WO2012008422A1 - 全固体電池 - Google Patents

全固体電池 Download PDF

Info

Publication number
WO2012008422A1
WO2012008422A1 PCT/JP2011/065831 JP2011065831W WO2012008422A1 WO 2012008422 A1 WO2012008422 A1 WO 2012008422A1 JP 2011065831 W JP2011065831 W JP 2011065831W WO 2012008422 A1 WO2012008422 A1 WO 2012008422A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solid
electrode layer
lithium
state battery
Prior art date
Application number
PCT/JP2011/065831
Other languages
English (en)
French (fr)
Inventor
充 吉岡
倍太 尾内
剛司 林
邦雄 西田
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to CN201180019563XA priority Critical patent/CN102844929A/zh
Priority to KR1020137003528A priority patent/KR20130066661A/ko
Priority to JP2012524547A priority patent/JPWO2012008422A1/ja
Publication of WO2012008422A1 publication Critical patent/WO2012008422A1/ja
Priority to US13/713,028 priority patent/US20130273437A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention generally relates to an all-solid battery, and specifically includes a solid electrolyte layer, a positive electrode layer, and a negative electrode layer, and at least one of the positive electrode layer or the negative electrode layer and the solid electrolyte layer are joined by firing.
  • the present invention relates to an all-solid-state battery.
  • Patent Document 1 proposes an all-solid-state battery in which a non-combustible solid electrolyte is used and all the constituent elements are made of solid.
  • Patent Document 1 discloses a method for manufacturing an all-solid battery by laminating and firing an electrode layer containing an electrode active material and a solid electrolyte layer containing a solid electrolyte.
  • a metal oxide not containing lithium is used as the electrode active material for the negative electrode, and a solid electrolyte not containing titanium is used for the negative electrode. It has been found that not only having a discharge capacity comparable to that when using an electrolytic solution, but also improving cycle stability. Based on such knowledge of the inventors, the present invention has the following features.
  • the metal oxide constituting the electrode active material of the negative electrode layer is titanium, silicon, tin, chromium, iron, molybdenum, niobium, nickel, manganese, cobalt, copper, tungsten, vanadium, And it is preferable to contain at least one element selected from the group consisting of ruthenium.
  • the solid electrolyte contained in the solid electrolyte layer contains a lithium-containing phosphate compound.
  • the lithium-containing phosphate compound contained in the solid electrolyte layer includes a lithium-containing phosphate compound having a NASICON structure.
  • the all-solid-state battery 10 includes a solid electrolyte layer 12 and a positive electrode layer 11 and a negative electrode layer 13 provided at positions facing each other with the solid electrolyte layer 12 interposed therebetween. At least one of the positive electrode layer 11 or the negative electrode layer 13 and the solid electrolyte layer 12 are joined by baking.
  • the negative electrode layer 13 includes an electrode active material made of a metal oxide containing no lithium and a solid electrolyte containing no titanium.
  • the electrode active contained in the negative electrode layer 13 is fired when a laminate including the positive electrode layer 11, the solid electrolyte layer 12, and the negative electrode layer 13 is fired. It is possible to produce an all-solid battery 10 having a discharge capacity comparable to that obtained when an electrolytic solution is used, without the material being altered.
  • the all solid state battery 10 of the present invention can exhibit the high capacity inherently possessed by the electrode active material, and the solid electrolyte does not decompose or react, and thus stably and repeatedly charge and discharge. It becomes possible.
  • the metal oxide constituting the electrode active material of the negative electrode layer 13 is titanium (Ti), silicon (Si), tin (Sn), chromium (Cr), iron (Fe). , Molybdenum (Mo), niobium (Nb), nickel (Ni), manganese (Mn), cobalt (Co), copper (Cu), tungsten (W), vanadium (V), and ruthenium (Ru) It is preferable to include at least one element selected from the above.
  • the metal oxide as an electrode active material for the negative electrode layer 13 an all solid state battery having a higher energy density can be obtained as the capacity density increases and the battery voltage increases.
  • anatase TiO 2 rutile TiO 2 , brookite TiO 2 , SiO, SnO, SnO 2 , Cr 2 O 3 , Fe 2 O 3 , MoO 2 , Nb 2 O 5 , NiO, MnO, CoO Cu 2 O, CuO, WO 2 , V 2 O 5 , RuO 2 are preferably used.
  • the electrode active material of the negative electrode layer 13 for example, a mixture of two or more compounds having a composition represented by MO x containing different elements M such as TiO 2 and SiO 2 may be used. Further, in the compound having the composition represented by MO x , a solid solution having a composition in which a part of the element M is substituted with a different M, or a composition in which a part of the element M is substituted with P, F, or the like may be used. . Further, in the compound having a composition represented by MO x , a conductive agent mainly composed of carbon may be coated on or supported on the surface of the compound.
  • the lithium-containing phosphoric acid compound having a NASICON structure used for the solid electrolyte contained in the negative electrode layer 13 may be a compound containing a crystal phase of a lithium-containing phosphate compound having a NASICON structure, or NASICON by heat treatment. You may use the glass which precipitates the crystal phase of the lithium containing phosphate compound which has a type
  • a material used for the solid electrolyte contained in the negative electrode layer 13 a material having ion conductivity and small enough to have negligible electronic conductivity is used in addition to the lithium-containing phosphate compound having a NASICON structure. It is possible. Examples of such a material include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof.
  • the solid electrolyte layer 12 preferably includes a lithium-containing phosphate compound as a solid electrolyte, and the lithium-containing phosphate compound preferably includes a lithium-containing phosphate compound having a NASICON structure.
  • Lithium-containing phosphoric acid compound having a NASICON-type structure the chemical formula Li x M y (PO 4) 3 ( Formula, x 1 ⁇ x ⁇ 3, y is a number in the range of 1 ⁇ y ⁇ 2, M Is one or more elements selected from the group consisting of Ge, Al, Ga, Zr, Fe and Nb). In this case, part of P in the above chemical formula may be substituted with B, Si, or the like.
  • the lithium-containing phosphate compound having a NASICON structure used in the solid electrolyte is a compound containing a crystal phase of a lithium-containing phosphate compound having a NASICON structure or a lithium-containing phosphate having a NASICON structure by heat treatment. You may use the glass which precipitates the crystal phase of a phosphoric acid compound.
  • Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4 ⁇ x N x ) in which nitrogen is introduced into lithium phosphate, Li—Si— such as Li 4 SiO 4 O-based compound, Li-P-Si-O-based compound, Li-V-Si-O-based compound, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 having a perovskite structure, Li 3x La 2/3 Examples include compounds such as -x TiO 3 , compounds having a garnet structure having Li, La, and Zr.
  • At least one of the positive electrode layer 11 or the negative electrode layer 13 and the solid electrolyte layer 12 are preferably joined by laminating a plurality of green sheets to form a laminate and firing the laminate. In this case, since at least one of the positive electrode layer 11 or the negative electrode layer 13 and the solid electrolyte layer 12 can be integrally fired and bonded, an all solid state battery can be manufactured at a lower cost.
  • the positive electrode layer 11 and the negative electrode layer 13 may contain a conductive agent in addition to the electrode active material.
  • a conductive agent examples include carbon materials and metal materials.
  • the all solid state battery 10 of the present invention is manufactured as follows as an example.
  • an electrode active material powder and a solid electrolyte powder are prepared.
  • each slurry of the solid electrolyte layer 12, the positive electrode layer 11, and the negative electrode layer 13 is prepared.
  • each slurry of the solid electrolyte layer 12, the positive electrode layer 11, and the negative electrode layer 13 is shape
  • the green sheet of the solid electrolyte layer 12, the positive electrode layer 11, and the negative electrode layer 13 is laminated
  • the laminate is fired.
  • the positive electrode layer 11, the negative electrode layer 13, and the solid electrolyte layer 12 are joined by baking.
  • the fired laminate is sealed, for example, in a coin cell.
  • the sealing method is not particularly limited. For example, you may seal the laminated body after baking with resin. Alternatively, an insulating paste such as Al 2 O 3 may be applied or dipped around the laminate, and the insulating paste may be heat-treated for sealing.
  • a conductive layer such as a metal layer may be formed on the positive electrode layer 11 and the negative electrode layer 13.
  • the method for forming the conductive layer include a sputtering method.
  • the metal paste may be applied or dipped and heat-treated.
  • the method for forming the green sheet is not particularly limited, but a die coater, a comma coater, screen printing, or the like can be used.
  • the method of laminating the green sheets is not particularly limited, but the green sheets can be laminated using a hot isostatic press (HIP), a cold isostatic press (CIP), a hydrostatic press (WIP), or the like. it can.
  • HIP hot isostatic press
  • CIP cold isostatic press
  • WIP hydrostatic press
  • a slurry for forming a green sheet is obtained by wet-mixing an organic vehicle in which a polymer material is dissolved in a solvent and a positive electrode active material powder, a negative electrode active material powder, a solid electrolyte powder, or a current collector material powder.
  • Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used.
  • a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
  • the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material.
  • Example shown below is an example, This invention is not limited to the following Example, It can change arbitrarily in the range which does not impair the effect of the all-solid-state battery of this invention.
  • Example 1 Preparation of electrode layer sheet and solid electrolyte layer sheet> First, in order to produce an all-solid battery, an electrode layer sheet and a solid electrolyte layer sheet were produced as follows.
  • an anatase type titanium oxide powder and a binder solution were mixed to prepare an electrode active material slurry.
  • a solid electrolyte slurry was prepared by mixing a glass powder of LAGP and a binder solution.
  • carbon slurry was produced by mixing carbon powder and a binder solution.
  • the binder solution was prepared by dissolving polyvinyl alcohol in an organic solvent.
  • the obtained electrode active material slurry, solid electrolyte slurry, and carbon slurry were mixed to prepare an electrode layer slurry.
  • the mixing ratio of LAGP glass powder, anatase-type titanium oxide powder and carbon powder was 45:45:10 by weight.
  • a laminate in which an electrode layer and a solid electrolyte layer were laminated was produced. Specifically, an electrode layer sheet cut into a circular shape with a diameter of 12 mm is laminated on one side of a solid electrolyte layer sheet cut into a circular shape with a diameter of 12 mm, and a pressure of 1 ton is applied at a temperature of 80 ° C. In addition, thermocompression bonding was performed.
  • this laminate was fired under the following conditions. First, polyvinyl alcohol was removed by baking at a temperature of 500 ° C. in an oxygen gas atmosphere. Then, the electrode layer and the solid electrolyte layer were joined by baking at a temperature of 600 ° C. in a nitriding gas atmosphere. And the water
  • a laminate and a metal lithium plate as a counter electrode were laminated.
  • a polymethyl methacrylate resin (hereinafter referred to as “PMMA”) gel compound was applied on a metal lithium plate prepared as a positive electrode.
  • PMMA polymethyl methacrylate resin
  • the laminated body and the metal lithium plate were laminated
  • the obtained all solid state battery was subjected to constant current and constant voltage charge / discharge at a current density of 50 ⁇ A / cm 2 in a voltage range of 1.4 to 3.0 V.
  • the discharge capacity at the first cycle was 138 mAh / g
  • the discharge capacity at the fifth cycle was 132 mAh / g
  • the cycle efficiency was 96%.
  • the electrode layer sheet was dried at a temperature of 100 ° C. to remove moisture. Then, the separator and the metal lithium plate of the positive electrode were stacked in order. Thereafter, the battery was fabricated by sealing with a 2032 type coin cell soaked with an organic electrolyte.
  • the obtained battery was subjected to constant current and constant voltage charge / discharge at a current density of 50 ⁇ A / cm 2 in a voltage range of 1.0 to 3.0 V. As a result, it was confirmed that charging / discharging was possible at a discharge capacity of about 150 mAh / g.
  • Example 2 In Example 2, instead of the anatase type titanium oxide (TiO 2 ) used as the electrode active material in Example 1, brookite type titanium oxide was used. The other production conditions were the same as in Example 1, and an all-solid battery was produced.
  • TiO 2 anatase type titanium oxide
  • Example 3 In Example 3, molybdenum dioxide (MoO 2 ) powder was used in place of the anatase-type titanium oxide (TiO 2 ) powder used as the electrode active material in Example 1. The other production conditions were the same as in Example 1, and an all-solid battery was produced.
  • MoO 2 molybdenum dioxide
  • the obtained all solid state battery was subjected to constant current and constant voltage charge / discharge at a current density of 50 ⁇ A / cm 2 in a voltage range of 1.4 to 3.0 V.
  • the discharge capacity at the first cycle was 200 mAh / g
  • the discharge capacity at the fifth cycle was 198 mAh / g
  • the cycle efficiency was 99%.
  • Example 4 In Example 3, instead of the anatase-type titanium oxide (TiO 2 ) powder used as the electrolytic active material in Example 1, chromium oxide (Cr 2 O 3 ) powder was used. The other production conditions were the same as in Example 1, and an all-solid battery was produced.
  • TiO 2 titanium oxide
  • Cr 2 O 3 chromium oxide
  • Example 5 In Example 4, tin dioxide (SnO 2 ) powder was used in place of the anatase-type titanium oxide (TiO 2 ) powder used as the electrode active material in Example 1. The other production conditions were the same as in Example 1, and an all-solid battery was produced.
  • silicon monoxide (SiO) powder as an electrode active material As an electrode active material, LAGP glass powder that precipitates a crystal phase of a lithium-containing phosphoric acid compound having a NASICON type structure as a solid electrolyte, and carbon powder as a conductive agent were prepared.
  • an electrode active material slurry was produced by mixing silicon monoxide powder and a binder solution. Also, a solid electrolyte slurry was prepared by mixing a glass powder of LAGP and a binder solution. Furthermore, carbon slurry was produced by mixing carbon powder and a binder solution.
  • the obtained electrode active material slurry, solid electrolyte slurry, and carbon slurry were mixed to prepare an electrode layer slurry.
  • the mixing ratio of silicon monoxide powder, LAGP glass powder and carbon powder was 45:45:10 by weight.
  • Each of the obtained electrode layer slurry and solid electrolyte slurry was molded by a doctor blade method to produce a molded body of an electrode layer sheet and a solid electrolyte layer sheet.
  • the thickness of the molded body was 50 ⁇ m.
  • a laminate in which an electrode layer and a solid electrolyte layer were laminated was produced.
  • an electrode layer sheet cut into a circular shape with a diameter of 12 mm is laminated on one side of a solid electrolyte layer sheet cut into a circular shape with a diameter of 12 mm, and a pressure of 1 ton at a temperature of 80 ° C. And thermocompression bonded.
  • this laminate was fired under the following conditions. First, polyvinyl alcohol was removed by baking at a temperature of 500 ° C. in an oxygen gas atmosphere. Then, the electrode layer and the solid electrolyte layer were joined by baking at a temperature of 600 ° C. in a nitriding gas atmosphere. And the water
  • a laminate and a metal lithium plate as a counter electrode were laminated.
  • the PMMA gel compound was apply
  • the laminated body and the metal lithium plate were laminated
  • the obtained laminated body was sealed with a 2032 type coin cell, and the all-solid-state battery was produced.
  • the obtained all solid state battery was subjected to constant current and constant voltage charge and discharge at a current density of 50 ⁇ A / cm 2 in a voltage range of 0.2 to 30 V.
  • the discharge capacity at the first cycle was 805 mAh / g
  • the discharge capacity at the fifth cycle was 773 mAh / g
  • the cycle efficiency was 96%.
  • a solid electrolyte slurry was prepared by mixing LATP glass powder and a binder solution.
  • the obtained all solid state battery was subjected to constant current and constant voltage charge and discharge at a current density of 50 ⁇ A / in a voltage range of 0.2 to 3.0 V.
  • the discharge capacity at the first cycle was 783 mAh / g
  • the discharge capacity at the fifth cycle was 420 mAh / g
  • the cycle efficiency was 54%.
  • a niobium pentoxide powder and a binder solution were mixed to prepare an electrode active material slurry.
  • the solid electrolyte slurry was produced by mixing the glass powder of LFZP, and a binder solution.
  • a solid electrolyte slurry was prepared by mixing LATP glass powder and a binder solution.
  • the obtained solid electrolyte slurry was mixed with the electrode active material slurry of Example 7 and a carbon slurry to prepare an electrode layer slurry.
  • the mixing ratio of niobium pentoxide powder, LATP glass powder, and carbon powder was 45:45:10 by weight.
  • Each of the obtained electrode layer slurry and solid electrolyte slurry was molded by a doctor blade method to produce a molded body of an electrode layer sheet and a solid electrolyte layer sheet.
  • the thickness of the molded body was 50 ⁇ m.
  • the obtained all solid state battery was subjected to constant current and constant voltage charging and discharging at a current density of 50 ⁇ A / cm 2 in a voltage range of 1.4 to 3.0 V.
  • the discharge capacity at the first cycle was 191 mAh / g
  • the discharge capacity at the fifth cycle was 131 mAh / g
  • the cycle efficiency was 69%.
  • Comparative Example 3 An all-solid battery was produced in the same manner as in Comparative Example 1 except that the anatase-type titanium oxide powder used in Example 1 was used as the electrode active material.
  • the obtained all solid state battery was subjected to constant current and constant voltage charging and discharging at a current density of 50 ⁇ A / cm 2 in a voltage range of 1.4 to 3.0 V.
  • the discharge capacity at the first cycle was 149 mAh / g
  • the discharge capacity at the fifth cycle was 99 mAh / g
  • the cycle efficiency was 66%.
  • Comparative Example 4 An all-solid-state battery was produced in the same manner as in Comparative Example 1 except that the molybdenum dioxide powder used in Example 3 was used as the electrode active material.
  • the obtained all solid state battery was subjected to constant current and constant voltage charging and discharging at a current density of 50 ⁇ A / cm 2 in a voltage range of 1.4 to 3.0 V.
  • the discharge capacity at the first cycle was 222 mAh / g
  • the discharge capacity at the fifth cycle was 148 mAh / g
  • the cycle efficiency was 67%.
  • the obtained all solid state battery was subjected to constant current and constant voltage charge and discharge at a current density of 50 ⁇ A / cm 2 in a voltage range of 0.2 to 3.0 V.
  • the discharge capacity at the first cycle was 1413 mAh / g
  • the discharge capacity at the fifth cycle was 820 mAh / g
  • the cycle efficiency was 58%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 電解液を用いた場合と同程度の放電容量を有するとともに、サイクル安定性を向上させることが可能な全固体電池を提供する。全固体電池(10)は、固体電解質層(12)と、固体電解質層(12)を介して互いに対向する位置に設けられた正極層(11)および負極層(13)とを備える。正極層(11)または負極層(13)の少なくとも一方と固体電解質層(12)とが焼成によって接合されている。負極層(13)が、リチウムを含有しない金属酸化物からなる電極活物質と、チタンを含有しない固体電解質とを含む。

Description

全固体電池
 本発明は、一般的には全固体電池に関し、特定的には、固体電解質層と正極層と負極層とを備え、正極層または負極層の少なくとも一方と固体電解質層とが焼成によって接合されている全固体電池に関する。
 近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として、電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させるための媒体として、有機溶媒等の電解質(電解液)が従来から使用されている。
 しかし、上記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質であるという問題がある。そのため、電解液に代えて固体電解質を用いることが提案されている。そして、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成されている全固体電池の開発が進められている。
 たとえば、特開2007‐5279号公報(以下、特許文献1という)には、不燃性の固体電解質を用いるとともに、すべての構成要素が固体で構成されている全固体電池が提案されている。特許文献1には、電極活物質を含む電極層と、固体電解質を含む固体電解質層を積層して焼成することによって、全固体電池を製造する方法が開示されている。
 また、たとえば、特開2009‐181921号公報(以下、特許文献2という)には、実施例1~4において、固体電解質としてLi1+x+yAlxTi2-xSiy3-y12(0≦x≦0.4、0<y≦0.6)(以下、LASTPという)、負極の電極活物質として酸化ケイ素、または、アナターゼ型の酸化チタンを用いて全固体電池を作製した例が記載されている。また、全固体電池の作製方法として、固体電解質、正極、負極のグリーンシートをドクターブレード法によって作製し、固体電解質グリーンシートの両面に正極および負極のグリーンシートを配置し、圧着して積層体を作製し、積層体をセッターで挟んで一体焼結することが記載されている。
特開2007‐5279号公報 特開2009‐181921号公報
 しかしながら、特許文献1に記載の方法では、積層体を焼成する際に電極層中の電極活物質が変質するため、電解液を用いた場合に比べて電池の放電容量が低下するという問題が生じていた。
 また、発明者らによれば、特許文献2に記載の全固体電池では、固体電解質としてチタンを含有するLASTP、負極の電極活物質としてリチウムを含有しない酸化ケイ素、または、酸化チタンを用いているので、電極活物質の充放電電位近傍で固体電解質が還元するということがわかった。その結果、固体電解質が分解、または反応すること等によって、負極のイオン伝導が低下することが発明者らによってわかった。したがって、特許文献2に記載の全固体電池では、電池の放電容量が安定せず、充放電を繰り返して行うと放電容量が低下する、すなわち、サイクル安定性に欠けるという問題が生じる。
 そこで、本発明の目的は、電解液を用いた場合と同程度の放電容量を有するとともに、サイクル安定性を向上させることが可能な全固体電池を提供することである。
 発明者らが上記の課題を解決するために種々検討を重ねた結果、負極の電極活物質としてリチウムを含有しない金属酸化物を用いるとともに、チタンを含有しない固体電解質を負極に用いて全固体電池を作製することによって、電解液を用いた場合と同程度の放電容量を有するだけでなく、サイクル安定性が向上することを見出した。このような発明者らの知見に基づいて、本発明は以下の特徴を備えている。
 本発明に従った全固体電池は、固体電解質層と、固体電解質層を介して互いに対向する位置に設けられた正極層および負極層とを備える。正極層または負極層の少なくとも一方と固体電解質層とが焼成によって接合されている。負極層が、リチウムを含有しない金属酸化物からなる電極活物質と、チタンを含有しない固体電解質とを含む。
 本発明の全固体電池において、負極層の電極活物質を構成する上記の金属酸化物が、チタン、シリコン、スズ、クロム、鉄、モリブデン、ニオブ、ニッケル、マンガン、コバルト、銅、タングステン、バナジウム、および、ルテニウムからなる群より選ばれた少なくとも一種の元素を含むことが好ましい。
 また、本発明の全固体電池において、負極層に含まれる固体電解質がリチウム含有リン酸化合物を含むことが好ましい。また、負極層に含まれるリチウム含有リン酸化合物がナシコン型構造のリチウム含有リン酸化合物を含むことが好ましい。
 さらに、本発明の全固体電池において、固体電解質層に含まれる固体電解質がリチウム含有リン酸化合物を含むことが好ましい。この場合、固体電解質層に含まれるリチウム含有リン酸化合物がナシコン型構造のリチウム含有リン酸化合物を含むことが好ましい。
 負極の電極活物質としてリチウムを含有しない金属酸化物を用いるとともに、チタンを含有しない固体電解質を負極に用いて全固体電池を作製することによって、電解液を用いた場合と同程度の放電容量を有するだけでなく、サイクル安定性が向上する。
本発明の実施形態としての全固体電池の断面構造を模式的に示す断面図である。
 以下において、本発明を実施するための形態について説明する。
 図1に示すように、全固体電池10は、固体電解質層12と、固体電解質層12を介して互いに対向する位置に設けられた正極層11および負極層13とを備える。正極層11または負極層13の少なくとも一方と固体電解質層12とが焼成によって接合されている。負極層13が、リチウムを含有しない金属酸化物からなる電極活物質と、チタンを含有しない固体電解質とを含む。
 まず、上記の金属酸化物を負極層13の電極活物質として用いることにより、正極層11と固体電解質層12と負極層13とを備える積層体を焼成する際に負極層13に含まれる電極活物質が変質することなく、電解液を用いた場合と同程度の放電容量を有する全固体電池10を作製することが可能である。
 また、負極層13の電極活物質としてリチウムを含まない金属酸化物を用いるとともに、チタンを含まない固体電解質を負極層13に用いることにより、電極活物質の充放電電位近傍で固体電解質が還元するために固体電解質が分解または反応すること等によって負極層のイオン伝導が低下することを抑制することができる。その結果、本発明の全固体電池10は、電極活物質が本来的に有する高い容量を発現することができ、かつ、固体電解質が分解せず、または反応しないため、安定して繰返し充放電することが可能となる。したがって、負極層13の電極活物質としてリチウムを含有しない金属酸化物を用いるとともに、チタンを含有しない固体電解質を負極層13に用いて全固体電池を作製することによって、電解液を用いた場合と同程度の放電容量を有するだけでなく、サイクル安定性が向上する。
 本発明の全固体電池10において、負極層13の電極活物質を構成する上記の金属酸化物が、チタン(Ti)、シリコン(Si)、スズ(Sn)、クロム(Cr)、鉄(Fe)、モリブデン(Mo)、ニオブ(Nb)、ニッケル(Ni)、マンガン(Mn)、コバルト(Co)、銅(Cu)、タングステン(W)、バナジウム(V)、および、ルテニウム(Ru)からなる群より選ばれた少なくとも一種の元素を含むことが好ましい。上記の金属酸化物を負極層13の電極活物質として用いることにより、容量密度が大きく、また電池電圧が高いほど高いエネルギー密度を有する全固体電池を得ることができる。これをより効果的に実現するためには、上記の金属酸化物としては、重量当たりの容量が大きく、リチウムに対する電位が低いものを用いることが好ましい。このような特徴を示す金属酸化物としては、MOx(MはTi、Si、Sn、Cr、Fe、Mo、Nb、Ni、Mn、Co、Cu、W、V、および、Ruからなる群より選ばれた少なくとも1種以上の元素であり、xは0.5≦x≦3.0の範囲内の数値である)で表わされる組成を有する化合物を用いることができる。特に、アナターゼ型のTiO2、ルチル型のTiO2、ブルッカイト型のTiO2、SiO、SnO、SnO2、Cr23、Fe23、MoO2、Nb25、NiO、MnO、CoO、Cu2O、CuO、WO2、V25、RuO2を用いることが好ましい。
 なお、負極層13の電極活物質として、たとえば、TiO2とSiO2、等の異なる元素Mを含むMOxで表わされる組成を有する2つ以上の化合物を混合した混合物を用いてもよい。また、MOxで表わされる組成を有する化合物において、元素Mの一部を異なるMで置換した組成、または、元素Mの一部をP、F等で置換した組成を有する固溶体を用いてもよい。さらに、MOxで表わされる組成を有する化合物において、炭素を主成分とする導電剤が化合物の表面に被覆されていてもよく、または担持されていてもよい。
 負極層13に含まれる固体電解質は、チタンを含まないリチウム含有リン酸化合物を含むことが好ましく、さらに、そのリチウム含有リン酸化合物が、ナシコン型構造のリチウム含有リン酸化合物を含むことが好ましい。ナシコン型構造を有するリチウム含有リン酸化合物は、化学式Lixy(PO43(化学式中、xは1≦x≦3、yは1≦y≦2の範囲内の数値であり、MはGe、Al、Ga、Zr、FeおよびNbからなる群より選ばれた1種以上の元素である)で表わされる。この場合、上記化学式においてPの一部をB、Si等で置換してもよい。たとえば、Li1.5Al0.5Ge1.5(PO43、Li3.0Fe1.8Zr0.2(PO43等を用いることができる。また、異なる組成を有する2つ以上のナシコン型構造を有するリチウム含有リン酸化合物を混合した混合物を用いてもよい。
 また、上記の負極層13に含まれる固体電解質に用いられるナシコン型構造を有するリチウム含有リン酸化合物としては、ナシコン型構造を有するリチウム含有リン酸化合物の結晶相を含む化合物、または、熱処理によりナシコン型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスを用いてもよい。
 なお、上記の負極層13に含まれる固体電解質に用いられる材料としては、ナシコン型構造を有するリチウム含有リン酸化合物以外に、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いることが可能である。このような材料として、たとえば、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩、および、これらの誘導体を挙げることができる。また、リン酸リチウム(Li3PO4)等のLi‐P‐O系化合物、リン酸リチウムに窒素が導入されたLIPON(LiPO4-xx)、Li4SiO4等のLi‐Si‐O系化合物、Li‐P‐Si‐O系化合物、Li‐V‐Si‐O系化合物、Li、La、Zrを有するガーネット型構造を有する化合物、等を挙げることができる。
 固体電解質層12は、固体電解質としてリチウム含有リン酸化合物を含むことが好ましく、さらに、そのリチウム含有リン酸化合物が、ナシコン型構造のリチウム含有リン酸化合物を含むことが好ましい。ナシコン型構造を有するリチウム含有リン酸化合物は、化学式Lixy(PO43(化学式中、xは1≦x≦3、yは1≦y≦2の範囲内の数値であり、MはGe、Al、Ga、Zr、FeおよびNbからなる群より選ばれた1種以上の元素である)で表わされる。この場合、上記化学式においてPの一部をB、Si等で置換してもよい。たとえば、Li1.5Al0.5Ge1.5(PO43、Li3.0Fe1.8Zr0.2(PO43等を用いることができる。また、異なる組成を有する2つ以上のナシコン型構造を有するリチウム含有リン酸化合物を混合した混合物を用いてもよい。
 また、上記の固体電解質に用いられるナシコン型構造を有するリチウム含有リン酸化合物としては、ナシコン型構造を有するリチウム含有リン酸化合物の結晶相を含む化合物、または、熱処理によりナシコン型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスを用いてもよい。
 なお、上記の固体電解質に用いられる材料としては、ナシコン型構造を有するリチウム含有リン酸化合物以外に、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いることが可能である。このような材料として、たとえば、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩、および、これらの誘導体を挙げることができる。また、リン酸リチウム(Li3PO4)等のLi‐P‐O系化合物、リン酸リチウムに窒素が導入されたLIPON(LiPO4-xx)、Li4SiO4等のLi‐Si‐O系化合物、Li‐P‐Si‐O系化合物、Li‐V‐Si‐O系化合物、ぺロブスカイト型構造を有するLa0.51Li0.35TiO2.94、La0.55Li0.35TiO3、Li3xLa2/3-xTiO3等の化合物、Li、La、Zrを有するガーネット型構造を有する化合物、等を挙げることができる。
 本発明の全固体電池10の正極層11に含まれる電極活物質の種類は限定されない。正極活物質としては、Li32(PO43等のナシコン型構造を有するリチウム含有リン酸化合物、LiFePO4、LiMnPO4等のオリビン型構造を有するリチウム含有リン酸化合物、LiCoO2、LiCo1/3Ni1/3Mn1/32等の層状化合物、LiMn24、LiNi0.5Mn1.54等のスピネル型構造を有するリチウム含有化合物を用いることができる。
 正極層11または負極層13の少なくとも一方と固体電解質層12とは、複数のグリーンシートを積層して積層体を形成し、積層体を焼成することにより接合されていることが好ましい。この場合、正極層11または負極層13の少なくとも一方と固体電解質層12とを一体的に焼成して接合することができるため、より安価に全固体電池を作製することが可能である。
 なお、正極層11および負極層13には、電極活物質の他に、導電剤が含まれていてもよい。導電剤の例としては、炭素材料、金属材料等が挙げられる。
 本発明の全固体電池10は、一例として、以下のように製造される。
 まず、電極活物質の粉末と固体電解質の粉末を準備する。次に、固体電解質層12、正極層11および負極層13の各々のスラリーを調製する。そして、固体電解質層12、正極層11および負極層13の各々のスラリーを成形してグリーンシートを作製する。その後、固体電解質層12、正極層11および負極層13のグリーンシートを積層して積層体を形成する。次に、積層体を焼成する。焼成により、正極層11および負極層13と固体電解質層12とが接合される。最後に、焼成した積層体を、たとえばコインセル内に封止する。封止方法は特に限定されない。たとえば、焼成後の積層体を樹脂で封止してもよい。また、Al23等の絶縁性を有する絶縁体ペーストを積層体の周囲に塗布またはディップして、この絶縁ペーストを熱処理することにより封止してもよい。
 なお、正極層11と負極層13から効率的に電流を引き出すため、正極層11と負極層13の上に金属層等の導電層を形成してもよい。導電層の形成方法は、たとえば、スパッタリング法が挙げられる。また、金属ペーストを塗布またはディップして、この金属ペーストを熱処理してもよい。
 上記のグリーンシートを成形する方法は特に限定されないが、ダイコーター、コンマコーター、スクリーン印刷等を使用することができる。グリーンシートを積層する方法は特に限定されないが、熱間等方圧プレス(HIP)、冷間等方圧プレス(CIP)、静水圧プレス(WIP)等を使用してグリーンシートを積層することができる。
 グリーンシートを成形するためのスラリーは、高分子材料を溶剤に溶解した有機ビヒクルと、正極活物質粉末、負極活物質粉末、固体電解質粉末、または、集電体材料粉末とを湿式混合することによって作製することができる。湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。
 スラリーは可塑剤を含んでもよい。可塑剤の種類は特に限定されないが、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸エステル等を使用してもよい。
 焼成工程では、雰囲気は特に限定されないが、電極活物質に含まれる遷移金属の価数が変化しない条件で行うことが好ましい。
 次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は、下記の実施例に限定されるものではなく、本発明の全固体電池の効果を損なわない範囲で任意に変更可能である。
 以下のように、各種の電極活物質と固体電解質を用いて実施例1~7と比較例1~5の全固体電池を作製した。
 (実施例1)
 <電極層シートと固体電解質層シートの作製>
 まず、全固体電池を作製するために、以下のように、電極層シートと固体電解質層シートを作製した。
 まず、電極活物質としてアナターゼ型の酸化チタン(TiO2)粉末と、固体電解質としてナシコン型構造のリチウム含有リン酸化合物の結晶相を析出するLi1.5Al0.5Ge1.5(PO43(以下、「LAGP」という)のガラス粉末を用意した。
 次に、アナターゼ型の酸化チタン粉末とバインダ溶液とを混合することにより、電極活物質スラリーを作製した。また、LAGPのガラス粉末とバインダ溶液とを混合することにより、固体電解質スラリーを作製した。さらに、炭素粉末とバインダ溶液とを混合することにより、炭素スラリーを作製した。なお、バインダ溶液は、ポリビニルアルコールを有機溶剤に溶解させて作製した。
 得られた電極活物質スラリーと固体電解質スラリーと炭素スラリーとを混合して、電極層用スラリーを作製した。LAGPのガラス粉末とアナターゼ型の酸化チタン粉末と炭素粉末との調合比を重量部で45:45:10とした。
 得られた電極層用スラリーと固体電解質スラリーのそれぞれを、ドクターブレード法で成形して、電極層シートと固体電解質層シートの成形体を作製した。成形体の厚みは50μmとした。
 <全固体電池の作製>
 以上のようにして得られた固体電解質層シートと電極層シートを用いて、全固体電池を作製した。
 まず、電極層と固体電解質層が積層された積層体を作製した。具体的には、直径12mmの円形状にカットされた固体電解質層シートの片面上に、直径12mmの円形状にカットされた電極層シートを積層して、80℃の温度で1トンの圧力を加えて熱圧着した。
 次に、この積層体を、以下の条件で焼成した。まず、酸素ガス雰囲気中で500℃の温度で焼成することにより、ポリビニルアルコールの除去を行った。その後、窒化ガス雰囲気中で600℃の温度で焼成することにより、電極層と固体電解質層とを接合した。そして、焼成後の積層体を、100℃の温度で乾燥することにより、水分を除去した。
 その後、積層体と対極としての金属リチウム板とを積層した。まず、正極として用意した金属リチウム板の上に、ポリメタクリル酸メチル樹脂(以下、「PMMA」という)ゲル化合物を塗布した。そして、この塗布面と焼成後の積層体の固体電解質層側の面が接触するように、積層体と金属リチウム板とを積層した。そして、その後に2032型のコインセルで封止して、全固体電池を作製した。
 <全固体電池の評価>
 得られた全固体電池に対して、1.0~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、放電容量が約150mAh/gで、充放電が可能であることを確認した。
 また、得られた全固体電池を1.4~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、1サイクル目の放電容量は138mAh/g、5サイクル目の放電容量は132mAh/gであり、サイクル効率は96%であった。
 <電解液を用いた電池の作製と評価>
 参考として、固体電解質の代わりに電解液を用いた電池を作製し、評価した。
 まず、アナターゼ型の酸化チタン粉末と、炭素粉末と、ポリテトラフルオロエチレン(以下、「PTFE」という)とを、配合比がアナターゼ型の酸化チタン:炭素粉末:PTFE=70:20:10となるように秤量した後、湿式混合した。その後、延ばし棒で引き延ばしたものを直径12mmの円形状にカットして電極層シートを作製した。
 次に、電極層シートを100℃の温度で乾燥して、水分を除去した。その後、セパレーターと、正極の金属リチウム板を順に重ねた。その後、有機電解液を浸した2032型のコインセルで封止して電池を作製した。
 得られた電池に対して、1.0~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、放電容量が約150mAh/gで、充放電が可能であることを確認した。
 (実施例2)
 実施例2では、実施例1で電極活物質として用いたアナターゼ型の酸化チタン(TiO2)に代えて、ブルッカイト型の酸化チタンを用いた。その他の作製条件は実施例1と同様にして、全固体電池を作製した。
 <全固体電池の評価>
 得られた全固体電池に対して、1.0~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、放電容量が約100mAh/gで、充放電が可能であり、電解液を用いた電池と同程度の容量を示すことを確認した。
 (実施例3)
 実施例3では、実施例1で電極活物質として用いたアナターゼ型の酸化チタン(TiO2)粉末に代えて、二酸化モリブデン(MoO2)粉末を用いた。その他の作製条件は実施例1と同様にして、全固体電池を作製した。
 <全固体電池の評価>
 得られた全固体電池に対して、1.0~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、放電容量が約200mAh/gで、充放電が可能であり、電解液を用いた電池と同程度の容量を示すことを確認した。
 また、得られた全固体電池を1.4~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、1サイクル目の放電容量は200mAh/g、5サイクル目の放電容量は198mAh/gであり、サイクル効率は99%であった。
 (実施例4)
 実施例3では、実施例1で電解活物質として用いたアナターゼ型の酸化チタン(TiO2)粉末に代えて、酸化クロム(Cr23)粉末を用いた。その他の作製条件は実施例1と同様にして、全固体電池を作製した。
 <全固体電池の評価>
 得られた全固体電池に対して、0.2~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、放電容量が約500mAh/gで、充放電が可能であり、電解液を用いた電池と同程度の容量を示すことを確認した。
 (実施例5)
 実施例4では、実施例1で電極活物質として用いたアナターゼ型の酸化チタン(TiO2)粉末に代えて、二酸化スズ(SnO2)粉末を用いた。その他の作製条件は実施例1と同様にして、全固体電池を作製した。
 <全固体電池の評価>
 得られた全固体電池に対して、0.2~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、放電容量が約1500mAh/gで、充放電が可能であり、電解液を用いた電池と同程度の容量を示すことを確認した。
 また、得られた全固体電池を0.2~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、1サイクル目の放電容量は1500mAh/g、5サイクル目の放電容量は1440mAh/gであり、サイクル効率は96%であった。
 実施例1~5の全固体電池の評価から、正極層と負極層の焼成時に、電極活物質粉末および固体電解質粉末の構造が維持され、異相と構造変化が生じなければ、電解液電池と同程度に充放電可能であることが明らかになった。
 (実施例6)
 <電極層シートと固体電解質層シートの作製>
 まず、全固体電池を作製するために、以下のように、電極層シートと固体電解質層シートを作製した。
 まず、電極活物質として一酸化ケイ素(SiO)粉末と、固体電解質としてナシコン型構造のリチウム含有リン酸化合物の結晶相を析出するLAGPのガラス粉末と、導電剤として炭素粉末とを用意した。
 次に、一酸化化ケイ素粉末とバインダ溶液とを混合することにより、電極活物質スラリーを作製した。また、LAGPのガラス粉末とバインダ溶液とを混合することにより、固体電解質スラリーを作製した。さらに、炭素粉末とバインダ溶液とを混合することにより、炭素スラリーを作製した。
 その後、得られた電極活物質スラリーと固体電解質スラリーと炭素スラリーとを混合して、電極層用スラリーを作製した。一酸化ケイ素粉末とLAGPのガラス粉末と炭素粉末との調合比を、重量部で45:45:10とした。
 得られた電極層用スラリーと固体電解質スラリーのそれぞれを、ドクターブレード法で成形して、電極層シートと固体電解質層シートの成形体を作製した。成形体の厚みは50μmとした。
 く全固体電池の作製>
 以上のようにして得られた固体電解質層シートと電極層シートを用いて、全固体電池を作製した。
 まず、電極層と固体電解質層が積層された積層体を作製した。貝体的には、直径12mmの円形状にカットされた固体電解質層シートの片面上に、直径12mmの円形状にカットされた電極層シートを積層して、80℃の温度で1トンの圧力を加えて熱圧着した。
 次に、この積層体を、以下の条件で焼成した。まず、酸素ガス雰囲気中で500℃の温度で焼成することにより、ポリビニルアルコールの除去を行った。その後、窒化ガス雰囲気中で600℃の温度で焼成することにより、電極層と固体電解質層とを接合した。そして、焼成後の積層体を、100℃の温度で乾燥することにより、水分を除去した。
 その後、積層体と対極としての金属リチウム板とを積層した。まず、正極として用意した金属リチウム板の上に、PMMAゲル化合物を塗布した。そして、この塗布面の上に焼成後の積層体の固体電解質層側の面が接触するように、積層体と金属リチウム板とを積層した。そして、得られた積層体を2032型のコインセルで封止して、全固体電池を作製した。
 <全固体電他の評価>
 得られた全固体電池に対して、0.2~3,0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、1サイクル目の放電容量は805mAh/g、5サイクル目の放電容量は773mAh/gであり、サイクル効率は96%であった。
 (比較例1)
 <電極層シートと固体電解質層シートの作製>
 実施例6と同様にして電極層シートと固体電解質層シートを作製した。固体電解質としてナシコン型構造のリチウム含有リン酸化合物の結晶相を析出するLil.5Al0.5Til.5(PO43(以下、「LATP」という)のガラス粉末を用意した。
 LATPのガラス粉末とバインダ溶液とを混合することにより、固体電解質スラリーを作製した。
 次に、得られた固体電解質スラリーを実施例6の電極活物質スラリーと炭素スラリーと混合して、電極層用スラリーを作製した。一酸化ケイ素粉末とLATPのガラス粉末と炭素粉末の調合比を、重量部で45:45:10とした。
 得られた電極層用スラリーと固体電解質スラリーのそれぞれを、ドクターブレード法で成形して、電極層シー卜と固体電解質層シートの成形体を作製した。成形体の厚みは50μmとした。
 <全固体電池の作製>
 実施例6と同様にして、得られた電極層シー卜と固体電解質層シートを用いて、全固体電池を作製した。
 積層体は、以下の条件で焼成した。まず、酸素ガス雰囲気中で500℃の温度で焼成することにより、ポリビニルアルコールの除去を行った。その後、窒化ガス雰囲気中で900℃の温度で焼成することにより、電極層と固体電解質層とを接合した。そして、焼成後の積層体を、100℃の温度で乾燥することにより、水分を除去した。
 <全固体電池の評価>
 得られた全固体電池に対して、0.2~3.0Vの電圧範囲で50μA/の電流密度で定電流定電圧充放電を行った。その結果、1サイクル目の放電容量は783mAh/g、5サイクル目の放電容量は420mAh/gであり、サイクル効率は54%であった。
 (実施例7)
 <電極層シートと固体電解質層シートの作製>
 実施例6と同様にして電極層シートと固体電解質層シートを作製した。
 まず、電極活物質として五酸化ニオブ(Nb25)粉末と、固体電解質としてナシコン型構造のリチウム含有リン酸化合物の結晶相を析出するLi3.0Fe1.8Zr0.2(PO43(以下、「LFZP」という)のガラス粉末を用意した。
 次に、五酸化ニオブ粉末とバインダ溶液とを混合することにより、電極活物質スラリーを作製した。また、LFZPのガラス粉末とバインダ溶液とを混合することにより、固体電解質スラリーを作製した。
 その後、得られた電極活物質スラリーと固体電解質スラリーと炭素スラリーとを混合して、電極層用スラリーを作製した。五酸化ニオブ粉末とLFZPのガラス粉末と炭素粉末との調合比を、重量部で45:45:10とした。
 得られた電極層用スラリーと固体電解質スラリーのそれぞれを、ドクターブレード法で成形して、電極層シートと固体電解質層シートの成形体を作製した。成形体の厚みは50μmとした。
 <全固体電池の作製>
 実施例6と同様にして、得られた電極層シートと固体電解質層シートを用いて、全固体電池を作製した。なお、窒化ガス雰囲気中での焼成は、900℃の温度で行った。
 <全固体電池の評価>
 得られた全固体電池に対して、1.4~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、1サイクル目の放電容量は200mAh/g、5サイクル目の放電容量は196mAh/gであり、サイクル効率は98%であった。
 (比較例2)
 く電極層シートと固体電解質層シートの作製>
 実施例7と同様にして電極層シートと固体電解質層シートを作製した。固体電解質としてLATPのガラス粉末を用意した。
 LATPのガラス粉末とバインダ溶液とを混合することにより、固体電解質スラリーを作製した。
 次に、得られた固体電解質スラリーを実施例7の電極活物質スラリーと炭素スラリーと混合して、電極層用スラリーを作製した。五酸化ニオブ粉末とLATPのガラス粉末と炭素粉末との調合比を、重量部で45:45:10とした。
 得られた電極層用スラリーと固体電解質スラリーのそれぞれを、ドクタープレード法で成形して、電極層シートと固体電解質層シートの成形体を作製した。成形体の厚みは50μmとした。
 <全固体電池の作製>
 実施例7と同様にして、得られた電極層シートと固体電解質層シートを用いて、全固体電池を作製した。
 <全固体電池の評価>
 得られた全固体電池に対して、1.4~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、1サイクル目の放電容量は191mAh/g、5サイクル目の放電容量は131mAh/gであり、サイクル効率は69%であった。
 (比較例3)
 電極活物質として実施例1で用いたアナターゼ型の酸化チタン粉末を用いた以外は、比較例1と同様にして全固体電池を作製した。
 <全固体電池の評価>
 得られた全固体電池に対して、1.4~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、1サイクル目の放電容量は149mAh/g、5サイクル目の放電容量は99mAh/gであり、サイクル効率は66%であった。
 (比較例4)
 電極活物質として実施例3で用いた二酸化モリブデン粉末を用いた以外は、比較例1と同様にして全固体電池を作製した。
 <全固体電池の評価>
 得られた全固体電池に対して、1.4~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、1サイクル目の放電容量は222mAh/g、5サイクル目の放電容量は148mAh/gであり、サイクル効率は67%であった。
 (比較例5)
 電極活物質として実施例5で用いた二酸化スズ粉末を用いた以外は、比較例1と同様にして全固体電池を作製した。
 <全固体電池の評価>
 得られた全固体電池に対して、0.2~3.0Vの電圧範囲で50μA/cm2の電流密度で定電流定電圧充放電を行った。その結果、1サイクル目の放電容量は1413mAh/g、5サイクル目の放電容量は820mAh/gであり、サイクル効率は58%であった。
 実施例6、7と比較例1、2の全固体電池の評価と、実施例1、3、5と比較例3、4、5の全固体電池の評価とから、負極の電極活物質としてリチウムを含有しない金属酸化物を用いるとともに、チタンを含有しない固体電解質を負極に用いて全固体電池を作製することによって、サイクル効率が高く、サイクル安定性が向上した全固体電池を得ることが可能であることが確認された。
 今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
 負極の電極活物質としてリチウムを含有しない金属酸化物を用いるとともに、チタンを含有しない固体電解質を負極に用いて全固体電池を作製することによって、電解液を用いた場合と同程度の放電容量を有するだけでなく、サイクル安定性が向上するので、本発明は高い電池性能を有する全固体電池を提供することができる。
 10:全固体電池、11:正極層、12:固体電解質層、13:負極層。

Claims (6)

  1.  固体電解質層と、
     前記固体電解質層を介して互いに対向する位置に設けられた正極層および負極層と、を備え、前記正極層または前記負極層の少なくとも一方と前記固体電解質層とが焼成によって接合されている全固体電池であって、
     前記負極層が、リチウムを含有しない金属酸化物からなる電極活物質と、チタンを含有しない固体電解質とを含む、全固体電池。
  2.  前記金属酸化物が、チタン、シリコン、スズ、クロム、鉄、モリブデン、ニオブ、ニッケル、マンガン、コバルト、銅、タングステン、バナジウム、および、ルテニウムからなる群より選ばれた少なくとも一種の元素を含む、請求項1に記載の全固体電池。
  3.  前記チタンを含有しない固体電解質が、リチウム含有リン酸化合物を含む、請求項1または請求項2に記載の全固体電池。
  4.  前記チタンを含有しない固体電解質が、ナシコン型構造のリチウム含有リン酸化合物を含む、請求項3に記載の全固体電池。
  5.  前記固体電解質層に含まれる固体電解質が、リチウム含有リン酸化合物を含む、請求項1から請求項4までのいずれか1項に記載の全固体電池。
  6.  前記固体電解質層に含まれるリチウム含有リン酸化合物が、ナシコン型構造のリチウム含有リン酸化合物を含む、請求項5に記載の全固体電池。
PCT/JP2011/065831 2010-07-12 2011-07-12 全固体電池 WO2012008422A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180019563XA CN102844929A (zh) 2010-07-12 2011-07-12 全固态电池
KR1020137003528A KR20130066661A (ko) 2010-07-12 2011-07-12 전고체 전지
JP2012524547A JPWO2012008422A1 (ja) 2010-07-12 2011-07-12 全固体電池
US13/713,028 US20130273437A1 (en) 2010-07-12 2012-12-13 All solid state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-157529 2010-07-12
JP2010157529 2010-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/713,028 Continuation US20130273437A1 (en) 2010-07-12 2012-12-13 All solid state battery

Publications (1)

Publication Number Publication Date
WO2012008422A1 true WO2012008422A1 (ja) 2012-01-19

Family

ID=45469420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065831 WO2012008422A1 (ja) 2010-07-12 2011-07-12 全固体電池

Country Status (5)

Country Link
US (1) US20130273437A1 (ja)
JP (1) JPWO2012008422A1 (ja)
KR (1) KR20130066661A (ja)
CN (1) CN102844929A (ja)
WO (1) WO2012008422A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038880A1 (ja) * 2011-09-12 2013-03-21 株式会社 村田製作所 全固体電池およびその製造方法
JP2013157195A (ja) * 2012-01-30 2013-08-15 Tdk Corp 無機全固体二次電池
WO2013133394A1 (ja) * 2012-03-07 2013-09-12 株式会社村田製作所 全固体電池
WO2013137224A1 (ja) * 2012-03-15 2013-09-19 株式会社 村田製作所 全固体電池およびその製造方法
WO2013175992A1 (ja) * 2012-05-24 2013-11-28 株式会社 村田製作所 全固体電池
WO2014038311A1 (ja) * 2012-09-04 2014-03-13 株式会社 村田製作所 全固体電池
US20140099556A1 (en) * 2012-10-09 2014-04-10 Microsoft Corporation Solid-State Battery Separators and Methods of Fabrication
JP2014150056A (ja) * 2013-01-08 2014-08-21 Kobe Steel Ltd 金属−空気全固体二次電池用複合負極材料、およびこれを用いた金属−空気全固体二次電池
WO2015025417A1 (ja) * 2013-08-23 2015-02-26 株式会社日立製作所 負極材料、およびこれを用いたリチウムイオン二次電池
JP2015049981A (ja) * 2013-08-30 2015-03-16 株式会社村田製作所 全固体電池
JP2015065021A (ja) * 2013-09-25 2015-04-09 株式会社村田製作所 全固体電池
EP2866291A4 (en) * 2012-06-20 2015-07-15 Toyota Motor Co Ltd BATTERY SYSTEM, METHOD FOR MANUFACTURING BATTERY SYSTEM, AND BATTERY CONTROL APPARATUS
JP2016066550A (ja) * 2014-09-25 2016-04-28 太陽誘電株式会社 全固体二次電池
WO2018181812A1 (ja) * 2017-03-30 2018-10-04 Tdk株式会社 固体電解質及び全固体二次電池
US10333123B2 (en) 2012-03-01 2019-06-25 Johnson Ip Holding, Llc High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
WO2019163448A1 (ja) * 2018-02-20 2019-08-29 Fdk株式会社 全固体電池
US10566611B2 (en) 2015-12-21 2020-02-18 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
US11411244B2 (en) 2017-03-30 2022-08-09 Tdk Corporation All-solid secondary battery
USRE49205E1 (en) 2016-01-22 2022-09-06 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
US11594754B2 (en) 2017-03-30 2023-02-28 Tdk Corporation Solid electrolyte and all-solid lithium-ion secondary battery
US11855253B2 (en) 2017-03-30 2023-12-26 Tdk Corporation Solid electrolyte and all-solid secondary battery

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016106950A1 (de) * 2016-04-14 2017-10-19 Bayerische Motoren Werke Aktiengesellschaft Lithiumionenbasierte elektrochemische Zelle, Elektrodenmaterial und Verfahren zur Herstellung eines Elektrodenmaterials
WO2018006016A1 (en) 2016-06-30 2018-01-04 Wildcat Discovery Technologies, Inc. Solid electrolyte compositions
WO2018006025A1 (en) 2016-06-30 2018-01-04 Wildcat Discovery Technologies, Inc. Electrode compositions for solid-state batteries
US10777845B2 (en) * 2016-11-23 2020-09-15 Wildcat Discovery Technologies, Inc. Solid electrolyte compositions for electrochemical cells
WO2018181577A1 (ja) * 2017-03-30 2018-10-04 Tdk株式会社 全固体電池
JP2018190695A (ja) * 2017-04-28 2018-11-29 株式会社オハラ 全固体電池
US11993710B2 (en) 2017-06-30 2024-05-28 Wildcat Discovery Technologies, Inc. Composite solid state electrolyte and lithium ion battery containing the same
JP7133435B2 (ja) * 2018-02-20 2022-09-08 Fdk株式会社 全固体電池
KR102429591B1 (ko) * 2018-10-12 2022-08-05 주식회사 엘지에너지솔루션 음극 및 이를 포함하는 이차전지
JP7290978B2 (ja) * 2019-03-28 2023-06-14 太陽誘電株式会社 全固体電池
KR20200134883A (ko) * 2019-05-24 2020-12-02 주식회사 엘지화학 전고체전지용 음극의 제조방법
JPWO2021049360A1 (ja) * 2019-09-13 2021-03-18
WO2021095757A1 (ja) * 2019-11-12 2021-05-20 Tdk株式会社 固体電解質層、およびそれを用いた全固体電池
KR102343809B1 (ko) 2020-05-22 2021-12-28 삼화콘덴서공업 주식회사 고용량용 smd형 전고체 전지
KR102343810B1 (ko) 2020-05-22 2021-12-28 삼화콘덴서공업 주식회사 하이 씨-레이트용 smd형 전고체 전지
KR20230033196A (ko) 2021-08-30 2023-03-08 (주)티디엘 Pcb 기판에 형성 가능한 칩형 전고체전지 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059987A1 (en) * 2006-11-14 2008-05-22 Ngk Insulators, Ltd. Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods
EP2086038A1 (en) * 2008-01-31 2009-08-05 Ohara Inc. Solid State Battery
US20090214957A1 (en) * 2008-02-22 2009-08-27 Kyushu University All-solid-state cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165843B2 (ja) * 2004-12-13 2013-03-21 パナソニック株式会社 活物質層と固体電解質層とを含む積層体およびこれを用いた全固体リチウム二次電池
CN101388261A (zh) * 2008-05-07 2009-03-18 北京理工大学 一种薄膜电解质及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059987A1 (en) * 2006-11-14 2008-05-22 Ngk Insulators, Ltd. Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods
EP2086038A1 (en) * 2008-01-31 2009-08-05 Ohara Inc. Solid State Battery
US20090214957A1 (en) * 2008-02-22 2009-08-27 Kyushu University All-solid-state cell

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534109B2 (ja) * 2011-09-12 2014-06-25 株式会社村田製作所 全固体電池およびその製造方法
WO2013038880A1 (ja) * 2011-09-12 2013-03-21 株式会社 村田製作所 全固体電池およびその製造方法
JPWO2013038880A1 (ja) * 2011-09-12 2015-03-26 株式会社村田製作所 全固体電池およびその製造方法
JP2013157195A (ja) * 2012-01-30 2013-08-15 Tdk Corp 無機全固体二次電池
US10333123B2 (en) 2012-03-01 2019-06-25 Johnson Ip Holding, Llc High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
WO2013133394A1 (ja) * 2012-03-07 2013-09-12 株式会社村田製作所 全固体電池
JPWO2013137224A1 (ja) * 2012-03-15 2015-08-03 株式会社村田製作所 全固体電池およびその製造方法
WO2013137224A1 (ja) * 2012-03-15 2013-09-19 株式会社 村田製作所 全固体電池およびその製造方法
WO2013175992A1 (ja) * 2012-05-24 2013-11-28 株式会社 村田製作所 全固体電池
JPWO2013175992A1 (ja) * 2012-05-24 2016-01-12 株式会社村田製作所 全固体電池
US9484596B2 (en) 2012-06-20 2016-11-01 Toyota Jidosha Kabushiki Kaisha Battery system, method for producing battery system, and battery control apparatus
EP2866291A4 (en) * 2012-06-20 2015-07-15 Toyota Motor Co Ltd BATTERY SYSTEM, METHOD FOR MANUFACTURING BATTERY SYSTEM, AND BATTERY CONTROL APPARATUS
JP5935892B2 (ja) * 2012-09-04 2016-06-15 株式会社村田製作所 全固体電池
WO2014038311A1 (ja) * 2012-09-04 2014-03-13 株式会社 村田製作所 全固体電池
US9793525B2 (en) 2012-10-09 2017-10-17 Johnson Battery Technologies, Inc. Solid-state battery electrodes
US20140099556A1 (en) * 2012-10-09 2014-04-10 Microsoft Corporation Solid-State Battery Separators and Methods of Fabrication
US10084168B2 (en) * 2012-10-09 2018-09-25 Johnson Battery Technologies, Inc. Solid-state battery separators and methods of fabrication
JP2014150056A (ja) * 2013-01-08 2014-08-21 Kobe Steel Ltd 金属−空気全固体二次電池用複合負極材料、およびこれを用いた金属−空気全固体二次電池
WO2015025417A1 (ja) * 2013-08-23 2015-02-26 株式会社日立製作所 負極材料、およびこれを用いたリチウムイオン二次電池
JP2015049981A (ja) * 2013-08-30 2015-03-16 株式会社村田製作所 全固体電池
JP2015065021A (ja) * 2013-09-25 2015-04-09 株式会社村田製作所 全固体電池
JP2016066550A (ja) * 2014-09-25 2016-04-28 太陽誘電株式会社 全固体二次電池
US10566611B2 (en) 2015-12-21 2020-02-18 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
US11417873B2 (en) 2015-12-21 2022-08-16 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
USRE49205E1 (en) 2016-01-22 2022-09-06 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
US11411244B2 (en) 2017-03-30 2022-08-09 Tdk Corporation All-solid secondary battery
WO2018181812A1 (ja) * 2017-03-30 2018-10-04 Tdk株式会社 固体電解質及び全固体二次電池
US11548824B2 (en) 2017-03-30 2023-01-10 Tdk Corporation Solid electrolyte and all-solid secondary battery
US11594754B2 (en) 2017-03-30 2023-02-28 Tdk Corporation Solid electrolyte and all-solid lithium-ion secondary battery
US11855253B2 (en) 2017-03-30 2023-12-26 Tdk Corporation Solid electrolyte and all-solid secondary battery
WO2019163448A1 (ja) * 2018-02-20 2019-08-29 Fdk株式会社 全固体電池

Also Published As

Publication number Publication date
US20130273437A1 (en) 2013-10-17
CN102844929A (zh) 2012-12-26
JPWO2012008422A1 (ja) 2013-09-09
KR20130066661A (ko) 2013-06-20

Similar Documents

Publication Publication Date Title
WO2012008422A1 (ja) 全固体電池
WO2013137224A1 (ja) 全固体電池およびその製造方法
US9368828B2 (en) All-solid battery and manufacturing method therefor
US20140120421A1 (en) All-solid battery and manufacturing method therefor
JP5516749B2 (ja) 全固体電池およびその製造方法
JP6262129B2 (ja) 全固体電池およびその製造方法
JP6248498B2 (ja) 全固体電池およびその製造方法
JP5811191B2 (ja) 全固体電池およびその製造方法
JP6197495B2 (ja) 全固体電池
WO2011111555A1 (ja) 全固体二次電池およびその製造方法
WO2013100002A1 (ja) 全固体電池およびその製造方法
WO2014042083A1 (ja) 全固体電池、全固体電池用未焼成積層体、および全固体電池の製造方法
JP5644951B2 (ja) 全固体電池用未焼結積層体、全固体電池およびその製造方法
JP5556969B2 (ja) 全固体電池用積層成形体、全固体電池およびその製造方法
WO2012060349A1 (ja) 全固体電池
WO2012060402A1 (ja) 全固体電池およびその製造方法
JP5935892B2 (ja) 全固体電池
JP6201569B2 (ja) 固体電解質材料、及び全固体電池
JP2015185290A (ja) 全固体電池及びその製造方法
WO2013035526A1 (ja) 全固体電池用積層成形体、全固体電池およびその製造方法
JP6003982B2 (ja) 全固体電池
CN114946049B (zh) 固体电池
WO2013133394A1 (ja) 全固体電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019563.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806752

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524547

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137003528

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11806752

Country of ref document: EP

Kind code of ref document: A1