WO2013161436A1 - 加熱硬化型熱伝導性シリコーングリース組成物 - Google Patents

加熱硬化型熱伝導性シリコーングリース組成物 Download PDF

Info

Publication number
WO2013161436A1
WO2013161436A1 PCT/JP2013/057383 JP2013057383W WO2013161436A1 WO 2013161436 A1 WO2013161436 A1 WO 2013161436A1 JP 2013057383 W JP2013057383 W JP 2013057383W WO 2013161436 A1 WO2013161436 A1 WO 2013161436A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
heat
mass
conductive silicone
Prior art date
Application number
PCT/JP2013/057383
Other languages
English (en)
French (fr)
Inventor
展明 松本
山田 邦弘
謙一 辻
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020147032008A priority Critical patent/KR101859617B1/ko
Priority to RU2014147036A priority patent/RU2627868C2/ru
Priority to US14/396,656 priority patent/US9481851B2/en
Priority to EP13780721.0A priority patent/EP2843003A4/en
Priority to CN201380021670.5A priority patent/CN104245848B/zh
Publication of WO2013161436A1 publication Critical patent/WO2013161436A1/ja
Priority to IN9743DEN2014 priority patent/IN2014DN09743A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/50Lubricating compositions characterised by the base-material being a macromolecular compound containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/044Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/05Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/043Siloxanes with specific structure containing carbon-to-carbon double bonds
    • C10M2229/0435Siloxanes with specific structure containing carbon-to-carbon double bonds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/047Siloxanes with specific structure containing alkylene oxide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention Since the present invention has a low viscosity, it has good dischargeability and applicability, can freely follow the shape and unevenness of the heat generating electronic element, and has high shape maintainability, so once its shape is determined It is possible to keep its shape, and after heating and curing it will harden and harden, so it will not droop even when placed vertically, and it will not be necessary to apply extra stress to the heat source.
  • the present invention relates to a heat-curable heat-conductive silicone grease composition that can be used.
  • the mounting environment (atmosphere temperature, humidity, angle, thickness, etc.) has been diversified.
  • an engine ECU it is often installed vertically in an engine room.
  • a thermally conductive material is often placed vertically in a place where both vibration and high temperature are applied.
  • a heat conductive silicone adhesive material or a heat conductive material is used as the heat conductive material.
  • Proposals have been made to use a potting material or a room temperature curable heat conductive silicone rubber composition (Japanese Patent Application Laid-Open No. 8-208993, Japanese Patent Application Laid-Open No. 61-1557569, Japanese Patent Application Laid-Open No. 2004-352947).
  • the hardness can be high, and therefore, there is a drawback that it adheres to the substrate, has poor reworkability, and stresses the heat generating electronic element.
  • the heat conductive material cannot be endured, and the heat resistance may be peeled off or cracked, resulting in a rapid increase in thermal resistance.
  • the present invention has been made in view of the above circumstances, and is a heat-curing type heat conductive silicone grease having a high shape maintaining property even if it is initially low viscosity (easy to apply) and soft after curing (low hardness).
  • An object is to provide a composition.
  • the present inventors have found that the absolute viscosity at 25 ° C. before curing is 30 to 200 Pa ⁇ s as measured with a Malcolm viscometer, and in an environment of 25 ° C. It is applied on an aluminum plate so as to form a disk with a diameter of 1 cm (0.5 ml), and the diameter change after standing for 24 hours is within 1 mm, and the hardness after curing is 1 to 1 with an Asker rubber hardness meter C type.
  • the heat-curing silicone grease composition with a temperature of 60 has a low viscosity and is easy to apply and has a high shape-maintaining property, and even when cured, it does not sag and can be expected to relieve stress.
  • the present invention was found to be superior to the present invention.
  • the present invention provides the following heat-curable heat conductive silicone grease composition.
  • A Organopolysiloxane having a viscosity at 25 ° C. of 100 to 100,000 mPa ⁇ s and containing at least one alkenyl group in one molecule: 100 parts by mass
  • B The following general formula (1) (Wherein R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and n is an integer of 2 to 100) And a is an integer of 1 to 3.) An organopolysiloxane represented by: 10 to 900 parts by mass,
  • C Organohydrogenpolysiloxane containing hydrogen atoms directly bonded to at least two silicon atoms in one molecule: ⁇ number of Si—H groups ⁇ / ⁇ number of alkenyl groups in components (A) and (B) ⁇
  • (G) Silica fine powder A heat-curable thermally conductive silicone grease composition comprising 0.1 to 100 parts by mass of an essential component.
  • the absolute viscosity at 25 ° C is 30 to 200 Pa ⁇ s as measured with a Malcolm viscometer, and it is applied in a disk shape with a diameter of 1 cm (0.5 ml) on an aluminum plate in an environment of 25 ° C.
  • Grease composition is 1 to 60 in the Asker rubber hardness meter C type.
  • the heat-curable heat-conductive silicone grease composition of the present invention has a low viscosity, so that it has good ejection properties and coating properties, and can freely follow the shape and irregularities of the heat generating electronic element. Moreover, since the shape maintainability is high, once the shape is determined, the shape can be maintained. Furthermore, since it hardens softly without being hardened after heat-curing, it is difficult to sag even when placed vertically, and it is possible to avoid applying extra stress to the heat source. Furthermore, it is excellent in repairability.
  • thermosetting heat conductive silicone grease composition of the present invention comprises the following components.
  • Component (A) is a base polymer of the present composition and is an organopolysiloxane containing at least one alkenyl group in one molecule.
  • the organopolysiloxane of component (A) has one or more, preferably two or more, more preferably two to three alkenyl groups bonded to a silicon atom in the molecule. And those having 2 to 4 carbon atoms such as allyl group and butenyl group.
  • Examples of the organic group bonded to the silicon atom include, in addition to the alkenyl group described above, a monovalent hydrocarbon group excluding an unsubstituted or substituted aliphatic unsaturated bond having 1 to 10, preferably 1 to 6 carbon atoms.
  • a monovalent hydrocarbon group excluding an unsubstituted or substituted aliphatic unsaturated bond having 1 to 10, preferably 1 to 6 carbon atoms.
  • Specific examples include linear alkyl groups, branched alkyl groups, cyclic alkyl groups, aryl groups, aralkyl groups, and halogenated alkyl groups.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group.
  • Examples of the branched alkyl group include isopropyl group, isobutyl group, tert-butyl group, 2-ethylhexyl group and the like.
  • Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group.
  • Examples of the aryl group include a phenyl group and a tolyl group.
  • Examples of the aralkyl group include 2-phenylethyl group and 2-methyl-2-phenylethyl group.
  • halogenated alkyl group examples include 3,3,3-trifluoropropyl group, 2- (nonafluorobutyl) ethyl group, 2- (heptadecafluorooctyl) ethyl group and the like.
  • the organic group bonded to the silicon atom of component (A) is preferably a linear alkyl group, alkenyl group, or aryl group, and particularly preferably a methyl group, vinyl group, or phenyl group.
  • the viscosity of component (A) at 25 ° C. is in the range of 100 to 100,000 mPa ⁇ s, preferably in the range of 200 to 50,000 mPa ⁇ s, and more preferably in the range of 300 to 40,000 mPa ⁇ s. Within the range, more preferably within the range of 300 to 30,000 mPa ⁇ s. When the viscosity is within this range, it is easy to ensure handling workability of the composition, and it is easy to ensure good physical properties of the cured product of the composition. This viscosity is a value measured by a rotational viscometer.
  • the molecular structure of the component (A) is not particularly limited, and examples thereof include linear, branched, partially branched linear, and dendritic (dendrimeric), preferably linear and partially branched. It has a straight chain.
  • the component (A) may be a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture of these polymers.
  • component (A) for example, molecular chain both ends dimethylvinylsiloxy group-capped dimethylpolysiloxane, molecular chain both ends methylphenylvinylsiloxy group-capped dimethylpolysiloxane, molecular chain both ends dimethylvinylsiloxy group-capped dimethylsiloxane / methylphenyl Siloxane copolymer, dimethylvinylsiloxy group-blocked dimethylvinylsiloxy group copolymer at both ends of molecular chain, silanol group-blocked dimethylsiloxane / methylvinylsiloxane copolymer at both ends of chain, dimethylsiloxane blocked at both ends of molecular chain ⁇ Methylvinylsiloxane ⁇ Methylphenylsiloxane copolymer, dimethylsiloxane blocked with trimethylsiloxy group at both ends of molecular chain ⁇ Methylviny
  • Component (B) is an organopolysiloxane represented by the following general formula (1), preferably having a viscosity of 5 to 100,000 mPa ⁇ s at 25 ° C.
  • the component (B) plays an important role in keeping the composition after heating at a low hardness and lowering the initial viscosity.
  • R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group
  • R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group
  • n is an integer of 2 to 100
  • a is an integer of 1 to 3.
  • R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group having preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • Examples thereof include a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, and a halogenated alkyl group.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group.
  • Examples of the branched alkyl group include isopropyl group, isobutyl group, tert-butyl group, 2-ethylhexyl group and the like.
  • Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group.
  • Examples of the alkenyl group include a vinyl group and an allyl group.
  • Examples of the aryl group include a phenyl group and a tolyl group.
  • Examples of the aralkyl group include 2-phenylethyl group and 2-methyl-2-phenylethyl group.
  • halogenated alkyl group examples include 3,3,3-trifluoropropyl group, 2- (nonafluorobutyl) ethyl group, 2- (heptadecafluorooctyl) ethyl group and the like.
  • R 1 is preferably a methyl group or a phenyl group.
  • R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group.
  • the alkyl group include linear alkyl groups, branched alkyl groups, and cyclic alkyl groups similar to those exemplified for R 1 .
  • the alkoxyalkyl group include a methoxyethyl group and a methoxypropyl group.
  • the alkenyl group include those similar to those exemplified for R 1 .
  • Examples of the acyl group include an acetyl group and an octanoyl group.
  • R 2 is preferably an alkyl group, particularly preferably a methyl group or an ethyl group.
  • n is an integer of 2 to 100, preferably 10 to 50.
  • a is an integer of 1 to 3, preferably 3.
  • the viscosity of component (B) at 25 ° C. is usually 5 to 100,000 mPa ⁇ s, particularly preferably 5 to 5,000 mPa ⁇ s. If the viscosity is lower than 5 mPa ⁇ s, oil bleed is likely to occur from the resulting silicone grease composition, and there is a risk that it will easily sag. If the viscosity is greater than 100,000 mPa ⁇ s, the resulting silicone grease composition has poor fluidity, and application workability may be deteriorated. This viscosity is a value measured by a rotational viscometer.
  • suitable component (B) include the following. (In the formula, Me is a methyl group.)
  • the blending amount of the component (B) is less than 10 parts by mass with respect to 100 parts by mass of the component (A), the composition becomes hard after heating, and a soft composition cannot be obtained. Therefore, it is in the range of 10 to 900 parts by mass, preferably in the range of 20 to 700 parts by mass.
  • an organopolysiloxane containing no alkenyl group bonded to a silicon atom may be used in combination.
  • examples include dimethylpolysiloxane blocked with silanol groups at both ends of the molecular chain, dimethylsiloxane / methylphenylsiloxane copolymer blocked with silanol groups at both ends of the molecular chain, dimethylpolysiloxane blocked with trimethoxysiloxy groups at both ends of the molecular chain, and both ends of the molecular chain.
  • the organohydrogenpolysiloxane containing hydrogen atoms directly bonded to at least two silicon atoms in one molecule of the component (C) is a curing agent of the present composition, and is mixed with the components (A) and (B). Can be cured.
  • the number of hydrogen atoms bonded to silicon atoms in the organohydrogenpolysiloxane is 2 or more, preferably 2 to 100, and more preferably 2 to 50.
  • Examples of the group bonded to silicon atoms other than hydrogen atoms in the organohydrogenpolysiloxane include monovalent carbonization that excludes unsubstituted or substituted aliphatic unsaturated bonds having 1 to 10, and preferably 1 to 6 carbon atoms.
  • Examples include hydrogen groups, and specific examples include linear alkyl groups, branched alkyl groups, cyclic alkyl groups, aryl groups, aralkyl groups, and halogenated alkyl groups, and the above components (A) and (B) The thing similar to what was illustrated by (1) can be illustrated.
  • the group bonded to a silicon atom other than a hydrogen atom is preferably a linear alkyl group or an aryl group, and particularly preferably a methyl group or a phenyl group.
  • the viscosity of the organohydrogenpolysiloxane at 25 ° C. is not particularly limited, but is preferably in the range of 1 to 100,000 mPa ⁇ s, and more preferably in the range of 1 to 50,000 mPa ⁇ s. When the viscosity is within this range, it is easy to ensure handling workability of the composition, and it is easy to ensure good physical properties of the cured product of the composition. This viscosity is a value measured by a rotational viscometer.
  • the molecular structure of the organohydrogenpolysiloxane is not particularly limited, and examples thereof include linear, branched, partially branched linear, cyclic, and dendritic (dendrimer).
  • the organohydrogenpolysiloxane may be a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture thereof.
  • the silicon atom-bonded hydrogen atom may exist only in one of the molecular chain terminal part and the molecular chain non-terminal part, or may exist in both of them.
  • component (C) organohydrogenpolysiloxane examples include, for example, molecular chain both ends dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain Dimethylsiloxane siloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, siloxane units represented by the formula: (CH 3 ) 3 SiO 1/2 and formula: (CH 3 ) 2 HSiO 1/2 And an siloxane unit represented by the formula: SiO 4/2 and a mixture of two or more thereof.
  • the organohydrogenpolysiloxane is basically composed of a siloxane skeleton and does not contain an alkoxy group.
  • the compounding amount of the organohydrogenpolysiloxane which is the component (C) is the silicon atom-bonded hydrogen atom in the component (C) with respect to 1 mol of the silicon atom-bonded alkenyl group in the component (A) and the component (B).
  • the amount of (Si—H group) is in an amount in the range of 0.1 to 10 mol, preferably in an amount in the range of 0.1 to 5 mol, The amount is more preferably within the range.
  • the present composition is sufficiently hardened, but can have an appropriate hardness and hardly give stress to the heat dissipation element.
  • the catalyst selected from the group consisting of platinum and platinum compounds as component (D) is a component that promotes the addition reaction between the alkenyl group of component (A) and component (B) and the Si—H group of component (C). It is.
  • the component (D) include platinum alone, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, platinum coordination compounds, and the like.
  • the amount of component (D) is less than 0.1 ppm as platinum atoms relative to the mass of component (A), and there is no effect as a catalyst. Therefore, it is in the range of 0.1 to 500 ppm, and preferably 0.1 to 400 ppm.
  • control agent (E) for the purpose of suppressing the catalytic activity of the component (D).
  • the control agent suppresses the progress of the hydrosilylation reaction at room temperature and prolongs shelf life and pot life.
  • known reaction control agents can be used, and acetylene compounds, various nitrogen compounds, organic phosphorus compounds, and the like can be used. Specifically, acetylene compounds such as 1-ethynyl-1-cyclohexanol and 3-butyn-1-ol, various nitrogen compounds such as triallyl isocyanurate and triallyl isocyanurate derivatives, and organophosphorus compounds such as triphenylphosphine Etc. can be illustrated.
  • the blending amount of the component (E) is less than 0.01 parts by mass with respect to 100 parts by mass of the component (A), there is a possibility that sufficient shelf life and pot life may not be obtained. Since the curability may be lowered, the range of 0.01 to 1.5 parts by mass is preferable, and the range of 0.01 to 1.0 parts by mass is more preferable. These may be diluted with a solvent such as toluene in order to improve dispersibility in the silicone grease composition.
  • the thermally conductive filler having the thermal conductivity of the component (F) if the thermal conductivity of the filler is less than 10 W / m ⁇ ° C., the thermal conductivity of the composition itself becomes small.
  • the agent has a thermal conductivity of 10 W / m ⁇ ° C. or higher, preferably 15 W / m ⁇ ° C. or higher.
  • Such heat conductive fillers include aluminum powder, copper powder, silver powder, nickel powder, gold powder, alumina powder, zinc oxide powder, magnesium oxide powder, aluminum nitride powder, boron nitride powder, silicon nitride powder, diamond Examples thereof include powder and carbon powder, but any filler may be used as long as the thermal conductivity is 10 W / m ⁇ ° C. or more, and one kind or two or more kinds may be mixed.
  • the average particle size of the thermally conductive filler is smaller than 0.1 ⁇ m, it may not be in the form of grease and may have poor extensibility, and if it is larger than 300 ⁇ m, the uniformity of the composition may be poor.
  • the range of 0.1 to 300 ⁇ m is preferable, and the range of 0.1 to 200 ⁇ m is more preferable.
  • the shape of the filler may be indefinite, spherical or any shape.
  • an average particle diameter can be calculated
  • the amount of the heat conductive filler is less than 100 parts by mass relative to 100 parts by mass of the component (A), the desired thermal conductivity cannot be obtained, and when it exceeds 20,000 parts by mass, it does not become a grease and extends. Therefore, it is in the range of 100 to 20,000 parts by mass, preferably in the range of 500 to 15,000 parts by mass.
  • Component silica fine powder is a component that imparts shape retention to the composition.
  • silica fine powder surface-treated fumed silica is preferably used. By performing the surface treatment, dispersibility is improved with respect to the component (A), the component (B), and the component (C), and uniform dispersion becomes possible. Moreover, shape maintenance property can be given by the interaction between surface-treated fumed silica and between the surface-treated fumed silica and the components (A), (B), and (C).
  • chlorosilane, silazane, siloxane and the like are effective.
  • Specific examples of the surface treatment agent include methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, hexamethyldisilazane, octamethylcyclotetrasiloxane, ⁇ , ⁇ -trimethylsilyldimethylpolysiloxane, and the like.
  • the specific surface area (BET method) of the component (G) is preferably 50 m 2 / g or more, and particularly preferably 100 m 2 / g or more. If it is less than 50 m ⁇ 2 > / g, the viscosity of this composition may become too high and workability
  • the specific surface area (BET method) is preferably 500 m 2 / g or less, particularly 300 m 2 / g or less because shape maintainability is improved.
  • the amount of the component (G) is less than 0.1 parts by mass with respect to 100 parts by mass of the component (A), the shape cannot be maintained. Therefore, it is in the range of 0.1 to 100 parts by mass, preferably in the range of 1 to 80 parts by mass, and more preferably in the range of 1 to 60 parts by mass.
  • thermosetting heat conductive silicone grease composition in addition to the above-mentioned components, known additives as additives for the thermosetting heat conductive silicone grease composition may be added within a range that does not impair the purpose of the present invention.
  • the additive include hindered phenolic antioxidants, reinforcing properties such as calcium carbonate, non-reinforcing fillers, polyethers as thixotropy improvers, and the like.
  • colorants such as a pigment and dye, as needed.
  • an adhesion aid such as a silane coupling agent as shown below may be added.
  • the blending amount in the case of blending the adhesion assistant is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of component (A).
  • the heat-curable heat conductive silicone grease composition of the present invention can be prepared by uniformly mixing the above components by a known method.
  • the absolute viscosity at 25 ° C. of the obtained thermosetting heat conductive silicone grease composition is preferably 30 to 200 Pa ⁇ s, particularly preferably 30 to 150 Pa ⁇ s, with a Malcolm viscometer. When the viscosity is less than 30 Pa ⁇ s, the dischargeability may be too good to be adjusted, and when it exceeds 200 Pa ⁇ s, the dischargeability may not be good.
  • the initial viscosity of the heat curable heat conductive silicone grease composition of the present invention can be achieved by adjusting the balance between the component (A) and the component (B).
  • thermosetting heat conductive silicone grease composition when the obtained thermosetting heat conductive silicone grease composition was applied on an aluminum plate to form a disk with a diameter of 1 cm (0.5 ml) in an environment of 25 ° C. and left to stand horizontally
  • the diameter change after 24 hours is preferably within 1 mm, particularly preferably within 0.5 mm. If the change exceeds 1 mm, shape maintainability may be insufficient.
  • the amount of component (G) added in order to make the above change within 1 mm, is 0.1 to 100 parts by mass with respect to 100 parts by mass of component (A). There is a need to.
  • the heat-curable heat-conductive silicone grease composition of the present invention has a low viscosity at the initial stage, it can be freely deformed according to the unevenness. Moreover, since the shape maintainability is also high, it is possible to maintain the shape after deformation. Since the viscosity is low and the shape maintaining property is high, even if the heat generating part has a complicated shape, it can be easily adhered to every corner and the shape can be maintained.
  • the heat-curable heat conductive silicone grease composition of the present invention is characterized in that it is softly cured unlike an adhesive material, a potting material, or a room temperature-curable heat conductive silicone rubber composition.
  • the curing temperature of the heat curable thermally conductive silicone grease composition of the present invention is preferably 100 ° C. or higher and lower than 200 ° C., and the curing time is preferably 30 to 60 minutes.
  • the heat-curing heat conductive silicone grease composition of the present invention preferably has a hardness at 25 ° C. of 1 to 60, particularly 10 to 50 with an Asker rubber hardness meter C after curing. If the hardness is less than the above range, it may be too soft and droop, and if it exceeds the above range, it may be too hard and stress may be applied to the heat source.
  • the number of Si—H groups of component (C) / (A), alkenyl of component (B) This can be achieved by adjusting the total number of groups.
  • the heat-curing heat conductive silicone grease composition obtained in this way is soft even after curing, so it does not sag easily and has excellent repair properties. There is no worry about calling.
  • Comparison Dimethylpolysiloxane having a viscosity at 25 ° C. of 110,000 mPa ⁇ s and both ends blocked with dimethylvinylsilyl groups
  • Component D-1 A-1 solution of platinum-divinyltetramethyldisiloxane complex (100 mass ppm as platinum atom)
  • Component G-1 A fumed silica having a BET specific surface area of 120 m 2 / g and hydrophobized surface treatment with dimethyldichlorosilane
  • Adhesion aid H-1 represented by the following formula:
  • Examples 1 to 4, Comparative Examples 1 to 5 The components (A) to (H) were mixed in the amounts shown in Tables 2 and 3 as follows to obtain compositions of Examples 1 to 4 and Comparative Examples 1 to 5. That is, in a 5 liter gate mixer (Inoue Seisakusho Co., Ltd., trade name: 5 liter planetary mixer), the components (A), (B), and (F) were taken at the blending amounts shown in Tables 2 and 3, and 150 ° C. And deaerated and mixed for 2 hours. Then, it cooled until it became normal temperature, (D), (E) component was added, and it mixed at room temperature so that it might become uniform.
  • a 5 liter gate mixer Inoue Seisakusho Co., Ltd., trade name: 5 liter planetary mixer
  • the components (A), (B), and (F) were taken at the blending amounts shown in Tables 2 and 3, and 150 ° C. And deaerated and mixed for 2 hours. Then, it cooled until it became normal temperature, (D),
  • the initial viscosity of the heat-curing heat conductive silicone grease composition showed a value at 25 ° C., and a Malcolm viscometer (type PC-10AA) was used for the measurement.
  • the heat-curable heat conductive silicone grease composition was cured at 100 ° C. for 1 hour, cooled, and the hardness at 25 ° C. was measured with an Asker rubber hardness meter C type.
  • thermal conductivity before curing of the heat-curing type thermally conductive silicone grease composition at 25 ° C. was measured using a hot disk method thermophysical property measuring apparatus TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)

Abstract

 初期において低粘度(塗布し易い)であっても形状維持性が高く、硬化後は柔らかい(低硬度である)加熱硬化型熱伝導性シリコーングリース組成物を提供する。 (A)25℃における粘度が100~100,000mPa・sであり、1分子中に少なくとも1つのアルケニル基を含有するオルガノポリシロキサン、 (B)下記一般式(1)(R1は1価炭化水素基、R2はアルキル基、アルコキシアルキル基、アルケニル基又はアシル基、nは2~100、aは1~3。) で表されるオルガノポリシロキサン、 (C)1分子中に少なくとも2つのケイ素原子に直結した水素原子を含有するオルガノハイドロジェンポリシロキサン、 (D)白金及び白金化合物からなる群より選択される触媒、 (F)10W/m・℃以上の熱伝導率を有する熱伝導性充填剤、 (G)シリカ微粉末 を必須成分とする加熱硬化型熱伝導性シリコーングリース組成物。

Description

加熱硬化型熱伝導性シリコーングリース組成物
 本発明は、低粘度であるので、吐出性や塗布性が良好であり、発熱する電子素子の形状や凹凸に合わせて自由に追随でき、また形状維持性も高いので、一旦その形状が決まればその形を保持することも可能であり、更に加熱硬化後は、硬くならずに柔らかく固まるので、垂直置きしても垂れ難くなる上に、発熱源に対して余計なストレスを掛けないで済むことが可能となる加熱硬化型熱伝導性シリコーングリース組成物に関する。
 輸送機中のエンジン制御やパワー・トレーン系、エアコン制御などのボディ系において、制御の内容が高度化し、制御に必要なシステムが増えている。それに伴い、搭載する電子制御ユニット(ECU)の数も年々増加しており、その内部に搭載される電子素子数も増加傾向にある。複数の高さの異なる電子素子・部品より発生する熱をケースであるアルミダイカストへ効率良く伝えるために熱伝導性材料は今や必要不可欠な存在となっている。
 更に最近では数多くの電子素子・部品を限られた空間内に搭載する必要があるために、その搭載環境(雰囲気温度・湿度・角度・厚み等)も多岐に渡るようになってきた。例えば、エンジンECUの場合では、エンジンルーム内に垂直置きに設置されることが多くなってきている。このように、振動と高温が両方掛かる場所で熱伝導性材料が垂直置きされることが多くなってきている。
 熱伝導性材料が、このような環境で使用されても、発熱体と冷却体の間から垂れて抜けてしまわないように、該熱伝導性材料として、熱伝導性シリコーン接着材料や熱伝導性ポッティング材料を使用したり、室温硬化型熱伝導性シリコーンゴム組成物を使用したりする提案がなされている(特開平8-208993号公報、特開昭61-157569号公報、特開2004-352947号公報、特許第3543663号公報、特許第4255287号公報:特許文献1~5参照)。
 しかしながら、これらのどの場合も高硬度となり得るので、基材と接着してしまい、リワーク性に乏しく、発熱する電子素子へストレスを掛けてしまうという欠点があった。また、熱歪みによる応力の繰り返し等により熱伝導性材料が耐えきれず、発熱素子から剥がれたり、割れたりしてしまい、熱抵抗が急上昇してしまうこともあった。
 そこで、熱伝導性材料製造時に、予め加熱架橋反応させて高粘度に(柔らかさを維持)して垂れ難くした付加1液熱伝導性材料が見出された(特開2003-301189号公報:特許文献6)。これは高粘度ではあるが、とても柔らかいので電子素子へストレスを与える影響は高硬度品よりも少なく、凹凸のある面へも自由に形を変えて追随できるので高さが異なる電子素子へ塗布するのに適している。しかしながら、当然のことであるが、そのトレードオフとして粘度が高く塗布し難いという課題を有していた。
 近年、この付加1液熱伝導性材料より粘度を下げた熱伝導性シリコーン組成物が開発されている(特開2009-286855号公報:特許文献7)が、これでも粘度は高く、より良い作業性を有する垂れ難い熱伝導性シリコーン組成物が望まれていた。
 上述した問題は、付加1液熱伝導性シリコーン組成物を用いれば解決できる(特開2002-327116号公報:特許文献8)。つまり、加熱硬化前は吐出し易く、加熱硬化後においてもある程度リワーク性が確保できる上に、硬化後は垂れずに、なおかつ硬化後も比較的柔らかいゴムであるので応力緩和剤の役割も果たすことができるからである。とは言え、この付加1液熱伝導性シリコーン組成物にも課題は残されていた。それは、この付加1液熱伝導性シリコーン組成物を更に低粘度にしていくと、流動性が生じてしまい、吐出直後に電子素子上に広がってしまい、電子素子と冷却基板の間が厚いと、放熱経路を確保できないという問題点があった。
特開平8-208993号公報 特開昭61-157569号公報 特開2004-352947号公報 特許第3543663号公報 特許第4255287号公報 特開2003-301189号公報 特開2009-286855号公報 特開2002-327116号公報
 本発明は、上記事情に鑑みなされたもので、初期において低粘度(塗布し易い)であっても形状維持性が高く、硬化後は柔らかい(低硬度である)加熱硬化型熱伝導性シリコーングリース組成物を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、硬化前の25℃における絶対粘度がマルコム粘度計による測定で30~200Pa・sであり、かつ25℃の環境下でアルミニウム板上に直径1cm(0.5ml)の円板状となるように塗布し、水平に放置24時間後の直径変化が1mm以内であり、硬化後の硬度がアスカーゴム硬度計C型で1~60となる加熱硬化型熱伝導性シリコーングリース組成物が、低粘度で塗布し易くても形状維持性が高く、硬化しても柔らかいので垂れることがなく、また応力緩和が期待でき、更にリペアー性にも優れていることを見出し、本発明をなすに至った。
 従って、本発明は、下記に示す加熱硬化型熱伝導性シリコーングリース組成物を提供する。
〔1〕
 (A)25℃における粘度が100~100,000mPa・sであり、1分子中に少なくとも1つのアルケニル基を含有するオルガノポリシロキサン: 100質量部、
(B)下記一般式(1)
Figure JPOXMLDOC01-appb-C000002
(式中、R1は独立に非置換又は置換の1価炭化水素基であり、R2は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、nは2~100の整数であり、aは1~3の整数である。)
で表されるオルガノポリシロキサン: 10~900質量部、
(C)1分子中に少なくとも2つのケイ素原子に直結した水素原子を含有するオルガノハイドロジェンポリシロキサン: {Si-H基の個数}/{(A)成分と(B)成分のアルケニル基の個数}が0.1~10.0になる量、
(D)白金及び白金化合物からなる群より選択される触媒: 白金原子として(A)成分の質量に対し0.1~500ppmとなる配合量、
(F)10W/m・℃以上の熱伝導率を有する熱伝導性充填剤: 100~20,000質量部、
(G)シリカ微粉末: 0.1~100質量部
を必須成分とすることを特徴とする加熱硬化型熱伝導性シリコーングリース組成物。
〔2〕
 硬化前の25℃における絶対粘度がマルコム粘度計による測定で30~200Pa・sであり、かつ25℃の環境下でアルミニウム板上に直径1cm(0.5ml)の円板状となるように塗布し、水平に放置24時間後の直径変化が1mm以内であり、硬化後の硬度がアスカーゴム硬度計C型で1~60となることを特徴とする〔1〕記載の加熱硬化型熱伝導性シリコーングリース組成物。
〔3〕
 (G)成分のシリカ微粉末が、表面処理煙霧質シリカである〔1〕又は〔2〕記載の加熱硬化型熱伝導性シリコーングリース組成物。
〔4〕
 更に、(H)シランカップリング剤を(A)成分100質量部に対し0.1~20質量部配合した〔1〕、〔2〕又は〔3〕記載の加熱硬化型熱伝導性シリコーングリース組成物。
 本発明の加熱硬化型熱伝導性シリコーングリース組成物は、低粘度であるので、吐出性や塗布性が良好であり、発熱する電子素子の形状や凹凸に合わせて自由に追随できる。また形状維持性も高いので、一旦その形状が決まればその形を保持することも可能である。更に、加熱硬化後は、硬くならずに柔らかく固まるので、垂直置きしても垂れ難くなる上に、発熱源に対して余計なストレスを掛けないで済むことが可能となる。更に、リペアー性にも優れたものである。
 以下に、本発明を詳述する。
 本発明の加熱硬化型熱伝導性シリコーングリース組成物は、下記成分を含有してなるものである。
(A)25℃における粘度が100~100,000mPa・sであり、1分子中に少なくとも1つのアルケニル基を含有するオルガノポリシロキサン、
(B)下記一般式(1)
Figure JPOXMLDOC01-appb-C000003
(式中、R1は独立に非置換又は置換の1価炭化水素基であり、R2は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、nは2~100の整数であり、aは1~3の整数である。)
で表されるオルガノポリシロキサン、
(C)1分子中に少なくとも2つのケイ素原子に直結した水素原子を含有するオルガノハイドロジェンポリシロキサン、
(D)白金及び白金化合物からなる群より選択される触媒、
(F)10W/m・℃以上の熱伝導率を有する熱伝導性充填剤、
(G)シリカ微粉末。
 (A)成分は本組成物のベースポリマーであり、1分子中に少なくとも1つのアルケニル基を含有するオルガノポリシロキサンである。
 (A)成分のオルガノポリシロキサンは、ケイ素原子に結合したアルケニル基を1個以上、好ましくは2個以上、より好ましくは2~3個分子中に有するものであり、アルケニル基としては、ビニル基、アリル基、ブテニル基等の炭素数2~4のものが例示される。
 ケイ素原子に結合している有機基としては、上述したアルケニル基の他に、非置換又は置換の炭素数1~10、好ましくは1~6の脂肪族不飽和結合を除く1価炭化水素基が挙げられ、具体的には、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基等が例示される。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert-ブチル基、2-エチルヘキシル基等が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等が挙げられる。アリール基としては、例えば、フェニル基、トリル基等が挙げられる。アラルキル基としては、例えば、2-フェニルエチル基、2-メチル-2-フェニルエチル基等が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基等が挙げられる。
 (A)成分のケイ素原子に結合している有機基として、好ましくは直鎖状アルキル基、アルケニル基、アリール基であり、特に好ましくはメチル基、ビニル基、フェニル基である。
 (A)成分の25℃における粘度は、100~100,000mPa・sの範囲内であり、好ましくは200~50,000mPa・sの範囲内であり、より好ましくは300~40,000mPa・sの範囲内であり、更に好ましくは300~30,000mPa・sの範囲内である。該粘度がこの範囲内であると、本組成物の取扱作業性を確保し易く、本組成物の硬化物の良好な物性を確保し易い。なお、この粘度は、回転粘度計による測定値である。
 (A)成分の分子構造は特に限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状、樹枝状(デンドリマー状)が挙げられ、好ましくは直鎖状、一部分岐を有する直鎖状である。(A)成分は、これらの分子構造を有する単一の重合体、これらの分子構造を有する共重合体、又はこれらの重合体の混合物であってもよい。
 (A)成分としては、例えば、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端メチルフェニルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖メチル(3,3,3-トリフルオロプロピル)ポリシロキサン、式:(CH33SiO1/2で表されるシロキサン単位と式:(CH32(CH2=CH)SiO1/2で表されるシロキサン単位と式:CH3SiO3/2で表されるシロキサン単位と式:(CH32SiO2/2で表されるシロキサン単位とからなるオルガノシロキサン共重合体等が挙げられる。
 なお、このオルガノポリシロキサン(A)は、基本的にシロキサン骨格からなり、アルコキシ基は含まないものである。
 (B)成分は、下記一般式(1)で表され、好ましくは25℃における粘度が5~100,000mPa・sのオルガノポリシロキサンである。
 (B)成分は、加熱後の組成物を低硬度に留めておき、初期粘度を低くする重要な役割を担っている。
Figure JPOXMLDOC01-appb-C000004
(式中、R1は独立に非置換又は置換の1価炭化水素基であり、R2は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、nは2~100の整数であり、aは1~3の整数である。)
 上記式(1)中、R1は独立に非置換又は置換の、好ましくは炭素数1~10、より好ましくは1~6、更に好ましくは1~3の1価炭化水素基であり、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert-ブチル基、2-エチルヘキシル基等が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基等が挙げられる。アリール基としては、例えば、フェニル基、トリル基等が挙げられる。アラルキル基としては、例えば、2-フェニルエチル基、2-メチル-2-フェニルエチル基等が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基等が挙げられる。R1として、好ましくはメチル基、フェニル基である。
 上記R2は独立にアルキル基、アルコキシアルキル基、アルケニル基、又はアシル基である。アルキル基としては、例えば、R1において例示したのと同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基が挙げられる。アルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基等が挙げられる。アルケニル基としては、例えば、R1において例示したのと同様のものが挙げられる。アシル基としては、例えば、アセチル基、オクタノイル基等が挙げられる。R2はアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。
 nは2~100の整数であり、好ましくは10~50である。aは1~3の整数であり、好ましくは3である。
 (B)成分の25℃における粘度は、通常、5~100,000mPa・sであり、特に5~5,000mPa・sであることが好ましい。該粘度が5mPa・sより低いと、得られるシリコーングリース組成物からオイルブリードが発生し易くなってしまい、また垂れ易くなってしまうおそれがある。該粘度が100,000mPa・sより大きいと、得られるシリコーングリース組成物の流動性が乏しくなり、塗布作業性が悪化してしまうおそれがある。なお、この粘度は、回転粘度計による測定値である。
 (B)成分の好適な具体例としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000005
(式中、Meはメチル基である。)
 (B)成分の配合量は、(A)成分100質量部に対して10質量部よりも少ないと加熱後に硬くなってしまい、柔らかい組成物が得られず、900質量部より多いと、硬化しなくなってしまうために、10~900質量部の範囲であり、好ましくは20~700質量部の範囲である。
 なお、発明においては、上記(A)、(B)成分の他に、ケイ素原子に結合したアルケニル基を含まないオルガノポリシロキサンを併用してもよい。その例としては、分子鎖両末端シラノール基封鎖ジメチルポリシロキサン、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端メチルジメトキシシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリエトキシシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメトキシシリルエチル基封鎖ジメチルポリシロキサン、及びこれらの2種以上の混合物が挙げられる。
 (C)成分の1分子中に少なくとも2つのケイ素原子に直結した水素原子を含有するオルガノハイドロジェンポリシロキサンは、本組成物の硬化剤であり、(A)成分及び(B)成分と混合することにより硬化し得る。
 このオルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子の数は2個以上であり、好ましくは2~100個であり、より好ましくは2~50個である。
 このオルガノハイドロジェンポリシロキサン中の水素原子以外のケイ素原子に結合している基としては、非置換又は置換の炭素数1~10、好ましくは1~6の脂肪族不飽和結合を除く1価炭化水素基が挙げられ、具体的には、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基が例示され、上記(A)、(B)成分で例示したものと同様のものを例示することができる。水素原子以外のケイ素原子に結合している基として、好ましくは直鎖状アルキル基、アリール基であり、特に好ましくはメチル基、フェニル基である。
 このオルガノハイドロジェンポリシロキサンの25℃における粘度は特に限定されないが、好ましくは1~100,000mPa・sの範囲内であり、特に好ましくは1~50,000mPa・sの範囲内である。該粘度がこの範囲内であると、本組成物の取扱作業性を確保し易く、本組成物の硬化物の良好な物性を確保し易い。なお、この粘度は、回転粘度計による測定値である。
 また、このオルガノハイドロジェンポリシロキサンの分子構造は特に限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状、環状、樹枝状(デンドリマー状)が挙げられる。このオルガノハイドロジェンポリシロキサンは、これらの分子構造を有する単一の重合体、これらの分子構造を有する共重合体、又はこれらの混合物であってもよい。上記ケイ素原子結合水素原子は分子鎖末端部分及び分子鎖非末端部分のどちらか一方にのみ存在していてもよいし、その両方に存在していてもよい。
 (C)成分のオルガノハイドロジェンポリシロキサンとしては、例えば、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、式:(CH33SiO1/2で表されるシロキサン単位と式:(CH32HSiO1/2で表されるシロキサン単位と式:SiO4/2で表されるシロキサン単位とからなるオルガノシロキサン共重合体、及びこれらの2種以上の混合物等が挙げられる。
 なお、このオルガノハイドロジェンポリシロキサンは、基本的にシロキサン骨格からなり、アルコキシ基は含まないものである。
 (C)成分であるオルガノハイドロジェンポリシロキサンの配合量は、(A)成分及び(B)成分中のケイ素原子結合アルケニル基1モルに対して、本(C)成分中のケイ素原子結合水素原子(Si-H基)の量が、0.1~10モルの範囲内となる量であり、0.1~5モルの範囲内となる量であることが好ましく、0.1~3モルの範囲内となる量であることがより好ましい。該含有量がこのような量であると、本組成物は十分に硬化し易い一方で、適正な硬度になることが可能であり、放熱素子にストレスを与え難い。
 (D)成分の白金及び白金化合物からなる群より選択される触媒は、(A)成分及び(B)成分のアルケニル基と(C)成分のSi-H基との間の付加反応の促進成分である。この(D)成分は、例えば白金の単体、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物等が挙げられる。
 (D)成分の配合量は、(A)成分の質量に対し、白金原子として0.1ppmより小さくても触媒としての効果がなく、500ppmを超えても効果が増大することがなく、不経済であるので0.1~500ppmの範囲であり、0.1~400ppmであることが好ましい。
 本発明においては、(D)成分の触媒活性を抑制する目的で、制御剤(E)を使用することが好ましい。該制御剤は、室温でのヒドロシリル化反応の進行を抑え、シェルフライフ、ポットライフを延長させるものである。制御剤としては公知の反応制御剤を使用することができ、アセチレン化合物、各種窒素化合物、有機りん化合物等が利用できる。具体的には、1-エチニル-1-シクロヘキサノール、3-ブチン-1-オール等のアセチレン化合物、トリアリルイソシアヌレート及びトリアリルイソシアヌレート誘導体等の各種窒素化合物、トリフェニルホスフィン等の有機りん化合物等が例示できる。
 (E)成分の配合量は、(A)成分100質量部に対して0.01質量部より少ないと十分なシェルフライフ、ポットライフが得られないおそれがあり、1.5質量部より多いと硬化性が低下するおそれがあるため、0.01~1.5質量部の範囲が好ましく、0.01~1.0質量部の範囲がより好ましい。
 なお、これらはシリコーングリース組成物への分散性を良くするためにトルエン等の溶剤で希釈して使用してもよい。
 (F)成分の熱伝導率を有する熱伝導性充填剤としては、その充填剤のもつ熱伝導率が10W/m・℃より小さいと、本組成物の熱伝導率そのものが小さくなるため、充填剤の熱伝導率が10W/m・℃以上、好ましくは15W/m・℃以上のものを用いる。
 このような熱伝導性充填剤としては、アルミニウム粉末、銅粉末、銀粉末、ニッケル粉末、金粉末、アルミナ粉末、酸化亜鉛粉末、酸化マグネシム粉末、窒化アルミニウム粉末、窒化ホウ素粉末、窒化ケイ素粉末、ダイヤモンド粉末、カーボン粉末などが挙げられるが、熱伝導率が10W/m・℃以上であれば如何なる充填剤でもよく、1種類でも2種類以上を混ぜ合わせてもよい。
 熱伝導性充填剤の平均粒径は、0.1μmより小さいとグリース状にならず伸展性に乏しいものになる場合があり、300μmより大きいと本組成物の均一性が乏しくなる場合があるため、0.1~300μmの範囲が好ましく、より好ましくは0.1~200μmの範囲がよい。充填剤の形状は、不定形でも球形でも如何なる形状でも構わない。なお、平均粒径は、例えば、レーザー光回折法による重量平均値(又はメジアン径)として求めることができる。
 熱伝導性充填剤の充填量は、(A)成分100質量部に対して100質量部より少ないと所望する熱伝導率が得られないし、20,000質量部より多いとグリース状にならず伸展性の乏しいものとなるため、100~20,000質量部の範囲であり、好ましくは500~15,000質量部の範囲である。
 (G)成分のシリカ微粉末は、形状維持性を組成物に付与する成分である。シリカ微粉末としては、表面処理煙霧質シリカが好適に用いられる。表面処理することにより(A)成分や(B)成分、(C)成分に対して分散性が向上し、均一分散が可能となる。また、表面処理煙霧質シリカ同士、及び表面処理煙霧質シリカと(A)、(B)、(C)成分との相互作用により形状維持性を与えることができる。
 その表面処理剤としては、クロロシラン、シラザン、シロキサン等が有効である。表面処理剤の具体例としては、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、ヘキサメチルジシラザン、オクタメチルシクロテトラシロキサン、α,ω-トリメチルシリルジメチルポリシロキサン等が挙げられる。
 また、(G)成分の比表面積(BET法)は、50m2/g以上であることが好ましく、特には100m2/g以上であることが好ましい。50m2/g未満では本組成物の粘度が高くなりすぎてしまい作業性が悪化する場合がある。なお、比表面積(BET法)としては、500m2/g以下、特に300m2/g以下であることが、形状維持性が高くなることから好ましい。
 (G)成分の添加量は、(A)成分100質量部に対して0.1質量部より少ないと形状維持性を有することができなくなり、100質量部より多いとグリース状にならず伸展性の乏しいものとなるため、0.1~100質量部の範囲であり、好ましくは1~80質量部の範囲であり、より好ましくは1~60質量部の範囲である。
 本組成物においては、上記成分以外に、加熱硬化型熱伝導性シリコーングリース組成物の添加剤として公知の添加剤を本発明の目的を損なわない範囲で添加してもよい。該添加剤としては、例えば、ヒンダードフェノール系酸化防止剤、炭酸カルシウム等の補強性、非補強性充填剤、チキソトロピー向上剤としてのポリエーテル等が挙げられる。更に必要に応じて顔料、染料等の着色剤を添加してもよい。
 また、種々の被着体との接着性を発現させるため、(A)~(G)成分以外に、以下に示すようなシランカップリング剤等の接着助剤を添加してもよい。なお、接着助剤を配合する場合の配合量は、(A)成分100質量部に対して0.1~20質量部であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(式中、Meはメチル基である。)
 本発明の加熱硬化型熱伝導性シリコーングリース組成物は、上記各成分を公知の方法で均一に混合することにより調製することができる。
 得られた加熱硬化型熱伝導性シリコーングリース組成物の25℃における絶対粘度は、マルコム粘度計で30~200Pa・sであることが好ましく、特に30~150Pa・sであることが好ましい。上記粘度が30Pa・s未満では吐出性が良好すぎて調節できない場合があり、200Pa・sを超えると吐出性が良好とは言えない場合がある。なお、本発明の加熱硬化型熱伝導性シリコーングリース組成物の初期粘度を上記値とするには(A)成分と(B)成分のバランスを調節することで達成できる。
 また、得られた加熱硬化型熱伝導性シリコーングリース組成物は、25℃の環境下でアルミニウム板上に直径1cm(0.5ml)の円板状となるように塗布し、水平に放置した場合、24時間後の直径変化が1mm以内、特に0.5mm以内であることが好ましい。上記変化が1mmを超えると形状維持性が不足している場合がある。なお、加熱硬化型熱伝導性シリコーングリース組成物において、上記変化を1mm以内とするには、(G)成分の添加量を(A)成分100質量部に対して0.1~100質量部とする必要がある。
 本発明の加熱硬化型熱伝導性シリコーングリース組成物は、初期は低粘度であるので、凹凸に応じて自由に変形することができる。また、形状維持性も高いので、変形後はその形を維持することも可能である。低粘度かつ形状維持性が高いので、例え発熱部位が複雑な形状であっても隅々まで容易に密着させ、その形も維持することが可能である。
 また、本発明の加熱硬化型熱伝導性シリコーングリース組成物は、接着材料や、ポッティング材料、室温硬化型熱伝導性シリコーンゴム組成物とは異なり、柔らかく硬化することが特徴である。
 本発明の加熱硬化型熱伝導性シリコーングリース組成物の硬化温度は、100℃以上200℃未満であることが好ましく、硬化時間は30~60分であることが好ましい。
 なお、本発明の加熱硬化型熱伝導性シリコーングリース組成物は、硬化後の25℃における硬度が、アスカーゴム硬度計C型にて1~60、特に10~50であることが好ましい。硬度が上記範囲未満であると柔らかすぎて垂れてしまう場合があり、上記範囲を超えると硬すぎて発熱源に対してストレスを与えてしまう場合がある。なお、本発明の加熱硬化型熱伝導性シリコーングリース組成物の硬化物の硬度を上記範囲とするには、(C)成分のSi-H基の個数/(A)、(B)成分のアルケニル基の合計個数を調節することで達成できる。
 このようにして得られた加熱硬化型熱伝導性シリコーングリース組成物は、上述したように、硬化しても柔らかいので、垂れ難く、かつリペアー性にも大変優れており、電子素子に大きな応力をかける心配もない。
 以下、本発明を実施例及び比較例によって更に詳述するが、本発明はこれによって限定されるものではない。本発明の優位性をより明確にする目的で、具体的な実施例を示して証明する。なお、下記式において、Meはメチル基である。
 まず、以下の各成分を用意した。
(A)成分
A-1: 25℃における粘度が600mPa・sであり、両末端がジメチルビニルシリル基で封鎖されたジメチルポリシロキサン
A-2: 25℃における粘度が30,000mPa・sであり、両末端がジメチルビニルシリル基で封鎖されたジメチルポリシロキサン
A-3(比較用): 25℃における粘度が50mPa・sであり、両末端がジメチルビニルシリル基で封鎖されたジメチルポリシロキサン
A-4(比較用): 25℃における粘度が110,000mPa・sであり、両末端がジメチルビニルシリル基で封鎖されたジメチルポリシロキサン
(B)成分
 下記式で表されるオルガノポリシロキサン
B-1:
Figure JPOXMLDOC01-appb-C000008
(C)成分
 下記式で表されるオルガノハイドロジェンポリシロキサン
C-1:
Figure JPOXMLDOC01-appb-C000009
C-2:
Figure JPOXMLDOC01-appb-C000010
(D)成分
D-1: 白金-ジビニルテトラメチルジシロキサン錯体のA-1溶液(白金原子として100質量ppm)
(E)成分
E-1: 1-エチニル-1-シクロヘキサノールの50質量%トルエン溶液
(F)成分
 5リットルゲートミキサー(井上製作所株式会社製・商品名:5リットルプラネタリミキサー)を用いて、下記に示す熱伝導性充填剤を下記表1に示す混合比で室温にて15分攪拌することによりF-1、F-2を得た。なお、F-3は酸化亜鉛粉末のみである。
平均粒径10μmのアルミナ粉末(熱伝導率:27W/m・℃)
平均粒径15μmのアルミニウム粉末(熱伝導率:236W/m・℃)
平均粒径1.0μmの酸化亜鉛粉末(熱伝導率:25W/m・℃)
Figure JPOXMLDOC01-appb-T000011
(G)成分
G-1: BET比表面積が120m2/gであり、ジメチルジクロロシランにより疎水化表面処理された煙霧質シリカ
(H)成分
 下記式で表される接着助剤
H-1:
Figure JPOXMLDOC01-appb-C000012
[実施例1~4、比較例1~5]
 上記(A)~(H)成分を表2及び表3に示す配合量で以下のように混合して実施例1~4及び比較例1~5の組成物を得た。即ち、5リットルゲートミキサー(井上製作所株式会社製・商品名:5リットルプラネタリミキサー)に、(A)、(B)、(F)成分を表2及び表3に示す配合量で取り、150℃で2時間脱気加熱混合した。その後、常温になるまで冷却し、(D)、(E)成分を加え、均一になるように室温にて混合した。更に(G)及び(C)成分を加え、均一になるように室温にて脱気混合した。必要に応じて(H)成分も加え、均一になるように室温にて攪拌した。このようにして得られた組成物について、初期粘度、硬化後硬度、熱伝導率及び形状維持性を下記に示す方法により評価した。その結果を表2及び表3に併記する。
〔初期粘度評価〕
 加熱硬化型熱伝導性シリコーングリース組成物の初期粘度は25℃における値を示し、その測定はマルコム粘度計(タイプPC-10AA)を用いた。
〔硬化後硬度評価〕
 加熱硬化型熱伝導性シリコーングリース組成物を100℃にて1時間硬化させ、冷却し、25℃における硬度をアスカーゴム硬度計C型にて測定した。
〔熱伝導率評価〕
 京都電子工業株式会社製ホットディスク法熱物性測定装置TPA-501を用いて25℃における加熱硬化型熱伝導性シリコーングリース組成物の硬化前の熱伝導率を測定した。
〔形状維持性評価〕
 25℃環境下で0.5mlの加熱硬化型熱伝導性シリコーングリース組成物をアルミニウム板へ円状(直径約1cm)に塗布した。塗布完了直後から1日(24時間)後に加熱硬化型熱伝導性シリコーングリース組成物の直径を測定し、その変化(mm)を測定し、形状維持性の目安とした。即ち移動距離が少ない程形状維持性は高いことになる。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014

Claims (4)

  1.  (A)25℃における粘度が100~100,000mPa・sであり、1分子中に少なくとも1つのアルケニル基を含有するオルガノポリシロキサン: 100質量部、
    (B)下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は独立に非置換又は置換の1価炭化水素基であり、R2は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、nは2~100の整数であり、aは1~3の整数である。)
    で表されるオルガノポリシロキサン: 10~900質量部、
    (C)1分子中に少なくとも2つのケイ素原子に直結した水素原子を含有するオルガノハイドロジェンポリシロキサン: {Si-H基の個数}/{(A)成分と(B)成分のアルケニル基の個数}が0.1~10.0になる量、
    (D)白金及び白金化合物からなる群より選択される触媒: 白金原子として(A)成分の質量に対し0.1~500ppmとなる配合量、
    (F)10W/m・℃以上の熱伝導率を有する熱伝導性充填剤: 100~20,000質量部、
    (G)シリカ微粉末: 0.1~100質量部
    を必須成分とすることを特徴とする加熱硬化型熱伝導性シリコーングリース組成物。
  2.  硬化前の25℃における絶対粘度がマルコム粘度計による測定で30~200Pa・sであり、かつ25℃の環境下でアルミニウム板上に直径1cm(0.5ml)の円板状となるように塗布し、水平に放置24時間後の直径変化が1mm以内であり、硬化後の硬度がアスカーゴム硬度計C型で1~60となることを特徴とする請求項1記載の加熱硬化型熱伝導性シリコーングリース組成物。
  3.  (G)成分のシリカ微粉末が、表面処理煙霧質シリカである請求項1又は2記載の加熱硬化型熱伝導性シリコーングリース組成物。
  4.  更に、(H)シランカップリング剤を(A)成分100質量部に対し0.1~20質量部配合した請求項1、2又は3記載の加熱硬化型熱伝導性シリコーングリース組成物。
PCT/JP2013/057383 2012-04-24 2013-03-15 加熱硬化型熱伝導性シリコーングリース組成物 WO2013161436A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147032008A KR101859617B1 (ko) 2012-04-24 2013-03-15 가열 경화형 열전도성 실리콘 그리스 조성물
RU2014147036A RU2627868C2 (ru) 2012-04-24 2013-03-15 Термически отверждаемая, теплопроводная композиция силиконовой смазки
US14/396,656 US9481851B2 (en) 2012-04-24 2013-03-15 Thermally-curable heat-conductive silicone grease composition
EP13780721.0A EP2843003A4 (en) 2012-04-24 2013-03-15 HEAT-CURABLE HEAT-LEADING SILICONE LUBRICANT COMPOSITION
CN201380021670.5A CN104245848B (zh) 2012-04-24 2013-03-15 加热固化型导热性硅脂组合物
IN9743DEN2014 IN2014DN09743A (ja) 2012-04-24 2014-11-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012098765A JP5783128B2 (ja) 2012-04-24 2012-04-24 加熱硬化型熱伝導性シリコーングリース組成物
JP2012-098765 2012-04-24

Publications (1)

Publication Number Publication Date
WO2013161436A1 true WO2013161436A1 (ja) 2013-10-31

Family

ID=49482773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057383 WO2013161436A1 (ja) 2012-04-24 2013-03-15 加熱硬化型熱伝導性シリコーングリース組成物

Country Status (9)

Country Link
US (1) US9481851B2 (ja)
EP (1) EP2843003A4 (ja)
JP (1) JP5783128B2 (ja)
KR (1) KR101859617B1 (ja)
CN (1) CN104245848B (ja)
IN (1) IN2014DN09743A (ja)
RU (1) RU2627868C2 (ja)
TW (1) TWI586799B (ja)
WO (1) WO2013161436A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181657A1 (ja) * 2013-05-07 2014-11-13 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
WO2017002474A1 (ja) * 2015-07-01 2017-01-05 昭和電工株式会社 窒化ホウ素を含む熱硬化性シリコーン樹脂組成物、シリコーン樹脂組成物用分散剤及び無機フィラー
CN106715592A (zh) * 2014-09-25 2017-05-24 信越化学工业株式会社 紫外线增稠型导热性硅润滑脂组合物
CN107109065A (zh) * 2014-11-11 2017-08-29 信越化学工业株式会社 紫外线增稠型导热性硅脂组合物
WO2019112228A1 (ko) * 2017-12-08 2019-06-13 주식회사 엘지화학 전도성 실리콘 조성물 및 이에 의해 제조된 실리콘 복합재
JP2020063365A (ja) * 2018-10-17 2020-04-23 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6048416B2 (ja) 2011-01-26 2016-12-21 ダウ コーニング コーポレーションDow Corning Corporation 高温安定熱伝導性材料
US9698077B2 (en) 2013-01-22 2017-07-04 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition based on combination of components, heat conductive layer, and semiconductor device
EP3077578A4 (en) 2013-12-05 2017-07-26 Honeywell International Inc. Stannous methansulfonate solution with adjusted ph
JP6023737B2 (ja) * 2014-03-18 2016-11-09 信越化学工業株式会社 ウエハ加工体、ウエハ加工用仮接着材、及び薄型ウエハの製造方法
MX2016016984A (es) 2014-07-07 2017-05-03 Honeywell Int Inc Material de interconexion termica con depurador ionico.
JP6314710B2 (ja) * 2014-07-10 2018-04-25 信越化学工業株式会社 熱伝導性シリコーン組成物
JP6183319B2 (ja) * 2014-08-21 2017-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物及び熱伝導性シート
US10287471B2 (en) 2014-12-05 2019-05-14 Honeywell International Inc. High performance thermal interface materials with low thermal impedance
CN107532000B (zh) * 2015-05-22 2021-07-13 迈图高新材料日本合同公司 导热性组合物
JP6524879B2 (ja) 2015-10-13 2019-06-05 信越化学工業株式会社 付加一液硬化型熱伝導性シリコーングリース組成物
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
JP6465037B2 (ja) * 2016-01-07 2019-02-06 信越化学工業株式会社 縮合硬化反応と有機過酸化物硬化反応を併用したシリコーン組成物
KR102554661B1 (ko) 2016-03-08 2023-07-13 허니웰 인터내셔널 인코포레이티드 상 변화 물질
JP6642145B2 (ja) * 2016-03-14 2020-02-05 信越化学工業株式会社 付加一液加熱硬化型熱伝導性シリコーングリース組成物の硬化物の製造方法
CN105838079A (zh) * 2016-04-13 2016-08-10 成都硅宝科技股份有限公司 低油离度导热硅脂组合物及其制备方法
US10190031B2 (en) * 2016-06-06 2019-01-29 Jiali Wu Thermally conductive interface composition and use thereof
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
JP6579272B2 (ja) * 2016-08-03 2019-09-25 信越化学工業株式会社 熱伝導性シリコーン組成物
CN109844031B (zh) * 2016-10-26 2022-01-11 信越化学工业株式会社 导热性有机硅组合物
CN109890900B (zh) * 2016-10-31 2022-01-14 陶氏东丽株式会社 单组分可固化型导热硅脂组合物和电子/电气组件
JP6874366B2 (ja) * 2016-12-28 2021-05-19 信越化学工業株式会社 シリコーン組成物およびその硬化物
CN116284946A (zh) 2017-02-08 2023-06-23 埃肯有机硅美国公司 具有改进的热管理的二次电池组
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
WO2019061288A1 (en) * 2017-09-29 2019-04-04 Dow Silicones Corporation THERMOCONDUCTIVE COMPOSITION
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
CN111615539B (zh) * 2018-02-15 2022-08-02 三键有限公司 导热性湿气固化型树脂组合物及其固化物
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
EP3857597A4 (en) * 2018-09-27 2022-10-05 Henkel AG & Co. KGaA ABRASION RESISTANT COATINGS FOR THERMAL INTERFACES
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
CN110724381A (zh) * 2019-09-25 2020-01-24 无锡易佳美电子科技有限公司 一种防止冷热冲击环境下泵出的导热脂的制备方法
CN114761492A (zh) * 2019-12-05 2022-07-15 美国陶氏有机硅公司 高度导热的可流动有机硅组合物
JP7325324B2 (ja) * 2019-12-23 2023-08-14 信越化学工業株式会社 熱伝導性シリコーン組成物
EP4122965A4 (en) 2020-03-17 2024-04-24 Valqua Ltd DOUGH
US20220380653A1 (en) * 2020-07-07 2022-12-01 Fuji Polymer Industries Co., Ltd. Thermally-conductive silicone gel composition, thermally-conductive silicone gel sheet, and method for producing same
KR20240037182A (ko) 2021-07-29 2024-03-21 세키수이 폴리머텍 가부시키가이샤 열전도성 조성물 및 경화물

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157569A (ja) 1984-12-28 1986-07-17 Shin Etsu Polymer Co Ltd 熱伝導性接着組成物
JPH08208993A (ja) 1995-11-27 1996-08-13 Toshiba Silicone Co Ltd 熱伝導性シリコーン組成物
JP2002327116A (ja) 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及び半導体装置
JP2003301189A (ja) 2002-04-10 2003-10-21 Shin Etsu Chem Co Ltd 放熱用シリコーングリース組成物
JP3543663B2 (ja) 1999-03-11 2004-07-14 信越化学工業株式会社 熱伝導性シリコーンゴム組成物及びその製造方法
JP2004352947A (ja) 2003-05-30 2004-12-16 Shin Etsu Chem Co Ltd 室温硬化型熱伝導性シリコーンゴム組成物
JP2006169343A (ja) * 2004-12-15 2006-06-29 Shin Etsu Chem Co Ltd 放熱性シリコーングリース組成物の製造方法
JP2007051227A (ja) * 2005-08-18 2007-03-01 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物およびその硬化物
JP2008038137A (ja) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物およびその硬化物
JP4255287B2 (ja) 2001-05-14 2009-04-15 東レ・ダウコーニング株式会社 熱伝導性シリコーン組成物
JP2009209230A (ja) * 2008-03-03 2009-09-17 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
JP2009286855A (ja) 2008-05-27 2009-12-10 Dow Corning Toray Co Ltd 熱伝導性シリコーン組成物および電子装置
JP2010100685A (ja) * 2008-10-21 2010-05-06 Nippon Zeon Co Ltd 熱伝導性充填剤含有重合性組成物、プリプレグ、及び積層体
JP2010150399A (ja) * 2008-12-25 2010-07-08 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
JP2011122000A (ja) * 2009-12-08 2011-06-23 Shin-Etsu Chemical Co Ltd 高熱伝導性ポッティング材用シリコーン組成物及び高熱伝導性ポッティング材の選定方法
JP2012077256A (ja) * 2010-10-06 2012-04-19 Shin-Etsu Chemical Co Ltd 室温湿気増粘型熱伝導性シリコーングリース組成物

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939115A1 (en) 1998-02-27 1999-09-01 Shin-Etsu Chemical Co., Ltd. Thermally conductive grease composition
JP2938428B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性グリース組成物
JP2938429B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物
JP3952184B2 (ja) 2002-10-10 2007-08-01 信越化学工業株式会社 熱伝導性シート
JP4219793B2 (ja) 2003-11-25 2009-02-04 信越化学工業株式会社 放熱用シリコーングリース組成物
JP4933094B2 (ja) 2005-12-27 2012-05-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP5047505B2 (ja) 2006-02-08 2012-10-10 信越化学工業株式会社 放熱性に優れる電子装置およびその製造方法
EP1878767A1 (en) * 2006-07-12 2008-01-16 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone grease composition and cured product thereof
JP4917380B2 (ja) 2006-07-31 2012-04-18 信越化学工業株式会社 放熱用シリコーングリース組成物及びその製造方法
JP2008286855A (ja) * 2007-05-15 2008-11-27 Fuji Xerox Co Ltd 表示媒体及び表示装置
JP5372388B2 (ja) * 2008-01-30 2013-12-18 東レ・ダウコーニング株式会社 熱伝導性シリコーングリース組成物
JP5233325B2 (ja) * 2008-02-29 2013-07-10 信越化学工業株式会社 熱伝導性硬化物及びその製造方法
JP4572243B2 (ja) 2008-03-27 2010-11-04 信越化学工業株式会社 熱伝導性積層体およびその製造方法
JP5105308B2 (ja) 2008-06-04 2012-12-26 信越化学工業株式会社 低温加熱時における硬化速度を促進した熱伝導性シリコーン組成物
JP2010013521A (ja) 2008-07-02 2010-01-21 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物
JP5373545B2 (ja) 2009-10-20 2013-12-18 信越化学工業株式会社 放熱用熱伝導性シリコーングリース組成物及びその使用方法
JP4913874B2 (ja) 2010-01-18 2012-04-11 信越化学工業株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
JP5434795B2 (ja) 2010-05-25 2014-03-05 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP5447337B2 (ja) 2010-10-29 2014-03-19 信越化学工業株式会社 シリコーン構造体の製造方法及び半導体装置
JP5553006B2 (ja) 2010-11-12 2014-07-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP5565758B2 (ja) 2011-06-29 2014-08-06 信越化学工業株式会社 硬化性でグリース状の熱伝導性シリコーン組成物および半導体装置
US9698077B2 (en) 2013-01-22 2017-07-04 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone composition based on combination of components, heat conductive layer, and semiconductor device
JP5898139B2 (ja) 2013-05-24 2016-04-06 信越化学工業株式会社 熱伝導性シリコーン組成物

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157569A (ja) 1984-12-28 1986-07-17 Shin Etsu Polymer Co Ltd 熱伝導性接着組成物
JPH08208993A (ja) 1995-11-27 1996-08-13 Toshiba Silicone Co Ltd 熱伝導性シリコーン組成物
JP3543663B2 (ja) 1999-03-11 2004-07-14 信越化学工業株式会社 熱伝導性シリコーンゴム組成物及びその製造方法
JP2002327116A (ja) 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及び半導体装置
JP4255287B2 (ja) 2001-05-14 2009-04-15 東レ・ダウコーニング株式会社 熱伝導性シリコーン組成物
JP2003301189A (ja) 2002-04-10 2003-10-21 Shin Etsu Chem Co Ltd 放熱用シリコーングリース組成物
JP2004352947A (ja) 2003-05-30 2004-12-16 Shin Etsu Chem Co Ltd 室温硬化型熱伝導性シリコーンゴム組成物
JP2006169343A (ja) * 2004-12-15 2006-06-29 Shin Etsu Chem Co Ltd 放熱性シリコーングリース組成物の製造方法
JP2007051227A (ja) * 2005-08-18 2007-03-01 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物およびその硬化物
JP2008038137A (ja) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物およびその硬化物
JP2009209230A (ja) * 2008-03-03 2009-09-17 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物
JP2009286855A (ja) 2008-05-27 2009-12-10 Dow Corning Toray Co Ltd 熱伝導性シリコーン組成物および電子装置
JP2010100685A (ja) * 2008-10-21 2010-05-06 Nippon Zeon Co Ltd 熱伝導性充填剤含有重合性組成物、プリプレグ、及び積層体
JP2010150399A (ja) * 2008-12-25 2010-07-08 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーングリース組成物
JP2011122000A (ja) * 2009-12-08 2011-06-23 Shin-Etsu Chemical Co Ltd 高熱伝導性ポッティング材用シリコーン組成物及び高熱伝導性ポッティング材の選定方法
JP2012077256A (ja) * 2010-10-06 2012-04-19 Shin-Etsu Chemical Co Ltd 室温湿気増粘型熱伝導性シリコーングリース組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2843003A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181657A1 (ja) * 2013-05-07 2014-11-13 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
US9481818B2 (en) 2013-05-07 2016-11-01 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition and a cured product of same
CN106715592A (zh) * 2014-09-25 2017-05-24 信越化学工业株式会社 紫外线增稠型导热性硅润滑脂组合物
US20170283677A1 (en) * 2014-09-25 2017-10-05 Shin-Etsu Chemical Co., Ltd. Uv-thickening thermally conductive silicone grease composition
EP3199591A4 (en) * 2014-09-25 2018-06-06 Shin-Etsu Chemical Co., Ltd. Uv-thickening thermally conductive silicone grease composition
CN107109065A (zh) * 2014-11-11 2017-08-29 信越化学工业株式会社 紫外线增稠型导热性硅脂组合物
EP3219761A4 (en) * 2014-11-11 2018-07-11 Shin-Etsu Chemical Co., Ltd. Ultraviolet-thickenable thermally conductive silicone grease composition
WO2017002474A1 (ja) * 2015-07-01 2017-01-05 昭和電工株式会社 窒化ホウ素を含む熱硬化性シリコーン樹脂組成物、シリコーン樹脂組成物用分散剤及び無機フィラー
WO2019112228A1 (ko) * 2017-12-08 2019-06-13 주식회사 엘지화학 전도성 실리콘 조성물 및 이에 의해 제조된 실리콘 복합재
US10920077B2 (en) 2017-12-08 2021-02-16 Lg Chem, Ltd Conductive silicone composition and silicone composite material manufactured thereby
JP2020063365A (ja) * 2018-10-17 2020-04-23 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法

Also Published As

Publication number Publication date
TW201410863A (zh) 2014-03-16
KR20150003815A (ko) 2015-01-09
CN104245848B (zh) 2017-08-11
US20150148273A1 (en) 2015-05-28
RU2014147036A (ru) 2016-06-10
RU2627868C2 (ru) 2017-08-14
TWI586799B (zh) 2017-06-11
KR101859617B1 (ko) 2018-05-18
IN2014DN09743A (ja) 2015-07-31
US9481851B2 (en) 2016-11-01
JP2013227374A (ja) 2013-11-07
CN104245848A (zh) 2014-12-24
JP5783128B2 (ja) 2015-09-24
EP2843003A4 (en) 2015-12-02
EP2843003A1 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5783128B2 (ja) 加熱硬化型熱伝導性シリコーングリース組成物
JP6390361B2 (ja) 紫外線増粘型熱伝導性シリコーングリース組成物
JP5843368B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP6524879B2 (ja) 付加一液硬化型熱伝導性シリコーングリース組成物
KR102410261B1 (ko) 자외선 증점형 열전도성 실리콘 그리스 조성물
JP7134582B2 (ja) 熱伝導性ポリオルガノシロキサン組成物
JP5304588B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP6642145B2 (ja) 付加一液加熱硬化型熱伝導性シリコーングリース組成物の硬化物の製造方法
JP7290118B2 (ja) 熱伝導性シリコーン接着剤組成物
JP2021001239A (ja) 熱硬化型熱伝導性シリコーンゴム組成物
JP2022174600A (ja) 熱伝導性シリコーン組成物及びその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780721

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013780721

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14396656

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147032008

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014147036

Country of ref document: RU

Kind code of ref document: A