TWI611623B - 用於鋰離子電池的負極材料以及包含其的鋰離子電池 - Google Patents

用於鋰離子電池的負極材料以及包含其的鋰離子電池 Download PDF

Info

Publication number
TWI611623B
TWI611623B TW104130619A TW104130619A TWI611623B TW I611623 B TWI611623 B TW I611623B TW 104130619 A TW104130619 A TW 104130619A TW 104130619 A TW104130619 A TW 104130619A TW I611623 B TWI611623 B TW I611623B
Authority
TW
Taiwan
Prior art keywords
lithium
ion battery
lithium ion
weight
carbon
Prior art date
Application number
TW104130619A
Other languages
English (en)
Other versions
TW201618355A (zh
Inventor
吳偉新
林月微
方家振
李仁傑
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to CN201510696501.2A priority Critical patent/CN105552316B/zh
Priority to US14/923,450 priority patent/US20160118652A1/en
Publication of TW201618355A publication Critical patent/TW201618355A/zh
Application granted granted Critical
Publication of TWI611623B publication Critical patent/TWI611623B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

提供一種用於鋰離子電池的負極材料,其包括負極活性材料、有機改質層以及含鋰無機層。有機改質層配置於負極活性材料上。含鋰無機層配置於有機改質層上。此外,以負極活性材料為100重量份,有機改質層的含量為約0.1至5重量份,且含鋰無機層的含量為約0.1至20重量份。另提供一種包含上述負極材料的鋰離子電池。

Description

用於鋰離子電池的負極材料以及包含其的鋰離子電池
本發明是有關於一種電極材料及其應用,且特別是有關於一種用於鋰離子電池的負極材料以及包含其的鋰離子電池。
現代可攜式電子裝置幾乎完全依賴可充電的鋰離子電池當成其電源。這種需求驅策增加其電容量能力、電源能力、使用壽命、安全特性及降低成本的各種不斷的研發努力。
然而,在習知的技術中,鋰離子電池中的負極極板多為石墨化的具有層間結構的碳材,如何減少具有層間結構的碳材產生脫層並增加可逆電容量延長電池使用壽命亦為重要的研究方向。
有鑒於此,本發明提供一種用於鋰離子電池的負極材料以及包含其的鋰離子電池,可保持負極材料在電化學反應時的結構穩定性,並能夠提高長期充放電的循環壽命。
本發明提供一種用於鋰離子電池的負極材料,其包括負極活性材料、有機改質層以及含鋰無機層。有機改質層配置於負極活性材料上。含鋰無機層配置於有機改質層上。此外,以負極活性材料為100重量份,有機改質層的含量為約0.1至5重量份,且含鋰無機層的含量為約0.1至20重量份。
本發明又提供一種用於鋰離子電池的負極材料,其包括內核、第一殼層以及第二殼層。內核由負極活性材料所組成。第一殼層包覆內核且由有機材料所組成。第二殼層配置於第一殼層上且包括鋰、氟化鋰(LiF)、磷酸鋰(Li2 PO3 )、二矽酸鋰(Li2 Si2 O5 )、偏矽酸鋰(Li2 SiO3 )、正矽酸鋰(Li4 SiO4 )、矽酸四鋰鹽(Li8 SiO6 )、氧化鋰(Li2 O)與碳酸鋰(Li2 CO3 )中的至少一者。
基於上述,本發明於負極活性材料上形成雙層結構,其中與負極活性材料接觸的有機改質層可保護負極活性材料表面以避免長時間循環下表面的崩解,而配置於有機改質層上的含鋰無機層則可補充循環過程中所耗損的鋰離子並能夠提高電池的循環壽命。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
本發明揭露一種用於鋰離子電池的負極材料以及包含其的鋰離子電池,可保持負極材料在電化學反應時的結構穩定性,並能夠提高長期充放電的循環壽命。
圖1是依照本發明的一實施例的一種用於鋰離子電池的負極材料的剖面示意圖。
請參照圖1,用於鋰離子電池的負極材料100包括內核10、第一殼層12以及第二殼層14。內核10由負極活性材料所組成。在一實施例中,負極活性材料包括石墨碳(graphite)、石墨烯(graphene)、硬碳(hard carbon)、軟碳(soft carbon)、單壁奈米碳管(SWCNT)、多壁奈米碳管(MWCNT)、碳纖維(carbon fiber)、碳合金、碳金屬氧化物、碳矽複合材料(Si/C composite material)、中間相碳微球(mesocarbon micro beads,MCMB)、中間相石墨(mesophase graphite)、中孔洞石墨(mesoporous graphite)或其組合。在一實施例中,負極活性材料主要由碳材所組成。舉例來說,負極活性材料包括90 wt%以上的中間相碳微球、中間相石墨或其組合,以及總合不超過10 wt%的助導電碳與黏著劑。在另一實施例中,負極活性材料可由碳材與矽材所組成。舉例來說,負極活性材料可為碳矽複合材料(Si/C composite material),例如為包括氧化矽核心與碳/石墨外核的複合材料。
第一殼層12包覆內核10且由有機材料所組成。第一殼層12即有機改質層。在一實施例中,第一殼層12可為固體電解質介面薄膜(solid electrolyte interface film,SEI film)或電極保護層,用以保持負極材料在電化學反應時的結構穩定性,進而維持電池壽命。
在一實施例中,第一殼層12的材料包括高分子單體,例如馬來醯亞胺(maleimide)、呋喃(furan)、塞吩(thiophene)、吡咯(pyrrole)、炔類化合物(alkyne)、烯烴類化合物(alkene)或環烯烴類化合物(cycloalkene)、或其衍生物或其組合。
在一實施例中,第一殼層12的材料包括N,N’-(4,4’-亞甲基二苯基)雙馬來醯亞胺(N,N’-(4,4’-diphenylmethane) bismaleimide)、N-苯基馬來醯亞胺(N-phenyl maleimide)、N,N’,N’’-(4,4’,4’’-亞甲基苯基)馬來醯亞胺(N,N’,N’’-(4,4’,4’-phenylmethane)maleimide)、N,N’-(4,4’-二苯基醚)雙馬來醯亞胺(N,N’-(4,4’-diphenyl ether)bismaleimide)或其組合。
在一實施例中,第一殼層12的材料包括5至15重量份的N-苯基馬來醯亞胺、100重量份的N,N’-(4,4’-亞甲基二苯基)雙馬來醯亞胺與5至15重量份的N,N’,N’’-(4,4’,4’’-亞甲基苯基)馬來醯亞胺。此實施例之第一殼層12的材料具有良好加工性。
在一實施例中,第一殼層12的材料包括介穩態(meta-stable)含氮高分子,例如重量平均分子量為10萬至100萬的聚馬來醯亞胺或其衍生物。在一實施例中,介穩態含氮高分子為一種窄分子量分佈的高分子,其分子量分佈指數為1.1~1.7,且其GPC尖峰時間為19~24分鐘。在一實施例中,所述介穩態含氮高分子的分子量分佈指數(PDI=Mw/Mn)之定義為重量平均分子量(Mw)與數目平均分子量(Mn)的比值。
在一實施例中,所述介穩態含氮高分子可由化合物A及化合物B反應生成,其中所述化合物A與所述化合物B之莫耳比為10:1至1:10。
在一實施例中,所述化合物B由式(1)至式(9)其中之一表示:
Figure TWI611623BD00001
Figure TWI611623BD00002
Figure TWI611623BD00003
其中R1 為氫原子、烷基、烷烯基、苯基、二甲氨基或-NH2 ;R2 、R3 、R4 及R5 各自為氫原子、烷基、烷烯基、鹵基或-NH2
舉例來說,所述化合物B可選自由咪唑、咪唑衍生物、吡咯、吡咯衍生物、吡啶、4-叔丁基吡啶、3-丁基吡啶、4-二甲氨基吡啶、2,4,6-三氨基-1,3,5,-三嗪、2,4-二甲基-2-咪唑咻、噠嗪、嘧啶與吡嗪所組成的族群。
在一實施例中,所述化合物A由式(10)至式(13)其中之一或其組合表示:
Figure TWI611623BD00004
(10)其中n為0~4的整數; R6 為-RCH2 R’-、-RNHR-、-C(O)CH2 -、-R’OR”OR’-、-CH2 OCH2 -、-C(O)-、-O-、-O-O-、-S-、-S-S-、-S(O)-、-CH2 S(O)CH2 -、-(O)S(O)-、-C6 H4 -、-CH2 (C6 H4 )CH2 -、-CH2 (C6 H4 )(O)-、-C2 H4 -(NC2 H4 )-C2 H4 、矽氧烷基、伸聯苯基、經取代的伸苯基或經取代伸聯苯基;R為具有1~4個碳的伸烷基(alkylene);R’為具有1~4個伸烷基、伸聯苯基或經取代的伸聯苯基;R”為具有1~4個碳的伸烷基、-C6 H4 -C(CF3 )2 -C6 H4 -、伸聯苯基或經取代的伸聯苯基; R7 為-RCH2 -、-CH2 -(O)-、-C(CH3 )2 -、-O-、-O-O-、-S-、-S-S-、-(O)S(O)-、C(CF3 )2 -或-S(O)-,R為具有1~4個碳的伸烷基;以及 R8 為氫原子、具有1~4個碳的烷基、苯基(phenyl)、苯甲基(benzyl)、環己基(cyclohexyl)、磺酸基、-C6 H4 CN、N-甲氧羰基(N-methoxycarbonyl)、-(C6 H4 )-O(C2 H4 O)-CH3 、C2 H4 -(C2 H4 O)11 -OCH3 或-C(O)CH3
在一實施例中,第一殼層12之不飽和化合物的含雙烯官能基或親雙烯官能基可與含碳內核10的表面進行加成反應,形成化學鍵,例如化學共價鍵。因為第一殼層12與含碳內核10表面鍵結而改質後之含碳基材的表面能增加,所以負極極板能夠更有效的含浸於高極性電解液中,可降低含碳基材與電解液間的固液介面阻抗。也就是說,第一殼層12可達到增進碳材表面的電化學活性,改善含碳基材表面與電解液介面的相容性,同時保留原基材的耐化性與完整性,使含碳基材不易受電解液所侵蝕,厚度維持不易改變、不易碎裂、材料與集電層間緊密貼合。
在另一實施例中,內核10與第一殼層12之間不存在化學鍵結,僅存在物理吸附現象,例如偶極-偶極作用力(dipole-dipole interaction)、偶極-誘導偶極作用力(dipole-induced dipole interaction)或π-π作用力(π-π interaction)。更具體地說,形成第一殼層12的有機單體或有機高分子以物理吸附的方式包覆或纏繞於內核10表面。
第二殼層14配置於第一殼層12上。在一實施例中,第二殼層14包括含鋰無機材料。第二殼層14即含鋰無機層,用以補充因SEI膜而損失的電容量。在一實施例中,第二殼層14的材料包括鋰、氟化鋰(LiF)、磷酸鋰(Li2 PO3 )、二矽酸鋰(Li2 Si2 O5 )、偏矽酸鋰(Li2 SiO3 )、正矽酸鋰(Li4 SiO4 )、矽酸四鋰鹽(Li8 SiO6 )、氧化鋰(Li2 O)與碳酸鋰(Li2 CO3 )中的至少一者。在一實施例中,第二殼層14的材料包括鋰、氧化鋰與碳酸鋰的混合物。
此外,以100重量份的內核10(負極活性材料)計,第一殼層12的含量為約0.1至5重量份,且第二殼層14的含量為約0.1至20重量份。第一殼層12的含量太少則可能無法於負極活性材料上形成SEI保護膜,太多則SEI保護膜太厚可能會導致電容電下降。第二殼層12的含量太少則可能補鋰量不足會導致電容電下降,太多則可能會造成電極的阻值增加。
在一實施例中,當負極活性材料主要由碳材所組成時,以負極活性材料為100重量份,有機改質層的含量為約0.5至1重量份,且含鋰無機層的含量為約3至6重量份。在另一實施例中,當負極活性材料主要由碳材與矽材所組成時,以負極活性材料為100重量份,有機改質層的含量為約1至5重量份,且含鋰無機層的含量為約15至20重量份。
另外,內核10與第一殼層12的材料或用量比例不以上述實施例為限,只要第一殼層12的形成厚度能有效保持負極活性材料的結構穩定性但不會實質上影響初始電容量即可。在一實施例中,第一殼層12或有機改質層的厚度為約15奈米至約20奈米之間。當第一殼層12的厚度小於15奈米時,無法有效維持負極活性材料的結構穩定性。而當第一殼層12的厚度大於20奈米時,會使初始電容量明顯下降。
發明人特別指出,本發明中,負極碳材、有機SEI膜與含鋰無機層之依序配置的關係具有不可預期之功效。更具體地說,於負極碳材上先主動形成有機SEI膜,可強化保護負極材料之結構。接著,於SEI保護膜上形成含鋰無機層,可補充流失的鋰含量並提升電容量。反之,若SEI保護膜為被動生成,即在電池一開始進行電化學反應(即開始充放電)時生成的SEI,則可能形成為負極碳材、含鋰無機層、有機SEI膜的順序,如此形成的負極材料的結構脆弱且容易造成碳材的脫層反應。
圖2是依照本發明的一實施例的一種用於鋰離子電池的負極極板的剖面示意圖。
請參照圖2,負極極板104包括集電器(current collector)120與負極材料層122。負極材料層122位於集電器120上,且負極材料層122包含如圖1所示的多個負極材料100。在一實施例中,負極材料層122可更包括助導劑128與黏結劑130。
以下,將說明製作負極極板的方法,其中有機改質層可依化學接枝的方式或物理吸附的方式形成於負極活性材料上。製備化學接枝改質之負極極板
步驟 (A) :將負極活性材料(如中間相石墨或碳矽複合材料)與N,N’-(4,4’-亞甲基二苯基)雙馬來醯亞胺混加在有機溶劑(如丁內酯(GBL))中,進行如狄耳士-阿德爾反應(Diels-Alder reaction)的加成反應,使有機材料與負極活性材料之間產生化學鍵結。在一實施例中,調整反應系統中反應物之濃度,以及控制反應溫度約為70℃以下,進行反應約1至4天。之後,反應系統降至室溫後,以離心機過濾產物,並以四氫呋喃(THF)搭配超音波震盪重複清洗產物。接著,於攝氏50度乾燥,得到產物(A),其中以負極活性材料為100重量份,所述N,N’-(4,4’-亞甲基二苯基)雙馬來醯亞胺的含量為0.1至5重量份。
接著,將產物(A)、助導劑與黏接劑以一比例混合,例如以約90重量份的產物(A)、約5重量份的助導劑與約5重量份的黏接劑混合,並配置於集電器上。於一實施例中,將90重量份的產物(A)(直徑約為1至30μm)與3至10重量份的氟樹脂黏接劑溶於N-甲基-2-咯烷酮(NMP)中,攪拌均勻後塗佈於長約300公尺、寬約35公分、厚約10μm的銅箔捲上,以形成負極捲。經輾壓分條負極捲後,以攝氏110度真空乾燥4小時以得到負極極板。
之後,將含鋰無機材料(例如鋰、氧化鋰與碳酸鋰之混合物)配置於所得的負極極板上並碾壓使含鋰無機材料完全活化,其中以100重量份的負極活性材料計,所述含鋰無機材料的含量為0.1至20重量份。於一實施例中,放置於室溫、氬氣環境下18小時,以形成本發明之化學接枝改質的負極極板。
製備物理吸附改質之負極極板
將負極活性材料(如中間相石墨或碳矽複合材料)、助導劑、黏接劑與有機材料(如N,N’-(4,4’-亞甲基二苯基)雙馬來醯亞胺或介穩態含氮高分子)以一比例混合,例如以約90重量份的負極活性材料、約5重量份的助導劑、約5重量份的黏接劑與約0.1至5重量份的有機材料混合,並配置於集電器上。有機材料與負極活性材料之間產生如偶極-偶極作用力和π-π作用力的物理吸附。於一實施例中,將上述混合物攪拌均勻後塗佈於長約300公尺、寬約35公分、厚約10μm的銅箔捲上,以形成負極捲。經輾壓分條負極捲後,以攝氏110度真空乾燥4小時以得到負極極板。
之後,將含鋰無機材料(例如鋰、氧化鋰與碳酸鋰之混合物)配置於所得的負極極板上並碾壓使含鋰無機材料完全活化,其中以100重量份的負極活性材料計,所述含鋰無機材料的含量為0.1至20重量份。於一實施例中,放置於室溫、氬氣環境下18小時,以形成本發明之物理吸附改質的負極極板。
圖3是依照本發明的一實施例的一種鋰離子電池的剖面示意圖。
請參照圖3,鋰離子電池100包括數個正極極板102、數個負極極板104、數層隔離膜108與電解質溶液110。正極極板102與負極極板104一對一且連續的相互堆疊,且正極極板102與負極極板104之間配置一隔離膜108。每一隔離膜108例如是多孔結構。亦即,隔離膜108的孔隙114均勻分布在整片隔離膜108中。而正極極板102、隔離膜108與負極極板104的相互堆疊結構則是浸泡於電解質溶液110中。電解質溶液110是充斥於整個電池體內。換句話說,電解質溶液110充斥於正極極板102、負極極板104與隔離膜108之間,也就是隔離膜108的孔隙114中,其中孔隙114之形狀不以圖為限。
以下,將列舉多個實例與對照例以說明本發明的功效。
鋰電池的充放電循環測試
組2顆鈕扣型電池(尺寸CR2032),其中電池的正極極板的材料採用氧化鋰鈷(LiCoO2 ),負極極板的材料如表一所示,隔離膜為PP/PE/PP三層膜。電解質溶液是1.1M的LiPF6 溶於碳酸丙烯酯(PC)、碳酸乙烯酯(EC)與碳酸二乙酯(DEC)混合溶劑(體積比EC/PC/DEC=3/2/5)。將製作出的鋰電池進行充放電循環測試。以0.1C充放電進行3次循環,之後以0.2C充放電進行第4次至第65次循環,並紀錄電池經過多次的充放電之後之電容量的變化。
表一 碳材:中間相石墨 有機高分子:介穩態含氮高分子(2,4-二甲基-2-咪唑咻(2,4-bimethyl-2-imidazoline)與馬來醯亞胺之共聚物,Mw為30萬) 有機單體:N,N’-(4,4’-亞甲基二苯基)雙馬來醯亞胺 含鋰層:鋰、氧化鋰與碳酸鋰之混合物
圖4繪示實例2~3與對照例1、4、5之鋰電池之充放電循環的量測結果曲線圖。圖5繪示實例3與對照例5~8之鋰電池之充放電循環的量測結果曲線圖。
如表一與圖4~5所示,本發明的實例1~3樣品中,先以有機材料改質再輔以含鋰無機層改質後的碳材,其初始特性或循環壽命皆比對照例樣品顯著地表現良好。
此外,可發現碳材與有機層之間存在化學鍵結的鋰離子電池(如實例3樣品),會比碳材與有機層之間不存在化學鍵結的鋰離子電池(如實例1~2樣品)的效果更優異。
此外,由表一的編號8~11樣品測試結果得知,就算經相同的有機/無機材料來改質碳材,其用量比例較佳落在本發明的範圍內,方能達到最佳功效。更具體地說,當負極活性材料主要由碳材所組成時,以負極活性材料為100重量份,有機改質層的含量為約0.5至1重量份,且含鋰無機層的含量為約3至6重量份。當使用範圍在本發明的範圍之外(如對照例6~8樣品),會導致電容電下降以及阻值增加。
圖6繪示實例3與對照例1之鋰電池的充電/放電曲線圖。
如表一與圖6所示,與無改質的碳材(如對照例1樣品)相比,本發明先以有機材料化學接枝改質再輔以含鋰無機層改質後的碳材(如實例3樣品)可大幅增加起始電容量約12%(由165 mAh/g增加為181 mAh/g)。
鋰半電池的充放電循環測試
組2顆鈕扣型半電池(尺寸CR2032),其中電池的正極極板的材料採用鋰金屬,負極極板的材料如表二所示,隔離膜為PP/PE/PP三層膜。電解質溶液是1.2M的LiPF6 溶於碳酸乙烯酯(EC)與碳酸二甲酯(DMC)混合溶劑(體積比EC/DMC=1/2)再添加入體積比5%的氟代碳酸乙烯酯(FEC)。將製作出的鋰電池進行充放電循環測試。以0.1C充放電進行3次循環,之後以0.2C充放電進行第4次至第65次循環,並紀錄電池經過多次的充放電之後之電容量的變化。
表二 碳矽複材:氧化矽核心與碳/石墨外核的複合材料 有機高分子:介穩態含氮高分子(2,4-二甲基-2-咪唑咻(2,4-bimethyl-2-imidazoline)與馬來醯亞胺之共聚物,Mw為100萬) 含鋰層:鋰、氧化鋰與碳酸鋰之混合物
請參照表一與表二,與使用碳材為負極活性材料的編號1~11樣品相比,使用矽碳複材為負極活性材料的編號12~14樣品具有較高的電容量。
圖7繪示實例4與對照例9~10之鋰半電池之充放電循環的量測結果曲線圖。
如表二與圖7所示,比較編號13(對照例10)樣品與編號12(對照例9)樣品,可發現編號13(對照例10)樣品雖然初始電容量偏低,但可以幫助編號12(對照例9)樣品在壽命表現上維持電容量。此外,比較編號14(實例4)樣品與編號12(對照例9)樣品,可發現編號14(實例4)樣品不僅不犧牲初始電容量,且在壽命表現上依舊可維持電容量。
鋰電池的補鋰量測試
習知鋰電池的負極材料僅由碳材所組成,未經任何改質,接著補充不同程度的含鋰無機材料(例如鋰、氧化鋰與碳酸鋰之混合物)以觀察初始電容量的變化。本發明電池的負極材料先經0.7重量份的N,N’-(4,4’-亞甲基二苯基)雙馬來醯亞胺進行化學改質,接著補充不同程度的含鋰無機材料以觀察初始電容量的變化。
表三
表四
圖8繪示習知鋰電池與本發明鋰電池之不同補鋰量的量測結果曲線圖。
如圖8所示,本發明鋰電池可以在小量的補鋰量即發揮作用,但習知鋰電池所需之能發揮作用的補鋰量遠大於本發明鋰電池。換言之,本發明可大幅降低所需求的補鋰量,降低成本,提高競爭力。
綜上所述,本發明於負極活性材料上形成雙層結構,其中與負極活性材料接觸的有機改質層可保護負極活性材料表面,避免長時間循環下表面的崩解,而配置於有機改質層上的含鋰無機層則可補充循環過程時所耗損的鋰離子。因此,本發明的負極材料組合可保持負極材料在電化學反應時的結構穩定性,並能夠提高長期充放電的循環壽命。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10‧‧‧內核
12‧‧‧第一殼層
14‧‧‧第二殼層
100‧‧‧負極材料
102‧‧‧正極極板
104‧‧‧負極極板
108‧‧‧隔離膜
110‧‧‧電解質溶液
114‧‧‧孔隙
120‧‧‧集電器
122‧‧‧負極材料層
128‧‧‧助導劑
130‧‧‧黏結劑
圖1是依照本發明的一實施例的一種用於鋰離子電池的負極材料的剖面示意圖。 圖2是依照本發明的一實施例的一種用於鋰離子電池的負極極板的剖面示意圖。 圖3是依照本發明的一實施例的一種鋰離子電池的剖面示意圖。 圖4繪示實例2~3與對照例1、4、5之鋰電池之充放電循環的量測結果曲線圖。 圖5繪示實例3與對照例5~8之鋰電池之充放電循環的量測結果曲線圖。 圖6繪示實例3與對照例1之鋰電池的充電/放電曲線圖。 圖7繪示實例4與對照例9~10之鋰半電池之充放電循環的量測結果曲線圖。 圖8繪示習知鋰電池與本發明鋰電池之不同補鋰量的量測結果曲線圖。
10‧‧‧內核
12‧‧‧第一殼層
14‧‧‧第二殼層
100‧‧‧負極材料

Claims (18)

  1. 一種用於鋰離子電池的負極材料,包括:負極活性材料;有機改質層,配置於所述負極活性材料上;以及含鋰無機層,配置於所述有機改質層上,其中以100重量份的所述負極活性材料計,所述有機改質層的含量為0.1至5重量份,且所述含鋰無機層的含量為0.1至20重量份,且其中所述有機改質層的厚度為15奈米至20奈米之間。
  2. 如申請專利範圍第1項所述的用於鋰離子電池的負極材料,其中所述負極活性材料與所述有機改質層之間存在化學鍵結。
  3. 如申請專利範圍第1項所述的用於鋰離子電池的負極材料,其中所述負極活性材料與所述有機改質層之間不存在化學鍵結。
  4. 如申請專利範圍第1項所述的用於鋰離子電池的負極材料,其中所述有機改質層的材料包括馬來醯亞胺、呋喃、塞吩、吡咯、炔類化合物、烯烴類化合物、環烯烴類化合物、或其衍生物或其組合。
  5. 如申請專利範圍第1項所述的用於鋰離子電池的負極材料,其中所述有機改質層的材料包括N,N’-(4,4’-亞甲基二苯基)雙馬來醯亞胺(N,N’-(4,4’-diphenylmethane)bismaleimide)、N-苯基馬來醯亞胺(N-phenyl maleimide)、N,N’,N”-(4,4’,4”-亞甲基苯基)馬來醯亞胺(N,N’,N”-(4,4’,4’-phenylmethane)maleimide)、 N,N’-(4,4’-二苯基醚)雙馬來醯亞胺(N,N’-(4,4’-diphenyl ether)bismaleimide)或其組合。
  6. 如申請專利範圍第1項所述的用於鋰離子電池的負極材料,其中所述有機改質層的材料包括重量平均分子量為10萬至100萬的聚馬來醯亞胺或其衍生物。
  7. 如申請專利範圍第1項所述的用於鋰離子電池的負極材料,其中所述含鋰無機層的材料包括鋰、氟化鋰(LiF)、磷酸鋰(Li2PO3)、二矽酸鋰(Li2Si2O5)、偏矽酸鋰(Li2SiO3)、正矽酸鋰(Li4SiO4)、矽酸四鋰鹽(Li8SiO6)、氧化鋰(Li2O)與碳酸鋰(Li2CO3)中的至少一者。
  8. 如申請專利範圍第1項所述的用於鋰離子電池的負極材料,其中所述負極活性材料包括石墨碳、石墨烯、硬碳、軟碳、單壁奈米碳管、多壁奈米碳管、碳纖維、碳合金、碳金屬氧化物、碳矽複合材料、中間相碳微球、中間相石墨、中孔洞石墨或其組合。
  9. 如申請專利範圍第1項所述的用於鋰離子電池的負極材料,其中當所述負極活性材料主要由碳材所組成時,以100重量份的所述負極活性材料計,所述有機改質層的含量為0.5至1重量份,且所述含鋰無機層的含量為3至6重量份。
  10. 如申請專利範圍第1項所述的用於鋰離子電池的負極材料,其中當所述負極活性材料由碳材和矽材所組成時,以100重量份的所述負極活性材料計,所述有機改質層的含量為1至5重量份,且所述含鋰無機層的含量為15至20重量份。
  11. 一種鋰離子電池,包括如申請專利範圍第1項至第11項中任一項所述的用於鋰離子電池的負極材料。
  12. 一種用於鋰離子電池的負極材料,包括:內核,由負極活性材料所組成;第一殼層,包覆所述內核且由有機材料所組成;以及第二殼層,配置於所述第一殼層上且包括鋰、氟化鋰(LiF)、磷酸鋰(Li2PO3)、二矽酸鋰(Li2Si2O5)、偏矽酸鋰(Li2SiO3)、正矽酸鋰(Li4SiO4)、矽酸四鋰鹽(Li8SiO6)、氧化鋰(Li2O)與碳酸鋰(Li2CO3)中的至少一者,其中所述第一殼層的厚度為15奈米至20奈米之間。
  13. 如申請專利範圍第12項所述的用於鋰離子電池的負極材料,其中所述內核與所述第一殼層之間存在化學鍵結。
  14. 如申請專利範圍第12項所述的用於鋰離子電池的負極材料,其中所述內核與所述第一殼層之間不存在化學鍵結。
  15. 如申請專利範圍第12項所述的用於鋰離子電池的負極材料,其中以100重量份的所述內核計,所述第一殼層的含量為0.1至5重量份,且所述第二殼層的含量為0.1至20重量份。
  16. 如申請專利範圍第12項所述的用於鋰離子電池的負極材料,其中所述有機材料包括馬來醯亞胺、呋喃、塞吩、吡咯、炔類化合物、烯烴類化合物、環烯烴類化合物或其組合。
  17. 如申請專利範圍第12項所述的用於鋰離子電池的負極材料,其中所述有機材料包括重量平均分子量為10萬至100萬的聚馬來醯亞胺或其衍生物。
  18. 如申請專利範圍第12項所述的用於鋰離子電池的負極材料,其中所述內核包括石墨碳、石墨烯、硬碳、軟碳、單壁奈米碳管、多壁奈米碳管、碳纖維、碳合金、碳金屬氧化物、碳矽複合材料、中間相碳微球、中間相石墨、中孔洞石墨或其組合。
TW104130619A 2014-10-27 2015-09-16 用於鋰離子電池的負極材料以及包含其的鋰離子電池 TWI611623B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510696501.2A CN105552316B (zh) 2014-10-27 2015-10-23 用于锂离子电池的负极材料以及包含其的锂离子电池
US14/923,450 US20160118652A1 (en) 2014-10-27 2015-10-27 Anode material for lithium ion battery and lithium ion battery including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462068767P 2014-10-27 2014-10-27
US62/068,767 2014-10-27

Publications (2)

Publication Number Publication Date
TW201618355A TW201618355A (zh) 2016-05-16
TWI611623B true TWI611623B (zh) 2018-01-11

Family

ID=56509080

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104130619A TWI611623B (zh) 2014-10-27 2015-09-16 用於鋰離子電池的負極材料以及包含其的鋰離子電池

Country Status (1)

Country Link
TW (1) TWI611623B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686001B (zh) * 2018-07-31 2020-02-21 長興材料工業股份有限公司 高分子改性之矽碳複合材料及其應用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080160420A1 (en) * 2006-12-27 2008-07-03 Sony Corporation Secondary battery electrode, method for manufacturing same, and secondary battery
TW201328005A (zh) * 2011-12-30 2013-07-01 Ind Tech Res Inst 負極材料與負極極板
WO2014010708A1 (ja) * 2012-07-13 2014-01-16 古河電気工業株式会社 集電体、電極、二次電池およびキャパシタ
CN103650216A (zh) * 2011-02-07 2014-03-19 斯拉纳米技术有限公司 Li-离子电池负极的稳定化
US20140175337A1 (en) * 2012-12-21 2014-06-26 Industrial Technology Research Institute Modified Maleimide Oligomer, Preparation Method Thereof and Composition Containing the Same
US20140178747A1 (en) * 2012-12-25 2014-06-26 Industrial Technology Research Institute Composite electrode material of lithium secondary battery and lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080160420A1 (en) * 2006-12-27 2008-07-03 Sony Corporation Secondary battery electrode, method for manufacturing same, and secondary battery
CN103650216A (zh) * 2011-02-07 2014-03-19 斯拉纳米技术有限公司 Li-离子电池负极的稳定化
TW201328005A (zh) * 2011-12-30 2013-07-01 Ind Tech Res Inst 負極材料與負極極板
WO2014010708A1 (ja) * 2012-07-13 2014-01-16 古河電気工業株式会社 集電体、電極、二次電池およびキャパシタ
US20140175337A1 (en) * 2012-12-21 2014-06-26 Industrial Technology Research Institute Modified Maleimide Oligomer, Preparation Method Thereof and Composition Containing the Same
US20140178747A1 (en) * 2012-12-25 2014-06-26 Industrial Technology Research Institute Composite electrode material of lithium secondary battery and lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686001B (zh) * 2018-07-31 2020-02-21 長興材料工業股份有限公司 高分子改性之矽碳複合材料及其應用
US11539049B2 (en) 2018-07-31 2022-12-27 Eternal Materials Co., Ltd. Polymer-modified silicon-carbon composite and use thereof

Also Published As

Publication number Publication date
TW201618355A (zh) 2016-05-16

Similar Documents

Publication Publication Date Title
CN105552316B (zh) 用于锂离子电池的负极材料以及包含其的锂离子电池
Zheng et al. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene‐like nanosheets for Li‐S batteries
Wu et al. Graphene–Li2S–carbon nanocomposite for lithium–sulfur batteries
Ming et al. Multilayer approach for advanced hybrid lithium battery
Hao et al. Artificial N-doped graphene protective layer enables stable Zn anode for aqueous Zn-ion batteries
WO2022193123A1 (zh) 负极材料及其制备方法, 电化学装置及电子装置
US10727466B2 (en) Polyethyleneimine-attached carbonaceous material and separator for lithium-sulfur battery coated with the same
Guo et al. In situ synthesis of cathode materials for aqueous high-rate and durable Zn–I2 batteries
US20180287162A1 (en) High surface area porous carbon materials as electrodes
US10608276B2 (en) Carbon material, anode material and spacer additive for lithium ion battery
Li et al. Suppressing shuttle effect using Janus cation exchange membrane for high-performance lithium–sulfur battery separator
KR101741031B1 (ko) 이차전지용 활물질, 상기 활물질을 포함하는 이차전지, 및 활물질의 제조방법
WO2014032406A1 (zh) 一种硅碳复合负极材料及其制备方法和锂离子电池
JP6911758B2 (ja) 非水電解質二次電池用電極および非水電解質二次電池
WO2013122115A1 (ja) 非水系二次電池負極用活物質並びにそれを用いた負極及び非水系二次電池
KR20150130189A (ko) 비리튬 이차전지용 음극 활물질, 그 제조방법, 이를 포함하는 비리튬 이차전지용 음극 및 비리튬 이차전지
KR20150137888A (ko) 복합 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 전지
JPWO2008050599A1 (ja) リチウムイオン二次電池用電解液
CN109923693A (zh) 用于电池的阳极、阴极和隔膜、以及其制造方法和用途
JP2015531967A (ja) 硫黄‐炭素複合材料並びにその製造方法及びその使用方法、カソード材料、電気化学電池及びその使用方法、リチウムイオンバッテリー
KR20100132839A (ko) 리튬 이차전지용 음극 활물질 및 그 제조방법과 이를 이용한 리튬 이차전지
CN113066970A (zh) 硅碳负极材料、电化学装置和电子装置
JPWO2006082708A1 (ja) 二次電池用正極及びその製造方法並びに二次電池
TWI447993B (zh) 負極材料與負極極板
WO2023208007A1 (zh) 复合材料及其制备方法和应用