JP5935892B2 - 全固体電池 - Google Patents

全固体電池 Download PDF

Info

Publication number
JP5935892B2
JP5935892B2 JP2014534244A JP2014534244A JP5935892B2 JP 5935892 B2 JP5935892 B2 JP 5935892B2 JP 2014534244 A JP2014534244 A JP 2014534244A JP 2014534244 A JP2014534244 A JP 2014534244A JP 5935892 B2 JP5935892 B2 JP 5935892B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
active material
solid
electrode active
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014534244A
Other languages
English (en)
Other versions
JPWO2014038311A1 (ja
Inventor
倍太 尾内
倍太 尾内
充 吉岡
充 吉岡
剛司 林
剛司 林
武郎 石倉
武郎 石倉
彰佑 伊藤
彰佑 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Application granted granted Critical
Publication of JP5935892B2 publication Critical patent/JP5935892B2/ja
Publication of JPWO2014038311A1 publication Critical patent/JPWO2014038311A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、全固体電池に関する。
近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させるための媒体として有機溶媒等の電解質(電解液)が従来から使用されている。
しかし、上記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質である。このため、電池の安全性をさらに高めることが求められている。
そこで、電池の安全性を高めるための一つの対策は、電解質として、電解液に代えて、固体電解質を用いることが提案されている。さらに、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成されている全固体電池の開発が進められている。
たとえば、特開2010−219069号公報(以下、特許文献1という)には、正極活物質を比較的大きな板状粒子化することにより、正極における活物質充填率を高くして、リチウムイオン2次電池の高容量化を図ることが可能な正極活物質の製造方法が開示されている。また、特許文献1には、上記の製造方法で得られた正極活物質が、液体の電解質を用いた場合に限定されず、無機固体、有機ポリマー、あるいはゲル状の電解質、すなわち固体電解質を用いた固体電池にも適用することが可能であることが記載されている。
また、たとえば、特開2011−198692号公報(以下、特許文献2という)には、正極層と負極層が固体電解質層を介して交互に積層した積層型の全固体型リチウムイオン二次電池が記載されている。この全固体型リチウムイオン二次電池は、正極層、負極層および固体電解質層のグリーンシートの積層体を焼成することによって製造される。また、特許文献2では、正極活物質としての酸化チタン、酸化ニオブ、酸化バナジウム等の種々の酸化物を焼成することによって正極層が形成される。
特開2010−219069号公報 特開2011−198692号公報
特許文献2に記載されているように焼成によって作製される全固体電池では、電極活物質へのイオンの供給、または、電極活物質からのイオンの放出を促進するためには、電極層内において電極活物質と固体電解質とが密接に接合して界面が形成されていることが重要である。
発明者らが検討を重ねた結果、電極層内において電極活物質と固体電解質とが密接に接合した全固体電池を得るためには、特許文献1に開示されているように板状粒子の正極活物質を用いただけでは不十分であり、また、特許文献2に開示されているように正極活物質としての酸化チタン、酸化ニオブ、酸化バナジウム等の酸化物を焼成するだけでは不十分であることがわかった。
そこで、本発明の目的は、電極層内において電極活物質と固体電解質とが密接に接合した界面を形成することによって、充放電特性を向上させることが可能な全固体電池を提供することである。
発明者らが上記の課題を解決するために種々検討を重ねた結果、固体電解質を含む固体電解質層と、固体電解質と棒状または帯状の形態を有する電極活物質とを含む電極層とを積層して焼成させると、電極層内において固体電解質と電極活物質との接触界面が増加し、固体電解質と電極活物質が焼成により密接に接合して界面が形成され、その界面での接合性を向上させることができ、充放電特性を向上させることができることを見出した。このような発明者らの知見に基づいて、本発明は以下の特徴を備えている。
本発明に従った全固体電池は、電極活物質と固体電解質とを含む、正極層または負極層の少なくともいずれか一方の電極層と、電極層に積層され、固体電解質を含む固体電解質層とを備える。電極活物質が、棒状または帯状の形態を有する。
本発明の全固体電池において、電極活物質が長辺と短辺を有し、短辺に対する長辺の比率は3以上であることが好ましい。
また、電極活物質の長辺は、電極層と固体電解質層の積層方向に対してほぼ直交する方向に配向していることが好ましい。
さらに、電極活物質は、チタンおよびニオブからなる群より選ばれた少なくとも一種の金属を含む酸化物であることが好ましい。
電極層において固体電解質が占める体積占有率は、22体積%以上56体積%以下であることが好ましい。
電極活物質は単斜晶の酸化ニオブであることが好ましい。
固体電解質は、リチウム含有リン酸化合物を含むことが好ましく、ナシコン型構造を有するリチウム含有リン酸化合物を含むことがより好ましい。
本発明によれば、電極層内において固体電解質と電極活物質との界面での接合性を向上させることができ、充放電特性を向上させることができる。
本発明の一つの実施形態として全固体電池積層体の断面構造を模式的に示す断面図である。 本発明の実施例と比較例で用いられた電極活物質材料を走査型電子顕微鏡で観察した写真である。 本発明の実施例と比較例で作製された電極‐固体電解質積層体の断面を走査型電子顕微鏡で観察した写真である。 本発明の実施例と比較例で作製された全固体電池の充放電曲線を示す図である。
図1に示すように、本発明の一つの実施の形態としての全固体電池積層体10は、正極層11、固体電解質層13、負極層12の順に積層された積層体で構成される。固体電解質層13の一方面に正極層11が配置され、固体電解質層13の一方面と反対側の他方面に負極層12が配置されている。いいかえれば、正極層11と負極層12とは、固体電解質層13を介して互いに対向する位置に設けられている。なお、正極層11と負極層12のそれぞれは、固体電解質と電極活物質を含む。固体電解質層13は固体電解質を含む。正極層11と負極層12のそれぞれは、電子導電材として、炭素、金属、酸化物等を含んでもよい。
上記のように構成された全固体電池積層体10において、正極層11または負極層12の少なくともいずれか一方の電極層が棒状または帯状の形態を有する電極活物質を含む。
このように構成することにより、良好な充放電特性を示す全固体電池を得ることができる。これは、正極層11または負極層12の少なくともいずれか一方の電極層の内部において固体電解質と電極活物質との界面での接合性を向上させることができ、充放電特性を向上させることができるものと考えられる。このような作用効果が得られる理由については、以下の発明者らの知見と考察に基づくものである。
全固体電池で用いられる固体電解質材料は、従来の2次電池で用いられてきた非水電解液等に比べてイオン伝導性に劣る。このため、全固体電池を充放電した場合に生ずる過電圧は、固体電解質材料の低いイオン伝導性に起因する高い内部抵抗が主な原因であると推定される。
しかしながら、焼成によって作製される全固体電池を充放電した場合、全固体電池の電極層の内部に存在する固体電解質材料の低いイオン伝導性から推定される内部抵抗に比べて、電極層が実際にはさらに高い内部抵抗を有することが発明者らによって明らかになった。これは、焼成により作製される全固体電池においては、固体電解質材料の低いイオン伝導性だけでは電極層の高い内部抵抗を十分には説明できないことを示唆している。
発明者はさらに検討を重ねた結果、電極層内においては、固体電解質材料と電極活物質材料との接触界面を増加させ、固体電解質材料と電極活物質材料とを焼成により密接に接合させて、固体電解質材料と電極活物質材料の間のイオンの授受を促進させるとともに、電極活物質内部でのイオンの移動を促進させることが、焼成により作製される全固体電池の充放電特性を向上させるために、極めて重要であることを見出した。
本発明によれば、棒状または帯状の形態、たとえば、柱状体または鱗片状体の異方性を有する形態で電極活物質材料を電極層に含ませることによって、充放電特性に優れた全固体電池を提供することができる。この効果が得られる理由は、以下のように推定される。
球状等の異方性を有しない電極活物質材料に対して、棒状または帯状の形態の異方性を有する電極活物質材料は、同じ体積の電極活物質材料より広い表面積を有する。このため、棒状または帯状の形態の電極活物質材料を電極層に含ませることによって、固体電解質材料と電極活物質材料との接触面積を大きくすることができるためと推定される。また、電極活物質材料の内部におけるイオン伝導路が、電極活物質材料の長辺方向に向かって確保されることによって、固体電解質材料と電極活物質材料の間のイオンの授受と、電極活物質内部でのイオンの移動が促進されるためと推定される。さらに、電極活物質材料の内部での電子伝導路が、電極活物質材料の長辺方向に向かって確保されることによって、電極層内部での電子の移動が促進されることも、全固体電池の充放電特性の向上に寄与するものと推定される。
なお、本発明において棒状または帯状の形態とは、電極活物質材料を構成する要素(粒子等)の形状を規定するものであり、具体的には、電極活物質材料の構成要素の外表面を直方体で囲んだときの直方体の最短辺の寸法に対する最長辺の寸法の比率、すなわちアスペクト比が1を超える異方性を有する形状で、かつ、電極活物質材料の構成要素の外形状が棒状または帯状、たとえば、柱状体または鱗片状体であることをいう。たとえば、電極活物質材料の構成要素の外形状が帯状体または鱗片状体の異方性を有する場合、最長辺が電極活物質材料の構成要素の長さに相当し、最短辺が電極活物質材料の構成要素の厚みに相当することが一般的である。最長辺と最短辺は、たとえば、走査型電子顕微鏡(SEM)を用いて電極活物質材料の構成要素を観察した像等から計測することができる。
電極活物質は、電極層と固体電解質層の積層方向に対してほぼ直交する方向(各層の面方向)に配向していることが好ましい。この場合、電極層の内部においてイオン伝導路と電子伝導路が、電極活物質材料の構成要素の長辺方向、すなわち電極層の面方向に向かって確保されることによって、電極層における面積電流密度の平均化が図られ、全固体電池の充放電特性を向上させることができるとともに、電極層に含まれる電極活物質材料を高密度に充填して、全固体電池の体積エネルギー密度を向上させることができる。
また、電極活物質が長辺と短辺を有し、短辺に対する長辺の比率は3以上であることが好ましい。この場合、電極層の内部においてイオン伝導路と電子伝導路が、電極活物質材料の構成要素の長辺方向、すなわち電極層の面方向に向かってより効果的に確保される。
さらに、電極活物質は、イオンを吸蔵し放出することができる材料であり、かつ焼成され得る材料であれば、特に限定されないが、チタンおよびニオブからなる群より選ばれた少なくとも一種の金属を含む酸化物であることが好ましい。特に、電極活物質は単斜晶の酸化ニオブであることが好ましい。
電極層において固体電解質が占める体積占有率は、22体積%以上56体積%以下であることが好ましい。この場合、電極層の内部において良好なイオン伝導路を確保することができる。
固体電解質層13に含められる固体電解質、あるいは、正極層11または負極層12の少なくともいずれか一方の電極層に含められる固体電解質は、リチウム含有リン酸化合物を含むことが好ましい。
固体電解質層13に含められる固体電解質としてのリチウム含有リン酸化合物、あるいは、正極層11または負極層12に含められる固体電解質としてのリチウム含有リン酸化合物は、ナシコン型構造を有するリチウム含有リン酸化合物を用いることができる。ナシコン型構造を有するリチウム含有リン酸化合物は、化学式Lixy(PO43(化学式中、xは1≦x≦2、yは1≦y≦2の範囲内の数値であり、MはTi、Ge、Al、GaおよびZrからなる群より選ばれた1種以上の元素を含む)で表わされ、たとえば、Li1.5Al0.5Ti1.5(PO43等である。この場合、上記化学式においてPの一部をB、Si等で置換してもよい。たとえば、Li1.5Al0.5Ge1.5(PO43とLi1.2Al0.2Ti1.8(PO43等の、ナシコン型構造を有するリチウム含有リン酸化合物の異なる組成を有する2つ以上の化合物を混合した混合物を用いてもよい。
また、上記の固体電解質に用いられるナシコン型構造を有するリチウム含有リン酸化合物としては、ナシコン型構造を有するリチウム含有リン酸化合物の結晶相を含むもの、または、熱処理によりナシコン型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスを用いてもよい。
なお、上記の固体電解質に用いられる材料としては、ナシコン型構造を有するリチウム含有リン酸化合物以外に、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いることが可能である。このような材料として、たとえば、リチウム酸素酸塩、および、これらの誘導体を挙げることができる。また、リン酸リチウム(Li3PO4)等のLi‐P‐O系化合物、リン酸リチウムに窒素を混ぜたLIPON(LiPO4-xx)、Li4SiO4等のLi‐Si‐O系化合物、Li‐P‐Si‐O系化合物、Li‐V‐Si‐O系化合物、La0.51Li0.35TiO2.94、La0.55Li0.35TiO3、Li3xLa2/3-xTiO3等のぺロブスカイト型構造を有する化合物、Li7La3Zr212等をLi、La、Zrを有するガーネット型構造を有する化合物、等を挙げることができる。
正極層11に含められる正極活物質として上記のチタンおよびニオブからなる群より選ばれた少なくとも一種の金属を含む酸化物が用いられる場合には、負極層12に含められる負極活物質としては、MOx(MはTi、Si、Sn、Cr、Fe、NbおよびMoからなる群より選ばれた少なくとも1種以上の元素を含む、xは0.9≦x≦2.0の範囲内の数値である)で表わされる組成を有する化合物を用いることができる。たとえば、TiO2とSiO2、等の異なる元素Mを含むMOxで表わされる組成を有する2つ以上の活物質を混合した混合物を用いてもよい。また、負極活物質としては、黒鉛-リチウム化合物、Li‐Al等のリチウム合金、Li32(PO43、Li3Fe2(PO43、Li4Ti512等の酸化物、等を用いることができる。なお、負極層12は、金属リチウムから形成されてもよい。
負極層12に含められる負極活物質として上記のチタンおよびニオブからなる群より選ばれた少なくとも一種の金属を含む酸化物が用いられる場合には、正極層11に含められる正極活物質としては、Li32(PO43等のナシコン型構造を有するリチウム含有リン酸化合物、LiFePO4、LiMnPO4等のオリビン型構造を有するリチウム含有リン酸化合物、LiCoO2、LiCo1/3Ni1/3Mn1/32等の層状化合物、LiMn24、LiNi0.5Mn1.54、Li4Ti512等のスピネル型構造を有するリチウム含有化合物を用いることができる。
本発明の全固体電池積層体10においては、固体電解質層13が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含み、正極層11または負極層12の少なくともいずれか一方が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含むことが好ましい。
上述のように構成された全固体電池積層体10を製造するために、本発明では、まず、正極層11または負極層12の少なくともいずれか一方の未焼成体である未焼成電極層と、固体電解質層13の未焼成体である未焼成固体電解質層とを作製する(未焼成層作製工程)。特に本発明では、上記のリチウム含有リン酸化合物を含む材料から、固体電解質層13の未焼成体である未焼成固体電解質層を作製し、上記のチタンおよびニオブからなる群より選ばれた少なくとも一種の金属を含む酸化物を含む材料と、上記のリチウム含有リン酸化合物を含む材料とから、電極層の未焼成体である未焼成電極層を作製する。その後、作製された未焼成電極層と未焼成固体電解質層とを積層して積層体を形成する(積層体形成工程)。そして、得られた積層体を焼成する(焼成工程)。焼成により、正極層11および/または負極層12と固体電解質層13とが接合される。最後に、焼成した積層体を、たとえばコインセル内に封止する。封止方法は特に限定されない。たとえば、焼成後の積層体を樹脂で封止してもよい。また、Al23等の絶縁性を有する絶縁体ペーストを積層体の周囲に塗布またはディップして、この絶縁ペーストを熱処理することにより封止してもよい。
なお、正極層11と負極層12から効率的に電流を引き出すため、正極層11と負極層12の上に炭素層、金属層、酸化物層等の集電体層を形成してもよい。集電体層の形成方法は、たとえば、スパッタリング法が挙げられる。また、金属ペーストを塗布またはディップして、この金属ペーストを熱処理してもよい。
積層体形成工程では、正極層11、固体電解質層13、および、負極層12の未焼成体を積層して単電池構造の未焼成積層体を形成することが好ましい。さらに、積層体形成工程において、集電体の未焼成体を介在させて、上記の単電池構造の積層体を複数個、積層して積層体を形成してもよい。この場合、単電池構造の積層体を複数個、電気的に直列、または並列に積層してもよい。
上記の未焼成電極層と未焼成固体電解質層を形成する方法は特に限定されないが、グリーンシートを形成するためにドクターブレード法、ダイコーター、コンマコーター等、または、印刷層を形成するためにスクリーン印刷等を使用することができる。上記の未焼成電極層と未焼成固体電解質層を積層する方法は特に限定されないが、熱間等方圧プレス、冷間等方圧プレス、静水圧プレス等を使用して未焼成電極層と未焼成固体電解質層を積層することができる。
グリーンシートまたは印刷層を形成するためのスラリーは、有機材料を溶剤に溶解した有機ビヒクルと、(正極活物質および固体電解質、負極活物質および固体電解質、または、固体電解質)とを湿式混合することによって作製することができる。湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。グリーンシートまたは印刷層を成形するためのスラリーに含まれる有機材料は特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、アクリル樹脂、ウレタン樹脂等を用いることができる。
スラリーは可塑剤を含んでもよい。可塑剤の種類は特に限定されないが、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸エステル等を使用してもよい。
焼成工程では、雰囲気は特に限定されないが、電極活物質に含まれる遷移金属の価数が変化しない条件で行うことが好ましい。焼成温度は400℃以上1000℃以下であることが好ましい。
次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。
以下、電極活物質として、二酸化チタン(TiO2)粉末、五酸化ニオブ(Nb25)粉末を用いて作製した全固体電池の実施例と比較例について説明する。
まず、実施例と比較例の全固体電池に用いられる電極活物質を以下のようにして評価した。
<電極活物質の評価>
電極活物質として、実施例1では各粒子が鱗片状体でアナターゼ型結晶構造を有する二酸化チタン粉末、実施例2では各粒子が柱状体で単斜晶の結晶構造を有する五酸化ニオブ粉末、比較例1では各粒子が球状体でアナターゼ型結晶構造を有する二酸化チタン粉末、比較例2では各粒子が略立方体で単斜晶の結晶構造を有する五酸化ニオブ粉末を用いた。走査型電子顕微鏡(SEM)で各粉末を観察した写真を図2に示す。各粉末の写真において、粒子の長辺と短辺の寸法を計測して、アスペクト比(=長辺/短辺)を算出した。アスペクト比は、実施例1では約30、実施例2では約10、比較例1では約1、比較例2では約1であった。なお、粒子の長辺寸法は、実施例1では約25μm、実施例2では約5μmであった。
次に、実施例と比較例の全固体電池を作製するために、以下のようにして、電極シートと固体電解質シートを作製した。
<電極シート、固体電解質シートの作製>
固体電解質として、ナシコン型のリチウム含有リン酸化合物の一例であるLi1.4Al0.4Ge1.6(PO43のガラス粉末を準備した。電極活物質と固体電解質と炭素とを30:60:10の重量比率で混合することにより、実施例1と比較例1の電極材料の主材を調製した。電極活物質と固体電解質と炭素とを70:23:7の重量比率で混合することにより、実施例2と比較例2の電極材料の主材を作製した。
上記で得られた各電極材料の主材とポリアセタール樹脂とエタノールとを85:15:140の重量比率で混合することにより、実施例1、2と比較例1、2の電極スラリーを作製した。
上記で得られた固体電解質とポリアセタール樹脂とエタノールとを85:15:140の重量比率で混合することにより、実施例1、2と比較例1、2の固体電解質スラリーを作製した。
得られた実施例1と比較例1、2の電極スラリー、および、実施例1、2と比較例1、2の固体電解質スラリーのそれぞれを、ドクターブレード法により厚みが10μmのグリーンシートに成形し、一辺が25mmの正方形状に切断することにより、実施例1と比較例1、2の電極シート、および、実施例1、2と比較例1、2の固体電解質シートを作製した。実施例2の電極スラリーをドクターブレード法により厚みが5μmのグリーンシートに成形し、一辺が25mmの正方形状に切断することにより、実施例2の電極シートを作製した。
なお、実施例1では、電極スラリーに含まれる電極活物質粒子の長辺寸法は約25μmであり、電極シートの厚みが10μmであるので、電極活物質粒子の長辺は、電極シート内で厚み方向に配向することが抑制され、面方向に配向した状態になる。実施例2では、電極スラリーに含まれる電極活物質粒子の長辺寸法は約5μmであり、電極シートの厚みが5μmであるので、電極活物質粒子の長辺は、電極シート内で厚み方向に配向することが抑制され、面方向に配向した状態になる。
以上のようにして得られた電極シートおよび固体電解質シートを用いて、実施例1、2と比較例1、2の全固体電池を作製した。
<電極−電解質積層体の作製>
固体電解質シートを8枚積層することにより形成された固体電解質層の片面上に、電極シートを10枚(実施例2では20枚)積層して、一辺が10mmの正方形状に切断し、80℃の温度で1トンの圧力を加えて熱圧着することにより、成形体としての電極−電解質積層体を作製した。
成形体としての電極−電解質積層体を2枚のアルミナ製のセラミックス板で挟んだ状態で1体積%の酸素ガスを含む窒素ガス雰囲気中にて500℃の温度で2時間焼成すること(焼成工程1)により、ポリアセタール樹脂の除去を行った後、窒素ガス雰囲気中にて700℃の温度で2時間焼成すること(焼成工程2)により、電極層と固体電解質層を接合した。このようにして焼成体としての電極‐電解質積層体を作製した。
<電極層の評価>
得られた実施例1、2と比較例1、2の電極‐電解質積層体の断面を、走査型電子顕微鏡(SEM)を用いて観察した。図3に本発明の実施例1、2と比較例1、2で作製された電極‐固体電解質積層体の断面を走査型電子顕微鏡(SEM)で観察した写真を示す。なお、実施例1では電極‐固体電解質積層体の拡大した断面も示す。
図3に示す各写真にいおいて、上下方向が積層方向であり、写真の上側が電極層側、下側が固体電解質層側である。
図3に示すように、比較例1では、球状体の電極活物質材料である二酸化チタンと固体電解質材料とがランダムに焼結された状態であり、積層方向において、あるいは、積層方向に対して垂直な方向(焼成体の面方向)において、特に電極活物質材料の配向等は見られなかった。
実施例1では、鱗片状体の異方性電極活物質材料である二酸化チタンが積層方向に対して垂直方向に配向して固体電解質材料と焼結された状態であった。
比較例2では、略立方体形状の電極活物質材料である五酸化ニオブと固体電解質材料とがランダムに焼結された状態であり、積層方向において、あるいは、積層方向に対して垂直な方向において、特に電極活物質材料の配向等は見られなかった。
実施例2では、柱状体の異方性電極活物質材料である五酸化ニオブが積層方向に対して垂直な方向に配向して固体電解質材料と焼結された状態であった。
一方、実施例1、2と比較例1、2の電極層に占める固体電解質材料の体積占有率を下式で算出し、その算出値を以下の表1に示す。
(電極層に占める固体電解質材料の体積占有率)
=(電極層における固体電解質材料の体積)÷(電極層の体積)
=(電極層における固体電解質材料の重量)÷(固体電解質材料の比重)÷(電極層の体積)
下記の表1から、実施例1、2と比較例1、2の電極層に占める固体電解質材料の体積占有率が22〜56体積%であることがわかる。
<全固体電池の作製>
焼成体としての電極‐電解質積層体を100℃の温度で乾燥することにより、水分を除去した後、電極側の面にスパッタリングによって集電体層として白金(Pt)層を形成した。対極としての金属リチウム板の上にポリメタクリル酸メチル樹脂(PMMA)ゲル電解質を塗布し、この塗布面に電解質側の面が接触するように、焼成体としての電極‐電解質積層体と金属リチウム板とを積層し、2032型のコインセルで封止して、実施例1、2と比較例1、2の全固体電池を作製した。
<全固体電池の評価>
得られた実施例1、2と比較例1、2の全固体電池の特性を以下のようにして評価した。なお、上記の電池の評価では、作用極としての電極層を構成する電極活物質へのリチウム挿入によって電位が下降することを充電、対極としての金属リチウム板からのリチウム脱離によって電位が上昇することを放電と定義する。
全固体電池を100μAの電流で1.4Vの電圧まで充電した後、1.4Vの電圧で5時間保持し、電圧値が安定するまで数時間放置した。その後、100μAの電流で3.0Vの電圧まで放電した後、3.0Vの電圧で5時間保持し、電圧値が安定するまで数時間放置した。このような充放電サイクル試験を2サイクル実施した。ここで、100μAは、電極層に含まれる電極活物質材料の重量に対して約0.1Cの電流値に相当する。
その結果、いずれの全固体電池も問題なく、充放電動作することが確認された。得られた実施例1、2と比較例1、2の全固体電池の2サイクル目の充放電曲線を図4に示す。
図4(A)から、電極活物質粒子が球状体である比較例1の全固体電池に対し、電極活物質粒子が鱗片状体である実施例1の全固体電池は、充電と放電の過電圧が小さく、充放電特性に優れていることがわかる。図4(B)から、電極活物質粒子が球状体である比較例2の全固体電池に対し、電極活物質粒子が柱状体である実施例2の全固体電池も、同様に充電と放電の過電圧が小さく、充放電特性に優れていることがわかる。
また、図4に示される各全固体電池の放電容量の約50%、すなわち、図4(A)にて矢印で示されるように実施例1と比較例1の全固体電池では75mAh/g、図4(B)にて矢印で示されるように実施例2と比較例2の全固体電池では100mAh/gにおける放電電圧(放電平坦電圧)を下記の表1に示す。
上記の表1から、実施例1の放電平坦電位が比較例1に比べて低く、実施例2の放電平坦電位が比較例2に比べて低いので、球状体の電極活物質を用いる場合に比べて、鱗片状体または柱状体の電極活物質粒子を用いると、放電電圧を高めることができ、放電特性に優れていることがわかる。
今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
電極層内において固体電解質と電極活物質との界面での接合性を向上させることができ、充放電特性を向上させることができるので、本発明は全固体電池の製造に特に有用である。
10:全固体電池積層体、11:正極層、12:負極層、13:固体電解質層。

Claims (7)

  1. 電極活物質と固体電解質とを含む、正極層または負極層の少なくともいずれか一方の電極層と、
    前記電極層に積層され、固体電解質を含む固体電解質層と、を備え、
    前記電極活物質が、棒状または帯状の形態を有し、
    前記電極活物質の長辺が、前記電極層と前記固体電解質層の積層方向に対してほぼ直交する方向に配向しており、
    前記電極活物質が前記電極層の固体電解質と焼結された状態であり、
    前記電極層と前記固体電解質層とが接合された焼成体である、全固体電池。
  2. 前記電極活物質が長辺と短辺を有し、前記短辺に対する前記長辺の比率が3以上である、請求項1に記載の全固体電池。
  3. 前記電極活物質が、チタンおよびニオブからなる群より選ばれた少なくとも一種の金属を含む酸化物である、請求項1または2に記載の全固体電池。
  4. 前記電極層において前記固体電解質が占める体積占有率が、22体積%以上56体積%以下である、請求項1〜3のいずれか1項に記載の全固体電池。
  5. 前記電極活物質が単斜晶の酸化ニオブである、請求項1〜4のいずれか1項に記載の全固体電池。
  6. 前記固体電解質層に含まれる固体電解質がリチウム含有リン酸化合物を含む、請求項1〜5のいずれか1項に記載の全固体電池。
  7. 前記固体電解質層に含まれる固体電解質が、ナシコン型構造を有するリチウム含有リン酸化合物を含む、請求項6に記載の全固体電池。
JP2014534244A 2012-09-04 2013-07-30 全固体電池 Active JP5935892B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012193810 2012-09-04
JP2012193810 2012-09-04
PCT/JP2013/070530 WO2014038311A1 (ja) 2012-09-04 2013-07-30 全固体電池

Publications (2)

Publication Number Publication Date
JP5935892B2 true JP5935892B2 (ja) 2016-06-15
JPWO2014038311A1 JPWO2014038311A1 (ja) 2016-08-08

Family

ID=50236929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014534244A Active JP5935892B2 (ja) 2012-09-04 2013-07-30 全固体電池

Country Status (2)

Country Link
JP (1) JP5935892B2 (ja)
WO (1) WO2014038311A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799836A (zh) * 2016-09-07 2018-03-13 中兴通讯股份有限公司 固态电池制作方法、固态电池及终端
EP3453785A1 (en) * 2017-09-07 2019-03-13 Kabushiki Kaisha Toshiba Membrane electrode assembly, electrochemical cell, and electrochemical device
JP7067498B2 (ja) * 2019-01-24 2022-05-16 トヨタ自動車株式会社 負極
US12107260B2 (en) 2020-06-29 2024-10-01 Taiyo Yuden Co., Ltd. All solid battery and detecting method of end point voltage of the same
CN118765450A (zh) * 2022-03-10 2024-10-11 松下知识产权经营株式会社 全固态电池及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133313A (ja) * 1998-10-26 2000-05-12 Matsushita Electric Ind Co Ltd 非水電解液電池
JP2000223111A (ja) * 1999-01-28 2000-08-11 Kyocera Corp 電気化学素子
JP2008262829A (ja) * 2007-04-12 2008-10-30 Toyota Motor Corp 電極材料の製造方法、電極材料および電池
JP2009238636A (ja) * 2008-03-27 2009-10-15 Toyota Motor Corp 正極層形成用材料
WO2012008422A1 (ja) * 2010-07-12 2012-01-19 株式会社 村田製作所 全固体電池
JP2014053178A (ja) * 2012-09-07 2014-03-20 Ngk Insulators Ltd 全固体電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133313A (ja) * 1998-10-26 2000-05-12 Matsushita Electric Ind Co Ltd 非水電解液電池
JP2000223111A (ja) * 1999-01-28 2000-08-11 Kyocera Corp 電気化学素子
JP2008262829A (ja) * 2007-04-12 2008-10-30 Toyota Motor Corp 電極材料の製造方法、電極材料および電池
JP2009238636A (ja) * 2008-03-27 2009-10-15 Toyota Motor Corp 正極層形成用材料
WO2012008422A1 (ja) * 2010-07-12 2012-01-19 株式会社 村田製作所 全固体電池
JP2014053178A (ja) * 2012-09-07 2014-03-20 Ngk Insulators Ltd 全固体電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015017319; A. E. Semenov et al.: 'In Situ Deposition and Ultrahigh Vacuum STM/AFM Study of V2O5/Li3PO4 Interface in a Rechargeable Lit' Journal of The Electrochemical Society Volume 148, Issue 11, 20010928, pp.A1239-A1246, The Electrochemical Society, Inc. *

Also Published As

Publication number Publication date
WO2014038311A1 (ja) 2014-03-13
JPWO2014038311A1 (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP5910737B2 (ja) 全固体電池
JP5742940B2 (ja) 全固体電池およびその製造方法
JP5741689B2 (ja) 全固体電池およびその製造方法
WO2013137224A1 (ja) 全固体電池およびその製造方法
WO2012008422A1 (ja) 全固体電池
JP6262129B2 (ja) 全固体電池およびその製造方法
JP5811191B2 (ja) 全固体電池およびその製造方法
JP6248498B2 (ja) 全固体電池およびその製造方法
JP5516749B2 (ja) 全固体電池およびその製造方法
JP6197495B2 (ja) 全固体電池
JP5935892B2 (ja) 全固体電池
JP5804208B2 (ja) 全固体電池、全固体電池用未焼成積層体、および全固体電池の製造方法
WO2013100002A1 (ja) 全固体電池およびその製造方法
JP5556969B2 (ja) 全固体電池用積層成形体、全固体電池およびその製造方法
WO2012060349A1 (ja) 全固体電池
WO2012060402A1 (ja) 全固体電池およびその製造方法
JP6264807B2 (ja) 全固体電池およびその製造方法
WO2013035526A1 (ja) 全固体電池用積層成形体、全固体電池およびその製造方法
JP6003982B2 (ja) 全固体電池
WO2013133394A1 (ja) 全固体電池

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5935892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150