株)製)4.06g(イソバン10の繰り返し単位1モルに対して2モル)とNMP36.50gとの混合物を滴下し、80℃で3時間半攪拌を行いながら反応させた。反応後、40℃まで放冷させ、アンモニア水(28%)(純正化学(株)製、純正一級)1.62gを加え1時間攪拌を行って、ポリマー溶液を得た。2-ブタノン(純正化学(株)製、純正一級):ヘキサン(純正化学(株)製、試薬特級)=3:5(質量比)で再沈殿後、減圧濾過を行った。水に再溶解後、ダイアライシスメンブラン(富士フイルム和光純薬(株)製、サイズ36)で1週間透析を行い、15時間以上の凍結乾燥を経て化合物2を得た。
[合成例3]化合物3の合成
 イソバン18((株)クラレ製、Mw:300,000~350,000(カタログ値))2.50gをNMP中、80℃で攪拌し、溶解したことを確認し、40℃まで放冷した。N,N-ジメチル-1,3-プロパンジアミン(東京化成工業(株)製)3.31g(イソバン10の繰り返し単位1モルに対して2モル)とNMP29.80gとの混合物を滴下し、80℃で3時間半攪拌を行いながら反応させた。反応後、40℃まで放冷させ、アンモニア水(28%)(純正化学(株)製、純正一級)1.62gを加え1時間攪拌を行って、ポリマー溶液を得た。2-ブタノン(純正化学(株)製、純正一級):ヘキサン(純正化学(株)製、試薬特級)=3:5(質量比)で再沈殿後、減圧濾過を行った。水に再溶解後、ダイアライシスメンブラン(富士フイルム和光純薬(株)製、サイズ36)で1週間透析を行い、15時間以上の凍結乾燥を経て化合物3を得た。
[1-2]導電性炭素材料分散液の調製
[製造例1]分散液1の調製
 導電性炭素材料であるTC-2010(戸田工業(株)製、多層CNT)0.5g(100質量部)と、オキサゾリンポリマーを含む水溶液であるWS-300(日本触媒(株)製、固形分濃度:10.0質量%)5.0g(100質量部)と、純水37.15gと、2-プロパノール(純正化学(株)製、試薬特級)7.35gとを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて30分超音波処理を行い、均一に導電性炭素材料が分散した分散液1を調製した。
[製造例2]分散液2の調製
 導電性炭素材料であるTC-2010(戸田工業(株)製、多層CNT)0.5g(100質量部)と、オキサゾリンポリマーを含む水溶液であるWS-700(日本触媒(株)製、固形分濃度:25.0質量%)2.0g(100質量部)と、純水40.15gと、2-プロパノール(純正化学(株)製、試薬特級)7.35gとを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて30分超音波処理を行い、均一に導電性炭素材料が分散した分散液2を調製した。
[製造例3]分散液3の調製
 導電性炭素材料であるFloTube 6121(Jiangsu Cnano Technology Co., Ltd.製、多層CNT)0.5g(100質量部)と、オキサゾリンポリマーを含む水溶液であるWS-300(日本触媒(株)製、固形分濃度:10.0質量%)5.0g(100質量部)と、純水37.15gと、2-プロパノール(純正化学(株)製、試薬特級)7.35gとを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて30分超音波処理を行い、均一に導電性炭素材料が分散した分散液3を調製した。
[製造例4]分散液4の調製
 導電性炭素材料であるFloTube 6121(Jiangsu Cnano Technology Co., Ltd.製、多層CNT)0.5g(100質量部)と、オキサゾリンポリマーを含む水溶液であるWS-700(日本触媒(株)製、固形分濃度:25.0質量%)2.0g(100質量部)と、純水40.15gと、2-プロパノール(純正化学(株)製、試薬特級)7.35gとを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて30分超音波処理を行い、均一に導電性炭素材料が分散した分散液4を調製した。
[製造例5]分散液5の調製
 高分岐ポリマー(PTPA)を国際公開第2014/042080号の合成例1の方法に従って合成した。導電性炭素材料であるTC-2010(戸田工業(株)製、多層CNT)0.5g(100質量部)と、PTPA0.5g(100質量部)と、N-メチルピロリドンNMP(純正化学(株)製、試薬特級)39.20gと、ブチルセロソルブ(純正化学(株)製、試薬特級)9.80gとを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて30分超音波処理を行い、均一に導電性炭素材料が分散した分散液5を調製した。
[1-3]薄膜形成用組成物の調製
[実施例1-1]
 分散液1に化合物1を50質量部と、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を1質量%とした薄膜形成用組成物A1を調製した。この際、最終的な溶媒の混合比は、純水:2-プロパノール=92:8(質量比)とした。薄膜形成用組成物A1は、CNTが均一に分散した黒色のインクだった。
[実施例1-2~1-4]
 それぞれP1ポリマーの配合量を表1に示したとおりに変更し、固形分濃度を1質量%に調整した以外は、実施例1-1と同様にして薄膜形成用組成物A2~A4を調製した。薄膜形成用組成物A2~A4は、いずれもCNTが均一に分散した黒色のインクだった。
 薄膜形成用組成物A1~A4の組成を表1にまとめた。
Figure JPOXMLDOC01-appb-T000028
[実施例2-1]
 化合物1を100質量部と、架橋剤であるアロンA-30(東亞合成(株)製、固形分濃度:31.6質量%)50質量部と、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を1質量%とした薄膜形成用組成物B1を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=92:8(質量比)とした。
[実施例2-2]
 アロンA-30の配合量を100質量部に変更し、固形分濃度を1質量%に調整した以外は、実施例2-1と同様にして薄膜形成用組成物B2を調製した。
 薄膜形成用組成物B1およびB2の組成を表2にまとめた。
Figure JPOXMLDOC01-appb-T000029
[実施例3-1]
 化合物1を化合物2に変更した以外は、実施例1-4と同様にして薄膜形成用組成物C1を調製した。
 薄膜形成用組成物C1の組成を表3にまとめた。
Figure JPOXMLDOC01-appb-T000030
[比較例1-1]
 化合物1をイソバン110((株)クラレ製)に変更した以外は、実施例1-1と同様にして薄膜形成用組成物a1を調製した。
[比較例1-2~1-4]
 化合物2をP1ポリマーの比較品であるイソバン110に変えて、それぞれの配合量を表4に示したとおりに変更し、固形分濃度を1質量%に調整した以外は、比較例1-1と同様にして薄膜形成用組成物a2~a4を調製した。
 薄膜形成用組成物a1~a4の組成を表4にまとめた。
Figure JPOXMLDOC01-appb-T000031
[比較例2-1]
 分散液1にアロンA-30を76質量部と、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を1質量%とした薄膜形成用組成物b1を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=85:15(質量比)とした。
[比較例2-2]
 アロンA-30の配合量を500質量部に変更し、固形分濃度を1質量%に調整した以外は、比較例2-1と同様にして薄膜形成用組成物b2を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=92:8(質量比)とした。
[比較例2-3]
 分散液1にアロンA-30を添加せず、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を1質量%とした以外は、比較例2-1と同様にして薄膜形成用組成物b3を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=92:8(質量比)とした。
 薄膜形成用組成物b1~b3の組成を表5にまとめた。
Figure JPOXMLDOC01-appb-T000032
[実施例4-1]
 分散液2に化合物1を50質量部と、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を1質量%とした薄膜形成用組成物D1を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=92:8(質量比)とした。
[実施例4-2~4-4]
 それぞれP1ポリマーの配合量を表5に示したとおりに変更し、固形分濃度を1質量%に調整した以外は、実施例4-1と同様にして薄膜形成用組成物D2~D4を調製した。
 薄膜形成用組成物D1~D4の組成を表6にまとめた。
Figure JPOXMLDOC01-appb-T000033
[比較例3-1]
 分散液2にアロンA-30を44質量部と、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を1質量%とした薄膜形成用組成物c1を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=85:15(質量比)とした。
[比較例3-2]
 アロンA-30の配合量を500質量部に変更し、固形分濃度を1質量%に調整した以外は、比較例2-1と同様にして薄膜形成用組成物c2を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=92:8(質量比)とした。
 薄膜形成用組成物c1、c2の組成を表7にまとめた。
Figure JPOXMLDOC01-appb-T000034
[実施例5-1]
 分散液3に化合物1を100質量部と、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を1質量%とした薄膜形成用組成物E1を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=92:8(質量比)とした。
[実施例5-2、5-3]
 それぞれP1ポリマーの配合量を表7に示したとおりに変更し、固形分濃度を1質量%に調整した以外は、実施例5-1と同様にして薄膜形成用組成物E2およびE3を調製した。
 薄膜形成用組成物E1~E3の組成を表8にまとめた。
Figure JPOXMLDOC01-appb-T000035
[実施例6-1]
 分散液4に化合物1を50質量部と、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を1質量%とした薄膜形成用組成物F1を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=92:8(質量比)とした。
[実施例6-2~6-4]
 それぞれP1ポリマーの配合量を表8に示したとおりに変更し、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を1質量%に調整した以外は、実施例6-1と同様にして薄膜形成用組成物F2~F4を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=92:8(質量比)とした。
 薄膜形成用組成物F1~F3の組成を表9にまとめた。
Figure JPOXMLDOC01-appb-T000036
[実施例7-1]
 分散液5に化合物3を100質量部と、NMPと、ブチルセロソルブ(純正化学(株)製、試薬特級)とを混合し、固形分濃度を1質量%とした薄膜形成用組成物G1を調製した。最終的な溶媒の混合比は、NMP:ブチルセロソルブ=80:20(質量比)とした。
[比較例4-1]
 分散液5にP1ポリマーを添加せず、NMPと、ブチルセロソルブ(純正化学(株)製、試薬特級)とを混合し、固形分濃度を1質量%に調整した以外は、実施例7-1と同様にして薄膜形成用組成物d1を調製した。最終的な溶媒の混合比は、NMP:ブチルセロソルブ=80:20(質量比)とした。
[比較例4-2]
 化合物3をP1ポリマーの比較品であるイソバン18((株)クラレ製)に変更した以外は、実施例7-1と同様にして薄膜形成用組成物d2を調製した。
 薄膜形成用組成物G1、d1およびd2の組成を表10にまとめた。
Figure JPOXMLDOC01-appb-T000037
[実施例8-1]
 分散液3に化合物1を50質量部と、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を2質量%とした薄膜形成用組成物H1を調製した。
[実施例8-2~8-4]
 それぞれP1ポリマーの配合量を表10に示したとおりに変更し、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を2質量%に調整した以外は、実施例8-1と同様にして薄膜形成用組成物H2~H4を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=92:8(質量比)とした。
 薄膜形成用組成物H1~H4の組成を表11にまとめた。
Figure JPOXMLDOC01-appb-T000038
[実施例9-1]
 分散液4に化合物1を50質量部と、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を2質量%とした薄膜形成用組成物I1を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=92:8(質量比)とした。
[実施例9-2~9-4]
 それぞれP1ポリマーの配合量を表11に示したとおりに変更し、純水と、2-プロパノール(純正化学(株)製、試薬特級)とを混合し、固形分濃度を2質量%に調整した以外は、実施例9-1と同様にして薄膜形成用組成物I2~I4を調製した。最終的な溶媒の混合比は、純水:2-プロパノール=92:8(質量比)とした。
 薄膜形成用組成物I1~I4の組成を表12にまとめた。
Figure JPOXMLDOC01-appb-T000039
[1-4]電極の製造および密着力の評価
[実施例10-1]
 薄膜形成用組成物A1を、集電体である銅箔(厚さ15μm)にワイヤーバーコーターでOSP-13を用いて均一に展開した後、120℃で20分乾燥して薄膜(アンダーコート層)を形成して、複合集電体を作製した。得られた複合集電体は、銅箔の表面が導電性炭素材料により均一に覆われた積層体(想定目付量:100mg/m2)であった。
 ここで、想定目付量とは、所定の固形分濃度の薄膜形成用組成物を所定のワイヤーバーコーターを用いて集電体上に塗工した際に想定される目付量を意味する(以下、同様)。本発明において、固形分濃度1質量%の薄膜形成用組成物を用いた場合の想定目付量は、以下のとおりである。
 OSP-13(ウェット膜厚13μm):100mg/m2
 OSP-6(ウェット膜厚6μm):50mg/m2
 OSP-3(ウェット膜厚3μm):30mg/m2

 また、固形分濃度2質量%の薄膜形成用組成物を用いた場合の想定目付量は、以下のとおりである。
 OSP-13(ウェット膜厚13μm):200mg/m2
 活物質としてシリコン(日本NER(株)製)13.5g、バインダーとしてポリアクリル酸(PAA、富士フイルム和光純薬(株)製)3.6g、導電助剤としてアセチレンブラック(AB、デンカ(株)製)0.9gおよび水42.0gを、ホモディスパーにて3,000rpmで5分混合した。次いで、ビーズミルを用いて2,000rpmで30分の混合処理をし、さらに自転・公転ミキサーにて1,000rpmで2分脱泡して電極スラリー(固形分濃度30質量%、シリコン:PAA:AB=75:20:5(質量比))を作製した。得られた電極スラリーを、先に作製した複合集電体にドクターブレードを用いて均一に展開後(ウェット膜厚200μm)、80℃で30分、次いで120℃で30分乾燥して複合集電体上に電極合材層(ドライ膜厚55μm程度)を形成し、さらにロールプレス機で1.2kN/cmのプレス圧で圧着することで電極を作製した。詳細は表13に示した。
[実施例10-2]
 ワイヤーバーコーターでOSP-13の代わりに、OSP-6を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表13に示した。
[実施例10-3]
 ワイヤーバーコーターでOSP-13の代わりに、OSP-3を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表13に示した。
[実施例10-4]
 薄膜形成用組成物A1の代わりに、薄膜形成用組成物A2を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表13に示した。
[実施例10-5]
 ワイヤーバーコーターでOSP-13の代わりに、OSP-6を用いた以外は、実施例10-4と同様にして、複合集電体および電極を作製した。詳細は表13に示した。
[実施例10-6]
 ワイヤーバーコーターでOSP-13の代わりに、OSP-3を用いた以外は、実施例10-4と同様にして、複合集電体および電極を作製した。詳細は表13に示した。
[実施例10-7~10-8]
 薄膜形成用組成物A1の代わりに、それぞれ薄膜形成用組成物A3~A4を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表13に示した。
[実施例11-1~11-2]
 薄膜形成用組成物A1の代わりに、それぞれ薄膜形成用組成物B1、B2を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表14に示した。
[実施例12-1]
 薄膜形成用組成物C1を、集電体である銅箔(厚さ15μm)にワイヤーバーコーターでOSP-13を用いて均一に展開した後、110℃で20分乾燥して薄膜(アンダーコート層)を形成して、複合集電体を作製した。得られた複合集電体は、銅箔の表面が導電性炭素材料により均一に覆われた積層体(想定目付量:100mg/m2)であった。
 次いで、得られた複合集電体のアンダーコート層上に、実施例10-1と同様の手順で電極合材層を形成して電極を作製した。詳細は表15に示した。
[比較例5-1~5-4]
 薄膜形成用組成物C1の代わりに、それぞれ薄膜形成用組成物a1~a4を用いた以外は、実施例12-1と同様にして、複合集電体および電極を作製した。詳細は表16に示した。
[比較例6-1]
 薄膜形成用組成物C1の代わりに、薄膜形成用組成物b1を用いた以外は、実施例12-1と同様にして、複合集電体および電極を作製した。詳細は表17に示した。
[比較例6-2]
 ワイヤーバーコーターでOSP-13の代わりに、OSP-6を用いた以外は、比較例6-1と同様にして、複合集電体および電極を作製した。詳細は表17に示した。
[比較例6-3]
 薄膜形成用組成物C1の代わりに、薄膜形成用組成物b2を用いた以外は、実施例12-1と同様にして、複合集電体および電極を作製した。詳細は表17に示した。
[比較例6-4]
 ワイヤーバーコーターでOSP-13の代わりに、OSP-6を用いた以外は、比較例6-3と同様にして、複合集電体および電極を作製した。詳細は表17に示した。
[比較例6-5]
 薄膜形成用組成物C1の代わりに、薄膜形成用組成物b3を用いた以外は、実施例12-1と同様にして、複合集電体および電極を作製した。詳細は表17に示した。
[実施例13-1~13-4]
 薄膜形成用組成物C1の代わりに、それぞれ薄膜形成用組成物D1~D4を用いた以外は、実施例12-1と同様にして、複合集電体および電極を作製した。詳細は表18に示した。
[比較例7-1]
 薄膜形成用組成物C1の代わりに、薄膜形成用組成物c1を用いた以外は、実施例12-1と同様にして、複合集電体および電極を作製した。詳細は表19に示した。
[比較例7-2]
 薄膜形成用組成物A1の代わりに、薄膜形成用組成物c2を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表19に示した。
[比較例7-3]
 ワイヤーバーコーターでOSP-13の代わりに、OSP-6を用いた以外は、比較例7-2と同様にして、複合集電体および電極を作製した。詳細は表19に示した。
[実施例14-1~14-3]
 薄膜形成用組成物A1の代わりに、それぞれ薄膜形成用組成物E1~E3を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表20に示した。
[実施例15-1~15-4]
 薄膜形成用組成物A1の代わりに、それぞれ薄膜形成用組成物F1~F4を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表21に示した。
[実施例16-1]
 薄膜形成用組成物A1の代わりに、薄膜形成用組成物G1を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表22に示した。
[比較例8-1~8-2]
 薄膜形成用組成物A1の代わりに、それぞれ薄膜形成用組成物d1~d2を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表22に示した。
[実施例17-1~17-4]
 薄膜形成用組成物A1の代わりに、それぞれ薄膜形成用組成物H1~H4を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表23に示した。
[実施例18-1~18-4]
 薄膜形成用組成物A1の代わりに、それぞれ薄膜形成用組成物I1~I4を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表24に示した。
 上記実施例および比較例で作製した電極を、それぞれ25mm幅で切り出し、電極合材層塗工面に20mm幅の両面テープを貼り付けてガラス基板上に固定した。これを粘着・皮膜剥離解析装置に固定して剥離角度90°かつ剥離速度100mm/minで剥離試験を行い、下記の算出式により密着力を算出した。結果を表13~24に併記した。

 密着力(N/m)=測定値(N)/(サンプル測定幅(mm)×10-3
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
 表13~24の結果より、集電体上に本発明に係る組成物を用いてアンダーコート層を形成することにより、集電体と電極合材層の間の密着力が向上することが確認された。
[1-5]電池の製造および特性評価
[実施例19-1]
 活物質として一酸化珪素(SiO、(株)大阪チタニウムテクノロジーズ製)6.92g、黒鉛(CGB-10、日本黒鉛(株)製)16.15g、バインダーとしてポリアクリル酸リチウム(PAALi)7.96g、導電助剤としてアセチレンブラック(AB、デンカ(株)製)1.59gおよびカーボンナノチューブ(VGCF、昭和電工(株)製)1.06g、水26.32gをホモディスパーにて8,000rpmで5分混合した。次いで、薄膜旋回型高速ミキサーを用いて周速20m/秒で60秒の混合処理をし、さらに自転・公転ミキサーに1,000rpmで2分脱泡することで、電極スラリー(固形分濃度44質量%、SiO:CGB-10:PAALi:AB:VGCF=26.1:60.9:3.0:6.0:4.0(質量比))を調製した。得られた電極スラリーを、実施例10-4で得られた複合集電体にアプリケーターを用いて展開後(ウェット膜厚90μm)、80℃で30分、次いで120℃で30分乾燥してアンダーコート層上に電極合材層(ドライ膜厚45μm程度)を形成し、さらにロールプレス機で0.125kN/cmのプレス圧で圧着して電極を作製した。
 上記で作製した電極から、それぞれ3枚打ち抜き、タブ溶接部となる箇所の電極合材層を剥離し、縦4.4cm、横5.4cmの長方形状となるようにした。電極にシーラント付Ni+Cuタブをamplitude 80%、圧力 0.2MPaの条件で超音波溶接した。対極となる正極(コバルト酸リチウム(LCO):アセチレンブラック(AB):ポリフッ化ビニリデン(PVdF)=94.3:2.8:2.8(質量比)、目付量:16.5mg/m2)も同様にシーラント付Alタブをamplitude 40%、圧力0.2MPaの条件で超音波溶接し、縦4.0cm、横5.0cmの長方形状の正極とした。120℃で15時間真空乾燥し、ドライブースに移した。ラミネートフィルムに正極を設置し、その上にセパレータ(セルガード(株)製、セルガード♯2400)、電極Dを重ね、イミドテープで固定した。電解液の注入口となる一部を残し、ラミネートセルを封止した。電解液(キシダ化学(株)製、エチレンカーボネート:エチルメチルカーボネート=1:3(v/v%)、電解質であるリチウムヘキサフルオロホスフェートを1.0mol/L、添加剤であるビニレンカーボネートを2質量%含む)を300μL注入した後、真空封止した。その後、5時間静置し、試験用の二次電池を3個作製した。
[実施例19-2~19-4]
 集電体として、それぞれ実施例10-8、13-4、14-1、14-3または15-2で得られた複合集電体を使用したこと以外は、実施例19-1と同様にして試験用の二次電池を3個作製した
[比較例9-1]
 集電体として、比較例7-1で得られた複合集電体を使用したこと以外は、実施例19-1と同様にして試験用の二次電池を3個作製した
 実施例19-1~19-5および比較例9-1で作製した二次電池の特性を評価した。負極における複合集電体が電池に及ぼす影響を評価することを目的として、充放電測定装置を用いて電池のエージング、サイクル特性評価の順番にて、表25に示す条件で充放電試験を行った。得られた結果を表26に示す。
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
 表26の結果より、集電体と電極合材層との密着力が高い複合集電体を使用した二次電池はサイクル特性が優れることが確認された。
[2-1]P1ポリマーの合成-2
[合成例4]化合物4の合成
 200mLの四ツ口フラスコにメタクリル酸(純正化学(株)製)4.48g(52.0mmol)と、メタクリル酸ジメチルアミノエチル10.0g(63.6mmol)と、開始剤であるVE-073(富士フイルム和光純薬(株)製)0.012g(0.038mmol)とを、エタノール(純正化学(株)製)82.12gに溶解させた。系内を窒素ガスで置換後、内温80℃に昇温させ、5時間加熱攪拌した。反応液を冷却し、ヘキサン500gに滴下して、生成した沈殿物をろ別した。得られたろ物を再度エタノール100gに分散させ、ヘキサン(純正化学(株)製)500gに滴下した。生成した沈殿物をろ別し、その後、得られたろ物を60℃で6時間減圧乾燥することで白色の化合物4を得た(得量6.53g、得率45.0%)。得られたP1ポリマーのMwは、1.45×105(ポリスチレンスルホン酸ナトリウム換算)であった。
[合成例5]化合物5の合成
 メタクリル酸を2.35g(27.0mmol)、メタクリル酸ジメチルアミノエチルを10.00g(64.0mmol)に変更した以外は、合成例4と同様にして化合物5を合成した。
[合成例6]化合物6の合成
 メタクリル酸を7.67g(89.0mmol)、メタクリル酸ジメチルアミノエチルを6.00g(38.0mmol)に変更した以外は、合成例4と同様にして化合物6を合成した。
[2-2]薄膜形成用組成物の調製-2
[実施例20-1、20-2]
 それぞれP1ポリマーの種類および配合量を表27に示したとおりに変更し、固形分濃度を1質量%に調整した以外は、実施例5-1と同様にして薄膜形成用組成物J1およびJ2を調製した。薄膜形成用組成物J1およびJ2は、いずれもCNTが均一に分散した黒色のインクだった。
 薄膜形成用組成物J1およびJ2の組成を表27にまとめた。
Figure JPOXMLDOC01-appb-T000054
[実施例21-1、21-2]
 それぞれP1ポリマーの種類および配合量を表28に示したとおりに変更し、固形分濃度を1質量%に調整した以外は、実施例5-1と同様にして薄膜形成用組成物K1およびK2を調製した。薄膜形成用組成物K1およびK2は、いずれもCNTが均一に分散した黒色のインクだった。
 薄膜形成用組成物K1およびK2の組成を表28にまとめた。
Figure JPOXMLDOC01-appb-T000055
[実施例22-1]
 P1ポリマーの種類および配合量を表29に示したとおりに変更し、固形分濃度を1質量%に調整した以外は、実施例5-1と同様にして薄膜形成用組成物L1を調製した。薄膜形成用組成物L1は、CNTが均一に分散した黒色のインクだった。
 薄膜形成用組成物L1の組成を表29にまとめた。
Figure JPOXMLDOC01-appb-T000056
[2-3]電極の製造および密着力の評価-2
[実施例23-1]
 薄膜形成用組成物A1の代わりに、薄膜形成用組成物J1を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表30に示した。
[実施例23-2]
 ワイヤーバーコーターでOSP-13の代わりに、OSP-6を用いた以外は、実施例23-1と同様にして、複合集電体および電極を作製した。詳細は表30に示した。
[実施例23-3]
 薄膜形成用組成物A1の代わりに、薄膜形成用組成物J2を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表30に示した。
[実施例23-4]
 ワイヤーバーコーターでOSP-13の代わりに、OSP-6を用いた以外は、実施例23-3と同様にして、複合集電体および電極を作製した。詳細は表30に示した。
[実施例24-1、24-2]
 薄膜形成用組成物A1の代わりに、それぞれ薄膜形成用組成物K1、K2を用いた以外は、実施例10-2と同様にして、複合集電体および電極を作製した。詳細は表31に示した。
[実施例25-1]
 薄膜形成用組成物A1の代わりに、薄膜層形成用組成物L1を用いた以外は、実施例10-1と同様にして、複合集電体および電極を作製した。詳細は表32に示した。
[実施例25-2]
 ワイヤーバーコーターでOSP-13の代わりに、OSP-6を用いた以外は、実施例25-1と同様にして、複合集電体および電極を作製した。詳細は表32に示した。
 上記実施例で作製した電極について、上記[1-4]に記載の手順と同様の手順で剥離試験を行い、密着力を算出した。結果を表30~32に併記した。
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
[2-4]電池の製造および特性評価-2
[実施例26-1]
 集電体として、それぞれ実施例23-1で得られた複合集電体を使用したこと以外は、実施例19-1と同様にして試験用の二次電池を3個作製した。
 実施例26-1で作製した二次電池の特性を評価した。負極における複合集電体が電池に及ぼす影響を評価することを目的として、充放電測定装置を用いて電池のエージング、サイクル特性評価の順番にて、表25に示す条件で充放電試験を行った。得られた結果を表33に示す。
Figure JPOXMLDOC01-appb-T000060
[3-1]電極の製造および密着力の評価-3
[実施例27-1]
 薄膜形成用組成物J1を、集電体であるSUS箔(厚さ15μm)にワイヤーバーコーターでOSP-13を用いて均一に展開した後、120℃で20分乾燥して薄膜(アンダーコート層)を形成して、複合集電体を作製した。得られた複合集電体は、SUS箔の表面が導電性炭素材料により均一に覆われた積層体(想定目付量:100mg/m2)であった。
 次いで、得られた複合集電体のアンダーコート層上に、実施例10-1と同様の手順で電極合材層を形成して電極を作製した。詳細は表34に示した。
[比較例10-1]
 複合集電体として無垢のSUS箔(厚さ15μm)を使用した以外は、実施例27-1と同様にして電極を作製した。詳細は表34に示した。
Figure JPOXMLDOC01-appb-T000061

Claims (12)

  1.  導電性炭素材料、分散剤、溶媒および側鎖に下記式(P1)で表される部分構造を有するポリマーを含むエネルギー貯蔵デバイス電極用薄膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Lは、-O-または-NH-を表し、Rは、炭素数1~20のアルキレン基を表し、Tは、置換または非置換アミノ基、炭素数2~20の含窒素ヘテロアリール基または炭素数2~20の含窒素脂肪族複素環基を表し、*は、結合手を表す。)
  2.  式(P1)で表される部分構造が、下記式(P1-1)~(P1-3)のいずれかで表される請求項1記載のエネルギー貯蔵デバイス電極用薄膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、L、Tおよび*は、上記と同じである。)
  3.  式(P1)で表される部分構造が、下記式(P2-1)~(P2-3)のいずれかで表される請求項2記載のエネルギー貯蔵デバイス電極用薄膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、*は、上記と同じである。)
  4.  上記ポリマーが、下記式(C1-1)または(C1-2)で表される繰り返し単位を含むポリマーである請求項1記載のエネルギー貯蔵デバイス電極用薄膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rc1およびRc2は、それぞれ独立して、水素原子または炭素数1~20のアルキル基を表し、Rmは、水素原子またはメチル基を表し、nは、自然数を表す。L、R、Tおよび*は、上記と同じである。)
  5.  上記溶媒が、水および親水性溶媒からなる群より選ばれる1種以上を含む請求項1~4のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成用組成物。
  6.  上記分散剤が、側鎖にオキサゾリン基を有するポリマーまたはトリアリールアミン系高分岐ポリマーを含む請求項1~5のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成用組成物。
  7.  さらに、架橋剤を含有する請求項1~6のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成用組成物。
  8.  請求項1~7のいずれか1項記載のエネルギー貯蔵デバイス電極用薄膜形成用組成物から得られる薄膜を含むアンダーコート層。
  9.  請求項8記載のアンダーコート層を備えるエネルギー貯蔵デバイスの電極用複合集電体。
  10.  請求項9記載のエネルギー貯蔵デバイスの電極用複合集電体を備えるエネルギー貯蔵デバイス用電極。
  11.  請求項10記載のエネルギー貯蔵デバイス用電極を備えるエネルギー貯蔵デバイス。
  12.  リチウムイオン電池である請求項11記載のエネルギー貯蔵デバイス。
PCT/JP2021/006734 2020-02-27 2021-02-24 エネルギー貯蔵デバイス電極用薄膜形成用組成物 WO2021172308A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/802,771 US11670777B2 (en) 2020-02-27 2021-02-24 Thin film forming composition for energy storage device electrodes
JP2022503627A JPWO2021172308A1 (ja) 2020-02-27 2021-02-24
KR1020227032945A KR20220149553A (ko) 2020-02-27 2021-02-24 에너지 저장 디바이스 전극용 박막 형성용 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020032072 2020-02-27
JP2020-032072 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021172308A1 true WO2021172308A1 (ja) 2021-09-02

Family

ID=77490405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006734 WO2021172308A1 (ja) 2020-02-27 2021-02-24 エネルギー貯蔵デバイス電極用薄膜形成用組成物

Country Status (4)

Country Link
US (1) US11670777B2 (ja)
JP (1) JPWO2021172308A1 (ja)
KR (1) KR20220149553A (ja)
WO (1) WO2021172308A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220173385A1 (en) * 2020-12-02 2022-06-02 Global Graphene Group, Inc. Air-stable particulates of anode active materials for lithium batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351316A (ja) * 2005-06-15 2006-12-28 Denso Corp 非水電解液二次電池
JP2010116475A (ja) * 2008-11-12 2010-05-27 Adeka Corp 新規重合体及び該重合体を用いた非水電解液二次電池
JP2013229187A (ja) * 2012-04-25 2013-11-07 Showa Denko Kk カーボンコート箔塗工液用バインダー、カーボンコート箔塗工液、カーボンコート箔、リチウムイオン二次電池用電極、および、リチウムイオン二次電池
WO2014042080A1 (ja) * 2012-09-14 2014-03-20 日産化学工業株式会社 エネルギー貯蔵デバイス電極用複合集電体および電極
WO2014051043A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 電気化学素子電極用導電性接着剤組成物、接着剤層付集電体及び電気化学素子用電極
WO2015029949A1 (ja) * 2013-08-27 2015-03-05 日産化学工業株式会社 導電性炭素材料分散剤および導電性炭素材料分散液

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997625A (ja) 1995-09-29 1997-04-08 Seiko Instr Inc 非水電解質二次電池およびその製造方法
JP3508514B2 (ja) 1997-11-18 2004-03-22 松下電器産業株式会社 有機電解質電池
JP2000011991A (ja) 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd 有機電解液二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351316A (ja) * 2005-06-15 2006-12-28 Denso Corp 非水電解液二次電池
JP2010116475A (ja) * 2008-11-12 2010-05-27 Adeka Corp 新規重合体及び該重合体を用いた非水電解液二次電池
JP2013229187A (ja) * 2012-04-25 2013-11-07 Showa Denko Kk カーボンコート箔塗工液用バインダー、カーボンコート箔塗工液、カーボンコート箔、リチウムイオン二次電池用電極、および、リチウムイオン二次電池
WO2014042080A1 (ja) * 2012-09-14 2014-03-20 日産化学工業株式会社 エネルギー貯蔵デバイス電極用複合集電体および電極
WO2014051043A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 電気化学素子電極用導電性接着剤組成物、接着剤層付集電体及び電気化学素子用電極
WO2015029949A1 (ja) * 2013-08-27 2015-03-05 日産化学工業株式会社 導電性炭素材料分散剤および導電性炭素材料分散液

Also Published As

Publication number Publication date
US11670777B2 (en) 2023-06-06
KR20220149553A (ko) 2022-11-08
JPWO2021172308A1 (ja) 2021-09-02
US20230099896A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
JP7035496B2 (ja) エネルギー貯蔵デバイス電極用アンダーコート箔
JP6962199B2 (ja) エネルギー貯蔵デバイス用電極
WO2017119288A1 (ja) エネルギー貯蔵デバイス用電極
WO2018101301A1 (ja) カーボンナノチューブ含有薄膜
US20190312282A1 (en) Thin film, and undercoat foil for energy storage device electrode
JP6531868B2 (ja) エネルギー貯蔵デバイス電極およびエネルギー貯蔵デバイス
JP7047807B2 (ja) エネルギー貯蔵デバイス電極用アンダーコート箔
JP7359156B2 (ja) 活物質複合体形成用組成物、活物質複合体、および活物質複合体の製造方法
WO2018101299A1 (ja) 導電性組成物
CN117501469A (zh) 用于形成储能器件电极用薄膜的组合物
WO2021172308A1 (ja) エネルギー貯蔵デバイス電極用薄膜形成用組成物
JPWO2019188545A1 (ja) 導電性薄膜形成用組成物
JP7559746B2 (ja) エネルギー貯蔵デバイス電極用薄膜形成用組成物
JP7424291B2 (ja) エネルギー貯蔵デバイス電極用薄膜形成用組成物、エネルギー貯蔵デバイス電極用複合集電体、エネルギー貯蔵デバイス電極、及びエネルギー貯蔵デバイス
WO2019188547A1 (ja) 導電性薄膜形成用分散液
WO2019188540A1 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物
EP3783697A1 (en) Composition for forming undercoat layer of energy storage device
WO2022176789A1 (ja) エネルギー貯蔵デバイス電極用薄膜形成用組成物
WO2019188538A1 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2019188541A1 (ja) エネルギー貯蔵デバイスのアンダーコート層
WO2024053362A1 (ja) 蓄電デバイス用導電性結着層形成用組成物
JPWO2019188537A1 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503627

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227032945

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761524

Country of ref document: EP

Kind code of ref document: A1