WO2014010708A1 - 集電体、電極、二次電池およびキャパシタ - Google Patents
集電体、電極、二次電池およびキャパシタ Download PDFInfo
- Publication number
- WO2014010708A1 WO2014010708A1 PCT/JP2013/069061 JP2013069061W WO2014010708A1 WO 2014010708 A1 WO2014010708 A1 WO 2014010708A1 JP 2013069061 W JP2013069061 W JP 2013069061W WO 2014010708 A1 WO2014010708 A1 WO 2014010708A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current collector
- particles
- binder material
- conductive
- conductive layer
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 29
- 239000011230 binding agent Substances 0.000 claims abstract description 69
- 239000000463 material Substances 0.000 claims abstract description 64
- 239000011888 foil Substances 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 38
- 238000002844 melting Methods 0.000 claims abstract description 29
- 230000008018 melting Effects 0.000 claims abstract description 29
- 239000004020 conductor Substances 0.000 claims abstract description 27
- 230000008569 process Effects 0.000 claims abstract description 26
- 238000000113 differential scanning calorimetry Methods 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims description 91
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 47
- -1 polyethylene Polymers 0.000 claims description 29
- 239000011149 active material Substances 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 20
- 229910001416 lithium ion Inorganic materials 0.000 claims description 20
- 239000004698 Polyethylene Substances 0.000 claims description 17
- 229920000573 polyethylene Polymers 0.000 claims description 17
- 239000002041 carbon nanotube Substances 0.000 claims description 13
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 13
- 229910052744 lithium Inorganic materials 0.000 claims description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 9
- 239000005977 Ethylene Substances 0.000 claims description 9
- 239000004743 Polypropylene Substances 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 9
- 229920001155 polypropylene Polymers 0.000 claims description 9
- 230000000630 rising effect Effects 0.000 claims description 8
- 229920001577 copolymer Polymers 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 5
- 229910001369 Brass Inorganic materials 0.000 claims description 4
- 239000010951 brass Substances 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 239000006229 carbon black Substances 0.000 claims description 3
- 229920000554 ionomer Polymers 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 229920003067 (meth)acrylic acid ester copolymer Polymers 0.000 claims description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 claims description 2
- 125000003700 epoxy group Chemical group 0.000 claims description 2
- 229920001038 ethylene copolymer Polymers 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 1
- 229920005989 resin Polymers 0.000 description 33
- 239000011347 resin Substances 0.000 description 33
- 238000000576 coating method Methods 0.000 description 29
- 239000011248 coating agent Substances 0.000 description 28
- 239000000839 emulsion Substances 0.000 description 26
- 239000010408 film Substances 0.000 description 25
- 239000006230 acetylene black Substances 0.000 description 20
- 238000005259 measurement Methods 0.000 description 18
- 230000008859 change Effects 0.000 description 16
- 230000020169 heat generation Effects 0.000 description 15
- 239000000243 solution Substances 0.000 description 13
- 238000002156 mixing Methods 0.000 description 12
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 229920006038 crystalline resin Polymers 0.000 description 8
- 230000002349 favourable effect Effects 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 8
- 239000002033 PVDF binder Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000779 smoke Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000009783 overcharge test Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002931 mesocarbon microbead Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000009210 therapy by ultrasound Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 1
- JNPCNDJVEUEFBO-UHFFFAOYSA-N 1-butylpyrrole-2,5-dione Chemical compound CCCCN1C(=O)C=CC1=O JNPCNDJVEUEFBO-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- XLYMOEINVGRTEX-ARJAWSKDSA-N Ethyl hydrogen fumarate Chemical compound CCOC(=O)\C=C/C(O)=O XLYMOEINVGRTEX-ARJAWSKDSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910005283 Li(CoxMnyNiz)O2 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- ILXAVRFGLBYNEJ-UHFFFAOYSA-K lithium;manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[O-]P([O-])([O-])=O ILXAVRFGLBYNEJ-UHFFFAOYSA-K 0.000 description 1
- FSQQTNAZHBEJLS-UPHRSURJSA-N maleamic acid Chemical compound NC(=O)\C=C/C(O)=O FSQQTNAZHBEJLS-UPHRSURJSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000003799 water insoluble solvent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/668—Composites of electroconductive material and synthetic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
- H01G11/28—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/68—Current collectors characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/70—Current collectors characterised by their structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/02—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
- H01C7/027—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the present invention relates to a current collector, an electrode, a secondary battery, and a capacitor.
- lithium ion secondary batteries Due to the high energy density, the use of lithium ion secondary batteries in electronic devices such as mobile phones and laptop computers is expanding.
- lithium cobaltate, lithium manganate, lithium iron phosphate and the like are used as the positive electrode active material, and graphite is used as the negative electrode active material.
- a lithium ion secondary battery includes an electrode made of these active materials, a separator that is a porous sheet, and an electrolyte solution in which a lithium salt is dissolved.
- Such a lithium ion secondary battery has high battery capacity and output, good charge / discharge characteristics, and relatively long service life.
- Lithium ion secondary batteries have the advantage of high energy density, but have a problem with safety because they use a non-aqueous electrolyte.
- the non-aqueous electrolyte since the non-aqueous electrolyte is included, the components of the non-aqueous electrolyte are decomposed as the heat is generated, so that the internal pressure increases and the battery may swell.
- problems such as heat generation may occur.
- problems such as heat generation may occur due to the occurrence of an internal short circuit. The heat generated by the battery may eventually lead to ignition, and safety for suppressing this is important.
- the method of attaching the PTC element to the positive electrode cap portion has a problem that heat generation due to internal short circuit or overcharge cannot be prevented.
- the separator incorporated in the lithium ion secondary battery has a function to suppress an increase in short-circuit current by melting the resin during abnormal heat generation, closing the hole of the separator, and lowering the ionic conductivity. is doing.
- the separator at a location away from the heat generating portion does not always melt, and if there is heat generation above the deformation start temperature of the resin, the separator contracts due to heat, which may cause a short circuit. .
- Patent Document 1 discloses a PTC layer formed on a current collector by heating and mixing carbon particles and a crystalline resin, processing the resulting mixture into a sheet, and annealing the mixture.
- Patent Document 2 discloses a PTC layer of 5 ⁇ m or less containing a crystalline resin such as polyethylene, a conductive material, and a binder.
- Patent Document 3 discloses a PTC layer made of a polyethylene wax emulsion and carbon fine particles.
- the PTC layer produced by the method described in Patent Document 1 has a drawback that the initial resistance is high because carbon particles are dispersed in the resin during heating.
- the thickness of the PTC layer produced by such a method must be several tens of ⁇ m, which is in line with the active material layer.
- the electrode of the lithium ion secondary battery is required to have a higher energy density. When the film thickness is thick, the battery capacity decreases.
- the present invention has been made in view of the above circumstances, and when used in a secondary battery or a capacitor, a current collector that has excellent high-rate characteristics and exhibits a sufficient safety function, and an electrode using the current collector,
- An object is to provide a secondary battery or a capacitor.
- a current collector comprising a metal foil and a conductive layer having a thickness of 0.1 ⁇ m to 10 ⁇ m formed on the surface of the metal foil.
- the conductive layer includes a conductive material and a binder material.
- the melting point of the binder material is 80 ° C. to 150 ° C.
- the binder material has one or more endothermic peaks in the temperature rising process in differential scanning calorimetry (DSC) from room temperature to 200 ° C. And when the binder material has two or more endothermic peaks, the difference between any of those peaks is 15 ° C. or more. Further, the binder material has one or more exothermic peaks in the temperature lowering process.
- the exothermic peak is in the range of 50 to 120 ° C., and the half-value width of the exothermic peak is 10 ° C. or less.
- the maximum exothermic peak is within the range of 50 to 120 ° C, and the half-value width of the exothermic peak is 10 ° C or less. It is.
- this current collector when used in a secondary battery or capacitor, it has excellent high-rate characteristics and exhibits a sufficient safety function.
- an electrode comprising the above-described current collector and an active material layer containing an active material formed on the conductive layer of the current collector.
- this electrode Since this electrode is provided with the above-described current collector, it has excellent high-rate characteristics and exhibits a sufficient safety function when used in a secondary battery or a capacitor.
- a lithium secondary battery a non-aqueous lithium secondary battery, an electric double layer capacitor or a lithium ion capacitor comprising the above current collector.
- lithium secondary batteries non-aqueous lithium secondary batteries, electric double layer capacitors or lithium ion capacitors are provided with the above-described current collector, and therefore have high rate characteristics and exhibit sufficient safety functions.
- the collector which is excellent in a high-rate characteristic and exhibits sufficient safety function, and the electrode, secondary battery, or capacitor using this collector are obtained. .
- FIG. 14 is a graph showing a differential scanning calorimeter (DSC) measurement result when an emulsion (AC-3100) of polymethacrylic acid resin particles containing ethylene and methacrylic acid as main components is used for the PTC layer in Experimental Example 8. It is a graph which shows a differential scanning calorimeter (DSC) measurement result at the time of using the emulsion of an ethylene glycidyl methacrylate copolymer for a PTC layer in Experimental example 3.
- DSC differential scanning calorimeter
- FIG. 10 is a diagram for explaining a case where acetylene black, an acid-modified polyethylene emulsion and a carbon nanotube dispersion are used for the PTC layer in Experimental Example 5.
- FIG. 1 is a cross-sectional view illustrating the structure of an electrode according to an embodiment.
- FIG. 2 is a cross-sectional view showing the structure of the conductive layer of the electrode according to the embodiment.
- the electrode 117 of this embodiment includes the metal foil 103 and the conductive layer 105 having a thickness of 0.1 ⁇ m to 10 ⁇ m formed on the surface of the metal foil 103.
- An active material layer 115 containing an active material may be further provided over the conductive layer 105.
- the conductive layer 105 includes a conductive material 111 and a binder material 107 as shown in FIG.
- 3 and 4 are graphs for explaining the half-value width of the maximum exothermic peak that appears in the temperature lowering process of the binder material of the conductive layer of the electrode according to the embodiment (illustration is omitted in the vicinity of 200 ° C.).
- the melting point of the binder material 107 is 80 ° C. to 150 ° C.
- the binder material 107 has a maximum exothermic peak at either 50 ° C. to 120 ° C. in the temperature lowering process after crystal melting in the differential scanning calorimeter (DSC) measurement.
- the half width of the peak is 10 ° C. or less. When the full width at half maximum is 10 ° C. or more, the resistance value is not sufficiently increased, so that the shutdown function is not exhibited.
- FIG. 5 and 6 are graphs for explaining the heat generation peak position of the binder material of the conductive layer of the electrode according to the embodiment (illustration is omitted in the vicinity of 200 ° C.).
- the binder material has an exothermic peak in the temperature lowering process in the range of 80 ° C. to 120 ° C. If this electrode 117 is used, as shown in Example 1 described later, a sufficient shutdown function is exhibited.
- the exothermic peak is 120 ° C. or more as shown in FIG. 6, the resistance does not increase immediately upon abnormal heat generation as in Example 10 described later, and the shutdown function is not exhibited.
- FIG. 7 is a cross-sectional view illustrating a mechanism in which the resistance of the conductive layer of the electrode according to the embodiment rapidly increases.
- the electrode 117 when the temperature in the secondary battery or capacitor reaches the vicinity of the melting point of the binder material 107 (140 ° C. in the case of Experimental Example 1), the binder material 107 expands in volume, and the conductive layer 105 Since the contact between the conductive materials 111 dispersed in the film is peeled off, the conductivity is lowered.
- the binder material 107 has a maximum exothermic peak at 50 ° C. to 120 ° C.
- the half-value width of this maximum exothermic peak is 10 ° C. or less.
- the binder material 107 is melted, the volume change during melting is large, and good PTC characteristics can be obtained even with a film thickness of 10 ⁇ m or less.
- the resistance of the conductive layer 105 rapidly increases, and the current collector and The current between the active material layers is interrupted. Therefore, if this electrode 117 is used, a sufficient safety function can be exhibited during abnormal heat generation due to an internal short circuit of the secondary battery or capacitor.
- FIG. 8 and 9 are graphs for explaining a case where there are two endothermic peaks in the temperature rising process of the binder material of the conductive layer of the electrode according to the embodiment (illustration is omitted in the vicinity of 200 ° C.).
- the binder material 107 has a difference between the peaks of 15 ° C. or more.
- this electrode 117 is used, as shown in Experimental Example 3 to be described later, when used for a secondary battery or a capacitor, the capacity retention rate is kept high even when repeated charging and discharging are performed, the high rate characteristic is excellent, and overcharge is performed.
- the binder material 107 has two or more endothermic peaks in the differential scanning calorimeter (DSC) measurement and the difference between the peaks is less than 15 ° C., it will be described later.
- DSC differential scanning calorimeter
- metal foil 103 of the present embodiment various metal foils for secondary batteries or capacitors can be used.
- various metal foils for the positive electrode and the negative electrode can be used.
- aluminum, copper, stainless steel, nickel and the like can be used.
- aluminum and copper are preferable from the balance between high conductivity and cost.
- aluminum means aluminum and an aluminum alloy
- copper means pure copper and a copper alloy.
- the aluminum foil can be used on the secondary battery positive electrode side, the secondary battery negative electrode side or the capacitor electrode, and the copper foil can be used on the secondary battery negative electrode side.
- A1085 material which is a pure aluminum type, and A3003 material can be used.
- A1085 material which is a pure aluminum type can be used.
- copper foil is the same also as copper foil, although it does not specifically limit, Rolled copper foil and electrolytic copper foil are used preferably.
- the thickness of the metal foil 103 is selected according to the purpose of use and is not particularly limited, but in the case of a secondary battery, it is preferably 5 ⁇ m or more and 50 ⁇ m or less. If the thickness is less than 5 ⁇ m, the strength of the foil may be insufficient and it may be difficult to form the conductive layer 105 or the like. On the other hand, when the thickness exceeds 50 ⁇ m, other components, particularly the active material layer 115 or the electrode material layer, must be thinned. In particular, in the case of a power storage component such as a secondary battery or a capacitor, In some cases, it is necessary to reduce the thickness, and a necessary and sufficient capacity cannot be obtained.
- the conductive layer 105 of this embodiment is a PTC (Positive temperature coefficient) layer including a conductive material 111 having a thickness of 0.1 ⁇ m to 10 ⁇ m and a binder material 107 formed on the surface of the metal foil 103.
- PTC Positive temperature coefficient
- the film thickness of the conductive layer 105 of this embodiment is 0.1 ⁇ m to 10 ⁇ m. If the thickness is less than 0.1 ⁇ m, the resistance may not be lowered sufficiently during abnormal heat generation, and the shutdown function cannot be exhibited reliably. When the thickness exceeds 10 ⁇ m, the resistance at normal time is increased, and the performance at the high rate as the battery characteristic is lowered.
- the thickness of the conductive layer 105 may be, for example, 0.1, 0.3, 0.5, 1, 2, 5, 10 ⁇ m, and within the range between any two of the numerical values exemplified here. There may be.
- the melting point of the binder material 107 of the conductive layer 105 of the present embodiment needs to function before the shutdown function of the separator is manifested, and thus is 80 ° C. to 150 ° C. If it is less than 80 degreeC, a shutdown function will be exhibited even at normal temperature. Since the separator needs to function before the shutdown function is exhibited, the melting point of the binder material 107 used for the PTC layer should be 150 ° C. or lower.
- a crystalline polymer soluble in an organic solvent is used as the binder material 107 used for the PTC layer, if the battery has a high melting point, the shutdown function of the separator moves before the PTC expression of the conductive layer, It is not suitable as the binder material 107.
- a crystalline polymer soluble in an organic solvent needs to be dried at a relatively low temperature in order to develop PTC, and thus has a problem of low productivity.
- the melting point of the binder material 107 of the conductive layer 105 may be, for example, 80 ° C., 90 ° C., 100 ° C., 110 ° C., 120 ° C., 130 ° C., 140 ° C., 150 ° C., and any of the numerical values exemplified here. It may be within a range between the two. When there is only one endothermic peak at the time of DSC temperature rise, the endothermic peak is the melting point, and when there are a plurality of endothermic peaks, the temperature of the maximum endothermic peak at the time of temperature rise is the melting point.
- the binder material 107 of the conductive layer 105 of the present embodiment has only one endothermic peak in the temperature rising process in the differential scanning calorimeter (DSC) measurement from normal temperature (for example, 50 ° C.) to 200 ° C. preferable.
- DSC differential scanning calorimeter
- the difference between any of these peaks is preferably 15 ° C. or more. If there are two or more endothermic peaks in the temperature raising process and the difference between the peaks is less than 15 ° C., the capacity retention rate is likely to decrease when repeated charging and discharging are used for secondary batteries or capacitors. If overcharged, smoke may be generated.
- the number of endothermic peaks in the temperature raising process may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and any two of the numerical values exemplified here may be used. It may be within the range between. Further, when there are two or more endothermic peaks in the temperature rising process, the difference between the peaks may be any value of 15 ° C, 20 ° C, 25 ° C, 30 ° C, and 35 ° C.
- the binder material 107 of the conductive layer 105 of the present embodiment has a maximum exothermic peak at any temperature of 50 ° C. to 120 ° C. during the temperature lowering process after crystal melting in the differential scanning calorimeter (DSC) measurement. If it is less than 50 degreeC, even if it is normal temperature, a shutdown function will be exhibited. Alternatively, since the crystallinity is low, the change in resistance value is small and the shutdown function is not exhibited. If it exceeds 120 ° C, the resistance will not increase immediately upon abnormal heat generation, and the shutdown function will not be exhibited.
- DSC differential scanning calorimeter
- the maximum exothermic peak in the temperature lowering process after crystal melting in the differential scanning calorimeter (DSC) measurement is, for example, 50 ° C, 60 ° C, 70 ° C, 80 ° C, 90 ° C, 100 ° C, 110 ° C, 120 ° C. It may be within the range between any two of the numerical values exemplified here.
- the half-value width of the maximum exothermic peak is 10 ° C. or less.
- the half width of the maximum exothermic peak may be, for example, 10 ° C, 9 ° C, 8 ° C, 7 ° C, 6 ° C, 5 ° C, 4 ° C, 3 ° C, 2 ° C, 1 ° C or less. It may be within a range between any two of the numerical values exemplified here.
- FIG. 3 shows the definition of true height and half-value width in the case of a single peak. That is, in this specification, the half width means the full width at half maximum (full width at half maximum, FWHM), and does not mean the half width at half maximum (half width at half maximum, HWHM). Absent. However, since the definition of the full width at half maximum when a plurality of peaks overlap (particularly when a component with a wide half width is included) is unclear, FIG. 4 shows the definition when a plurality of peaks overlap.
- the half-value width of the maximum exothermic peak obtained by curve fitting with a Gaussian function or the like is not obtained, but the shape shown in FIG. Find the half width at.
- the melting point of the binder material 107 used for the PTC layer should be 150 ° C. or lower.
- a crystalline resin having a melting point of 150 ° C. or lower is not soluble in an organic solvent, in order to produce a PTC layer having a film thickness of 0.1 ⁇ m to 10 ⁇ m, the particle size is small according to the thickness of the layer. It is preferable to use polymer particles.
- the number average particle diameter of the crystalline particles used as the binder material 107 is not particularly limited, but is usually 0.001 ⁇ m to 10 ⁇ m, preferably 0.01 ⁇ m to 5 ⁇ m, more preferably 0.1 ⁇ m to 2 ⁇ m.
- the number average particle diameter of When the number average particle diameter of the crystalline particles is within this range, a uniform film of 10 ⁇ m or less can be formed, and an excellent binding force can be provided even with a small amount of use.
- the number average particle diameter of the crystalline particles may be, for example, 0.001 ⁇ m, 0.005 ⁇ m, 0.01 ⁇ m, 0.05 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, It may be within a range between any two of the numerical values exemplified in.
- the crystalline particles having a number average particle diameter of 10 ⁇ m or less are used as the binder material 107 in this way, even if the crystalline particles are not soluble in the solvent, they can be dispersed in the solvent. Crystalline particles are uniformly dispersed in the conductive layer 105. Therefore, even if the conductive material is dispersed unevenly in the PTC layer, there is almost no portion where the conductive network is not cut at the PTC expression temperature (the portion where the crystalline particles are not distributed). Even in the case, there is almost no portion where continuity remains, and the shutdown function is exhibited well.
- the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameter of 100 binder particles randomly selected in a transmission electron micrograph.
- the shape of the particles is not particularly limited, and may be spherical or irregular. These binders can be used alone or in combination of two or more.
- the crystalline particles used as the binder material 107 are not particularly limited, but polyethylene particles, polypropylene particles, acid-modified polyethylene particles, acid-modified polypropylene particles, ionomer particles, ethylene glycidyl methacrylate copolymer particles, ethylene / vinyl acetate copolymer. Polymer particles, ethylene / (meth) acrylic acid copolymer particles, ethylene / (meth) acrylic acid ester copolymers, and the like can be used. These crystalline particles may be cross-linked. Two or more kinds of these crystalline particles may be mixed and used.
- denaturation of these polypropylene and polyethylene is not specifically limited, For example, carboxylic acid is mentioned.
- carboxylic acid examples include unsaturated carboxylic acid and derivatives thereof.
- unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, and sorbic acid. Etc.
- Examples of the derivative of this unsaturated carboxylic acid include acid anhydrides, esters, amides, imides and the like of this unsaturated carboxylic acid, and more specifically, for example, maleic anhydride, itaconic anhydride, citraconic anhydride Methyl acrylate, methyl methacrylate, ethyl acrylate, butyl acrylate, maleic acid monoethyl ester, acrylamide, maleic acid monoamide, maleimide, N-butylmaleimide and the like.
- the crystalline particles used as the binder material 107 preferably contain one or more components having an epoxy group, a carboxyl group, and an anhydrous carboxyl group.
- the crystalline particles have the above-described components, sufficient adhesion to the metal foil 103 can be obtained, and an aggregated structure with a conductive material such as carbon particles that can provide high PTC characteristics can be obtained. it can.
- These crystalline particles are preferably used in a state dispersed in water (emulsion). More preferred is an emulsion of acid-modified polyethylene, acid-modified polypropylene, and ethylene glycidyl methacrylate copolymer particles. By using the emulsion, the crystalline particles can be uniformly dispersed.
- an emulsion for example, after dissolving a resin in a water-insoluble solvent, an emulsifier and water are added, and the emulsion is emulsified and then the solvent is volatilized.
- the method includes heating and stirring above the melting point of the resin in a liquid state, stirring and emulsifying.
- the emulsion used in the present embodiment is not particularly limited as long as it has a particle diameter of 10 ⁇ m or less and is stably dispersed in the liquid.
- the crystalline particles used as the binder material 107 have an ethylene or propylene ratio of 80% (mass%) or more, and differential scanning. In the calorimeter (DSC) measurement, it has a maximum exothermic peak at 50 ° C. to 120 ° C. in the temperature lowering process after crystal melting, and the half value width of the maximum exothermic peak is preferably 10 ° C. or less. When the crystalline particles have such characteristics, the conductive network is severely disconnected when the melting point is exceeded, and high PTC characteristics can be obtained.
- the crystalline particles have only one endothermic peak in the temperature rising process in the differential scanning calorimeter (DSC) measurement.
- the difference between any of these peaks is preferably 15 ° C. or more.
- the number of endothermic peaks in the temperature raising process of the crystalline particles may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, It may be within a range between any two.
- the difference between the peaks is at least one of the values of 15 ° C, 20 ° C, 25 ° C, 30 ° C, and 35 ° C. Also good.
- the molecular weight of the crystalline particles used as the binder material 107 is preferably a weight average molecular weight of 10,000 or more. More preferably, it is 60,000 or more. When the molecular weight of the crystalline particles is 10,000 or more, high PTC characteristics can be obtained even with a thin film of 10 ⁇ m or less.
- the weight average molecular weight of the crystalline particles may be 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000 or 80,000 or more.
- the blending amount of the binder material 107 is not particularly limited, but is preferably blended so that the volume% value occupied by the binder material 107 is 50 to 90% when the entire conductive layer 105 is 100%.
- the blending amount of the binder material 107 is too large, the number of contact points between the conductive materials 111 is small, and the electrical resistance at normal temperature is increased.
- the blending amount of the binder material 107 is too small, the contact between the conductive materials 111 is maintained even when the temperature is raised, and the shutdown function is hardly exhibited.
- This value is, for example, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, and is within the range between any two of the numerical values exemplified here. May be.
- the conductive material 111 used for the conductive layer 105 of the present embodiment a known conductive material such as carbon powder or metal powder can be used. Among them, carbon black such as furnace black, acetylene black, ketjen black, etc. Carbon nanotubes are preferred.
- the electrical resistance of the powder is preferably 100% green compact and 1 ⁇ 10 ⁇ 1 ⁇ ⁇ cm or less, and can be used in combination with the above if necessary (that is, carbon black and carbon nanotube are You may use both together.)
- the particle size is not particularly limited, but is generally preferably 10 to 100 nm. When using carbon nanotubes, it is preferable to use those having an aspect ratio of 10 or more because of excellent conductivity. The aspect ratio may be greater than or equal to any of 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100. It may be within the range of these two numerical values.
- FIG. 10 is a conceptual diagram (top) of the configuration of the current collector when acetylene black and an acid-modified polyethylene emulsion are used for the PTC layer in Experimental Example 4 to be described later, and the current collector from room temperature to 200 ° C. 10 It is the figure which combined and showed the graph (bottom) which shows the range of 50 to 150 degreeC among the results (use of conductive rubber) which measured the temperature change at a temperature of ° C / min and measured the change in resistance value.
- the initial resistance value R0 at room temperature is less than 10 ⁇ because the acetylene blacks form a conductive path with each other, and the shutdown function at 140 ° C. When this is exhibited, the conductive path between the acetylene blacks is cut, and the resistance magnification becomes 108.9, which is sufficiently high.
- FIG. 11 is a conceptual diagram (top) of the structure of the current collector when acetylene black, an acid-modified polyethylene emulsion, and a carbon nanotube dispersion are used for the PTC layer in Experimental Example 6 to be described later. It is the figure which combined and showed the graph (lower) which shows the range of 50 to 150 degreeC among the results (use of conductive rubber) which measured the temperature change to 10 degreeC / min and measured the change of resistance value.
- the initial resistance value at 50 ° C. is 5 ⁇ because the acetylene black and carbon nanotubes form a conductive path.
- the conductive path between the acetylene black and the carbon nanotube is cut, and the resistance magnification is 20267, which is extremely high. That is, it is preferable to use acetylene black and carbon nanotubes together as the conductive material 111 used for the conductive layer 105 because both the initial resistance value and the resistance magnification are remarkably improved.
- the blending amount of the conductive material 111 is not particularly limited, but it is preferable that the volume percentage of the conductive material 111 is 10 to 50% when the entire conductive layer 105 is 100%. . If the blending amount of the conductive material 111 is too small, the number of contact points between the conductive materials 111 is small, and the electrical resistance at room temperature becomes high. When the blending amount of the conductive material 111 is too large, the contact between the conductive materials 111 is maintained even when the temperature is raised, and the shutdown function is hardly exhibited. This value is, for example, 10, 15, 20, 25, 30, 35, 40, 45, 50%, and may be within a range between any two of the numerical values exemplified here.
- the conductive layer 105 of the present embodiment can be manufactured by, for example, a method in which the binder material 107 is dissolved (or dispersed) in a solvent, the conductive material 111 is mixed, a paste is formed, and applied onto the metal foil 103 and dried.
- the solvent to be used is not particularly limited as long as the binder resin is soluble (or dispersible) and the conductive particles can be dispersed.
- the coating method is not particularly limited, and known methods such as a casting method, a bar coater method, a dip method, and a gravure coating method can be used. There is no restriction
- the conductive layer 105 of this embodiment is preferably heat-treated in a temperature range of 100 ° C. to 150 ° C. after being applied on the metal foil 103.
- This heat treatment may be performed as part of the drying process, or may be performed as a separate process after the drying process.
- the heat treatment time is preferably between 1 minute and 180 minutes.
- the temperature of the heat treatment may be within a range of two arbitrary numerical values among 100 ° C., 110 ° C., 120 ° C., 130 ° C., 140 ° C., and 150 ° C.
- the time of this heat processing is the range of two arbitrary values among 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 60 minutes, 120 minutes, and 180 minutes. It may be within.
- the current collector of this embodiment includes a metal foil 103 and a conductive layer 105 formed on the surface of the metal foil 103.
- a conductive rubber having a diameter of 1 cm is sandwiched between the current collectors, and this is made of a cylindrical brass having a diameter of 1 cm.
- a resistance value-temperature curve obtained by measuring a resistance value while raising the temperature from room temperature T0 to 200 ° C.
- Rmax / Rmin is preferably 3 or more, where Tmax is the temperature when the maximum resistance value is Rmax, and Rmin is the minimum resistance value between T0 and Tmax.
- the ratio of Rmax / Rmin is equal to or greater than any of 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 500, 1000, 1500, 2000, 2500, 3000. It may be within the range of these arbitrary two values. Since there is a correlation between the initial resistance value obtained by the measurement using the conductive rubber and the capacity retention rate of the battery, the measurement is preferably performed using the conductive rubber.
- the maximum resistance value Rbmax measured above 50 ° C. and below 200 ° C. of the current collector is 3 times or more of the resistance value R50 of 50 ° C.
- the ratio of Rbmax / R50 is any of 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 500, 1000, 1500, 2000, 2500, 3000. Or may be within the range of these two arbitrary values.
- the electrode 117 of this embodiment includes an active material layer 115 containing an active material, which is formed on the conductive layer 105. Since the electrode 117 includes an active material layer containing active material particles on a current collector using the above-described current collector foil, good discharge rate characteristics can be obtained.
- the active material particles contained in the active material layer 115 of the electrode 117 of this embodiment may be either a positive electrode active material or a negative electrode active material.
- the positive electrode active material for the secondary battery used for the positive electrode is not particularly limited, and a material capable of inserting and extracting lithium (ion) is preferable. Specifically, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), and ternary lithium compounds of Co, Mn, and Ni are used.
- Li (CoxMnyNiz) O 2 ), lithium iron phosphate (LiFePO 4 ), lithium manganese phosphate (LiMnPO 4 ), sulfur (S), TiS 2 , LiS 2 , FeS 2 , Li 2 MnO 3 , LiFePO 4 F, Li 2 FeSiO 4 , FeF 3 or the like can be used.
- a well-known thing can be used as a negative electrode active material for secondary batteries used for a negative electrode.
- graphite such as graphite, amorphous carbon, lithium titanate (Li 4 Ti 5 O 12 ), and oxide.
- the active material used for the electric double layer capacitor electrode a known material can be used.
- graphite such as graphite, amorphous carbon, and oxide.
- the binder resin for binding the active material may be a fluorine resin typified by PVDF (polyvinylidene fluoride), a polysaccharide polymer, SBR, or the like, but is not limited thereto. Moreover, what was mentioned by the conductive layer can also be used.
- PVDF polyvinylidene fluoride
- SBR polysaccharide polymer
- the above-mentioned binder resin can be dissolved in a solvent or mixed with active material particles and a conductive additive, and can be applied and dried on the conductive layer 105, whereby the electrode 117 can be formed.
- Example 4 A mixture of 2.9 g of acetylene black and 48.5 g of resin D (acid-modified polyethylene emulsion, solid content 25%, number average particle size 0.2 ⁇ m, weight average molecular weight 60000) was mixed with a disperser to obtain a coating solution. The obtained coating solution was applied to A1085 foil (thickness 15 ⁇ m) so as to have a film thickness of 2 ⁇ m and dried at 100 ° C. for 2 minutes to obtain a current collector having a conductive layer having a film thickness of 2.3 ⁇ m. In addition, the applicability
- Example 7 A mixture of 2.9 g of acetylene black and 43.2 g of resin E (ionomer emulsion, solid content 28.1%, number average particle size 0.1 ⁇ m) was stirred to obtain a coating solution. The obtained coating liquid was applied to A1085 foil (thickness 15 ⁇ m) so as to have a film thickness of 2 ⁇ m, and dried at 100 ° C. for 2 minutes to obtain a current collector having a conductive layer having a film thickness of 2.2 ⁇ m. In addition, the applicability
- Example 8 A mixture of 2.9 g of acetylene black and 27.1 g of resin F (manufactured by Chuo Rika Kogyo Co., Ltd., Aquatech AC3100, solid content 45%, number average particle size 0.7 ⁇ m) was stirred to obtain a coating solution. The obtained coating solution was applied to A1085 foil (thickness: 15 ⁇ m) to a thickness of 2 ⁇ m and dried at 100 ° C. for 2 minutes to obtain a current collector having a conductive layer with a thickness of 2.8 ⁇ m. In addition, the applicability
- Example 9 A mixture of 2.9 g of acetylene black and 34.8 g of resin G (polyethylene wax emulsion, solid content 34.9%, number average particle size 0.6 ⁇ m, weight average molecular weight 8000) was stirred to obtain a coating solution. The obtained coating solution was applied to A1085 foil (thickness 15 ⁇ m) so as to have a film thickness of 2 ⁇ m and dried at 100 ° C. for 2 minutes to obtain a current collector having a conductive layer having a film thickness of 2.3 ⁇ m. In addition, the applicability
- resin G polyethylene wax emulsion, solid content 34.9%, number average particle size 0.6 ⁇ m, weight average molecular weight 8000
- the “maximum exothermic peak” means a peak having the highest “true height” defined in the same manner as described above. Also in this case, the “true height” of the “maximum exothermic peak” is defined in the same manner as described above.
- the temperature range where the exothermic curve exists above the midpoint height of the line segment corresponding to “true height” is defined as “half-value width”.
- ⁇ Method for measuring particle size of emulsion> A sample obtained by vacuum drying each emulsion was observed with a transmission electron microscope (SEM), and the particle size of the emulsion was measured.
- the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameters of 100 particles randomly selected in the SEM observation image. The results are shown in the description of Experimental Examples 1 to 10 above.
- ⁇ Weight average molecular weight> Gel permeation chromatography using a GPC apparatus manufactured by Waters Co., Ltd., using GHS-6 manufactured by Tosoh Co., Ltd. as the column and 0-dichlorobenzene as the solvent at a temperature of 135 ° C. and a flow rate of 1.0 ml / min. It was measured by a graphic (GPC) method. The weight average molecular weight was determined in terms of polystyrene.
- the thickness of the conductive layer was calculated from the difference in thickness between the conductive layer forming part and the non-formed part (part of aluminum foil only) using a film thickness measuring instrument Keitaro G (manufactured by Seiko em).
- ⁇ PTC characteristic evaluation 1> The resistance value at 50 ° C. was measured with a resistance meter (HIOKI 3451) while applying a load of 5 N while sandwiching a current collector (1 cm ⁇ ) with a conductive electrode formed of a brass electrode. It was evaluated with.
- the current collector obtained according to the present invention was evaluated based on the evaluation criteria obtained by the following measurement. That is, a conductive rubber is sandwiched between current collectors each having two conductive layers, which is further sandwiched between 1 cm ⁇ brass electrodes, and a load of 50 N is applied between the electrodes with a resistance meter (HIOKI 3541). The resistance value at 30 ⁇ 5 ° C. was measured, and this was defined as the room temperature resistance value R0.
- the conductive rubber used here has a sufficiently low specific resistance compared to the current collector to be measured, has a corresponding flexibility, and can be anything as long as the temperature dependence of its own resistance value is small.
- EC-60BL specific resistance: 0.9 ⁇ cm, hardness (A): 66
- Shin-Etsu Silicone Co., Ltd. can be used.
- Capacity retention rate (3-1) Battery production (3-1-1) Positive electrode production
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
図1は、実施形態に係る電極の構造を示した断面図である。また、図2は、実施形態に係る電極の導電層の構造を示した断面図である。本実施形態の電極117は、金属箔103と、その金属箔103の表面上に形成される膜厚0.1μm~10μmの導電層105と、を含むものである。その導電層105の上にさらに、活物質を含む活物質層115と、を備えていてもよい。
本実施形態の金属箔103としては、二次電池またはキャパシタ用の各種金属箔が使用可能である。具体的には、正極用、負極用の種々の金属箔を使用することができ、例えば、アルミニウム、銅、ステンレス、ニッケルなどが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム、銅が好ましい。なお、本明細書において、アルミニウムは、アルミニウム及びアルミニウム合金を意味し、銅は純銅および銅合金を意味する。本実施形態において、アルミニウム箔は二次電池正極側、二次電池負極側またはキャパシタ電極、銅箔は二次電池負極側に用いることができる。アルミニウム箔としては、特に限定されないが、純アルミ系であるA1085材や、A3003材など種々のものが使用できる。また、銅箔としても同様であり、特に限定されないが、圧延銅箔や電解銅箔が好んで用いられる。
本実施形態の導電層105は、金属箔103の表面上に形成される膜厚0.1μm~10μmの導電性材料111およびバインダ材料107を含むPTC(Positive temperature coefficient)層である。
本実施形態の集電体は、金属箔103と、その金属箔103の表面上に形成される導電層105と、を含むものである。本実施形態の集電体のPTC機能が実用上充分に優れているといえるためには、直径1cmの導電性ゴムを上記の集電体で挟み、さらにこれを直径1cmの円柱状の真鍮製電極で挟み、当該電極間に荷重を50Nかけた状態で、10℃/分の昇温速度で室温T0から200℃まで昇温しながら抵抗値を測定して得られる抵抗値-温度曲線の、最大抵抗値をRmax、Rmaxとなったときの温度をTmax、T0~Tmaxの間の最小抵抗値をRminとすると、Rmax/Rminが3以上であることが好ましい。Rmax/Rminの比は、3、4、5、6、7、8、9、10、20、30、40、50、100、500、1000、1500、2000、2500、3000のいずれかの値以上であってもよく、これらの任意の2つの値の範囲内であってもよい。上記導電性ゴムを用いた測定で得られた初期抵抗値と電池の容量維持率に相関があることから、測定は導電性ゴムを用いたほうが好ましい。
本実施形態の電極117は、導電層105の上に形成されている、活物質を含む活物質層115を備える。この電極117は、上記の集電箔を用いた集電体上に活物質粒子を含有する活物質層を備えているため、良好な放電レート特性が得られる。
アセチレンブラック3.3gと樹脂A 49.92g(酸変性ポリプロピレン エマルション、固形分29.5%、数平均粒子径 0.3μm、重量平均分子量80000)を混合後、ディスパで攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚2.2μmの導電層を有する集電体を得た。なお、この樹脂AのエマルションのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
アセチレンブラック3.3gと樹脂B 48.9g(酸変性ポリプロピレン エマルション、固形分30.1%、数平均粒子径 0.3μm、重量平均分子量20000)を混合後、ディスパで攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚2.2μmの導電層を有する集電体を得た。なお、この樹脂BのエマルションのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
アセチレンブラック2.9gと樹脂C 30.2g(エチレングリシジルメタクリレート共重合体 エマルション、固形分40.2%、数平均粒子径 1.5μm、重量平均分子量30000)を混合後、ディスパで攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚3.2μmの導電層を有する集電体を得た。なお、この樹脂CのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
アセチレンブラック2.9gと樹脂D 48.5g(酸変性ポリエチレン エマルション、固形分25%、数平均粒子径 0.2μm、重量平均分子量60000)を混合後、ディスパで攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚2.3μmの導電層を有する集電体を得た。なお、この樹脂DのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
アセチレンブラック0.7gと樹脂A 18.8g(酸変性ポリプロピレン エマルション、固形分29.5%、数平均粒子径 0.3μm、重量平均分子量80000)を混合後、カーボンナノチューブ分散液(カーボンナノチューブのアスペクト比:30、昭和電工製VGCF―H 1%水分散液、界面活性剤:ビックケミー製BYK-190、超音波処理1時間)6.4gを加えた。その後、ディスパで攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚1.7μmの導電層を有する集電体を得た。なお、この樹脂AのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
アセチレンブラック0.7gと樹脂D 22.8g(酸変性ポリエチレン エマルション、固形分25%、数平均粒子径 0.2μm、重量平均分子量60000)を混合後、カーボンナノチューブ分散液(カーボンナノチューブのアスペクト比:30、昭和電工製VGCF―H 1%水分散液、界面活性剤:ビックケミー製BYK-2015、超音波処理1時間)6.5gを加えた。その後、ディスパで攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚1.8μmの導電層を有する集電体を得た。なお、この樹脂DのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
アセチレンブラック2.9gと樹脂E 43.2g(アイオノマー エマルション、固形分28.1%、数平均粒子径 0.1μm)を混合後、攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚2.2μmの導電層を有する集電体を得た。なお、この樹脂EのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
アセチレンブラック2.9gと樹脂F 27.1g(中央理化工業社製、アクアテックAC3100、固形分45%、数平均粒子径 0.7μm)を混合後、攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚2.8μmの導電層を有する集電体を得た。なお、この樹脂FのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
アセチレンブラック2.9gと樹脂G 34.8g(ポリエチレンワックスエマルション、固形分34.9%、数平均粒子径 0.6μm、重量平均分子量8000)を混合後、攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚2.3μmの導電層を有する集電体を得た。なお、この樹脂GのA1085箔への塗布性は不良(肉眼で目視して塗りムラが多いことを確認)であった。
アセチレンブラック0.4g、樹脂H 2.1g(ポリフッ化ビニリデン、重量平均分子量300000)、NMP(N-メチル-2-ピロリドン)22.5gを混合後、攪拌を行った。次得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、120℃2分で乾燥し、膜厚2.0μmの導電層を有する集電体を得た。なお、この樹脂HのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
真空乾燥後の樹脂の融点は、JIS K7121に従い、島津製作所製示差走査熱量計(DSC-60A)を使用して測定した。結果を表1に示す。昇温過程において吸熱ピークが1つだけの場合には、そのピークの温度が融点である。2以上のピークが存在する場合は、最大吸熱ピークの温度を融点とする。
融点測定後200℃まで達していない場合は、そのまま200℃まで昇温速度10℃/minで昇温し、降温速度10℃/min、温度範囲200℃から50℃で発熱ピーク温度及び半値幅を測定した。結果を表1に示す。
各エマルションを真空乾燥して得られた試料を透過型電子顕微鏡(SEM)で観察し、エマルションの粒径を測定した。ここで、数平均粒子径は、SEM観察像中で無作為に選んだ粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。結果は、上記の実験例1~10の説明の内容に示している。
ウォーターズ(株)製のGPC装置を用い、カラムに東ソー(株)製GMH-6、溶媒に0-ジクロルベンゼンを使用し、温度135℃、流量1.0ml/分にて、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した。重量平均分子量は、ポリスチレン換算で求めた。
導電層の厚みは、フィルム厚み測定機 計太郎G(セイコーem製)を用いて、導電層形成部と未形成部(アルミ箔のみの部分)の厚みの差から算出した。
真鍮製の電極で導電層を形成した集電体(1cmφ)を挟み、荷重5Nをかけながら、抵抗計(HIOKI製 3451)で50℃における抵抗値を測定し、この初期抵抗を下記の評価基準で評価した。
◎:1Ω未満
○:1Ω以上5Ω未満
△:5Ω以上10Ω未満
×:10Ω以上
得られた初期抵抗値R50の評価結果を表2に示す。
その後、50℃から200℃まで10℃/minで昇温し、抵抗値の変化を測定した。得られた最大抵抗値Rbmaxと初期抵抗値R50の比を表2に示す。
次に、本発明により得られる集電体について、以下の測定により得られる評価基準で評価を行った。すなわち、導電性ゴムを2枚の導電層を形成した集電体で両面から挟み、これをさらに1cmφの真鍮の電極で挟み、当該電極間に荷重50Nをかけながら、抵抗計(HIOKI 3541)で30±5℃における抵抗値を測定し、これを室温の抵抗値R0とした。ここで用いる導電性ゴムは、比抵抗が測定しようとする集電体に比べて十分低く、相応の柔軟性を有しており、それ自身の抵抗値の温度依存性が小さければ何でも良いが、例えば信越シリコーン(株)製EC-60BL(比抵抗:0.9Ωcm、硬度(A):66)を用いることができる。
◎:1Ω未満
○:1Ω以上5Ω未満
△:5Ω以上10Ω未満
×:10Ω以上
得られた初期抵抗値R0の評価結果を表3に示す。
◎:1Ω未満
○:1Ω以上5Ω未満
△:5Ω以上10Ω未満
×:10Ω以上
得られた最低抵抗(Rmin)の評価結果を表3に示す。
その後、試料を室温から200℃まで10℃/minで昇温しながら抵抗値を測定した。このとき得られた抵抗値-温度曲線において、最大の抵抗値Rmaxをとる温度をTmax、室温をT0、T0~Tmaxにおける最低の抵抗値をRmin、そのときの温度をTminとする。このとき、Tmax>Tminである。得られたRmax/Rminを表3に示す。
(3-1)電池の作製
(3-1-1)正極の作製
上記の方法にて作製した導電層を有する集電体に活物質ペースト(LiMn2O4/AB/PVDF=89.5/5/5.5、溶媒NMP(N-メチル-2-ピロリドン))を塗布し、乾燥した。さらにプレスをかけて、厚さ60μmの活物質層を形成した。
厚さ10μmの銅箔に活物質ペースト(MCMB(メソカーボンマイクロビーズ)/AB/PVDF=93/2/5、溶剤NMP)を塗布し、乾燥した。さらにプレスをかけて、厚さ40μmの活物質層を形成した。
この正極、負極、電解液(1M LiPF6、EC(エチレンカーボネート)/MEC(メチルエチルカーボネート)=3/7)、セパレータ(厚さ25μm、微孔ポリエチレンフィルム)を捲回して、各極にリードを溶接して各極端子に接続し、ケースに挿入して円筒型リチウムイオン電池(φ18mm×軸方向長さ65mm)を得た。
この円筒型リチウムイオン電池を用い、1Cにて4.2Vまで定電流定電圧充電後、1Cと5Cにて定電流放電を行い、それぞれの放電容量から放電維持率=(5Cの放電容量)/(1Cの放電容量)を算出して、下記の評価基準で評価した。
容量維持率の評価基準
◎:0.80以上
○:0.75以上0.80未満
△:0.70以上0.75未満
×:0.70未満
容量維持率が5C(5サイクル)で0.70以上あれば、電池として十分な性能を有する。容量維持率が5Cで0.8以上あれば、ハイレートでの使用も可能である。また、測定結果を表2に示す。
上記の円筒型リチウムイオン電池を用い、4.2Vまで1.5mA/cm2で定電流定電圧充電後、満充電状態の円筒型リチウムイオン電池にさらに5mA/cm2でSOC 250%もしくは10Vに達するまで充電し、円筒型リチウムイオン電池の挙動を調査した。
実験例1~6では、集電体の抵抗値の変化(Rbmax/R50)が10倍以上となっているのに対し、実験例7~9では、集電体の抵抗値の変化が10倍以下と小さい。また、PVDFを用いた実験例10は、集電体の抵抗値の変化は10倍以上となっているが、Rmaxの温度が170℃と高く150℃以下ではシャットダウン機能が発現しない。
105 導電層
107 バインダ材料
111 導電性材料
115 活物質層
117 電極
Claims (14)
- 金属箔と、
前記金属箔の表面上に形成されている膜厚0.1μm~10μmの導電層と、
を備える集電体であって、
前記導電層が、導電性材料およびバインダ材料を含み、
前記バインダ材料の融点が80℃~150℃であり、かつ
前記バインダ材料が、
常温から200℃までの示差走査熱量測定(DSC)において、
昇温過程に吸熱ピークが一つ以上あり、
二つ以上の吸熱ピークがある場合にはそれらのいずれのピーク間の差も15℃以上であって、かつ、
降温過程に発熱ピークが一以上あり、
発熱ピークが一つである場合はその発熱ピークが、
二つ以上の発熱ピークがある場合にはそれらの発熱ピークのうち最大の発熱ピークが、
50~120℃の範囲内にあり、当該発熱ピークの半値幅が10℃以下である、
集電体。 - 前記バインダ材料が、数平均粒子径10μm以下である結晶性粒子を含み、
前記導電性材料が、導電性粒子を含む、
請求項1に記載の集電体。 - 前記結晶性粒子が、ポリエチレン粒子、ポリプロピレン粒子、酸変性ポリエチレン粒子、酸変性ポリプロピレン粒子、アイオノマー粒子、エチレングリシジルメタクリレート共重合体粒子、エチレン/酢酸ビニル共重合体粒子、エチレン/(メタ)アクリル酸共重合体粒子、エチレン/(メタ)アクリル酸エステル共重合体からなる群から選ばれる1種以上の結晶性粒子を含む、
請求項2に記載の集電体。 - 前記結晶性粒子は、エポキシ基、カルボキシル基、無水カルボキシル基からなる群から選ばれる1種以上の親水基を有する成分を1種以上含有する、
請求項2または3に記載の集電体。 - 前記導電性粒子が、カーボンブラックまたはアスペクト比10以上のカーボンナノチューブを含む、
請求項2~4のいずれかに記載の集電体。 - 前記バインダ材料が、結晶性粒子を水に分散させた分散液を含有し、
前記導電性材料が、導電性粒子を含有し、
前記導電層は、前記バインダ材料および前記導電性材料を含む組成物を前記金属箔の表面上に塗布して形成されている、
請求項1~5のいずれかに記載の集電体。 - 前記導電層が、前記組成物を塗布した後、さらに100~150℃で加熱処理されたものである、
請求項6記載の集電体。 - 前記導電層が前記金属箔の表裏両面上に形成されており、
直径1cmの導電性ゴムを2つの前記集電体で挟み、さらにこれを直径1cmの円柱状の真鍮製電極で挟み、当該電極間に荷重を50Nかけた状態で、10℃/分の昇温速度で常温から200℃まで昇温しながら抵抗値を測定して得られる抵抗値-温度曲線の、最大抵抗値をRmax、Rmaxとなったときの温度をTmax、T0~Tmaxの間の最小抵抗値をRminとすると、Rmax/Rminが3以上である、
請求項1~7のいずれかに記載の集電体。 - 前記集電体の50℃を超え200℃以下で測定された最大抵抗値Rbmaxが、50℃の抵抗値R50の3倍以上である、
請求項1~7のいずれかに記載の集電体。 - 請求項1~9のいずれかに記載の集電体と、
前記集電体の前記導電層の上に形成されている、活物質を含む活物質層と、
を備える、電極。 - 請求項1~9のいずれかに記載の集電体を備えるリチウム二次電池。
- 請求項1~9のいずれかに記載の集電体を備える非水系リチウム二次電池。
- 請求項1~9のいずれかに記載の集電体を備える電気二重層キャパシタ。
- 請求項1~9のいずれかに記載の集電体を備えるリチウムイオンキャパシタ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157004062A KR20150036659A (ko) | 2012-07-13 | 2013-07-11 | 집전체, 전극, 이차전지 및 커패시터 |
CN201380036431.7A CN104428928B (zh) | 2012-07-13 | 2013-07-11 | 集电体、电极、二次电池以及电容器 |
US14/414,399 US9741498B2 (en) | 2012-07-13 | 2013-07-11 | Current collector, electrode, secondary battery and capacitor |
JP2014524884A JP6220784B2 (ja) | 2012-07-13 | 2013-07-11 | 集電体、電極、二次電池およびキャパシタ |
EP13817288.7A EP2874215A4 (en) | 2012-07-13 | 2013-07-11 | CURRENT COLLECTOR, ELECTRODE, SECONDARY CELL AND CONDENSER |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-157669 | 2012-07-13 | ||
JP2012157669 | 2012-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014010708A1 true WO2014010708A1 (ja) | 2014-01-16 |
Family
ID=49916149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/069061 WO2014010708A1 (ja) | 2012-07-13 | 2013-07-11 | 集電体、電極、二次電池およびキャパシタ |
Country Status (7)
Country | Link |
---|---|
US (1) | US9741498B2 (ja) |
EP (1) | EP2874215A4 (ja) |
JP (1) | JP6220784B2 (ja) |
KR (1) | KR20150036659A (ja) |
CN (1) | CN104428928B (ja) |
TW (1) | TW201415699A (ja) |
WO (1) | WO2014010708A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014077384A1 (ja) * | 2012-11-19 | 2014-05-22 | 古河電気工業株式会社 | 集電体、電極、二次電池およびキャパシタ |
JP2015078344A (ja) * | 2013-09-10 | 2015-04-23 | リケンテクノス株式会社 | 導電性樹脂組成物、及びそのフィルム |
JP2016134217A (ja) * | 2015-01-16 | 2016-07-25 | 東洋インキScホールディングス株式会社 | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス |
JP2016164978A (ja) * | 2015-02-27 | 2016-09-08 | ダイニック株式会社 | 電気化学素子用電極およびその製造方法、ならびに下地層用塗料 |
WO2017014245A1 (ja) * | 2015-07-23 | 2017-01-26 | 日立化成株式会社 | リチウムイオン二次電池 |
TWI611623B (zh) * | 2014-10-27 | 2018-01-11 | 財團法人工業技術研究院 | 用於鋰離子電池的負極材料以及包含其的鋰離子電池 |
WO2018147390A1 (ja) | 2017-02-10 | 2018-08-16 | 三井化学株式会社 | 集電体、電極及び非水電解質二次電池 |
CN115000414A (zh) * | 2022-06-15 | 2022-09-02 | 欣旺达惠州动力新能源有限公司 | 一种集流体及其制备方法与应用 |
JP2022132461A (ja) * | 2018-12-04 | 2022-09-08 | 昭和電工株式会社 | 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法 |
JP2022132460A (ja) * | 2018-12-04 | 2022-09-08 | 昭和電工株式会社 | 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法 |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2922122A4 (en) * | 2012-11-19 | 2016-06-29 | Uacj Corp | COLLECTOR, ELECTRODE STRUCTURE BODY AND ELECTRICAL MEMORY ELEMENT |
US10944126B2 (en) * | 2014-12-08 | 2021-03-09 | Showa Denko Materials Co., Ltd. | Positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same |
US10822512B2 (en) * | 2016-02-24 | 2020-11-03 | LMS Consulting Group | Thermal substrate with high-resistance magnification and positive temperature coefficient |
US11332632B2 (en) | 2016-02-24 | 2022-05-17 | Lms Consulting Group, Llc | Thermal substrate with high-resistance magnification and positive temperature coefficient ink |
KR102314082B1 (ko) * | 2016-10-26 | 2021-10-15 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지 |
CN110140245B (zh) * | 2017-01-06 | 2022-10-25 | 三井化学株式会社 | 非水电解质二次电池及其中使用的材料 |
SG10201702726QA (en) * | 2017-04-03 | 2018-11-29 | Airbus Singapore Private Ltd | Conductive carbon coated polymer for high temperature lithium ion battery shutdown deposited through 3d printing technique |
CN106981627A (zh) * | 2017-05-18 | 2017-07-25 | 芜湖中科智捷信息科技有限责任公司 | 一种高循环寿命磷酸铁锂电池电极制造方法 |
KR102259219B1 (ko) | 2018-07-03 | 2021-05-31 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR102259218B1 (ko) | 2018-07-03 | 2021-05-31 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 전극, 및 이를 포함하는 리튬 이차 전지 |
KR102323950B1 (ko) | 2018-12-12 | 2021-11-08 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지 |
CN110661002B (zh) | 2018-12-29 | 2021-06-29 | 宁德时代新能源科技股份有限公司 | 一种电极极片和电化学装置 |
CN110660957B (zh) * | 2018-12-29 | 2020-12-04 | 宁德时代新能源科技股份有限公司 | 一种电极极片和电化学装置 |
KR102425514B1 (ko) | 2019-05-03 | 2022-07-25 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR102487628B1 (ko) | 2019-05-03 | 2023-01-12 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR102425515B1 (ko) | 2019-05-03 | 2022-07-25 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR102425513B1 (ko) | 2019-05-03 | 2022-07-25 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR102492832B1 (ko) | 2019-05-03 | 2023-01-26 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR102492831B1 (ko) | 2019-05-03 | 2023-01-26 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
JP2021048111A (ja) * | 2019-09-20 | 2021-03-25 | 日本電気硝子株式会社 | 二次電池用電極及びその製造方法 |
CN114039029A (zh) * | 2021-11-29 | 2022-02-11 | 珠海冠宇电池股份有限公司 | 一种极片和锂离子电池 |
CN114520388B (zh) * | 2022-02-08 | 2023-12-26 | 浙江荣泰电工器材股份有限公司 | 一种新能源汽车用五系三元锂电池模组的云母绝缘盒 |
CN118016390A (zh) * | 2022-11-10 | 2024-05-10 | 东莞令特电子有限公司 | 热稳定pptc材料及其制造方法 |
KR20240107050A (ko) * | 2022-12-29 | 2024-07-08 | 주식회사 엘지에너지솔루션 | 전극, 이를 포함하는 이차전지, 및 이의 제조 방법 |
KR20240123066A (ko) * | 2023-02-06 | 2024-08-13 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001357854A (ja) | 2000-06-13 | 2001-12-26 | Matsushita Electric Ind Co Ltd | 非水系二次電池 |
JP2002526897A (ja) | 1998-09-29 | 2002-08-20 | ダスガプタ,サンカー | Ptcポリマーを含む複合電極 |
JP2006185854A (ja) * | 2004-12-28 | 2006-07-13 | Nissan Motor Co Ltd | バイポーラ電池 |
JP2008140552A (ja) * | 2006-11-29 | 2008-06-19 | Nissan Motor Co Ltd | 双極型電池用電極 |
JP2009146752A (ja) * | 2007-12-14 | 2009-07-02 | Nissan Motor Co Ltd | リチウムイオン二次電池用集電体 |
JP2009176599A (ja) | 2008-01-25 | 2009-08-06 | Panasonic Corp | 非水電解質二次電池 |
JP2012104422A (ja) * | 2010-11-11 | 2012-05-31 | Toyota Motor Corp | 非水二次電池とその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62209803A (ja) * | 1986-03-10 | 1987-09-16 | 日本メクトロン株式会社 | 回路素子 |
CN1145233C (zh) * | 1998-06-25 | 2004-04-07 | 三菱电机株式会社 | 电极、该电极的制造方法和使用该电极的电池 |
US20050209392A1 (en) | 2003-12-17 | 2005-09-22 | Jiazhong Luo | Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes |
WO2007024206A2 (en) * | 2004-08-11 | 2007-03-01 | Eikos, Inc. | Fluoropolymer binders for carbon nanotube-based transparent conductive coatings |
JP4809159B2 (ja) * | 2006-08-22 | 2011-11-09 | 三井化学株式会社 | 二次電池または電気二重層キャパシタ用バインダー |
JP2008243708A (ja) * | 2007-03-28 | 2008-10-09 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池および非水電解質二次電池の製造方法 |
JP2009295666A (ja) * | 2008-06-03 | 2009-12-17 | Nippon Zeon Co Ltd | 電気化学素子用電極および電気化学素子 |
-
2013
- 2013-07-11 JP JP2014524884A patent/JP6220784B2/ja not_active Expired - Fee Related
- 2013-07-11 EP EP13817288.7A patent/EP2874215A4/en not_active Ceased
- 2013-07-11 CN CN201380036431.7A patent/CN104428928B/zh not_active Expired - Fee Related
- 2013-07-11 KR KR1020157004062A patent/KR20150036659A/ko not_active Application Discontinuation
- 2013-07-11 WO PCT/JP2013/069061 patent/WO2014010708A1/ja active Application Filing
- 2013-07-11 US US14/414,399 patent/US9741498B2/en not_active Expired - Fee Related
- 2013-07-12 TW TW102125126A patent/TW201415699A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002526897A (ja) | 1998-09-29 | 2002-08-20 | ダスガプタ,サンカー | Ptcポリマーを含む複合電極 |
JP2001357854A (ja) | 2000-06-13 | 2001-12-26 | Matsushita Electric Ind Co Ltd | 非水系二次電池 |
JP2006185854A (ja) * | 2004-12-28 | 2006-07-13 | Nissan Motor Co Ltd | バイポーラ電池 |
JP2008140552A (ja) * | 2006-11-29 | 2008-06-19 | Nissan Motor Co Ltd | 双極型電池用電極 |
JP2009146752A (ja) * | 2007-12-14 | 2009-07-02 | Nissan Motor Co Ltd | リチウムイオン二次電池用集電体 |
JP2009176599A (ja) | 2008-01-25 | 2009-08-06 | Panasonic Corp | 非水電解質二次電池 |
JP2012104422A (ja) * | 2010-11-11 | 2012-05-31 | Toyota Motor Corp | 非水二次電池とその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2874215A4 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014077384A1 (ja) * | 2012-11-19 | 2014-05-22 | 古河電気工業株式会社 | 集電体、電極、二次電池およびキャパシタ |
JP2015078344A (ja) * | 2013-09-10 | 2015-04-23 | リケンテクノス株式会社 | 導電性樹脂組成物、及びそのフィルム |
TWI611623B (zh) * | 2014-10-27 | 2018-01-11 | 財團法人工業技術研究院 | 用於鋰離子電池的負極材料以及包含其的鋰離子電池 |
JP2016134217A (ja) * | 2015-01-16 | 2016-07-25 | 東洋インキScホールディングス株式会社 | 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス |
JP2016164978A (ja) * | 2015-02-27 | 2016-09-08 | ダイニック株式会社 | 電気化学素子用電極およびその製造方法、ならびに下地層用塗料 |
WO2017014245A1 (ja) * | 2015-07-23 | 2017-01-26 | 日立化成株式会社 | リチウムイオン二次電池 |
WO2018147390A1 (ja) | 2017-02-10 | 2018-08-16 | 三井化学株式会社 | 集電体、電極及び非水電解質二次電池 |
CN110291669A (zh) * | 2017-02-10 | 2019-09-27 | 三井化学株式会社 | 集电体、电极及非水电解质二次电池 |
CN110291669B (zh) * | 2017-02-10 | 2023-01-13 | 三井化学株式会社 | 集电体、电极及非水电解质二次电池 |
JP2022132461A (ja) * | 2018-12-04 | 2022-09-08 | 昭和電工株式会社 | 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法 |
JP2022132460A (ja) * | 2018-12-04 | 2022-09-08 | 昭和電工株式会社 | 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法 |
JP7273378B2 (ja) | 2018-12-04 | 2023-05-15 | 株式会社レゾナック | 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法 |
CN115000414A (zh) * | 2022-06-15 | 2022-09-02 | 欣旺达惠州动力新能源有限公司 | 一种集流体及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
JP6220784B2 (ja) | 2017-10-25 |
EP2874215A4 (en) | 2015-06-24 |
CN104428928B (zh) | 2018-04-13 |
EP2874215A1 (en) | 2015-05-20 |
KR20150036659A (ko) | 2015-04-07 |
CN104428928A (zh) | 2015-03-18 |
JPWO2014010708A1 (ja) | 2016-06-23 |
TW201415699A (zh) | 2014-04-16 |
US20150221452A1 (en) | 2015-08-06 |
US9741498B2 (en) | 2017-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6220784B2 (ja) | 集電体、電極、二次電池およびキャパシタ | |
WO2014077384A1 (ja) | 集電体、電極、二次電池およびキャパシタ | |
CN104428929B (zh) | 集电体、电极结构体、非水电解质电池或蓄电部件 | |
TWI591889B (zh) | Current Collector, Electrode Structure, Nonaqueous Electrolyte Battery, Conductivity Packing and storage components | |
JP5427046B2 (ja) | 非水電解質電池及びその製造方法 | |
CN114079032B (zh) | 负极片及二次电池 | |
US20160276673A1 (en) | Current collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component | |
JP2006339093A (ja) | 巻回型非水電解液二次電池およびその負極 | |
JP6135396B2 (ja) | リチウムイオン二次電池用セパレータ、及びリチウムイオン二次電池 | |
KR20120069580A (ko) | 결합제 조성물, 슬러리, 축전 디바이스용 부극 및 축전 디바이스 | |
JP2006182925A (ja) | コアシェル型微粒子、および該微粒子を有するリチウム二次電池 | |
JP2015204221A (ja) | 集電体、電極構造体及び蓄電部品 | |
JP6236964B2 (ja) | リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池 | |
JPWO2014046112A1 (ja) | 集電体、電極構造体及び蓄電部品 | |
JPWO2015111663A1 (ja) | リチウムイオン二次電池用電極及びリチウムイオン二次電池 | |
JP2007265889A (ja) | 非水電解液二次電池用電極板及びその製造方法並びに非水電解液二次電池 | |
JP5945148B2 (ja) | リチウムイオン二次電池正極集電体用アルミニウム合金箔及びそれを用いたリチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13817288 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014524884 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14414399 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013817288 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157004062 Country of ref document: KR Kind code of ref document: A |