WO2013175993A1 - 全固体電池 - Google Patents

全固体電池 Download PDF

Info

Publication number
WO2013175993A1
WO2013175993A1 PCT/JP2013/063351 JP2013063351W WO2013175993A1 WO 2013175993 A1 WO2013175993 A1 WO 2013175993A1 JP 2013063351 W JP2013063351 W JP 2013063351W WO 2013175993 A1 WO2013175993 A1 WO 2013175993A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solid
layer
electrode layer
porosity
Prior art date
Application number
PCT/JP2013/063351
Other languages
English (en)
French (fr)
Inventor
剛司 林
倍太 尾内
充 吉岡
武郎 石倉
彰佑 伊藤
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to JP2014516757A priority Critical patent/JP5910737B2/ja
Publication of WO2013175993A1 publication Critical patent/WO2013175993A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all solid state battery.
  • the battery having the above configuration has a risk of leakage of the electrolyte.
  • the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.
  • Patent Document 1 proposes an all-solid lithium secondary battery in which all constituent elements are made of solid using a nonflammable solid electrolyte.
  • the laminate for an all solid lithium secondary battery includes an active material layer and a solid electrolyte layer sintered and joined to the active material layer, and the active material layer releases and occludes lithium ions.
  • the solid electrolyte layer includes a crystalline second material having lithium ion conductivity.
  • Patent Document 1 describes that the filling rate of the solid electrolyte layer is preferably more than 70%.
  • the solid electrolyte constituting the all-solid battery is dense.
  • the solid electrolyte layer is dense, that is, the void of the solid electrolyte layer. If the rate is small, internal stress is applied to the solid electrolyte layer due to the volume expansion and contraction of the electrode layer that occurs during firing when the all-solid battery is manufactured or during charge and discharge of the all-solid battery. It was found that cracks occurred and the internal resistance increased, resulting in a decrease in discharge capacity and deterioration in charge / discharge cycle characteristics.
  • a solid portion in which a low porosity portion is formed in a region near the electrode layer and a high porosity portion is formed in a region away from the electrode layer By providing the electrolyte layer, internal stress applied to the solid electrolyte layer due to the volume expansion and contraction of the electrode layer generated during firing during the production of an all-solid battery or during charge / discharge of the all-solid battery can be reduced.
  • the present inventors have found that the discharge capacity increases and the charge / discharge cycle characteristics are improved. Based on such knowledge of the inventors, the present invention has the following features.
  • the all solid state battery according to the present invention includes at least one of the positive electrode layer and the negative electrode layer and a solid electrolyte layer laminated on the electrode layer.
  • the solid electrolyte layer includes a first solid electrolyte portion having a first porosity and a second solid electrolyte portion having a second porosity that is lower than the first porosity.
  • the second solid electrolyte portion is present in a region closer to the electrode layer than the first solid electrolyte portion.
  • the first solid electrolyte portion may be present in a central region of the solid electrolyte layer, and at least a portion of the second solid electrolyte portion may be present in a region separated by 50 ⁇ m or less from the electrode layer. preferable.
  • the first porosity is more than 10% by volume and 40% by volume or less
  • the second porosity is more than 0% by volume and 10% by volume or less.
  • the solid electrolyte component contained in the first solid electrolyte part and the second solid electrolyte part preferably contains a lithium-containing phosphate compound.
  • the second solid electrolyte part preferably contains a sintering aid.
  • sintering aids are Li 2 O, Li 2 CO 3 , Li 2 SiO 3 , Li 4 SiO 4 , LiBO 2 , Li 2 B 4 O 7 , Li 2 GeO 3 , LiNO 3 , LiAlO 2 , LiPO. 3 , Li 3 PO 4 , Mg 3 (PO 4 ) 2 , Ca 3 (PO 4 ) 2 , Ba 3 (PO 4 ) 2 , Sr 3 (PO 4 ) 2 , LiMgPO 4 , LiCaPO 4 , LiBaPO 4 , and It is preferable to include one compound selected from the group consisting of LiSrPO 4 .
  • the discharge capacity can be increased and the charge / discharge cycle characteristics can be improved.
  • an all-solid battery stack 10 as one embodiment of the present invention includes a positive electrode layer 11, a second solid electrolyte layer 14, a first solid electrolyte layer 13, a second solid electrolyte layer 14,
  • the negative electrode layer 12 is composed of a laminated body laminated in that order.
  • the solid electrolyte layer is composed of a laminate in which the second solid electrolyte layer 14, the first solid electrolyte layer 13, and the second solid electrolyte layer 14 are laminated in this order.
  • the positive electrode layer 11 is disposed on one surface of the second solid electrolyte layer 14 located above the solid electrolyte layer
  • the negative electrode layer 12 is disposed on one surface of the second solid electrolyte layer 14 located below the solid electrolyte layer. Yes.
  • the positive electrode layer 11 and the negative electrode layer 12 are provided at positions facing each other through the solid electrolyte layer.
  • Each of the positive electrode layer 11 and the negative electrode layer 12 includes a solid electrolyte and an electrode active material, and the first solid electrolyte layer 13 and the second solid electrolyte layer 14 include a solid electrolyte.
  • Each of the positive electrode layer 11 and the negative electrode layer 12 may contain carbon, a metal, an oxide, etc. as an electronic conductive material.
  • the first solid electrolyte layer 13 has the first porosity
  • the second solid electrolyte layer 14 has the second porosity lower than the first porosity. Has porosity. That is, the second solid electrolyte layer 14 is denser than the first solid electrolyte layer 13.
  • first solid electrolyte having a high first porosity in the central region of the solid electrolyte layer, and a low second void in the outer region surrounding the first solid electrolyte portion.
  • the second solid electrolyte portion having the second porosity may be present in the region of the solid electrolyte layer close to the electrode layer by at least the second solid electrolyte portion having the ratio being present.
  • the portion of the second solid electrolyte having a low second porosity exists in the region of the solid electrolyte layer close to the electrode layer, and the solid electrolyte separated from the electrode layer There is at least a portion of the first solid electrolyte having a high first porosity in the central region of the layer. Since the solid electrolyte layer is configured in this way, internal stress is applied to the solid electrolyte layer due to the volume expansion and contraction of the electrode layer that occurs during firing during the production of an all-solid battery or during charge and discharge of the all-solid battery.
  • the first solid electrolyte portion may be present in a central region of the solid electrolyte layer, and at least a portion of the second solid electrolyte portion may be present in a region separated by 50 ⁇ m or less from the electrode layer. preferable.
  • the second porosity is preferably 10% by volume or less. Furthermore, the first porosity is preferably more than 10% by volume and 40% by volume or less, and the second porosity is preferably more than 0% by volume and 10% by volume or less. Thus, by limiting the first and second void ratios, the above-described effects can be enhanced.
  • the solid electrolyte component contained in the first solid electrolyte part and the second solid electrolyte part preferably contains a lithium-containing phosphate compound.
  • a lithium-containing phosphate compound having a NASICON structure can be used as the solid electrolyte component contained in the first solid electrolyte portion and the second solid electrolyte portion.
  • Lithium-containing phosphoric acid compound having a NASICON-type structure the chemical formula Li x M y (PO 4) 3 ( Formula, x 1 ⁇ x ⁇ 2, y is a number in the range of 1 ⁇ y ⁇ 2, M Includes one or more elements selected from the group consisting of Ti, Ge, Al, Ga and Zr), for example, Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 .
  • part of P in the above chemical formula may be substituted with B, Si, or the like.
  • lithium-containing phosphate compounds having a NASICON type structure such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 are mixed. You may use the mixture.
  • the lithium-containing phosphate compound having a NASICON structure used in the above solid electrolyte includes a crystal phase of a lithium-containing phosphate compound having a NASICON structure, or a lithium-containing phosphate having a NASICON structure by heat treatment You may use the glass which precipitates the crystal phase of a phosphoric acid compound.
  • the solid electrolyte component contained in the second solid electrolyte part preferably contains a lithium-containing phosphate compound having a higher lithium content ratio than the solid electrolyte component contained in the first solid electrolyte part. .
  • the 2nd porosity of the 2nd solid electrolyte part can be made lower.
  • the second solid electrolyte part preferably contains a sintering aid.
  • the sintering aids are Li 2 O, Li 2 CO 3 , Li 2 SiO 3 , Li 4 SiO 4 , LiBO 2 , Li 2 B 4 O 7 , Li 2 GeO 3 , LiNO 3 , LiAlO 2, LiPO 3.
  • a material used for said solid electrolyte it is possible to use the material which has ion conductivity and is so small that electronic conductivity can be disregarded other than the lithium-containing phosphate compound which has a NASICON structure.
  • Examples of such a material include lithium oxyacid salts and derivatives thereof.
  • Li-PO system compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4 ⁇ x N x ) in which nitrogen is mixed with lithium phosphate, and Li—Si—O such as Li 4 SiO 4
  • Li—Si—O such as Li 4 SiO 4
  • Examples thereof include compounds having a lobskite structure, compounds having a garnet structure having Li, La, and Zr.
  • the positive electrode active material examples include a lithium-containing phosphate compound having a NASICON structure such as Li 3 V 2 (PO 4 ) 3 , a lithium-containing phosphate compound having an olivine structure such as LiFePO 4 and LiMnPO 4 , LiCoO 2 , and LiCo. It is possible to use a layered compound such as 1/3 Ni 1/3 Mn 1/3 O 2 or a lithium-containing compound having a spinel type structure such as LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Li 4 Ti 5 O 12. it can.
  • MOx (M includes at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, x is 0.9 ⁇ x ⁇ 2.0.
  • a compound having a composition represented by the following formula can be used.
  • a mixture in which two or more active materials having a composition represented by MOx containing different elements M such as TiO 2 and SiO 2 may be used.
  • graphite-lithium compounds, lithium alloys such as Li-Al, oxidation of Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12, etc. Thing, etc. can be used.
  • the negative electrode layer 12 may be formed from metallic lithium.
  • the solid electrolyte layer includes a solid electrolyte composed of a lithium-containing phosphate compound having a NASICON structure, and at least one of the positive electrode layer 11 or the negative electrode layer 12 is a lithium having a NASICON structure. It is preferable that the solid electrolyte which consists of a containing phosphoric acid compound is included.
  • An unsintered solid electrolyte layer that is an unsintered body of the electrolyte layer is prepared (unsintered layer manufacturing step).
  • at least a portion of the second solid electrolyte having a low second porosity exists in the region of the solid electrolyte layer close to the electrode layer, and a high second region is present in the central region of the solid electrolyte layer away from the electrode layer.
  • An unsintered solid electrolyte layer that is an unsintered body of the solid electrolyte layer is prepared so that at least a portion of the first solid electrolyte having a porosity of 1 exists.
  • the produced unfired electrode layer and the unfired solid electrolyte layer are laminated to form a laminate (laminated body forming step).
  • the obtained laminated body is baked (baking process).
  • the positive electrode layer 11 and / or the negative electrode layer 12 and the solid electrolyte layer are joined by firing.
  • the fired laminate is sealed, for example, in a coin cell.
  • the sealing method is not particularly limited. For example, you may seal the laminated body after baking with resin.
  • an insulating paste having an insulating property such as Al 2 O 3 may be applied or dipped around the laminate, and the insulating paste may be heat-treated for sealing.
  • a current collector layer such as a carbon layer, a metal layer, or an oxide layer may be formed on the positive electrode layer 11 and the negative electrode layer 12.
  • Examples of the method for forming the current collector layer include a sputtering method.
  • the metal paste may be applied or dipped and heat-treated.
  • a laminated body may be formed by laminating a plurality of laminated bodies having the above single cell structure with an unfired body of the current collector interposed therebetween.
  • a plurality of laminates having a single battery structure may be laminated electrically in series or in parallel.
  • the method for forming the unfired electrode layer and the unfired solid electrolyte layer is not particularly limited, but a doctor blade method, a die coater, a comma coater, etc. for forming a green sheet, or a screen for forming a printing layer. Printing or the like can be used.
  • the method for laminating the unfired electrode layer and the unfired solid electrolyte layer is not particularly limited, but hot isostatic pressing (HIP), cold isostatic pressing (CIP), isostatic pressing (WIP), etc.
  • HIP hot isostatic pressing
  • CIP cold isostatic pressing
  • WIP isostatic pressing
  • the green electrode layer and the green solid electrolyte layer can be laminated by using.
  • the slurry for forming the green sheet or the printing layer is obtained by wet-mixing an organic vehicle in which an organic material is dissolved in a solvent and (a positive electrode active material and a solid electrolyte, a negative electrode active material and a solid electrolyte, or a solid electrolyte).
  • Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used.
  • a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
  • the organic material contained in the slurry for forming the green sheet or the printing layer is not particularly limited, and polyvinyl acetal resin, cellulose resin, acrylic resin, urethane resin, and the like can be used.
  • the slurry may contain a plasticizer.
  • plasticizer is not particularly limited, phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.
  • the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material.
  • the firing temperature is preferably 400 ° C. or higher and 1000 ° C. or lower.
  • Example shown below is an example and this invention is not limited to the following Example.
  • the materials shown in Table 1 below were used as materials for the first solid electrolyte layer 13 and the second solid electrolyte layer 14.
  • the solid electrolyte layer was composed of only the first solid electrolyte layer 13.
  • Li 3 V 2 (PO 4 ) 3 (hereinafter referred to as LVP), which is an example of a NASICON type lithium-containing phosphate compound, was used as a material for the electrode active material contained in the positive electrode layer 11 and the negative electrode layer 12.
  • Each of the obtained electrode slurry, first solid electrolyte slurry, and second solid electrolyte slurry is formed into a thickness of 50 ⁇ m by a doctor blade method, whereby an electrode sheet as a green sheet, a first solid electrolyte sheet, a second solid An electrolyte sheet was produced.
  • the reason why the first and second solid electrolyte layers are formed by laminating a plurality of first and second solid electrolyte sheets is to provide sufficient mechanical strength to the solid electrolyte layer after firing.
  • the first and second solid electrolyte layers may be configured without stacking a plurality of first and second solid electrolyte sheets. No problem.
  • the true density ⁇ of the solid electrolyte powder was determined by the pycnometer method as follows.
  • the reason for the difference in the number of electrode sheets constituting the positive electrode layer and the negative electrode layer is that 1 gram of LVP is obtained when LVP is used as the positive electrode active material and when used as the negative electrode active material. This is because the per capita capacity is considered to be about twice different.
  • the obtained all-solid-state battery laminates of Examples 1 and 3 and Comparative Examples 1 to 3 were heat-treated in an air atmosphere at a temperature of 500 ° C. to remove the polymer material (first firing step) ). Thereafter, the laminate was fired at a temperature of 700 ° C. in a nitrogen gas atmosphere to obtain an all-solid battery laminate 10 as a fired body (second firing step).
  • the obtained all solid state battery laminates 10 of Examples 1 and 3 and Comparative Examples 1 to 3 were dried at a temperature of 100 ° C. to remove moisture, and then sealed in a 2032 type coin type battery to obtain all solids. A battery was produced.
  • the present invention is particularly useful for the production of all-solid-state batteries.
  • 10 all-solid battery stack
  • 11 positive electrode layer
  • 12 negative electrode layer
  • 13 first solid electrolyte layer
  • 14 second solid electrolyte layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

 電極層の体積膨張収縮によって固体電解質層に加えられる内部応力を緩和することができ、充放電サイクル特性を高めることが可能な全固体電池を提供する。全固体電池積層体(10)は、正極層(11)または負極層(12)の少なくともいずれか一方の電極層と、電極層に積層された固体電解質層とを備える。固体電解質層が、第1の空隙率を有する第1固体電解質層(13)と、第1の空隙率よりも低い第2の空隙率を有する第2固体電解質層(14)とを含む。第2固体電解質層(14)が第1固体電解質層(13)よりも電極層に近い領域に存在する。

Description

全固体電池
 本発明は、全固体電池に関する。
 近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させるための媒体として有機溶媒等の電解質(電解液)が従来から使用されている。
 しかし、上記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質である。このため、電池の安全性をさらに高めることが求められている。
 そこで、電池の安全性を高めるための一つの対策は、電解質として、電解液に代えて、固体電解質を用いることが提案されている。さらに、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成されている全固体電池の開発が進められている。
 たとえば、特開2007‐5279号公報(以下、特許文献1という)には、不燃性の固体電解質を用いてすべての構成要素を固体で構成した全固体リチウム二次電池が提案されている。この全固体リチウム二次電池用積層体は、活物質層と、活物質層に焼結接合された固体電解質層を含み、活物質層がリチウムイオンを放出および吸蔵し得る結晶性の第1物質を含み、固体電解質層がリチウムイオン伝導性を有する結晶性の第2物質を含む。特許文献1には、固体電解質層の充填率は70%を超えることが好ましいと記載されている。
 また、たとえば、特開2007‐294429号公報(以下、特許文献2という)には、無機粉体を含む成形体を焼成してなり、気孔率が10vol%以下であるリチウムイオン伝導性固体電解質が記載されている。
特開2007‐5279号公報 特開2007‐294429号公報
 特許文献1と特許文献2に記載されているように、全固体電池を構成する固体電解質は緻密であることが一般的に好ましいとされている。
 しかしながら、発明者らが、特許文献1と特許文献2に記載されているような固体電解質を含む全固体電池を種々検討した結果、固体電解質層が緻密であると、すなわち、固体電解質層の空隙率が小さいと、全固体電池を製造する際の焼成時に、または、全固体電池の充放電時に発生する電極層の体積膨張収縮によって内部応力が固体電解質層に加えられることにより、固体電解質層にクラックが発生して内部抵抗が増大し、その結果、放電容量が低下し、充放電サイクル特性が悪くなることがわかった。
 したがって、本発明の目的は、電極層の体積膨張収縮によって固体電解質層に加えられる内部応力を緩和することができ、充放電サイクル特性を高めることが可能な全固体電池を提供することである。
 発明者らが上記の課題を解決するために種々検討を重ねた結果、電極層に近い領域に空隙率が低い部分を形成し、電極層から離れた領域に空隙率が高い部分を形成した固体電解質層を備えることにより、全固体電池を製造する際の焼成時に、または、全固体電池の充放電時に発生する電極層の体積膨張収縮によって固体電解質層に加えられる内部応力を緩和することができ、放電容量が増大し、充放電サイクル特性が向上することを見出した。このような発明者らの知見に基づいて、本発明は以下の特徴を備えている。
 本発明に従った全固体電池は、正極層または負極層の少なくともいずれか一方の電極層と、電極層に積層された固体電解質層とを備える。固体電解質層が、第1の空隙率を有する第1の固体電解質部分と、第1の空隙率よりも低い第2の空隙率を有する第2の固体電解質部分とを含む。第2の固体電解質部分が、第1の固体電解質部分よりも電極層に近い領域に存在する。
 本発明の全固体電池において、第1の固体電解質部分は固体電解質層の中央の領域に存在し、少なくとも第2の固体電解質部分の一部は電極層から50μm以下隔てた領域に存在することが好ましい。
 また、第2の空隙率は10体積%以下であることが好ましい。
 さらに、第1の空隙率は10体積%を超え40体積%以下、第2の空隙率は0体積%を超え10体積%以下であることが好ましい。
 本発明の全固体電池において、第1の固体電解質部分と第2の固体電解質部分に含まれる固体電解質成分は、リチウム含有リン酸化合物を含むことが好ましい。
 この場合、固体電解質成分は、ナシコン型構造を有するリチウム含有リン酸化合物を含むことが好ましい。
 さらに、上記の場合、固体電解質成分は、Lixy(PO43(化学式中、xは1≦x≦2、yは1≦y≦2の範囲内の数値であり、MはTi、Ge、Al、GaおよびZrからなる群より選ばれた1種以上の元素を含む)で表わされるリチウム含有リン酸化合物を含むことが好ましい。
 また、上記の場合、第2の固体電解質部分に含まれる固体電解質成分は、第1の固体電解質部分に含まれる固体電解質成分よりも高いリチウム含有比率を有するリチウム含有リン酸化合物を含むことが好ましい。
 本発明の全固体電池において、第2の固体電解質部分は焼結助剤を含むことが好ましい。
 この場合、焼結助剤は、Li2O、Li2CO3、Li2SiO3、Li4SiO4、LiBO2、Li247、Li2GeO3、LiNO3、LiAlO2、LiPO3、Li3PO4、Mg3(PO42、Ca3(PO42、Ba3(PO42、Sr3(PO42、LiMgPO4、LiCaPO4、LiBaPO4、および、LiSrPO4からなる群より選ばれた1種の化合物を含むことが好ましい。
 本発明によれば、電極層の体積膨張収縮によって固体電解質層に加えられる内部応力を緩和することができるので、放電容量を増大させ、充放電サイクル特性を向上させることができる。
本発明の実施形態として全固体電池積層体の断面構造を模式的に示す断面図である。 本発明の実施例と比較例で作製された全固体電池積層体において電極層と固体電解質層の断面を走査型電子顕微鏡で観察した写真である。 本発明の実施例と比較例で作製された全固体電池の放電特性を示す図である。 本発明の実施例と比較例で作製された全固体電池の充放電サイクル数に対する放電容量維持率の変化を示す図である。
 図1に示すように、本発明の一つの実施の形態としての全固体電池積層体10は、正極層11、第2固体電解質層14、第1固体電解質層13、第2固体電解質層14、負極層12の順に積層された積層体で構成される。固体電解質層は、第2固体電解質層14、第1固体電解質層13、第2固体電解質層14の順に積層された積層体から構成される。固体電解質層の上部に位置する第2固体電解質層14の一方面に正極層11が配置され、固体電解質層の下部に位置する第2固体電解質層14の一方面に負極層12が配置されている。いいかえれば、正極層11と負極層12とは、固体電解質層を介して互いに対向する位置に設けられている。なお、正極層11と負極層12のそれぞれは固体電解質と電極活物質とを含み、第1固体電解質層13と第2固体電解質層14は固体電解質を含む。正極層11と負極層12のそれぞれは、電子導電材として、炭素、金属、酸化物等を含んでもよい。
 上記のように構成された全固体電池積層体10において、第1固体電解質層13が第1の空隙率を有し、第2の固体電解質層14が第1の空隙率よりも低い第2の空隙率を有する。すなわち、第2の固体電解質層14は、第1の固体電解質層13よりも緻密である。
 なお、上記の実施の形態では、固体電解質層は、正極層11または負極層12の電極層に近い側に低い第2の空隙率を有する第2の固体電解質層14が配置され、電極層から離れた中央部に高い第1の空隙率を有する第1の固体電解質層13が配置された3層構造になっているが、このような構造に限定されるものではない。電極層に近い固体電解質層の領域に低い第2の空隙率を有する第2の固体電解質の部分が少なくとも存在し、電極層から離れた固体電解質層の中央の領域に高い第1の空隙率を有する第1の固体電解質の部分が少なくとも存在すればよい。いいかえれば、固体電解質層の中央の領域に高い第1の空隙率を有する第1の固体電解質の部分が少なくとも存在し、その第1の固体電解質の部分を囲む外側の領域に低い第2の空隙率を有する第2の固体電解質の部分が少なくとも存在することにより、電極層に近い固体電解質層の領域に第2の空隙率を有する第2の固体電解質の部分が存在してもよい。
 以上のように本発明の全固体電池においては、電極層に近い固体電解質層の領域に低い第2の空隙率を有する第2の固体電解質の部分が少なくとも存在し、電極層から離れた固体電解質層の中央の領域に高い第1の空隙率を有する第1の固体電解質の部分が少なくとも存在する。このように固体電解質層が構成されているので、全固体電池を製造する際の焼成時に、または、全固体電池の充放電時に発生する電極層の体積膨張収縮によって内部応力が固体電解質層に加えられたとしても、固体電解質層にクラックが発生するのを防止することができ、電極層の体積膨張収縮によって固体電解質層に加えられる内部応力を緩和することができるので、内部抵抗の増加を抑制することができる。その結果、放電容量を増大させ、充放電サイクル特性を向上させることができる。
 本発明の全固体電池において、第1の固体電解質部分は固体電解質層の中央の領域に存在し、少なくとも第2の固体電解質部分の一部は電極層から50μm以下隔てた領域に存在することが好ましい。このように第1と第2の固体電解質部分を位置づけることにより、上記の作用効果を高めることができる。
 また、第2の空隙率は10体積%以下であることが好ましい。さらに、第1の空隙率は10体積%を超え40体積%以下、第2の空隙率は0体積%を超え10体積%以下であることが好ましい。このように第1と第2の空隙率を限定することにより、上記の作用効果を高めることができる。
 本発明の全固体電池において、第1の固体電解質部分と第2の固体電解質部分に含まれる固体電解質成分は、リチウム含有リン酸化合物を含むことが好ましい。このように構成することにより、全固体電池を構成する積層体を緻密に一体焼成によって作製することができる。
 この場合、上記の第1の固体電解質部分と第2の固体電解質部分に含まれる固体電解質成分としては、ナシコン型構造を有するリチウム含有リン酸化合物を用いることができる。ナシコン型構造を有するリチウム含有リン酸化合物は、化学式Lixy(PO43(化学式中、xは1≦x≦2、yは1≦y≦2の範囲内の数値であり、MはTi、Ge、Al、GaおよびZrからなる群より選ばれた1種以上の元素を含む)で表わされ、たとえば、Li1.5Al0.5Ti1.5(PO43等である。この場合、上記化学式においてPの一部をB、Si等で置換してもよい。たとえば、Li1.5Al0.5Ge1.5(PO43とLi1.2Al0.2Ti1.8(PO43等の、ナシコン型構造を有するリチウム含有リン酸化合物の異なる組成を有する2つ以上の化合物を混合した混合物を用いてもよい。
 また、上記の固体電解質に用いられるナシコン型構造を有するリチウム含有リン酸化合物としては、ナシコン型構造を有するリチウム含有リン酸化合物の結晶相を含むもの、または、熱処理によりナシコン型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスを用いてもよい。
 また、上記の場合、第2の固体電解質部分に含まれる固体電解質成分は、第1の固体電解質部分に含まれる固体電解質成分よりも高いリチウム含有比率を有するリチウム含有リン酸化合物を含むことが好ましい。このように構成することにより、第2の固体電解質部分の第2の空隙率をより低くすることができる。
 本発明の全固体電池において、第2の固体電解質部分は焼結助剤を含むことが好ましい。このように構成することにより、第2の固体電解質部分の第2の空隙率をより低くすることができる。
 この場合、焼結助剤は、Li2O、Li2CO3、Li2SiO3、Li4SiO4、LiBO2、Li247、Li2GeO3、LiNO3、LiAlO2、LiPO3、Li3PO4、Mg3(PO42、Ca3(PO42、Ba3(PO42、Sr3(PO42、LiMgPO4、LiCaPO4、LiBaPO4、および、LiSrPO4からなる群より選ばれた1種の化合物を含むことが好ましい。
 なお、上記の固体電解質に用いられる材料としては、ナシコン型構造を有するリチウム含有リン酸化合物以外に、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いることが可能である。このような材料として、たとえば、リチウム酸素酸塩、および、これらの誘導体を挙げることができる。また、リン酸リチウム(Li3PO4)等のLi‐P‐O系化合物、リン酸リチウムに窒素を混ぜたLIPON(LiPO4-xx)、Li4SiO4等のLi‐Si‐O系化合物、Li‐P‐Si‐O系化合物、Li‐V‐Si‐O系化合物、La0.51Li0.35TiO2.94、La0.55Li0.35TiO3、Li3xLa2/3-xTiO3等のぺロブスカイト型構造を有する化合物、Li、La、Zrを有するガーネット型構造を有する化合物、等を挙げることができる。
 正極活物質としては、Li32(PO43等のナシコン型構造を有するリチウム含有リン酸化合物、LiFePO4、LiMnPO4等のオリビン型構造を有するリチウム含有リン酸化合物、LiCoO2、LiCo1/3Ni1/3Mn1/32等の層状化合物、LiMn24、LiNi0.5Mn1.54、Li4Ti512等のスピネル型構造を有するリチウム含有化合物を用いることができる。
 負極活物質としては、MOx(MはTi、Si、Sn、Cr、Fe、NbおよびMoからなる群より選ばれた少なくとも1種以上の元素を含む、xは0.9≦x≦2.0の範囲内の数値である)で表わされる組成を有する化合物を用いることができる。たとえば、TiO2とSiO2、等の異なる元素Mを含むMOxで表わされる組成を有する2つ以上の活物質を混合した混合物を用いてもよい。また、負極活物質としては、黒鉛-リチウム化合物、Li‐Al等のリチウム合金、Li32(PO43、Li3Fe2(PO43、Li4Ti512等の酸化物、等を用いることができる。なお、負極層12は、金属リチウムから形成されてもよい。
 本発明の全固体電池積層体10においては、固体電解質層が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含み、正極層11または負極層12の少なくとも一方が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含むことが好ましい。
 上述のように構成された全固体電池積層体10を製造するために、本発明では、まず、正極層11または負極層12の少なくともいずれか一方の未焼成体である未焼成電極層と、固体電解質層の未焼成体である未焼成固体電解質層とを作製する(未焼成層作製工程)。特に本発明では、電極層に近い固体電解質層の領域に低い第2の空隙率を有する第2の固体電解質の部分が少なくとも存在し、電極層から離れた固体電解質層の中央の領域に高い第1の空隙率を有する第1の固体電解質の部分が少なくとも存在するように、固体電解質層の未焼成体である未焼成固体電解質層を作製する。その後、作製された未焼成電極層と未焼成固体電解質層とを積層して積層体を形成する(積層体形成工程)。そして、得られた積層体を焼成する(焼成工程)。焼成により、正極層11および/または負極層12と固体電解質層とが接合される。最後に、焼成した積層体を、たとえばコインセル内に封止する。封止方法は特に限定されない。たとえば、焼成後の積層体を樹脂で封止してもよい。また、Al23等の絶縁性を有する絶縁体ペーストを積層体の周囲に塗布またはディップして、この絶縁ペーストを熱処理することにより封止してもよい。
 なお、正極層11と負極層12から効率的に電流を引き出すため、正極層11と負極層12の上に炭素層、金属層、酸化物層等の集電体層を形成してもよい。集電体層の形成方法は、たとえば、スパッタリング法が挙げられる。また、金属ペーストを塗布またはディップして、この金属ペーストを熱処理してもよい。
 積層体形成工程では、正極層11、固体電解質層、および、負極層12の未焼成体を積層して単電池構造の未焼成積層体を形成することが好ましい。さらに、積層体形成工程において、集電体の未焼成体を介在させて、上記の単電池構造の積層体を複数個、積層して積層体を形成してもよい。この場合、単電池構造の積層体を複数個、電気的に直列、または並列に積層してもよい。
 上記の未焼成電極層と未焼成固体電解質層を形成する方法は特に限定されないが、グリーンシートを形成するためにドクターブレード法、ダイコーター、コンマコーター等、または、印刷層を形成するためにスクリーン印刷等を使用することができる。上記の未焼成電極層と未焼成固体電解質層を積層する方法は特に限定されないが、熱間等方圧プレス(HIP)、冷間等方圧プレス(CIP)、静水圧プレス(WIP)等を使用して未焼成電極層と未焼成固体電解質層を積層することができる。
 グリーンシートまたは印刷層を形成するためのスラリーは、有機材料を溶剤に溶解した有機ビヒクルと、(正極活物質および固体電解質、負極活物質および固体電解質、または、固体電解質)とを湿式混合することによって作製することができる。湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。グリーンシートまたは印刷層を成形するためのスラリーに含まれる有機材料は特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、アクリル樹脂、ウレタン樹脂などを用いることができる。
 スラリーは可塑剤を含んでもよい。可塑剤の種類は特に限定されないが、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸エステル等を使用してもよい。
 焼成工程では、雰囲気は特に限定されないが、電極活物質に含まれる遷移金属の価数が変化しない条件で行うことが好ましい。焼成温度は400℃以上1000℃以下であることが好ましい。
 次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。
 以下、固体電解質層を形成するための材料を種々変えて作製した全固体電池の実施例1~7と比較例1~3について説明する。
 まず、図1に示す全固体電池積層体10を作製するために、第1固体電解質層13と第2固体電解質層14の材料として、以下の表1に示す材料を用いた。比較例1、2では、第1固体電解質層13のみで固体電解質層を構成した。なお、正極層11と負極層12に含まれる電極活物質の材料としてナシコン型のリチウム含有リン酸化合物の一例であるLi32(PO43(以下、LVPという)を用いた。
 <電極シート、固体電解質シートの作製>
 バインダとしてのポリビニルアルコールをトルエンとエタノールの混合溶媒に溶解させて、バインダ溶液を作製した。このバインダ溶液と、電極活物質としてLVPの結晶粉末とを混合することにより、電極活物質スラリーを作製した。LVPとポリビニルアルコールの調合比は重量部で70:30とした。
 上記のバインダ溶液と、表1に示す第1固体電解質層の各材料のガラス粉末と、上記のバインダ溶液とを混合することにより、実施例1~7と比較例1~3で用いられる第1固体電解質スラリーを作製した。上記のガラス粉末とポリビニルアルコールの調合比は重量部で70:30とした。
 上記のバインダ溶液と、表1に示す第2固体電解質層の各材料の粉末と、上記のバインダ溶液とを混合することにより、実施例1~7と比較例3で用いられる第2固体電解質スラリーを作製した。上記の粉末とポリビニルアルコールの調合比は重量部で70:30とした。なお、実施例4と実施例5で用いられた第2固体電解質層の各材料において、Li1.5Al0.5Ge1.5(PO43と焼結助剤としてのLi2O、Li3PO4のそれぞれとの重量比率は99:1とした。
 上記で得られた電極活物質スラリーと第1固体電解質スラリーとを、LVPと表1に示す第1固体電解質層の各材料の調合比が重量部で50:50になるように混合することにより、電極スラリーを作製した。
 得られた電極スラリー、第1固体電解質スラリー、第2固体電解質スラリーのそれぞれを、ドクターブレード法により50μmの厚みに成形することにより、グリーンシートとしての電極シート、第1固体電解質シート、第2固体電解質シートを作製した。
 <固体電解質層の作製>
 実施例1~7と比較例3のそれぞれにおいては、第1固体電解質シートを4枚積層して構成される第1固体電解質層13(成形体)と、第2固体電解質シートを4枚積層して構成される第2固体電解質層14(成形体)とを、図1に示すように積層し、60℃の温度で加圧して圧着することにより、固体電解質層の積層体を作製した。比較例1、2のそれぞれにおいては、第1固体電解質シートを4枚積層し、60℃の温度で加圧して圧着することにより、固体電解質層の積層体を作製した。ここで、第1と第2の固体電解質シートのそれぞれを複数枚積層して第1と第2の固体電解質層を構成した理由は、焼成後の固体電解質層に十分な機械的強度を与えて、後述する工程における固体電解質層のハンドリングを容易にするためであり、第1と第2の固体電解質シートのそれぞれを複数枚積層しないで第1と第2の固体電解質層を構成しても特に問題はない。
 固体電解質層の積層体を2枚のアルミナ製のセラミックス板で挟んだ状態で、酸素ガス雰囲気中にて500℃の温度で2時間焼成し(焼成工程1)、ポリビニルアルコールの除去を行った後、窒素ガス雰囲気中にて700℃(ただし、実施例6と実施例7では900℃)の温度で2時間焼成すること(焼成工程2)により、実施例1~7と比較例1~3の固体電解質層の焼成体を得た。
 <固体電解質層の評価>
 得られた実施例1~7と比較例1~3の固体電解質層の各々を構成する第1と第2の固体電解質層の空隙率を以下のようにして測定し、その測定結果を表1に示す。
 焼結体の空隙率は以下の方法で求めた。まず、焼成体の見掛け体積V'と焼成体の重量Wを測定した。次に、固体電解質粉末の真密度ρから固体電解質粉末の体積Vを式V=W/ρにより算出した。そして、得られた固体電解質粉末の体積Vと焼成体の見掛け体積V'から、焼成体の空隙率εを式ε=1-V/V'により算出した。
 なお、固体電解質粉末の真密度ρは以下のとおり、ピクノメーター法により求めた。
 乾燥したピクノメーターの質量W'とピクノメーターに蒸留水を満たしたときの重量Wwを計り、容積Vを式V=(WW-W')/ρWW:水の密度)により算出した。得られた容積Vと、ピクノメーターに試料を満たしたときの重量Wから、真密度ρを式ρ=(W-W')/Vにより算出した。
Figure JPOXMLDOC01-appb-T000001
 以上のようにして得られた電極シート、第1固体電解質シート、第2固体電解質シートを用いて、全固体電池を作製した。
 <全固体電池の作製>
 1枚の電極シートを、上記と同様にして作製された実施例1、3と比較例1~3のそれぞれの固体電解質層の積層体の一方面に積層し、60℃の温度で加圧して圧着することにより、正極層と固体電解質層の積層体を形成した。固体電解質層の積層体の反対側の他方面に、上記と同様にして2枚の電極シートを圧着することにより、実施例1、3と比較例1~3のそれぞれの全固体電池の積層体を形成した。ここで、正極層を構成する電極シートと負極層を構成する電極シートの枚数に違いがある理由は、LVPを正極活物質として用いた場合と負極活物質として用いた場合において、LVPの1グラム当たりの容量が約2倍異なることを考慮したためである。
 得られた実施例1、3と比較例1~3のそれぞれの全固体電池の積層体を空気雰囲気中にて500℃の温度で熱処理し、高分子材料の除去を行った(第1焼成工程)。その後、窒素ガス雰囲気中にて700℃の温度で熱処理して積層体を焼成することにより、焼成体としての全固体電池積層体10を得た(第2焼成工程)。
 <全固体電池の評価>
 得られた実施例1、3と比較例1~3のそれぞれの全固体電池積層体10の破断面を走査型電子顕微鏡で観察した。電極層と固体電解質層の断面を走査型電子顕微鏡で観察した写真を図2に示す。図2に示すように、比較例1~3では固体電解質層に緻密な層の存在が確認されないのに対し、実施例1、3では、固体電解質層が、中央部に形成された多孔質(高い空隙率)の第1固体電解質層と、電極層の側に形成された緻密な(低い空隙率)第2固体電解質層とからなることが確認された。
 得られた実施例1、3と比較例1~3のそれぞれの全固体電池積層体10を100℃の温度で乾燥し、水分を除去した後、2032型コイン型電池に封止して全固体電池を作製した。
 実施例1、3と比較例1、3のそれぞれの全固体電池を用いて、0~3Vの電圧範囲で20μA/cm2の電流密度で定電流定電圧充放電を実施した。その結果、得られた各全固体電池の放電特性を図3に示す。図3から、実施例3の全固体電池は、比較例1の全固体電池に比べて、過電圧が小さく、内部抵抗が低いことが確認された。
 実施例3と比較例2の全固体電池を用いて、0~3Vの電圧範囲で20μA/cm2の電流密度で充放電サイクル試験を実施した。その結果、得られた充放電サイクル数に対する放電容量維持率の変化を図4に示す。図4から、比較例2の全固体電池では、あるサイクル数から急激な放電容量の低下が見られるのに対して、実施例3の全固体電池では安定した充放電サイクル特性が得られることが確認された。
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
 放電容量を増大させ、充放電サイクル特性を向上させることができるので、本発明は全固体電池の製造に特に有用である。
 10:全固体電池積層体、11:正極層、12:負極層、13:第1固体電解質層、14:第2固体電解質層。
                                                                                

Claims (10)

  1.  正極層または負極層の少なくともいずれか一方の電極層と、
     前記電極層に積層された固体電解質層と、を備え、
     前記固体電解質層が、第1の空隙率を有する第1の固体電解質部分と、前記第1の空隙率よりも低い第2の空隙率を有する第2の固体電解質部分とを含み、
     前記第2の固体電解質部分が、前記第1の固体電解質部分よりも前記電極層に近い領域に存在する、全固体電池。
  2.  前記第1の固体電解質部分が前記固体電解質層の中央の領域に存在し、少なくとも前記第2の固体電解質部分の一部が前記電極層から50μm以下隔てた領域に存在する、請求項1に記載の全固体電池。
  3.  前記第2の空隙率が10体積%以下である、請求項1または請求項2に記載の全固体電池。
  4.  前記第1の空隙率が10体積%を超え40体積%以下、前記第2の空隙率が0体積%を超え10体積%以下である、請求項1から請求項3までのいずれか1項に記載の全固体電池。
  5.  前記第1の固体電解質部分と前記第2の固体電解質部分に含まれる固体電解質成分が、リチウム含有リン酸化合物を含む、請求項1から請求項4までのいずれか1項に記載の全固体電池。
  6.  前記固体電解質成分が、ナシコン型構造を有するリチウム含有リン酸化合物を含む、請求項5に記載の全固体電池。
  7.  前記固体電解質成分が、Lixy(PO43(化学式中、xは1≦x≦2、yは1≦y≦2の範囲内の数値であり、MはTi、Ge、Al、GaおよびZrからなる群より選ばれた1種以上の元素を含む)で表わされるリチウム含有リン酸化合物を含む、請求項6に記載の全固体電池。
  8.  前記第2の固体電解質部分に含まれる固体電解質成分が、前記第1の固体電解質部分に含まれる固体電解質成分よりも高いリチウム含有比率を有するリチウム含有リン酸化合物を含む、請求項6または請求項7に記載の全固体電池。
  9.  前記第2の固体電解質部分が、焼結助剤を含む、請求項1から請求項8までのいずれか1項に記載の全固体電池。
  10.  前記焼結助剤が、Li2O、Li2CO3、Li2SiO3、Li4SiO4、LiBO2、Li247、Li2GeO3、LiNO3、LiAlO2、LiPO3、Li3PO4、Mg3(PO42、Ca3(PO42、Ba3(PO42、Sr3(PO42、LiMgPO4、LiCaPO4、LiBaPO4、および、LiSrPO4からなる群より選ばれた1種の化合物を含む、請求項9に記載の全固体電池。

                                                                                    
PCT/JP2013/063351 2012-05-24 2013-05-14 全固体電池 WO2013175993A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014516757A JP5910737B2 (ja) 2012-05-24 2013-05-14 全固体電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012118912 2012-05-24
JP2012-118912 2012-05-24

Publications (1)

Publication Number Publication Date
WO2013175993A1 true WO2013175993A1 (ja) 2013-11-28

Family

ID=49623687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063351 WO2013175993A1 (ja) 2012-05-24 2013-05-14 全固体電池

Country Status (2)

Country Link
JP (1) JP5910737B2 (ja)
WO (1) WO2013175993A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168018A (ja) * 2013-02-28 2014-09-11 Kyocera Corp 全固体型電気二重層コンデンサ
JP2016001595A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 リチウムイオン二次電池
WO2016031942A1 (ja) * 2014-08-29 2016-03-03 国立研究開発法人産業技術総合研究所 電解質シート及びその製造方法
WO2017018217A1 (ja) * 2015-07-29 2017-02-02 セントラル硝子株式会社 ガーネット型酸化物焼結体及びその製造方法
WO2018025595A1 (ja) * 2016-08-02 2018-02-08 日本碍子株式会社 全固体リチウム電池の使用方法
WO2018025594A1 (ja) * 2016-08-02 2018-02-08 日本碍子株式会社 全固体リチウム電池
WO2018123479A1 (ja) * 2016-12-27 2018-07-05 日本碍子株式会社 リチウムイオン電池及びその製造方法
JP2018166020A (ja) * 2017-03-28 2018-10-25 Fdk株式会社 全固体電池、および全固体電池の製造方法
DE102018102387B3 (de) 2018-02-02 2019-06-27 Schott Ag Glaskeramik mit ionenleitender Restglasphase und Verfahren zu ihrer Herstellung
JP2020077571A (ja) * 2018-11-09 2020-05-21 株式会社豊田中央研究所 複合構造体、リチウム電池及び複合構造体の製造方法
JP2020107594A (ja) * 2018-03-30 2020-07-09 富士フイルム株式会社 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池、並びに、これらの製造方法
WO2020184476A1 (ja) * 2019-03-08 2020-09-17 Tdk株式会社 全固体二次電池
WO2021079698A1 (ja) * 2019-10-23 2021-04-29 Tdk株式会社 全固体電池
WO2021090774A1 (ja) * 2019-11-07 2021-05-14 Tdk株式会社 全固体電池
WO2021124851A1 (ja) * 2019-12-17 2021-06-24 Tdk株式会社 固体電解質及び全固体電池
WO2021124849A1 (ja) * 2019-12-17 2021-06-24 Tdk株式会社 固体電解質及び全固体電池
WO2021187494A1 (ja) * 2020-03-17 2021-09-23 株式会社村田製作所 固体電池
DE112019006390T5 (de) 2018-12-25 2021-11-11 Tdk Corporation Festkörperbatterie
DE112020005159T5 (de) 2019-10-23 2022-07-14 Tdk Corporation Festkörperakkumulator
US11424512B2 (en) 2018-11-02 2022-08-23 Samsung Electronics Co., Ltd. All-solid secondary battery and method of manufacturing the same
WO2023074060A1 (ja) * 2021-10-26 2023-05-04 パナソニックIpマネジメント株式会社 電池
WO2023203986A1 (ja) * 2022-04-18 2023-10-26 株式会社オハラ リチウムイオン伝導性ガラスセラミックス前駆体
WO2023210188A1 (ja) * 2022-04-26 2023-11-02 太陽誘電株式会社 全固体電池およびその製造方法
WO2023214476A1 (ja) * 2022-05-02 2023-11-09 太陽誘電株式会社 全固体電池およびその製造方法
DE112022001618T5 (de) 2021-03-19 2024-01-04 Tdk Corporation Festkörper-sekundärbatterie

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6894947B2 (ja) 2019-07-31 2021-06-30 I&Tニューマテリアルズ株式会社 蓄電デバイスの電極の製造方法および蓄電デバイスの電極

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301959A (ja) * 2008-06-16 2009-12-24 Sumitomo Electric Ind Ltd 全固体リチウム二次電池
WO2012026480A1 (ja) * 2010-08-26 2012-03-01 住友電気工業株式会社 非水電解質電池、およびその製造方法
JP2012094482A (ja) * 2010-10-01 2012-05-17 Idemitsu Kosan Co Ltd 硫化物固体電解質、硫化物固体電解質シート及び全固体リチウム電池
WO2012063827A1 (ja) * 2010-11-09 2012-05-18 株式会社村田製作所 全固体電池用スラリー、全固体電池用グリーンシート、全固体電池、および全固体電池用スラリーの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301959A (ja) * 2008-06-16 2009-12-24 Sumitomo Electric Ind Ltd 全固体リチウム二次電池
WO2012026480A1 (ja) * 2010-08-26 2012-03-01 住友電気工業株式会社 非水電解質電池、およびその製造方法
JP2012094482A (ja) * 2010-10-01 2012-05-17 Idemitsu Kosan Co Ltd 硫化物固体電解質、硫化物固体電解質シート及び全固体リチウム電池
WO2012063827A1 (ja) * 2010-11-09 2012-05-18 株式会社村田製作所 全固体電池用スラリー、全固体電池用グリーンシート、全固体電池、および全固体電池用スラリーの製造方法

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168018A (ja) * 2013-02-28 2014-09-11 Kyocera Corp 全固体型電気二重層コンデンサ
JP2016001595A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 リチウムイオン二次電池
WO2016031942A1 (ja) * 2014-08-29 2016-03-03 国立研究開発法人産業技術総合研究所 電解質シート及びその製造方法
JPWO2016031942A1 (ja) * 2014-08-29 2017-08-17 国立研究開発法人産業技術総合研究所 電解質シート及びその製造方法
CN107848894A (zh) * 2015-07-29 2018-03-27 中央硝子株式会社 石榴石型氧化物烧结体和其制造方法
WO2017018217A1 (ja) * 2015-07-29 2017-02-02 セントラル硝子株式会社 ガーネット型酸化物焼結体及びその製造方法
US10361452B2 (en) 2015-07-29 2019-07-23 Central Glass Company, Limited Garnet-type oxide sintered body and method for producing same
WO2018025594A1 (ja) * 2016-08-02 2018-02-08 日本碍子株式会社 全固体リチウム電池
JPWO2018025595A1 (ja) * 2016-08-02 2019-05-30 日本碍子株式会社 全固体リチウム電池の使用方法
JPWO2018025594A1 (ja) * 2016-08-02 2019-05-30 日本碍子株式会社 全固体リチウム電池
WO2018025595A1 (ja) * 2016-08-02 2018-02-08 日本碍子株式会社 全固体リチウム電池の使用方法
WO2018123479A1 (ja) * 2016-12-27 2018-07-05 日本碍子株式会社 リチウムイオン電池及びその製造方法
JP7009390B2 (ja) 2016-12-27 2022-01-25 日本碍子株式会社 リチウムイオン電池及びその製造方法
JPWO2018123479A1 (ja) * 2016-12-27 2019-10-31 日本碍子株式会社 リチウムイオン電池及びその製造方法
JP2018166020A (ja) * 2017-03-28 2018-10-25 Fdk株式会社 全固体電池、および全固体電池の製造方法
DE102018102387B3 (de) 2018-02-02 2019-06-27 Schott Ag Glaskeramik mit ionenleitender Restglasphase und Verfahren zu ihrer Herstellung
US11845688B2 (en) 2018-02-02 2023-12-19 Schott Ag Glass ceramic with ion-conducting residual glass phase and process for the production thereof
US11136261B2 (en) 2018-02-02 2021-10-05 Schott Ag Glass ceramic with ion-conducting residual glass phase and process for the production thereof
JP2020107594A (ja) * 2018-03-30 2020-07-09 富士フイルム株式会社 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池、並びに、これらの製造方法
US11424512B2 (en) 2018-11-02 2022-08-23 Samsung Electronics Co., Ltd. All-solid secondary battery and method of manufacturing the same
JP2020077571A (ja) * 2018-11-09 2020-05-21 株式会社豊田中央研究所 複合構造体、リチウム電池及び複合構造体の製造方法
DE112019006390T5 (de) 2018-12-25 2021-11-11 Tdk Corporation Festkörperbatterie
WO2020184476A1 (ja) * 2019-03-08 2020-09-17 Tdk株式会社 全固体二次電池
US12002925B2 (en) 2019-03-08 2024-06-04 Tdk Corporation Solid-state secondary battery
CN113544891B (zh) * 2019-03-08 2023-11-28 Tdk株式会社 全固体二次电池
DE112020001129T5 (de) 2019-03-08 2021-12-09 Tdk Corporation Festkörperakkumulator
CN113544891A (zh) * 2019-03-08 2021-10-22 Tdk株式会社 全固体二次电池
DE112020005152T5 (de) 2019-10-23 2022-07-14 TDK Corporation Festkörperakkumulator
CN114556618A (zh) * 2019-10-23 2022-05-27 Tdk株式会社 全固体电池
WO2021079698A1 (ja) * 2019-10-23 2021-04-29 Tdk株式会社 全固体電池
DE112020005159T5 (de) 2019-10-23 2022-07-14 Tdk Corporation Festkörperakkumulator
CN114556618B (zh) * 2019-10-23 2024-03-01 Tdk株式会社 全固体电池
WO2021090774A1 (ja) * 2019-11-07 2021-05-14 Tdk株式会社 全固体電池
WO2021124851A1 (ja) * 2019-12-17 2021-06-24 Tdk株式会社 固体電解質及び全固体電池
WO2021124849A1 (ja) * 2019-12-17 2021-06-24 Tdk株式会社 固体電解質及び全固体電池
JPWO2021187494A1 (ja) * 2020-03-17 2021-09-23
WO2021187494A1 (ja) * 2020-03-17 2021-09-23 株式会社村田製作所 固体電池
DE112022001618T5 (de) 2021-03-19 2024-01-04 Tdk Corporation Festkörper-sekundärbatterie
WO2023074060A1 (ja) * 2021-10-26 2023-05-04 パナソニックIpマネジメント株式会社 電池
WO2023203986A1 (ja) * 2022-04-18 2023-10-26 株式会社オハラ リチウムイオン伝導性ガラスセラミックス前駆体
WO2023210188A1 (ja) * 2022-04-26 2023-11-02 太陽誘電株式会社 全固体電池およびその製造方法
WO2023214476A1 (ja) * 2022-05-02 2023-11-09 太陽誘電株式会社 全固体電池およびその製造方法

Also Published As

Publication number Publication date
JPWO2013175993A1 (ja) 2016-01-12
JP5910737B2 (ja) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5910737B2 (ja) 全固体電池
US9368828B2 (en) All-solid battery and manufacturing method therefor
WO2013137224A1 (ja) 全固体電池およびその製造方法
JP5741689B2 (ja) 全固体電池およびその製造方法
WO2018123479A1 (ja) リチウムイオン電池及びその製造方法
JP5811191B2 (ja) 全固体電池およびその製造方法
JP5516749B2 (ja) 全固体電池およびその製造方法
JP6262129B2 (ja) 全固体電池およびその製造方法
JPWO2011132627A1 (ja) 全固体二次電池およびその製造方法
JP6197495B2 (ja) 全固体電池
JP5804208B2 (ja) 全固体電池、全固体電池用未焼成積層体、および全固体電池の製造方法
WO2013100002A1 (ja) 全固体電池およびその製造方法
WO2011111555A1 (ja) 全固体二次電池およびその製造方法
JP5556969B2 (ja) 全固体電池用積層成形体、全固体電池およびその製造方法
WO2012060402A1 (ja) 全固体電池およびその製造方法
JP5935892B2 (ja) 全固体電池
JP6264807B2 (ja) 全固体電池およびその製造方法
JP2015185290A (ja) 全固体電池及びその製造方法
WO2013035526A1 (ja) 全固体電池用積層成形体、全固体電池およびその製造方法
JP6003982B2 (ja) 全固体電池
WO2013133394A1 (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516757

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793598

Country of ref document: EP

Kind code of ref document: A1