WO2014034431A1 - 負極材料、負極活物質、負極およびアルカリ金属イオン電池 - Google Patents

負極材料、負極活物質、負極およびアルカリ金属イオン電池 Download PDF

Info

Publication number
WO2014034431A1
WO2014034431A1 PCT/JP2013/071867 JP2013071867W WO2014034431A1 WO 2014034431 A1 WO2014034431 A1 WO 2014034431A1 JP 2013071867 W JP2013071867 W JP 2013071867W WO 2014034431 A1 WO2014034431 A1 WO 2014034431A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode material
less
ion battery
material according
Prior art date
Application number
PCT/JP2013/071867
Other languages
English (en)
French (fr)
Inventor
小野 幸治
竹内 健
渡邉 毅
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012268643A external-priority patent/JP5346406B1/ja
Priority claimed from JP2013021643A external-priority patent/JP5297565B1/ja
Priority claimed from JP2013127294A external-priority patent/JP5472514B1/ja
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to US14/419,756 priority Critical patent/US20150221947A1/en
Priority to EP13832451.2A priority patent/EP2892094B1/en
Priority to CN201380044593.5A priority patent/CN104584287B/zh
Priority to KR1020157007886A priority patent/KR20150048844A/ko
Publication of WO2014034431A1 publication Critical patent/WO2014034431A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material, a negative electrode active material, a negative electrode, and an alkali metal ion battery.
  • a graphite material is used as a negative electrode material for an alkali metal ion battery.
  • the graphite material expands and contracts between the crystallite layers by doping and dedoping of alkali metal ions such as lithium, the crystallite is likely to be distorted. For this reason, the graphite material is likely to break the crystal structure due to repeated charge / discharge, and the alkali metal ion battery using the graphite material as the negative electrode material is inferior in charge / discharge cycle characteristics.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-64207 discloses a carbonaceous material, and when the carbonaceous material is electrochemically doped with lithium and subjected to 7 Li-NMR analysis, a resonance line of the reference material LiCl is disclosed. In contrast, a carbonaceous material for a nonaqueous solvent-based secondary battery electrode is described in which a main resonance peak shifted by 80 to 200 ppm is observed on the low magnetic field side.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 8-115723 discloses that helium with respect to the density ( ⁇ B ) measured by using butanol as a substitution medium and having an average layer spacing of (002) plane of 0.365 nm or more determined by X-ray diffraction method.
  • a carbonaceous material for a secondary battery electrode is described in which the ratio ( ⁇ H / ⁇ B ) of density ( ⁇ H ) measured using gas as a replacement medium is 1.15 or more.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 10-223226 discloses a carbonized product of an aromatic condensation polymer that is a condensate of an aromatic compound having a phenolic hydroxyl group and an aldehyde, and includes a hydrogen atom and a carbon atom.
  • s 2 ⁇ sin ⁇ / ⁇ (where ⁇ is the scattering angle and ⁇ is X
  • the scattering intensity at the value of s defined in ( 1 ) is 0.5 nm ⁇ 1
  • the intensity measured in the dry state is I D
  • the intensity measured in the water-containing state is I W.
  • a carbonaceous material for a secondary battery electrode is described in which the X-ray scattering intensity ratio I W / ID is 0.25 or more.
  • Such a carbonaceous material is said to have excellent charge / discharge cycle characteristics because the crystallite layer is larger than the graphite material and the crystal structure is not easily destroyed by repeated charge / discharge compared to the graphite material. (See Patent Documents 1 to 4).
  • a lithium ion battery using a negative electrode material having a large d 002 compared to a graphite material has excellent charge / discharge cycle characteristics, but the voltage changes greatly due to charge / discharge, so that it easily reaches the cut-off voltage.
  • the range of usable charging depth (SOC: State of Charge) is said to be narrow. This is because the negative electrode material having a larger d 002 than the graphite material has a small proportion of a flat region in the discharge curve in the evaluation of the counter electrode lithium, and the potential changes greatly as charge and discharge progress.
  • the present invention provides a negative electrode material for an alkali metal ion battery having excellent storage characteristics and charge / discharge capacity while having an average layer spacing of (002) planes larger than that of a graphite material.
  • the present inventors diligently studied design guidelines for realizing a negative electrode material for an alkali metal ion battery having an average layer spacing of (002) planes larger than that of a graphite material and having excellent storage characteristics. .
  • the inventors have found that the measure of chemical adsorption water ratio devised by the present inventors is effective as such a design guideline, and reached the first invention.
  • the present inventors have realized a negative electrode material for an alkali metal ion battery having an average layer spacing of (002) planes larger than that of a graphite material and having excellent storage characteristics and charge / discharge capacity.
  • the design guideline was studied earnestly.
  • the inventors have found that a negative electrode material having a carbon dioxide adsorption amount and density in a specific range and a discharge curve having a specific shape is excellent in storage characteristics and charge / discharge capacity, and has reached the second invention.
  • the present inventors have realized an anode material for an alkali metal ion battery having an average layer spacing of (002) planes larger than that of a graphite material and having excellent storage characteristics and charge / discharge capacity.
  • We studied diligently. As a result, the ratio ( ⁇ H / ⁇ B ) of the density ( ⁇ H ) measured using helium gas as the substitution medium to the density ( ⁇ B ) measured using butanol as the substitution medium, and ⁇ H in a specific range
  • the inventors have found that the storage characteristics and charge / discharge capacity are excellent, and have reached the third invention.
  • a carbonaceous negative electrode material used for an alkali metal ion battery having an average layer spacing d 002 of (002) planes of 0.340 nm or more determined by an X-ray diffraction method using CuK ⁇ rays as a radiation source After holding the negative electrode material for 120 hours under conditions of a temperature of 40 ° C. and a relative humidity of 90% RH, Using a thermogravimetric measuring device, (A) holding the negative electrode material under conditions of a temperature of 130 ° C. and a nitrogen atmosphere for 1 hour; (B) The step of heating the negative electrode material after the step (A) at a temperature of 10 ° C./min from a temperature of 40 ° C.
  • the weight of the negative electrode material after the step (A) is X
  • the weight of the negative electrode material at 150 ° C. in the step (B) is Y 1
  • the weight of the anode material at 250 ° C. in the above step (B) was Y 2
  • the amount of carbon dioxide adsorption is less than 10.0 ml / g
  • the density ( ⁇ B ) measured using butanol as a substitution medium is 1.50 g / cm 3 or more
  • About a half cell produced using a negative electrode material formed as the negative electrode, metallic lithium as the counter electrode, and LiPF 6 dissolved in a carbonate solvent at a rate of 1 M as the electrolyte Charge at 25 ° C under the conditions of a charging current of 25 mA / g, a charging voltage of 0 mV, and a charging end current of 2.5 mA / g by the constant current constant voltage method.
  • the ratio ( ⁇ H / ⁇ B ) of the density ( ⁇ H ) measured with helium gas as the displacement medium to the density ( ⁇ B ) measured with butanol as the displacement medium is greater than 1.05 and less than 1.25; Density measured helium gas as a replacement medium ([rho H) is less than 1.84 g / cm 3 or more 2.10 g / cm 3, the negative electrode material is provided.
  • a negative electrode active material comprising the negative electrode material of the first invention, the second invention or the third invention of the present invention.
  • a negative electrode active material layer containing the negative electrode active material; A negative electrode current collector; are provided in this order, and a negative electrode for an alkali metal ion battery is provided.
  • an alkali metal ion battery comprising at least the negative electrode for an alkali metal ion battery, an electrolyte, and a positive electrode.
  • a negative electrode material for an alkali metal ion battery having excellent storage characteristics and charge / discharge capacity while having an average layer spacing of (002) planes larger than that of a graphite material.
  • FIG. 3 is an enlarged view of a flat region in FIG. 2. It is a schematic diagram for demonstrating the example of the cross-section of the negative electrode material of embodiment which concerns on this invention.
  • 2 is a diagram showing an optical micrograph of a cross section of the negative electrode material obtained in Example 1.
  • FIG. 6 is a view showing an optical micrograph of a cross section of the negative electrode material obtained in Example 5.
  • FIG. 6 is a view showing an optical micrograph of a cross section of a negative electrode material obtained in Comparative Example 1.
  • FIG. 1 is a schematic diagram and does not necessarily match the actual dimensional ratio.
  • the negative electrode material according to the present embodiment is a carbonaceous negative electrode material used for alkali metal ion batteries such as lithium ion batteries and sodium ion batteries, and is obtained by an X-ray diffraction method using CuK ⁇ rays as a radiation source (
  • the average layer spacing d 002 (hereinafter also referred to as “d 002 ”) of the (002) plane is 0.340 nm or more, preferably 0.350 nm or more, more preferably 0.365 nm or more.
  • the upper limit of the average layer surface distance d 002 is not particularly limited, but is usually 0.400 nm or less, preferably 0.395 nm or less, and more preferably 0.390 nm or less.
  • d 002 is less than or equal to the above upper limit, the irreversible capacity of the negative electrode material can be suppressed.
  • Such a carbonaceous material having an average layer spacing d 002 is generally called non-graphitizable carbon.
  • the negative electrode material of this embodiment contains non-graphitizable carbon. Thereby, charge / discharge cycle characteristics can be improved. Unlike graphitic materials, non-graphitizable carbon is an amorphous (non-crystalline) carbon material. The non-graphitizable carbon can be usually obtained by carbonizing the resin composition.
  • the cycle characteristics and large current input / output characteristics of the alkali metal ion battery using the negative electrode material of the present embodiment can be further improved.
  • the chemical adsorption water ratio A calculated by the following procedure is 0.5% or less, preferably 0.4% or less, more preferably 0.3% or less. Has been identified to be.
  • thermogravimetric measuring device (A) a step of holding the negative electrode material at a temperature of 130 ° C. under a nitrogen atmosphere for 1 hour, (B) the negative electrode material after the step (A) Under a nitrogen atmosphere, the temperature is raised from 40 ° C. to 540 ° C. at a rate of 10 ° C./min, and the step of measuring the weight loss of the negative electrode material is sequentially performed, and the chemical adsorption water ratio A is calculated from the following formula.
  • Chemical adsorption water ratio A [%] 100 ⁇ (Y 1 ⁇ Y 2 ) / X
  • X represents the weight of the negative electrode material after the step (A).
  • Y 1 represents the weight of the negative electrode material at 150 ° C. in the step (B).
  • Y 2 represents the weight of the negative electrode material at 250 ° C. in the step (B).
  • the chemical adsorption water ratio A is not more than the above upper limit value, even if a negative electrode material having an average layer spacing of (002) planes larger than that of the graphite material is stored in the atmosphere for a long period of time, the negative electrode material is deteriorated. Can be suppressed.
  • the minimum of the said chemical adsorption water rate A is not specifically limited, Usually, it is 0.01% or more.
  • the present inventors have further studied earnestly.
  • the water adsorbed on the negative electrode material can be broadly divided into physical adsorbed water and chemically adsorbed water.
  • the negative electrode material with less adsorbed amount of chemically adsorbed water has better storage characteristics and charge / discharge capacity. Became clear. That is, the inventors have found that the scale of the amount of chemically adsorbed water adsorbed is effective as a design guideline for realizing a negative electrode material having excellent storage characteristics and charge / discharge capacity, and the present invention has been achieved.
  • the physically adsorbed water refers to adsorbed water physically present mainly as water molecules on the surface of the negative electrode material.
  • chemically adsorbed water refers to adsorbed water that is present in a coordinated or chemically bonded state with the first layer on the surface of the negative electrode material.
  • a negative electrode material with a small amount of chemically adsorbed water has a structure in which the surface is difficult to coordinate or chemically bind moisture, or to a structure that does not easily change to such a structure when left in the atmosphere. It is thought that it has become. Therefore, the negative electrode material of the present invention having the above-mentioned chemical adsorption water ratio A equal to or less than the above upper limit is less likely to cause moisture adsorption or change in surface structure even when stored for a long time in the atmosphere. It is considered excellent.
  • the moisture desorbed from the negative electrode material in the step (A) is referred to as physical adsorption water
  • the moisture desorbed from the negative electrode material in the step (B) is referred to as chemically adsorbed water.
  • the chemical adsorption water rate A is a water absorption rate of chemically adsorbed water desorbed between 150 ° C. and 250 ° C., and means an index of the amount of chemically adsorbed water adsorbed in the negative electrode material.
  • the chemical adsorption water ratio B calculated by the following procedure is preferably 1.0% or less, more preferably 0.7% or less, and further preferably 0.5%. It is as follows.
  • Chemical adsorption water ratio B [%] 100 ⁇ (Y 2 ⁇ Y 3 ) / X
  • X represents the weight of the negative electrode material after the step (A).
  • Y 2 represents the weight of the negative electrode material at 250 ° C. in the step (B).
  • Y 3 represents the weight of the negative electrode material at 500 ° C. in the step (B).
  • the chemical adsorption water ratio B is not more than the above upper limit value, the storage characteristics of the negative electrode material can be further improved. Furthermore, the charge / discharge capacity of the negative electrode material can be further improved when the chemical adsorption water ratio B is not more than the upper limit.
  • the chemical adsorption water rate B is the water absorption rate of chemically adsorbed water desorbed between 250 ° C. and 500 ° C., and the chemical adsorption is less likely to desorb than the chemically adsorbed water determined at the above-mentioned chemical adsorbed water rate A. It means an index of water adsorption.
  • the weight reduction rate at 250 ° C. defined by the following formula is preferably 0.6% or less, and more preferably 0.5% or less.
  • Weight reduction rate at 250 ° C. [%] 100 ⁇ (XY 2 ) / X
  • X represents the weight of the negative electrode material after the step (A).
  • Y 2 represents the weight of the negative electrode material at 250 ° C. in the step (B).
  • the weight reduction rate at 500 ° C. defined by the following formula is preferably 1.6% or less, more preferably 1.2% or less.
  • Weight reduction rate at 500 ° C. [%] 100 ⁇ (XY 3 ) / X
  • X represents the weight of the negative electrode material after the step (A).
  • Y 3 represents the weight of the negative electrode material at 500 ° C. in the step (B).
  • the negative electrode material is held for 120 hours under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH, and then the negative electrode material is held for 1 hour under the condition of a temperature of 130 ° C. and a nitrogen atmosphere.
  • the moisture generated from the negative electrode material after the preliminary drying was measured by the Karl Fischer coulometric titration method.
  • the amount is preferably 0.20% by mass or less, more preferably 0.15% by mass or less, particularly preferably 0.10% by mass or less, with respect to 100% by mass of the negative electrode material after the preliminary drying. is there.
  • the storage characteristic of a negative electrode material can be further improved as the said moisture content is below the said upper limit.
  • the water content is an index of the amount of chemically adsorbed water that is desorbed by being held at 200 ° C. for 30 minutes.
  • the water adsorbed on the negative electrode material is roughly divided into physical adsorbed water and chemically adsorbed water, and the negative electrode material having a smaller amount of adsorbed chemical adsorbed water has better storage characteristics and higher charge. It became clear that the discharge capacity was better. That is, it has been found that the measure of the amount of chemically adsorbed water is effective as a design guideline for realizing a negative electrode material having excellent storage characteristics and charge / discharge capacity.
  • the physically adsorbed water refers to adsorbed water physically present mainly as water molecules on the surface of the negative electrode material.
  • chemically adsorbed water refers to adsorbed water that is present in a coordinated or chemically bonded state with the first layer on the surface of the negative electrode material.
  • a negative electrode material with a small amount of chemically adsorbed water has a structure in which the surface is difficult to coordinate or chemically bind moisture, or to a structure that does not easily change to such a structure when left in the atmosphere. It is thought that it has become. Therefore, if the amount of water is not more than the above upper limit value, even if stored for a long time in the atmosphere, moisture adsorption hardly occurs or the surface structure does not easily change, so it is considered that the storage characteristics are more excellent. .
  • the moisture desorbed from the negative electrode material in the preliminary drying held at a temperature of 130 ° C. for 1 hour under a nitrogen atmosphere is called physical adsorption water, and the negative electrode material after the preliminary drying is 200 ° C.
  • the water desorbed from the negative electrode material in the above operation for 30 minutes is referred to as chemisorbed water.
  • the negative electrode material according to the present embodiment is used as a negative electrode material for alkali metal ion batteries such as lithium ion batteries and sodium ion batteries.
  • the negative electrode material according to this embodiment is suitably used as a negative electrode material for lithium ion batteries such as lithium ion secondary batteries.
  • the negative electrode material according to the present embodiment preferably has a crystallite size in the c-axis direction obtained by X-ray diffraction (hereinafter sometimes abbreviated as “Lc (002) ”) of 5 nm or less. More preferably, it is 3 nm or less, More preferably, it is 2 nm or less.
  • the negative electrode material according to this embodiment preferably has a 50% cumulative particle size (D 50 , average particle size) of 1 ⁇ m or more and 50 ⁇ m or less, more preferably 2 ⁇ m or more and 30 ⁇ m or less in a volume-based cumulative distribution. preferable. Thereby, a high-density negative electrode can be produced.
  • D 50 cumulative particle size
  • the specific surface area according to the BET three-point method in nitrogen adsorption is preferably 1 m 2 / g or more and 15 m 2 / g or less, and more preferably 3 m 2 / g or more and 8 m 2 / g or less.
  • the specific surface area by the BET three-point method in nitrogen adsorption is not more than the above upper limit value, the irreversible reaction between the negative electrode material and the electrolytic solution can be further suppressed.
  • appropriate permeability to the negative electrode material of electrolyte solution can be obtained because the specific surface area by the BET three point method in nitrogen adsorption is more than the said lower limit.
  • the calculation method of the specific surface area is as follows.
  • the monomolecular layer adsorption amount W m is calculated from the following formula (1)
  • the total surface area S total is calculated from the following formula (2)
  • the adsorption amount of carbon dioxide gas is preferably less than 10.0 ml / g, more preferably 8.0 ml / g or less, and even more preferably 6.0 ml / g or less.
  • the storage characteristics of the negative electrode material can be further improved.
  • the negative electrode material according to the present embodiment preferably has an adsorption amount of carbon dioxide gas of 0.05 ml / g or more, more preferably 0.1 ml / g or more, and further preferably 1.0 ml / g or more.
  • the charge capacity of lithium can be further improved.
  • the amount of carbon dioxide adsorbed was measured by using an ASAP-2000M manufactured by Micromeritics Instrument Corporation, which was obtained by vacuum drying the negative electrode material at 130 ° C. for 3 hours or more using a vacuum dryer. It can be carried out.
  • the negative electrode material according to this embodiment preferably has a halogen content of less than 50 ppm, more preferably 30 ppm or less, and even more preferably 10 ppm or less.
  • the halogen content can be controlled by adjusting the halogen gas concentration in the processing gas used for the carbonization treatment and the halogen amount contained in the raw material of the negative electrode material.
  • the halogen content is calculated by burning the anode material, absorbing the hydrogen halide gas in the generated combustion gas into sodium hydroxide, and then quantifying the halogen content in this solution with an ion chromatography analyzer. it can.
  • the discharge capacity when charging / discharging under the charging / discharging conditions described in the second invention is preferably 360 mAh / g or more for the half cell produced under the conditions described in the second invention described later. More preferably, it is 380 mAh / g or more, More preferably, it is 400 mAh / g or more, Most preferably, it is 420 mAh / g or more.
  • the upper limit of the discharge capacity is not particularly limited and is preferably as many as possible. However, in reality, it is 700 mAh / g or less, and usually 500 mAh / g or less. In the present specification, “mAh / g” indicates a capacity per 1 g of the negative electrode material.
  • the negative electrode material according to the present embodiment preferably has a ratio ( ⁇ H / ⁇ B ) of a density ( ⁇ H ) measured using helium gas as a replacement medium to a density ( ⁇ B ) measured using butanol as a replacement medium. .05 or more, more preferably 1.06 or more, and further preferably 1.07 or more. Further, ⁇ H / ⁇ B is preferably less than 1.25, more preferably less than 1.20, and even more preferably less than 1.15.
  • the charge / discharge capacity of an alkali metal ion battery obtained using the negative electrode material can be further improved.
  • the storage characteristic of the said negative electrode material can be improved further as the said (rho) H / (rho) B is below the said upper limit.
  • the negative electrode material according to this embodiment in which the ⁇ H / ⁇ B is within the above range is more excellent due to the balance between storage characteristics and charge / discharge capacity.
  • ⁇ H / ⁇ B is one index of the pore structure of the negative electrode material, and as this value is larger, butanol cannot enter but helium can enter more pores. That is, a large ⁇ H / ⁇ B means that a large number of fine pores exist. Further, if there are many pores into which helium cannot enter, ⁇ H / ⁇ B becomes small.
  • the negative electrode material according to the present embodiment is preferably not more than 1.84 g / cm 3 or more 2.10 g / cm 3, more preferably 1.85 g / cm 3 or more 2.05 g / cm 3, more preferably not more than 1.85 g / cm 3 or more 2.00 g / cm 3.
  • the negative electrode material according to the present embodiment is preferably not 1.50 g / cm 3 or more 1.80 g / cm 3 or less, more preferably 1.55 g / cm 3 or more 1.78 g / cm 3, more preferably not more than 1.60 g / cm 3 or more 1.75 g / cm 3.
  • the pore volume obtained by the mercury intrusion method has a pore volume of 0.003 ⁇ m to 5 ⁇ m, preferably less than 0.55 ml / g, more preferably It is 0.53 ml / g or less, more preferably 0.50 ml / g or less.
  • the pore volume obtained by the mercury intrusion method has a pore volume of 0.003 ⁇ m to 5 ⁇ m, preferably 0.10 ml / g or more, More preferably, it is 0.20 ml / g or more, More preferably, it is 0.30 ml / g or more, More preferably, it is 0.40 ml / g or more, Especially preferably, it is 0.45 ml / g or more.
  • the pore volume by mercury porosimetry can be measured using Autopore III9420 manufactured by MICROMERITICS.
  • the negative electrode material according to the present embodiment can be produced, for example, by carbonizing a specific resin composition as a raw material under appropriate conditions.
  • the production of the anode material using the resin composition as a raw material itself has been performed in the prior art.
  • factors such as (1) the composition of the resin composition, (2) the conditions for the carbonization treatment, and (3) the ratio of the raw material to the space where the carbonization treatment is performed are highly controlled. In order to obtain the negative electrode material according to the present embodiment, it is important to highly control these factors.
  • the present inventors set the above conditions (1) and (2) appropriately, and (3) the raw material for the space to be carbonized. It was found that it is important to set the occupation ratio lower than the conventional standard.
  • the manufacturing method of the negative electrode material which concerns on this embodiment is shown.
  • the manufacturing method of the negative electrode material according to the present embodiment is not limited to the following example.
  • a resin composition to be carbonized is selected as a raw material for the negative electrode material.
  • the resin contained in the resin composition that is the raw material of the negative electrode material according to the present embodiment include a thermosetting resin; a thermoplastic resin; a petroleum-based tar and pitch that are by-produced during ethylene production, and a coal produced by dry distillation.
  • a thermosetting resin is preferable because it can be purified at the raw material stage, a negative electrode material with few impurities can be obtained, and the steps required for purification can be greatly shortened, leading to cost reduction.
  • thermosetting resin examples include: phenol resins such as novolac type phenol resins and resol type phenol resins; epoxy resins such as bisphenol type epoxy resins and novolac type epoxy resins; melamine resins; urea resins; aniline resins; Examples include furan resins; ketone resins; unsaturated polyester resins; urethane resins.
  • modified products obtained by modifying these with various components can also be used.
  • phenol resins such as novolak-type phenol resin and resol-type phenol resin; melamine resin; urea resin; aniline resin, which are resins using formaldehyde, are preferable because of the high residual carbon ratio.
  • thermoplastic resin is not particularly limited.
  • polyethylene polystyrene, polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene, vinyl chloride, methacrylic resin, polyethylene terephthalate.
  • Polyamide polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyamideimide, polyimide, polyphthalamide and the like.
  • curing agent when using a thermosetting resin, can be used together.
  • the curing agent used for example, hexamethylenetetramine, resol type phenol resin, polyacetal, paraformaldehyde and the like can be used in the case of a novolak type phenol resin.
  • a resol type phenol resin melamine resin, urea resin, aniline resin, hexamethylenetetramine or the like can be used.
  • epoxy resins such as polyamine compounds such as aliphatic polyamines and aromatic polyamines, acid anhydrides, imidazole compounds, dicyandiamide, novolac-type phenol resins, bisphenol-type phenol resins, and resol-type phenol resins.
  • curing agent is 0.1 to 50 weight part normally with respect to 100 weight part of said thermosetting resins.
  • the resin composition used in the present embodiment is used in a smaller amount than usual or without using a curing agent. You can also.
  • an additive in addition, in the resin composition as the raw material of the negative electrode material, an additive can be blended in addition to the thermosetting resin and the curing agent.
  • the carbon material precursor carbonized at 200 to 800 degreeC an organic acid, an inorganic acid, a nitrogen-containing compound, an oxygen-containing compound, an aromatic compound, nonferrous A metal element etc. can be mentioned.
  • additives can be used alone or in combination of two or more depending on the type and properties of the resin used.
  • a nitrogen-containing resin described later may be included as a main component resin.
  • at least one kind of nitrogen-containing compound may be included as a component other than the main component resin, or the nitrogen-containing resin is included as the main component resin.
  • a nitrogen-containing compound may be included as a component other than the main component resin.
  • thermosetting resins include melamine resins, urea resins, aniline resins, cyanate resins, urethane resins, phenol resins modified with nitrogen-containing components such as amines, and epoxy resins.
  • thermoplastic resin examples include polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polyamide, polyetherimide, polyamideimide, polyimide, and polyphthalamide.
  • a nitrogen-containing compound when used as a component other than the main component resin, the type thereof is not particularly limited.
  • a compound containing nitrogen such as an amine compound, ammonium salt, nitrate, nitro compound which does not function as a curing agent can be used.
  • the nitrogen-containing compound one type may be used or two or more types may be used in combination, whether or not the main component resin contains nitrogen-containing resins.
  • the method for preparing the resin composition is not particularly limited. For example, (1) a method in which the above resin and other components are melt-mixed, and (2) the above resin and other components are dissolved in a solvent. (3) The resin and other components may be pulverized and mixed.
  • the apparatus for preparing the resin composition is not particularly limited.
  • a kneading apparatus such as a kneading roll, a uniaxial or biaxial kneader can be used.
  • a mixing device such as a Henschel mixer or a disperser can be used.
  • an apparatus such as a hammer mill or a jet mill can be used.
  • the resin composition thus obtained may be one obtained by physically mixing a plurality of types of components, or is applied during mixing (stirring, kneading, etc.) during preparation of the resin composition.
  • a part of the material may be chemically reacted with mechanical energy and thermal energy converted from the mechanical energy. Specifically, a mechanochemical reaction using mechanical energy or a chemical reaction using thermal energy may be performed.
  • the obtained resin composition is carbonized.
  • the conditions for the carbonization treatment for example, the temperature is raised from normal temperature to 1 ° C./hour to 200 ° C./hour, 800 ° C. to 3000 ° C., 0.01 Pa to 101 kPa (1 atm), The reaction can be performed for 1 hour to 50 hours, preferably 0.5 hours to 10 hours.
  • the atmosphere during carbonization is preferably an inert atmosphere such as nitrogen or helium gas; a substantially inert atmosphere in which a trace amount of oxygen is present in the inert gas; a reducing gas atmosphere, or the like. .
  • the conditions such as temperature and time at the time of carbonization can be appropriately adjusted in order to optimize the characteristics of the negative electrode material.
  • the conditions for the pre-carbonization treatment are not particularly limited.
  • the resin composition after pulverization can be obtained. It is possible to prevent re-fusion during carbonization and to obtain a desired negative electrode material efficiently.
  • a hardening processing method For example, it can carry out by the method of giving heat quantity which can perform hardening reaction to a resin composition, the method of thermosetting, or the method of using together a thermosetting resin and a hardening
  • the pre-carbonization treatment can be performed substantially in the solid phase, so that the carbonization treatment or the pre-carbonization treatment can be performed while maintaining the structure of the thermosetting resin to some extent, and the structure and characteristics of the negative electrode material are controlled. Will be able to.
  • a metal, a pigment, a lubricant, an antistatic agent, an antioxidant, or the like is added to the resin composition to impart desired characteristics to the negative electrode material. You can also.
  • the processed product may be pulverized before the carbonization treatment.
  • variation in the thermal history during carbonization can be reduced, and the uniformity of the surface state of the obtained negative electrode material can be increased. And the handleability of a processed material can be improved.
  • the occupation ratio of the raw material with respect to the space for carbonization is preferably set to 10.0 kg / m 3 or less, more preferably 5.0 kg / m 3 or less, and particularly preferably 1.0 kg / m 3 or less.
  • the space for performing the carbonization treatment usually represents the furnace volume of the heat treatment furnace used for the carbonization treatment.
  • the conventional standard for the ratio of the raw material to the space for carbonization is about 100 to 500 kg / m 3 .
  • the negative electrode material according to the present embodiment it is important to set the occupation ratio of the raw material with respect to the space to be carbonized lower than the conventional standard.
  • the reason why the negative electrode material according to the present embodiment can be obtained by setting the occupation ratio of the raw material in the space for performing the carbonization treatment to be equal to or less than the above upper limit value is not necessarily clear. It is considered that the generated gas is efficiently removed from the system.
  • the negative electrode material according to the present embodiment can be obtained by the above procedure.
  • the negative electrode active material refers to a substance capable of taking in and out alkali metal ions such as lithium ions in an alkali metal ion battery.
  • the negative electrode active material according to the present embodiment includes the negative electrode material according to the present embodiment described above. Thereby, the negative electrode active material which can implement
  • the negative electrode active material according to the present embodiment may further include a negative electrode material of a type different from the negative electrode material described above.
  • a negative electrode material include generally known negative electrode materials such as silicon, silicon monoxide, and graphite materials.
  • the negative electrode active material according to this embodiment preferably includes a graphite material in addition to the negative electrode material according to this embodiment described above.
  • the charge / discharge capacity of the obtained alkali metal ion battery can be improved. Therefore, the obtained alkali metal ion battery can have a particularly excellent balance between charge / discharge capacity and charge / discharge efficiency.
  • the particle diameter (average particle diameter) at 50% accumulation in the volume-based cumulative distribution of the graphite material used is preferably 2 ⁇ m or more and 50 ⁇ m or less, and more preferably 5 ⁇ m or more and 30 ⁇ m or less. Thereby, a high-density negative electrode can be produced while maintaining high charge / discharge efficiency.
  • the negative electrode for an alkali metal ion battery according to the present embodiment (hereinafter sometimes simply referred to as a negative electrode) is produced using the negative electrode active material according to the present embodiment described above. Thereby, the negative electrode excellent in storage characteristics and charge / discharge capacity can be provided.
  • the alkali metal ion battery according to the present embodiment is manufactured using the negative electrode according to the present embodiment. Thereby, the alkali metal ion battery excellent in storage characteristics and charge / discharge capacity can be provided.
  • the alkali metal ion battery according to this embodiment is, for example, a lithium ion battery or a sodium ion battery.
  • a lithium ion battery or a sodium ion battery.
  • the case of a lithium ion battery will be described as an example.
  • FIG. 1 is a schematic view showing an example of a lithium ion battery according to this embodiment.
  • the lithium ion battery 10 includes a negative electrode 13, a positive electrode 21, an electrolytic solution 16, and a separator 18.
  • the negative electrode 13 includes a negative electrode active material layer 12 and a negative electrode current collector 14.
  • the negative electrode current collector 14 is not particularly limited, and generally known negative electrode current collectors can be used. For example, copper foil or nickel foil can be used.
  • the negative electrode active material layer 12 is composed of the negative electrode active material according to the present embodiment described above.
  • the negative electrode 13 can be manufactured as follows, for example.
  • organic polymer binders for example, fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene; styrene / butadiene rubber, butyl rubber, butadiene rubber, etc.
  • a viscosity adjusting solvent N-methyl-2-pyrrolidone, dimethylformamide, etc.
  • the negative electrode active material layer 12 can be obtained by molding the obtained slurry into a sheet shape, a pellet shape, or the like by compression molding, roll molding, or the like.
  • the negative electrode 13 can be obtained by laminating
  • the negative electrode 13 may satisfy the same condition as the electrode included in the half cell described above, or may have a different condition.
  • the electrolytic solution 16 fills the space between the positive electrode 21 and the negative electrode 13 and is a layer in which lithium ions move by charging and discharging.
  • the electrolytic solution 16 is not particularly limited, and generally known electrolytic solutions can be used.
  • a solution obtained by dissolving a lithium salt serving as an electrolyte in a non-aqueous solvent is used.
  • non-aqueous solvent examples include cyclic esters such as propylene carbonate, ethylene carbonate, and ⁇ -butyrolactone; chain esters such as dimethyl carbonate and diethyl carbonate; chain ethers such as dimethoxyethane; or a mixture thereof. Can be used.
  • electrolytes generally be a known electrolyte, for example, it may be used lithium metal salt such as LiClO 4, LiPF 6. Further, the above salts can be mixed with polyethylene oxide, polyacrylonitrile, etc. and used as a solid electrolyte.
  • lithium metal salt such as LiClO 4, LiPF 6.
  • the above salts can be mixed with polyethylene oxide, polyacrylonitrile, etc. and used as a solid electrolyte.
  • the separator 18 is not particularly limited, and a generally known separator can be used.
  • a porous film made of polyolefin such as polyethylene or polypropylene, a nonwoven fabric, or the like can be used.
  • the positive electrode 21 includes a positive electrode active material layer 20 and a positive electrode current collector 22. It does not specifically limit as the positive electrode active material layer 20, Generally, it can form with a well-known positive electrode active material. Is not particularly limited as the cathode active material include lithium cobalt oxide (LiCoO 2), lithium nickel oxide (LiNiO 2), composite oxides such as lithium manganese oxide (LiMn 2 O 4); polyaniline, polypyrrole, etc. Or the like can be used.
  • LiCoO 2 lithium cobalt oxide
  • LiNiO 2 lithium nickel oxide
  • composite oxides such as lithium manganese oxide (LiMn 2 O 4)
  • polyaniline polypyrrole, etc. Or the like can be used.
  • the positive electrode current collector 22 is not particularly limited, and generally known positive electrode current collectors can be used.
  • an aluminum foil can be used.
  • the positive electrode 21 in this embodiment can be manufactured with the manufacturing method of a well-known positive electrode generally.
  • the negative electrode material according to the present embodiment is a carbonaceous negative electrode material used for alkali metal ion batteries such as lithium ion batteries and sodium ion batteries, and is obtained by an X-ray diffraction method using CuK ⁇ rays as a radiation source (
  • the average layer spacing d 002 (hereinafter also referred to as “d 002 ”) of the (002) plane is 0.340 nm or more, preferably 0.350 nm or more, more preferably 0.365 nm or more.
  • the upper limit of the average layer surface distance d 002 is not particularly limited, but is usually 0.400 nm or less, preferably 0.395 nm or less, and more preferably 0.390 nm or less.
  • d 002 is less than or equal to the above upper limit, the irreversible capacity of the negative electrode material can be suppressed.
  • Such a carbonaceous material having an average layer spacing d 002 is generally called non-graphitizable carbon.
  • the negative electrode material of this embodiment contains non-graphitizable carbon. Thereby, charge / discharge cycle characteristics can be improved. Unlike graphitic materials, non-graphitizable carbon is an amorphous (non-crystalline) carbon material. The non-graphitizable carbon can be usually obtained by carbonizing the resin composition.
  • the voltage at the time of 20 mAh / g discharge from the fully charged state when charging / discharging under the charging / discharging conditions described later is set to V 0 [V] for the half cell manufactured under the conditions described later,
  • the voltage in the discharge process is V q [V]
  • the discharge capacity when V q reaches V 0 ⁇ 2.5 is A
  • the discharge capacity when V q reaches 2.5 is B.
  • a / B is specified to be 0.38 or more, preferably 0.40 or more, and more preferably 0.42 or more.
  • the upper limit of A / B is not particularly limited, but is usually 0.60 or less.
  • the usable charging depth of the alkali metal ion battery can be increased.
  • “mAh / g” indicates a capacity per 1 g of the negative electrode material.
  • the above A is not particularly limited, but is usually 130 mAh / g or more, preferably 150 mAh / g or more, more preferably 180 mAh / g or more.
  • the upper limit of A is not particularly limited, and the higher the number, the better. However, in reality, it is 250 mAh / g or less, and usually 220 mAh / g or less.
  • the B is not particularly limited, but is usually 350 mAh / g or more, preferably 380 mAh / g or more, and more preferably 420 mAh / g or more.
  • the upper limit of B is not particularly limited, and it is preferably as many as possible. However, in reality, it is 700 mAh / g or less, and usually 500 mAh / g or less.
  • FIG. 2 is a schematic diagram illustrating an example of a discharge curve of the negative electrode material according to the embodiment of the present invention.
  • FIG. 3 is an enlarged view of the flat region in FIG.
  • the above-mentioned “discharge capacity A when V q reaches V 0 ⁇ 2.5” refers to the capacity discharged when the half cell voltage V q changes from 0 V to V 0 ⁇ 2.5. It means the discharge capacity of the flat region in the curve.
  • discharge capacity B when V q reaches 2.5 refers to the capacity discharged when the voltage V q of the half cell changes from 0 V to 2.5 V, which is the discharge end voltage, It means the total amount of discharge capacity. Therefore, A / B indicates the ratio of the discharge capacity of the flat region to the total amount of discharge capacity, and it means that the larger the value of A / B, the greater the ratio of the flat region.
  • non-graphitizable carbon has a problem that the voltage changes greatly due to charge / discharge because the charge / discharge capacity in this flat region is small. For this reason, an alkali metal ion battery using non-graphitizable carbon as a negative electrode material easily reaches a charge / discharge cut-off voltage and has a narrow range of usable charge depths, which is difficult to use.
  • the present inventors have intensively studied to increase the ratio of the discharge capacity of the flat region to the total amount of discharge capacity. As a result, it was found that by appropriately adjusting the manufacturing conditions of the negative electrode material, the ratio of the discharge capacity in the flat region to the total discharge capacity, that is, the A / B can be increased, and the present invention was completed. .
  • the ratio of the discharge capacity in the flat region to the total amount of the discharge capacity of the negative electrode material of this embodiment is larger than that of the conventional material. Since the voltage of the alkali metal ion battery is determined by the potential difference between the positive electrode and the negative electrode, the range in which the voltage of the alkali metal ion battery can keep a certain voltage or more can be increased as the ratio of the discharge capacity in the flat region increases. Therefore, the useable depth of charge of the obtained alkali metal ion battery can be increased by using the negative electrode material of the present embodiment having a large proportion of the flat region for the negative electrode.
  • the negative electrode used is formed of the negative electrode material. More specifically, an electrode is formed using a composition in which a negative electrode material, carboxymethyl cellulose, styrene-butadiene rubber, and acetylene black are mixed at a weight ratio of 100: 1.5: 3.0: 2.0. The formed one is used.
  • the counter electrode uses metallic lithium.
  • a solution obtained by dissolving LiPF 6 at a ratio of 1 M in a carbonate-based solvent (a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 1: 1) is used.
  • the negative electrode can be produced, for example, as follows. First, a predetermined amount of negative electrode material, carboxymethylcellulose, styrene-butadiene rubber, acetylene black, and water are mixed with stirring to prepare a slurry. The obtained slurry is applied onto a copper foil as a current collector, preliminarily dried at 60 ° C. for 2 hours, and then vacuum dried at 120 ° C. for 15 hours. Subsequently, the negative electrode comprised with the negative electrode material can be obtained by cutting out to a predetermined magnitude
  • the negative electrode has a disk shape with a diameter of 13 mm
  • the negative electrode active material layer (a portion obtained by removing the current collector from the negative electrode) has a disk shape with a thickness of 50 ⁇ m
  • the counter electrode (an electrode made of metallic lithium) It can be a disk with a diameter of 12 mm and a thickness of 1 mm.
  • the shape of the half cell can be a 2032 type coin cell shape.
  • charging for a half cell refers to moving lithium ions from an electrode made of metallic lithium to an electrode made of a negative electrode material by applying a voltage.
  • discharge refers to a phenomenon in which lithium ions move from an electrode made of a negative electrode material to an electrode made of metallic lithium.
  • the amount of carbon dioxide adsorbed is less than 10.0 ml / g, preferably 8.0 ml / g or less, and more preferably 6.0 ml / g or less.
  • the adsorption amount of carbon dioxide gas is not more than the above upper limit value, the storage characteristics of the negative electrode material can be improved.
  • the negative electrode material according to the present embodiment preferably has an adsorption amount of carbon dioxide gas of 0.05 ml / g or more, more preferably 0.1 ml / g or more, and further preferably 1.0 ml / g or more.
  • the charge capacity of lithium can be further improved.
  • the amount of carbon dioxide adsorbed was measured by using an ASAP-2000M manufactured by Micromeritics Instrument Corporation, which was obtained by vacuum drying the negative electrode material at 130 ° C. for 3 hours or more using a vacuum dryer. It can be carried out.
  • Patent Document 4 Japanese Patent Laid-Open No. 10-223226
  • a negative electrode material having an adsorption amount of carbon dioxide gas of 10 ml / g or more and a larger d 002 than that of a graphite material is described.
  • Such a negative electrode material is said to be excellent in charge / discharge capacity.
  • it has been clarified that such a negative electrode material is easily deteriorated in the atmosphere and has poor storage characteristics as compared with a graphite material. Therefore, it is necessary to store in an inert gas atmosphere immediately after production, and it is difficult to handle as compared with a graphite material.
  • the negative electrode material according to the present embodiment is used as a negative electrode material for alkali metal ion batteries such as lithium ion batteries and sodium ion batteries.
  • the negative electrode material according to this embodiment is suitably used as a negative electrode material for lithium ion batteries such as lithium ion secondary batteries.
  • the pore volume obtained by the mercury intrusion method has a pore volume of 0.003 ⁇ m to 5 ⁇ m, preferably less than 0.55 ml / g, more preferably It is 0.53 ml / g or less, more preferably 0.50 ml / g or less.
  • the pore volume obtained by the mercury intrusion method has a pore volume of 0.003 ⁇ m to 5 ⁇ m, preferably 0.10 ml / g or more, More preferably, it is 0.20 ml / g or more, More preferably, it is 0.30 ml / g or more, More preferably, it is 0.40 ml / g or more, Especially preferably, it is 0.45 ml / g or more.
  • the pore volume by mercury porosimetry can be measured using Autopore III9420 manufactured by MICROMERITICS.
  • the ratio ( ⁇ H / ⁇ B ) of the density ( ⁇ H ) measured using helium gas as the replacement medium to the density ( ⁇ B ) measured using butanol as the replacement medium is preferably 1.05. More than 1.06, more preferably 1.06 or more, and still more preferably 1.07 or more. Further, ⁇ H / ⁇ B is preferably less than 1.25, more preferably less than 1.20, and even more preferably less than 1.15.
  • the charge / discharge capacity of an alkali metal ion battery obtained using the negative electrode material can be further improved.
  • the storage characteristic of the said negative electrode material can be improved further as the said (rho) H / (rho) B is below the said upper limit.
  • the negative electrode material according to this embodiment in which the ⁇ H / ⁇ B is within the above range is more excellent due to the balance between storage characteristics and charge / discharge capacity.
  • ⁇ H / ⁇ B is one index of the pore structure of the negative electrode material, and as this value is larger, butanol cannot enter but helium can enter more pores. That is, a large ⁇ H / ⁇ B means that a large number of fine pores exist. Further, if there are many pores into which helium cannot enter, ⁇ H / ⁇ B becomes small.
  • the negative electrode material according to the present embodiment is preferably not more than 1.84 g / cm 3 or more 2.10 g / cm 3, more preferably 1.85 g / cm 3 or more 2.05 g / cm 3, more preferably not more than 1.85 g / cm 3 or more 2.00 g / cm 3.
  • the negative electrode material according to the present embodiment from the viewpoint of control of the pore size, [rho B is not less 1.50 g / cm 3 or higher, preferably 1.80 g / cm 3 or less, more preferably 1. 55 g / cm 3 or more 1.78 g / cm 3 or less, more preferably not more than 1.60 g / cm 3 or more 1.75 g / cm 3.
  • the negative electrode material according to the present embodiment is embedded with an epoxy resin and the epoxy resin is cured, and then the obtained cured product is cut and polished to expose a cross section of the negative electrode material.
  • the cross section is observed in a bright field with a magnification of 1000 times using an optical microscope, it is preferable that a first region and a second region having different reflectances are observed in the cross section.
  • the negative electrode material according to the present embodiment in which the first region and the second region having different reflectivities are observed is more excellent in storage characteristics and charge / discharge capacity.
  • the reason why the storage characteristics and charge / discharge capacity are more excellent is not necessarily clear, but it is considered that the area contributing to the increase in capacity and the area contributing to the improvement of storage characteristics are formed in an appropriate form.
  • FIG. 4 is a schematic diagram for explaining an example of a cross-sectional structure of the negative electrode material 100 according to the embodiment of the present invention.
  • the negative electrode material 100 has a substantially constant reflectance in each of the first region 101 and the second region 103, and the first region 101 and the second region 103 have the same reflectance. It is preferable that the reflectance changes discontinuously at the interface with the two regions 103.
  • the first region 101 exists along the extension of the cross section of the negative electrode material 100, and the first region It is preferable that the second region 103 exists inside the 101.
  • the negative electrode material 100 according to the present embodiment preferably has, for example, a reflectance (B) of the second region 103 larger than a reflectance (A) of the first region 101. That is, it is preferable that the second region 103 is observed whitish (brighter) than the first region 101 when observed with an optical microscope.
  • the negative electrode material is held for 120 hours under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH, and then the negative electrode material is held for 1 hour under the condition of a temperature of 130 ° C. and a nitrogen atmosphere.
  • the moisture generated from the negative electrode material after the preliminary drying was measured by the Karl Fischer coulometric titration method.
  • the amount is preferably 0.20% by mass or less, more preferably 0.15% by mass or less, particularly preferably 0.10% by mass or less, with respect to 100% by mass of the negative electrode material after the preliminary drying. is there.
  • the water content is an index of the amount of chemically adsorbed water that is desorbed by being held at 200 ° C. for 30 minutes.
  • the minimum of the said moisture content is not specifically limited, Usually, it is 0.01 mass% or more.
  • the water adsorbed on the negative electrode material is roughly divided into physical adsorbed water and chemically adsorbed water, and the negative electrode material having a smaller amount of adsorbed chemical adsorbed water has better storage characteristics and higher charge. It became clear that the discharge capacity was better. That is, it has been found that the measure of the amount of chemically adsorbed water is effective as a design guideline for realizing a negative electrode material having excellent storage characteristics and charge / discharge capacity.
  • the physically adsorbed water refers to adsorbed water physically present mainly as water molecules on the surface of the negative electrode material.
  • chemically adsorbed water refers to adsorbed water that is present in a coordinated or chemically bonded state with the first layer on the surface of the negative electrode material.
  • a negative electrode material with a small amount of chemically adsorbed water has a structure in which the surface is difficult to coordinate or chemically bind moisture, or to a structure that does not easily change to such a structure when left in the atmosphere. It is thought that it has become. Therefore, if the amount of water is not more than the above upper limit value, even if stored for a long time in the atmosphere, moisture adsorption hardly occurs or the surface structure does not easily change, so it is considered that the storage characteristics are more excellent. .
  • the moisture desorbed from the negative electrode material in the preliminary drying held at a temperature of 130 ° C. for 1 hour under a nitrogen atmosphere is called physical adsorption water, and the negative electrode material after the preliminary drying is 200 ° C.
  • the water desorbed from the negative electrode material in the above operation for 30 minutes is referred to as chemisorbed water.
  • the negative electrode material according to the present embodiment preferably has a crystallite size in the c-axis direction obtained by X-ray diffraction (hereinafter sometimes abbreviated as “Lc (002) ”) of 5 nm or less. More preferably, it is 3 nm or less, More preferably, it is 2 nm or less.
  • the negative electrode material according to this embodiment preferably has a 50% cumulative particle size (D 50 , average particle size) of 1 ⁇ m or more and 50 ⁇ m or less, more preferably 2 ⁇ m or more and 30 ⁇ m or less in a volume-based cumulative distribution. preferable. Thereby, a high-density negative electrode can be produced.
  • D 50 cumulative particle size
  • the specific surface area according to the BET three-point method in nitrogen adsorption is preferably 1 m 2 / g or more and 15 m 2 / g or less, and more preferably 3 m 2 / g or more and 8 m 2 / g or less.
  • the specific surface area by the BET three-point method in nitrogen adsorption is not more than the above upper limit value, the irreversible reaction between the negative electrode material and the electrolytic solution can be further suppressed.
  • appropriate permeability to the negative electrode material of electrolyte solution can be obtained because the specific surface area by the BET three point method in nitrogen adsorption is more than the said lower limit.
  • the negative electrode material according to this embodiment preferably has a halogen content of less than 50 ppm, more preferably 30 ppm or less, and even more preferably 10 ppm or less.
  • the halogen content can be controlled by adjusting the halogen gas concentration in the processing gas used for the carbonization treatment and the halogen amount contained in the raw material of the negative electrode material.
  • the halogen content is calculated by burning the anode material, absorbing the hydrogen halide gas in the generated combustion gas into sodium hydroxide, and then quantifying the halogen content in this solution with an ion chromatography analyzer. it can.
  • the negative electrode material which concerns on 2nd invention can be manufactured according to the manufacturing method of the negative electrode material which concerns on 1st invention. Details are omitted here.
  • the negative electrode active material according to the second invention is the same as the negative electrode active material according to the first invention except that the negative electrode material according to the second invention is used as the negative electrode material. Details are omitted here.
  • the negative electrode for alkaline metal ion batteries and the alkaline metal ion battery according to the second invention are the negative electrode for alkaline metal ion batteries and the alkaline metal ion battery according to the first invention, except that the negative electrode active material according to the second invention is used as the negative electrode active material. It is the same.
  • the negative electrode for alkali metal ion batteries and alkali metal ion battery which concern on 2nd invention can be manufactured according to the negative electrode for alkali metal ion batteries and alkali metal ion battery which concern on 1st invention. Details are omitted here.
  • the negative electrode material according to the present embodiment is a carbonaceous negative electrode material used for alkali metal ion batteries such as lithium ion batteries and sodium ion batteries, and is obtained by an X-ray diffraction method using CuK ⁇ rays as a radiation source (
  • the average layer spacing d 002 (hereinafter also referred to as “d 002 ”) of the (002) plane is 0.340 nm or more, preferably 0.350 nm or more, more preferably 0.365 nm or more.
  • the upper limit of the average layer surface distance d 002 is not particularly limited, but is usually 0.400 nm or less, preferably 0.395 nm or less, and more preferably 0.390 nm or less.
  • d 002 is less than or equal to the above upper limit, the irreversible capacity of the negative electrode material can be suppressed.
  • Such a carbonaceous material having an average layer spacing d 002 is generally called non-graphitizable carbon.
  • the negative electrode material according to the present embodiment has a ratio ( ⁇ H / ⁇ B ) of the density ( ⁇ H ) measured using helium gas as the replacement medium to the density ( ⁇ B ) measured using butanol as the replacement medium, and 1.05. It is super, preferably 1.06 or more, more preferably 1.07 or more.
  • (rho) H / (rho) B is less than 1.25, Preferably it is less than 1.20, More preferably, it is less than 1.15.
  • the negative electrode material according to this embodiment in which the above ⁇ H / ⁇ B is within the above range is excellent in the balance between storage characteristics and charge / discharge capacity.
  • ⁇ H / ⁇ B is one index of the pore structure of the negative electrode material, and as this value is larger, butanol cannot enter but helium can enter more pores. That is, a large ⁇ H / ⁇ B means that a large number of fine pores exist. Further, if there are many pores into which helium cannot enter, ⁇ H / ⁇ B becomes small.
  • the negative electrode material according to the present embodiment from the viewpoint of control of the pore size, [rho H is at 1.84 g / cm 3 or more 2.10 g / cm 3 or less, preferably 1.85 g / cm 3 or more 2 .05g / cm 3 or less, and more preferably not more than 1.85 g / cm 3 or more 2.00 g / cm 3.
  • the negative electrode material according to the present embodiment is preferably not 1.50 g / cm 3 or more 1.80 g / cm 3 or less, more preferably 1.55 g / cm 3 or more 1.78 g / cm 3, more preferably not more than 1.60 g / cm 3 or more 1.75 g / cm 3.
  • the negative electrode material according to the present embodiment as described above is excellent in storage characteristics and charge / discharge capacity despite the fact that d 002 is 0.340 nm or more is not necessarily clear, but ⁇ H / ⁇ B is This is considered to be because the fine structure suitable for occlusion of lithium is formed by being within the range, and the surface of the negative electrode material has a structure in which adsorption of chemically adsorbed water hardly occurs. In other words, it is considered that the region contributing to the increase in capacity and the region contributing to the improvement of the storage characteristics are formed in an appropriate shape when ⁇ H / ⁇ B is within the above range.
  • Patent Document 2 Japanese Patent Laid-Open No. 8-115723
  • a negative electrode material having ( ⁇ H / ⁇ B ) of 1.25 or more and a large d 002 compared to a graphite material is described. ing.
  • Such a negative electrode material is said to be excellent in charge / discharge capacity.
  • it has been clarified that such a negative electrode material is easily deteriorated in the atmosphere and has poor storage characteristics as compared with a graphite material. Therefore, it is necessary to store in an inert gas atmosphere immediately after production, and it is difficult to handle as compared with a graphite material.
  • the negative electrode material according to the present embodiment is used as a negative electrode material for alkali metal ion batteries such as lithium ion batteries and sodium ion batteries.
  • the negative electrode material according to this embodiment is suitably used as a negative electrode material for lithium ion batteries such as lithium ion secondary batteries.
  • the negative electrode material according to the present embodiment exposes the cross section of the negative electrode material by embedding the negative electrode material with an epoxy resin and curing the epoxy resin, and then cutting and polishing the obtained cured product. Then, when the cross section is observed in a bright field with a magnification of 1000 times using an optical microscope, it is preferable that a first region and a second region having different reflectivities are observed in the cross section.
  • the negative electrode material according to the present embodiment in which the first region and the second region having different reflectivities are observed is more excellent in storage characteristics and charge / discharge capacity.
  • FIG. 4 is a schematic diagram for explaining an example of a cross-sectional structure of the negative electrode material 100 according to the embodiment of the present invention.
  • the negative electrode material 100 has a substantially constant reflectance in each of the first region 101 and the second region 103, and the first region 101 and the second region 103 have the same reflectance. It is preferable that the reflectance changes discontinuously at the interface with the two regions 103.
  • the first region 101 exists along the extension of the cross section of the negative electrode material 100, and the first region It is preferable that the second region 103 exists inside the 101.
  • the negative electrode material 100 according to the present embodiment preferably has, for example, a reflectance (B) of the second region 103 larger than a reflectance (A) of the first region 101. That is, it is preferable that the second region 103 is observed whitish (brighter) than the first region 101 when observed with an optical microscope.
  • the negative electrode material is held for 120 hours under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH, and then the negative electrode material is held for 1 hour under the condition of a temperature of 130 ° C. and a nitrogen atmosphere.
  • the moisture generated from the negative electrode material after the preliminary drying was measured by the Karl Fischer coulometric titration method.
  • the amount is preferably 0.20% by mass or less, more preferably 0.15% by mass or less, particularly preferably 0.10% by mass or less, with respect to 100% by mass of the negative electrode material after the preliminary drying. is there.
  • the water content is an index of the amount of chemically adsorbed water that is desorbed by being held at 200 ° C. for 30 minutes.
  • the minimum of the said moisture content is not specifically limited, Usually, it is 0.01 mass% or more.
  • the water adsorbed on the negative electrode material is roughly divided into physical adsorbed water and chemically adsorbed water, and the negative electrode material having a smaller amount of adsorbed chemical adsorbed water has better storage characteristics and higher charge. It became clear that the discharge capacity was better. That is, it has been found that the measure of the amount of chemically adsorbed water is effective as a design guideline for realizing a negative electrode material having excellent storage characteristics and charge / discharge capacity.
  • the physically adsorbed water refers to adsorbed water physically present mainly as water molecules on the surface of the negative electrode material.
  • chemically adsorbed water refers to adsorbed water that is present in a coordinated or chemically bonded state with the first layer on the surface of the negative electrode material.
  • a negative electrode material with a small amount of chemically adsorbed water has a structure in which the surface is difficult to coordinate or chemically bind moisture, or to a structure that does not easily change to such a structure when left in the atmosphere. It is thought that it has become. Therefore, if the amount of water is not more than the above upper limit value, even if stored for a long time in the atmosphere, moisture adsorption hardly occurs or the surface structure does not easily change, so it is considered that the storage characteristics are more excellent. .
  • the moisture desorbed from the negative electrode material in the preliminary drying held at a temperature of 130 ° C. for 1 hour under a nitrogen atmosphere is called physical adsorption water, and the negative electrode material after the preliminary drying is 200 ° C.
  • the water desorbed from the negative electrode material in the above operation for 30 minutes is referred to as chemisorbed water.
  • the negative electrode material according to the present embodiment preferably has a crystallite size in the c-axis direction obtained by X-ray diffraction (hereinafter sometimes abbreviated as “Lc (002) ”) of 5 nm or less. More preferably, it is 3 nm or less, More preferably, it is 2 nm or less.
  • the negative electrode material according to this embodiment preferably has a 50% cumulative particle size (D 50 , average particle size) of 1 ⁇ m or more and 50 ⁇ m or less, more preferably 2 ⁇ m or more and 30 ⁇ m or less in a volume-based cumulative distribution. preferable. Thereby, a high-density negative electrode can be produced.
  • D 50 cumulative particle size
  • the specific surface area according to the BET three-point method in nitrogen adsorption is preferably 1 m 2 / g or more and 15 m 2 / g or less, and more preferably 3 m 2 / g or more and 8 m 2 / g or less.
  • the specific surface area by the BET three-point method in nitrogen adsorption is not more than the above upper limit value, the irreversible reaction between the negative electrode material and the electrolytic solution can be further suppressed.
  • appropriate permeability to the negative electrode material of electrolyte solution can be obtained because the specific surface area by the BET three point method in nitrogen adsorption is more than the said lower limit.
  • the adsorption amount of carbon dioxide gas is preferably less than 10.0 ml / g, more preferably 8.0 ml / g or less, and even more preferably 6.0 ml / g or less.
  • the storage characteristics of the negative electrode material can be further improved.
  • the negative electrode material according to the present embodiment preferably has an adsorption amount of carbon dioxide gas of 0.05 ml / g or more, more preferably 0.1 ml / g or more, and further preferably 1.0 ml / g or more.
  • the charge capacity of lithium can be further improved.
  • the amount of carbon dioxide adsorbed was measured by using an ASAP-2000M manufactured by Micromeritics Instrument Corporation, which was obtained by vacuum drying a negative electrode material at 130 ° C. for 3 hours or more using a vacuum dryer. It can be carried out.
  • the pore volume obtained by the mercury intrusion method has a pore volume of 0.003 ⁇ m to 5 ⁇ m, preferably less than 0.55 ml / g, more preferably It is 0.53 ml / g or less, more preferably 0.50 ml / g or less.
  • the pore volume obtained by the mercury intrusion method has a pore volume of 0.003 ⁇ m to 5 ⁇ m, preferably 0.10 ml / g or more, More preferably, it is 0.20 ml / g or more, More preferably, it is 0.30 ml / g or more, More preferably, it is 0.40 ml / g or more, Especially preferably, it is 0.45 ml / g or more.
  • the pore volume by mercury porosimetry can be measured using Autopore III9420 manufactured by MICROMERITICS.
  • the discharge capacity when charging / discharging under the charging / discharging conditions described in the first invention is preferably 360 mAh / g or more with respect to the half cell produced under the conditions described in the first invention. More preferably, it is 380 mAh / g or more, More preferably, it is 400 mAh / g or more, Most preferably, it is 420 mAh / g or more.
  • the upper limit of the discharge capacity is not particularly limited and is preferably as many as possible. However, in reality, it is 700 mAh / g or less, and usually 500 mAh / g or less. In the present specification, “mAh / g” indicates a capacity per 1 g of the negative electrode material.
  • the negative electrode used is formed of the negative electrode material. More specifically, an electrode is formed using a composition in which a negative electrode material, carboxymethyl cellulose, styrene-butadiene rubber, and acetylene black are mixed at a weight ratio of 100: 1.5: 3.0: 2.0. The formed one is used.
  • the counter electrode uses metallic lithium.
  • As the electrolytic solution a solution obtained by dissolving LiPF 6 in a carbonate solvent (a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 1: 1) at a ratio of 1 M is used.
  • the negative electrode can be produced, for example, as follows. First, a predetermined amount of negative electrode material, carboxymethylcellulose, styrene-butadiene rubber, acetylene black, and water are mixed with stirring to prepare a slurry. The obtained slurry is applied onto a copper foil as a current collector, preliminarily dried at 60 ° C. for 2 hours, and then vacuum dried at 120 ° C. for 15 hours. Subsequently, the negative electrode comprised with the negative electrode material can be obtained by cutting out to a predetermined magnitude
  • the negative electrode has a disk shape with a diameter of 13 mm
  • the negative electrode active material layer (a portion obtained by removing the current collector from the negative electrode) has a disk shape with a thickness of 50 ⁇ m
  • the counter electrode (an electrode made of metallic lithium) It can be a disk with a diameter of 12 mm and a thickness of 1 mm.
  • the shape of the half cell can be a 2032 type coin cell shape.
  • charging for a half cell refers to moving lithium ions from an electrode made of metallic lithium to an electrode made of a negative electrode material by applying a voltage.
  • discharge refers to a phenomenon in which lithium ions move from an electrode made of a negative electrode material to an electrode made of metallic lithium.
  • the negative electrode material which concerns on 3rd invention can be manufactured according to the manufacturing method of the negative electrode material which concerns on 1st invention. Details are omitted here.
  • the negative electrode active material according to the third invention is the same as the negative electrode active material according to the first invention except that the negative electrode material according to the third invention is used as the negative electrode material. Details are omitted here.
  • the negative electrode for alkali metal ion batteries and the alkali metal ion battery according to the third invention are the negative electrode for alkali metal ion batteries and the alkaline metal ion battery according to the first invention except that the negative electrode active material according to the third invention is used as the negative electrode active material. It is the same.
  • the negative electrode for alkali metal ion batteries and alkali metal ion battery which concern on 3rd invention can be manufactured according to the negative electrode for alkali metal ion batteries and alkali metal ion battery which concern on 1st invention. Details are omitted here.
  • the present invention further discloses the following negative electrode material, negative electrode active material, negative electrode, and alkali metal ion battery with respect to the above-described embodiments of the present invention.
  • a negative electrode material for a lithium ion battery Contains amorphous carbon, and About a half cell produced using a negative electrode material formed as the negative electrode, metallic lithium as the counter electrode, and LiPF 6 dissolved in a carbonate solvent at a rate of 1 M as the electrolyte, Charge at 25 ° C under the conditions of a charging current of 25 mA / g, a charging voltage of 0 mV, and a charging end current of 2.5 mA / g by the constant current constant voltage method.
  • a negative electrode material for a lithium ion battery Contains amorphous carbon, and About a half cell produced using a negative electrode material formed as the negative electrode, metallic lithium as the counter electrode, and LiPF 6 dissolved in a carbonate solvent at a rate of 1 M as the electrolyte, Charge at 25 ° C under the conditions of a charging current of 25 mA / g, a charging voltage of 0 mV, and a charging end current of 2.5 mA / g by the constant current constant voltage method.
  • a negative electrode active material comprising the negative electrode material according to any one of [A1] to [A6].
  • a negative electrode active material further comprising a negative electrode material of a type different from the negative electrode material.
  • a negative electrode active material wherein the different types of negative electrode materials are graphite materials.
  • a lithium ion battery comprising at least the negative electrode for a lithium ion battery according to [A10], an electrolyte, and a positive electrode.
  • the weight of the negative electrode material after the step (A) is X
  • the weight of the negative electrode material at 150 ° C. in the step (B) is Y 1
  • a negative electrode material for a lithium ion battery according to any one of [B1] to [B7]
  • a negative electrode active material comprising the negative electrode material according to any one of [B1] to [B8].
  • a negative electrode active material further comprising a negative electrode material of a type different from the negative electrode material.
  • a negative electrode active material, wherein the different types of negative electrode materials are graphite materials.
  • a negative electrode for a lithium ion battery comprising the negative electrode active material according to any one of [B9] to [B11].
  • a lithium ion battery comprising at least the negative electrode for a lithium ion battery according to [B12], an electrolyte, and a positive electrode.
  • the ratio ( ⁇ H / ⁇ B ) of the density ( ⁇ H ) measured with helium gas as the displacement medium to the density ( ⁇ B ) measured with butanol as the displacement medium is greater than 1.05 and less than 1.25;
  • Density measured helium gas as a replacement medium ([rho H) is less than 1.84 g / cm 3 or more 2.10 g / cm 3, the negative electrode material.
  • the negative electrode material When measured by coulometric titration, The negative electrode material whose moisture content generated from the negative electrode material after the preliminary drying is 0.20% by mass or less with respect to 100% by mass of the negative electrode material after the preliminary drying.
  • [C4] In the negative electrode material according to any one of [C1] to [C3], About a half cell produced using a negative electrode material formed as the negative electrode, metallic lithium as the counter electrode, and LiPF 6 dissolved in a carbonate solvent at a rate of 1 M as the electrolyte, At 25 ° C., charging was performed by a constant current constant voltage method under conditions of a charging current of 25 mA / g, a charging voltage of 0 mV, and a charging end current of 2.5 mA / g, and then a discharge current of 25 mA / g and a discharge end voltage of 2.5 V A negative electrode material having a discharge capacity of 360 mAh / g or more when discharged by a constant current method.
  • An alkali metal ion battery comprising at least the negative electrode for an alkali metal ion battery according to [C11], an electrolyte, and a positive electrode.
  • the alkali metal ion battery according to [C12] which is a lithium ion battery or a sodium ion battery.
  • part means “part by weight”.
  • Particle size distribution The particle size distribution of the negative electrode material was measured by a laser diffraction method using a laser diffraction particle size distribution analyzer LA-920 manufactured by Horiba. From the measurement results, the particle size (D 50 , average particle size) at 50% accumulation in the volume-based cumulative distribution was determined for the negative electrode material.
  • the specific surface area was measured by a BET three-point method in nitrogen adsorption using a Nova-1200 device manufactured by Yuasa. The specific calculation method is as described above.
  • Adsorption amount of carbon dioxide gas Adsorption amount of carbon dioxide gas was measured using an ASAP-2000M manufactured by Micromeritics Instrument Corporation using a vacuum dryer as a measurement sample obtained by vacuum drying the negative electrode material at 130 ° C. for 3 hours or more. Done using. A measurement sample tube (0.5 g) was placed in a measurement sample tube and dried under reduced pressure at 300 ° C. for 3 hours or more under a reduced pressure of 0.2 Pa or less. Thereafter, the amount of carbon dioxide adsorbed was measured. The adsorption temperature is 0 ° C., the pressure is reduced until the pressure of the sample tube containing the measurement sample becomes 0.6 Pa or less, carbon dioxide gas is introduced into the sample tube, and the equilibrium pressure in the sample tube is 0.11 MPa (relative pressure). The amount of carbon dioxide adsorbed until it reached (corresponding to 0.032) was determined by the constant volume method and expressed in ml / g. The adsorption amount is a value converted to a standard state (STP).
  • STP standard state
  • the negative electrode material was burned using an oxyhydrogen flame combustion apparatus, and HCl in the produced combustion gas was absorbed in 0.01 mol NaOH aqueous solution.
  • the chlorine content in the aqueous solution was quantified with an ion chromatography analyzer.
  • the calibration curve of the ion chromatography analyzer was prepared by analyzing a solution prepared by diluting a chloride ion standard solution for ion chromatography (sodium chloride aqueous solution, chloride ion concentration 1000 ppm, manufactured by Kanto Chemical Co., Inc.). .
  • Chemical adsorption water rate A and B The chemical adsorption water ratios A and B were measured by the following procedures, respectively.
  • (Procedure 1) In an apparatus of a small environmental tester (SH-241 manufactured by ESPEC), 1 g of a negative electrode material was held for 120 hours under conditions of a temperature of 40 ° C. and a relative humidity of 90% RH. The negative electrode material was spread in a container having a length of 5 cm, a width of 8 cm, and a height of 1.5 cm so as to be as thin as possible, and then left in the apparatus.
  • Chemical adsorption water ratio A [%] 100 ⁇ (Y 1 ⁇ Y 2 ) / X
  • Chemical adsorption water ratio B [%] 100 ⁇ (Y 2 ⁇ Y 3 ) / X
  • X represents the weight of the negative electrode material after the step (A).
  • Y 1 represents the weight of the negative electrode material at 150 ° C. in the step (B).
  • Y 2 represents the weight of the negative electrode material at 250 ° C. in the step (B).
  • Y 3 represents the weight of the negative electrode material at 500 ° C. in the step (B).
  • Preservation test 1 g of the negative electrode material was held for 7 days under the conditions of a temperature of 40 ° C. and a relative humidity of 90% RH in a small environmental tester (SH-241 manufactured by ESPEC).
  • the negative electrode material was spread in a container having a length of 5 cm, a width of 8 cm, and a height of 1.5 cm so as to be as thin as possible, and then left in the apparatus. Thereafter, the negative electrode material was dried by holding at a temperature of 130 ° C. for 1 hour under a nitrogen atmosphere.
  • the prepared negative electrode slurry was applied to one side of a 14 ⁇ m-thick copper foil (Furukawa Electric, NC-WS), then pre-dried in air at 60 ° C. for 2 hours, and then vacuumed at 120 ° C. for 15 hours. Dried. After vacuum drying, the electrode was pressure-formed by a roll press. This was cut into a disk shape having a diameter of 13 mm to produce a negative electrode.
  • the thickness of the negative electrode active material layer was 50 ⁇ m.
  • Metallic lithium was formed in a disk shape with a diameter of 12 mm and a thickness of 1 mm to produce a counter electrode.
  • a polyolefin porous film manufactured by Celgard, trade name: Celgard 2400 was used as a separator.
  • a mixed solvent obtained by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 as an electrolytic solution and adding LiPF 6 at a ratio of 1 M was used in an argon atmosphere.
  • a 2032 type coin cell-shaped bipolar half cell was manufactured in the glove box, and the evaluation described below was performed on the half cell.
  • Pore volume The pore volume by the mercury intrusion method was measured using Autopore III9420 manufactured by MICROMERITICS.
  • the negative electrode material is put in a sample container and deaerated at a pressure of 2.67 Pa or less for 30 minutes.
  • mercury is introduced into the sample container and gradually pressurized to press the mercury into the pores of the negative electrode material (maximum pressure 414 MPa). From the relationship between the pressure at this time and the amount of mercury injected, the pore volume distribution of the negative electrode material is measured using the following equation.
  • the volume of mercury that was pressed into the negative electrode material from a pressure corresponding to a pore diameter of 5 ⁇ m (0.25 MPa) to a maximum pressure (414 MPa: equivalent to a pore diameter of 3 nm) was defined as a pore volume having a pore diameter of 5 ⁇ m or less.
  • the calculation of the pore diameter is based on the assumption that when mercury is pressed into a cylindrical pore having a diameter D at a pressure P, the surface tension of the surface tension and the pore are given by the surface tension ⁇ of mercury and the contact angle between mercury and the pore wall as ⁇ . From the balance of pressure acting on the cross section, the following equation holds.
  • ⁇ B Measured by the butanol method according to the method defined in JIS R7212.
  • ⁇ H Using a dry density meter Accupic 1330 manufactured by Micromeritics, the sample was measured after drying at 120 ° C. for 2 hours. The measurement was performed at 23 ° C. All pressures are gauge pressures, and are the pressures obtained by subtracting the ambient pressure from the absolute pressure.
  • the measuring device has a sample chamber and an expansion chamber, and the sample chamber has a pressure gauge for measuring the pressure in the chamber.
  • the sample chamber and the expansion chamber are connected by a connecting pipe having a valve.
  • a helium gas introduction pipe having a stop valve is connected to the sample chamber, and a helium gas distribution pipe having a stop valve is connected to the expansion chamber.
  • the measurement was performed as follows. Using a standard sphere, the volume of the sample chamber (V CELL ) and the volume of the expansion chamber (V EXP ) are measured in advance.
  • a sample is put into the sample chamber, and helium gas is allowed to flow for 2 hours through the helium gas inlet tube, the connecting tube in the sample chamber, and the helium gas discharge tube in the expansion chamber, and the inside of the apparatus is replaced with helium gas.
  • the valve between the sample chamber and the expansion chamber and the valve of the helium gas discharge pipe from the expansion chamber are closed, and helium gas is introduced from the helium gas introduction tube of the sample chamber to 134 kPa.
  • the stop valve of the helium gas introduction pipe is closed. Measure the pressure (P 1 ) in the sample chamber 5 minutes after closing the stop valve.
  • the occupation ratio of the raw material with respect to the space which carbonizes is 8.5 kg / m ⁇ 3 >.
  • Example 2 Using the phenol resin PR-55321B (manufactured by Sumitomo Bakelite Co., Ltd.), which is a thermosetting resin, as a raw material, the following steps (a) to (f) were carried out in order to obtain a negative electrode material 2.
  • PR-55321B manufactured by Sumitomo Bakelite Co., Ltd.
  • thermosetting resin 510 g was spread and allowed to stand as thin as possible in a heat treatment furnace having a furnace internal volume of 60 L (length 50 cm, width 40 cm, height 30 cm). Thereafter, the temperature was raised from room temperature to 500 ° C. at 100 ° C./hour without any of reducing gas replacement, inert gas replacement, reducing gas flow, and inert gas flow.
  • the occupation ratio of the raw material with respect to the space which carbonizes is 8.5 kg / m ⁇ 3 >.
  • Example 3 A negative electrode material 3 was produced in the same manner as in Example 2 except that the occupation ratio of the raw material with respect to the space to be carbonized was changed to 3.5 kg / m 3 .
  • Example 4 A negative electrode material 4 was produced in the same manner as in Example 2 except that the occupation ratio of the raw material to the space for carbonization treatment was changed to 0.9 kg / m 3 .
  • Example 5 A negative electrode material 5 was produced in the same manner as in Example 2 except that the occupation ratio of the raw material with respect to the space to be carbonized was changed to 0.5 kg / m 3 .
  • Example 6 A negative electrode material 6 was produced in the same manner as in Example 2 except that the occupation ratio of the raw material to the space for carbonization was changed to 0.3 kg / m 3 .
  • Example 7 A negative electrode material 7 was produced in the same manner as in Example 2 except that the occupation ratio of the raw material with respect to the space to be carbonized was changed to 9.0 kg / m 3 .
  • Example 8 A negative electrode material 8 was produced in the same manner as in Example 2 except that the occupation ratio of the raw material with respect to the space to be carbonized was changed to 0.16 kg / m 3 .
  • Example 1 A negative electrode material 9 was produced in the same manner as in Example 1 except that the occupation ratio of the raw material with respect to the space to be carbonized was changed to 16.0 kg / m 3 .
  • Example 2 A negative electrode material 10 was produced in the same manner as in Example 2 except that the occupation ratio of the raw material with respect to the space to be carbonized was changed to 16.0 kg / m 3 .
  • Example 3 A negative electrode material 11 was obtained in the same procedure as in Example 2, except that the occupation ratio of the raw material with respect to the space to be carbonized was changed to 15.72 kg / m 3 .
  • the first region and the second region having different reflectivities were observed, and the reflectivity changed discontinuously at the interface between the first region and the second region. Further, in the negative electrode materials obtained in Examples 1 to 8, the first region exists along the extension of the cross section of the negative electrode material, and the second region having a higher reflectance than the first region is present inside the first region. Existed.
  • the lithium ion battery using the negative electrode material having such a structure was excellent in storage characteristics and charge / discharge capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明の負極材料は、線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.340nm以上であり、アルカリ金属イオン電池に用いられる炭素質の負極材料である。また、温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、熱重量測定装置を用いて、(A)上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持する工程と、(B)上記(A)工程後の上記負極材料を窒素雰囲気下で、温度40℃から540℃まで10℃/分で昇温し、上記負極材料の重量減少量を測定する工程と、を順次おこない、上記(A)工程後の上記負極材料の重量をXとし、上記(B)工程における150℃での上記負極材料の重量をYとし、上記(B)工程における250℃での上記負極材料の重量をYとしたとき、100×(Y-Y)/Xで定義される化学吸着水率Aが0.5%以下である。

Description

負極材料、負極活物質、負極およびアルカリ金属イオン電池
 本発明は、負極材料、負極活物質、負極およびアルカリ金属イオン電池に関する。
 アルカリ金属イオン電池用の負極材料としては、一般的に、黒鉛質材料が用いられている。しかし、黒鉛質材料はリチウムなどのアルカリ金属イオンのドープ・脱ドープにより結晶子の層間が伸縮するため、結晶子に歪みが生じやすい。そのため、黒鉛質材料は充放電の繰り返しによる結晶構造の破壊が起こりやすく、黒鉛質材料を負極材料に用いたアルカリ金属イオン電池は充放電サイクル特性に劣るとされている。
 特許文献1(特開平8-64207)には、炭素質材料であって、該炭素質材料に電気化学的にリチウムをドープし、 7Li-NMR分析を行ったとき、基準物質LiClの共鳴線に対して低磁場側に80~200ppmシフトした主共鳴ピークが観測されることを特徴とする非水溶媒系二次電池電極用炭素質材料が記載されている。
 特許文献2(特開平8-115723号公報)には、X線回折法により求めた(002)面の平均層面間隔が0.365nm以上、ブタノールを置換媒体として測定した密度(ρ)に対するヘリウムガスを置換媒体として測定した密度(ρ)の比(ρ/ρ)が1.15以上であることを特徴とする二次電池電極用炭素質材料が記載されている。
 特許文献4(特開平10-223226号公報)には、フェノール性水酸基を有する芳香族化合物とアルデヒド類との縮合物である芳香族系縮合高分子の炭素化物であって、水素原子と炭素原子の原子比H/Cが0.1未満、炭酸ガスの吸着量が10ml/g以上、X線小角散乱の測定において、s=2・sinθ/λ(ここに、θは散乱角、λはX線の波長である。)で定義した、sの値が0.5nm-1における散乱強度を測定し、乾燥状態で測定された強度をI、含水状態で測定された強度をIとしたとき、X線散乱強度比I/Iが0.25以上であることを特徴とする二次電池電極用炭素質材料が記載されている。
 このような炭素質材料は結晶子の層間が黒鉛質材料に比べて大きく、充放電の繰り返しによる結晶構造の破壊が黒鉛質材料に比べて起こり難いため、充放電サイクル特性に優れるとされている(特許文献1~4参照)。
特開平8-64207号公報 特開平8-115723号公報 国際公開第2007/040007号パンフレット 特開平10-223226号公報
 ところが、特許文献1~4に記載されているような、結晶子の層間が黒鉛質材料に比べて大きい炭素質材料は、黒鉛質材料に比べて大気中で劣化し易く、保存特性が劣っていた。そのため、製造直後から不活性ガス雰囲気などで保存する必要があり、黒鉛質材料に比べて取り扱い難いとされていた。
 一般的に、d002が黒鉛質材料に比べて大きい負極材料は、黒鉛質材料よりも微細な細孔が発達しているため、その細孔内部に水分が吸着し易い。水分が吸着していると、負極材料にドープされたリチウムと水分との間で不可逆的な反応が生じ、その結果として、初期充電時の不可逆容量の増加や充放電サイクル特性の低下が起きてしまう。このような理由から、d002が大きい負極材料は黒鉛質材料よりも保存特性が劣ると考えられていた(例えば、特許文献3参照)。そのため、従来は、負極材料の細孔を閉孔させ、平衡水分吸着量を減らすことにより保存特性の改良を試みていた(例えば、特許文献3参照)。
 しかし、本発明者らが、劣化した負極材料を加熱乾燥して、微細な細孔内に吸着した水分を除去することにより負極材料の再生を試みてみたところ、負極材料を完全に再生させることはできなかった。また、特許文献3のように、負極材料の細孔を閉孔させると、充放電容量が低下してしまうという問題もあった。そのため、保存特性の向上と充放電容量の向上とはトレード・オフの関係にあった。
 また、d002が黒鉛質材料に比べて大きい負極材料を用いたリチウムイオン電池は、優れた充放電サイクル特性を有する一方で,充放電により電圧が大きく変化するため、カットオフ電圧に到達しやすく、使用できる充電深度(SOC:State of Charge)の範囲が狭いとされている。
 d002が黒鉛質材料に比べて大きい負極材料は、対極リチウム評価における放電曲線において平坦な領域の割合が少なく、充放電が進むとともに電位が大きく変化するためである。
 そこで、本発明では、黒鉛質材料に比べて大きい(002)面の平均層面間隔を有しつつ、保存特性および充放電容量に優れたアルカリ金属イオン電池用負極材料を提供する。
 本発明者らは、黒鉛質材料に比べて大きい(002)面の平均層面間隔を有し、かつ、保存特性に優れたアルカリ金属イオン電池用負極材料を実現するための設計指針について鋭意検討した。その結果、本発明者等が考案した化学吸着水率という尺度がこうした設計指針として有効であることを見出し、第一発明に到達した。
 また、本発明者らは、黒鉛質材料に比べて大きい(002)面の平均層面間隔を有し、かつ、保存特性および充放電容量に優れたアルカリ金属イオン電池用負極材料を実現するための設計指針について鋭意検討した。その結果、炭酸ガスの吸着量および密度が特定の範囲であり、かつ、放電曲線が特定の形状を有する負極材料が保存特性および充放電容量に優れることを見出し、第二発明に到達した。
 また、本発明者らは、黒鉛質材料に比べて大きい(002)面の平均層面間隔を有し、かつ、保存特性および充放電容量に優れたアルカリ金属イオン電池用負極材料を実現するために鋭意検討した。その結果、ブタノールを置換媒体として測定した密度(ρ)に対するヘリウムガスを置換媒体として測定した密度(ρ)の比(ρ/ρ)およびρが特定の範囲にある負極材料が保存特性および充放電容量に優れることを見出し、第三発明に到達した。
 本発明の第一発明によれば、
 線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.340nm以上である、アルカリ金属イオン電池に用いられる炭素質の負極材料であって、
 温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、
 熱重量測定装置を用いて、
 (A)上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持する工程と、
 (B)上記(A)工程後の上記負極材料を窒素雰囲気下で、温度40℃から540℃まで10℃/分で昇温し、上記負極材料の重量減少量を測定する工程と、
を順次おこない、
 上記(A)工程後の上記負極材料の重量をXとし、
 上記(B)工程における150℃での上記負極材料の重量をYとし、
 上記(B)工程における250℃での上記負極材料の重量をYとしたとき、
 100×(Y-Y)/Xで定義される化学吸着水率Aが0.5%以下である、負極材料が提供される。
 本発明の第二発明によれば、
 線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.340nm以上である、アルカリ金属イオン電池に用いられる炭素質の負極材料であって、
 炭酸ガスの吸着量が10.0ml/g未満であり、
 ブタノールを置換媒体として測定した密度(ρ)が1.50g/cm以上であり、
 負極として当該負極材料により形成したもの、対極として金属リチウム、電解液としてカーボネート系溶媒に1Mの割合でLiPFを溶解させたもの、を用いて作製したハーフセルについて、
  25℃で、充電電流25mA/g、充電電圧0mV、充電終止電流2.5mA/gの条件で定電流定電圧法により充電し、次いで、放電電流25mA/g、放電終止電圧2.5Vの条件で定電流法により放電した際の、
  満充電状態から20mAh/g放電したときの電圧をV[V]とし、放電過程における電圧をV[V]とし、上記VがV×2.5に到達したときの放電容量をAとし、上記Vが2.5に到達したときの放電容量をBとしたとき、
  A/Bが0.38以上である、負極材料が提供される。
 本発明の第三発明によれば、
 線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.340nm以上である、アルカリ金属イオン電池に用いられる炭素質の負極材料であって、
 ブタノールを置換媒体として測定した密度(ρ)に対するヘリウムガスを置換媒体として測定した密度(ρ)の比(ρ/ρ)が1.05を超えて1.25未満であり、
 ヘリウムガスを置換媒体として測定した密度(ρ)が1.84g/cm以上2.10g/cm以下である、負極材料が提供される。
 さらに、本発明によれば、
 本発明の上記第一発明、上記第二発明または上記第三発明の上記負極材料を含む、負極活物質が提供される。
 さらに、本発明によれば、
 上記負極活物質を含む負極活物質層と、
 負極集電体と、
がこの順番で積層された、アルカリ金属イオン電池用負極が提供される。
 さらに、本発明によれば、
 上記アルカリ金属イオン電池用負極と、電解質と、正極とを少なくとも備えた、アルカリ金属イオン電池が提供される。
 本発明によれば、黒鉛質材料に比べて大きい(002)面の平均層面間隔を有しつつ、保存特性および充放電容量に優れたアルカリ金属イオン電池用負極材料を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明に係る実施形態のリチウムイオン電池の一例を示す模式図である。 本発明に係る実施形態の負極材料の放電曲線の一例を示す模式図である。 図2における平坦領域の拡大図である。 本発明に係る実施形態の負極材料の断面構造の例を説明するための模式図である。 実施例1で得られた負極材料の断面の光学顕微鏡写真を示す図である。 実施例5で得られた負極材料の断面の光学顕微鏡写真を示す図である。 比較例1で得られた負極材料の断面の光学顕微鏡写真を示す図である。
 以下に、本件各発明の実施形態について、図面を用いて説明する。なお、図は概略図であり、実際の寸法比率とは必ずしも一致していない。
[第一発明]
 以下、第一発明に係る実施形態について説明する。
<負極材料>
 本実施形態に係る負極材料は、リチウムイオン電池やナトリウムイオン電池などのアルカリ金属イオン電池に用いられる炭素質の負極材料であって、線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002(以下、「d002」とも呼ぶ。)が0.340nm以上であり、好ましくは0.350nm以上であり、より好ましくは0.365nm以上である。d002が上記下限値以上であると、リチウムなどのアルカリ金属イオンのドープ・脱ドープの繰り返しによる結晶構造の破壊が抑制されるため、負極材料の充放電サイクル特性を向上させることができる。
 平均層面間隔d002の上限は特に限定されないが、通常は0.400nm以下であり、好ましくは0.395nm以下であり、より好ましくは0.390nm以下である。d002が上記上限値以下であると、負極材料の不可逆的容量を抑制することができる。
 このような、平均層面間隔d002を有する炭素質の材料は、一般的に、難黒鉛化性の炭素と呼ばれている。
 本実施形態の負極材料は、難黒鉛化性の炭素を含む。これにより、充放電サイクル特性を向上させることができる。難黒鉛化性の炭素は、黒鉛質材料と異なり、アモルファス(非晶質)な炭素材料である。難黒鉛化性の炭素は、通常は、樹脂組成物を炭化処理することにより得ることができる。
 本実施形態の負極材料は難黒鉛化性の炭素を含むことにより、本実施形態の負極材料を用いたアルカリ金属イオン電池のサイクル特性や大電流の入出力特性をより一層向上させることができる。
 また、本実施形態に係る負極材料は、以下の手順で算出される化学吸着水率Aが0.5%以下であり、好ましくは0.4%以下であり、より好ましくは0.3%以下であるように特定されている。
(化学吸着水率Aの算出手順)
 (手順1)温度40℃、相対湿度90%RHの条件下で本実施形態に係る負極材料を120時間保持する。
 (手順2)熱重量測定装置を用いて、(A)上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持する工程と、(B)上記(A)工程後の上記負極材料を窒素雰囲気下で、温度40℃から540℃まで10℃/分で昇温し、上記負極材料の重量減少量を測定する工程と、を順次おこない、下記式より化学吸着水率Aを算出する。
 化学吸着水率A[%]=100×(Y-Y)/X
 ここで、Xは、上記(A)工程後の上記負極材料の重量を示す。Yは、上記(B)工程における150℃での上記負極材料の重量を示す。Yは、上記(B)工程における250℃での上記負極材料の重量を示す。
 上記化学吸着水率Aが上記上限値以下であると、黒鉛質材料に比べて大きい(002)面の平均層面間隔を有する負極材料を大気中で長期間保存したとしても、負極材料の劣化を抑制することができる。
 上記化学吸着水率Aの下限は特に限定されないが、通常は0.01%以上である。
(化学吸着水率A)
 上記化学吸着水率Aが上記上限値以下であると、保存特性に優れた負極材料が得られる理由は必ずしも明らかではないが、化学吸着水率Aが少ない負極材料ほど、水分の吸着が起き難い構造になっているからだと考えられる。
 一般的に、d002が黒鉛質材料に比べて大きい負極材料は、黒鉛質材料よりも微細な細孔が発達しているため、その細孔内部に水分が吸着し易い。水分が吸着していると、負極材料にドープされたリチウムと水分との間で不可逆的な反応が生じ、その結果として、初期充電時の不可逆容量の増加や充放電サイクル特性の低下が起きてしまう。このような理由から、d002が大きい負極材料は黒鉛質材料よりも保存特性が劣ると考えられていた(例えば、特許文献3参照)。そのため、従来は、負極材料の細孔を閉孔させ、平衡水分吸着量を減らすことにより保存特性の改良を試みていた(例えば、特許文献3参照)。
 しかし、本発明者らが、劣化した負極材料を加熱乾燥して、微細な細孔内に吸着した水分を除去することにより負極材料の再生を試みてみたところ、負極材料を完全に再生させることはできなかった。また、特許文献3のように、負極材料の細孔を閉孔させると、充放電容量が低下してしまうという問題もあった。
 そこで、本発明者らは、さらに鋭意検討した。その結果、負極材料に吸着する水分には大きく分けて物理吸着水と化学吸着水とが存在し、化学吸着水の吸着量がより少ない負極材料ほど保存特性により優れると共に充放電容量にも優れることが明らかになった。すなわち、化学吸着水の吸着量という尺度が、保存特性および充放電容量に優れた負極材料を実現するための設計指針として有効であることを見出し、本発明に到達した。
 ここで、物理吸着水とは、負極材料の表面に主に水分子として物理的に存在している吸着水をいう。一方、化学吸着水とは、負極材料の表面の第一層に配位または化学的に結合して存在している吸着水をいう。
 化学吸着水の吸着量が少ない負極材料は、その表面が水分を配位または化学的に結合し難い構造になっている、あるいは大気中に放置してもそのような構造に変化し難い構造になっていると考えられる。したがって、上記化学吸着水率Aが上記上限値以下である本発明の負極材料は、大気中で長期間保存したとしても、水分の吸着が起き難い、あるいは表面構造が変化し難いため、保存特性に優れていると考えられる。
 なお、本実施形態では、上記(A)工程において負極材料から脱離する水分を物理吸着水と呼び、上記(B)工程において負極材料から脱離する水分を化学吸着水と呼ぶ。また、上記化学吸着水率Aは、150℃から250℃の間で脱離する化学吸着水の吸水率であり、負極材料中の化学吸着水の吸着量の指標を意味する。
(化学吸着水率B)
 本実施形態に係る負極材料は、以下の手順で算出される化学吸着水率Bが好ましくは1.0%以下であり、より好ましくは0.7%以下であり、さらに好ましくは0.5%以下である。
(化学吸着水率Bの算出手順)
 (手順1)温度40℃、相対湿度90%RHの条件下で本実施形態に係る負極材料を120時間保持する。
 (手順2)熱重量測定装置を用いて、(A)上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持する工程と、(B)上記(A)工程後の上記負極材料を窒素雰囲気下で、温度40℃から540℃まで10℃/分で昇温し、上記負極材料の重量減少量を測定する工程と、を順次おこない、下記式より化学吸着水率Bを算出する。
 化学吸着水率B[%]=100×(Y-Y)/X
 ここで、Xは、上記(A)工程後の上記負極材料の重量を示す。Yは、上記(B)工程における250℃での上記負極材料の重量を示す。Yは、上記(B)工程における500℃での上記負極材料の重量を示す。
 上記化学吸着水率Bが上記上限値以下であると、負極材料の保存特性をより一層向上させることができる。さらに、上記化学吸着水率Bが上記上限値以下であると、負極材料の充放電容量をより一層向上させることができる。なお、上記化学吸着水率Bは、250℃から500℃の間で脱離する化学吸着水の吸水率であり、前述した化学吸着水率Aにおいて定量した化学吸着水よりも脱離し難い化学吸着水の吸着量の指標を意味する。
 本実施形態に係る負極材料は、下記式で定義される250℃での重量減少率が好ましくは0.6%以下であり、より好ましくは0.5%以下である。
 250℃での重量減少率 [%] =100×(X-Y)/X
 ここで、Xは、上記(A)工程後の上記負極材料の重量を示す。Yは、上記(B)工程における250℃での上記負極材料の重量を示す。
 上記重量減少率が上記上限値以下であると、負極材料の保存特性をより一層向上させることができる。
 本実施形態に係る負極材料は、下記式で定義される500℃での重量減少率が好ましくは1.6%以下であり、より好ましくは1.2%以下である。
 500℃での重量減少率 [%] =100×(X-Y)/X
 ここで、Xは、上記(A)工程後の上記負極材料の重量を示す。Yは、上記(B)工程における500℃での上記負極材料の重量を示す。
 上記重量減少率が上記上限値以下であると、負極材料の保存特性をより一層向上させることができる。
(カールフィッシャー電量滴定法による水分量)
 本実施形態に係る負極材料は、温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して予備乾燥し、次いで、予備乾燥した後の負極材料を200℃、30分間保持することにより発生した水分をカールフィッシャー電量滴定法にて測定したとき、予備乾燥した後の負極材料から発生した水分量が、上記予備乾燥した後の負極材料100質量%に対し、好ましくは0.20質量%以下であり、より好ましくは0.15質量%以下であり、特に好ましくは0.10質量%以下である。
 上記水分量が上記上限値以下であると、負極材料の保存特性をより一層向上させることができる。なお、上記水分量は、200℃で、30分間保持することにより脱離する化学吸着水の吸着量の指標を意味する。
 上記カールフィッシャー電量滴定法による水分量が上記上限値以下であると、負極材料の劣化をより一層抑制することができる理由は必ずしも明らかではないが、上記水分量が少ない負極材料ほど、水分の吸着が起き難い構造になっているからだと考えられる。
 本発明者らの検討によると、負極材料に吸着する水分には大きく分けて物理吸着水と化学吸着水とが存在し、化学吸着水の吸着量がより少ない負極材料ほど保存特性により優れると共に充放電容量にもより優れることが明らかになった。すなわち、化学吸着水の吸着量という尺度が、保存特性および充放電容量に優れた負極材料を実現するための設計指針として有効であることを見出した。
 ここで、物理吸着水とは、負極材料の表面に主に水分子として物理的に存在している吸着水をいう。一方、化学吸着水とは、負極材料の表面の第一層に配位または化学的に結合して存在している吸着水をいう。
 化学吸着水の吸着量が少ない負極材料は、その表面が水分を配位または化学的に結合し難い構造になっている、あるいは大気中に放置してもそのような構造に変化し難い構造になっていると考えられる。したがって、上記水分量が上記上限値以下であると、大気中で長期間保存したとしても、水分の吸着が起き難い、あるいは表面構造が変化し難いため、保存特性により一層優れていると考えられる。
 なお、本実施形態では、温度130℃、窒素雰囲気の条件下で1時間保持する上記予備乾燥において負極材料から脱離する水分を物理吸着水と呼び、予備乾燥した後の負極材料を200℃、30分間保持する上記操作において負極材料から脱離する水分を化学吸着水と呼ぶ。
 本実施形態に係る負極材料は、リチウムイオン電池、ナトリウムイオン電池などのアルカリ金属イオン電池の負極材料として用いられる。とくに、本実施形態に係る負極材料は、リチウムイオン二次電池等のリチウムイオン電池の負極材料として好適に用いられる。
(結晶子のサイズ)
 本実施形態に係る負極材料は、X線回折法により求めたc軸方向の結晶子の大きさ(以下「Lc(002)」と略記することがある。)が、好ましくは5nm以下であり、より好ましくは3nm以下であり、さらに好ましくは2nm以下である。
(平均粒径)
 本実施形態に係る負極材料は体積基準の累積分布における50%累積時の粒径(D50、平均粒径)が、1μm以上50μm以下であることが好ましく、2μm以上30μm以下であることがより好ましい。これにより、高密度の負極を作製することができる。
(比表面積)
 本実施形態の負極材料は、窒素吸着におけるBET3点法による比表面積が1m/g以上15m/g以下であることが好ましく、3m/g以上8m/g以下であることがより好ましい。
 窒素吸着におけるBET3点法による比表面積が上記上限値以下であることにより、負極材料と電解液との不可逆的な反応をより一層抑制することができる。
 また、窒素吸着におけるBET3点法による比表面積が上記下限値以上であることにより、電解液の負極材料への適切な浸透性を得ることができる。
 比表面積の算出方法は以下のとおりである。
 下記(1)式より単分子層吸着量Wを算出し、下記(2)式より総表面積Stotalを算出し、下記(3)式より比表面積Sを求める。
 1/[W・{(P/P)-1}]={(C-1)/(W・C)}(P/P)(1/(W・C))   (1)
 上記式(1)中、P:吸着平衡にある吸着質の気体の圧力、P:吸着温度における吸着質の飽和蒸気圧、W:吸着平衡圧Pにおける吸着量、W:単分子層吸着量、C:固体表面と吸着質との相互作用の大きさに関する定数(C=exp{(E-E)RT})[E:第一層の吸着熱(kJ/mol)、E:吸着質の測定温度における液化熱(kJ/mol)]
 Stotal=(WNAcs)M   (2)
 上記式(2)中、N:アボガドロ数、M:分子量、Acs:吸着断面積
 S=Stotal/w   (3)
 式(3)中、w:サンプル重量(g)
(炭酸ガスの吸着量)
 本実施形態に係る負極材料は、炭酸ガスの吸着量が好ましくは10.0ml/g未満であり、より好ましくは8.0ml/g以下であり、さらに好ましくは6.0ml/g以下である。炭酸ガスの吸着量が上記上限値以下であると、負極材料の保存特性をより一層向上させることができる。
 また、本実施形態に係る負極材料は、炭酸ガスの吸着量が好ましくは0.05ml/g以上であり、より好ましくは0.1ml/g以上であり、さらに好ましくは1.0ml/g以上であり、さらに好ましくは3.0ml/g以上であり、特に好ましくは5.0ml/g超である。炭酸ガスの吸着量が上記下限値以上または上記下限値超であると、リチウムの充電容量をより一層向上させることができる。
 なお、炭酸ガスの吸着量の測定は、真空乾燥機を用いて、負極材料を130℃で3時間以上真空乾燥を行ったものを測定試料とし、Micromeritics Instrument Corporation社製ASAP-2000Mを使用して行うことができる。
(ハロゲン含有量)
 本実施形態に係る負極材料は、ハロゲン含有量が好ましくは50ppm未満であり、より好ましくは30ppm以下であり、さらに好ましくは10ppm以下である。ハロゲン含有量が上記上限値以下であると、負極材料の保存特性をより一層向上させることができる。ハロゲン含有量は、炭素化処理に際して用いる処理ガス中のハロゲンガス濃度や、負極材料の原料に含まれるハロゲン量を調整することにより制御することができる。ハロゲン含有量は、負極材料を燃焼し、生成した燃焼ガス中のハロゲン水素ガスを水酸化ナトリウムに吸収させた後、この溶液中のハロゲン含有量をイオンクロマトグラフィー分析装置で定量することにより、算出できる。
(放電容量)
 本実施形態の負極材料は、後述する第二発明で述べる条件で作製したハーフセルについて、第二発明で述べる充放電条件で充放電をおこなった際の放電容量が、好ましくは360mAh/g以上であり、より好ましくは380mAh/g以上であり、さらに好ましくは400mAh/g以上であり、特に好ましくは420mAh/g以上である。上記放電容量の上限は特に限定されず、多ければ多いほど好ましいが、現実的には700mAh/g以下であり、通常は500mAh/g以下である。なお、本明細書では、「mAh/g」は負極材料1gあたりの容量を示す。
(密度)
 また、本実施形態に係る負極材料は、ブタノールを置換媒体として測定した密度(ρ)に対するヘリウムガスを置換媒体として測定した密度(ρ)の比(ρ/ρ)が好ましくは1.05超であり、より好ましくは1.06以上であり、さらに好ましくは1.07以上である。
 また、ρ/ρが好ましくは1.25未満であり、より好ましくは1.20未満であり、さらに好ましくは1.15未満である。
 上記ρ/ρが上記下限値以上であると、当該負極材料を用いて得られるアルカリ金属イオン電池の充放電容量をより一層向上させることができる。また、上記ρ/ρが上記上限値以下であると、当該負極材料の保存特性をより一層向上させることができる。
 このように、上記ρ/ρが上記範囲内である、本実施形態に係る負極材料は、保存特性および充放電容量のバランスにより一層優れている。
 ρ/ρの値は、負極材料の細孔構造の一つの指標であり、この値が大きいほどブタノールは進入できないがヘリウムは進入できる大きさの細孔が多いことを意味する。つまり、ρ/ρが大きいことは微細な細孔が多数存在することを意味する。また、ヘリウムも進入できないような細孔が多く存在すると、ρ/ρは小さくなる。
 また、本実施形態に係る負極材料は、細孔サイズの制御の観点から、ρが好ましくは1.84g/cm以上2.10g/cm以下であり、より好ましくは1.85g/cm以上2.05g/cm以下であり、さらに好ましくは1.85g/cm以上2.00g/cm以下である。
 また、本実施形態に係る負極材料は、細孔サイズの制御の観点から、ρが好ましくは1.50g/cm以上1.80g/cm以下であり、より好ましくは1.55g/cm以上1.78g/cm以下であり、さらに好ましくは1.60g/cm以上1.75g/cm以下である。
(細孔容積)
 本実施形態に係る負極材料は、充填密度向上の観点から、水銀圧入法により求めた細孔直径が0.003μm~5μmの細孔容積が好ましくは0.55ml/g未満であり、より好ましくは0.53ml/g以下であり、さらに好ましくは0.50ml/g以下である。
 また、本実施形態に係る負極材料は、不可逆容量の低減の観点から、水銀圧入法により求めた細孔直径が0.003μm~5μmの細孔容積が好ましくは0.10ml/g以上であり、より好ましくは0.20ml/g以上であり、さらに好ましくは0.30ml/g以上であり、さらに好ましくは0.40ml/g以上であり、特に好ましくは0.45ml/g以上である。
 ここで、水銀圧入法による細孔容積はMICROMERITICS社製オートポアIII9420を用いて測定することができる。
<負極材料の製造方法>
 次に、本実施形態に係る負極材料の製造方法について説明する。
 本実施形態に係る負極材料は、例えば、特定の樹脂組成物を原料として、適切な条件で炭化処理することにより製造することができる。
 樹脂組成物を原料として、負極材料を製造すること自体は従来技術においても行われてきた。しかし、本実施形態では、(1)樹脂組成物の組成、(2)炭化処理の条件、(3)炭化処理を行う空間に対する原料の占有割合、などの因子を高度に制御している。本実施形態に係る負極材料を得るためには、これらの因子を高度に制御することが重要となる。
 特に、本発明者らは、本実施形態に係る負極材料を得るためには、上記(1)と(2)の条件を適切に設定した上で、(3)炭化処理を行う空間に対する原料の占有割合を従来の基準よりも低く設定することが重要であることを見出した。
 以下、本実施形態に係る負極材料の製造方法の一例を示す。ただし、本実施形態に係る負極材料の製造方法は、以下の例に限定されない。
(樹脂組成物)
 はじめに、(1)負極材料の原料として、炭化処理すべき樹脂組成物を選定する。
 本実施形態に係る負極材料の原材料となる樹脂組成物に含まれる樹脂としては、例えば、熱硬化性樹脂;熱可塑性樹脂;エチレン製造時に副生する石油系のタールやピッチ、石炭乾留時に生成するコールタール、コールタールの低沸点成分を蒸留除去した重質成分やピッチ、石炭の液化により得られるタールやピッチなどのような石油系または石炭系のタール若しくはピッチ;さらには上記タールやピッチなどを架橋処理したもの;やし殻や木材等の天然高分子物質;などが挙げられる。これらのうち1種または2種以上を組み合わせて用いることができる。これらの中でも、原料段階での精製が可能であり、不純物の少ない負極材料が得られ、かつ、精製に要する工程を大幅に短縮できコスト低減に繋がる点から、熱硬化性樹脂が好ましい。
 上記熱硬化性樹脂としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂;ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂などのエポキシ樹脂;メラミン樹脂;尿素樹脂;アニリン樹脂;シアネート樹脂;フラン樹脂;ケトン樹脂;不飽和ポリエステル樹脂;ウレタン樹脂などが挙げられる。また、これらが種々の成分で変性された変性物を用いることもできる。
 これらの中でも、残炭率が高いという理由からホルムアルデヒドを用いる樹脂である、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂;メラミン樹脂;尿素樹脂;アニリン樹脂が好ましい。
 また、熱可塑性樹脂としては、特に限定されず、例えば、ポリエチレン、ポリスチレン、ポリアクリロニトリル、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリプロピレン、塩化ビニル、メタクリル樹脂、ポリエチレンテレフタレート、ポリアミド、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリフタルアミドなどが挙げられる。
 また、熱硬化性樹脂を用いる場合には、その硬化剤を併用することができる。
 用いられる硬化剤としては、例えば、ノボラック型フェノール樹脂の場合はヘキサメチレンテトラミン、レゾール型フェノール樹脂、ポリアセタール、パラホルムアルデヒドなどを用いることができる。レゾール型フェノール樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂の場合はヘキサメチレンテトラミンなどを用いることができる。また、エポキシ樹脂の場合は、脂肪族ポリアミン、芳香族ポリアミンなどのポリアミン化合物、酸無水物、イミダゾール化合物、ジシアンジアミド、ノボラック型フェノール樹脂、ビスフェノール型フェノール樹脂、レゾール型フェノール樹脂など、エポキシ樹脂にて公知の硬化剤を用いることができる。
 硬化剤の配合量は、通常は上記熱硬化性樹脂100重量部に対して0.1重量部以上50重量部以下である。
 なお、通常は所定量の硬化剤を併用する熱硬化性樹脂であっても、本実施形態で用いられる樹脂組成物においては、通常よりも少ない量を用いたり、あるいは硬化剤を併用しないで用いたりすることもできる。
 また、負極材料の原材料としての樹脂組成物においては、上記熱硬化性樹脂、硬化剤の他に添加剤を配合することができる。
 ここで用いられる添加剤としては特に限定されないが、例えば、200℃以上800℃以下にて炭化処理した炭素材前駆体、有機酸、無機酸、含窒素化合物、含酸素化合物、芳香族化合物、非鉄金属元素などを挙げることができる。これら添加剤は、用いる樹脂の種類や性状などにより、1種または2種類以上を組み合わせて用いることができる。
 負極材料の原材料として用いられる樹脂としては、後述する含窒素樹脂類を主成分樹脂として含んでいてもよい。また、主成分樹脂に含窒素樹脂類が含まれていないときには主成分樹脂以外の成分として、少なくとも1種以上の含窒素化合物を含んでいてもよいし、含窒素樹脂類を主成分樹脂として含むとともに含窒素化合物を主成分樹脂以外の成分として含んでいてもよい。このような樹脂を炭化処理することにより、窒素を含有する負極材料を得ることができる。負極材料中に窒素が含まれると、窒素の有する電気陰性度により、得られる負極材料に好適な電気的特性を付与することができる。これにより、負極材料へのアルカリ金属イオンの吸蔵・放出を促進させ、得られるアルカリ金属イオン電池の充放電特性をより一層向上させることができる。
 ここで、含窒素樹脂類としては、以下のものを例示することができる。
 熱硬化性樹脂としては、メラミン樹脂、尿素樹脂、アニリン樹脂、シアネート樹脂、ウレタン樹脂のほか、アミンなどの含窒素成分で変性されたフェノール樹脂、エポキシ樹脂などが挙げられる。
 熱可塑性樹脂としては、ポリアクリロニトリル、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリアミド、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリフタルアミドなどが挙げられる。
 また、主成分樹脂以外の成分として含窒素化合物を用いる場合、その種類としては特に限定されないが、例えば、ノボラック型フェノール樹脂の硬化剤であるヘキサメチレンテトラミン、エポキシ樹脂の硬化剤である脂肪族ポリアミン、芳香族ポリアミン、ジシアンジアミドなどのほか、硬化剤成分以外にも、硬化剤として機能しないアミン化合物、アンモニウム塩、硝酸塩、ニトロ化合物など窒素を含有する化合物を用いることができる。
 上記含窒素化合物としては、主成分樹脂に含窒素樹脂類を含む場合であっても含まない場合であっても、1種類を用いてもよいし、2種類以上を併用してもよい。
 樹脂組成物の調製方法としては特に限定されず、例えば、(1)上記樹脂と、これ以外の成分とを溶融混合する方法、(2)上記樹脂と、これ以外の成分とを溶媒に溶解して混合する方法、(3)上記樹脂と、これ以外の成分とを粉砕して混合する方法などにより調製することができる。
 樹脂組成物の調製のための装置としては特に限定されないが、例えば、溶融混合を行う場合には、混練ロール、単軸あるいは二軸ニーダーなどの混練装置を用いることができる。溶解混合を行う場合は、ヘンシェルミキサー、ディスパーザなどの混合装置を用いることができる。粉砕混合を行う場合には、例えば、ハンマーミル、ジェットミルなどの装置を用いることができる。
 このようにして得られた樹脂組成物は、複数種類の成分を物理的に混合しただけのものであってもよいし、樹脂組成物の調製時、混合(攪拌、混練など)に際して付与される機械的エネルギーおよびこれが変換された熱エネルギーにより、その一部を化学的に反応させたものであってもよい。具体的には、機械的エネルギーによるメカノケミカル的反応や、熱エネルギーによる化学反応をさせてもよい。
(炭化処理)
 つぎに、得られた樹脂組成物を炭化処理する。
 ここで炭化処理の条件としては、例えば、常温から1℃/時間以上200℃/時間以下で昇温して、800℃以上3000℃以下、0.01Pa以上101kPa(1気圧)以下で、0.1時間以上50時間以下、好ましくは0.5時間以上10時間以下保持して行うことができる。炭化処理時の雰囲気としては窒素、ヘリウムガスなどの不活性雰囲気下;不活性ガス中に微量の酸素が存在するような実質的に不活性な雰囲気下;還元ガス雰囲気下などで行うことが好ましい。このようにすることで、樹脂の熱分解(酸化分解)を抑制し、所望の負極材料を得ることができる。
 このような炭化処理時の温度、時間などの条件は、負極材料の特性を最適なものにするため適宜調整することができる。
 なお、上記炭化処理を行う前に、プレ炭化処理を行ってもよい。
 ここで、プレ炭化処理の条件としては特に限定されないが、例えば、200℃以上1000℃以下で1時間以上10時間以下行うことができる。このように、炭化処理前にプレ炭化処理を行うことで、樹脂組成物を不融化させ、炭化処理工程前に樹脂組成物などの粉砕処理を行った場合でも、粉砕後の樹脂組成物などが炭化処理時に再融着するのを防ぎ、所望とする負極材料を効率的に得ることができるようになる。
 また、このプレ炭化処理の前に、樹脂組成物の硬化処理を行ってもよい。
 硬化処理方法としては特に限定されないが、例えば、樹脂組成物に硬化反応が可能な熱量を与えて熱硬化する方法、あるいは、熱硬化性樹脂と硬化剤とを併用する方法などにより行うことができる。これにより、プレ炭化処理を実質的に固相でできるため、熱硬化性樹脂の構造をある程度維持した状態で炭化処理またはプレ炭化処理を行うことができ、負極材料の構造や特性を制御することができるようになる。
 なお、上記炭化処理あるいはプレ炭化処理を行う場合には、上記樹脂組成物に、金属、顔料、滑剤、帯電防止剤、酸化防止剤などを添加して、所望する特性を負極材料に付与することもできる。
 上記硬化処理またはプレ炭化処理を行った場合は、その後、上記炭化処理の前に、処理物を粉砕しておいてもよい。こうした場合には、炭化処理時の熱履歴のバラツキを低減させ、得られる負極材料の表面状態の均一性を高めることができる。そして、処理物の取り扱い性を向上させることができる。
(炭化処理を行う空間に占める原料の占有割合)
 また、本実施形態に係る負極材料を得るには、炭化処理を行う空間に占める原料の占有割合を適切に調整することが重要である。具体的には、炭化処理を行う空間に対する原料の占有割合を好ましくは10.0kg/m以下、より好ましくは5.0kg/m以下、特に好ましくは1.0kg/m以下に設定する。ここで、炭化処理を行う空間は、通常は炭化処理に使用する熱処理炉の炉内容積を表す。
 なお、炭化処理を行う空間に対する原料の占有割合の従来の基準は、100~500kg/m程度である。そのため、本実施形態に係る負極材料を得るには、炭化処理を行う空間に対する原料の占有割合を従来の基準よりも低く設定することが重要である。
 炭化処理を行う空間に占める原料の占有割合を上記上限値以下とすることにより、本実施形態に係る負極材料を得ることができる理由は必ずしも明らかでないが、炭化処理時に原料(樹脂組成物)から発生するガスが系外に効率良く除去されることが関係していると考えられる。
 以上の手順により、本実施形態に係る負極材料を得ることができる。
<負極活物質>
 以下、本実施形態に係る負極活物質について説明する。
 負極活物質とは、アルカリ金属イオン電池において、リチウムイオンなどのアルカリ金属イオンを出し入れすることができる物質のことをいう。本実施形態に係る負極活物質は、上述した本実施形態に係る負極材料を含むものである。これにより、使用できる充電深度が広いアルカリ金属イオン電池を実現できる負極活物質を提供することができる。
 本実施形態に係る負極活物質は、上述した負極材料とは異なる種類の負極材料をさらに含んでもよい。このような負極材料としては、例えば、シリコン、一酸化ケイ素、黒鉛質材料など一般的に公知の負極材料が挙げられる。
 これらの中でも、本実施形態に係る負極活物質は、上述した本実施形態に係る負極材料に加え、黒鉛質材料を含むことが好ましい。これにより、得られるアルカリ金属イオン電池の充放電容量を向上させることができる。そのため、得られるアルカリ金属イオン電池を充放電容量および充放電効率のバランスが特に優れたものとすることができる。
 使用する黒鉛質材料の体積基準の累積分布における50%累積時の粒径(平均粒径)は、2μm以上50μm以下が好ましく、5μm以上30μm以下がより好ましい。これにより、高い充放電効率を維持したまま高密度の負極を作製することができる。
<アルカリ金属イオン電池用負極、アルカリ金属イオン電池>
 以下、本実施形態に係るアルカリ金属イオン電池用負極およびアルカリ金属イオン電池について説明する。
 本実施形態に係るアルカリ金属イオン電池用負極(以下、単に負極と呼ぶこともある。)は、上述した本実施形態に係る負極活物質を用いて製造されたものである。これにより、保存特性および充放電容量に優れた負極を提供することができる。
 また、本実施形態に係るアルカリ金属イオン電池は、本実施形態に係る負極を用いて製造されたものである。これにより、保存特性および充放電容量に優れたアルカリ金属イオン電池を提供することができる。
 本実施形態に係るアルカリ金属イオン電池は、例えば、リチウムイオン電池またはナトリウムイオン電池である。以下、リチウムイオン電池の場合を例に説明する。
 図1は、本実施形態に係るリチウムイオン電池の一例を示す模式図である。
 リチウムイオン電池10は、図1に示すように、負極13と、正極21と、電解液16と、セパレーター18とを有している。
 負極13は、図1に示すように、負極活物質層12と負極集電体14とを有している。
 負極集電体14としては特に限定されず、一般的に公知の負極用集電体を用いることができ、例えば、銅箔またはニッケル箔などを用いることができる。
 負極活物質層12は、上述した本実施形態に係る負極活物質により構成されている。
 負極13は、例えば、以下のようにして製造することができる。
 上記負極活物質100重量部に対して、一般的に公知の有機高分子結着剤(例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系高分子;スチレン・ブタジエンゴム、ブチルゴム、ブタジエンゴムなどのゴム状高分子;など)1重量部以上30重量部以下、および適量の粘度調整用溶剤(N-メチル-2-ピロリドン、ジメチルホルムアミドなど)または水を添加して混練して、負極スラリーを調製する。
 得られたスラリーを圧縮成形、ロール成形などによりシート状、ペレット状などに成形して、負極活物質層12を得ることができる。そして、このようにして得られた負極活物質層12と負極集電体14とを積層することにより、負極13を得ることができる。
 また、得られた負極スラリーを負極集電体14に塗布して乾燥することにより、負極13を製造することもできる。
 なお、負極13は、上述したハーフセルが備える電極と同一の条件を満たすものであってもよいし、異なる条件のものであってもよい。
 電解液16は、正極21と負極13との間を満たすものであり、充放電によってリチウムイオンが移動する層である。
 電解液16としては特に限定されず、一般的に公知の電解液を用いることができ、例えば、非水系溶媒に電解質となるリチウム塩を溶解したものが用いられる。
 この非水系溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、γ-ブチロラクトンなどの環状エステル類;ジメチルカーボネート、ジエチルカーボネートなどの鎖状エステル類;ジメトキシエタンなどの鎖状エーテル類;あるいはこれらの混合物などを用いることができる。
 電解質としては特に限定されず、一般的に公知の電解質を用いることができ、例えば、LiClO、LiPFなどのリチウム金属塩を用いることができる。また、上記塩類をポリエチレンオキサイド、ポリアクリロニトリルなどに混合し、固体電解質として用いることもできる。
 セパレーター18としては特に限定されず、一般的に公知のセパレーターを用いることができ、例えば、ポリエチレン、ポリプロピレンなどポリオレフィン製の多孔質フィルム、不織布などを用いることができる。
 正極21は、図1に示すように、正極活物質層20と正極集電体22とを有している。
 正極活物質層20としては特に限定されず、一般的に公知の正極活物質により形成することができる。正極活物質としては特に限定されず、例えば、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)、リチウムマンガン酸化物(LiMn)などの複合酸化物;ポリアニリン、ポリピロールなどの導電性高分子;などを用いることができる。
 正極集電体22としては特に限定されず、一般的に公知の正極集電体を用いることができ、例えば、アルミニウム箔を用いることができる。
 そして、本実施形態における正極21は、一般的に公知の正極の製造方法により製造することができる。
[第二発明]
 以下、第二発明に係る実施形態について説明する。
<負極材料>
 本実施形態に係る負極材料は、リチウムイオン電池やナトリウムイオン電池などのアルカリ金属イオン電池に用いられる炭素質の負極材料であって、線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002(以下、「d002」とも呼ぶ。)が0.340nm以上であり、好ましくは0.350nm以上であり、より好ましくは0.365nm以上である。d002が上記下限値以上であると、リチウムなどのアルカリ金属イオンのドープ・脱ドープの繰り返しによる結晶構造の破壊が抑制されるため、負極材料の充放電サイクル特性を向上させることができる。
 平均層面間隔d002の上限は特に限定されないが、通常は0.400nm以下であり、好ましくは0.395nm以下であり、より好ましくは0.390nm以下である。d002が上記上限値以下であると、負極材料の不可逆的容量を抑制することができる。
 このような、平均層面間隔d002を有する炭素質の材料は、一般的に、難黒鉛化性の炭素と呼ばれている。
 本実施形態の負極材料は、難黒鉛化性の炭素を含む。これにより、充放電サイクル特性を向上させることができる。難黒鉛化性の炭素は、黒鉛質材料と異なり、アモルファス(非晶質)な炭素材料である。難黒鉛化性の炭素は、通常は、樹脂組成物を炭化処理することにより得ることができる。
(A/B)
 本実施形態の負極材料は、後述する条件で作製したハーフセルについて、後述する充放電条件で充放電をおこなった際の満充電状態から20mAh/g放電したときの電圧をV[V]とし、放電過程における電圧をV[V]とし、上記VがV×2.5に到達したときの放電容量をAとし、上記Vが2.5に到達したときの放電容量をBとしたとき、A/Bが0.38以上であり、好ましくは0.40以上であり、より好ましくは0.42以上であるように特定されている。A/Bの上限は特に限定されないが、通常は0.60以下である。
 上記A/Bが上記下限値以上である負極材料を負極に用いことにより、アルカリ金属イオン電池の使用可能な充電深度を広くすることができる。
 なお、本明細書では、「mAh/g」は負極材料1gあたりの容量を示す。
 上記Aは特に限定されないが、通常は130mAh/g以上であり、好ましくは150mAh/g以上であり、より好ましくは180mAh/g以上である。上記Aの上限は特に限定されず、多ければ多いほど好ましいが、現実的には250mAh/g以下であり、通常は220mAh/g以下である。
 また、上記Bは特に限定されないが、通常は350mAh/g以上であり、好ましくは380mAh/g以上であり、より好ましくは420mAh/g以上である。上記Bの上限は特に限定されず、多ければ多いほど好ましいが、現実的には700mAh/g以下であり、通常は500mAh/g以下である。
(A/Bの技術的意味)
 以下、図2および図3を用いながら、上記A/Bの技術的意味について説明する。
 図2は、本発明に係る実施形態の負極材料の放電曲線の一例を示す模式図である。図3は、図2における平坦領域の拡大図である。上述した「VがV×2.5に到達したときの放電容量A」とは、ハーフセルの電圧Vが0VからV×2.5まで変化したときに放電した容量をいい、放電曲線における平坦領域の放電容量を意味する。一方、上述した「Vが2.5に到達したときの放電容量B」とは、ハーフセルの電圧Vが0Vから放電終止電圧である2.5Vまで変化したときに放電した容量をいい、放電容量の全量を意味する。
 したがって、上記A/Bは、放電容量の全量に対する平坦領域の放電容量の割合を示しており、A/Bの値が大きいほど平坦領域の占める割合が多いことを意味する。
 従来の難黒鉛化性の炭素は、この平坦領域の充放電容量が少ないため、充放電により電圧が大きく変化してしまうという課題を有していた。そのため、難黒鉛化性の炭素を負極材料に用いたアルカリ金属イオン電池は、充放電のカットオフ電圧に到達しやすく、使用できる充電深度の範囲が狭く使いにくいとされていた。
 そこで、本発明者らは、放電容量の全量に対する平坦領域の放電容量の割合を増加させるべく鋭意研究をおこなった。その結果、負極材料の製造条件を適切に調整することにより、放電容量の全量に対する平坦領域の放電容量の割合すなわち上記A/Bを増加させることができることを見出し、本発明を完成するに至った。
 上述したように、本実施形態の負極材料は放電容量の全量に対する平坦領域の放電容量の割合が、従来のものに比べて多い。アルカリ金属イオン電池の電圧は正極と負極の電位差で決まるため、平坦領域の放電容量の割合が多いほど、アルカリ金属イオン電池の電圧が一定の電圧以上をキープできる範囲を増やすことができる。そのため、平坦領域の割合が多い本実施形態の負極材料を負極に用いることにより、得られるアルカリ金属イオン電池の使用可能な充電深度を広くすることができる。
(ハーフセル作製条件)
 上述したハーフセルの作製条件について説明する。
 使用する負極は、当該負極材料により形成したものを用いる。より具体的には、負極材料とカルボキシメチルセルロースとスチレン・ブタジエンゴムとアセチレンブラックとを、重量比で100:1.5:3.0:2.0の割合で混合した組成物を用いて電極を形成したものを用いる。
 対極は、金属リチウムを用いる。
 電解液は、カーボネート系溶媒(エチレンカーボネートとジエチルカーボネートとを体積比で1:1で混合した混合溶媒)に1Mの割合でLiPFを溶解させたものを用いる。
 上記負極は、例えば、以下のようにして作製することができる。
 まず、所定量の負極材料と、カルボキシメチルセルロースと、スチレン・ブタジエンゴムと、アセチレンブラックと、水とを撹拌混合し、スラリーを調製する。得られたスラリーを集電体である銅箔上に塗布し、60℃で2時間予備乾燥を行い、その後、120℃で15時間真空乾燥する。次いで、所定の大きさに切り出すことにより、負極材料により構成された負極を得ることができる。
 また、上記負極は、直径13mmの円盤状とし、負極活物質層(負極から集電体を除いた部分)は、厚さ50μmの円盤状とし、対極(金属リチウムで構成された電極)は、直径12mm、厚さ1mmの円盤状とすることができる。
 また、上記ハーフセルの形状は、2032型コインセル形状とすることができる。
(充放電条件)
 上述したハーフセルの充放電条件は以下のとおりである。
 測定温度:25℃
 充電方式:定電流定電圧法、充電電流:25mA/g、充電電圧:0mV、充電終止電流:2.5mA/g
 放電方式:定電流法、放電電流:25mA/g、放電終止電圧:2.5V
 なお、ハーフセルについての「充電」とは、電圧の印加により、金属リチウムで構成された電極から負極材料により構成された電極にリチウムイオンを移動させることをいう。「放電」とは、負極材料により構成された電極から金属リチウムで構成された電極にリチウムイオンが移動する現象のことをいう。
(炭酸ガスの吸着量)
 本実施形態に係る負極材料は、炭酸ガスの吸着量が10.0ml/g未満であり、好ましくは8.0ml/g以下であり、より好ましくは6.0ml/g以下である。炭酸ガスの吸着量が上記上限値以下であると、負極材料の保存特性を向上させることができる。
 また、本実施形態に係る負極材料は、炭酸ガスの吸着量が好ましくは0.05ml/g以上であり、より好ましくは0.1ml/g以上であり、さらに好ましくは1.0ml/g以上であり、さらに好ましくは3.0ml/g以上であり、特に好ましくは5.0ml/g超である。炭酸ガスの吸着量が上記下限値以上または上記下限値超であると、リチウムの充電容量をより一層向上させることができる。
 なお、炭酸ガスの吸着量の測定は、真空乾燥機を用いて、負極材料を130℃で3時間以上真空乾燥を行ったものを測定試料とし、Micromeritics Instrument Corporation社製ASAP-2000Mを使用して行うことができる。
 特許文献4(特開平10-223226号公報)の実施例には、炭酸ガスの吸着量が10ml/g以上であり、かつ、d002が黒鉛質材料に比べて大きい負極材料が記載されている。このような負極材料は充放電容量に優れるとされている。
 しかし、本発明者らの検討によれば、このような負極材料は、黒鉛質材料に比べて大気中で劣化し易く、保存特性が劣っていることが明らかになった。そのため、製造直後から不活性ガス雰囲気などで保存する必要があり、黒鉛質材料に比べて取り扱い難かった。
 一般的に、d002が黒鉛質材料に比べて大きい負極材料は、黒鉛質材料よりも微細な細孔が発達しているため、その細孔内部に水分が吸着し易い。水分が吸着していると、負極材料にドープされたリチウムと水分との間で不可逆的な反応が生じ、その結果として、初期充電時の不可逆容量の増加や充放電サイクル特性の低下が起きてしまう。このような理由から、d002が大きい負極材料は黒鉛質材料よりも保存特性が劣ると考えられていた(例えば、特許文献3参照)。そのため、従来は、負極材料の細孔を閉孔させ、平衡水分吸着量を減らすことにより保存特性の改良を試みていた(例えば、特許文献3参照)。
 しかし、本発明者らが、劣化した負極材料を加熱乾燥して、微細な細孔内に吸着した水分を除去することにより負極材料の再生を試みたところ、負極材料を完全に再生させることはできなかった。また、特許文献3のように、負極材料の細孔を閉孔させると、充放電容量が低下してしまうという問題もあった。
 そこで、本発明者らは、さらに鋭意検討した。その結果、負極材料の炭酸ガスの吸着量および密度を特定の範囲に設定することにより、保存特性により優れると共に充放電容量にも優れる負極材料が得られることを明らかにし、本発明を完成させた。
 本実施形態に係る負極材料は、リチウムイオン電池、ナトリウムイオン電池などのアルカリ金属イオン電池の負極材料として用いられる。とくに、本実施形態に係る負極材料は、リチウムイオン二次電池等のリチウムイオン電池の負極材料として好適に用いられる。
(細孔容積)
 本実施形態に係る負極材料は、充填密度向上の観点から、水銀圧入法により求めた細孔直径が0.003μm~5μmの細孔容積が好ましくは0.55ml/g未満であり、より好ましくは0.53ml/g以下であり、さらに好ましくは0.50ml/g以下である。
 また、本実施形態に係る負極材料は、不可逆容量の低減の観点から、水銀圧入法により求めた細孔直径が0.003μm~5μmの細孔容積が好ましくは0.10ml/g以上であり、より好ましくは0.20ml/g以上であり、さらに好ましくは0.30ml/g以上であり、さらに好ましくは0.40ml/g以上であり、特に好ましくは0.45ml/g以上である。
 ここで、水銀圧入法による細孔容積はMICROMERITICS社製オートポアIII9420を用いて測定することができる。
(密度)
 本実施形態に係る負極材料は、ブタノールを置換媒体として測定した密度(ρ)に対するヘリウムガスを置換媒体として測定した密度(ρ)の比(ρ/ρ)が好ましくは1.05超であり、より好ましくは1.06以上であり、さらに好ましくは1.07以上である。
 また、ρ/ρが好ましくは1.25未満であり、より好ましくは1.20未満であり、さらに好ましくは1.15未満である。
 上記ρ/ρが上記下限値以上であると、当該負極材料を用いて得られるアルカリ金属イオン電池の充放電容量をより一層向上させることができる。また、上記ρ/ρが上記上限値以下であると、当該負極材料の保存特性をより一層向上させることができる。
 このように、上記ρ/ρが上記範囲内である、本実施形態に係る負極材料は、保存特性および充放電容量のバランスにより一層優れている。
 ρ/ρの値は、負極材料の細孔構造の一つの指標であり、この値が大きいほどブタノールは進入できないがヘリウムは進入できる大きさの細孔が多いことを意味する。つまり、ρ/ρが大きいことは微細な細孔が多数存在することを意味する。また、ヘリウムも進入できないような細孔が多く存在すると、ρ/ρは小さくなる。
 また、本実施形態に係る負極材料は、細孔サイズの制御の観点から、ρが好ましくは1.84g/cm以上2.10g/cm以下であり、より好ましくは1.85g/cm以上2.05g/cm以下であり、さらに好ましくは1.85g/cm以上2.00g/cm以下である。
 また、本実施形態に係る負極材料は、細孔サイズの制御の観点から、ρが1.50g/cm以上であり、好ましくは1.80g/cm以下であり、より好ましくは1.55g/cm以上1.78g/cm以下であり、さらに好ましくは1.60g/cm以上1.75g/cm以下である。
(反射率)
 本実施形態に係る負極材料は、上記負極材料をエポキシ樹脂で包埋し上記エポキシ樹脂を硬化させた後、得られた硬化物を切断して研磨することにより上記負極材料の断面を露出させ、次いで、光学顕微鏡を用いて上記断面を1000倍の倍率で明視野観察したとき、上記断面に、反射率が異なる第一領域および第二領域が観察されるのが好ましい。
 このように、反射率が異なる第一領域および第二領域が観察される、本実施形態に係る負極材料は、保存特性および充放電容量により一層優れている。保存特性および充放電容量により一層優れる理由は必ずしも明らかではないが、高容量化に寄与する領域と、保存特性の向上に寄与する領域が適切な形で形成されているからだと考えられる。
 以下、図4を用いて反射率が異なる第一領域および第二領域についてより詳細に説明する。
 図4は、本発明に係る実施形態の負極材料100の断面構造の例を説明するための模式図である。
 本実施形態に係る負極材料100は、図4(a)~(c)に示すように、例えば、第一領域101と第二領域103それぞれにおいて反射率がほぼ一定で、第一領域101と第二領域103との界面において反射率が不連続に変化しているものが好ましい。
 また、本実施形態に係る負極材料100は、図4(a)~(c)に示すように、例えば、負極材料100の上記断面の外延に沿って第一領域101が存在し、第一領域101の内側に第二領域103が存在しているものが好ましい。
 さらに、本実施形態に係る負極材料100は、例えば、第二領域103の反射率(B)が第一領域101の反射率(A)よりも大きいものが好ましい。すなわち、光学顕微鏡で観察した際に、第二領域103の方が第一領域101よりも白っぽく(明るく)観察されるものが好ましい。
(カールフィッシャー電量滴定法による水分量)
 本実施形態に係る負極材料は、温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して予備乾燥し、次いで、予備乾燥した後の負極材料を200℃、30分間保持することにより発生した水分をカールフィッシャー電量滴定法にて測定したとき、予備乾燥した後の負極材料から発生した水分量が、上記予備乾燥した後の負極材料100質量%に対し、好ましくは0.20質量%以下であり、より好ましくは0.15質量%以下であり、特に好ましくは0.10質量%以下である。
 上記水分量が上記上限値以下であると、本実施形態に係る負極材料を大気中で長期間保存したとしても、負極材料の劣化をより一層抑制することができる。なお、上記水分量は、200℃で、30分間保持することにより脱離する化学吸着水の吸着量の指標を意味する。
 上記水分量の下限は特に限定されないが、通常は0.01質量%以上である。
 上記カールフィッシャー電量滴定法による水分量が上記上限値以下であると、負極材料の劣化をより一層抑制することができる理由は必ずしも明らかではないが、上記水分量が少ない負極材料ほど、水分の吸着が起き難い構造になっているからだと考えられる。
 本発明者らの検討によると、負極材料に吸着する水分には大きく分けて物理吸着水と化学吸着水とが存在し、化学吸着水の吸着量がより少ない負極材料ほど保存特性により優れると共に充放電容量にもより優れることが明らかになった。すなわち、化学吸着水の吸着量という尺度が、保存特性および充放電容量に優れた負極材料を実現するための設計指針として有効であることを見出した。
 ここで、物理吸着水とは、負極材料の表面に主に水分子として物理的に存在している吸着水をいう。一方、化学吸着水とは、負極材料の表面の第一層に配位または化学的に結合して存在している吸着水をいう。
 化学吸着水の吸着量が少ない負極材料は、その表面が水分を配位または化学的に結合し難い構造になっている、あるいは大気中に放置してもそのような構造に変化し難い構造になっていると考えられる。したがって、上記水分量が上記上限値以下であると、大気中で長期間保存したとしても、水分の吸着が起き難い、あるいは表面構造が変化し難いため、保存特性により一層優れていると考えられる。
 なお、本実施形態では、温度130℃、窒素雰囲気の条件下で1時間保持する上記予備乾燥において負極材料から脱離する水分を物理吸着水と呼び、予備乾燥した後の負極材料を200℃、30分間保持する上記操作において負極材料から脱離する水分を化学吸着水と呼ぶ。
(結晶子のサイズ)
 本実施形態に係る負極材料は、X線回折法により求めたc軸方向の結晶子の大きさ(以下「Lc(002)」と略記することがある。)が、好ましくは5nm以下であり、より好ましくは3nm以下であり、さらに好ましくは2nm以下である。
(平均粒径)
 本実施形態に係る負極材料は体積基準の累積分布における50%累積時の粒径(D50、平均粒径)が、1μm以上50μm以下であることが好ましく、2μm以上30μm以下であることがより好ましい。これにより、高密度の負極を作製することができる。
(比表面積)
 本実施形態の負極材料は、窒素吸着におけるBET3点法による比表面積が1m/g以上15m/g以下であることが好ましく、3m/g以上8m/g以下であることがより好ましい。
 窒素吸着におけるBET3点法による比表面積が上記上限値以下であることにより、負極材料と電解液との不可逆的な反応をより一層抑制することができる。
 また、窒素吸着におけるBET3点法による比表面積が上記下限値以上であることにより、電解液の負極材料への適切な浸透性を得ることができる。
 比表面積の算出方法は、前述した第一発明に係る負極材料と同様であるので、説明は省略する。
(ハロゲン含有量)
 本実施形態に係る負極材料は、ハロゲン含有量が好ましくは50ppm未満であり、より好ましくは30ppm以下であり、さらに好ましくは10ppm以下である。ハロゲン含有量が上記上限値以下であると、負極材料の保存特性をより一層向上させることができる。ハロゲン含有量は、炭素化処理に際して用いる処理ガス中のハロゲンガス濃度や、負極材料の原料に含まれるハロゲン量を調整することにより制御することができる。ハロゲン含有量は、負極材料を燃焼し、生成した燃焼ガス中のハロゲン水素ガスを水酸化ナトリウムに吸収させた後、この溶液中のハロゲン含有量をイオンクロマトグラフィー分析装置で定量することにより、算出できる。
<負極材料の製造方法>
 第二発明に係る負極材料は、第一発明に係る負極材料の製造方法に準じて製造することができる。ここでは詳細は省略する。
<負極活物質>
 第二発明に係る負極活物質は、負極材料として第二発明に係る負極材料を用いる以外は第一発明に係る負極活物質と同様である。ここでは詳細は省略する。
<アルカリ金属イオン電池用負極、アルカリ金属イオン電池>
 第二発明に係るアルカリ金属イオン電池用負極およびアルカリ金属イオン電池は、負極活物質として第二発明に係る負極活物質を用いる以外は第一発明に係るアルカリ金属イオン電池用負極およびアルカリ金属イオン電池と同様である。
 また、第二発明に係るアルカリ金属イオン電池用負極およびアルカリ金属イオン電池は、第一発明に係るアルカリ金属イオン電池用負極およびアルカリ金属イオン電池に準じて製造することができる。ここでは詳細は省略する。
[第三発明]
 以下、第三発明に係る実施形態について説明する。
<負極材料>
 本実施形態に係る負極材料は、リチウムイオン電池やナトリウムイオン電池などのアルカリ金属イオン電池に用いられる炭素質の負極材料であって、線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002(以下、「d002」とも呼ぶ。)が0.340nm以上であり、好ましくは0.350nm以上であり、より好ましくは0.365nm以上である。d002が上記下限値以上であると、リチウムなどのアルカリ金属イオンのドープ・脱ドープの繰り返しによる結晶構造の破壊が抑制されるため、負極材料の充放電サイクル特性を向上させることができる。
 平均層面間隔d002の上限は特に限定されないが、通常は0.400nm以下であり、好ましくは0.395nm以下であり、より好ましくは0.390nm以下である。d002が上記上限値以下であると、負極材料の不可逆的容量を抑制することができる。
 このような、平均層面間隔d002を有する炭素質の材料は、一般的に、難黒鉛化性の炭素と呼ばれている。
 また、本実施形態に係る負極材料は、ブタノールを置換媒体として測定した密度(ρ)に対するヘリウムガスを置換媒体として測定した密度(ρ)の比(ρ/ρ)が1.05超であり、好ましくは1.06以上であり、より好ましくは1.07以上である。
 また、ρ/ρが1.25未満であり、好ましくは1.20未満であり、さらに好ましくは1.15未満である。
 上記ρ/ρが上記下限値以上であると、当該負極材料を用いて得られるアルカリ金属イオン電池の充放電容量を向上させることができる。また、上記ρ/ρが上記上限値以下であると、当該負極材料の保存特性を向上させることができる。
 このように、上記ρ/ρが上記範囲内である、本実施形態に係る負極材料は、保存特性および充放電容量のバランスに優れている。
 ρ/ρの値は、負極材料の細孔構造の一つの指標であり、この値が大きいほどブタノールは進入できないがヘリウムは進入できる大きさの細孔が多いことを意味する。つまり、ρ/ρが大きいことは微細な細孔が多数存在することを意味する。また、ヘリウムも進入できないような細孔が多く存在すると、ρ/ρは小さくなる。
 また、本実施形態に係る負極材料は、細孔サイズの制御の観点から、ρが1.84g/cm以上2.10g/cm以下であり、好ましくは1.85g/cm以上2.05g/cm以下であり、より好ましくは1.85g/cm以上2.00g/cm以下である。
 また、本実施形態に係る負極材料は、細孔サイズの制御の観点から、ρが好ましくは1.50g/cm以上1.80g/cm以下であり、より好ましくは1.55g/cm以上1.78g/cm以下であり、さらに好ましくは1.60g/cm以上1.75g/cm以下である。
 上記のような本実施形態に係る負極材料が、d002が0.340nm以上であるにもかかわらず、保存特性および充放電容量に優れる理由は必ずしも明らかではないが、ρ/ρが上記範囲内であることにより、リチウムの吸蔵に適した微細構造が形成されるとともに、負極材料の表面が化学吸着水の吸着が起き難い構造になっているからだと考えられる。すなわち、ρ/ρが上記範囲内であることにより、高容量化に寄与する領域と、保存特性の向上に寄与する領域が適切な形で形成されているからだと考えられる。
 特許文献2(特開平8-115723号公報)の実施例には、(ρ/ρ)が1.25以上であり、かつ、d002が黒鉛質材料に比べて大きい負極材料が記載されている。このような負極材料は充放電容量に優れるとされている。
 しかし、本発明者らの検討によれば、このような負極材料は、黒鉛質材料に比べて大気中で劣化し易く、保存特性が劣っていることが明らかになった。そのため、製造直後から不活性ガス雰囲気などで保存する必要があり、黒鉛質材料に比べて取り扱い難かった。
 一般的に、d002が黒鉛質材料に比べて大きい負極材料は、黒鉛質材料よりも微細な細孔が発達しているため、その細孔内部に水分が吸着し易い。水分が吸着していると、負極材料にドープされたリチウムと水分との間で不可逆的な反応が生じ、その結果として、初期充電時の不可逆容量の増加や充放電サイクル特性の低下が起きてしまう。このような理由から、d002が大きい負極材料は黒鉛質材料よりも保存特性が劣ると考えられていた(例えば、特許文献3参照)。そのため、従来は、負極材料の細孔を閉孔させ、平衡水分吸着量を減らすことにより保存特性の改良を試みていた(例えば、特許文献3参照)。
 しかし、本発明者らが、劣化した負極材料を加熱乾燥して、微細な細孔内に吸着した水分を除去することにより負極材料の再生を試みたところ、負極材料を完全に再生させることはできなかった。また、特許文献3のように、負極材料の細孔を閉孔させると、充放電容量が低下してしまうという問題もあった。
 そこで、本発明者らは、さらに鋭意検討した。その結果、負極材料の(ρ/ρ)およびρを特定の範囲に設定することにより、保存特性により優れると共に充放電容量にも優れる負極材料が得られることを明らかにし、本発明を完成させた。
 本実施形態に係る負極材料は、リチウムイオン電池、ナトリウムイオン電池などのアルカリ金属イオン電池の負極材料として用いられる。とくに、本実施形態に係る負極材料は、リチウムイオン二次電池等のリチウムイオン電池の負極材料として好適に用いられる。
 また、本実施形態に係る負極材料は、上記負極材料をエポキシ樹脂で包埋し上記エポキシ樹脂を硬化させた後、得られた硬化物を切断して研磨することにより上記負極材料の断面を露出させ、次いで、光学顕微鏡を用いて上記断面を1000倍の倍率で明視野観察したとき、上記断面に、反射率が異なる第一領域および第二領域が観察されるのが好ましい。
 このように、反射率が異なる第一領域および第二領域が観察される、本実施形態に係る負極材料は、保存特性および充放電容量により一層優れている。
 以下、図4を用いて反射率が異なる第一領域および第二領域についてより詳細に説明する。
 図4は、本発明に係る実施形態の負極材料100の断面構造の例を説明するための模式図である。
 本実施形態に係る負極材料100は、図4(a)~(c)に示すように、例えば、第一領域101と第二領域103それぞれにおいて反射率がほぼ一定で、第一領域101と第二領域103との界面において反射率が不連続に変化しているものが好ましい。
 また、本実施形態に係る負極材料100は、図4(a)~(c)に示すように、例えば、負極材料100の上記断面の外延に沿って第一領域101が存在し、第一領域101の内側に第二領域103が存在しているものが好ましい。
 さらに、本実施形態に係る負極材料100は、例えば、第二領域103の反射率(B)が第一領域101の反射率(A)よりも大きいものが好ましい。すなわち、光学顕微鏡で観察した際に、第二領域103の方が第一領域101よりも白っぽく(明るく)観察されるものが好ましい。
(カールフィッシャー電量滴定法による水分量)
 本実施形態に係る負極材料は、温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して予備乾燥し、次いで、予備乾燥した後の負極材料を200℃、30分間保持することにより発生した水分をカールフィッシャー電量滴定法にて測定したとき、予備乾燥した後の負極材料から発生した水分量が、上記予備乾燥した後の負極材料100質量%に対し、好ましくは0.20質量%以下であり、より好ましくは0.15質量%以下であり、特に好ましくは0.10質量%以下である。
 上記水分量が上記上限値以下であると、本実施形態に係る負極材料を大気中で長期間保存したとしても、負極材料の劣化をより一層抑制することができる。なお、上記水分量は、200℃で、30分間保持することにより脱離する化学吸着水の吸着量の指標を意味する。
 上記水分量の下限は特に限定されないが、通常は0.01質量%以上である。
 上記カールフィッシャー電量滴定法による水分量が上記上限値以下であると、負極材料の劣化をより一層抑制することができる理由は必ずしも明らかではないが、上記水分量が少ない負極材料ほど、水分の吸着が起き難い構造になっているからだと考えられる。
 本発明者らの検討によると、負極材料に吸着する水分には大きく分けて物理吸着水と化学吸着水とが存在し、化学吸着水の吸着量がより少ない負極材料ほど保存特性により優れると共に充放電容量にもより優れることが明らかになった。すなわち、化学吸着水の吸着量という尺度が、保存特性および充放電容量に優れた負極材料を実現するための設計指針として有効であることを見出した。
 ここで、物理吸着水とは、負極材料の表面に主に水分子として物理的に存在している吸着水をいう。一方、化学吸着水とは、負極材料の表面の第一層に配位または化学的に結合して存在している吸着水をいう。
 化学吸着水の吸着量が少ない負極材料は、その表面が水分を配位または化学的に結合し難い構造になっている、あるいは大気中に放置してもそのような構造に変化し難い構造になっていると考えられる。したがって、上記水分量が上記上限値以下であると、大気中で長期間保存したとしても、水分の吸着が起き難い、あるいは表面構造が変化し難いため、保存特性により一層優れていると考えられる。
 なお、本実施形態では、温度130℃、窒素雰囲気の条件下で1時間保持する上記予備乾燥において負極材料から脱離する水分を物理吸着水と呼び、予備乾燥した後の負極材料を200℃、30分間保持する上記操作において負極材料から脱離する水分を化学吸着水と呼ぶ。
(結晶子のサイズ)
 本実施形態に係る負極材料は、X線回折法により求めたc軸方向の結晶子の大きさ(以下「Lc(002) 」と略記することがある。)が、好ましくは5nm以下であり、より好ましくは3nm以下であり、さらに好ましくは2nm以下である。
(平均粒径)
 本実施形態に係る負極材料は体積基準の累積分布における50%累積時の粒径(D50、平均粒径)が、1μm以上50μm以下であることが好ましく、2μm以上30μm以下であることがより好ましい。これにより、高密度の負極を作製することができる。
(比表面積)
 本実施形態の負極材料は、窒素吸着におけるBET3点法による比表面積が1m/g以上15m/g以下であることが好ましく、3m/g以上8m/g以下であることがより好ましい。
 窒素吸着におけるBET3点法による比表面積が上記上限値以下であることにより、負極材料と電解液との不可逆的な反応をより一層抑制することができる。
 また、窒素吸着におけるBET3点法による比表面積が上記下限値以上であることにより、電解液の負極材料への適切な浸透性を得ることができる。
 比表面積の算出方法は、前述した第一発明に係る負極材料と同様であるので、説明は省略する。
(炭酸ガスの吸着量)
 本実施形態に係る負極材料は、炭酸ガスの吸着量が好ましくは10.0ml/g未満であり、より好ましくは8.0ml/g以下であり、さらに好ましくは6.0ml/g以下である。炭酸ガスの吸着量が上記上限値以下であると、負極材料の保存特性をより一層向上させることができる。
 また、本実施形態に係る負極材料は、炭酸ガスの吸着量が好ましくは0.05ml/g以上であり、より好ましくは0.1ml/g以上であり、さらに好ましくは1.0ml/g以上であり、さらに好ましくは3.0ml/g以上であり、特に好ましくは5.0ml/g超である。炭酸ガスの吸着量が上記下限値以上または上記下限値超であると、リチウムの充電容量をより一層向上させることができる。
 なお、炭酸ガスの吸着量の測定は、真空乾燥機を用いて、負極材料を130℃で3時間以上真空乾燥を行ったものを測定試料とし、Micromeritics Instrument Corporation社製ASAP-2000Mを使用して行うことができる。
(細孔容積)
 本実施形態に係る負極材料は、充填密度向上の観点から、水銀圧入法により求めた細孔直径が0.003μm~5μmの細孔容積が好ましくは0.55ml/g未満であり、より好ましくは0.53ml/g以下であり、さらに好ましくは0.50ml/g以下である。
 また、本実施形態に係る負極材料は、不可逆容量の低減の観点から、水銀圧入法により求めた細孔直径が0.003μm~5μmの細孔容積が好ましくは0.10ml/g以上であり、より好ましくは0.20ml/g以上であり、さらに好ましくは0.30ml/g以上であり、さらに好ましくは0.40ml/g以上であり、特に好ましくは0.45ml/g以上である。
 ここで、水銀圧入法による細孔容積はMICROMERITICS社製オートポアIII9420を用いて測定することができる。
(放電容量)
 本実施形態の負極材料は、第一発明で述べた条件で作製したハーフセルについて、第一発明で述べた充放電条件で充放電をおこなった際の放電容量が、好ましくは360mAh/g以上であり、より好ましくは380mAh/g以上であり、さらに好ましくは400mAh/g以上であり、特に好ましくは420mAh/g以上である。上記放電容量の上限は特に限定されず、多ければ多いほど好ましいが、現実的には700mAh/g以下であり、通常は500mAh/g以下である。なお、本明細書では、「mAh/g」は負極材料1gあたりの容量を示す。
(ハーフセル作製条件)
 上述したハーフセルの作製条件について説明する。
 使用する負極は、当該負極材料により形成したものを用いる。より具体的には、負極材料とカルボキシメチルセルロースとスチレン・ブタジエンゴムとアセチレンブラックとを、重量比で100:1.5:3.0:2.0の割合で混合した組成物を用いて電極を形成したものを用いる。
 対極は、金属リチウムを用いる。
 電解液は、カーボネート系溶媒(エチレンカーボネートとジエチルカーボネートとを体積比1:1で混合した混合溶媒)に1Mの割合でLiPFを溶解させたものを用いる。
 上記負極は、例えば、以下のようにして作製することができる。
 まず、所定量の負極材料と、カルボキシメチルセルロースと、スチレン・ブタジエンゴムと、アセチレンブラックと、水とを撹拌混合し、スラリーを調製する。得られたスラリーを集電体である銅箔上に塗布し、60℃で2時間予備乾燥を行い、その後、120℃で15時間真空乾燥する。次いで、所定の大きさに切り出すことにより、負極材料により構成された負極を得ることができる。
 また、上記負極は、直径13mmの円盤状とし、負極活物質層(負極から集電体を除いた部分)は、厚さ50μmの円盤状とし、対極(金属リチウムで構成された電極)は、直径12mm、厚さ1mmの円盤状とすることができる。
 また、上記ハーフセルの形状は、2032型コインセル形状とすることができる。
(充放電条件)
 上述したハーフセルの充放電条件は以下のとおりである。
 測定温度:25℃
 充電方式:定電流定電圧法、充電電流:25mA/g、充電電圧:0mV、充電終止電流:2.5mA/g
 放電方式:定電流法、放電電流:25mA/g、放電終止電圧:2.5V
 なお、ハーフセルについての「充電」とは、電圧の印加により、金属リチウムで構成された電極から負極材料により構成された電極にリチウムイオンを移動させることをいう。「放電」とは、負極材料により構成された電極から金属リチウムで構成された電極にリチウムイオンが移動する現象のことをいう。
<負極材料の製造方法>
 第三発明に係る負極材料は、第一発明に係る負極材料の製造方法に準じて製造することができる。ここでは詳細は省略する。
<負極活物質>
 第三発明に係る負極活物質は、負極材料として第三発明に係る負極材料を用いる以外は第一発明に係る負極活物質と同様である。ここでは詳細は省略する。
<アルカリ金属イオン電池用負極、アルカリ金属イオン電池>
 第三発明に係るアルカリ金属イオン電池用負極およびアルカリ金属イオン電池は、負極活物質として第三発明に係る負極活物質を用いる以外は第一発明に係るアルカリ金属イオン電池用負極およびアルカリ金属イオン電池と同様である。
 また、第三発明に係るアルカリ金属イオン電池用負極およびアルカリ金属イオン電池は、第一発明に係るアルカリ金属イオン電池用負極およびアルカリ金属イオン電池に準じて製造することができる。ここでは詳細は省略する。
 以上、本件各発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良などは本発明に含まれるものである。
 なお、当然ながら、上述した本件各発明は、その内容が相反しない範囲で組み合わせることができる。
 上述した本件各発明の実施形態に関し、本発明はさらに以下の負極材料、負極活物質、負極およびアルカリ金属イオン電池を開示する。
[A1]
 リチウムイオン電池用負極材料であって、
 非晶質炭素を含み、かつ、
 負極として当該負極材料により形成したもの、対極として金属リチウム、電解液としてカーボネート系溶媒に1Mの割合でLiPFを溶解させたもの、を用いて作製したハーフセルについて、
  25℃で、充電電流25mA/g、充電電圧0mV、充電終止電流2.5mA/gの条件で定電流定電圧法により充電し、次いで、放電電流25mA/g、放電終止電圧2.5Vの条件で定電流法により放電した際の、
  満充電状態から20mAh/g放電したときの電圧をV[V]とし、放電過程における電圧をV[V]とし、上記VがV×2.5に到達したときの放電容量をAとし、上記Vが2.5に到達したときの放電容量をBとしたとき、
  A/Bが0.38以上である、負極材料。
[A2]
 [A1]に記載の負極材料において、
 上記Aが130mAh/g以上である、負極材料。
[A3]
 [A1]または[A2]に記載の負極材料において、
 上記Bが350mAh/g以上である、負極材料。
[A4]
 リチウムイオン電池用負極材料であって、
 非晶質炭素を含み、かつ、
 負極として当該負極材料により形成したもの、対極として金属リチウム、電解液としてカーボネート系溶媒に1Mの割合でLiPFを溶解させたもの、を用いて作製したハーフセルについて、
  25℃で、充電電流25mA/g、充電電圧0mV、充電終止電流2.5mA/gの条件で定電流定電圧法により充電し、次いで、放電電流25mA/g、放電終止電圧2.5Vの条件で定電流法により放電した際の、
  満充電状態から20mAh/g放電したときの電圧をV[V]とし、放電過程における電圧をV[V]とし、上記VがV×2.5に到達したときの放電容量をAとしたとき、
  上記Aが130mAh/g以上である、負極材料。
[A5]
 [A4]に記載の負極材料において、
 上記Vが2.5に到達したときの放電容量をBとしたとき、上記Bが350mAh/g以上である、負極材料。
[A6]
 [A1]乃至[A5]いずれか一つに記載の負極材料において、
 熱硬化性樹脂を炭化処理して得られる、負極材料。
[A7]
 [A1]乃至[A6]いずれか一つに記載の負極材料を含む、負極活物質。
[A8]
 [A7]に記載の負極活物質において、
 上記負極材料とは異なる種類の負極材料をさらに含む、負極活物質。
[A9]
 [A8]に記載の負極活物質において、
 異なる種類の上記負極材料が黒鉛質材料である、負極活物質。
[A10]
 [A7]乃至[A9]いずれか一つに記載の負極活物質を含む、リチウムイオン電池用負極。
[A11]
 [A10]に記載のリチウムイオン電池用負極と、電解質と、正極とを少なくとも備えた、リチウムイオン電池。
[B1]
 線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.340nm以上であるリチウムイオン電池用の負極材料であって、
 温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、
 熱重量測定装置を用いて、
 (A)上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持する工程と、
 (B)上記(A)工程後の上記負極材料を窒素雰囲気下で、温度40℃から540℃まで10℃/分で昇温し、上記負極材料の重量減少量を測定する工程と、
を順次おこない、
 上記(A)工程後の上記負極材料の重量をXとし、
 上記(B)工程における150℃での上記負極材料の重量をYとし、
 上記(B)工程における250℃での上記負極材料の重量をYとしたとき、
 100×(Y-Y)/Xで定義される化学吸着水率Aが0.5%以下である、リチウムイオン電池用負極材料。
[B2]
 [B1]に記載のリチウムイオン電池用負極材料において、
 100×(X-Y)/Xが0.6%以下である、リチウムイオン電池用負極材料。
[B3]
 [B1]または[B2]に記載のリチウムイオン電池用負極材料において、
 上記(B)工程における500℃での上記負極材料の重量をYとしたとき、
 100×(Y-Y)/Xで定義される化学吸着水率Bが1.0%以下である、リチウムイオン電池用負極材料。
[B4]
 [B3]に記載のリチウムイオン電池用負極材料において、
 100×(X-Y)/Xが1.6%以下である、リチウムイオン電池用負極材料。
[B5]
 [B1]乃至[B4]いずれか一つに記載のリチウムイオン電池用負極材料において、
 温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、
 上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して予備乾燥し、次いで、上記予備乾燥した後の上記負極材料を200℃、30分間保持することにより発生した水分をカールフィッシャー電量滴定法にて測定したとき、
 上記予備乾燥した後の上記負極材料から発生した水分量が、上記予備乾燥した後の上記負極材料100質量%に対し、0.20質量%以下である、リチウムイオン電池用負極材料。
[B6]
 [B1]乃至[B5]いずれか一つに記載のリチウムイオン電池用負極材料において、
 窒素吸着におけるBET3点法による比表面積が1m/g以上15m/g以下である、リチウムイオン電池用負極材料。
[B7]
 [B1]乃至[B6]いずれか一つに記載のリチウムイオン電池用負極材料において、
 炭酸ガスの吸着量が10ml/g未満である、リチウムイオン電池用負極材料。
[B8]
 [B1]乃至[B7]いずれか一つに記載のリチウムイオン電池用負極材料において、
 ハロゲン含有量が50ppm未満である、リチウムイオン電池用負極材料。
[B9]
 [B1]乃至[B8]いずれか一つに記載の負極材料を含む、負極活物質。
[B10]
 [B9]に記載の負極活物質において、
 上記負極材料とは異なる種類の負極材料をさらに含む、負極活物質。
[B11]
 [B10]に記載の負極活物質において、
 異なる種類の上記負極材料が黒鉛質材料である、負極活物質。
[B12]
 [B9]乃至[B11]いずれか一つに記載の負極活物質を含む、リチウムイオン電池用負極。
[B13]
 [B12]に記載のリチウムイオン電池用負極と、電解質と、正極とを少なくとも備えた、リチウムイオン電池。
[C1]
 線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.340nm以上である、アルカリ金属イオン電池に用いられる炭素質の負極材料であって、
 ブタノールを置換媒体として測定した密度(ρ)に対するヘリウムガスを置換媒体として測定した密度(ρ)の比(ρ/ρ)が1.05を超えて1.25未満であり、
 ヘリウムガスを置換媒体として測定した密度(ρ)が1.84g/cm以上2.10g/cm以下である、負極材料。
[C2]
 [C1]に記載の負極材料において、
 ブタノールを置換媒体として測定した密度(ρ)が1.50g/cm以上1.80g/cm以下である、負極材料。
[C3]
 [C1]または[C2]に記載の負極材料において、
 温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、
 上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して予備乾燥し、次いで、上記予備乾燥した後の上記負極材料を200℃、30分間保持することにより発生した水分をカールフィッシャー電量滴定法にて測定したとき、
 上記予備乾燥した後の上記負極材料から発生した水分量が、上記予備乾燥した後の上記負極材料100質量%に対し、0.20質量%以下である、負極材料。
[C4]
 [C1]乃至[C3]いずれか一つに記載の負極材料において、
 負極として当該負極材料により形成したもの、対極として金属リチウム、電解液としてカーボネート系溶媒に1Mの割合でLiPFを溶解させたもの、を用いて作製したハーフセルについて、
 25℃で、充電電流25mA/g、充電電圧0mV、充電終止電流2.5mA/gの条件で定電流定電圧法により充電し、次いで、放電電流25mA/g、放電終止電圧2.5Vの条件で定電流法により放電した際の放電容量が360mAh/g以上である、負極材料。
[C5]
 [C1]乃至[C4]いずれか一つに記載の負極材料において、
 上記負極材料をエポキシ樹脂で包埋し上記エポキシ樹脂を硬化させた後、得られた硬化物を切断して研磨することにより上記負極材料の断面を露出させ、次いで、光学顕微鏡を用いて上記断面を1000倍の倍率で明視野観察したとき、
 上記負極材料の上記断面は、反射率が異なる第一領域および第二領域を有する、負極材料。
[C6]
 [C1]乃至[C5]いずれか一つに記載の負極材料において、
 炭酸ガスの吸着量が10ml/g未満である、負極材料。
[C7]
 [C1]乃至[C6]いずれか一つに記載の負極材料において、
 水銀圧入法により求めた細孔直径が0.003μm~5μmの細孔容積が0.55ml /g未満である、負極材料。
[C8]
 [C1]乃至[C7]いずれか一つに記載の負極材料を含む、負極活物質。
[C9]
 [C8]に記載の負極活物質において、
 上記負極材料とは異なる種類の負極材料をさらに含む、負極活物質。
[C10]
 [C9]に記載の負極活物質において、
 異なる種類の上記負極材料が黒鉛質材料である、負極活物質。
[C11]
 少なくとも[C8]乃至[C10]いずれか一つに記載の負極活物質を含む負極活物質層と、
 負極集電体と、
がこの順番で積層された、アルカリ金属イオン電池用負極。
[C12]
 [C11]に記載のアルカリ金属イオン電池用負極と、電解質と、正極とを少なくとも備えた、アルカリ金属イオン電池。
[C13]
 リチウムイオン電池またはナトリウムイオン電池である、[C12]に記載のアルカリ金属イオン電池。
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。なお、実施例では、「部」は「重量部」を示す。
 [1]負極材料の評価方法
 はじめに、後述する実施例および比較例で得られた負極材料の評価方法を説明する。
1.粒度分布
 堀場製作所社製レーザー回折式粒度分布測定装置LA-920を用いて、レーザー回折法により、負極材料の粒度分布を測定した。測定結果から、負極材料について、体積基準の累積分布における50%累積時の粒径(D50、平均粒径)を求めた。
2.比表面積
 ユアサ社製のNova-1200装置を使用して窒素吸着におけるBET3点法により測定した。具体的な算出方法は、上述したとおりである。
3.負極材料のd002 およびLc(002)
 島津製作所製・X線回折装置「XRD-7000」を使用して(002)面の平均層面間隔d002を測定した。
 負極材料のX線回折測定から求められるスペクトルより、(002)面の平均層面間隔d002を以下のBragg式より算出した。
 λ=2dhklsinθ Bragg式 (dhkl=d002
 λ:陰極から出力される特性X線Kα1の波長
 θ:スペクトルの反射角度
 また、Lc(002)は以下のようにして測定した。
 X線回折測定から求められるスペクトルにおける002面ピークの半値幅と回折角から次のScherrerの式を用いて決定した。
 Lc(002)=0.94 λ/(βcosθ) ( Scherrerの式)
 Lc(002) : 結晶子の大きさ
 λ : 陰極から出力される特性X線Kα1の波長
 β : ピークの半値幅(ラジアン)
 θ : スペクトルの反射角度
4.炭酸ガスの吸着量
 炭酸ガスの吸着量の測定は、真空乾燥機を用いて、負極材料を130℃で3時間以上真空乾燥を行ったものを測定試料とし、Micromeritics Instrument Corporation社製ASAP-2000Mを使用して行った。
 測定用試料管に測定試料0.5gを入れ、0.2Pa以下の減圧下、300℃で3時間以上減圧乾燥を行い、その後、炭酸ガスの吸着量の測定を行った。
 吸着温度は0℃とし、測定試料を入れた試料管の圧力が0.6Pa以下になるまで減圧にした後、炭酸ガスを試料管に導入し、試料管内の平衡圧力が0.11MPa(相対圧力0.032に相当)に達するまでの炭酸ガスの吸着量を定容法により求め、ml/g単位で表した。吸着量は標準状態(STP)に換算した値である。
5.塩素の含有量
 負極材料を酸水素炎燃焼装置を用いて燃焼させ、生成した燃焼ガス中のHClを0.01モルのNaOH水溶液に吸収させた。次いで、この水溶液中の塩素の含有量をイオンクロマトグラフィー分析装置で定量した。なお、イオンクロマトグラフィー分析装置の検量線は、イオンクロマトグラフィー用塩化物イオン標準液(塩化ナトリウム水溶液、塩素イオン濃度1000ppm、関東化学社製)を希釈することにより調製した溶液を分析して作成した。
6.化学吸着水率AおよびB
 化学吸着水率AおよびBは、それぞれ以下の手順で測定した。
 (手順1)小型環境試験器(ESPEC社製SH-241)の装置内で、温度40℃、相対湿度90%RHの条件下で1gの負極材料を120時間保持した。なお、負極材料は、できる限り薄い厚みとなるように、縦5cm、幅8cm、高さ1.5cmの容器に広げた上で、装置内に静置した。
 (手順2)熱重量測定装置(Seiko Instruments社製TG/DTA6300)を用いて、(A)上記負極材料10mgを温度130℃、窒素雰囲気の条件下で1時間保持する工程と、(B)上記(A)工程後の上記負極材料を窒素雰囲気下で、温度40℃から540℃まで10℃/分で昇温し、上記負極材料の重量減少量を測定する工程と、を順次おこない、下記式より化学吸着水率Aおよび化学吸着水率Bをそれぞれ算出した。
 化学吸着水率A[%]=100×(Y-Y)/X
 化学吸着水率B[%]=100×(Y-Y)/X
 ここで、Xは、上記(A)工程後の上記負極材料の重量を示す。Yは、上記(B)工程における150℃での上記負極材料の重量を示す。Yは、上記(B)工程における250℃での上記負極材料の重量を示す。Yは、上記(B)工程における500℃での上記負極材料の重量を示す。
7.カールフィッシャー電量滴定法による水分量の測定
 カールフィッシャー電量滴定法による水分量は、以下の手順で測定した。
 (手順1)小型環境試験器(ESPEC社製SH-241)の装置内で、温度40℃、相対湿度90%RHの条件下で1gの負極材料を120時間保持した。なお、負極材料は、できる限り薄い厚みとなるように、縦5cm、幅8cm、高さ1.5cmの容器に広げた上で、装置内に静置した。
 (手順2)上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して予備乾燥し、次いで、Mitsubishi Chemical Analytech社製CA-06を用いて、予備乾燥した後の負極材料を200℃、30分間保持することにより発生した水分をカールフィッシャー電量滴定法にて測定した。
8.全吸水量の測定
 負極材料1gについて、200℃にて24時間真空乾燥を行った後、負極材料の重量を測定した。次いで、小型環境試験器(ESPEC社製SH-241)の装置内で、温度40℃、相対湿度90%RHの条件下で120時間保持した。なお、負極材料は、できる限り薄い厚みとなるように、縦5cm、幅8cm、高さ1.5cmの容器に広げた上で、装置内に静置した。その後、負極材料の重量を測定し、下記の式より全吸水量を測定した。
 全吸水量[%] =100×(120時間保持後の重量-真空乾燥後の重量)/(真空乾燥後の重量)
9.電池特性
 製造直後の負極材料および以下の保存試験後の負極材料について、以下の方法に従って初期効率をそれぞれ測定した。次いで、初期効率の変化率をそれぞれ算出した。
 さらに、製造直後の負極材料について、縦軸を放電時における電圧V[V]、横軸を負極材料1g当たりの放電容量[mAh/g]とするグラフを作成した。そして、このグラフから、VがV×2.5に到達したときの放電容量Aと、Vが2.5に到達したときの放電容量Bをそれぞれ算出した。
(保存試験)
 負極材料1gについて、小型環境試験器(ESPEC社製SH-241)の装置内で、温度40℃、相対湿度90%RHの条件下で7日間保持した。なお、負極材料は、できる限り薄い厚みとなるように、縦5cm、幅8cm、高さ1.5cmの容器に広げた上で、装置内に静置した。その後、上記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して乾燥した。
(1)ハーフセルの作製
 後述する実施例、比較例で得られた負極材料100部に対して、カルボキシメチルセルロース(ダイセルファインケム製、CMCダイセル2200)1.5部、スチレン・ブタジエンゴム(JSR製、TRDー2001)3.0部、アセチレンブラック(電気化学工業製、デンカブラック)2.0部、および、蒸留水100部を加え、自転・公転ミキサーで撹拌・混合し、負極スラリーを調製した。
 調製した負極スラリーを厚み14μmの銅箔(古河電気工業製、NC-WS)の片面に塗布し、その後、60℃で2時間空気中で予備乾燥を行い、次に、120℃で15時間真空乾燥した。真空乾燥後、ロールプレスによって電極を加圧成形した。これを直径13mmの円盤状として切り出し負極を作製した。負極活物質層の厚さは50μmであった。
 金属リチウムを直径12mm、厚さ1mmの円盤状に形成し対極を作製した。また、セパレーターとして、ポリオレフィンの多孔質膜(セルガード社製、商品名;セルガード2400)を用いた。
 上記の負極、対極、セパレーターを用い、電解液としてエチレンカーボネートとジエチルカーボネートとを体積比で1:1で混合した混合溶媒に1Mの割合でLiPFを加えたものを用いて、アルゴン雰囲気下のグローブボックス内で2032型コインセル形状の二極式ハーフセルを製造し、当該ハーフセルについて以下に述べる評価を行った。
(2)ハーフセルの充放電
 以下の条件で充放電をおこなった。
 測定温度:25℃
 充電方式:定電流定電圧法、充電電流:25mA/g、充電電圧:0mV、充電終止電流:2.5mA/g
 放電方式:定電流法、放電電流:25mA/g、放電終止電圧:2.5V
 また、上記の条件で求められた充電容量および放電容量の値に基づいて、負極材料の1g当たりの充電容量および放電容量[mAh/g]をそれぞれ求めた。また、下記式より初期効率および初期効率の変化率を求めた。
 初期効率 [%] = 100×(放電容量)/(充電容量)
 初期効率の変化率 [%] =100×(保存試験後の初期効率)/(製造直後の初期効率)
10.細孔容積
 水銀圧入法による細孔容積はMICROMERITICS社製オートポアIII9420を用いて測定した。
 負極材料を試料容器に入れ、2.67Pa以下の圧力で30分間脱気する。ついで水銀を試料容器内に導入し、徐々に加圧して水銀を負極材料の細孔へ圧入する(最高圧力414MPa)。このときの圧力と水銀の圧入量の関係から以下の式を用いて負極材料の細孔容積分布を測定する。細孔直径5μmに相当する圧力(0.25MPa)から最高圧力(414MPa:細孔直径3nm相当)までに負極材料に圧入された水銀の体積を、細孔直径5μm以下の細孔容積とした。細孔直径の算出は、直径Dの円筒形の細孔に水銀を圧力Pで圧力する場合、水銀の表面張力γ、水銀と細孔壁との接触角をθとすると、表面張力と細孔断面に働く圧力の釣り合いから、次式が成り立つ。
 -πDγcosθ=π(D/2)・P
 D=(-4γcosθ)/P
 ここで、水銀の表面張力を484dyne/cm、水銀と炭素との接触角を130度とし、圧力PをMPa、細孔直径Dをμmで表示し、下記式により圧力Pと細孔直径Dの関係を求めた。
 D =1.27/P
11.密度の測定
 ρ:JIS R7212に定められた方法に従って、ブタノール法により測定した。
 ρ:マイクロメリティックス社製乾式密度計アキュピック1330を用い、試料は120℃で2時間乾燥してから測定を行った。測定は、23℃で行った。圧力はいずれもゲージ圧力であり、絶対圧力から周囲圧力を差し引いた圧力である。
 測定装置は試料室および膨張室を有し、試料室は室内の圧力を測定するための圧力計を有する。試料室と膨張室はバルブを備える連結管により接続されている。試料室にはストップバルブを備えるヘリウムガス導入管が接続され、膨張室にはストップバルブを備えるヘリウムガス配出管が接続されている。
 測定は以下のようにして行った。標準球を用いて、試料室の容積(VCELL )および膨張室の容積(VEXP )を予め測定しておく。
 試料室に試料を入れ、試料室のヘリウムガス導入管、連結管、膨張室のヘリウムガス排出管を通してヘリウムガスを2時間流し装置内をヘリウムガスで置換する。次に試料室と膨張室の間のバルブ及び膨張室からのヘリウムガス排出管のバルブを閉じ、試料室のヘリウムガス導入管からヘリウムガスを134kPaになるまで導入する。その後、ヘリウムガス導入管のストップバルブを閉じる。ストップバルブを閉じてから5分後の試料室の圧力(P1)を測定する。次に試料室と膨張室の間のバルブを開いてヘリウムガスを膨張室に移送しそのときの圧力(P2)を測定する。
 試料の体積(VSAMP )は次式で計算した。
 VSAMP =VCELL-VEXP/[(P1/P2)-1]
 したがって、試料の重量をWSAMP とすると密度はρ=WSAMP/VSAMPとなる。
12.光学顕微鏡による負極材料の断面観察
 液状のエポキシ樹脂に10重量%程度の負極材料を添加し、よく混合した後、型枠に充填して負極材料をエポキシ樹脂で包埋した。次いで、120℃で24時間保持してエポキシ樹脂を硬化させた。その後、負極材料が表面に出るように適当な位置で硬化したエポキシ樹脂を切断し、切断面を研磨し鏡面とした。次いで、光学顕微鏡(カールツァイス社製Axioskop2 MAT)を用いて負極材料の断面を1000倍の倍率で明視野観察及び写真撮影を行った。
[2]負極材料の製造
(実施例1)
 特開平8-279358号公報の段落0051に記載の方法に準じて、石油ピッチから酸化ピッチを作製した。次いで、この酸化ピッチを原料として、以下の工程(a)~(f)の順で処理を行い、負極材料1を得た。
(a)炉内容積60L(縦50cm、幅40cm、高さ30cm)の熱処理炉内に510gの酸化ピッチをできる限り薄い厚みとなるように広げて静置した。その後、還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、室温から500℃まで、100℃/時間で昇温した。
(b)次いで、還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、500℃で2時間脱脂処理した後、冷却した。
(c)得られた粉末を振動ボールミルで微粉砕した。
(d)その後、炉内容積24L(縦40cm、幅30cm、高さ20cm)の熱処理炉内に、得られた粉末204gをできる限り薄い厚みとなるように広げて静置した。次いで、不活性ガス(窒素)置換および流通下、室温から1200℃まで、100℃/時間で昇温した。
(e)不活性ガス(窒素)流通下、1200℃で8時間保持し、炭化処理した。
(f)不活性ガス(窒素)流通下、600℃まで自然放冷後、600℃から100℃以下まで、100℃/時間で冷却した。
 なお、炭化処理を行う空間に対する原料の占有割合は8.5kg/mであった。
(実施例2)
 熱硬化性樹脂であるフェノール樹脂PR-55321B(住友ベークライト社製)を原料として、以下の工程(a)~(f)の順で処理を行い、負極材料2を得た。
(a)炉内容積60L(縦50cm、幅40cm、高さ30cm)の熱処理炉内に510gの熱硬化性樹脂をできる限り薄い厚みとなるように広げて静置した。その後、還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、室温から500℃まで、100℃/時間で昇温した。
(b)次いで、還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、500℃で2時間脱脂処理した後、冷却した。
(c)得られた粉末を振動ボールミルで微粉砕した。
(d)その後、炉内容積24L(縦40cm、幅30cm、高さ20cm)の熱処理炉内に、得られた粉末204gをできる限り薄い厚みとなるように広げて静置した。次いで、不活性ガス(窒素)置換および流通下、室温から1200℃まで、100℃/時間で昇温した。
(e)不活性ガス(窒素)流通下、1200℃で8時間保持し、炭化処理した。
(f)不活性ガス(窒素)流通下、600℃まで自然放冷後、600℃から100℃以下まで、100℃/時間で冷却した。
 なお、炭化処理を行う空間に対する原料の占有割合は8.5kg/mであった。
(実施例3)
 炭化処理を行う空間に対する原料の占有割合を3.5kg/mに変更した以外は実施例2と同様の方法で負極材料3を作製した。
(実施例4)
 炭化処理を行う空間に対する原料の占有割合を0.9kg/mに変更した以外は実施例2と同様の方法で負極材料4を作製した。
(実施例5)
 炭化処理を行う空間に対する原料の占有割合を0.5kg/mに変更した以外は実施例2と同様の方法で負極材料5を作製した。
(実施例6)
 炭化処理を行う空間に対する原料の占有割合を0.3kg/mに変更した以外は実施例2と同様の方法で負極材料6を作製した。
(実施例7)
 炭化処理を行う空間に対する原料の占有割合を9.0kg/mに変更した以外は実施例2と同様の方法で負極材料7を作製した。
(実施例8)
 炭化処理を行う空間に対する原料の占有割合を0.16kg/mに変更した以外は実施例2と同様の方法で負極材料8を作製した。
(比較例1)
 炭化処理を行う空間に対する原料の占有割合を16.0kg/mに変更した以外は実施例1と同様の方法で負極材料9を作製した。
(比較例2)
 炭化処理を行う空間に対する原料の占有割合を16.0kg/mに変更した以外は実施例2と同様の方法で負極材料10を作製した。
(比較例3)
 炭化処理を行う空間に対する原料の占有割合を15.72kg/mに変更した以外は、実施例2と同様の手順で負極材料11を得た。
 以上の実施例および比較例により得られた負極材料1~11について、前述した各種評価をおこなった。以上の結果を表1に示す。また、図5、図6および図7に、実施例1、実施例5および比較例1で得られた負極材料の断面の光学顕微鏡写真をそれぞれ示す。
 実施例1~8で得られた負極材料は、反射率が異なる第一領域および第二領域が観察され、第一領域および第二領域の界面において反射率が不連続に変化していた。さらに、実施例1~8で得られた負極材料は、負極材料の断面の外延に沿って第一領域が存在し、第一領域の内側に第一領域よりも反射率が大きい第二領域が存在していた。
 このような構造を有する負極材料を用いたリチウムイオン電池は、保存特性および充放電容量に優れていた。
 一方、比較例1~3で得られた負極材料は、反射率が異なる第一領域および第二領域が観察されなかった。このような構造を有する負極材料を用いたリチウムイオン電池は、実施例1~8で得られた負極材料よりも保存特性および充放電容量が劣っていた。
Figure JPOXMLDOC01-appb-T000001
 この出願は、2012年8月29日に出願された日本特許出願特願2012-188326号、2012年12月7日に出願された日本特許出願特願2012-268643号、2012年12月7日に出願された日本特許出願特願2012-268645号、2013年2月6日に出願された日本特許出願特願2013-021643号、および2013年6月18日に出願された日本特許出願特願2013-127294号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (28)

  1.  線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.340nm以上である、アルカリ金属イオン電池に用いられる炭素質の負極材料であって、
     温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、
     熱重量測定装置を用いて、
     (A)前記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持する工程と、
     (B)前記(A)工程後の前記負極材料を窒素雰囲気下で、温度40℃から540℃まで10℃/分で昇温し、前記負極材料の重量減少量を測定する工程と、
    を順次おこない、
     前記(A)工程後の前記負極材料の重量をXとし、
     前記(B)工程における150℃での前記負極材料の重量をYとし、
     前記(B)工程における250℃での前記負極材料の重量をYとしたとき、
     100×(Y-Y)/Xで定義される化学吸着水率Aが0.5%以下である、負極材料。
  2.  請求項1に記載の負極材料において、
     前記化学吸着水率Aが0.3%以下である、負極材料。
  3.  請求項1または2に記載の負極材料において、
     100×(X-Y)/Xが0.6%以下である、負極材料。
  4.  請求項1乃至3いずれか一項に記載の負極材料において、
     前記(B)工程における500℃での前記負極材料の重量をYとしたとき、
     100×(Y-Y)/Xで定義される化学吸着水率Bが1.0%以下である、負極材料。
  5.  請求項4に記載の負極材料において、
     100×(X-Y)/Xが1.6%以下である、負極材料。
  6.  請求項1乃至5いずれか一項に記載の負極材料において、
     温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、
     前記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して予備乾燥し、次いで、前記予備乾燥した後の前記負極材料を200℃、30分間保持することにより発生した水分をカールフィッシャー電量滴定法にて測定したとき、
     前記予備乾燥した後の前記負極材料から発生した水分量が、前記予備乾燥した後の前記負極材料100質量%に対し、0.20質量%以下である、負極材料。
  7.  請求項1乃至6いずれか一項に記載の負極材料において、
     窒素吸着におけるBET3点法による比表面積が1m/g以上15m/g以下である、負極材料。
  8.  請求項1乃至7いずれか一項に記載の負極材料において、
     炭酸ガスの吸着量が10.0ml/g未満である、負極材料。
  9.  請求項1乃至8いずれか一項に記載の負極材料において、
     樹脂組成物を炭化処理して得られるものである、負極材料。
  10.  線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.340nm以上である、アルカリ金属イオン電池に用いられる炭素質の負極材料であって、
     炭酸ガスの吸着量が10.0ml/g未満であり、
     ブタノールを置換媒体として測定した密度(ρ)が1.50g/cm以上であり、
     負極として当該負極材料により形成したもの、対極として金属リチウム、電解液としてカーボネート系溶媒に1Mの割合でLiPFを溶解させたもの、を用いて作製したハーフセルについて、
      25℃で、充電電流25mA/g、充電電圧0mV、充電終止電流2.5mA/gの条件で定電流定電圧法により充電し、次いで、放電電流25mA/g、放電終止電圧2.5Vの条件で定電流法により放電した際の、
      満充電状態から20mAh/g放電したときの電圧をV[V]とし、放電過程における電圧をV[V]とし、前記VがV×2.5に到達したときの放電容量をAとし、前記Vが2.5に到達したときの放電容量をBとしたとき、
      A/Bが0.38以上である、負極材料。
  11.  請求項10に記載の負極材料において、
     前記Aが130mAh/g以上である、負極材料。
  12.  請求項10または11に記載の負極材料において、
     前記Bが350mAh/g以上である、負極材料。
  13.  請求項10乃至12いずれか一項に記載の負極材料において、
     水銀圧入法により求めた細孔直径が0.003μm~5μmの細孔容積が0.55ml/g未満である、負極材料。
  14.  請求項10乃至13いずれか一項に記載の負極材料において、
     樹脂組成物を炭化処理して得られるものである、負極材料。
  15.  請求項10乃至14いずれか一項に記載の負極材料において、
     前記負極材料をエポキシ樹脂で包埋し前記エポキシ樹脂を硬化させた後、得られた硬化物を切断して研磨することにより前記負極材料の断面を露出させ、次いで、光学顕微鏡を用いて前記断面を1000倍の倍率で明視野観察したとき、
     前記負極材料の前記断面は、反射率が異なる第一領域および第二領域を有する、負極材料。
  16.  線源としてCuKα線を用いたX線回折法により求められる(002)面の平均層面間隔d002が0.340nm以上である、アルカリ金属イオン電池に用いられる炭素質の負極材料であって、
     ブタノールを置換媒体として測定した密度(ρ)に対するヘリウムガスを置換媒体として測定した密度(ρ)の比(ρ/ρ)が1.05を超えて1.25未満であり、
     ヘリウムガスを置換媒体として測定した密度(ρ)が1.84g/cm以上2.10g/cm以下である、負極材料。
  17.  請求項16に記載の負極材料において、
     ブタノールを置換媒体として測定した密度(ρ)が1.50g/cm以上1.80g/cm以下である、負極材料。
  18.  請求項16または17に記載の負極材料において、
     温度40℃、相対湿度90%RHの条件下で当該負極材料を120時間保持した後、
     前記負極材料を温度130℃、窒素雰囲気の条件下で1時間保持して予備乾燥し、次いで、前記予備乾燥した後の前記負極材料を200℃、30分間保持することにより発生した水分をカールフィッシャー電量滴定法にて測定したとき、
     前記予備乾燥した後の前記負極材料から発生した水分量が、前記予備乾燥した後の前記負極材料100質量%に対し、0.20質量%以下である、負極材料。
  19.  請求項16乃至18いずれか一項に記載の負極材料において、
     負極として当該負極材料により形成したもの、対極として金属リチウム、電解液としてカーボネート系溶媒に1Mの割合でLiPFを溶解させたもの、を用いて作製したハーフセルについて、
     25℃で、充電電流25mA/g、充電電圧0mV、充電終止電流2.5mA/gの条件で定電流定電圧法により充電し、次いで、放電電流25mA/g、放電終止電圧2.5Vの条件で定電流法により放電した際の放電容量が360mAh/g以上である、負極材料。
  20.  請求項16乃至19いずれか一項に記載の負極材料において、
     前記負極材料をエポキシ樹脂で包埋し前記エポキシ樹脂を硬化させた後、得られた硬化物を切断して研磨することにより前記負極材料の断面を露出させ、次いで、光学顕微鏡を用いて前記断面を1000倍の倍率で明視野観察したとき、
     前記負極材料の前記断面は、反射率が異なる第一領域および第二領域を有する、負極材料。
  21.  請求項16乃至20いずれか一項に記載の負極材料において、
     炭酸ガスの吸着量が10.0ml/g未満である、負極材料。
  22.  請求項16乃至21いずれか一項に記載の負極材料において、
     水銀圧入法により求めた細孔直径が0.003μm~5μmの細孔容積が0.55ml /g未満である、負極材料。
  23.  請求項1乃至22いずれか一項に記載の負極材料を含む、負極活物質。
  24.  請求項23に記載の負極活物質において、
     前記負極材料とは異なる種類の負極材料をさらに含む、負極活物質。
  25.  請求項24に記載の負極活物質において、
     異なる種類の前記負極材料が黒鉛質材料である、負極活物質。
  26.  少なくとも請求項23乃至25いずれか一項に記載の負極活物質を含む負極活物質層と、
     負極集電体と、
    がこの順番で積層された、アルカリ金属イオン電池用負極。
  27.  請求項26に記載のアルカリ金属イオン電池用負極と、電解質と、正極とを少なくとも備えた、アルカリ金属イオン電池。
  28.  リチウムイオン電池またはナトリウムイオン電池である、請求項27に記載のアルカリ金属イオン電池。
PCT/JP2013/071867 2012-08-29 2013-08-13 負極材料、負極活物質、負極およびアルカリ金属イオン電池 WO2014034431A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/419,756 US20150221947A1 (en) 2012-08-29 2013-08-13 Negative-electrode material, negative-electrode active material, negative electrode, and alkali metal ion battery
EP13832451.2A EP2892094B1 (en) 2012-08-29 2013-08-13 Negative electrode material, negative electrode active material, negative electrode, and alkali metal ion battery
CN201380044593.5A CN104584287B (zh) 2012-08-29 2013-08-13 负极材料、负极活性物质、负极以及碱金属离子电池
KR1020157007886A KR20150048844A (ko) 2012-08-29 2013-08-13 부극 재료, 부극 활물질, 부극 및 알칼리 금속 이온 전지

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2012188326 2012-08-29
JP2012-188326 2012-08-29
JP2012268643A JP5346406B1 (ja) 2012-12-07 2012-12-07 負極材料、負極活物質、リチウムイオン電池用負極およびリチウムイオン電池
JP2012268645 2012-12-07
JP2012-268643 2012-12-07
JP2012-268645 2012-12-07
JP2013-021643 2013-02-06
JP2013021643A JP5297565B1 (ja) 2013-02-06 2013-02-06 負極材料、負極活物質、負極およびアルカリ金属イオン電池
JP2013127294A JP5472514B1 (ja) 2012-12-07 2013-06-18 負極材料、負極活物質、負極およびアルカリ金属イオン電池
JP2013-127294 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014034431A1 true WO2014034431A1 (ja) 2014-03-06

Family

ID=49003723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071867 WO2014034431A1 (ja) 2012-08-29 2013-08-13 負極材料、負極活物質、負極およびアルカリ金属イオン電池

Country Status (6)

Country Link
US (2) US20150221947A1 (ja)
EP (2) EP2892094B1 (ja)
KR (2) KR20150048844A (ja)
CN (2) CN104584287B (ja)
TW (2) TWI536647B (ja)
WO (1) WO2014034431A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152089A1 (ja) * 2014-03-31 2015-10-08 株式会社クレハ 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両
WO2015152088A1 (ja) * 2014-03-31 2015-10-08 株式会社クレハ 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5681753B2 (ja) * 2012-12-07 2015-03-11 住友ベークライト株式会社 負極材料、負極活物質、負極およびアルカリ金属イオン電池
US10320000B2 (en) 2013-07-18 2019-06-11 Ut-Battelle, Llc Pyrolytic carbon black composite and method of making the same
JPWO2015152091A1 (ja) * 2014-03-31 2017-05-18 株式会社クレハ 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両
US9941058B2 (en) 2015-05-26 2018-04-10 Ut-Battelle, Llc Flexible and conductive waste tire-derived carbon/polymer composite paper as pseudocapacitive electrode
CN116230928A (zh) * 2015-08-05 2023-06-06 株式会社可乐丽 非水电解质二次电池以及非水电解质二次电池的使用方法
CN105301081A (zh) * 2015-09-14 2016-02-03 深圳市星源材质科技股份有限公司 一种锂离子电池涂覆隔膜水分含量测试方法
JP6845800B2 (ja) * 2015-09-30 2021-03-24 株式会社クラレ ナトリウムイオン二次電池負極用炭素質材料及びそれを用いたナトリウムイオン二次電池
CN105185997B (zh) 2015-10-27 2017-02-01 中国科学院物理研究所 一种钠离子二次电池负极材料及其制备方法和用途
KR101961365B1 (ko) 2016-01-14 2019-07-17 주식회사 엘지화학 리튬 이차전지용 음극 활물질 및 제조방법
WO2017172044A2 (en) * 2016-02-29 2017-10-05 Ut-Battelle, Llc Pyrolytic carbon black composite and method of making the same
KR102518144B1 (ko) 2016-10-28 2023-04-05 한국전기연구원 이중층 고체전해질을 포함하는 전고체전지 및 그 제조방법
CN108956850A (zh) * 2017-05-17 2018-12-07 北大先行科技产业有限公司 一种快速评价三元正极材料表面残碱相对含量的检测方法
CN107976347A (zh) * 2017-11-07 2018-05-01 合肥国轩高科动力能源有限公司 一种用于ncm正极材料径向元素分布表征的断面样品制备方法
CN109713256B (zh) * 2018-12-06 2021-12-10 盐城工学院 一种高性能特殊结构单分散碳球负极材料及其制备方法和应用
CN114005964A (zh) * 2020-07-28 2022-02-01 深圳格林德能源集团有限公司 一种硅碳复合负极材料及其制备方法
CN112857995A (zh) * 2021-01-08 2021-05-28 华东理工大学 基于纳米压痕技术的锂离子电池电极力学性能测试评价方法
CN114180537B (zh) * 2021-11-18 2023-05-30 上海纳米技术及应用国家工程研究中心有限公司 一种氮掺杂碳包覆的锂离子电池用负极材料的制备方法
CN115893369A (zh) * 2022-11-24 2023-04-04 赣州立探新能源科技有限公司 硬炭负极材料及其制备方法、混合负极材料、二次电池
CN118373409B (zh) * 2024-06-25 2024-08-30 青岛泰达华润新能源科技有限公司 一种基于酚醛树脂的钠离子电池硬碳负极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864207A (ja) 1994-08-23 1996-03-08 Kureha Chem Ind Co Ltd 二次電池電極用炭素質材料およびその製造法
JPH08115723A (ja) 1994-08-23 1996-05-07 Kureha Chem Ind Co Ltd 二次電池電極用炭素質材料
JPH08279358A (ja) 1995-02-09 1996-10-22 Kureha Chem Ind Co Ltd 電池電極用炭素質材料、その製造方法、電極構造体および電池
JPH10223226A (ja) 1997-02-06 1998-08-21 Kureha Chem Ind Co Ltd 二次電池電極用炭素質材料
JP2000203818A (ja) * 1999-01-13 2000-07-25 Hitachi Chem Co Ltd 複合炭素粒子、その製造法、負極材料、リチウム二次電池用負極及びリチウム二次電池
JP2006083012A (ja) * 2004-09-16 2006-03-30 Nec Corp 炭素材、二次電池用負極材および非水電解液二次電池
WO2007040007A1 (ja) 2005-09-09 2007-04-12 Kureha Corporation 非水電解質二次電池用負極材料及びその製造法並びに負極及び非水電解質二次電池

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3653105B2 (ja) * 1993-02-25 2005-05-25 呉羽化学工業株式会社 二次電池電極用炭素質材料
DE69407526T2 (de) * 1993-09-03 1998-04-16 Kureha Chemical Ind Co Ltd Kohlenstoffhaltiges Elektrodenmaterial für Sekundärbatterie, sowie Verfahren zu seiner Herstellung
JP4187804B2 (ja) * 1997-04-03 2008-11-26 ソニー株式会社 非水溶媒系二次電池の電極用炭素質材料及びその製造方法、並びに非水溶媒系二次電池
JP4187347B2 (ja) * 1998-04-02 2008-11-26 三星エスディアイ株式会社 リチウムイオン電池用負極活物質の製造方法
CN1276531C (zh) * 1998-05-21 2006-09-20 三星电管株式会社 锂二次电池用的负极活性材料和用该料的锂二次电池
JP2000200603A (ja) * 1998-12-28 2000-07-18 Sony Corp 負極材料およびその製造方法ならびにそれを用いた電池
JP2001313072A (ja) * 2000-04-28 2001-11-09 Ube Ind Ltd リチウム二次電池用電解液およびそれを用いたリチウム二次電池
JP2002008656A (ja) * 2000-06-23 2002-01-11 Hitachi Maxell Ltd リチウム二次電池
JP5105765B2 (ja) * 2006-04-20 2012-12-26 Necエナジーデバイス株式会社 リチウムイオン二次電池
JP2008282547A (ja) * 2007-05-08 2008-11-20 Tokai Carbon Co Ltd リチウムイオン二次電池用負極材とその製造方法
JP2008305722A (ja) * 2007-06-08 2008-12-18 Tokai Carbon Co Ltd リチウムイオン二次電池用負極材とその製造方法
JP2009038023A (ja) * 2007-07-12 2009-02-19 Sumitomo Chemical Co Ltd 電気化学的蓄電デバイス用電極
JP5049820B2 (ja) * 2008-02-29 2012-10-17 日立ビークルエナジー株式会社 リチウムイオン二次電池
JP5887934B2 (ja) * 2009-10-27 2016-03-16 日立化成株式会社 リチウムイオン二次電池負極用炭素粒子、リチウムイオン二次電池用負極及びリチウムイオン二次電池
US9437344B2 (en) * 2010-07-22 2016-09-06 Nanotek Instruments, Inc. Graphite or carbon particulates for the lithium ion battery anode
JP5365611B2 (ja) * 2010-11-26 2013-12-11 住友ベークライト株式会社 リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極合剤、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP2012216521A (ja) * 2011-03-29 2012-11-08 Mitsubishi Chemicals Corp 非水電解質二次電池用負極材の製造方法、及びその製造方法で得られた負極材、負極並びに非水電解質二次電池
WO2012133611A1 (ja) * 2011-03-29 2012-10-04 三菱化学株式会社 非水系二次電池用負極材料、これを用いた負極及び非水系二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864207A (ja) 1994-08-23 1996-03-08 Kureha Chem Ind Co Ltd 二次電池電極用炭素質材料およびその製造法
JPH08115723A (ja) 1994-08-23 1996-05-07 Kureha Chem Ind Co Ltd 二次電池電極用炭素質材料
JPH08279358A (ja) 1995-02-09 1996-10-22 Kureha Chem Ind Co Ltd 電池電極用炭素質材料、その製造方法、電極構造体および電池
JPH10223226A (ja) 1997-02-06 1998-08-21 Kureha Chem Ind Co Ltd 二次電池電極用炭素質材料
JP2000203818A (ja) * 1999-01-13 2000-07-25 Hitachi Chem Co Ltd 複合炭素粒子、その製造法、負極材料、リチウム二次電池用負極及びリチウム二次電池
JP2006083012A (ja) * 2004-09-16 2006-03-30 Nec Corp 炭素材、二次電池用負極材および非水電解液二次電池
WO2007040007A1 (ja) 2005-09-09 2007-04-12 Kureha Corporation 非水電解質二次電池用負極材料及びその製造法並びに負極及び非水電解質二次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152089A1 (ja) * 2014-03-31 2015-10-08 株式会社クレハ 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両
WO2015152088A1 (ja) * 2014-03-31 2015-10-08 株式会社クレハ 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両
TWI556495B (zh) * 2014-03-31 2016-11-01 Kureha Corp Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, nonaqueous electrolyte secondary battery negative electrode, nonaqueous electrolyte secondary battery and vehicle
JPWO2015152088A1 (ja) * 2014-03-31 2017-04-13 株式会社クレハ 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両
JPWO2015152089A1 (ja) * 2014-03-31 2017-04-13 株式会社クレハ 非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両
US9991517B2 (en) 2014-03-31 2018-06-05 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery, and vehicle

Also Published As

Publication number Publication date
US20150221947A1 (en) 2015-08-06
KR20150048844A (ko) 2015-05-07
EP2892094A4 (en) 2016-06-29
EP2704235A1 (en) 2014-03-05
TW201415696A (zh) 2014-04-16
CN104584287A (zh) 2015-04-29
US20140065486A1 (en) 2014-03-06
TW201417381A (zh) 2014-05-01
EP2892094A1 (en) 2015-07-08
CN103682346A (zh) 2014-03-26
EP2704235B1 (en) 2015-12-23
KR101354765B1 (ko) 2014-01-22
CN104584287B (zh) 2017-05-10
CN103682346B (zh) 2016-12-21
TWI536647B (zh) 2016-06-01
EP2892094B1 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
WO2014034431A1 (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
JP5472514B1 (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
WO2013136747A1 (ja) リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
JP2014132555A (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
CN107148691B (zh) 非水电解质二次电池负极用碳质材料
JP5681753B2 (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
JP5297565B1 (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
WO2015025785A1 (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
WO2017119428A1 (ja) 二次電池負極用炭素材、二次電池負極用活物質、二次電池負極および二次電池
WO2017110796A1 (ja) 二次電池負極用炭素材、二次電池負極用活物質、二次電池負極および二次電池
JP5346406B1 (ja) 負極材料、負極活物質、リチウムイオン電池用負極およびリチウムイオン電池
JP2014154546A (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン電池
JP6065713B2 (ja) アルカリ金属イオン二次電池用負極材料、アルカリ金属イオン二次電池用負極活物質、アルカリ金属イオン二次電池用負極およびアルカリ金属イオン二次電池
JP2016136452A (ja) ナトリウムイオン二次電池負極用炭素材、ナトリウムイオン二次電池負極用活物質、ナトリウムイオン二次電池負極、ナトリウムイオン二次電池、ナトリウムイオン二次電池負極用樹脂組成物、およびナトリウムイオン二次電池負極用炭素材製造方法
WO2014115721A1 (ja) 負極材料、負極活物質、負極およびアルカリ金属イオン二次電池
JP2014116290A (ja) 負極材料、負極活物質、リチウムイオン電池用負極およびリチウムイオン電池
JP2017183233A (ja) 二次電池負極用炭素材、二次電池負極用活物質、二次電池負極および二次電池
JP2013222551A (ja) 負極用材料、負極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14419756

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157007886

Country of ref document: KR

Kind code of ref document: A