WO2021079698A1 - 全固体電池 - Google Patents

全固体電池 Download PDF

Info

Publication number
WO2021079698A1
WO2021079698A1 PCT/JP2020/036864 JP2020036864W WO2021079698A1 WO 2021079698 A1 WO2021079698 A1 WO 2021079698A1 JP 2020036864 W JP2020036864 W JP 2020036864W WO 2021079698 A1 WO2021079698 A1 WO 2021079698A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
positive electrode
active material
negative electrode
electrode active
Prior art date
Application number
PCT/JP2020/036864
Other languages
English (en)
French (fr)
Inventor
禎一 田中
岳夫 塚田
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to DE112020005152.8T priority Critical patent/DE112020005152T5/de
Priority to JP2021554205A priority patent/JPWO2021079698A1/ja
Priority to CN202080073668.2A priority patent/CN114556618B/zh
Priority to US17/765,367 priority patent/US20220344720A1/en
Publication of WO2021079698A1 publication Critical patent/WO2021079698A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid-state battery.
  • the present application claims priority based on Japanese Patent Application No. 2019-192583 filed in Japan on October 23, 2019, the contents of which are incorporated herein by reference.
  • batteries have been used for various purposes. Batteries are also used, for example, in portable batteries, and are required to be smaller and lighter, thinner, and more reliable. Batteries using an electrolytic solution have problems such as liquid leakage and liquid depletion. Therefore, attention is focused on all-solid-state batteries using solid electrolytes.
  • the all-solid-state battery has a positive electrode layer, a negative electrode layer, and a solid electrolyte layer.
  • the positive electrode or the negative electrode expands and contracts when the all-solid-state battery is charged and discharged.
  • the strain generated by the expansion and contraction of the positive electrode or the negative electrode is one of the causes of cracks and one of the causes of peeling at the laminated interface of each layer.
  • Patent Document 1 discloses an all-solid-state battery having three solid electrolyte layers having different porosities between a positive electrode layer and a negative electrode layer.
  • the three solid electrolyte layers having different porosities relax the internal stress and suppress the occurrence of cracks.
  • Patent Document 1 describes one method for suppressing cracks.
  • the structure is complicated and it is difficult to manufacture.
  • the thickness in the stacking direction increases, and the thickness of the entire all-solid-state battery increases.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an all-solid-state battery capable of suppressing the generation of cracks and peeling at a laminated interface.
  • the inventors have found that by providing voids having a predetermined shape in the negative electrode layer or the positive electrode layer, which is the cause of internal stress, the internal stress generated in the all-solid-state battery can be alleviated and the occurrence of cracks or interfacial peeling can be suppressed. It was. That is, in order to solve the above problems, the following means are provided.
  • the all-solid-state battery according to the first aspect includes a positive electrode layer, a negative electrode layer, and a solid electrolyte layer between the positive electrode layer and the negative electrode layer, and the positive electrode layer is a positive electrode current collector. And a positive electrode active material layer in contact with the positive electrode current collector, and the negative electrode layer has a negative electrode current collector and a negative electrode active material layer in contact with the negative electrode current collector, and the positive electrode active material. At least one of the material layer and the negative electrode active material layer has a plurality of voids inside, and the plurality of voids have an aspect ratio of 2 obtained by dividing the length in the major axis direction by the length in the minor axis direction. It has an anisotropic void of 29 or more and 29 or less.
  • At least a part of the side margin layers arranged alongside each of the positive electrode layer and the negative electrode layer and arranged on the outer periphery thereof has a plurality of voids inside, and the said.
  • the plurality of voids may have anisotropic voids having an aspect ratio of 2 or more and 29 or less, which is obtained by dividing the length in the major axis direction by the length in the minor axis direction.
  • 30% or more of the plurality of voids may be the anisotropic void.
  • the long axis direction of the anisotropic void may substantially coincide with the in-plane direction in which the positive electrode active material layer or the negative electrode active material layer spreads.
  • the average length of the anisotropic void in the major axis direction is 0.2 ⁇ m or more and 40 ⁇ m or less
  • the average length of the anisotropic void in the minor axis direction is , 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the ratio of the plurality of voids in the positive electrode active material layer or the negative electrode active material layer of the all-solid-state battery according to the above aspect may be 3% or more and 30% or less.
  • the all-solid-state battery according to the above aspect may have an intermediate layer having ionic conductivity between at least one of the positive electrode layer and the negative electrode layer and the solid electrolyte layer, and the intermediate layer may be provided.
  • the layer has a plurality of voids, and the proportion of the plurality of voids in the intermediate layer may be 0.1% or more and 8% or less.
  • the all-solid-state battery according to the above aspect can suppress the generation of cracks and peeling at the laminated interface.
  • the direction in which the positive electrode layer 1 and the negative electrode layer 2 described later are laminated is defined as the z direction. Further, one of the in-plane directions in which the positive electrode layer 1 and the negative electrode layer 2 are spread, which will be described later, is defined as the x direction, and the direction orthogonal to the x direction is defined as the y direction.
  • FIG. 1 is an enlarged cross-sectional schematic view of a main part of the all-solid-state battery according to the first embodiment.
  • the all-solid-state battery 10 has a laminate 4.
  • the laminate 4 has a plurality of positive electrode layers 1, a plurality of negative electrode layers 2, and a solid electrolyte layer 3 located between the positive electrode layer 1 and the negative electrode layer 2.
  • the positive electrode layer 1 is an example of the first electrode layer
  • the negative electrode layer 2 is an example of the second electrode layer.
  • One of the first electrode layer and the second electrode layer functions as a positive electrode, and the other functions as a negative electrode.
  • the positive electrode layer 1 and the negative electrode layer 2 are connected to external terminals having corresponding polarities, respectively, and the positive electrode layer 1 and the negative electrode layer 2 do not come into contact with each other.
  • the positive electrode layer 1 is connected to the first external terminal 5, and the negative electrode layer 2 is connected to the second external terminal 6, respectively.
  • the first external terminal 5 and the second external terminal 6 are electrical contacts with the outside.
  • the laminate 4 has a plurality of positive electrode layers 1, a plurality of negative electrode layers 2, and a plurality of solid electrolyte layers 3.
  • a solid electrolyte layer 3 is located between each of the positive electrode layer 1 and the negative electrode layer 2.
  • the all-solid-state battery 10 is charged and discharged by exchanging lithium ions between the positive electrode layer 1 and the negative electrode layer 2 via the solid electrolyte layer 3.
  • a plurality of positive electrode layers 1 and a plurality of negative electrode layers 2 are provided in, for example, the laminated body 4.
  • the positive electrode layer 1 and the negative electrode layer 2 are alternately laminated in the z direction with the solid electrolyte layer 3 interposed therebetween.
  • Each of the positive electrode layer 1 and the negative electrode layer 2 spreads in the xy plane.
  • the first end of the positive electrode layer 1 is connected to the first external terminal 5, and the second end extends toward the second external terminal 6.
  • the second end portion of the positive electrode layer 1 is not connected to the second external terminal 6.
  • the first end portion of the negative electrode layer 2 is connected to the second external terminal 6, and the second end portion extends toward the first external terminal 5.
  • the second end portion of the negative electrode layer 2 is not connected to the first external terminal 5.
  • a material similar to that of the solid electrolyte layer 3 exists between the positive electrode layer 1 and the second external terminal 6 and between the negative electrode layer 2 and the first external terminal 5.
  • the positive electrode layer 1 has a positive electrode current collector layer 1A and a positive electrode active material layer 1B.
  • the negative electrode layer 2 has a negative electrode current collector layer 2A and a negative electrode active material layer 2B.
  • the positive electrode current collector layer 1A and the negative electrode current collector layer 2A spread in the xy plane.
  • the positive electrode current collector layer 1A and the negative electrode current collector layer 2A contain a material having excellent conductivity.
  • the positive electrode current collector layer 1A and the negative electrode current collector layer 2A are portions containing 50% or more of a material having excellent conductivity when the all-solid-state battery 10 is divided along the xy plane.
  • Materials with excellent conductivity are, for example, silver, palladium, gold, platinum, aluminum, copper and nickel. Copper does not easily react with the positive electrode active material, the negative electrode active material and the solid electrolyte.
  • the internal resistance of the all-solid-state battery 10 can be reduced.
  • the substances constituting the positive electrode current collector layer 1A and the negative electrode current collector layer 2A may be the same or different.
  • the positive electrode current collector layer 1A may contain a positive electrode active material described later.
  • the negative electrode current collector layer 2A may contain a negative electrode active material described later.
  • the content ratio of the active material contained in each current collector layer is not particularly limited as long as it functions as a current collector.
  • the volume ratio of the conductive material and the positive electrode active material in the positive electrode current collector layer 1A is, for example, in the range of 90:10 to 70:30.
  • the volume ratio of the conductive material to the negative electrode active material in the negative electrode current collector layer 2A is, for example, in the range of 90:10 to 70:30.
  • the adhesion between the positive electrode current collector layer 1A and the positive electrode active material layer 1B and the negative electrode current collector layer 2A Adhesion with the negative electrode active material layer 2B is improved.
  • the positive electrode active material layer 1B and the negative electrode active material layer 2B spread in the xy plane.
  • the positive electrode active material layer 1B is formed on one side or both sides of the positive electrode current collector layer 1A.
  • the positive electrode active material layer 1B may not be present on the surface of the positive electrode current collector layer 1A on the side where the opposing negative electrode layer 2 does not exist.
  • the negative electrode active material layer 2B is formed on one side or both sides of the negative electrode current collector layer 2A.
  • the negative electrode active material layer 2B may not be present on the surface of the negative electrode current collector layer 2A on the side where the opposing positive electrode layer 1 does not exist.
  • the positive electrode layer 1 or the negative electrode layer 2 located at the uppermost layer or the lowermost layer of the laminated body 4 does not have to have the positive electrode active material layer 1B or the negative electrode active material layer 2B on one side.
  • the positive electrode active material layer 1B and the negative electrode active material layer 2B contain an active material that transfers electrons during charging and discharging.
  • the positive electrode active material layer 1B contains a positive electrode active material.
  • the negative electrode active material layer 2B contains a negative electrode active material.
  • the positive electrode active material layer 1B and the negative electrode active material layer 2B may each contain a conductive auxiliary agent, a binder, or the like. It is preferable that the positive electrode active material and the negative electrode active material can efficiently insert and desorb lithium ions.
  • the positive electrode active material and the negative electrode active material are, for example, a transition metal oxide and a transition metal composite oxide.
  • Lithium vanadium phosphate Li 3 V 2 (PO 4 ) 3 , Li 2 VTi (PO 4 ) 3 , LiVOPO 4
  • Li 2 MnO 3- LiMcO 2 Li excess solid solution positive electrode, lithium titanate represented by Ni) (Li 4 Ti 5 O 12), Li s Ni t Co u Al v O 2 (0.9 ⁇ s ⁇ 1.3,0 It is a composite metal oxide or the like represented by 9.9 ⁇ t + u + v ⁇ 1.1).
  • the active materials constituting the positive electrode active material layer 1B or the negative electrode active material layer 2B there is no clear distinction between the active materials constituting the positive electrode active material layer 1B or the negative electrode active material layer 2B, and the potentials of the two types of compounds are compared, and a compound showing a more noble potential is used as the positive electrode active material. A compound showing a low potential can be used as the negative electrode active material.
  • FIG. 2 is an enlarged schematic view of the vicinity of the interface between the positive electrode layer 1 and the solid electrolyte layer 3 of the all-solid-state battery 10 according to the present embodiment.
  • the positive electrode active material layer 1B shown in FIG. 2 has a plurality of voids V.
  • the positive electrode active material layer 1B is illustrated in FIG. 2, the negative electrode active material layer 2B may have a plurality of voids V, and the positive electrode active material layer 1B and the negative electrode active material layer 2B have a plurality of voids V. You may.
  • the plurality of voids V are formed between the active materials constituting the positive electrode active material layer 1B or the negative electrode active material layer 2B. Since the active material is responsible for conducting electrons during charging and discharging, it is common to densely fill the positive electrode active material layer 1B and the negative electrode active material layer 2B with the active material.
  • the plurality of voids V are intentionally provided.
  • the ratio of the plurality of voids V in the positive electrode active material layer 1B or the negative electrode active material layer 2B is, for example, 3% or more and 30% or less.
  • the area ratio of the plurality of voids V is determined as, for example, the average value of the area ratios of the black regions when each of the plurality of cross-sectional images obtained by a scanning electron microscope (SEM) is binarized.
  • SEM scanning electron microscope
  • the area of the positive electrode active material layer 1B is determined in each image.
  • the interface between the positive electrode current collector layer 1A and the positive electrode active material layer 1B and the interface between the positive electrode active material layer 1B and the solid electrolyte layer 3 are not flat. Therefore, the area of the positive electrode active material layer 1B is the xy plane extending at the average height position of the interface between the positive electrode current collector layer 1A and the positive electrode active material layer 1B, and the interface between the positive electrode active material layer 1B and the solid electrolyte layer 3. It is converted as the area of the area sandwiched between the xy plane that extends to the average height position.
  • the area of the plurality of voids V is determined by, for example, the following procedure.
  • the brightness of the portion of the conductive material of the positive electrode current collector layer 1A and the brightness of the portion of the plurality of voids V are extracted from each of the captured images.
  • the portion of the conductive material of the positive electrode current collector layer 1A is white, and is regarded as the upper limit of brightness in each image.
  • the plurality of voids V are black and are regarded as the lower limit of brightness in each image.
  • the area between the upper limit of the brightness and the lower limit of the brightness is the brightness range in each image.
  • each image is binarized by setting the brightness on the brightness upper limit side by 5% from the brightness lower limit to the brightness range of each image as a threshold value (hereinafter, the binarized image is referred to as a binarized image).
  • a portion having a brightness lower than the threshold value is a black region
  • a portion having a brightness higher than the threshold value is a white region.
  • the area of the black region in the binarized image is the area of the plurality of voids V.
  • the area ratios of the positive electrode active material layers 1B of the plurality of voids V in each image are obtained, and the area ratios of the plurality of voids V are obtained by calculating the average value.
  • anisotropic void V1 having a major axis size of 50 nm or less by SEM (magnification of 500 to 5000 times), and the area ratio and the anisotropic void V1 described later are relative to a plurality of voids. Exclude when measuring the ratio and the size of the anisotropic void V1.
  • At least one of the plurality of voids V is an anisotropic void V1.
  • the anisotropic void V1 is preferably 30% or more, more preferably 50% or more, and further preferably 80% or more of the plurality of voids V.
  • the anisotropic void V1 is a void having an aspect ratio of 2 or more and 29 or less, which is obtained by dividing the length in the major axis direction by the length in the minor axis direction.
  • the anisotropic void V1 is schematically illustrated by an ellipse.
  • the anisotropic void V1 is, for example, indefinite.
  • the predetermined ellipse having the smallest area including one black region in the binarized image is simulated as the shape of the void, and the length in the major axis direction and the length in the minor axis direction of the simulated ellipse are simulated.
  • the length be the length in the major axis direction and the length in the minor axis direction of the gap.
  • the shape of the void and the ellipse to be simulated are determined as follows.
  • the average length of the anisotropic void V1 in the major axis direction is, for example, 0.2 ⁇ m or more and 100 ⁇ m or less, preferably larger than 0.2 ⁇ m and 40 ⁇ m or less.
  • the average length of the anisotropic void V1 in the minor axis direction is, for example, 0.1 ⁇ m or more and 50 ⁇ m or less, preferably larger than 0.1 ⁇ m and 20 ⁇ m or less, and more preferably larger than 0.1 ⁇ m and 5 ⁇ m or less.
  • the average length of the anisotropic voids V1 in the major axis direction and the minor axis direction is determined by setting two anisotropic voids V1 from each of the above ten binarized images. It is extracted and obtained as the average value of a total of 20 anisotropic voids V1.
  • the anisotropic void V1 is oriented in the xy plane. “Oriented in the xy plane” means that the major axis direction of the anisotropic void V1 is inclined by 45 degrees or more from the z direction. Further, it is preferable that the major axis direction of the anisotropic void V1 substantially coincides with the in-plane direction in which the xy plane spreads. The fact that the major axis direction of the anisotropic void V1 substantially coincides with the in-plane direction means that the inclination angle of the anisotropic void V1 with respect to the xy plane in the major axis direction is 10 degrees or less.
  • Solid electrolyte layer The solid electrolyte layer 3 is located between the positive electrode layer 1 and the negative electrode layer 2, respectively. As will be described later, side margin layers 11 and 12 made of the same material as the solid electrolyte layer 3 are provided between the positive electrode layer 1 and the second external terminal 6 and between the negative electrode layer 2 and the first external terminal 5. You may.
  • the solid electrolyte layer 3 contains a solid electrolyte.
  • the solid electrolyte is a substance (for example, particles) capable of moving ions by an electric field applied from the outside. For example, lithium ions move in a solid electrolyte by an electric field applied from the outside.
  • the solid electrolyte is an insulator that inhibits the movement of electrons.
  • the solid electrolyte contains, for example, lithium.
  • the solid electrolyte may be, for example, either an oxide-based material or a sulfide-based material.
  • the solid electrolyte may be, for example, any of a perovskite type compound, a lysicon type compound, a garnet type compound, a pearcon type compound, a thiolysicon type compound, a glass compound, and a phosphoric acid compound.
  • La 0.5 Li 0.5 TiO 3 is an example of a perovskite-type compound.
  • Li 14 Zn (GeO 4 ) 4 is an example of a lysicon type compound.
  • Li7 La 3 Zr 2 O 12 is an example of a garnet-type compound.
  • LiZr 2 (PO 4 ) 3 Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , Li 1.55 Al 0 .2 Zr 1.7 Si 0.25 P 9.75 O 12 , Li 1.4 Na 0.1 Zr 1.5 Al 0.5 (PO 4 ) 3 , Li 1.4 Ca 0.25 Er 0. 3 Zr 1.7 (PO 4 ) 3.2 and Li 1.4 Ca 0.25 Yb 0.3 Zr 1.7 (PO 4 ) 3.2 are examples of pear-con type compounds.
  • Li 3.25 Ge 0.25 P 0.75 S 4, Li 3 PS 4 are examples of thiolyricon-type compounds.
  • Li 2 SP 2 S 5, Li 2 O-V 2 O 5- SiO 2 is an example of a glass compound.
  • Li 3 PO 4 , Li 3.5 Si 0.5 P 0.5 O 4 , and Li 2.9 PO 3.3 N 0.46 are examples of phosphoric acid compounds.
  • the solid electrolyte may contain one or more of these compounds.
  • the shape of the solid electrolyte is not particularly limited.
  • the shape of the solid electrolyte is, for example, spherical, ellipsoidal, needle-like, plate-like, scaly, tubular, wire-like, rod-like, or amorphous.
  • the particle size of the solid electrolyte is, for example, 0.1 ⁇ m or more and 10 ⁇ m or less, and may be 0.3 ⁇ m or more and 9 ⁇ m or less.
  • the particle size of the particles is determined from the measured value (D50) obtained by measuring the particle size distribution. D50 is the diameter of the particles whose integrated value in the distribution curve obtained by the particle size distribution measurement is 50%.
  • the particle size distribution of the particles is measured by, for example, a particle size distribution measuring device using a laser diffraction / scattering method (microtrack method).
  • the laminate 4 is arranged alongside each of the positive electrode layer 1 and the negative electrode layer 2 on the outer periphery thereof, and includes side margin layers 11 and 12 containing a solid electrolyte.
  • the side margin layers 11 and 12 may be referred to as a positive electrode side margin layer and a negative electrode side margin layer, respectively.
  • the solid electrolyte contained in the side margin layers 11 and 12 may be the same as or different from the solid electrolyte contained in the solid electrolyte layer 3.
  • the side margin layers 11 and 12 are preferably provided in order to eliminate the step between the solid electrolyte layer 3 and the positive electrode layer 1 and the step between the solid electrolyte layer 3 and the negative electrode layer 2. Therefore, the side margin layers 11 and 12 are located on the main surface of the solid electrolyte layer 3 in regions other than the positive electrode layer 1 and the negative electrode layer 2 at substantially the same height as the positive electrode layer 1 or the negative electrode layer 2 (that is, the positive electrode layer 1).
  • At least a part of the side margin layers 11 and 12 can have a plurality of voids inside.
  • the side margin layers 11 and 12 can have the same configuration as the solid electrolyte layer 3. It is preferable that each of the side margin layers 11 and 12 has a plurality of voids inside.
  • the configuration of the plurality of voids contained inside the side margin layers 11 and 12 can be the same as that of the plurality of voids V included in at least one of the positive electrode active material layer 1B and the negative electrode active material layer 2B.
  • At least one of the plurality of voids is an anisotropic void.
  • the anisotropic void is preferably 30% or more, more preferably 50% or more, and further preferably 80% or more of the plurality of voids contained in the side margin layer.
  • Anisotropic voids are voids having an aspect ratio of 2 or more and 29 or less, which is obtained by dividing the length in the major axis direction by the length in the minor axis direction.
  • the ratio of the plurality of voids in the side margin layers 11 and 12 (hereinafter referred to as the area ratio of the plurality of voids in the side margin layer) is, for example, 3% or more and 30% or less.
  • the area ratio of the plurality of voids in the side margin layer is, for example, the positive electrode activity as the average value of the area ratio of the black region when each of the plurality of cross-sectional images obtained by the scanning electron microscope (SEM) is binarized. It is obtained by the same method as the area ratio of a plurality of voids in the substance 1B and the negative electrode active material 2B.
  • first external terminal 5 and the second external terminal 6 for example, a material having excellent conductivity is used.
  • the first external terminal 5 and the second external terminal 6 are, for example, any one of silver, gold, platinum, aluminum, copper, tin, and nickel.
  • the first external terminal 5 and the second external terminal 6 may have a single layer or a plurality of layers.
  • the all-solid-state battery 10 may have a protective layer on the outer periphery that electrically, physically, and chemically protects the laminate 4 and the terminals.
  • the protective layer is preferably made of, for example, an environmentally safe material having excellent insulation, durability and moisture resistance.
  • the protective layer is, for example, glass, ceramics, a thermosetting resin, or a photocurable resin. Only one kind of protective layer material may be used, or a plurality of protective layer materials may be used in combination.
  • the protective layer may be a single layer or a plurality of layers.
  • the protective layer is preferably an organic-inorganic hybrid in which a thermosetting resin and ceramic powder are mixed.
  • the all-solid-state battery 10 may be manufactured by a co-fired method or a sequential firing method.
  • the co-fired method is a method in which the materials forming each layer are laminated and then fired all at once.
  • the sequential firing method is a method in which each layer is fired each time it is laminated.
  • the co-fired method has a simpler work process than the sequential firing method.
  • the laminated body 4 produced by the co-fired method is denser than the laminated body 4 produced by the sequential firing method.
  • a case where the co-fired method is used will be described as an example.
  • a paste for each layer constituting the laminated body 4 is prepared.
  • the materials to be the positive electrode current collector layer 1A, the positive electrode active material layer 1B, the solid electrolyte layer 3, the side margin layers 11 and 12, the negative electrode active material layer 2B, and the negative electrode current collector layer 2A are each pasted.
  • the method of pasting is not particularly limited.
  • a paste is obtained by mixing powders of each material with a vehicle.
  • Vehicle is a general term for media in the liquid phase.
  • the vehicle contains a solvent and a binder.
  • a filler is added to at least one of the hibicles of the positive electrode active material layer 1B and the negative electrode active material layer 2B. When voids are included inside the side margin layers 11 and 12, the filler is also added to the hibiks of the side margin layers 11 and 12.
  • the filler is, for example, a debinder, a resin material, or a carbon material. All fillers volatilize during firing. The carbon material used as a filler volatilizes during firing and is distinguishable from conductive auxiliaries.
  • the filler is, for example, scaly graphite, amorphous carbon, or a pore-forming material.
  • the pore-forming material is, for example, resin particles such as polyethylene, polypropylene, and polyethylene terephthalate.
  • the filler has anisotropy in shape.
  • the aspect ratio obtained by dividing the length of the filler in the major axis direction by the length in the minor axis direction is, for example, 2 or more and 29 or less.
  • the filler volatilizes during firing to form an anisotropic void V1.
  • the size of the filler to be added the active material shrinks due to firing, and the size of the voids also shrinks.
  • the size of the filler is calculated back from the shrinkage rate of the active material and is larger than the size of the target void.
  • the green sheet is a paste processed into a sheet.
  • the green sheet is obtained, for example, by applying the paste to a base material such as PET (polyethylene terephthalate) in a desired order, drying the paste as necessary, and then peeling the paste from the base material.
  • the method of applying the paste is not particularly limited. For example, known methods such as screen printing, coating, transfer, and doctor blade can be adopted.
  • the filler When producing the green sheets of the positive electrode active material layer 1B and the negative electrode active material layer 2B, the filler can be oriented in the xy in-plane direction by controlling the coating speed or applying through a mesh having an opening. it can. When the filler is oriented in the xy in-plane direction, the anisotropic void V1 is oriented in the xy in-plane direction in the positive electrode active material layer 1B and the negative electrode active material layer 2B after production.
  • Each of the produced green sheets is stacked in a desired order and the number of layers. Alignment, cutting, etc. are performed as necessary to prepare a laminated body.
  • the positive electrode current collector layer and the negative electrode current collector layer are aligned so that the end faces of the positive electrode current collector layer and the end faces of the negative electrode current collector layer do not match.
  • the laminate may be produced after preparing the positive electrode active material layer unit and the negative electrode active material layer unit described below.
  • a paste for a solid electrolyte layer is formed on a PET film in the form of a sheet by the doctor blade method, and dried.
  • the paste for the positive electrode active material layer is printed on the green sheet of the solid electrolyte layer by screen printing and dried.
  • the paste for the side margin layer is screen-printed on the region of the solid electrolyte layer sheet other than the positive electrode layer and dried to form a side margin layer having a height substantially equal to that of the positive electrode layer.
  • the paste for the positive electrode current collector layer is printed by screen printing on the dried paste for the positive electrode active material layer and dried. Further, the paste for the positive electrode active material layer is reprinted by screen printing on the dried paste for the positive electrode current collector layer, and dried. Then, the positive electrode unit is manufactured by peeling off the PET film. In the positive electrode unit, a positive electrode layer 1 and a side margin layer 11 in which a positive electrode active material layer 1B / a positive electrode current collector layer 1A / a positive electrode active material layer 1B are laminated in this order are formed on the main surface of the solid electrolyte layer 3. ing.
  • the negative electrode unit is also manufactured by the same procedure.
  • a negative electrode layer 2 and a side margin layer 12 in which a negative electrode active material layer 2B / a negative electrode current collector layer 2A / a negative electrode active material layer 2B are laminated in this order are formed on the main surface of the solid electrolyte layer 3. ..
  • the positive electrode unit and the negative electrode unit are laminated.
  • the positive electrode unit and the negative electrode unit are laminated so that the solid electrolyte layers of the respective units do not face each other.
  • the laminated body includes the positive electrode active material layer 1B / positive electrode current collector layer 1A / positive electrode active material layer 1B / solid electrolyte layer 3 / negative electrode active material layer 2B / negative electrode current collector layer 2A / negative electrode active material layer 2B /
  • the solid electrolyte layers 3 are laminated in this order.
  • the positive electrode current collector layer 1A is exposed to the first end face of the laminate, and the negative electrode current collector layer 2A is exposed to the second end face opposite to the first end face. Stacked in a staggered manner.
  • a solid electrolyte layer sheet having a predetermined thickness is further stacked on the uppermost layer and the lowermost layer in the stacking direction and dried.
  • the prepared laminates are collectively crimped. Crimping is performed while heating. The heating temperature is, for example, 40 to 95 ° C.
  • the crimped laminate is sintered. Sintering is performed, for example, by heating in a temperature range of 500 ° C. or higher and 1000 ° C. or lower in a nitrogen atmosphere. The firing time is, for example, 0.1 to 3 hours. Laminated body 4 is obtained by sintering. At this time, the filler becomes an anisotropic void V1.
  • the sintered body may be placed in a cylindrical container together with an abrasive such as alumina and barrel-polished.
  • the corners of the sintered body are chamfered by polishing. Polishing may be performed by sandblasting or the like.
  • first external terminal 5 and the second external terminal 6 are attached to the laminated body 4.
  • the first external terminal 5 and the second external terminal 6 are formed so as to be in electrical contact with the positive electrode current collector layer 1A or the negative electrode current collector layer 2A, respectively.
  • the first external terminal 5 is connected to the positive electrode current collector layer 1A exposed from the side surface of the laminated body 4
  • the second external terminal 6 is connected to the negative electrode current collector layer 2A exposed from the side surface of the laminated body 4.
  • the first external terminal 5 and the second external terminal 6 can be manufactured by, for example, a sputtering method, a dipping method, a spray coating method, or the like.
  • At least one of the positive electrode active material layer 1B and the negative electrode active material layer 2B has an anisotropic void V1 inside, so that cracks and peeling at the laminated interface can be suppressed. ..
  • the active material contained in the positive electrode active material layer 1B and the negative electrode active material layer 2B expands and contracts during charging and discharging. The volume change of the active material creates internal stress and can cause cracks and interfacial delamination.
  • the anisotropic void V1 functions as a buffer, so that the occurrence of cracks and interfacial delamination can be suppressed.
  • the aspect ratio of the anisotropic void V1 is less than 2, the shape of the void is substantially isotropic. Pressure is evenly applied to the substantially isotropic void, and the void cannot sufficiently function as a buffer for volume change of the active material. On the other hand, the anisotropic void V1 is easily crushed in the minor axis direction due to the anisotropy of its shape, and can appropriately buffer the volume change of the active material.
  • the aspect ratio of the anisotropic void V1 is larger than 29, strain is concentrated on the active material adjacent to the void, and cracks are likely to occur in the active material adjacent to the void.
  • the positive electrode active material layer 1B and the negative electrode active material layer 2B expand and contract mainly in the z direction.
  • the anisotropic void V1 When the anisotropic void V1 is oriented in the xy plane, the minor axis direction of the anisotropic void V1 becomes the z direction.
  • the anisotropic void V1 is easily crushed in the minor axis direction, and since the anisotropic void V1 is in the z direction in the minor axis direction, cracks and interfacial peeling can be suppressed more effectively.
  • the extremely large anisotropic void V1 can cause cracks and the like.
  • the length of the anisotropic void V1 in the major axis direction is 0.2 ⁇ m or more and 40 ⁇ m or less, and the length of the anisotropic void V1 in the minor axis direction is 0.1 ⁇ m or more and 5 ⁇ m or less, so that cracks and interfacial peeling occur. Can be suppressed more effectively.
  • the area ratio of the plurality of voids V is 3% or more and 30% or less, cracks and interfacial peeling can be suppressed while suppressing a decrease in the capacity of the all-solid-state battery.
  • FIG. 3 is an enlarged cross-sectional view of a main part of the all-solid-state battery according to the first modification.
  • FIG. 3 is an enlarged view of the vicinity of the interface between the positive electrode layer 1 and the solid electrolyte layer 3 of the all-solid-state battery.
  • the all-solid-state battery shown in FIG. 3 differs from the all-solid-state battery shown in FIG. 2 in that an intermediate layer 7 is provided between the positive electrode layer 1 and the solid electrolyte layer 3.
  • FIG. 3 shows an example in which the intermediate layer 7 is provided between the positive electrode layer 1 and the solid electrolyte layer 3, the intermediate layer 7 may be provided between the negative electrode layer 2 and the solid electrolyte layer 3.
  • the intermediate layer 7 extends in the xy plane and is located between the positive electrode active material layer 1B or the negative electrode active material layer 2B and the solid electrolyte layer 3.
  • the intermediate layer 7 is a layer having a composition between the active material constituting the positive electrode active material layer 1B or the negative electrode active material layer 2B and the solid electrolyte constituting the solid electrolyte layer 3.
  • the positive electrode active material layer 1B or the negative electrode active material layer 2B is lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 , LiVOPO 4 ), and the solid electrolyte is lithium zirconium phosphate (LiZr 2 (PO 4 ) 3 ).
  • the intermediate layer 7 is lithium zirconium phosphate containing vanadium or lithium vanadium phosphate containing zirconium.
  • Lithium zirconium phosphate containing vanadium is a zirconium of lithium zirconium phosphate in which a part of zirconium is replaced with vanadium.
  • Lithium vanadium phosphate containing zirconium is vanadium of lithium vanadium phosphate in which a part of vanadium is replaced with zirconium.
  • the intermediate layer 7 enhances the bonding strength between the positive electrode active material layer 1B or the negative electrode active material layer 2B and the solid electrolyte layer 3.
  • the intermediate layer 7 may have a plurality of voids V2, for example.
  • the ratio of the plurality of voids V2 in the intermediate layer 7 is preferably 0.1% or more and 8% or less.
  • the intermediate layer 7 also has a plurality of voids V2
  • the internal stress associated with the expansion and contraction of the active material can be relaxed, and the occurrence of cracks and interfacial peeling can be suppressed more effectively.
  • the ratio of the plurality of voids V2 in the intermediate layer 7 is not too high, the bonding strength between the positive electrode active material layer 1B or the negative electrode active material layer 2B and the solid electrolyte layer 3 can be maintained, and interfacial peeling can occur. It can be suppressed more effectively.
  • the intermediate layer 7 is obtained by separately preparing a layer in which constituent elements are adjusted in advance and inserting it between the solid electrolyte layer 3 and the positive electrode active material layer 1B or the negative electrode active material layer 2B. Further, the firing conditions may be adjusted to thermally diffuse the constituent elements (for example, zirconium) of the solid electrolyte layer 3 into the positive electrode active material layer 1B or the negative electrode active material layer 2B, or the positive electrode active material layer 1B or the negative electrode active material layer. The constituent elements of 2B (for example, vanadium) may be thermally diffused into the solid electrolyte layer 3.
  • the constituent elements of 2B for example, vanadium
  • the all-solid-state battery according to the first modification has the same effect as the all-solid-state battery according to the first embodiment. Further, the intermediate layer 7 can increase the bonding strength between the positive electrode active material layer 1B or the negative electrode active material layer 2B and the solid electrolyte layer 3, and can more effectively suppress the occurrence of interfacial peeling.
  • Example 1 The all-solid-state battery of Example 1 was produced as follows.
  • lithium vanadium phosphate prepared by the following method was used. Using Li 2 CO 3 , V 2 O 5 and NH 4 H 2 PO 4 as starting materials, wet mixing was performed in a ball mill for 16 hours, and the powder obtained after dehydration drying was mixed with nitrogen and hydrogen at 850 ° C for 2 hours. Temporarily baked in gas. The calcined product was wet-pulverized with a ball mill and then dehydrated and dried to obtain an active material. It was confirmed by using an X-ray diffractometer that the produced powder had the same crystal structure as Li 3 V 2 (PO 4 ) 3.
  • the paste for the active material layer consists of 95 parts of the active material powder obtained together, 2 parts of the filler (polyethylene), and 3 parts of the flat carbon material (artificial graphite: TIMREX (registered trademark) Graphite KS-6L) powder. 15 parts of ethyl cellulose as a binder and 65 parts of dihydroterpineol as a solvent were added to the mixture, and the mixture was mixed and dispersed to prepare a paste for the positive electrode active material layer and a paste for the negative electrode active material layer.
  • the filler a filler having a length in the major axis direction of 0.63 ⁇ m, a length in the minor axis direction of 0.13 ⁇ m, and an aspect ratio of 5.0 was used.
  • an LZP-based pearcon-type compound prepared by the following method eg, LiZr 1.7 Ca 0.3 (PO 4 ) 3
  • li 2 CO 3 and starting material ZrO 2 and CaCO 3 and NH 4 H 2 PO 4 after 16 hours wet mixing in a ball mill, dehydrated and dried, then the resulting powder 2 hours at 900 ° C., the atmosphere Temporarily baked inside. After calcination, wet pulverization was performed in a ball mill for 16 hours, and then dehydration drying was performed to obtain a solid electrolyte powder. It was confirmed by using an X-ray diffractometer (XRD) that the crystal structure of the produced powder was similar to that of the LZP-based pear-con type compound.
  • XRD X-ray diffractometer
  • the paste for the solid electrolyte layer is prepared by adding 100 parts of ethanol and 200 parts of toluene as a solvent to 100 parts of the solid electrolyte powder and wet-mixing them with a ball mill, and then 16 parts of a polyvinyl butyral binder and 4.8 parts of benzylbutyl phthalate. The parts were further charged and mixed to prepare a paste for a solid electrolyte layer.
  • a sheet of the solid electrolyte layer paste was formed by a doctor blade method using a PET film as a base material to obtain a solid electrolyte layer sheet having a thickness of 15 ⁇ m.
  • the base material for the intermediate layer was prepared by wet-mixing the powder of lithium vanadium phosphate prepared as an active material and the LZP-based pearcon-type compound powder prepared with a solid electrolyte with a ball mill for 16 hours, dehydrating and drying.
  • the powder was calcined at 850 ° C. for 2 hours in a mixed gas of nitrogen and hydrogen.
  • the calcined product was wet-pulverized with a ball mill and then dehydrated and dried to obtain a base powder for an intermediate layer.
  • the paste for the intermediate layer is prepared by adding 0.5 part of filler (polyethylene), 15 parts of ethyl cellulose as a binder, and 65 parts of dihydroterpineol as a solvent to 100 parts of the base powder for the intermediate layer, and mixing and dispersing the paste.
  • a layer paste was prepared.
  • thermosetting external electrode paste was prepared by mixing and dispersing silver powder, an epoxy resin, and a solvent.
  • Example 1 the all-solid-state battery of Example 1 was prepared as follows.
  • an intermediate layer having a thickness of 0.2 ⁇ m (referred to as a first positive electrode intermediate layer) was formed on the solid electrolyte layer sheet by screen printing, and dried at 80 ° C. for 10 minutes.
  • a positive electrode active material layer having a thickness of 5 ⁇ m (referred to as a first positive electrode active material layer) was formed on the positive electrode active material layer by screen printing, and dried at 80 ° C. for 10 minutes.
  • a positive electrode current collector layer having a thickness of 5 ⁇ m was formed on the positive electrode current collector layer by screen printing, and dried at 80 ° C. for 10 minutes.
  • a positive electrode active material layer having a thickness of 5 ⁇ m (referred to as a second positive electrode active material layer) was formed again by screen printing, and dried at 80 ° C. for 10 minutes.
  • an intermediate layer having a thickness of 0.2 ⁇ m (called a second positive electrode intermediate layer) is formed again by screen printing on the intermediate layer, and dried at 80 ° C. for 10 minutes to form a positive electrode layer on the solid electrolyte layer sheet.
  • a margin layer having a height substantially flush with the positive electrode layer was formed on the outer periphery of one end of the positive electrode layer by screen printing, and dried at 80 ° C. for 10 minutes. Then, the PET film was peeled off to obtain a sheet of the positive electrode layer unit.
  • an intermediate layer having a thickness of 0.2 ⁇ m (referred to as a first negative electrode intermediate layer) was formed on the solid electrolyte layer sheet by screen printing, and dried at 80 ° C. for 10 minutes.
  • a negative electrode active material layer having a thickness of 5 ⁇ m (referred to as a first negative electrode active material layer) was formed on the negative electrode active material layer, and dried at 80 ° C. for 10 minutes.
  • a negative electrode current collector layer having a thickness of 5 ⁇ m was formed on the negative electrode current collector layer by screen printing, and dried at 80 ° C. for 10 minutes.
  • a negative electrode active material layer having a thickness of 5 ⁇ m (referred to as a second negative electrode active material layer) was formed again by screen printing, and dried at 80 ° C. for 10 minutes.
  • an intermediate layer having a thickness of 0.2 ⁇ m (called a second negative electrode intermediate layer) is formed again by screen printing on the intermediate layer, and dried at 80 ° C. for 10 minutes to form a negative electrode layer on the solid electrolyte layer sheet.
  • a margin layer having a height substantially flush with the negative electrode layer was formed on the outer periphery of one end of the negative electrode layer by screen printing, and dried at 80 ° C. for 10 minutes. Then, the PET film was peeled off to obtain a sheet of the negative electrode layer unit.
  • a plurality of positive electrode layer units and negative electrode layer units were alternately laminated while being offset so that one ends did not match, to prepare a laminated substrate. Furthermore, a plurality of solid electrolyte sheets were laminated as outer layers on both main surfaces of the laminated substrate, and an outer layer of 200 ⁇ m was provided. This was thermocompression-bonded by a die press and then cut to prepare an unfired all-solid-state battery laminate. Next, the laminate was debuy-fired to obtain an all-solid-state battery laminate. The laminate was fired in nitrogen at a firing rate of 200 ° C./hour to a firing temperature of 1000 ° C., held at that temperature for 2 hours, and taken out after natural cooling. The filler became a void, and the major axis length of the void was 0.5 ⁇ m, the minor axis length was 0.1 ⁇ m, and the aspect ratio was 5.0.
  • the dimensions of the manufactured all-solid-state battery were approximately 4.5 mm x 3.2 mm x 1.1 mm.
  • the initial capacity and cycle characteristics of the manufactured all-solid-state battery were determined.
  • the initial capacity and cycle characteristics were determined using a secondary battery charge / discharge test device.
  • the voltage range was from 0.2V to 2.6V.
  • the discharge was performed under the condition of discharging at a current value of 0.1 C.
  • the cycle characteristics were evaluated as the capacity retention rate (%).
  • the capacity retention rate (%) is the ratio of the discharge capacity after 100 cycles to the initial discharge capacity, with the discharge capacity in the first cycle as the initial discharge capacity.
  • the capacity retention rate (%) is expressed by the following formula.
  • Capacity retention rate (%) ("Discharge capacity after 100 cycles” / "Discharge capacity in the first cycle") x 100
  • the all-solid-state battery is cut, and the area ratio of the voids in the positive electrode active material layer and the negative electrode active material layer, the ratio of the anisotropic voids in the voids, the shape of the anisotropic voids, and the anisotropicity
  • the orientation direction of the voids and the area ratio of the voids in the intermediate layer were determined.
  • Examples 2 to 6 The difference from the first embodiment is that the major axis length and the minor axis length of the void are changed under the condition that the aspect ratio is constant.
  • the aspect ratio was 5.0, which was the same as in Example 1.
  • the major axis length, minor axis length and aspect ratio of the voids were adjusted by the shape of the filler added to the paste of the positive electrode active material layer and the negative electrode active material layer. In Examples 2 to 6, the same measurement as in Example 1 was performed.
  • Example 7 to 12 The difference from Example 1 is that the major axis length and the minor axis length of the void are changed.
  • the major axis length, minor axis length and aspect ratio of the voids were adjusted by the shape of the filler added to the paste of the positive electrode active material layer and the negative electrode active material layer.
  • Example 7 to 12 the same measurement as in Example 1 was performed.
  • Example 13 to 18 The difference from the first embodiment is that the major axis length and the aspect ratio of the void are changed while the minor axis length of the void is constant.
  • the major axis length and aspect ratio of the voids were adjusted by the shape of the filler added to the paste of the positive electrode active material layer and the negative electrode active material layer. In Examples 13 to 18, the same measurement as in Example 1 was performed.
  • Example 19 A filler having a major axis length of 12.5 ⁇ m and a minor axis length of 1.1 ⁇ m was used, and no mesh was used when preparing the paste for the positive electrode active material layer and the negative electrode active material layer. Other conditions were the same as in Example 1.
  • the anisotropic voids of Example 19 were not oriented in a predetermined direction, and the directions of the major axes in each anisotropic void were random. In Example 19, the same measurement as in Example 1 was performed.
  • Example 20 to 24 Using a filler having a major axis length of 12.5 ⁇ m and a minor axis length of 1.1 ⁇ m, the composition ratio of the active material particles and the filler in the paste of the positive electrode active material layer and the negative electrode active material layer was changed. Other conditions were the same as in Example 1. In Examples 20 to 24, the same measurement as in Example 1 was performed.
  • Example 25 to 28 Two types of fillers, a filler having shape anisotropy and a filler not having shape anisotropy, were used, and the mixing ratio of these was changed.
  • the major axis length of the filler having shape anisotropy was 12.5 ⁇ m, and the minor axis length was 1.1 ⁇ m.
  • Other conditions were the same as in Example 1.
  • the same measurement as in Example 1 was performed.
  • Example 29 It is different from Example 21 in that the amount of the filler added to the intermediate layer is changed and the porosity of the intermediate layer is changed. Other conditions were the same as in Example 21.
  • Example 1 It differs from Example 1 in that a filler having a major axis length of 0.3 ⁇ m, a minor axis length of 0.3 ⁇ m, and an aspect ratio of 1.0 is used. Other conditions were the same as in Example 1.
  • Example 2 It differs from Example 1 in that a filler having a major axis length of 1.3 ⁇ m, a minor axis length of 1.3 ⁇ m, and an aspect ratio of 1.0 is used. Other conditions were the same as in Example 1.
  • Example 3 It differs from Example 1 in that a filler having a major axis length of 1.8 ⁇ m, a minor axis length of 1.1 ⁇ m, and an aspect ratio of 1.6 is used. Other conditions were the same as in Example 1.
  • Example 4 It differs from Example 1 in that a filler having a major axis length of 35.9 ⁇ m, a minor axis length of 1.1 ⁇ m, and an aspect ratio of 31.9 is used. Other conditions were the same as in Example 1.
  • Examples 1-2 to 22-2 All having a plurality of voids inside all of the side margin layers as Example 1-2, Example 19-2, Example 20-2, Example 20-3, Example 20-4 and Example 22-2.
  • a solid-state battery was manufactured.
  • Example 1-2 is the same as Example 1
  • Example 19-2 is the same as Example 19
  • Examples 20-2 to 20-4 are the same as Example 20.
  • Example 22-4 was the same as Example 22.
  • the side margin layers of the all-solid-state batteries of Examples 1-2, Example 19-2, Example 20-2, Example 20-3, Example 20-4 and Example 22-2 have a porosity. Except for this, the positive electrode active material layer and the negative electrode active material layer have voids having the same configuration as those of Example 1, Example 19, Example 20, and Example 22, respectively.
  • Example 1-2 Example 19-2, Example 20-2, Example 20-3, Example 20-4, and Example 22-2, the porosity of the side margin layer was determined in Example 1, respectively. , Example 19, Example 20, and Example 22. In Example 1, Example 19, Example 20, and Example 22, the porosity of the side margin layer was less than 2%. In Table 2, the porosity of the side margin layer is added in Examples 1, 19, 19, 20 and 22 of Table 1, and Examples 1-1, 19-1, and 20- It is described as 1 and Example 22-1. In Example 1-2, Example 19-2, Example 20-2, Example 20-3, Example 20-4, and Example 22-2, the same measurement as in Example 1 was performed, and the side margin was further increased. The porosity of the layer was measured.
  • Example 101 to 128 As Examples 101 to 128, all-solid-state batteries were produced except for the step of forming the intermediate layer. That is, the all-solid-state batteries of Examples 101 to 128 do not have an intermediate layer. Regarding other conditions, Examples 101 to 128 were the same as those of Examples 1 to 28, respectively.
  • Comparative Examples 11 to 14 As Comparative Examples 11 to 14, all-solid-state batteries were produced except for the step of forming the intermediate layer. That is, the all-solid-state batteries of Comparative Examples 11 to 14 do not have an intermediate layer. Regarding other conditions, Comparative Examples 11 to 14 were the same as Comparative Examples 1 to 4, respectively.
  • Tables 1 to 3 The results of the initial capacity, cycle characteristics, area ratio of voids, ratio of anisotropic voids in voids, shape of anisotropic voids, and orientation direction of anisotropic voids are shown in Tables 1 to 3 below.
  • the initial capacity shows the ratio when the initial capacity of Example 1 is set to 100%.
  • Table 3 shows the results of Examples 101 to 128 and Comparative Examples 11 to 14.
  • the all-solid-state batteries of Examples 101 to 128 and Comparative Examples 11 to 14 do not have an intermediate layer. Therefore, in the all-solid-state batteries of Examples 101 to 128 and Comparative Examples 11 to 14, the area ratio of the voids in the intermediate layer was not measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

この全固体電池は、正極層と、負極層と、前記正極層と前記負極層との間にある固体電解質層とを備え、前記正極層は、正極集電体と、前記正極集電体に接する正極活物質層と、を有し、前記負極層は、負極集電体と、前記負極集電体に接する負極活物質層と、を有し、前記正極活物質層と前記負極活物質層とのうち少なくとも一方は、内部に複数の空隙を有し、前記複数の空隙は、長軸方向の長さを短軸方向の長さで割ったアスペクト比が2以上29以下である異方性空隙を有する。

Description

全固体電池
 本発明は、全固体電池に関する。
 本願は、2019年10月23日に、日本に出願された特願2019-192583号に基づき優先権を主張し、その内容をここに援用する。
 近年、電池は種々の用途で利用されている。電池は、例えば携帯電池等にも利用され、小型軽量化、薄膜化、信頼性の向上が求められている。電解液を用いた電池は、液漏れおよび液の枯渇等の問題がある。そこで、固体電解質を用いた全固体電池に注目が集まっている。
 全固体電池は、正極層と負極層と固体電解質層とを有する。正極または負極は、全固体電池を充放電すると膨張収縮する。正極又は負極の膨張収縮によって生じた歪みは、クラックの発生原因の一つであり、各層の積層界面における剥離の原因の一つである。
 例えば、特許文献1には、空隙率の異なる3層の固体電解質層を正極層と負極層との間に有する全固体電池が開示されている。空隙率の異なる3層の固体電解質層は、内部応力を緩和し、クラックの発生を抑制する。
国際公開第2013/175993号
 クラック及び界面剥離は、内部抵抗が増大する原因の一つであり、サイクル特性の低下の原因の一つである。
 特許文献1には、クラックを抑制する一つの手法が記載されている。しかしながら、構造が複雑であり、製造しにくい。また積層方向の厚みが増え、全固体電池全体の厚みが増加する。
 本発明は上記問題に鑑みてなされたものであり、クラックの発生及び積層界面における剥離を抑制できる全固体電池を提供することを目的とする。
 発明者らは、内部応力の発生原因である負極層又は正極層に所定の形状の空隙を設けることで、全固体電池に生じる内部応力を緩和し、クラック又は界面剥離の発生を抑制できることを見出した。すなわち、上記課題を解決するため、以下の手段を提供する。
(1)第1の態様にかかる全固体電池は、正極層と、負極層と、前記正極層と前記負極層との間にある固体電解質層とを備え、前記正極層は、正極集電体と、前記正極集電体に接する正極活物質層と、を有し、前記負極層は、負極集電体と、前記負極集電体に接する負極活物質層と、を有し、前記正極活物質層と前記負極活物質層とのうち少なくとも一方は、内部に複数の空隙を有し、前記複数の空隙は、長軸方向の長さを短軸方向の長さで割ったアスペクト比が2以上29以下である異方性空隙を有する。
(2)上記態様にかかる全固体電池において、前記正極層及び前記負極層のそれぞれに並んでその外周に配置するサイドマージン層のうちの少なくとも一部は、内部に複数の空隙を有し、前記複数の空隙は、長軸方向の長さを短軸方向の長さで割ったアスペクト比が2以上29以下である異方性空隙を有していてもよい。
(3)上記態様にかかる全固体電池において、前記複数の空隙のうち30%以上が、前記異方性空隙であってもよい。
(4)上記態様にかかる全固体電池において、前記異方性空隙の長軸方向は、前記正極活物質層又は前記負極活物質層が広がる面内方向と略一致してもよい。
(5)上記態様にかかる全固体電池において、前記異方性空隙の長軸方向の平均長さは、0.2μm以上40μm以下であり、前記異方性空隙の短軸方向の平均長さは、0.1μm以上5μm以下であってもよい。
(6)上記態様にかかる全固体電池の前記正極活物質層又は前記負極活物質層において前記複数の空隙が占める割合が、3%以上30%以下であってもよい。
(7)上記態様にかかる全固体電池は、前記正極層と前記負極層とのうち少なくとも一方と前記固体電解質層との間に、イオン伝導性を有する中間層を有してもよく、前記中間層は、複数の空隙を有し、前記中間層において複数の空隙が占める割合が0.1%以上8%以下であってもよい。
 上記態様にかかる全固体電池は、クラックの発生及び積層界面における剥離を抑制できる。
本実施形態にかかる全固体電池の断面模式図である。 本実施形態にかかる全固体電池の要部の拡大図である。 第1変形例にかかる全固体電池の要部の拡大図である。
 以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
 まず方向について定義する。後述する正極層1及び負極層2が積層されている方向をz方向とする。また後述する正極層1及び負極層2が広がる面内方向のうちの一方向をx方向として、x方向と直交する方向をy方向とする。
[全固体電池]
 図1は、第1実施形態にかかる全固体電池の要部を拡大した断面模式図である。図1に示すように、全固体電池10は、積層体4を有する。積層体4は、複数の正極層1と、複数の負極層2と、正極層1と負極層2との間に位置する固体電解質層3とを有する。正極層1は、第1電極層の一例であり、負極層2は、第2電極層の一例である。第1電極層と第2電極層は、いずれか一方が正極として機能し、他方が負極として機能する。正極層1と負極層2は、対応する極性の外部端子にそれぞれ接続し、正極層1と負極層2とは互いに接することはない。
 正極層1はそれぞれ第1外部端子5に接続され、負極層2はそれぞれ第2外部端子6に接続されている。第1外部端子5及び第2外部端子6は、外部との電気的な接点である。
(積層体)
 積層体4は、複数の正極層1と複数の負極層2と複数の固体電解質層3とを有する。それぞれの正極層1と負極層2との間には、固体電解質層3がそれぞれ位置する。正極層1と負極層2の間で固体電解質層3を介したリチウムイオンの授受により、全固体電池10の充放電が行われる。
「正極層および負極層」
 正極層1及び負極層2は、例えば、積層体4内にそれぞれ複数ある。正極層1及び負極層2は、固体電解質層3を挟んでz方向に交互に積層されている。それぞれの正極層1及び負極層2は、xy面内に広がる。正極層1の第1端部は第1外部端子5に接続され、第2端部は第2外部端子6に向って延びる。正極層1の第2端部は、第2外部端子6とは接続されない。負極層2の第1端部は第2外部端子6に接続され、第2端部は第1外部端子5に向って延びる。負極層2の第2端部は、第1外部端子5とは接続されない。正極層1と第2外部端子6との間及び負極層2と第1外部端子5との間には、固体電解質層3と同様の材料が存在する。
 正極層1は、正極集電体層1Aと正極活物質層1Bとを有する。負極層2は、負極集電体層2Aと負極活物質層2Bとを有する。
 正極集電体層1A及び負極集電体層2Aは、xy面内に広がる。正極集電体層1A及び負極集電体層2Aは、導電性に優れる材料を含む。正極集電体層1A及び負極集電体層2Aは、全固体電池10をxy平面に沿って区分した際に、導電性に優れる材料を50%以上含む部分である。導電性に優れる材料は、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケルである。銅は、正極活物質、負極活物質及び固体電解質と反応しにくい。例えば、正極集電体層1A及び負極集電体層2Aに銅を用いると、全固体電池10の内部抵抗を低減できる。正極集電体層1Aと負極集電体層2Aを構成する物質は、同一でもよいし、異なってもよい。
 正極集電体層1Aは、後述する正極活物質を含んでもよい。負極集電体層2Aは、後述する負極活物質を含んでもよい。それぞれの集電体層に含まれる活物質の含有比は、集電体として機能する限り特に限定はされない。正極集電体層1Aにおける導電性材料と正極活物質との体積比率は、例えば、90:10~70:30の範囲内である。同様に、負極集電体層2Aにおける導電性材料と負極活物質との体積比率は、例えば、90:10~70:30の範囲内である。正極集電体層1A及び負極集電体層2Aがそれぞれ正極活物質及び負極活物質を含むと、正極集電体層1Aと正極活物質層1Bとの密着性及び負極集電体層2Aと負極活物質層2Bとの密着性が向上する。
 正極活物質層1B及び負極活物質層2Bは、xy面内に広がる。正極活物質層1Bは、正極集電体層1Aの片面又は両面に形成される。正極集電体層1Aのうち対向する負極層2が存在しない側の面には、正極活物質層1Bは無くてもよい。また負極活物質層2Bは、負極集電体層2Aの片面又は両面に形成される。負極集電体層2Aのうち対向する正極層1が存在しない側の面には、負極活物質層2Bは無くてもよい。例えば、積層体4の最上層又は最下層に位置する正極層1又は負極層2は、片面に正極活物質層1B又は負極活物質層2Bを有さなくてもよい。
 正極活物質層1B及び負極活物質層2Bは、充放電時に電子を授受する活物質を含む。正極活物質層1Bは、正極活物質を含む。負極活物質層2Bは負極活物質を含む。正極活物質層1B及び負極活物質層2Bは、それぞれ導電助剤や結着剤等を含んでもよい。正極活物質及び負極活物質は、リチウムイオンを効率的に挿入、脱離できることが好ましい。
 正極活物質及び負極活物質は、例えば、遷移金属酸化物、遷移金属複合酸化物である。正極活物質及び負極活物質は、具体的には例えば、リチウムマンガン複合酸化物LiMnMa1-a(0.8≦a≦1、Ma=Co、Ni)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、一般式:LiNiCoMn(x+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMbPO(ただし、Mbは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素)、リン酸バナジウムリチウム(Li(PO、LiVTi(PO、LiVOPO)、LiMnO-LiMcO(Mc=Mn、Co、Ni)で表されるLi過剰系固溶体正極、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<s<1.3、0.9<t+u+v<1.1)で表される複合金属酸化物等である。
 正極活物質層1B又は負極活物質層2Bを構成する活物質には明確な区別がなく、2種類の化合物の電位を比較して、より貴な電位を示す化合物を正極活物質として用い、より卑な電位を示す化合物を負極活物質として用いることができる。
 正極活物質層1Bと負極活物質層2Bとのうち少なくとも一方は、内部に複数の空隙を有する。図2は、本実施形態にかかる全固体電池10の正極層1と固体電解質層3との界面近傍を拡大した模式図である。図2に示す正極活物質層1Bは複数の空隙Vを有する。図2では、正極活物質層1Bを例示したが、負極活物質層2Bが複数の空隙Vを有してもよく、正極活物質層1B及び負極活物質層2Bが複数の空隙Vを有してもよい。
 複数の空隙Vは、正極活物質層1B又は負極活物質層2Bを構成する活物質の間に形成されている。活物質は充放電時の電子の伝導を担うため、正極活物質層1B及び負極活物質層2B内に活物質を密に充填することが一般的である。複数の空隙Vは、意図的に設けられたものである。
 正極活物質層1B又は負極活物質層2Bにおいて複数の空隙Vが占める割合(以下、複数の空隙Vの面積率と称する。)は、例えば3%以上30%以下である。複数の空隙Vの面積率は、例えば、走査型電子顕微鏡(SEM)によって得られた複数の断面画像のそれぞれを二値化した際の黒色領域の面積率の平均値として求められる。以下、複数の空隙Vの面積率の具体的な求め方を正極活物質層1Bに複数の空隙Vが存在する場合を例に示す。
 まず正極活物質層1Bのxz断面とyz断面をそれぞれ5枚ずつ撮影する。それぞれの画像において正極活物質層1Bの面積をそれぞれ求める。実際のSEM像において正極集電体層1Aと正極活物質層1Bとの界面及び正極活物質層1Bと固体電解質層3との界面は、平坦ではない。そのため正極活物質層1Bの面積は、正極集電体層1Aと正極活物質層1Bとの界面の平均高さ位置に広がるxy平面と、正極活物質層1Bと固体電解質層3との界面の平均高さ位置に広がるxy平面と、の間に挟まれる領域の面積として換算する。
 次いで、それぞれの画像における複数の空隙Vの面積を求める。複数の空隙Vの面積は、例えば、以下の手順で求められる。まず、撮影した画像のそれぞれから正極集電体層1Aの導電性材料の部分の輝度と、複数の空隙Vの部分の輝度と、を抽出する。正極集電体層1Aの導電性材料の部分は白色であり、それぞれの画像における輝度上限とみなす。複数の空隙Vは黒色であり、それぞれの画像における輝度下限とみなす。輝度上限と輝度下限の間がそれぞれの画像における輝度範囲となる。次いで、それぞれの画像における輝度下限から輝度範囲の5%だけ輝度上限側の輝度を閾値として、それぞれの画像を二値化する(以下、二値化後の画像を二値化画像と称する。)。二値化画像において閾値より輝度が低い部分は黒色領域となり、閾値より輝度が高い部分は白色領域となる。二値化画像における黒色領域の面積が複数の空隙Vの面積となる。そして、それぞれの画像における複数の空隙Vの正極活物質層1Bの面積率を求め、平均値を算出することで複数の空隙Vの面積率が求まる。なお、長径のサイズが50nm以下の異方性空隙V1はSEM(倍率500倍から5000倍の範囲)で適切に確認することが難しく、面積率、後述する異方性空隙V1の複数の空隙に対する比率、及び異方性空隙V1のサイズ測定の際には除外する。
 複数の空隙Vのうちの少なくとも一つは、異方性空隙V1である。異方性空隙V1は、複数の空隙Vのうちの30%以上であることが好ましく、50%以上であることがより好ましく、80%以上であることがさらに好ましい。異方性空隙V1は、長軸方向の長さを短軸方向の長さで割ったアスペクト比が2以上29以下の空隙である。
 図2では、異方性空隙V1を模式的に楕円で図示した。しかしながら、異方性空隙V1の形状は問わない。異方性空隙V1は、例えば、不定形である。空隙が不定形の場合、二値化画像における一つの黒色領域を包含する面積が最も小さい所定の楕円を当該空隙の形状と擬制し、擬制した楕円の長軸方向の長さと短軸方向の長さを当該空隙の長軸方向の長さと短軸方向の長さとする。ここで、空隙の形状と擬制する楕円の決定は以下のように行う。楕円を包含する、面積が最も小さい楕円のうち、楕円の長軸方向の長さLLeを空隙Vの長さが最も長い方向の長さLLcに重ね合わせたときに(LLe=LLC)、短軸方向の長さSLeが最も短い楕円をこの空隙の形状と擬制する。
 異方性空隙V1の長軸方向の平均長さは、例えば0.2μm以上100μm以下であり、0.2μmより大きく40μm以下であることが好ましい。異方性空隙V1の短軸方向の平均長さは、例えば0.1μm以上50μm以下であり、好ましくは0.1μmより大きく20μm以下であり、より好ましくは0.1μmより大きく5μm以下である。異方性空隙V1が複数ある場合における異方性空隙V1の長軸方向及び短軸方向の平均長さは、上述の10枚の二値化画像のそれぞれから2つずつ異方性空隙V1を抽出し、計20個の異方性空隙V1の平均値として求める。
 また異方性空隙V1は、xy面内に配向していることが好ましい。「xy面内に配向する」とは、異方性空隙V1の長軸方向がz方向から45度以上傾いていることを意味する。また異方性空隙V1の長軸方向は、xy平面が広がる面内方向と略一致することが好ましい。異方性空隙V1の長軸方向が面内方向と略一致するとは、異方性空隙V1の長軸方向のxy平面に対する傾き角が10度以下であることを意味する。
「固体電解質層」
 固体電解質層3は、それぞれの正極層1と負極層2との間に位置する。後述するように、正極層1と第2外部端子6との間及び負極層2と第1外部端子5との間において、固体電解質層3と同様の材料のサイドマージン層11、12を備えていてもよい。
 固体電解質層3は、固体電解質を含む。固体電解質は、外部から印加された電場によってイオンを移動させることができる物質(例えば、粒子)である。例えば、リチウムイオンは、外部から印加された電場によって固体電解質内を移動する。また固体電解質は、電子の移動を阻害する絶縁体である。
 固体電解質は、例えば、リチウムを含む。固体電解質は、例えば、酸化物系材料、硫化物系材料のいずれでもよい。固体電解質は、例えば、ペロブスカイト型化合物、リシコン型化合物、ガーネット型化合物、ナシコン型化合物、チオリシコン型化合物、ガラス化合物、リン酸化合物のいずれでもよい。La0.5Li0.5TiOは、ペロブスカイト型化合物の一例である。Li14Zn(GeOは、リシコン型化合物の一例である。Li7LaZr12はガーネット型化合物の一例である。LiZr(PO、Li1.3Al0.3Ti1.7(PO3、Li1.5Al0.5Ge1.5(PO、Li1.55Al0.2Zr1.7Si0.259.7512、Li1.4Na0.1Zr1.5Al0.5(PO、Li1.4Ca0.25Er0.3Zr1.7(PO3.2、Li1.4Ca0.25Yb0.3Zr1.7(PO3.2は、ナシコン型化合物の一例である。Li3.25Ge0.250.754、LiPSは、チオリシコン型化合物の一例である。LiS-P5、LiO-V-SiOは、ガラス化合物の一例である。LiPO、Li3.5Si0.50.5、Li2.9PO3.30.46はリン酸化合物の一例である。固体電解質は、これらの化合物を1種以上含んでもよい。
 固体電解質の形状は特に問わない。固体電解質の形状は、例えば、球状、楕円体状、針状、板状、鱗片状、チューブ状、ワイヤ状、ロッド状、不定形である。固体電解質の粒径は、例えば、0.1μm以上10μm以下であり、0.3μm以上9μm以下でもよい。粒子の粒径は、粒度分布測定により得られる測定値(D50)より求める。D50は、粒度分布測定で得られた分布曲線における積算値が50%である粒子の直径である。粒子の粒度分布は、例えば、レーザ回折・散乱法(マイクロトラック法)を用いた粒度分布測定装置により測定される。
「サイドマージン層」
 積層体4は、図1に示すように、正極層1および負極層2のそれぞれに並んでその外周に配置し、固体電解質を含むサイドマージン層11、12を備える。サイドマージン層11、12をそれぞれ、正極サイドマージン層、負極サイドマージン層ということがある。
 サイドマージン層11、12が含む固体電解質は、固体電解質層3が含む固体電解質と同じであっても、異なっていてもよい。
 サイドマージン層11、12は、固体電解質層3と正極層1との段差、ならびに固体電解質層3と負極層2との段差を解消するために設けることが好ましい。したがってサイドマージン層11、12は、固体電解質層3の主面において、正極層1ならびに負極層2以外の領域に、正極層1または負極層2と略同等の高さで(すなわち、正極層1および負極層2のそれぞれに並んで配置するように)形成される。サイドマージン層11、12の存在により、固体電解質層3と正極層1ならびに固体電解質層3と負極層2との段差が解消されるため、固体電解質3と各電極層との緻密性が高くなり、全固体電池の焼成による層間剥離(デラミネーション)や反りが生じにくくなる。
 サイドマージン層11、12のうちの少なくとも一部は、内部に複数の空隙を有するものとすることができる。サイドマージン層11、12が内部に複数の空隙を有さない場合、サイドマージン層11、12は、固体電解質層3と同じ構成とすることができる。サイドマージン層11、12のいずれも内部に複数の空隙を有することが好ましい。サイドマージン層11、12の内部に含まれる複数の空隙の構成は、正極活物質層1Bと負極活物質層2Bとの少なくとも一方に含まれる複数の空隙Vと同様のものとすることができる。
 複数の空隙のうち少なくとも一つは、異方性空隙である。異方性空隙は、サイドマージン層に含まれる複数の空隙のうちの30%以上であることが好ましく、50%以上であることがより好ましく、80%以上であることがさらに好ましい。異方性空隙は、長軸方向の長さを短軸方向の長さで割ったアスペクト比が2以上29以下の空隙である。
 サイドマージン層11、12において複数の空隙が占める割合は、(以下、サイドマージン層における複数の空隙の面積率と称する。)は、例えば3%以上30%以下である。サイドマージン層における複数の空隙の面積率は、例えば、走査型電子顕微鏡(SEM)によって得られた複数の断面画像のそれぞれを二値化した際の黒色領域の面積率の平均値として、正極活物質1Bおよび負極活物質2Bにおける複数の空隙の面積率と同様の方法で求められる。
(端子)
 第1外部端子5及び第2外部端子6は、例えば、導電性に優れる材料が用いられる。第1外部端子5及び第2外部端子6は、例えば、銀、金、プラチナ、アルミニウム、銅、スズ、ニッケルのいずれかである。第1外部端子5及び第2外部端子6は、単層でも複数層でもよい。
(保護層)
 全固体電池10は、積層体4や端子を電気的、物理的、化学的に保護する保護層を外周に有してもよい。保護層は、例えば、絶縁性、耐久性、耐湿性に優れ、環境的に安全な材料が好ましい。保護層は、例えば、ガラス、セラミックス、熱硬化性樹脂、光硬化性樹脂である。保護層の材料は1種類だけでも良いし、複数を併用してもよい。保護層は単層でもよいし、複数層でもよい。保護層は、熱硬化性樹脂とセラミックスの粉末を混合させた有機無機ハイブリットが好ましい。
 次いで、本実施形態に係る全固体電池の製造方法を説明する。
 全固体電池10は、同時焼成法により作製してもよいし、逐次焼成法により作製してもよい。同時焼成法は、各層を形成する材料を積層した後、一括焼成する方法である。逐次焼成法は、各層を積層するごとに焼成する方法である。同時焼成法は、逐次焼成法より作業工程が簡便である。また同時焼成法により作製された積層体4は、逐次焼成法により作製された積層体4より緻密である。以下、同時焼成法を用いる場合を例に説明する。
 まず積層体4を構成する各層のペーストを作製する。正極集電体層1A、正極活物質層1B、固体電解質層3、サイドマージン層11、12、負極活物質層2B及び負極集電体層2Aとなる材料をそれぞれペースト化する。ペースト化の方法は、特に限定されない。例えば、ビヒクルに各材料の粉末を混合してペーストが得られる。ビヒクルは、液相における媒質の総称である。ビヒクルには、溶媒、バインダーが含まれる。
 正極活物質層1Bと負極活物質層2Bとのうち少なくとも一方のヒビクルには、フィラーを添加する。サイドマージン層11、12の内部に空隙を含める場合、サイドマージン層11、12のヒビクルにもフィラーを添加する。フィラーは、例えば、脱バインダー、樹脂材料、炭素材料である。フィラーは、いずれも焼成時に揮発する。フィラーとして用いられる炭素材料は焼成時に揮発し、導電助剤とは区別できる。フィラーは、例えば、鱗片状黒鉛や無定形炭素、造孔材である。造孔材は、例えばポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の樹脂粒子である。フィラーは、形状に異方性を有する。フィラーの長軸方向の長さを短軸方向の長さで割ったアスペクト比は、例えば、2以上29以下である。フィラーは、焼成時に揮発することで異方性空隙V1となる。添加するフィラーの大きさは、焼成により活物質が収縮し、空隙の大きさも収縮する。フィラーの大きさは、活物質の収縮率から逆算し、狙いの空隙の大きさよりも大きくする。例えば、焼成による収縮率が0.8であった場合、直径4μmの空隙を形成するには、4μm÷0.8=5μmと計算でき、直径5μmのフィラーを添加する。
 次いで、グリーンシートを作製する。グリーンシートは、ペーストをシート状に加工したものである。グリーンシートは、例えば、ペーストをPET(ポリエチレンテレフタラート)などの基材に所望の順序で塗布し、必要に応じ乾燥させた後、基材から剥離して得られる。ペーストの塗布方法は、特に限定されない。例えば、スクリーン印刷、塗布、転写、ドクターブレード等の公知の方法を採用することができる。
 正極活物質層1B及び負極活物質層2Bのグリーンシートを作製する際に、塗布速度を制御したり、開口を有するメッシュを介して塗布することで、フィラーをxy面内方向に配向させることができる。フィラーがxy面内方向に配向すると、作製後の正極活物質層1B及び負極活物質層2Bにおいて異方性空隙V1がxy面内方向に配向する。
 作製したそれぞれのグリーンシートは、所望の順序、積層数で積み重ねられる。必要に応じアライメント、切断等を行い、積層体を作製する。並列型又は直並列型の電池を作製する場合は、正極集電体層の端面と負極集電体層の端面が一致しないように、正極集電体層及び負極集電体層をアライメントする。
 積層体は、以下に説明する正極活物質層ユニット及び負極活物質層ユニットを準備してから作製してもよい。
 まずPETフィルム上に固体電解質層用ペーストをドクターブレード法でシート状に形成し、乾燥させる。次いで、固体電解質層のグリーンシート上に、スクリーン印刷により正極活物質層用ペーストを印刷し、乾燥させる。そして、正極層以外の固体電解質層シートの領域に、サイドマージン層用ペーストをスクリーン印刷し、乾燥することで正極層と略同等の高さのサイドマージン層を形成する。
 次いで、乾燥した正極活物質層用ペースト上に、スクリーン印刷により正極集電体層用ペーストを印刷し乾燥させる。さらに乾燥した正極集電体層用ペースト上に、スクリーン印刷により正極活物質層用ペーストを再度印刷し、乾燥させる。そして、PETフィルムを剥離することで正極ユニットを作製する。正極ユニットは、固体電解質層3の主面に正極活物質層1B/正極集電体層1A/正極活物質層1Bがこの順で積層された正極層1とサイドマージン層11と、が形成されている。
 同様の手順にて負極ユニットも作製する。負極ユニットは、固体電解質層3の主面に負極活物質層2B/負極集電体層2A/負極活物質層2Bがこの順に積層された負極層2とサイドマージン層12とが形成されている。
 次いで、正極ユニットと負極ユニットとを積層する。正極ユニットと負極ユニットとは、それぞれのユニットの固体電解質層同士が対面しないように積層する。積層された積層体は、正極活物質層1B/正極集電体層1A/正極活物質層1B/固体電解質層3/負極活物質層2B/負極集電体層2A/負極活物質層2B/固体電解質層3の順で積層されている。正極ユニットと負極ユニットとは、正極集電体層1Aが積層体の第1の端面に露出し、負極集電体層2Aが第1の端面と反対の第2の端面に露出するように、ずらして積み重ねられる。積層方向の最上層及び最下層には、例えば、所定厚みの固体電解質層用シートをさらに積み重ね、乾燥させる。
 次いで、作製した積層体を一括して圧着する。圧着は加熱しながら行う。加熱温度は、例えば、40~95℃とする。次いで、圧着した積層体を焼結する。焼結は、例えば、窒素雰囲気下で500℃以上1000℃以下の温度域で加熱する。焼成時間は、例えば、0.1~3時間とする。焼結により積層体4が得られる。この際に、フィラーは異方性空隙V1となる。
 焼結体は、アルミナなどの研磨材とともに円筒型の容器に入れ、バレル研磨してもよい。研磨により焼結体の角が面取りされる。研磨は、サンドブラスト等で行ってもよい。
 最後に、積層体4に第1外部端子5と第2外部端子6をつける。第1外部端子5及び第2外部端子6はそれぞれ、正極集電体層1A又は負極集電体層2Aと電気的に接触するよう形成する。例えば、積層体4の側面から露出した正極集電体層1Aに第1外部端子5を接続し、積層体4の側面から露出した負極集電体層2Aに第2外部端子6を接続する。第1外部端子5及び第2外部端子6は、例えば、スパッタ法、ディッピング法、スプレーコート法等で作製できる。
 本実施形態にかかる全固体電池は、正極活物質層1Bと負極活物質層2Bとのうち少なくとも一方が異方性空隙V1を内部に有することで、クラック及び積層界面における剥離の発生を抑制できる。正極活物質層1B及び負極活物質層2Bに含まれる活物質は、充放電時に膨張収縮する。活物質の体積変化は内部応力を生み出し、クラック及び界面剥離の原因となりえるが、異方性空隙V1が緩衝部として機能することでクラック及び界面剥離の発生を抑制できる。
 異方性空隙V1のアスペクト比が2未満の場合、空隙の形状が略等方的となる。略等方的な空隙には圧力が均等に加わり、空隙が活物質の体積変化の緩衝部として十分に機能できない。これに対し、異方性空隙V1は、その形状の異方性が原因となり、短軸方向につぶれやすく、活物質の体積変化を適切に緩衝できる。また異方性空隙V1のアスペクト比が29より大きい場合は、空隙に隣接する活物質に歪みが集中し、空隙に隣接する活物質にクラックが生じやすくなる。
 また正極活物質層1B及び負極活物質層2Bは、主にz方向に膨張収縮する。異方性空隙V1がxy面内に配向すると、異方性空隙V1の短軸方向がz方向となる。異方性空隙V1は短軸方向につぶれやすく、異方性空隙V1の短軸方向がz方向となることで、より効果的にクラック及び界面剥離を抑制できる。
 また極端に大きな異方性空隙V1は、クラック等の発生起因となりうる。異方性空隙V1の長軸方向の長さが0.2μm以上40μm以下であり、異方性空隙V1の短軸方向の長さが0.1μm以上5μm以下であることで、クラック及び界面剥離をより効果的に抑制できる。
 また複数の空隙Vの面積率が3%以上30%以下であれば、全固体電池の容量低下を抑制しつつ、クラック及び界面剥離を抑制できる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
(第1変形例)
 図3は、第1変形例にかかる全固体電池の要部を拡大した断面図である。図3は、全固体電池の正極層1と固体電解質層3との界面近傍を拡大した図である。図3に示す全固体電池は、正極層1と固体電解質層3との間に中間層7を有する点が、図2に示す全固体電池と異なる。図3では、正極層1と固体電解質層3との間に中間層7を有する例を示したが、負極層2と固体電解質層3との間に中間層7を有してもよい。
 中間層7は、xy面内に広がり、正極活物質層1B又は負極活物質層2Bと固体電解質層3との間に位置する。中間層7は、正極活物質層1B又は負極活物質層2Bを構成する活物質と固体電解質層3を構成する固体電解質との間の組成を有する層である。例えば、正極活物質層1B又は負極活物質層2Bがリン酸バナジウムリチウム(Li(PO、LiVOPO)であり、固体電解質がリン酸ジルコニウムリチウム(LiZr(PO)の場合、中間層7はバナジウムを含むリン酸ジルコニウムリチウム又はジルコニウムを含むリン酸バナジウムリチウムである。バナジウムを含むリン酸ジルコニウムリチウムは、リン酸ジルコニウムリチウムのジルコニウムの一部がバナジウムに置換されたものである。ジルコニウムを含むリン酸バナジウムリチウムは、リン酸バナジウムリチウムのバナジウムの一部がジルコニウムに置換されたものである。中間層7は、正極活物質層1B又は負極活物質層2Bと固体電解質層3との間の接合強度を高める。
 中間層7は、例えば、複数の空隙V2を有してもよい。中間層7において複数の空隙V2が占める割合は0.1%以上8%以下であることが好ましい。中間層7も複数の空隙V2を有すると、活物質の膨張収縮に伴う内部応力を緩和でき、クラック及び界面剥離の発生をより効果的に抑制できる。また中間層7における複数の空隙V2が占める割合が高すぎないことで、正極活物質層1B又は負極活物質層2Bと固体電解質層3との間の接合強度を維持でき、界面剥離の発生をより効果的に抑制できる。
 中間層7は、予め構成元素を調整した層を別途作製し、固体電解質層3と正極活物質層1B又は負極活物質層2Bとの間に挿入して得られる。また焼成条件を調整して、固体電解質層3の構成元素(例えばジルコニウム)を正極活物質層1B又は負極活物質層2Bに熱拡散させてもよいし、正極活物質層1B又は負極活物質層2Bの構成元素(例えばバナジウム)を固体電解質層3に熱拡散させてもよい。
 第1変形例にかかる全固体電池は、第1実施形態にかかる全固体電池と同様の効果を奏する。また中間層7により正極活物質層1B又は負極活物質層2Bと固体電解質層3との間の接合強度を高め、界面剥離の発生をより効果的に抑制できる。
(実施例1)
 実施例1の全固体電池は以下のようにして作製した。
(活物質の作製)
 活物質として、以下の方法で作製したリン酸バナジウムリチウムを用いた。LiCOとVとNHPOとを出発材料とし、ボールミルで16時間湿式混合を行い、脱水乾燥した後に得られた粉体を850℃で2時間、窒素水素混合ガス中で仮焼した。仮焼品をボールミルで湿式粉砕を行った後、脱水乾燥して活物質を得た。この作製した粉体がLi(POと同様の結晶構造であることを、X線回折装置を使用して確認した。
(活物質層用ペーストの作製)
 活物質層用ペーストは、ともに得られた活物質の粉末95部と、フィラー(ポリエチレン)2部と、部扁平形状の炭素材料(人造黒鉛:TIMREX(登録商標)Graphite KS-6L)粉末3部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、混合・分散して正極活物質層用ペーストおよび負極活物質層用ペーストを作製した。フィラーは、長軸方向の長さが0.63μm、短軸方向の長さが0.13μmで、アスペクト比が5.0のものを用いた。
(固体電解質の作製)
 固体電解質として、以下の方法で作製したLZP系ナシコン型化合物(例:LiZr1.7Ca0.3(PO)を用いた。LiCOとZrOとCaCOとNHPOを出発材料として、ボールミルで16時間湿式混合を行った後、脱水乾燥し、次いで得られた粉末を900℃で2時間、大気中で仮焼した。仮焼後、ボールミルで16時間湿式粉砕を行った後、脱水乾燥して固体電解質の粉末を得た。作製した粉体の結晶構造がLZP系ナシコン型化合物と同様であることは、X線回折装置(XRD)を使用して確認した。
(固体電解質層用ペーストの作製)
 固体電解質層用ペーストは、固体電解質の粉末100部に、溶媒としてエタノール100部、トルエン200部を加えてボールミルで湿式混合し、その後、ポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質層用ペーストを作製した。
(固体電解質層用シートの作製)
 固体電解質層用ペーストをドクターブレード法でPETフィルムを基材としてシートを成形し、厚さ15μmの固体電解質層用シートを得た。
(集電体層用ペーストの作製)
 正極集電体および負極集電体として、Cuと活物質であるリン酸バナジウムチタンリチウムとを体積比率で80/20となるように混合した後、得られた混合物100部と、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて混合・分散し、集電体層用ペーストを作製した。
(中間層用基材の作製)
 中間層用基材の作製は、活物質として作製したリン酸バナジウムリチウムの粉末と固体電解質で作製したLZP系ナシコン型化合物粉末とをボールミルで16時間湿式混合を行い、脱水乾燥した後に得られた粉体を850℃で2時間、窒素水素混合ガス中で仮焼した。仮焼品をボールミルで湿式粉砕を行った後、脱水乾燥して中間層用基材粉末を得た。
(中間層用ペーストの作製)
 中間層用ペーストは、中間層用基材粉末100部に、フィラー(ポリエチレン)0.5部と、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、混合・分散して中間層用ペーストを作製した。
(外部端子ペーストの作製)
 銀粉末とエポキシ樹脂、溶剤とを混合および分散させて、熱硬化型の外部電極ペーストを作製した。
 これらのペーストを用いて、以下のようにして実施例1の全固体電池を作製した。
(正極層ユニットの作製)
 まず固体電解質層用シート上に、スクリーン印刷を用いて厚さ0.2μmの中間層(第一正極中間層と呼ぶ)を形成し、80℃で10分間乾燥した。次に、その上にスクリーン印刷を用いて厚さ5μmの正極活物質層(第一正極活物質層と呼ぶ)を形成し、80℃で10分間乾燥した。さらにその上にスクリーン印刷を用いて厚さ5μmの正極集電体層を形成し、80℃で10分間乾燥した。さらにその上に、スクリーン印刷を用いて厚さ5μmの正極活物質層(第二正極活物質層と呼ぶ)を再度形成し、80℃で10分間乾燥した。さらにその上にスクリーン印刷を用いて厚さ0.2μmの中間層(第二正極中間層と呼ぶ)を再度形成し、80℃で10分間乾燥することで、固体電解質層用シートに正極層を作製した。次いで、正極層の一端の外周に、スクリーン印刷を用いて正極層と略同一平面の高さのマージン層を形成し、80℃で10分間乾燥した。次いで、PETフィルムを剥離することで、正極層ユニットのシートを得た。
(負極層ユニットの作製)
 次いで、固体電解質層用シート上に、スクリーン印刷を用いて厚さ0.2μmの中間層(第一負極中間層と呼ぶ)を形成し、80℃で10分間乾燥した。次に、その上に厚さ5μmの負極活物質層(第一負極活物質層と呼ぶ)を形成し、80℃で10分間乾燥した。さらにその上に、スクリーン印刷を用いて厚さ5μmの負極集電体層を形成し、80℃で10分間乾燥した。さらにその上に、スクリーン印刷を用いて厚さ5μmの負極活物質層(第二負極活物質層と呼ぶ)を再度形成し、80℃で10分間乾燥した。さらにその上にスクリーン印刷を用いて厚さ0.2μmの中間層(第二負極中間層と呼ぶ)を再度形成し、80℃で10分間乾燥することで、固体電解質層用シートに負極層を作製した。次いで、負極層の一端の外周に、スクリーン印刷を用いて負極層と略同一平面の高さのマージン層を形成し、80℃で10分間乾燥した。次いで、PETフィルムを剥離することで、負極層ユニットのシートを得た。
(積層体の作製)
 正極層ユニットと負極層ユニットを交互にそれぞれの一端が一致しないようにオフセットしながら複数積層し、積層基板を作製した。さら積層基板の両主面に、外層として固体電解質シートを複数積層し、200μmの外層を設けた。これを金型プレスにより熱圧着した後、切断して未焼成の全固体電池の積層体を作製した。次いで、積層体を脱バイ・焼成することで、全固体電池の積層体を得た。積層体の焼成は、窒素中で昇温速度200℃/時間で焼成温度1000℃まで昇温して、その温度に2時間保持し、自然冷却後に取り出した。フィラーは空隙になり、空隙の長軸長さは0.5μm、短軸長さは0.1μm、アスペクト比は5.0であった。
(外部電極形成工程)
 全固体電池の積層体の端面に外部端子ペーストを塗布し、150℃、30分の熱硬化を行い、一対の外部電極を形成した。
 作製した全固体電池の寸法は、おおよそ4.5mm×3.2mm×1.1mmであった。
 作製した全固体電池の初期容量及びサイクル特性を求めた。初期容量及びサイクル特性は、二次電池充放電試験装置を用いて行った。電圧範囲は、0.2Vから2.6Vまでとした。まずプレ処理として初回の充電のみを0.2C定電流充電にて行った。その後、サイクル特性を求めるための充放電を行った。充電は定電流定電圧で行った。充電は、0.2Cの電流値で充電し、2.6Vに到達後、0.2C電流値の5%の電流値になったときに終了した。放電は、0.1Cでの電流値で放電する条件で行った。なお、サイクル特性は容量維持率(%)として評価した。容量維持率(%)は、1サイクル目の放電容量を初期放電容量とし、初期放電容量に対する100サイクル後の放電容量の割合である。容量維持率(%)は、以下の数式で表される。
 容量維持率(%)=(「100サイクル後における放電容量」/「1サイクル目の放電容量」)×100
 また初期容量等を測定後の全固体電池を切断し、正極活物質層及び負極活物質層における空隙の面積率、空隙中における異方性空隙の割合、異方性空隙の形状、異方性空隙の配向方向、中間層における空隙の面積率を求めた。
(実施例2~6)
 アスペクト比を一定にした条件で、空隙の長軸長さと短軸長さを変更した点が実施例1と異なる。アスペクト比は、実施例1と同じ5.0とした。空隙の長軸長さ、短軸長さ及びアスペクト比は、正極活物質層及び負極活物質層のペーストに添加するフィラーの形状で調整した。実施例2~6においても実施例1と同様の測定を行った。
(実施例7~12)
 空隙の長軸長さと短軸長さを変更した点が実施例1と異なる。空隙の長軸長さ、短軸長さ及びアスペクト比は、正極活物質層及び負極活物質層のペーストに添加するフィラーの形状で調整した。実施例7~12においても実施例1と同様の測定を行った。
(実施例13~18)
 空隙の短軸長さを一定として、空隙の長軸長さ及びアスペクト比を変更した点が実施例1と異なる。空隙の長軸長さ及びアスペクト比は、正極活物質層及び負極活物質層のペーストに添加するフィラーの形状で調整した。実施例13~18においても実施例1と同様の測定を行った。
(実施例19)
 長軸長さ12.5μm、短軸長さ1.1μmのフィラーを用い、正極活物質層及び負極活物質層のペーストを作製する際に、メッシュを用いなかった。その他の条件は、実施例1と同様にした。実施例19の異方性空隙は、特に所定の方向に配向することなく、各異方性空隙における長軸の方向がランダムであった。実施例19においても実施例1と同様の測定を行った。
(実施例20~24)
 長軸長さ12.5μm、短軸長さ1.1μmのフィラーを用い、正極活物質層及び負極活物質層のペーストにおける活物質粒子とフィラーとの構成比率を変更した。その他の条件は、実施例1と同様にした。実施例20~24においても実施例1と同様の測定を行った。
(実施例25~28)
 形状異方性を有するフィラーと形状異方性を有さないフィラーの2種類を用い、これらの混合比を変更した。形状異方性を有するフィラーの長軸長さは12.5μm、短軸長さは1.1μmとした。その他の条件は、実施例1と同様にした。実施例25~28においても実施例1と同様の測定を行った。
(実施例29)
 中間層に添加するフィラーの量を変化させ、中間層の空隙率を変更した点が、実施例21と異なる。その他の条件は、実施例21と同様とした。
(比較例1)
 長軸長さ0.3μm、短軸長さ0.3μm、アスペクト比1.0のフィラーを用いた点が実施例1と異なる。その他の条件は、実施例1と同じとした。
(比較例2)
 長軸長さ1.3μm、短軸長さ1.3μm、アスペクト比1.0のフィラーを用いた点が実施例1と異なる。その他の条件は、実施例1と同じとした。
(比較例3)
 長軸長さ1.8μm、短軸長さ1.1μm、アスペクト比1.6のフィラーを用いた点が実施例1と異なる。その他の条件は、実施例1と同じとした。
(比較例4)
 長軸長さ35.9μm、短軸長さ1.1μm、アスペクト比31.9のフィラーを用いた点が実施例1と異なる。その他の条件は、実施例1と同じとした。
(実施例1-2~22-2)
 実施例1-2、実施例19-2、実施例20-2、実施例20-3、実施例20-4および実施例22-2としてサイドマージン層のすべての内部に複数の空隙を有する全固体電池を作製した。その他の条件については、実施例1-2は実施例1と同じで、実施例19-2は実施例19と同じで、実施例20-2~20-4は実施例20と同じで、実施例22-4は実施例22と同じとした。また、実施例1-2、実施例19-2、実施例20-2、実施例20-3、実施例20-4および実施例22-2の全固体電池のサイドマージン層は、空隙率を除き、正極活物質層および負極活物質層と同じ構成の空隙を、それぞれ実施例1、実施例19、実施例20、実施例22と同じ割合で有する。なお、実施例1-2、実施例19-2、実施例20-2、実施例20-3、実施例20-4および実施例22-2では、サイドマージン層の空隙率がそれぞれ実施例1、実施例19、実施例20、実施例22と異なるように調整した。実施例1、実施例19、実施例20および実施例22では、サイドマージン層の空隙率は2%未満であった。表2では、表1の実施例1、実施例19、実施例20および実施例22においてサイドマージン層の空隙率を追加して、実施例1-1、実施例19-1、実施例20-1および実施例22-1と表記した。実施例1-2、実施例19-2、実施例20-2、実施例20-3、実施例20-4および実施例22-2においても実施例1と同様の測定を行い、さらにサイドマージン層の空隙率を測定した。
(実施例101~128)
 実施例101~128として、中間層を形成する工程を除き、全固体電池を作製した。すなわち実施例101~128の全固体電池は、中間層を有さない。その他の条件については、実施例101~128は、それぞれ実施例1~28と同じとした。
(比較例11~14)
 比較例11~14として、中間層を形成する工程を除き、全固体電池を作製した。すなわち比較例11~14の全固体電池は、中間層を有さない。その他の条件については、比較例11~14は、それぞれ比較例1~4と同じとした。
 初期容量、サイクル特性、空隙の面積率、空隙中における異方性空隙の割合、異方性空隙の形状、異方性空隙の配向方向の結果を以下の表1~表3に示す。なお、表1~表3において初期容量は、実施例1の初期容量を100%とした際の比率を示す。表3には、実施例101~128及び比較例11~14の結果が示されている。実施例101~128及び比較例11~14の全固体電池は、中間層を有さない。そのため、実施例101~128及び比較例11~14の全固体電池において中間層における空隙の面積率は測定されなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
1…正極層、1A…正極集電体層、1B…正極活物質層、2…負極層、2A…負極集電体層、2B…負極活物質層、3…固体電解質層、4…積層体、5…第1外部端子、6…第2外部端子、V,V2…複数の空隙、V1…異方性空隙

Claims (7)

  1.  正極層と、負極層と、前記正極層と前記負極層との間にある固体電解質層とを備え、
     前記正極層は、正極集電体と、前記正極集電体に接する正極活物質層と、を有し、
     前記負極層は、負極集電体と、前記負極集電体に接する負極活物質層と、を有し、
     前記正極活物質層と前記負極活物質層とのうち少なくとも一方は、内部に複数の空隙を有し、
     前記複数の空隙は、長軸方向の長さを短軸方向の長さで割ったアスペクト比が2以上29以下である異方性空隙を有する、全固体電池。
  2.  前記正極層及び前記負極層のそれぞれに並んでその外周に配置するサイドマージン層のうちの少なくとも一部は、内部に複数の空隙を有し、
     前記複数の空隙は、長軸方向の長さを短軸方向の長さで割ったアスペクト比が2以上29以下である異方性空隙を有する、請求項1に記載の全固体電池。
  3.  前記複数の空隙のうち30%以上が前記異方性空隙である、請求項1又は2に記載の全固体電池。
  4.  前記異方性空隙の長軸方向は、前記正極活物質層又は前記負極活物質層が広がる面内方向と略一致する、請求項1~3のいずれか一項に記載の全固体電池。
  5.  前記異方性空隙の長軸方向の平均長さは、0.2μm以上40μm以下であり、
     前記異方性空隙の短軸方向の平均長さは、0.1μm以上5μm以下である、請求項1~4のいずれか一項に記載の全固体電池。
  6.  前記正極活物質層又は前記負極活物質層において前記複数の空隙が占める割合は、3%以上30%以下である、請求項1~5のいずれか一項に記載の全固体電池。
  7.  前記正極層と前記負極層とのうち少なくとも一方と前記固体電解質層との間に、イオン伝導性を有する中間層を有し、
     前記中間層は、複数の空隙を有し、
     前記中間層において複数の空隙が占める割合が0.1%以上8%以下である、請求項1~6のいずれか一項に記載の全固体電池。
PCT/JP2020/036864 2019-10-23 2020-09-29 全固体電池 WO2021079698A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112020005152.8T DE112020005152T5 (de) 2019-10-23 2020-09-29 Festkörperakkumulator
JP2021554205A JPWO2021079698A1 (ja) 2019-10-23 2020-09-29
CN202080073668.2A CN114556618B (zh) 2019-10-23 2020-09-29 全固体电池
US17/765,367 US20220344720A1 (en) 2019-10-23 2020-09-29 All-solid-state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019192583 2019-10-23
JP2019-192583 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021079698A1 true WO2021079698A1 (ja) 2021-04-29

Family

ID=75619991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036864 WO2021079698A1 (ja) 2019-10-23 2020-09-29 全固体電池

Country Status (5)

Country Link
US (1) US20220344720A1 (ja)
JP (1) JPWO2021079698A1 (ja)
CN (1) CN114556618B (ja)
DE (1) DE112020005152T5 (ja)
WO (1) WO2021079698A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053842A1 (ja) 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 二次電池用負極及び二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104270A (ja) * 2010-11-08 2012-05-31 Toyota Motor Corp 全固体電池
WO2013175993A1 (ja) * 2012-05-24 2013-11-28 株式会社 村田製作所 全固体電池
JP2017054720A (ja) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 全固体電池用負極
JP2018206727A (ja) * 2017-06-09 2018-12-27 株式会社Soken 全固体電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462741B2 (ja) * 2010-08-18 2014-04-02 大日本スクリーン製造株式会社 電池の製造方法、電池、車両および電子機器
JP5828347B2 (ja) * 2011-12-21 2015-12-02 トヨタ自動車株式会社 リチウム二次電池
JP6316091B2 (ja) * 2014-05-19 2018-04-25 Tdk株式会社 リチウムイオン二次電池
JP2018063850A (ja) * 2016-10-13 2018-04-19 凸版印刷株式会社 積層体グリーンシート、全固体二次電池及びその製造方法
JP6927289B2 (ja) * 2017-03-28 2021-08-25 Tdk株式会社 全固体二次電池
JP6907805B2 (ja) * 2017-08-17 2021-07-21 セイコーエプソン株式会社 複合体、リチウム電池、複合体の製造方法、リチウム電池の製造方法、電子機器
JP6863299B2 (ja) * 2018-01-09 2021-04-21 トヨタ自動車株式会社 全固体電池
JP7035770B2 (ja) 2018-04-27 2022-03-15 京セラドキュメントソリューションズ株式会社 コネクターホルダー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104270A (ja) * 2010-11-08 2012-05-31 Toyota Motor Corp 全固体電池
WO2013175993A1 (ja) * 2012-05-24 2013-11-28 株式会社 村田製作所 全固体電池
JP2017054720A (ja) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 全固体電池用負極
JP2018206727A (ja) * 2017-06-09 2018-12-27 株式会社Soken 全固体電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053842A1 (ja) 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 二次電池用負極及び二次電池

Also Published As

Publication number Publication date
CN114556618A (zh) 2022-05-27
DE112020005152T5 (de) 2022-07-14
US20220344720A1 (en) 2022-10-27
CN114556618B (zh) 2024-03-01
JPWO2021079698A1 (ja) 2021-04-29

Similar Documents

Publication Publication Date Title
JP6651708B2 (ja) リチウムイオン二次電池
WO2018123479A1 (ja) リチウムイオン電池及びその製造方法
JP6623542B2 (ja) リチウムイオン二次電池
JP6919657B2 (ja) 全固体リチウムイオン二次電池
US11349146B2 (en) All-solid lithium ion secondary battery
CN109792081B (zh) 锂离子传导性固体电解质及全固体锂离子二次电池
JP6881465B2 (ja) 全固体リチウムイオン二次電池
WO2021090774A1 (ja) 全固体電池
JP2016001597A (ja) リチウムイオン二次電池
WO2018062079A1 (ja) 活物質及び全固体リチウムイオン二次電池
CN113056835A (zh) 全固体电池
WO2020184476A1 (ja) 全固体二次電池
JP6992802B2 (ja) 全固体リチウムイオン二次電池
CN113228375B (zh) 全固体电池
WO2021079698A1 (ja) 全固体電池
WO2021149460A1 (ja) リチウムイオン二次電池
WO2020189599A1 (ja) 全固体二次電池
WO2021079700A1 (ja) 全固体電池
CN113273015A (zh) 全固体电池
WO2023188470A1 (ja) 全固体二次電池
WO2022202866A1 (ja) 全固体二次電池
WO2022196803A1 (ja) 全固体二次電池
WO2021176834A1 (ja) 全固体電池
WO2023188466A1 (ja) 全固体二次電池
WO2021124851A1 (ja) 固体電解質及び全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554205

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20878744

Country of ref document: EP

Kind code of ref document: A1