WO2014010708A1 - 集電体、電極、二次電池およびキャパシタ - Google Patents

集電体、電極、二次電池およびキャパシタ Download PDF

Info

Publication number
WO2014010708A1
WO2014010708A1 PCT/JP2013/069061 JP2013069061W WO2014010708A1 WO 2014010708 A1 WO2014010708 A1 WO 2014010708A1 JP 2013069061 W JP2013069061 W JP 2013069061W WO 2014010708 A1 WO2014010708 A1 WO 2014010708A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
particles
binder material
conductive
conductive layer
Prior art date
Application number
PCT/JP2013/069061
Other languages
English (en)
French (fr)
Inventor
恭宏 飯田
泰正 盛島
貴和 伊藤
英和 原
片岡 次雄
光哉 井上
郷史 山部
加藤 治
幸翁 本川
聡平 斉藤
起郭 八重樫
Original Assignee
古河電気工業株式会社
日本製箔株式会社
古河スカイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 日本製箔株式会社, 古河スカイ株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020157004062A priority Critical patent/KR20150036659A/ko
Priority to CN201380036431.7A priority patent/CN104428928B/zh
Priority to US14/414,399 priority patent/US9741498B2/en
Priority to JP2014524884A priority patent/JP6220784B2/ja
Priority to EP13817288.7A priority patent/EP2874215A4/en
Publication of WO2014010708A1 publication Critical patent/WO2014010708A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a current collector, an electrode, a secondary battery, and a capacitor.
  • lithium ion secondary batteries Due to the high energy density, the use of lithium ion secondary batteries in electronic devices such as mobile phones and laptop computers is expanding.
  • lithium cobaltate, lithium manganate, lithium iron phosphate and the like are used as the positive electrode active material, and graphite is used as the negative electrode active material.
  • a lithium ion secondary battery includes an electrode made of these active materials, a separator that is a porous sheet, and an electrolyte solution in which a lithium salt is dissolved.
  • Such a lithium ion secondary battery has high battery capacity and output, good charge / discharge characteristics, and relatively long service life.
  • Lithium ion secondary batteries have the advantage of high energy density, but have a problem with safety because they use a non-aqueous electrolyte.
  • the non-aqueous electrolyte since the non-aqueous electrolyte is included, the components of the non-aqueous electrolyte are decomposed as the heat is generated, so that the internal pressure increases and the battery may swell.
  • problems such as heat generation may occur.
  • problems such as heat generation may occur due to the occurrence of an internal short circuit. The heat generated by the battery may eventually lead to ignition, and safety for suppressing this is important.
  • the method of attaching the PTC element to the positive electrode cap portion has a problem that heat generation due to internal short circuit or overcharge cannot be prevented.
  • the separator incorporated in the lithium ion secondary battery has a function to suppress an increase in short-circuit current by melting the resin during abnormal heat generation, closing the hole of the separator, and lowering the ionic conductivity. is doing.
  • the separator at a location away from the heat generating portion does not always melt, and if there is heat generation above the deformation start temperature of the resin, the separator contracts due to heat, which may cause a short circuit. .
  • Patent Document 1 discloses a PTC layer formed on a current collector by heating and mixing carbon particles and a crystalline resin, processing the resulting mixture into a sheet, and annealing the mixture.
  • Patent Document 2 discloses a PTC layer of 5 ⁇ m or less containing a crystalline resin such as polyethylene, a conductive material, and a binder.
  • Patent Document 3 discloses a PTC layer made of a polyethylene wax emulsion and carbon fine particles.
  • the PTC layer produced by the method described in Patent Document 1 has a drawback that the initial resistance is high because carbon particles are dispersed in the resin during heating.
  • the thickness of the PTC layer produced by such a method must be several tens of ⁇ m, which is in line with the active material layer.
  • the electrode of the lithium ion secondary battery is required to have a higher energy density. When the film thickness is thick, the battery capacity decreases.
  • the present invention has been made in view of the above circumstances, and when used in a secondary battery or a capacitor, a current collector that has excellent high-rate characteristics and exhibits a sufficient safety function, and an electrode using the current collector,
  • An object is to provide a secondary battery or a capacitor.
  • a current collector comprising a metal foil and a conductive layer having a thickness of 0.1 ⁇ m to 10 ⁇ m formed on the surface of the metal foil.
  • the conductive layer includes a conductive material and a binder material.
  • the melting point of the binder material is 80 ° C. to 150 ° C.
  • the binder material has one or more endothermic peaks in the temperature rising process in differential scanning calorimetry (DSC) from room temperature to 200 ° C. And when the binder material has two or more endothermic peaks, the difference between any of those peaks is 15 ° C. or more. Further, the binder material has one or more exothermic peaks in the temperature lowering process.
  • the exothermic peak is in the range of 50 to 120 ° C., and the half-value width of the exothermic peak is 10 ° C. or less.
  • the maximum exothermic peak is within the range of 50 to 120 ° C, and the half-value width of the exothermic peak is 10 ° C or less. It is.
  • this current collector when used in a secondary battery or capacitor, it has excellent high-rate characteristics and exhibits a sufficient safety function.
  • an electrode comprising the above-described current collector and an active material layer containing an active material formed on the conductive layer of the current collector.
  • this electrode Since this electrode is provided with the above-described current collector, it has excellent high-rate characteristics and exhibits a sufficient safety function when used in a secondary battery or a capacitor.
  • a lithium secondary battery a non-aqueous lithium secondary battery, an electric double layer capacitor or a lithium ion capacitor comprising the above current collector.
  • lithium secondary batteries non-aqueous lithium secondary batteries, electric double layer capacitors or lithium ion capacitors are provided with the above-described current collector, and therefore have high rate characteristics and exhibit sufficient safety functions.
  • the collector which is excellent in a high-rate characteristic and exhibits sufficient safety function, and the electrode, secondary battery, or capacitor using this collector are obtained. .
  • FIG. 14 is a graph showing a differential scanning calorimeter (DSC) measurement result when an emulsion (AC-3100) of polymethacrylic acid resin particles containing ethylene and methacrylic acid as main components is used for the PTC layer in Experimental Example 8. It is a graph which shows a differential scanning calorimeter (DSC) measurement result at the time of using the emulsion of an ethylene glycidyl methacrylate copolymer for a PTC layer in Experimental example 3.
  • DSC differential scanning calorimeter
  • FIG. 10 is a diagram for explaining a case where acetylene black, an acid-modified polyethylene emulsion and a carbon nanotube dispersion are used for the PTC layer in Experimental Example 5.
  • FIG. 1 is a cross-sectional view illustrating the structure of an electrode according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the structure of the conductive layer of the electrode according to the embodiment.
  • the electrode 117 of this embodiment includes the metal foil 103 and the conductive layer 105 having a thickness of 0.1 ⁇ m to 10 ⁇ m formed on the surface of the metal foil 103.
  • An active material layer 115 containing an active material may be further provided over the conductive layer 105.
  • the conductive layer 105 includes a conductive material 111 and a binder material 107 as shown in FIG.
  • 3 and 4 are graphs for explaining the half-value width of the maximum exothermic peak that appears in the temperature lowering process of the binder material of the conductive layer of the electrode according to the embodiment (illustration is omitted in the vicinity of 200 ° C.).
  • the melting point of the binder material 107 is 80 ° C. to 150 ° C.
  • the binder material 107 has a maximum exothermic peak at either 50 ° C. to 120 ° C. in the temperature lowering process after crystal melting in the differential scanning calorimeter (DSC) measurement.
  • the half width of the peak is 10 ° C. or less. When the full width at half maximum is 10 ° C. or more, the resistance value is not sufficiently increased, so that the shutdown function is not exhibited.
  • FIG. 5 and 6 are graphs for explaining the heat generation peak position of the binder material of the conductive layer of the electrode according to the embodiment (illustration is omitted in the vicinity of 200 ° C.).
  • the binder material has an exothermic peak in the temperature lowering process in the range of 80 ° C. to 120 ° C. If this electrode 117 is used, as shown in Example 1 described later, a sufficient shutdown function is exhibited.
  • the exothermic peak is 120 ° C. or more as shown in FIG. 6, the resistance does not increase immediately upon abnormal heat generation as in Example 10 described later, and the shutdown function is not exhibited.
  • FIG. 7 is a cross-sectional view illustrating a mechanism in which the resistance of the conductive layer of the electrode according to the embodiment rapidly increases.
  • the electrode 117 when the temperature in the secondary battery or capacitor reaches the vicinity of the melting point of the binder material 107 (140 ° C. in the case of Experimental Example 1), the binder material 107 expands in volume, and the conductive layer 105 Since the contact between the conductive materials 111 dispersed in the film is peeled off, the conductivity is lowered.
  • the binder material 107 has a maximum exothermic peak at 50 ° C. to 120 ° C.
  • the half-value width of this maximum exothermic peak is 10 ° C. or less.
  • the binder material 107 is melted, the volume change during melting is large, and good PTC characteristics can be obtained even with a film thickness of 10 ⁇ m or less.
  • the resistance of the conductive layer 105 rapidly increases, and the current collector and The current between the active material layers is interrupted. Therefore, if this electrode 117 is used, a sufficient safety function can be exhibited during abnormal heat generation due to an internal short circuit of the secondary battery or capacitor.
  • FIG. 8 and 9 are graphs for explaining a case where there are two endothermic peaks in the temperature rising process of the binder material of the conductive layer of the electrode according to the embodiment (illustration is omitted in the vicinity of 200 ° C.).
  • the binder material 107 has a difference between the peaks of 15 ° C. or more.
  • this electrode 117 is used, as shown in Experimental Example 3 to be described later, when used for a secondary battery or a capacitor, the capacity retention rate is kept high even when repeated charging and discharging are performed, the high rate characteristic is excellent, and overcharge is performed.
  • the binder material 107 has two or more endothermic peaks in the differential scanning calorimeter (DSC) measurement and the difference between the peaks is less than 15 ° C., it will be described later.
  • DSC differential scanning calorimeter
  • metal foil 103 of the present embodiment various metal foils for secondary batteries or capacitors can be used.
  • various metal foils for the positive electrode and the negative electrode can be used.
  • aluminum, copper, stainless steel, nickel and the like can be used.
  • aluminum and copper are preferable from the balance between high conductivity and cost.
  • aluminum means aluminum and an aluminum alloy
  • copper means pure copper and a copper alloy.
  • the aluminum foil can be used on the secondary battery positive electrode side, the secondary battery negative electrode side or the capacitor electrode, and the copper foil can be used on the secondary battery negative electrode side.
  • A1085 material which is a pure aluminum type, and A3003 material can be used.
  • A1085 material which is a pure aluminum type can be used.
  • copper foil is the same also as copper foil, although it does not specifically limit, Rolled copper foil and electrolytic copper foil are used preferably.
  • the thickness of the metal foil 103 is selected according to the purpose of use and is not particularly limited, but in the case of a secondary battery, it is preferably 5 ⁇ m or more and 50 ⁇ m or less. If the thickness is less than 5 ⁇ m, the strength of the foil may be insufficient and it may be difficult to form the conductive layer 105 or the like. On the other hand, when the thickness exceeds 50 ⁇ m, other components, particularly the active material layer 115 or the electrode material layer, must be thinned. In particular, in the case of a power storage component such as a secondary battery or a capacitor, In some cases, it is necessary to reduce the thickness, and a necessary and sufficient capacity cannot be obtained.
  • the conductive layer 105 of this embodiment is a PTC (Positive temperature coefficient) layer including a conductive material 111 having a thickness of 0.1 ⁇ m to 10 ⁇ m and a binder material 107 formed on the surface of the metal foil 103.
  • PTC Positive temperature coefficient
  • the film thickness of the conductive layer 105 of this embodiment is 0.1 ⁇ m to 10 ⁇ m. If the thickness is less than 0.1 ⁇ m, the resistance may not be lowered sufficiently during abnormal heat generation, and the shutdown function cannot be exhibited reliably. When the thickness exceeds 10 ⁇ m, the resistance at normal time is increased, and the performance at the high rate as the battery characteristic is lowered.
  • the thickness of the conductive layer 105 may be, for example, 0.1, 0.3, 0.5, 1, 2, 5, 10 ⁇ m, and within the range between any two of the numerical values exemplified here. There may be.
  • the melting point of the binder material 107 of the conductive layer 105 of the present embodiment needs to function before the shutdown function of the separator is manifested, and thus is 80 ° C. to 150 ° C. If it is less than 80 degreeC, a shutdown function will be exhibited even at normal temperature. Since the separator needs to function before the shutdown function is exhibited, the melting point of the binder material 107 used for the PTC layer should be 150 ° C. or lower.
  • a crystalline polymer soluble in an organic solvent is used as the binder material 107 used for the PTC layer, if the battery has a high melting point, the shutdown function of the separator moves before the PTC expression of the conductive layer, It is not suitable as the binder material 107.
  • a crystalline polymer soluble in an organic solvent needs to be dried at a relatively low temperature in order to develop PTC, and thus has a problem of low productivity.
  • the melting point of the binder material 107 of the conductive layer 105 may be, for example, 80 ° C., 90 ° C., 100 ° C., 110 ° C., 120 ° C., 130 ° C., 140 ° C., 150 ° C., and any of the numerical values exemplified here. It may be within a range between the two. When there is only one endothermic peak at the time of DSC temperature rise, the endothermic peak is the melting point, and when there are a plurality of endothermic peaks, the temperature of the maximum endothermic peak at the time of temperature rise is the melting point.
  • the binder material 107 of the conductive layer 105 of the present embodiment has only one endothermic peak in the temperature rising process in the differential scanning calorimeter (DSC) measurement from normal temperature (for example, 50 ° C.) to 200 ° C. preferable.
  • DSC differential scanning calorimeter
  • the difference between any of these peaks is preferably 15 ° C. or more. If there are two or more endothermic peaks in the temperature raising process and the difference between the peaks is less than 15 ° C., the capacity retention rate is likely to decrease when repeated charging and discharging are used for secondary batteries or capacitors. If overcharged, smoke may be generated.
  • the number of endothermic peaks in the temperature raising process may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and any two of the numerical values exemplified here may be used. It may be within the range between. Further, when there are two or more endothermic peaks in the temperature rising process, the difference between the peaks may be any value of 15 ° C, 20 ° C, 25 ° C, 30 ° C, and 35 ° C.
  • the binder material 107 of the conductive layer 105 of the present embodiment has a maximum exothermic peak at any temperature of 50 ° C. to 120 ° C. during the temperature lowering process after crystal melting in the differential scanning calorimeter (DSC) measurement. If it is less than 50 degreeC, even if it is normal temperature, a shutdown function will be exhibited. Alternatively, since the crystallinity is low, the change in resistance value is small and the shutdown function is not exhibited. If it exceeds 120 ° C, the resistance will not increase immediately upon abnormal heat generation, and the shutdown function will not be exhibited.
  • DSC differential scanning calorimeter
  • the maximum exothermic peak in the temperature lowering process after crystal melting in the differential scanning calorimeter (DSC) measurement is, for example, 50 ° C, 60 ° C, 70 ° C, 80 ° C, 90 ° C, 100 ° C, 110 ° C, 120 ° C. It may be within the range between any two of the numerical values exemplified here.
  • the half-value width of the maximum exothermic peak is 10 ° C. or less.
  • the half width of the maximum exothermic peak may be, for example, 10 ° C, 9 ° C, 8 ° C, 7 ° C, 6 ° C, 5 ° C, 4 ° C, 3 ° C, 2 ° C, 1 ° C or less. It may be within a range between any two of the numerical values exemplified here.
  • FIG. 3 shows the definition of true height and half-value width in the case of a single peak. That is, in this specification, the half width means the full width at half maximum (full width at half maximum, FWHM), and does not mean the half width at half maximum (half width at half maximum, HWHM). Absent. However, since the definition of the full width at half maximum when a plurality of peaks overlap (particularly when a component with a wide half width is included) is unclear, FIG. 4 shows the definition when a plurality of peaks overlap.
  • the half-value width of the maximum exothermic peak obtained by curve fitting with a Gaussian function or the like is not obtained, but the shape shown in FIG. Find the half width at.
  • the melting point of the binder material 107 used for the PTC layer should be 150 ° C. or lower.
  • a crystalline resin having a melting point of 150 ° C. or lower is not soluble in an organic solvent, in order to produce a PTC layer having a film thickness of 0.1 ⁇ m to 10 ⁇ m, the particle size is small according to the thickness of the layer. It is preferable to use polymer particles.
  • the number average particle diameter of the crystalline particles used as the binder material 107 is not particularly limited, but is usually 0.001 ⁇ m to 10 ⁇ m, preferably 0.01 ⁇ m to 5 ⁇ m, more preferably 0.1 ⁇ m to 2 ⁇ m.
  • the number average particle diameter of When the number average particle diameter of the crystalline particles is within this range, a uniform film of 10 ⁇ m or less can be formed, and an excellent binding force can be provided even with a small amount of use.
  • the number average particle diameter of the crystalline particles may be, for example, 0.001 ⁇ m, 0.005 ⁇ m, 0.01 ⁇ m, 0.05 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 5 ⁇ m, 10 ⁇ m, It may be within a range between any two of the numerical values exemplified in.
  • the crystalline particles having a number average particle diameter of 10 ⁇ m or less are used as the binder material 107 in this way, even if the crystalline particles are not soluble in the solvent, they can be dispersed in the solvent. Crystalline particles are uniformly dispersed in the conductive layer 105. Therefore, even if the conductive material is dispersed unevenly in the PTC layer, there is almost no portion where the conductive network is not cut at the PTC expression temperature (the portion where the crystalline particles are not distributed). Even in the case, there is almost no portion where continuity remains, and the shutdown function is exhibited well.
  • the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameter of 100 binder particles randomly selected in a transmission electron micrograph.
  • the shape of the particles is not particularly limited, and may be spherical or irregular. These binders can be used alone or in combination of two or more.
  • the crystalline particles used as the binder material 107 are not particularly limited, but polyethylene particles, polypropylene particles, acid-modified polyethylene particles, acid-modified polypropylene particles, ionomer particles, ethylene glycidyl methacrylate copolymer particles, ethylene / vinyl acetate copolymer. Polymer particles, ethylene / (meth) acrylic acid copolymer particles, ethylene / (meth) acrylic acid ester copolymers, and the like can be used. These crystalline particles may be cross-linked. Two or more kinds of these crystalline particles may be mixed and used.
  • denaturation of these polypropylene and polyethylene is not specifically limited, For example, carboxylic acid is mentioned.
  • carboxylic acid examples include unsaturated carboxylic acid and derivatives thereof.
  • unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, and sorbic acid. Etc.
  • Examples of the derivative of this unsaturated carboxylic acid include acid anhydrides, esters, amides, imides and the like of this unsaturated carboxylic acid, and more specifically, for example, maleic anhydride, itaconic anhydride, citraconic anhydride Methyl acrylate, methyl methacrylate, ethyl acrylate, butyl acrylate, maleic acid monoethyl ester, acrylamide, maleic acid monoamide, maleimide, N-butylmaleimide and the like.
  • the crystalline particles used as the binder material 107 preferably contain one or more components having an epoxy group, a carboxyl group, and an anhydrous carboxyl group.
  • the crystalline particles have the above-described components, sufficient adhesion to the metal foil 103 can be obtained, and an aggregated structure with a conductive material such as carbon particles that can provide high PTC characteristics can be obtained. it can.
  • These crystalline particles are preferably used in a state dispersed in water (emulsion). More preferred is an emulsion of acid-modified polyethylene, acid-modified polypropylene, and ethylene glycidyl methacrylate copolymer particles. By using the emulsion, the crystalline particles can be uniformly dispersed.
  • an emulsion for example, after dissolving a resin in a water-insoluble solvent, an emulsifier and water are added, and the emulsion is emulsified and then the solvent is volatilized.
  • the method includes heating and stirring above the melting point of the resin in a liquid state, stirring and emulsifying.
  • the emulsion used in the present embodiment is not particularly limited as long as it has a particle diameter of 10 ⁇ m or less and is stably dispersed in the liquid.
  • the crystalline particles used as the binder material 107 have an ethylene or propylene ratio of 80% (mass%) or more, and differential scanning. In the calorimeter (DSC) measurement, it has a maximum exothermic peak at 50 ° C. to 120 ° C. in the temperature lowering process after crystal melting, and the half value width of the maximum exothermic peak is preferably 10 ° C. or less. When the crystalline particles have such characteristics, the conductive network is severely disconnected when the melting point is exceeded, and high PTC characteristics can be obtained.
  • the crystalline particles have only one endothermic peak in the temperature rising process in the differential scanning calorimeter (DSC) measurement.
  • the difference between any of these peaks is preferably 15 ° C. or more.
  • the number of endothermic peaks in the temperature raising process of the crystalline particles may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, It may be within a range between any two.
  • the difference between the peaks is at least one of the values of 15 ° C, 20 ° C, 25 ° C, 30 ° C, and 35 ° C. Also good.
  • the molecular weight of the crystalline particles used as the binder material 107 is preferably a weight average molecular weight of 10,000 or more. More preferably, it is 60,000 or more. When the molecular weight of the crystalline particles is 10,000 or more, high PTC characteristics can be obtained even with a thin film of 10 ⁇ m or less.
  • the weight average molecular weight of the crystalline particles may be 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000 or 80,000 or more.
  • the blending amount of the binder material 107 is not particularly limited, but is preferably blended so that the volume% value occupied by the binder material 107 is 50 to 90% when the entire conductive layer 105 is 100%.
  • the blending amount of the binder material 107 is too large, the number of contact points between the conductive materials 111 is small, and the electrical resistance at normal temperature is increased.
  • the blending amount of the binder material 107 is too small, the contact between the conductive materials 111 is maintained even when the temperature is raised, and the shutdown function is hardly exhibited.
  • This value is, for example, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, and is within the range between any two of the numerical values exemplified here. May be.
  • the conductive material 111 used for the conductive layer 105 of the present embodiment a known conductive material such as carbon powder or metal powder can be used. Among them, carbon black such as furnace black, acetylene black, ketjen black, etc. Carbon nanotubes are preferred.
  • the electrical resistance of the powder is preferably 100% green compact and 1 ⁇ 10 ⁇ 1 ⁇ ⁇ cm or less, and can be used in combination with the above if necessary (that is, carbon black and carbon nanotube are You may use both together.)
  • the particle size is not particularly limited, but is generally preferably 10 to 100 nm. When using carbon nanotubes, it is preferable to use those having an aspect ratio of 10 or more because of excellent conductivity. The aspect ratio may be greater than or equal to any of 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100. It may be within the range of these two numerical values.
  • FIG. 10 is a conceptual diagram (top) of the configuration of the current collector when acetylene black and an acid-modified polyethylene emulsion are used for the PTC layer in Experimental Example 4 to be described later, and the current collector from room temperature to 200 ° C. 10 It is the figure which combined and showed the graph (bottom) which shows the range of 50 to 150 degreeC among the results (use of conductive rubber) which measured the temperature change at a temperature of ° C / min and measured the change in resistance value.
  • the initial resistance value R0 at room temperature is less than 10 ⁇ because the acetylene blacks form a conductive path with each other, and the shutdown function at 140 ° C. When this is exhibited, the conductive path between the acetylene blacks is cut, and the resistance magnification becomes 108.9, which is sufficiently high.
  • FIG. 11 is a conceptual diagram (top) of the structure of the current collector when acetylene black, an acid-modified polyethylene emulsion, and a carbon nanotube dispersion are used for the PTC layer in Experimental Example 6 to be described later. It is the figure which combined and showed the graph (lower) which shows the range of 50 to 150 degreeC among the results (use of conductive rubber) which measured the temperature change to 10 degreeC / min and measured the change of resistance value.
  • the initial resistance value at 50 ° C. is 5 ⁇ because the acetylene black and carbon nanotubes form a conductive path.
  • the conductive path between the acetylene black and the carbon nanotube is cut, and the resistance magnification is 20267, which is extremely high. That is, it is preferable to use acetylene black and carbon nanotubes together as the conductive material 111 used for the conductive layer 105 because both the initial resistance value and the resistance magnification are remarkably improved.
  • the blending amount of the conductive material 111 is not particularly limited, but it is preferable that the volume percentage of the conductive material 111 is 10 to 50% when the entire conductive layer 105 is 100%. . If the blending amount of the conductive material 111 is too small, the number of contact points between the conductive materials 111 is small, and the electrical resistance at room temperature becomes high. When the blending amount of the conductive material 111 is too large, the contact between the conductive materials 111 is maintained even when the temperature is raised, and the shutdown function is hardly exhibited. This value is, for example, 10, 15, 20, 25, 30, 35, 40, 45, 50%, and may be within a range between any two of the numerical values exemplified here.
  • the conductive layer 105 of the present embodiment can be manufactured by, for example, a method in which the binder material 107 is dissolved (or dispersed) in a solvent, the conductive material 111 is mixed, a paste is formed, and applied onto the metal foil 103 and dried.
  • the solvent to be used is not particularly limited as long as the binder resin is soluble (or dispersible) and the conductive particles can be dispersed.
  • the coating method is not particularly limited, and known methods such as a casting method, a bar coater method, a dip method, and a gravure coating method can be used. There is no restriction
  • the conductive layer 105 of this embodiment is preferably heat-treated in a temperature range of 100 ° C. to 150 ° C. after being applied on the metal foil 103.
  • This heat treatment may be performed as part of the drying process, or may be performed as a separate process after the drying process.
  • the heat treatment time is preferably between 1 minute and 180 minutes.
  • the temperature of the heat treatment may be within a range of two arbitrary numerical values among 100 ° C., 110 ° C., 120 ° C., 130 ° C., 140 ° C., and 150 ° C.
  • the time of this heat processing is the range of two arbitrary values among 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 60 minutes, 120 minutes, and 180 minutes. It may be within.
  • the current collector of this embodiment includes a metal foil 103 and a conductive layer 105 formed on the surface of the metal foil 103.
  • a conductive rubber having a diameter of 1 cm is sandwiched between the current collectors, and this is made of a cylindrical brass having a diameter of 1 cm.
  • a resistance value-temperature curve obtained by measuring a resistance value while raising the temperature from room temperature T0 to 200 ° C.
  • Rmax / Rmin is preferably 3 or more, where Tmax is the temperature when the maximum resistance value is Rmax, and Rmin is the minimum resistance value between T0 and Tmax.
  • the ratio of Rmax / Rmin is equal to or greater than any of 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 500, 1000, 1500, 2000, 2500, 3000. It may be within the range of these arbitrary two values. Since there is a correlation between the initial resistance value obtained by the measurement using the conductive rubber and the capacity retention rate of the battery, the measurement is preferably performed using the conductive rubber.
  • the maximum resistance value Rbmax measured above 50 ° C. and below 200 ° C. of the current collector is 3 times or more of the resistance value R50 of 50 ° C.
  • the ratio of Rbmax / R50 is any of 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 500, 1000, 1500, 2000, 2500, 3000. Or may be within the range of these two arbitrary values.
  • the electrode 117 of this embodiment includes an active material layer 115 containing an active material, which is formed on the conductive layer 105. Since the electrode 117 includes an active material layer containing active material particles on a current collector using the above-described current collector foil, good discharge rate characteristics can be obtained.
  • the active material particles contained in the active material layer 115 of the electrode 117 of this embodiment may be either a positive electrode active material or a negative electrode active material.
  • the positive electrode active material for the secondary battery used for the positive electrode is not particularly limited, and a material capable of inserting and extracting lithium (ion) is preferable. Specifically, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), and ternary lithium compounds of Co, Mn, and Ni are used.
  • Li (CoxMnyNiz) O 2 ), lithium iron phosphate (LiFePO 4 ), lithium manganese phosphate (LiMnPO 4 ), sulfur (S), TiS 2 , LiS 2 , FeS 2 , Li 2 MnO 3 , LiFePO 4 F, Li 2 FeSiO 4 , FeF 3 or the like can be used.
  • a well-known thing can be used as a negative electrode active material for secondary batteries used for a negative electrode.
  • graphite such as graphite, amorphous carbon, lithium titanate (Li 4 Ti 5 O 12 ), and oxide.
  • the active material used for the electric double layer capacitor electrode a known material can be used.
  • graphite such as graphite, amorphous carbon, and oxide.
  • the binder resin for binding the active material may be a fluorine resin typified by PVDF (polyvinylidene fluoride), a polysaccharide polymer, SBR, or the like, but is not limited thereto. Moreover, what was mentioned by the conductive layer can also be used.
  • PVDF polyvinylidene fluoride
  • SBR polysaccharide polymer
  • the above-mentioned binder resin can be dissolved in a solvent or mixed with active material particles and a conductive additive, and can be applied and dried on the conductive layer 105, whereby the electrode 117 can be formed.
  • Example 4 A mixture of 2.9 g of acetylene black and 48.5 g of resin D (acid-modified polyethylene emulsion, solid content 25%, number average particle size 0.2 ⁇ m, weight average molecular weight 60000) was mixed with a disperser to obtain a coating solution. The obtained coating solution was applied to A1085 foil (thickness 15 ⁇ m) so as to have a film thickness of 2 ⁇ m and dried at 100 ° C. for 2 minutes to obtain a current collector having a conductive layer having a film thickness of 2.3 ⁇ m. In addition, the applicability
  • Example 7 A mixture of 2.9 g of acetylene black and 43.2 g of resin E (ionomer emulsion, solid content 28.1%, number average particle size 0.1 ⁇ m) was stirred to obtain a coating solution. The obtained coating liquid was applied to A1085 foil (thickness 15 ⁇ m) so as to have a film thickness of 2 ⁇ m, and dried at 100 ° C. for 2 minutes to obtain a current collector having a conductive layer having a film thickness of 2.2 ⁇ m. In addition, the applicability
  • Example 8 A mixture of 2.9 g of acetylene black and 27.1 g of resin F (manufactured by Chuo Rika Kogyo Co., Ltd., Aquatech AC3100, solid content 45%, number average particle size 0.7 ⁇ m) was stirred to obtain a coating solution. The obtained coating solution was applied to A1085 foil (thickness: 15 ⁇ m) to a thickness of 2 ⁇ m and dried at 100 ° C. for 2 minutes to obtain a current collector having a conductive layer with a thickness of 2.8 ⁇ m. In addition, the applicability
  • Example 9 A mixture of 2.9 g of acetylene black and 34.8 g of resin G (polyethylene wax emulsion, solid content 34.9%, number average particle size 0.6 ⁇ m, weight average molecular weight 8000) was stirred to obtain a coating solution. The obtained coating solution was applied to A1085 foil (thickness 15 ⁇ m) so as to have a film thickness of 2 ⁇ m and dried at 100 ° C. for 2 minutes to obtain a current collector having a conductive layer having a film thickness of 2.3 ⁇ m. In addition, the applicability
  • resin G polyethylene wax emulsion, solid content 34.9%, number average particle size 0.6 ⁇ m, weight average molecular weight 8000
  • the “maximum exothermic peak” means a peak having the highest “true height” defined in the same manner as described above. Also in this case, the “true height” of the “maximum exothermic peak” is defined in the same manner as described above.
  • the temperature range where the exothermic curve exists above the midpoint height of the line segment corresponding to “true height” is defined as “half-value width”.
  • ⁇ Method for measuring particle size of emulsion> A sample obtained by vacuum drying each emulsion was observed with a transmission electron microscope (SEM), and the particle size of the emulsion was measured.
  • the number average particle diameter is a number average particle diameter calculated as an arithmetic average value obtained by measuring the diameters of 100 particles randomly selected in the SEM observation image. The results are shown in the description of Experimental Examples 1 to 10 above.
  • ⁇ Weight average molecular weight> Gel permeation chromatography using a GPC apparatus manufactured by Waters Co., Ltd., using GHS-6 manufactured by Tosoh Co., Ltd. as the column and 0-dichlorobenzene as the solvent at a temperature of 135 ° C. and a flow rate of 1.0 ml / min. It was measured by a graphic (GPC) method. The weight average molecular weight was determined in terms of polystyrene.
  • the thickness of the conductive layer was calculated from the difference in thickness between the conductive layer forming part and the non-formed part (part of aluminum foil only) using a film thickness measuring instrument Keitaro G (manufactured by Seiko em).
  • ⁇ PTC characteristic evaluation 1> The resistance value at 50 ° C. was measured with a resistance meter (HIOKI 3451) while applying a load of 5 N while sandwiching a current collector (1 cm ⁇ ) with a conductive electrode formed of a brass electrode. It was evaluated with.
  • the current collector obtained according to the present invention was evaluated based on the evaluation criteria obtained by the following measurement. That is, a conductive rubber is sandwiched between current collectors each having two conductive layers, which is further sandwiched between 1 cm ⁇ brass electrodes, and a load of 50 N is applied between the electrodes with a resistance meter (HIOKI 3541). The resistance value at 30 ⁇ 5 ° C. was measured, and this was defined as the room temperature resistance value R0.
  • the conductive rubber used here has a sufficiently low specific resistance compared to the current collector to be measured, has a corresponding flexibility, and can be anything as long as the temperature dependence of its own resistance value is small.
  • EC-60BL specific resistance: 0.9 ⁇ cm, hardness (A): 66
  • Shin-Etsu Silicone Co., Ltd. can be used.
  • Capacity retention rate (3-1) Battery production (3-1-1) Positive electrode production

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 二次電池またはキャパシタに用いた場合にハイレート特性が優れ十分な安全機能を発揮する集電体と、この集電体が用いられた電極、二次電池またはキャパシタを提供する。本発明によれば、金属箔と、その金属箔の表面上に形成されている膜厚0.1μm~10μmの導電層と、を備える集電体が提供される。ここで、その導電層は、導電性材料およびバインダ材料を含む。また、そのバインダ材料の融点は、80℃~150℃である。さらに、そのバインダ材料は、常温から200℃までの示差走査熱量測定(DSC)において、昇温過程に吸熱ピークが一つ以上ある。そして、そのバインダ材料は、二つ以上の吸熱ピークがある場合にはそれらのいずれのピーク間の差も15℃以上である。さらに、そのバインダ材料は、降温過程に発熱ピークが一以上ある。そして、そのバインダ材料は、発熱ピークが一つである場合はその発熱ピークが、50~120℃の範囲内にあり、当該発熱ピークの半値幅が10℃以下である。一方、そのバインダ材料は、二つ以上の発熱ピークがある場合にはそれらの発熱ピークのうち最大の発熱ピークが、50~120℃の範囲内にあり、当該発熱ピークの半値幅が10℃以下である。

Description

集電体、電極、二次電池およびキャパシタ
 本発明は、集電体、電極、二次電池およびキャパシタに関する。
 エネルギー密度の高さから、携帯電話やノートパソコンなどの電子機器へのリチウムイオン2次電池の利用が拡大している。リチウムイオン2次電池は、正極活物質にコバルト酸リチウム、マンガン酸リチウム、リン酸鉄リチウムなど、負極活物質に、グラファイトなどが用いられている。リチウムイオン2次電池は、それら活物質からなる電極と多孔質シートであるセパレータ、リチウム塩を溶解した電解液から構成されるのが一般的である。このようなリチウムイオン2次電池は、電池容量及び出力が高く、充放電特性が良好で、耐用寿命も比較的長い。
 リチウムイオン2次電池は、エネルギー密度が高いという利点の反面、非水電解液を使用することなどから、安全性に関して問題がある。例えば、非水電解液を含んでいるため、発熱にともなって非水電解液の成分が分解して内圧が上昇し、電池が膨れるなどの不具合を生じるおそれがある。また、リチウムイオン2次電池が過充電されると、発熱などの不具合が起こるおそれがある。そして、内部短絡の発生によっても、発熱などの不具合が起こるおそれがある。電池の発熱は、ひいては発火につながる場合があり、これを抑制するための安全性が重要である。
 電池の安全性を向上させる手段としては、安全弁による内圧上昇の防止、温度上昇にともない抵抗値が増加するPTC(Positive temperature coefficient)素子を組み込むことによる発熱時の電流遮断などが挙げられる。例えば、円筒形電池の正極キャップ部分にPTC素子を装着する方法が知られている。
 しかし、正極キャップ部分にPTC素子を装着する方法では、内部短絡や過充電などによる発熱を防ぐことができないといった問題点がある。
 リチウムイオン2次電池に組み込まれているセパレータは、異常発熱時樹脂が溶融することで、セパレータの孔部が塞がれ、イオン伝導性が低下することで短絡電流の増加を抑制する機能を有している。しかし、発熱部分から離れた場所のセパレータは、溶融するとは限らず、また、樹脂の変形開始温度以上の発熱があるとセパレータが熱によって収縮することで、逆に短絡が発生する可能性がある。このように、内部短絡や過充電等による発熱を防ぐ手段は未だ改善の余地を残している。
 内部短絡の問題点を解決するために、結晶性樹脂と導電粒子からなるPTC層を有する正極が提案されている。このようなPTC層は、結晶性樹脂の融点近傍で樹脂が膨張することで、導電性粒子のネットワークが切断され、抵抗値が大きく増加するという特性を有する。特許文献1では、炭素粒子と結晶性樹脂を加熱混合し、得られた混合物をシート状に加工後、アニールして集電体に形成されたPTC層が開示されている。また、特許文献2において、ポリエチレンのような結晶性樹脂、導電材及びバインダを含む5μm以下のPTC層が開示されている。また、特許文献3では、ポリエチレンワックスエマルションと炭素微粒子からなるPTC層が開示されている。
特表2002-526897号公報 特開2001-357854号公報 特開2009-176599号公報
 しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を有していた。
 第一に、特許文献1に記載の方法で作製されたPTC層は、炭素粒子が加熱中に樹脂中に分散してしまい、初期の抵抗が高いという欠点がある。加えて、このような方法で作製されたPTC層の厚みは数十μmと活物質層並に形成せざるを得ない。リチウムイオン2次電池の電極は、さらなるエネルギー密度の高密度化が求められている。膜厚が厚いと電池容量の低下が起こる。
 第二に、特許文献2に記載のPTC層では、バインダを添加した場合、結晶性樹脂周辺のみに炭素粒子を存在させることは困難であるため、バインダ領域でも炭素粒子の導電ネットワークが形成されることとなる。そのため、結晶性樹脂の膨張によって結晶性樹脂付近の導電ネットワークが切断されても、バインダ中に構築された導電ネットワークが切断されないことから、面内でのPTC特性が不均一となり、安全性の確保が難しい。
 第三に、特許文献3に記載のPTC層にポリエチレン粒子の水分散液(ケミパールW401、ケミパールW410またはケミパールW4005)を用いた場合、エチレンおよびメタクリル酸を主成分モノマーとするポリメタクリル酸系樹脂粒子の水分散液(AC-3100)を用いた場合のいずれにおいても、120℃での抵抗値が初期の抵抗値の2倍以下と抵抗値の変化が小さいため、電流を遮断することが難しく、過充電した場合の安全性が充分でない。また、いずれの場合も、集電体等との密着性が低い。さらに、いずれの場合も、これらの集電体を用いて電池を作製した場合に、ハイレートで使用する場合の電池特性が充分では無い。
 本発明は上記事情に鑑みてなされたものであり、二次電池またはキャパシタに用いた場合にハイレート特性が優れ十分な安全機能を発揮する集電体と、この集電体が用いられた電極、二次電池またはキャパシタを提供することを目的とする。
 本発明によれば、金属箔と、その金属箔の表面上に形成されている膜厚0.1μm~10μmの導電層と、を備える集電体が提供される。ここで、その導電層は、導電性材料およびバインダ材料を含む。また、そのバインダ材料の融点は、80℃~150℃である。さらに、そのバインダ材料は、常温から200℃までの示差走査熱量測定(DSC)において、昇温過程に吸熱ピークが一つ以上ある。そして、そのバインダ材料は、二つ以上の吸熱ピークがある場合にはそれらのいずれのピーク間の差も15℃以上である。さらに、そのバインダ材料は、降温過程に発熱ピークが一以上ある。そして、そのバインダ材料は、発熱ピークが一つである場合はその発熱ピークが、50~120℃の範囲内にあり、当該発熱ピークの半値幅が10℃以下である。一方、そのバインダ材料は、二つ以上の発熱ピークがある場合にはそれらの発熱ピークのうち最大の発熱ピークが、50~120℃の範囲内にあり、当該発熱ピークの半値幅が10℃以下である。
 この集電体を用いれば、二次電池またはキャパシタに用いた場合にハイレート特性が優れ十分な安全機能を発揮する。
 また、本発明によれば、上記の集電体と、その集電体のその導電層の上に形成されている、活物質を含む活物質層と、を備える、電極が提供される。
 この電極は、上記の集電体を備えるため、二次電池またはキャパシタに用いた場合にハイレート特性が優れ十分な安全機能を発揮する。
 また、本発明によれば、上記の集電体を備えるリチウム二次電池、非水系リチウム二次電池、電気二重層キャパシタまたはリチウムイオンキャパシタが提供される。
 これらのリチウム二次電池、非水系リチウム二次電池、電気二重層キャパシタまたはリチウムイオンキャパシタは、上記の集電体を備えるため、ハイレート特性が優れ十分な安全機能を発揮する。
 本発明によれば、二次電池またはキャパシタに用いた場合にハイレート特性が優れ十分な安全機能を発揮する集電体と、この集電体が用いられた電極、二次電池またはキャパシタが得られる。
実施形態に係る電極の構造を示した断面図である。 実施形態に係る電極の導電層の構造を示した断面図である。 実施形態に係る電極の導電層のバインダ材料の最大発熱ピークの半値幅を説明するためのグラフである。 実施形態に係る電極の導電層のバインダ材料の最大発熱ピークの半値幅を説明するための別のグラフである。 実施形態に係る電極の導電層のバインダ材料の発熱ピーク位置を説明するためのグラフである。 実施形態に係る電極の導電層のバインダ材料の発熱ピーク位置を説明するためのグラフである。 実施形態に係る電極の導電層の抵抗が急上昇する仕組みを示した断面図である。 実験例8でPTC層にエチレンおよびメタクリル酸を主成分モノマーとするポリメタクリル酸系樹脂粒子のエマルション(AC-3100)を用いた場合の示差走査熱量計(DSC)測定結果を示すグラフである。 実験例3でPTC層にエチレングリシジルメタクリレート共重合体のエマルションを用いた場合の示差走査熱量計(DSC)測定結果を示すグラフである。 実験例4でPTC層にアセチレンブラックと酸変性ポリエチレン エマルションとを用いた場合について説明するための図である。 実験例5でPTC層にアセチレンブラックと酸変性ポリエチレン エマルションとカーボンナノチューブ分散液とを用いた場合について説明するための図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、本明細書において「A~B」とは、「A以上B以下」を意味するものとする。
 <電極の全体構成>
 図1は、実施形態に係る電極の構造を示した断面図である。また、図2は、実施形態に係る電極の導電層の構造を示した断面図である。本実施形態の電極117は、金属箔103と、その金属箔103の表面上に形成される膜厚0.1μm~10μmの導電層105と、を含むものである。その導電層105の上にさらに、活物質を含む活物質層115と、を備えていてもよい。
 ここで、その導電層105は、図2に示すように、導電性材料111およびバインダ材料107を含む。
 図3および図4は、実施形態に係る電極の導電層のバインダ材料の降温過程で現れる最大発熱ピークの半値幅を説明するためのグラフである(200℃付近は図示を省略)。上記のバインダ材料107の融点は、80℃から150℃にある。さらに、そのバインダ材料107は、図3で示すように、示差走査熱量計(DSC)測定における結晶融解後の降温過程で50℃から120℃のいずれかに最大発熱ピークを有し、この最大発熱ピークの半値幅が10℃以下である。半値幅が10℃以上である場合は、抵抗値の上昇が十分ではないため、シャットダウン機能が発揮されない。
 図5及び図6は、実施形態に係る電極の導電層のバインダ材料の発熱ピーク位置を説明するためのグラフである(200℃付近は図示を省略)。上記バインダ材料は、図5で示すように降温過程の発熱ピークが80℃から120℃の範囲にある。この電極117を用いれば、後述する実施例1に示すように十分なシャットダウン機能を発揮する。図6のように発熱ピークが120℃以上にある場合は後述する実施例10のように異常発熱時すぐに抵抗が上がらず、シャットダウン機能が発揮されない。
 図7は、実施形態に係る電極の導電層の抵抗が急上昇する仕組みを示した断面図である。この電極117を用いれば、二次電池またはキャパシタ内の温度が、バインダ材料107の融点近傍(実験例1の場合では140℃)に到達すると、バインダ材料107が体積膨張して、導電層105中に分散している導電性材料111同士の接触を引き剥がすために導電性が低下する。そして、そのバインダ材料107、示差走査熱量計(DSC)測定における結晶融解後の降温過程で50℃から120℃のいずれかに最大発熱ピークを有し、この最大発熱ピークの半値幅が10℃以下であるとバインダ材料107融解時の体積変化が大きく、膜厚10μm以下でも良好なPTC特性を得ることができる。その結果、二次電池またはキャパシタを過充電した時の発熱により、二次電池またはキャパシタの内部温度がバインダ材料107の融点近傍に達した時、導電層105の抵抗が急上昇し、集電体と活物質層の間の電流が遮断される。そのため、この電極117を用いれば、二次電池またはキャパシタの内部短絡などによる異常発熱時に十分な安全機能を発揮することができる。
 図8および図9は、実施形態に係る電極の導電層のバインダ材料の昇温過程で吸熱ピークが2つある場合について説明するためのグラフである(200℃付近は図示を省略)。上記のバインダ材料107は、図9で示すように、示差走査熱量計(DSC)測定において、吸熱ピークが2つ以上ある場合は、当該ピーク間の差が15℃以上である。この電極117を用いれば、後述する実験例3で示すように、二次電池またはキャパシタに用いた場合に、繰り返し充放電を行なっても容量維持率が高く保たれ、ハイレート特性に優れ、過充電となっても発煙のない十分な安全機能を発揮する二次電池またはキャパシタが得られる。一方、上記のバインダ材料107が、図8で示すように、示差走査熱量計(DSC)測定において、吸熱ピークが2つ以上あり、当該ピーク間の差が15℃未満の場合には、後述する実験例8で示すように、二次電池またはキャパシタに用いた場合に、繰り返し充放電を行なうと容量維持率が低下してしまい、過充電を行なうと発煙があるため、実用面で改善の余地がある。
 以下、各構成要素について詳細に説明する。
 <金属箔>
 本実施形態の金属箔103としては、二次電池またはキャパシタ用の各種金属箔が使用可能である。具体的には、正極用、負極用の種々の金属箔を使用することができ、例えば、アルミニウム、銅、ステンレス、ニッケルなどが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム、銅が好ましい。なお、本明細書において、アルミニウムは、アルミニウム及びアルミニウム合金を意味し、銅は純銅および銅合金を意味する。本実施形態において、アルミニウム箔は二次電池正極側、二次電池負極側またはキャパシタ電極、銅箔は二次電池負極側に用いることができる。アルミニウム箔としては、特に限定されないが、純アルミ系であるA1085材や、A3003材など種々のものが使用できる。また、銅箔としても同様であり、特に限定されないが、圧延銅箔や電解銅箔が好んで用いられる。
 金属箔103の厚さとしては、使用目的に合わせて選択され、特に制限されるものではないが、二次電池用の場合は5μm以上、50μm以下であることが好ましい。厚さが5μmより薄いと箔の強度が不足して導電層105等の形成が困難になる場合がある。一方、50μmを超えるとその分、その他の構成要素、特に活物質層115あるいは電極材層を薄くせざるを得ず、特に二次電池またはキャパシタ等の蓄電部品とした場合、活物質層115の厚さを薄くせざるを得ず必要十分な容量が得られなくなる場合がある。
 <導電層>
 本実施形態の導電層105は、金属箔103の表面上に形成される膜厚0.1μm~10μmの導電性材料111およびバインダ材料107を含むPTC(Positive temperature coefficient)層である。
 本実施形態の導電層105の膜厚は、0.1μm~10μmである。0.1μm未満では異常発熱時十分に抵抗が下がらない場合があり、シャットダウン機能が確実に発揮されない。10μmを超えると、正常時の抵抗までもが高くなり、電池特性としてのハイレート時の性能が低下する。導電層105の厚さは、例えば、0.1、0.3、0.5、1、2、5、10μmであってもよく、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 そのため、本実施形態の導電層105のバインダ材料107の融点は、セパレータのシャットダウン機能が発現する前に機能する必要があるため、80℃~150℃にある。80℃未満では正常温度においてもシャットダウン機能が発揮されてしまう。セパレータのシャットダウン機能が発現する前に機能する必要があるため、PTC層に用いるバインダ材料107の融点は、150℃以下であるべきである。
 PTC層に用いるバインダ材料107として有機溶剤に可溶な結晶性高分子を用いても融点が高いと電池にした場合、導電層のPTCの発現の前にセパレータのシャットダウン機能が動いてしまうため、バインダ材料107としては適さない。また、有機溶剤可溶な結晶性高分子は、PTCを発現させるために比較的低温で乾燥させる必要があるため、生産性が低くなってしまうなどの問題がある。導電層105のバインダ材料107の融点は、例えば、80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃であってもよく、ここで例示した数値の何れか2つの間の範囲内であってもよい。なお、DSCの昇温時に吸熱ピークが1つしかない場合には、その吸熱ピークを融点とし、複数の吸熱ピークがある場合は、昇温時の最大吸熱ピークの温度を融点とする。
 また、本実施形態の導電層105のバインダ材料107は、常温(例えば50℃)から200℃までの示差走査熱量計(DSC)測定において、昇温過程で吸熱ピークが1つだけであることが好ましい。また、この昇温過程の吸熱ピークが2つ以上ある場合は、それらのいずれのピーク間の差も15℃以上であることが好ましい。昇温過程の吸熱ピークが2つ以上であり、当該ピーク間の差が15℃未満であれば、二次電池またはキャパシタに用いた場合に、繰り返し充放電を行なうと容量維持率が低下しやすく、過充電を行なうと発煙の可能性がある。なお、昇温過程での吸熱ピークの数は、例えば、1、2、3、4、5、6、7、8、9、10であってもよく、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、この昇温過程の吸熱ピークが2つ以上ある場合は、当該ピーク間の差が15℃、20℃、25℃、30℃、35℃のいずれかの値以上であってもよい。
 また、本実施形態の導電層105のバインダ材料107は、示差走査熱量計(DSC)測定における結晶融解後の降温過程で50℃~120℃のいずれかに最大発熱ピークを有する。50℃未満では正常温度においてもシャットダウン機能が発揮されてしまう。もしくは、結晶性が低いため、抵抗値の変化が小さく、シャットダウン機能が発揮されない。120℃超では異常発熱時すぐに抵抗が上がらず、シャットダウン機能が発揮されない。示差走査熱量計(DSC)測定における結晶融解後の降温過程の最大発熱ピークは、例えば、50℃、60℃、70℃、80℃、90℃、100℃、110℃、120℃であってもよく、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 さらに、本実施形態の導電層105のバインダ材料107は、当該最大発熱ピークの半値幅が10℃以下である。半値幅10℃超では、抵抗値の上昇が十分ではないため、シャットダウン機能が発揮されない。最大発熱ピークの半値幅は、例えば、10℃、9℃、8℃、7℃、6℃、5℃、4℃、3℃、2℃、1℃のいずれかの温度以下であってもよく、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 なお、図3には、単一のピークの場合の真の高さと半値幅の定義が示されている。すなわち、本明細書において、半値幅とは、半値全幅(full width at half maximum,FWHM)を意味しており、その半分の値の半値半幅(half width at half maximum,HWHM)を意味するわけではない。しかし、複数のピークが重なった場合(特に半値幅が広い成分を含んでいた場合)の半値幅の定義が不明確なため、図4では、複数のピークが重なった場合についての定義を示す。このように、複数の重なった発熱ピークを有する試料(抵抗値の変化は小さい)では、ガウス関数などでカーブフィッティングして求めた最大発熱ピークの半値幅を求めるのではなく、図4に示す形で半値幅を求める。
 上述のように、セパレータのシャットダウン機能が発現する前に機能する必要があるため、PTC層に用いるバインダ材料107の融点は、150℃以下であるべきである。しかし、融点が150℃以下である結晶性樹脂は、有機溶剤に可溶でないため、膜厚0.1μm~10μmのPTC層を作製するためには、層の厚さに応じた粒径の小さい高分子粒子を用いることが好ましい。
 このため、このバインダ材料107として用いられる結晶性粒子の数平均粒子径は、特に限定はないが、通常は0.001μm~10μm、好ましくは0.01μm~5μm、より好ましくは0.1μm~2μmの数平均粒子径を有するものである。結晶性粒子の数平均粒子径がこの範囲であるときは、10μm以下の均一な膜を形成させることができ、少量の使用でも優れた結着力を与えることができる。結晶性粒子の数平均粒子径は、例えば、0.001μm、0.005μm、0.01μm、0.05μm、0.1μm、0.5μm、1μm、2μm、5μm、10μmであってもよく、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 別の観点から言えば、このようにバインダ材料107として、数平均粒子径10μm以下である結晶性粒子を用いれば、溶剤に結晶性粒子が可溶でなくても溶剤中に分散させることで、結晶性粒子が導電層105中に遍く分散することになる。そのため、導電性材料がPTC層中で不均一に分散していても、PTCの発現温度において導電ネットワークが切断されない部分(結晶性粒子が分布していない部分)がほとんどないため、PTCの発現温度においても導通が残ってしまう部分がほとんどなく、シャットダウン機能がうまく発揮されることになる。
 ここで、数平均粒子径は、透過型電子顕微鏡写真で無作為に選んだバインダ粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。粒子の形状は特に制限はなく、球形、異形、どちらでもかまわない。これらのバインダは単独でまたは二種類以上を組み合わせて用いることができる。
 このバインダ材料107として用いられる結晶性粒子としては、特に限定されないが、ポリエチレン粒子、ポリプロピレン粒子、酸変性ポリエチレン粒子、酸変性ポリプロピレン粒子、アイオノマー粒子、エチレングリシジルメタクリレート共重合体粒子、エチレン/酢酸ビニル共重合体粒子、エチレン/(メタ)アクリル酸共重合体粒子、エチレン/(メタ)アクリル酸エステル共重合体などを用いることが出来る。これら結晶性粒子同士を架橋しても良い。また、これら結晶性粒子を2種以上混合して使用してもよい。これらのポリプロピレン、ポリエチレンの変性に用いられる酸は、特に限定されず、例えばカルボン酸が挙げられる。カルボン酸としては、例えば不飽和カルボン酸、その誘導体等が挙げられ、この不飽和カルボン酸としては、例えばアクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、ソルビン酸などが挙げられる。この不飽和カルボン酸の誘導体としては、例えばこの不飽和カルボン酸の酸無水物、エステル、アミド、イミドなどが挙げられ、より具体的には、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、マレイン酸モノエチルエステル、アクリルアミド、マレイン酸モノアミド、マレイミド、N-ブチルマレイミドなどが挙げられる。
 このバインダ材料107として用いられる結晶性粒子は、エポキシ基、カルボキシル基、無水カルボキシル基を有する成分を1種以上含有することが好ましい。結晶性粒子が、上記成分を有することで、金属箔103との密着性を十分に得ることができ、かつ、高いPTC特性が得られる炭素粒子などの導電性材料との凝集構造を得ることができる。この結晶性粒子は水中に分散した状態(エマルション)で用いることが好ましい。さらに好ましくは、酸変性ポリエチレン、酸変性ポリプロピレン、エチレングリシジルメタクリレート共重合体粒子のエマルションである。エマルションを用いることで均一に結晶性粒子を分散させることが出来る。これにより確実にシャットダウン機能を発現することができる。エマルションの製造方法として、例えば、樹脂を水不溶性の溶剤に溶解した後、乳化剤及び水を加え、エマルション化した後で溶剤を揮発させる方法や樹脂、乳化剤及び水を混合したものを、圧力容器を用いて水を液体状態のまま樹脂の融点以上に加熱し、攪拌して乳化する方法等が挙げられる。本実施形態で用いるエマルションは、粒径が10μm以下で、かつ液中で安定して分散しているものであればよく、製造方法は特に限定されない。
 本実施形態の導電層105のPTC特性には、結晶性が影響することから、このバインダ材料107として用いられる結晶性粒子は、エチレンまたはプロピレン比率が8割(質量%)以上であり、示差走査熱量計(DSC)測定における結晶融解後の降温過程で50℃から120℃のいずれかに最大発熱ピークを有し、当該最大発熱ピークの半値幅が10℃以下であることが好ましい。結晶性粒子がこのような特性を持つ場合、融点を超えた時の導電ネットワークの切断が顕著に発生し、高いPTC特性を得ることが出来る。
 また、この結晶性粒子は、示差走査熱量計(DSC)測定において、昇温過程で吸熱ピークが1つだけであることが好ましい。あるいは、この結晶性粒子は、この昇温過程の吸熱ピークが2つ以上ある場合は、それらのいずれのピーク間の差も15℃以上であることが好ましい。結晶性粒子がこのような特性を持つ場合、二次電池またはキャパシタに用いた場合に、繰り返し充放電を行なっても容量維持率が高く保たれ、過充電を行なっても発煙がない利点がある。なお、結晶性粒子の昇温過程での吸熱ピークの数は、例えば、1、2、3、4、5、6、7、8、9、10であってもよく、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、この結晶性粒子の昇温過程の吸熱ピークが2つ以上ある場合は、当該ピーク間の差が15℃、20℃、25℃、30℃、35℃のいずれかの値以上であってもよい。
 このバインダ材料107として用いられる結晶性粒子の分子量は、重量平均分子量が1万以上であることが好ましい。より好ましくは6万以上である。結晶性粒子の分子量が1万以上である場合、10μm以下の薄膜でも、高いPTC特性を得ることができる。また、この結晶性粒子の重量平均分子量は、1万、2万、3万、4万、5万、6万、7万、8万のいずれかの値以上であってもよい。
 バインダ材料107の配合量は、特に限定されないが、導電層105の全体を100%とした場合にバインダ材料107が占める体積%の値が50~90%となるように配合することが好ましい。バインダ材料107の配合量が多すぎると、導電性材料111同士の連絡点数が少なく、常温時の電気抵抗が高くなってしまう。バインダ材料107の配合量が少なすぎると、昇温時にも導電性材料111同士の接触が保たれ、シャットダウン機能が発揮されにくくなる。この値は、例えば50%、55%、60%、65%、70%、75%、80%、85%、90%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 本実施形態の導電層105に用いる導電性材料111は、公知の炭素粉末、金属粉末などの導電性材料が使用可能であるが、その中でもファーネスブラック,アセチレンブラック,ケッチェンブラック等のカーボンブラックまたはカーボンナノチューブが好ましい。特に粉体での電気抵抗が、100%の圧粉体で1×10-1Ω・cm以下のものが好ましく、必要に応じて上記のものを組み合わせて使用できる(すなわち、カーボンブラックおよびカーボンナノチューブは両者をあわせて用いてもよい)。その粒子サイズに特に制限はないが、概ね10~100nmが好ましい。カーボンナノチューブを用いる場合には、導電性に優れるためアスペクト比が10以上のものを用いることが好ましい。なお、このアスペクト比は、10、15、20、25、30、35、40、45、50、60、70、80、90、100のいずれかの値以上であってもよく、これらのうち任意の2つの数値の範囲内であってもよい。
 図10は、後述する実験例4でPTC層にアセチレンブラックと酸変性ポリエチレンエマルションとを用いた場合の集電体の構成の概念図(上)と、その集電体について室温から200℃まで10℃/minで昇温して抵抗値の変化を測定した結果(導電性ゴム使用)のうち50℃から150℃の範囲を示すグラフ(下)とをあわせて示した図である。このように、導電層105に用いる導電性材料111としてアセチレンブラックだけを用いた場合でも、室温における初期抵抗値R0はアセチレンブラック同士が導電パスを形成するために10Ω未満となり、140℃でシャットダウン機能が発揮した場合にはアセチレンブラック同士の導電パスが切断されて抵抗倍率は108.9となり充分に高くなる。
 一方、図11は、後述する実験例6でPTC層にアセチレンブラックと酸変性ポリエチレンエマルションとカーボンナノチューブ分散液とを用いた場合の集電体の構成の概念図(上)と、50℃から200℃まで10℃/minで昇温して抵抗値の変化を測定した結果(導電性ゴム使用)のうち50℃から150℃の範囲を示すグラフ(下)とをあわせて示した図である。このように、導電層105に用いる導電性材料111としてアセチレンブラックおよびカーボンナノチューブをあわせて用いた場合には、50℃における初期抵抗値はアセチレンブラックおよびカーボンナノチューブ同士が導電パスを形成するために5Ω未満となり充分に低く、140℃でシャットダウン機能が発揮した場合にはアセチレンブラックおよびカーボンナノチューブ同士の導電パスが切断されて抵抗倍率は20267となりきわめて高くなる。すなわち、導電層105に用いる導電性材料111としてアセチレンブラックだけを用いるよりも、アセチレンブラックおよびカーボンナノチューブをあわせて用いた方が初期抵抗値および抵抗倍率はともに著しく改善されるため好ましい。
 導電性材料111の配合量は、特に限定されないが、導電層105の全体を100%とした場合に導電性材料111が占める体積%の値が10~50%となるように配合することが好ましい。導電性材料111の配合量が少なすぎると、導電性材料111同士の連絡点数が少なく、常温時の電気抵抗が高くなってしまう。導電性材料111の配合量が多すぎると、昇温時にも導電性材料111同士の接触が保たれ、シャットダウン機能が発揮されにくくなる。この値は、例えば10、15、20、25、30、35、40、45、50%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 本実施形態の導電層105は、例えば、上記のバインダ材料107を溶剤に溶解(もしくは分散)させ導電性材料111を混合しペーストを構成し金属箔103上に塗布乾燥する方法で製造することができる。ここで、使用する溶剤には特に制限はなく、バインダ樹脂が可溶(もしくは分散可能)で導電性粒子の分散が可能であればよい。
 また、塗布方法に特に制限は無いが、キャスト法、バーコーター法、ディップ法、グラビアコート法など公知の方法を用いることができる。乾燥方法についても特に制限は無く、熱風循環炉での加熱処理による乾燥などを使用することができる。
 本実施形態の導電層105は、金属箔103上に塗布した後に100℃から150℃の温度範囲で加熱処理をすることが好ましい。この加熱処理は、乾燥処理の一環として行なってもよく、乾燥処理の後に別の処理として行なってもよい。この加熱処理の時間は、1分~180分の間で行うことが好ましい。この加熱処理を行うことによって、PTC特性が向上する利点がある。なお、この加熱処理の温度は、100℃、110℃、120℃、130℃、140℃、150℃のうち任意の2つの数値の範囲内であってもよい。また、この加熱処理の時間は、1分、2分、3分、4分、5分、10分、20分、30分、60分、120分、180分のうち任意の2つの数値の範囲内であってもよい。
 <集電体>
 本実施形態の集電体は、金属箔103と、その金属箔103の表面上に形成される導電層105と、を含むものである。本実施形態の集電体のPTC機能が実用上充分に優れているといえるためには、直径1cmの導電性ゴムを上記の集電体で挟み、さらにこれを直径1cmの円柱状の真鍮製電極で挟み、当該電極間に荷重を50Nかけた状態で、10℃/分の昇温速度で室温T0から200℃まで昇温しながら抵抗値を測定して得られる抵抗値-温度曲線の、最大抵抗値をRmax、Rmaxとなったときの温度をTmax、T0~Tmaxの間の最小抵抗値をRminとすると、Rmax/Rminが3以上であることが好ましい。Rmax/Rminの比は、3、4、5、6、7、8、9、10、20、30、40、50、100、500、1000、1500、2000、2500、3000のいずれかの値以上であってもよく、これらの任意の2つの値の範囲内であってもよい。上記導電性ゴムを用いた測定で得られた初期抵抗値と電池の容量維持率に相関があることから、測定は導電性ゴムを用いたほうが好ましい。
 もしくは、上記の集電体の50℃を超え200℃以下で測定された最大抵抗値Rbmaxが、50℃の抵抗値R50の3倍以上であることが好ましい。また、このRbmax/R50の比は、3、4、5、6、7、8、9、10、20、30、40、50、100、500、1000、1500、2000、2500、3000のいずれかの値以上であってもよく、これらの任意の2つの値の範囲内であってもよい。
 <活物質層>
 本実施形態の電極117は、導電層105の上に形成されている、活物質を含む活物質層115を備える。この電極117は、上記の集電箔を用いた集電体上に活物質粒子を含有する活物質層を備えているため、良好な放電レート特性が得られる。
 本実施形態の電極117の活物質層115に含まれる活物質粒子は、正極活物質または負極活物質のいずれであってもよい。正極に用いる二次電池用の正極活物質としては、特に限定されるものではなく、リチウム(イオン)が吸蔵・脱離することができる物質が好ましい。具体的には、従来用いられているコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、さらには、Co、Mn、Niの3元系リチウム化合物(Li(CoxMnyNiz)O)、リン酸鉄リチウム(LiFePO)、リン酸マンガンリチウム(LiMnPO)、硫黄(S)、TiS、LiS、FeS,LiMnO、LiFePOF、LiFeSiO、FeFなどを用いることができる。
 負極に用いる二次電池用の負極活物質としては、公知ものを使用することができる。グラファイト等の黒鉛系、非晶質炭素系、チタン酸リチウム(LiTi12)、酸化物系など特に制限がない。
 電気二重層キャパシタ電極に用いる活物質としては、公知ものを使用することができる。グラファイト等の黒鉛系、非晶質炭素系、酸化物系など特に制限がない。
 上記活物質を結着させるバインダ樹脂はPVDF(ポリフッ化ビニリデン)に代表されるフッ素系樹脂、多糖類高分子、SBRなどを用いることができるが、これに限定されるものではない。また、導電層で挙げたものを使用することもできる。
 上記のバインダ樹脂は、溶剤に溶解させた状態またはバインダ樹脂を活物質粒子および導電助材と混合し上記の導電層105上に塗布乾燥でき、これにより電極117を構成することができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、本発明を実施例によりさらに説明するが、本発明は実施例に限定されるものではない。
 <実験例1>
 アセチレンブラック3.3gと樹脂A 49.92g(酸変性ポリプロピレン エマルション、固形分29.5%、数平均粒子径 0.3μm、重量平均分子量80000)を混合後、ディスパで攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚2.2μmの導電層を有する集電体を得た。なお、この樹脂AのエマルションのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
 <実験例2>
 アセチレンブラック3.3gと樹脂B 48.9g(酸変性ポリプロピレン エマルション、固形分30.1%、数平均粒子径 0.3μm、重量平均分子量20000)を混合後、ディスパで攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚2.2μmの導電層を有する集電体を得た。なお、この樹脂BのエマルションのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
 <実験例3>
 アセチレンブラック2.9gと樹脂C 30.2g(エチレングリシジルメタクリレート共重合体 エマルション、固形分40.2%、数平均粒子径 1.5μm、重量平均分子量30000)を混合後、ディスパで攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚3.2μmの導電層を有する集電体を得た。なお、この樹脂CのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
 <実験例4>
 アセチレンブラック2.9gと樹脂D 48.5g(酸変性ポリエチレン エマルション、固形分25%、数平均粒子径 0.2μm、重量平均分子量60000)を混合後、ディスパで攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚2.3μmの導電層を有する集電体を得た。なお、この樹脂DのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
 <実験例5>
 アセチレンブラック0.7gと樹脂A 18.8g(酸変性ポリプロピレン エマルション、固形分29.5%、数平均粒子径 0.3μm、重量平均分子量80000)を混合後、カーボンナノチューブ分散液(カーボンナノチューブのアスペクト比:30、昭和電工製VGCF―H 1%水分散液、界面活性剤:ビックケミー製BYK-190、超音波処理1時間)6.4gを加えた。その後、ディスパで攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚1.7μmの導電層を有する集電体を得た。なお、この樹脂AのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
 <実験例6>
 アセチレンブラック0.7gと樹脂D 22.8g(酸変性ポリエチレン エマルション、固形分25%、数平均粒子径 0.2μm、重量平均分子量60000)を混合後、カーボンナノチューブ分散液(カーボンナノチューブのアスペクト比:30、昭和電工製VGCF―H 1%水分散液、界面活性剤:ビックケミー製BYK-2015、超音波処理1時間)6.5gを加えた。その後、ディスパで攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚1.8μmの導電層を有する集電体を得た。なお、この樹脂DのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
 <実験例7>
 アセチレンブラック2.9gと樹脂E 43.2g(アイオノマー エマルション、固形分28.1%、数平均粒子径 0.1μm)を混合後、攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚2.2μmの導電層を有する集電体を得た。なお、この樹脂EのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
 <実験例8>
 アセチレンブラック2.9gと樹脂F 27.1g(中央理化工業社製、アクアテックAC3100、固形分45%、数平均粒子径 0.7μm)を混合後、攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚2.8μmの導電層を有する集電体を得た。なお、この樹脂FのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
 <実験例9>
 アセチレンブラック2.9gと樹脂G 34.8g(ポリエチレンワックスエマルション、固形分34.9%、数平均粒子径 0.6μm、重量平均分子量8000)を混合後、攪拌し塗液を得た。得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、100℃2分で乾燥し、膜厚2.3μmの導電層を有する集電体を得た。なお、この樹脂GのA1085箔への塗布性は不良(肉眼で目視して塗りムラが多いことを確認)であった。
 <実験例10>
 アセチレンブラック0.4g、樹脂H 2.1g(ポリフッ化ビニリデン、重量平均分子量300000)、NMP(N-メチル-2-ピロリドン)22.5gを混合後、攪拌を行った。次得られた塗液を膜厚2μmとなるようにA1085箔(厚さ15μm)に塗工し、120℃2分で乾燥し、膜厚2.0μmの導電層を有する集電体を得た。なお、この樹脂HのA1085箔への塗布性は良好(肉眼で目視して塗りムラが少ないことを確認)であった。
 <融点の測定>
 真空乾燥後の樹脂の融点は、JIS K7121に従い、島津製作所製示差走査熱量計(DSC-60A)を使用して測定した。結果を表1に示す。昇温過程において吸熱ピークが1つだけの場合には、そのピークの温度が融点である。2以上のピークが存在する場合は、最大吸熱ピークの温度を融点とする。
 <降温時の発熱ピーク温度>
 融点測定後200℃まで達していない場合は、そのまま200℃まで昇温速度10℃/minで昇温し、降温速度10℃/min、温度範囲200℃から50℃で発熱ピーク温度及び半値幅を測定した。結果を表1に示す。
 降温過程において発熱ピークが1つだけの場合には、そのピークが「最大発熱ピーク」である。該ピークの頂点と、そこから横軸に下ろした垂線と発熱曲線のベースラインとの交点との間の線分の長さをそのピークの「真の高さ」と定義する。
 2つ以上の発熱ピークを有する場合には、「最大発熱ピーク」とは、前記と同様にして定義される「真の高さ」が最も高いピークを意味する。また、この場合にも、「最大発熱ピーク」の「真の高さ」は前記と同様に定義される。「真の高さ」に相当する線分の中点の高さ以上に発熱曲線が存在している温度幅を「半値幅」と定義する。
 <エマルションの粒径の測定方法>
 各エマルションを真空乾燥して得られた試料を透過型電子顕微鏡(SEM)で観察し、エマルションの粒径を測定した。ここで、数平均粒子径は、SEM観察像中で無作為に選んだ粒子100個の径を測定し、その算術平均値として算出される個数平均粒子径である。結果は、上記の実験例1~10の説明の内容に示している。
 <重量平均分子量>
 ウォーターズ(株)製のGPC装置を用い、カラムに東ソー(株)製GMH-6、溶媒に0-ジクロルベンゼンを使用し、温度135℃、流量1.0ml/分にて、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した。重量平均分子量は、ポリスチレン換算で求めた。
 <膜厚>
 導電層の厚みは、フィルム厚み測定機 計太郎G(セイコーem製)を用いて、導電層形成部と未形成部(アルミ箔のみの部分)の厚みの差から算出した。
 <PTC特性評価1>
 真鍮製の電極で導電層を形成した集電体(1cmφ)を挟み、荷重5Nをかけながら、抵抗計(HIOKI製 3451)で50℃における抵抗値を測定し、この初期抵抗を下記の評価基準で評価した。
 (1)初期抵抗(R50)の評価基準
◎:1Ω未満
○:1Ω以上5Ω未満
△:5Ω以上10Ω未満
×:10Ω以上
 得られた初期抵抗値R50の評価結果を表2に示す。
 (2)Rbmax/R50の比
 その後、50℃から200℃まで10℃/minで昇温し、抵抗値の変化を測定した。得られた最大抵抗値Rbmaxと初期抵抗値R50の比を表2に示す。
 <PTC特性評価2>
 次に、本発明により得られる集電体について、以下の測定により得られる評価基準で評価を行った。すなわち、導電性ゴムを2枚の導電層を形成した集電体で両面から挟み、これをさらに1cmφの真鍮の電極で挟み、当該電極間に荷重50Nをかけながら、抵抗計(HIOKI 3541)で30±5℃における抵抗値を測定し、これを室温の抵抗値R0とした。ここで用いる導電性ゴムは、比抵抗が測定しようとする集電体に比べて十分低く、相応の柔軟性を有しており、それ自身の抵抗値の温度依存性が小さければ何でも良いが、例えば信越シリコーン(株)製EC-60BL(比抵抗:0.9Ωcm、硬度(A):66)を用いることができる。
 (1)初期抵抗(R0)の評価基準
◎:1Ω未満
○:1Ω以上5Ω未満
△:5Ω以上10Ω未満
×:10Ω以上
 得られた初期抵抗値R0の評価結果を表3に示す。
 (2)最低抵抗(Rmin)の評価基準
◎:1Ω未満
○:1Ω以上5Ω未満
△:5Ω以上10Ω未満
×:10Ω以上
 得られた最低抵抗(Rmin)の評価結果を表3に示す。
 (3)Rmax/Rminの比
 その後、試料を室温から200℃まで10℃/minで昇温しながら抵抗値を測定した。このとき得られた抵抗値-温度曲線において、最大の抵抗値Rmaxをとる温度をTmax、室温をT0、T0~Tmaxにおける最低の抵抗値をRmin、そのときの温度をTminとする。このとき、Tmax>Tminである。得られたRmax/Rminを表3に示す。
 (3)容量維持率
 (3-1)電池の作製
 (3-1-1)正極の作製
 上記の方法にて作製した導電層を有する集電体に活物質ペースト(LiMn/AB/PVDF=89.5/5/5.5、溶媒NMP(N-メチル-2-ピロリドン))を塗布し、乾燥した。さらにプレスをかけて、厚さ60μmの活物質層を形成した。
 (3-1-2)負極の作製
 厚さ10μmの銅箔に活物質ペースト(MCMB(メソカーボンマイクロビーズ)/AB/PVDF=93/2/5、溶剤NMP)を塗布し、乾燥した。さらにプレスをかけて、厚さ40μmの活物質層を形成した。
 (3-1-3)円筒型リチウムイオン電池の作製
 この正極、負極、電解液(1M LiPF6、EC(エチレンカーボネート)/MEC(メチルエチルカーボネート)=3/7)、セパレータ(厚さ25μm、微孔ポリエチレンフィルム)を捲回して、各極にリードを溶接して各極端子に接続し、ケースに挿入して円筒型リチウムイオン電池(φ18mm×軸方向長さ65mm)を得た。
 (3-2)容量維持率測定(ハイレート特性)
 この円筒型リチウムイオン電池を用い、1Cにて4.2Vまで定電流定電圧充電後、1Cと5Cにて定電流放電を行い、それぞれの放電容量から放電維持率=(5Cの放電容量)/(1Cの放電容量)を算出して、下記の評価基準で評価した。
 容量維持率の評価基準
◎:0.80以上
○:0.75以上0.80未満
△:0.70以上0.75未満
×:0.70未満
 容量維持率が5C(5サイクル)で0.70以上あれば、電池として十分な性能を有する。容量維持率が5Cで0.8以上あれば、ハイレートでの使用も可能である。また、測定結果を表2に示す。
 (3-3)過充電試験
 上記の円筒型リチウムイオン電池を用い、4.2Vまで1.5mA/cmで定電流定電圧充電後、満充電状態の円筒型リチウムイオン電池にさらに5mA/cmでSOC 250%もしくは10Vに達するまで充電し、円筒型リチウムイオン電池の挙動を調査した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 <結果>
 実験例1~6では、集電体の抵抗値の変化(Rbmax/R50)が10倍以上となっているのに対し、実験例7~9では、集電体の抵抗値の変化が10倍以下と小さい。また、PVDFを用いた実験例10は、集電体の抵抗値の変化は10倍以上となっているが、Rmaxの温度が170℃と高く150℃以下ではシャットダウン機能が発現しない。
 また、実験例1~6では、集電体の抵抗値の変化(Rmax/Rmin)が3倍以上となっているのに対し、実験例7~9では、集電体の抵抗値の変化が3倍以下と小さい。また、PVDFを用いた実験例10は、集電体の抵抗値の変化は3倍以上となっているが、Rmaxの温度が170℃と高く150℃以下ではシャットダウン機能が発現しない。
 また、実験例1~6では、円筒型リチウムイオン電池の容量維持率が0.75以上であり、過充電試験をしても変化なしであるのに対し、実験例7~9では、円筒型リチウムイオン電池の容量維持率が0.70未満であり過充電試験をすると発煙している。また、PVDFを用いた実験例10は、円筒型リチウムイオン電池の容量維持率は0.75以上となっているが、過充電試験をすると発煙している。
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明のいずれかにあることは当業者に理解されるところである。
103 金属箔
105 導電層
107 バインダ材料
111 導電性材料
115 活物質層
117 電極

Claims (14)

  1.  金属箔と、
     前記金属箔の表面上に形成されている膜厚0.1μm~10μmの導電層と、
     を備える集電体であって、
     前記導電層が、導電性材料およびバインダ材料を含み、
     前記バインダ材料の融点が80℃~150℃であり、かつ
     前記バインダ材料が、
     常温から200℃までの示差走査熱量測定(DSC)において、
     昇温過程に吸熱ピークが一つ以上あり、
      二つ以上の吸熱ピークがある場合にはそれらのいずれのピーク間の差も15℃以上であって、かつ、
     降温過程に発熱ピークが一以上あり、
      発熱ピークが一つである場合はその発熱ピークが、
      二つ以上の発熱ピークがある場合にはそれらの発熱ピークのうち最大の発熱ピークが、
       50~120℃の範囲内にあり、当該発熱ピークの半値幅が10℃以下である、
     集電体。
  2.  前記バインダ材料が、数平均粒子径10μm以下である結晶性粒子を含み、
     前記導電性材料が、導電性粒子を含む、
     請求項1に記載の集電体。
  3.  前記結晶性粒子が、ポリエチレン粒子、ポリプロピレン粒子、酸変性ポリエチレン粒子、酸変性ポリプロピレン粒子、アイオノマー粒子、エチレングリシジルメタクリレート共重合体粒子、エチレン/酢酸ビニル共重合体粒子、エチレン/(メタ)アクリル酸共重合体粒子、エチレン/(メタ)アクリル酸エステル共重合体からなる群から選ばれる1種以上の結晶性粒子を含む、
     請求項2に記載の集電体。
  4.  前記結晶性粒子は、エポキシ基、カルボキシル基、無水カルボキシル基からなる群から選ばれる1種以上の親水基を有する成分を1種以上含有する、
     請求項2または3に記載の集電体。
  5.  前記導電性粒子が、カーボンブラックまたはアスペクト比10以上のカーボンナノチューブを含む、
     請求項2~4のいずれかに記載の集電体。
  6.  前記バインダ材料が、結晶性粒子を水に分散させた分散液を含有し、
     前記導電性材料が、導電性粒子を含有し、
     前記導電層は、前記バインダ材料および前記導電性材料を含む組成物を前記金属箔の表面上に塗布して形成されている、
     請求項1~5のいずれかに記載の集電体。
  7.  前記導電層が、前記組成物を塗布した後、さらに100~150℃で加熱処理されたものである、
     請求項6記載の集電体。
  8.  前記導電層が前記金属箔の表裏両面上に形成されており、
     直径1cmの導電性ゴムを2つの前記集電体で挟み、さらにこれを直径1cmの円柱状の真鍮製電極で挟み、当該電極間に荷重を50Nかけた状態で、10℃/分の昇温速度で常温から200℃まで昇温しながら抵抗値を測定して得られる抵抗値-温度曲線の、最大抵抗値をRmax、Rmaxとなったときの温度をTmax、T0~Tmaxの間の最小抵抗値をRminとすると、Rmax/Rminが3以上である、
     請求項1~7のいずれかに記載の集電体。
  9.  前記集電体の50℃を超え200℃以下で測定された最大抵抗値Rbmaxが、50℃の抵抗値R50の3倍以上である、
     請求項1~7のいずれかに記載の集電体。
  10.  請求項1~9のいずれかに記載の集電体と、
     前記集電体の前記導電層の上に形成されている、活物質を含む活物質層と、
     を備える、電極。
  11.  請求項1~9のいずれかに記載の集電体を備えるリチウム二次電池。
  12.  請求項1~9のいずれかに記載の集電体を備える非水系リチウム二次電池。
  13.  請求項1~9のいずれかに記載の集電体を備える電気二重層キャパシタ。
  14.  請求項1~9のいずれかに記載の集電体を備えるリチウムイオンキャパシタ。
PCT/JP2013/069061 2012-07-13 2013-07-11 集電体、電極、二次電池およびキャパシタ WO2014010708A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157004062A KR20150036659A (ko) 2012-07-13 2013-07-11 집전체, 전극, 이차전지 및 커패시터
CN201380036431.7A CN104428928B (zh) 2012-07-13 2013-07-11 集电体、电极、二次电池以及电容器
US14/414,399 US9741498B2 (en) 2012-07-13 2013-07-11 Current collector, electrode, secondary battery and capacitor
JP2014524884A JP6220784B2 (ja) 2012-07-13 2013-07-11 集電体、電極、二次電池およびキャパシタ
EP13817288.7A EP2874215A4 (en) 2012-07-13 2013-07-11 CURRENT COLLECTOR, ELECTRODE, SECONDARY CELL AND CONDENSER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-157669 2012-07-13
JP2012157669 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014010708A1 true WO2014010708A1 (ja) 2014-01-16

Family

ID=49916149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069061 WO2014010708A1 (ja) 2012-07-13 2013-07-11 集電体、電極、二次電池およびキャパシタ

Country Status (7)

Country Link
US (1) US9741498B2 (ja)
EP (1) EP2874215A4 (ja)
JP (1) JP6220784B2 (ja)
KR (1) KR20150036659A (ja)
CN (1) CN104428928B (ja)
TW (1) TW201415699A (ja)
WO (1) WO2014010708A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077384A1 (ja) * 2012-11-19 2014-05-22 古河電気工業株式会社 集電体、電極、二次電池およびキャパシタ
JP2015078344A (ja) * 2013-09-10 2015-04-23 リケンテクノス株式会社 導電性樹脂組成物、及びそのフィルム
JP2016134217A (ja) * 2015-01-16 2016-07-25 東洋インキScホールディングス株式会社 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP2016164978A (ja) * 2015-02-27 2016-09-08 ダイニック株式会社 電気化学素子用電極およびその製造方法、ならびに下地層用塗料
WO2017014245A1 (ja) * 2015-07-23 2017-01-26 日立化成株式会社 リチウムイオン二次電池
TWI611623B (zh) * 2014-10-27 2018-01-11 財團法人工業技術研究院 用於鋰離子電池的負極材料以及包含其的鋰離子電池
WO2018147390A1 (ja) 2017-02-10 2018-08-16 三井化学株式会社 集電体、電極及び非水電解質二次電池
CN115000414A (zh) * 2022-06-15 2022-09-02 欣旺达惠州动力新能源有限公司 一种集流体及其制备方法与应用
JP2022132461A (ja) * 2018-12-04 2022-09-08 昭和電工株式会社 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法
JP2022132460A (ja) * 2018-12-04 2022-09-08 昭和電工株式会社 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2922122A4 (en) * 2012-11-19 2016-06-29 Uacj Corp COLLECTOR, ELECTRODE STRUCTURE BODY AND ELECTRICAL MEMORY ELEMENT
US10944126B2 (en) * 2014-12-08 2021-03-09 Showa Denko Materials Co., Ltd. Positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
US10822512B2 (en) * 2016-02-24 2020-11-03 LMS Consulting Group Thermal substrate with high-resistance magnification and positive temperature coefficient
US11332632B2 (en) 2016-02-24 2022-05-17 Lms Consulting Group, Llc Thermal substrate with high-resistance magnification and positive temperature coefficient ink
KR102314082B1 (ko) * 2016-10-26 2021-10-15 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
CN110140245B (zh) * 2017-01-06 2022-10-25 三井化学株式会社 非水电解质二次电池及其中使用的材料
SG10201702726QA (en) * 2017-04-03 2018-11-29 Airbus Singapore Private Ltd Conductive carbon coated polymer for high temperature lithium ion battery shutdown deposited through 3d printing technique
CN106981627A (zh) * 2017-05-18 2017-07-25 芜湖中科智捷信息科技有限责任公司 一种高循环寿命磷酸铁锂电池电极制造方法
KR102259219B1 (ko) 2018-07-03 2021-05-31 삼성에스디아이 주식회사 리튬 이차 전지
KR102259218B1 (ko) 2018-07-03 2021-05-31 삼성에스디아이 주식회사 리튬 이차 전지용 전극, 및 이를 포함하는 리튬 이차 전지
KR102323950B1 (ko) 2018-12-12 2021-11-08 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지
CN110661002B (zh) 2018-12-29 2021-06-29 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN110660957B (zh) * 2018-12-29 2020-12-04 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
KR102425514B1 (ko) 2019-05-03 2022-07-25 삼성에스디아이 주식회사 리튬 이차 전지
KR102487628B1 (ko) 2019-05-03 2023-01-12 삼성에스디아이 주식회사 리튬 이차 전지
KR102425515B1 (ko) 2019-05-03 2022-07-25 삼성에스디아이 주식회사 리튬 이차 전지
KR102425513B1 (ko) 2019-05-03 2022-07-25 삼성에스디아이 주식회사 리튬 이차 전지
KR102492832B1 (ko) 2019-05-03 2023-01-26 삼성에스디아이 주식회사 리튬 이차 전지
KR102492831B1 (ko) 2019-05-03 2023-01-26 삼성에스디아이 주식회사 리튬 이차 전지
JP2021048111A (ja) * 2019-09-20 2021-03-25 日本電気硝子株式会社 二次電池用電極及びその製造方法
CN114039029A (zh) * 2021-11-29 2022-02-11 珠海冠宇电池股份有限公司 一种极片和锂离子电池
CN114520388B (zh) * 2022-02-08 2023-12-26 浙江荣泰电工器材股份有限公司 一种新能源汽车用五系三元锂电池模组的云母绝缘盒
CN118016390A (zh) * 2022-11-10 2024-05-10 东莞令特电子有限公司 热稳定pptc材料及其制造方法
KR20240107050A (ko) * 2022-12-29 2024-07-08 주식회사 엘지에너지솔루션 전극, 이를 포함하는 이차전지, 및 이의 제조 방법
KR20240123066A (ko) * 2023-02-06 2024-08-13 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 이를 포함하는 리튬 이차 전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357854A (ja) 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2002526897A (ja) 1998-09-29 2002-08-20 ダスガプタ,サンカー Ptcポリマーを含む複合電極
JP2006185854A (ja) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd バイポーラ電池
JP2008140552A (ja) * 2006-11-29 2008-06-19 Nissan Motor Co Ltd 双極型電池用電極
JP2009146752A (ja) * 2007-12-14 2009-07-02 Nissan Motor Co Ltd リチウムイオン二次電池用集電体
JP2009176599A (ja) 2008-01-25 2009-08-06 Panasonic Corp 非水電解質二次電池
JP2012104422A (ja) * 2010-11-11 2012-05-31 Toyota Motor Corp 非水二次電池とその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209803A (ja) * 1986-03-10 1987-09-16 日本メクトロン株式会社 回路素子
CN1145233C (zh) * 1998-06-25 2004-04-07 三菱电机株式会社 电极、该电极的制造方法和使用该电极的电池
US20050209392A1 (en) 2003-12-17 2005-09-22 Jiazhong Luo Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes
WO2007024206A2 (en) * 2004-08-11 2007-03-01 Eikos, Inc. Fluoropolymer binders for carbon nanotube-based transparent conductive coatings
JP4809159B2 (ja) * 2006-08-22 2011-11-09 三井化学株式会社 二次電池または電気二重層キャパシタ用バインダー
JP2008243708A (ja) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd 非水電解質二次電池および非水電解質二次電池の製造方法
JP2009295666A (ja) * 2008-06-03 2009-12-17 Nippon Zeon Co Ltd 電気化学素子用電極および電気化学素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526897A (ja) 1998-09-29 2002-08-20 ダスガプタ,サンカー Ptcポリマーを含む複合電極
JP2001357854A (ja) 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2006185854A (ja) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd バイポーラ電池
JP2008140552A (ja) * 2006-11-29 2008-06-19 Nissan Motor Co Ltd 双極型電池用電極
JP2009146752A (ja) * 2007-12-14 2009-07-02 Nissan Motor Co Ltd リチウムイオン二次電池用集電体
JP2009176599A (ja) 2008-01-25 2009-08-06 Panasonic Corp 非水電解質二次電池
JP2012104422A (ja) * 2010-11-11 2012-05-31 Toyota Motor Corp 非水二次電池とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2874215A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077384A1 (ja) * 2012-11-19 2014-05-22 古河電気工業株式会社 集電体、電極、二次電池およびキャパシタ
JP2015078344A (ja) * 2013-09-10 2015-04-23 リケンテクノス株式会社 導電性樹脂組成物、及びそのフィルム
TWI611623B (zh) * 2014-10-27 2018-01-11 財團法人工業技術研究院 用於鋰離子電池的負極材料以及包含其的鋰離子電池
JP2016134217A (ja) * 2015-01-16 2016-07-25 東洋インキScホールディングス株式会社 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP2016164978A (ja) * 2015-02-27 2016-09-08 ダイニック株式会社 電気化学素子用電極およびその製造方法、ならびに下地層用塗料
WO2017014245A1 (ja) * 2015-07-23 2017-01-26 日立化成株式会社 リチウムイオン二次電池
WO2018147390A1 (ja) 2017-02-10 2018-08-16 三井化学株式会社 集電体、電極及び非水電解質二次電池
CN110291669A (zh) * 2017-02-10 2019-09-27 三井化学株式会社 集电体、电极及非水电解质二次电池
CN110291669B (zh) * 2017-02-10 2023-01-13 三井化学株式会社 集电体、电极及非水电解质二次电池
JP2022132461A (ja) * 2018-12-04 2022-09-08 昭和電工株式会社 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法
JP2022132460A (ja) * 2018-12-04 2022-09-08 昭和電工株式会社 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法
JP7273378B2 (ja) 2018-12-04 2023-05-15 株式会社レゾナック 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法
CN115000414A (zh) * 2022-06-15 2022-09-02 欣旺达惠州动力新能源有限公司 一种集流体及其制备方法与应用

Also Published As

Publication number Publication date
JP6220784B2 (ja) 2017-10-25
EP2874215A4 (en) 2015-06-24
CN104428928B (zh) 2018-04-13
EP2874215A1 (en) 2015-05-20
KR20150036659A (ko) 2015-04-07
CN104428928A (zh) 2015-03-18
JPWO2014010708A1 (ja) 2016-06-23
TW201415699A (zh) 2014-04-16
US20150221452A1 (en) 2015-08-06
US9741498B2 (en) 2017-08-22

Similar Documents

Publication Publication Date Title
JP6220784B2 (ja) 集電体、電極、二次電池およびキャパシタ
WO2014077384A1 (ja) 集電体、電極、二次電池およびキャパシタ
CN104428929B (zh) 集电体、电极结构体、非水电解质电池或蓄电部件
TWI591889B (zh) Current Collector, Electrode Structure, Nonaqueous Electrolyte Battery, Conductivity Packing and storage components
JP5427046B2 (ja) 非水電解質電池及びその製造方法
CN114079032B (zh) 负极片及二次电池
US20160276673A1 (en) Current collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP2006339093A (ja) 巻回型非水電解液二次電池およびその負極
JP6135396B2 (ja) リチウムイオン二次電池用セパレータ、及びリチウムイオン二次電池
KR20120069580A (ko) 결합제 조성물, 슬러리, 축전 디바이스용 부극 및 축전 디바이스
JP2006182925A (ja) コアシェル型微粒子、および該微粒子を有するリチウム二次電池
JP2015204221A (ja) 集電体、電極構造体及び蓄電部品
JP6236964B2 (ja) リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JPWO2014046112A1 (ja) 集電体、電極構造体及び蓄電部品
JPWO2015111663A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2007265889A (ja) 非水電解液二次電池用電極板及びその製造方法並びに非水電解液二次電池
JP5945148B2 (ja) リチウムイオン二次電池正極集電体用アルミニウム合金箔及びそれを用いたリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014524884

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14414399

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013817288

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157004062

Country of ref document: KR

Kind code of ref document: A