WO2013150947A1 - クロム含有オーステナイト合金 - Google Patents

クロム含有オーステナイト合金 Download PDF

Info

Publication number
WO2013150947A1
WO2013150947A1 PCT/JP2013/059194 JP2013059194W WO2013150947A1 WO 2013150947 A1 WO2013150947 A1 WO 2013150947A1 JP 2013059194 W JP2013059194 W JP 2013059194W WO 2013150947 A1 WO2013150947 A1 WO 2013150947A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
alloy
chromium
film
containing austenitic
Prior art date
Application number
PCT/JP2013/059194
Other languages
English (en)
French (fr)
Inventor
神崎 学
日高 康善
正木 康浩
上平 明弘
整 宮原
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP13772668.3A priority Critical patent/EP2835443B1/en
Priority to JP2013514258A priority patent/JP5561431B2/ja
Priority to KR1020147029771A priority patent/KR20140137451A/ko
Priority to CA2869122A priority patent/CA2869122C/en
Priority to US14/390,058 priority patent/US9493860B2/en
Priority to CN201380023251.5A priority patent/CN104271790B/zh
Priority to KR1020167036357A priority patent/KR101996712B1/ko
Priority to ES13772668T priority patent/ES2721668T3/es
Publication of WO2013150947A1 publication Critical patent/WO2013150947A1/ja
Priority to ZA2014/07204A priority patent/ZA201407204B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/107Protection of water tubes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/006Details of nuclear power plant primary side of steam generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a chromium-containing austenitic alloy, and more particularly, to a chromium-containing austenitic alloy having excellent overall corrosion resistance in a high-temperature water environment such as a nuclear power plant.
  • Chromium-containing austenitic alloys such as 600 alloy and 690 alloy are used in heat transfer tubes for steam generators (hereinafter also simply referred to as “SG tubes”) used in nuclear power plants. This is because these alloys have excellent corrosion resistance in a high-temperature water environment.
  • a chromium-containing austenitic alloy used as an SG tube for a nuclear power plant contains a large amount of Ni and is excellent in corrosion resistance and has a low corrosion rate, but a trace amount of Ni is eluted from the base material after long-term use.
  • Ni is transported to the core in the process of circulating the reactor water and is irradiated with neutrons in the vicinity of the fuel.
  • Ni receives neutron irradiation, it is converted into radioactive Co by nuclear reaction. Since this radioactive Co has a very long half-life, it continues to emit radiation for a long time. Therefore, if the amount of Ni elution increases, the periodic inspection cannot be started until the emitted radiation dose decreases to an appropriate value, so that the period of the periodic inspection is extended and an economic loss is incurred.
  • Patent Document 1 an Ni-based alloy heat transfer tube is annealed in a temperature range of 400 to 750 ° C. in a vacuum atmosphere of 10 ⁇ 2 to 10 ⁇ 4 Torr to form an oxide film mainly composed of chromium oxide. And a method for improving the general corrosion resistance is disclosed.
  • Patent Document 2 discloses a heat treatment that serves as at least a part of an age hardening treatment and an oxide film formation treatment in an oxidizing atmosphere under air of 10 ⁇ 3 Torr to atmospheric pressure after solution treatment of a Ni-based precipitation strengthened alloy. The manufacturing method of the member for nuclear power plants which gives is disclosed.
  • Patent Document 3 discloses a method for producing a Ni-based alloy product in which a Ni-based alloy product is heat-treated in a mixed atmosphere of hydrogen or hydrogen having a dew point of ⁇ 60 ° C. to + 20 ° C. and argon.
  • Patent Document 4 discloses a method of forming a chromium-enriched layer by exposing an alloy workpiece containing nickel and chromium to a gas mixture of water vapor and at least one non-oxidizing gas.
  • Patent Document 5 discloses a manufacturing method for forming a chromium oxide film having a predetermined thickness on the inner surface of a tube by treating a Cr-containing nickel-based alloy tube in an atmosphere made of a non-oxidizing gas containing an oxidizing gas. It is disclosed.
  • the thickness of the oxide film formed by the method described in Patent Documents 1 to 5 is 500 to 5000 mm in Patent Document 1, 1000 to 8000 mm in Patent Document 2, 180 to 1500 nm in Patent Document 3, and 250 to 250 in Patent Document 4. 400 nm, and in Patent Document 5, 50 to 1500 nm.
  • a relatively thick film is formed in order to improve the elution resistance.
  • a chromium-containing austenitic alloy product having a chromium oxide film if the film is thick, cracking, peeling, etc. may occur when processing such as bending, and the appearance is impaired, so the film thickness is It is preferable to make it as small as possible.
  • the reason for the decrease in elution when the film is thin is that the film is difficult to form continuously on the surface and the base material is partially exposed.
  • the thickness of the chromium oxide film is less than 50 nm, if a continuous film is formed on the surface, a chromium-containing austenitic alloy having high metal elution resistance can be obtained.
  • the present invention has been completed on the basis of the above findings, and the gist thereof is the chromium-containing austenitic alloy shown in the following (1) to (4).
  • a chromium-containing austenitic alloy having a continuous chromium oxide film having a thickness of 5 nm or more and less than 50 nm on at least one of the surfaces of the alloy.
  • the chemical composition of the base material is, by mass%, C: 0.15% or less, Si: 1.00% or less, Mn: 2.0% or less, P: 0.030% or less, S: 0.00. 030% or less, Cr: 10.0 to 40.0%, Ni: 8.0 to 80.0%, Ti: 0.5% or less, Cu: 0.6% or less, Al: 0.5% or less and
  • the “chromium oxide film” means an oxide film mainly composed of Cr 2 O 3 , and is an oxide other than Cr 2 O 3 , for example, FeCr 2 O 4 , MnCr 2 O 4 , TiO 2 , Oxides such as Al 2 O 3 and SiO 2 may be contained. If the chromium-containing austenitic alloy has an oxide film made of chromium oxide, another oxide layer is formed on the upper layer (outer layer) and / or lower layer (inner layer) of the chromium oxide layer. It may be formed.
  • a chromium oxide film can be uniformly and inexpensively formed on the surface of a chromium-containing austenitic alloy.
  • the chromium-containing austenitic alloy according to the present invention is used in high-temperature water such as a heat transfer tube for a steam generator because the elution of Ni is extremely small even when used for a long time in a high-temperature water environment, for example, a high-temperature water environment in a nuclear power plant. It is suitable for a member to be made, particularly a member for a nuclear power plant.
  • the chromium-containing austenitic alloy according to the present invention needs to have a continuous chromium oxide film having a thickness of 5 nm or more and less than 50 nm on at least one of the surfaces of the alloy.
  • membrane, peeling, etc. can be suppressed by making film thickness into less than 50 nm.
  • the film thickness is desirably 40 nm or less.
  • the film thickness needs to be 5 nm or more.
  • the film thickness is desirably 10 nm or more.
  • the thickness of the film may be directly measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), glow You may measure by depth direction analysis, such as discharge emission spectroscopy (GDS).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • XPS X-ray photoelectron spectroscopy
  • AES Auger electron spectroscopy
  • glow You may measure by depth direction analysis, such as discharge emission spectroscopy (GDS).
  • GDS discharge emission spectroscopy
  • the fact that the chromium oxide film formed on the alloy surface is continuous means that the base material is not exposed.
  • a critical passivating current density method is preferably used.
  • the critical passivation current density method is one of methods for examining physical defects such as pinholes in the coating.
  • the maximum current density is small in the case of an alloy in which a continuous film without physical defects is formed.
  • the value of the maximum corrosion current density becomes high. Therefore, it is possible to obtain an indication of the presence or absence of physical defects in the oxide film formed on the surface, that is, whether the alloy surface is continuously covered with the oxide film and is not exposed.
  • a continuous chromium oxide film of 5 nm or more and less than 50 nm it is important to optimize the film forming treatment conditions. Specifically, it is important to optimize the oxygen potential, the processing temperature, and the processing time. Within the range of oxygen potential, treatment temperature and treatment time produced by chromium oxide, the oxygen potential is lowered, the treatment temperature is lowered and the growth of chromium oxide is suppressed, and the time is controlled to achieve the target. Thus, a film having a thickness to be formed can be continuously formed.
  • a method for controlling the oxygen potential a method in which an oxidizing gas is contained in a non-oxidizing gas and controlled by the concentration of the oxidizing gas is desirable.
  • the method of controlling by the degree of vacuum it is difficult to precisely control the oxygen potential because it contains a plurality of kinds of oxidizing gases such as oxygen and water vapor.
  • the non-oxidizing gas include a rare gas such as argon and hydrogen gas.
  • the oxidizing gas include water vapor, carbon dioxide, and oxygen gas.
  • Oxygen gas has a risk of explosion when hydrogen is used as a non-oxidizing gas.
  • carbon dioxide is used as the oxidizing gas
  • the surface of the alloy is carburized by carbon monoxide generated after metal oxidation, and the grain boundary strength is increased, which may reduce the corrosion resistance. Therefore, water vapor is most desirable as the oxidizing gas.
  • the water vapor concentration is more preferably 1000 ppm or more, and more preferably 3000 ppm or more.
  • the film formation treatment temperature may be controlled in order to form an appropriate film thickness in consideration of the above-described oxygen potential and treatment time.
  • the alloy is heated to a predetermined processing temperature, maintained at that processing temperature, and then cooled.
  • the film formation process is performed while the temperature is increased and the surface temperature of the alloy reaches 500 ° C. and reaches a predetermined temperature (heating stage), while being maintained at the predetermined temperature ( Holding stage) and during the period from the start of cooling until the surface temperature of the alloy reaches 500 ° C. (cooling stage), the alloy is exposed to an oxidizing atmosphere.
  • the alloy may be continuously exposed to an oxidizing atmosphere in all the above stages.
  • any one or a plurality of stages of a heating stage, a holding stage, and a cooling stage may be appropriately selected to form a film as an oxidizing atmosphere. May be.
  • the film forming treatment temperature in the present invention refers to a temperature range exposed to an oxidizing atmosphere for film formation.
  • the film forming temperature ranges from 500 ° C. at which the film can be formed to a uniform thickness to the temperature at which the film is heated and held. It was temperature.
  • the film forming treatment temperature becomes the holding temperature.
  • the holding temperature may be changed stepwise during the processing.
  • the processing temperature for forming the film is less than 500 ° C.
  • the oxidation of chromium is very slow and is not practical.
  • the processing temperature be in the range of 500 to 750 ° C.
  • the film formation treatment time may be controlled in order to form an appropriate film thickness in consideration of the above-described oxygen potential and treatment temperature.
  • the film formation processing time refers to the time of exposure to an oxidizing atmosphere in the heating stage, the holding stage, and the cooling stage. Furthermore, the time of exposure to the oxidizing atmosphere at each stage is called “heating time”, “holding time”, and “cooling time”, and the sum of the time at each stage is “film formation processing time” or simply “processing time”. That's it.
  • the film formation treatment time is preferably 1 minute or longer in order to form an oxide film mainly composed of chromium oxide.
  • the processing time is desirably 3 hours or less.
  • the treatment time is more preferably 5 minutes or longer, and more preferably 100 minutes or shorter.
  • the treatment time is desirably 1 hour or less.
  • an annealing process can be performed in advance in order to obtain appropriate mechanical properties of the material. Further, heat treatment may be performed at 700 to 750 ° C. for 5 to 15 hours for the purpose of improving the corrosion resistance of the crystal grain boundaries before or after the film forming treatment.
  • impurities are components mixed in due to various factors of raw materials such as ores and scraps and manufacturing processes when the alloy is industrially manufactured, and are allowed within a range that does not adversely affect the present invention. Means something.
  • C 0.15% or less Since C has an effect of increasing the grain boundary strength of the alloy, it may be contained. However, if the content exceeds 0.15%, the stress corrosion cracking resistance may be deteriorated. Therefore, when C is contained, the content is preferably 0.15% or less. The C content is more preferably 0.06% or less. In addition, in order to acquire said effect, it is desirable to make content of C 0.01% or more.
  • Si 1.00% or less Si is used as a deoxidizing material during smelting and remains as an impurity in the alloy. When the content is excessive, the cleanliness of the alloy may be lowered. Therefore, the Si content is desirably 1.00% or less, and more desirably 0.50% or less. It should be noted that the effect of Si as a deoxidizer becomes remarkable when the Si content is 0.05% or more.
  • Mn 2.0% or less Mn is an element effective for fixing S as MnS and ensuring hot workability. Mn has a lower free energy of formation of oxide than Cr and precipitates as MnCr 2 O 4 by heating. Also, since the diffusion rate is relatively high, usually, Cr 2 O 3 is preferentially generated in the vicinity of the base material by heating, and MnCr 2 O 4 is formed as an upper layer outside thereof. If the MnCr 2 O 4 layer is present, the Cr 2 O 3 layer is protected in the use environment, and even if the Cr 2 O 3 layer is broken for some reason, the MnCr 2 O 4 repairs the Cr 2 O 3 . Is promoted. However, if the content is excessive, the corrosion resistance of the alloy may be lowered.
  • the Mn content is desirably 2.0% or less, and more desirably 1.0% or less.
  • P 0.030% or less P is an element present as an impurity in the alloy. If the content exceeds 0.030%, the corrosion resistance may be adversely affected. Therefore, the P content is desirably 0.030% or less.
  • S 0.030% or less S is an element present as an impurity in the alloy. If the content exceeds 0.030%, the corrosion resistance may be adversely affected. Therefore, the S content is desirably 0.030% or less.
  • Cr 10.0-40.0% Cr is an element necessary for generating an oxide film made of chromium oxide. In order to produce such an oxide film on the alloy surface, it is desirable to contain 10.0% or more. However, if it exceeds 40.0%, workability may be deteriorated. Therefore, the Cr content is desirably 10.0 to 40.0%.
  • Ni 8.0 to 80.0%
  • Ni is an element necessary for ensuring the corrosion resistance of the austenitic alloy, and it is desirable to contain 8.0% or more.
  • Ni since Ni is expensive, it may be contained as much as necessary depending on the application, and it is preferably 80.0% or less.
  • the Ni content is more preferably 45.0% or more.
  • Ti 0.5% or less
  • Ti is an element effective for improving the workability of the alloy and suppressing grain growth during welding. However, if its content exceeds 0.5%, the cleanliness of the alloy may be deteriorated. Therefore, the Ti content is desirably 0.5% or less, and more desirably 0.4% or less. In addition, in order to acquire said effect, it is desirable that Ti content shall be 0.1% or more.
  • Cu 0.6% or less
  • Cu is an element present as an impurity in the alloy. If the content exceeds 0.6%, the corrosion resistance of the alloy may be lowered. Therefore, the Cu content is desirably 0.6% or less.
  • Al 0.5% or less Al is used as a deoxidizing material during steelmaking, and remains as an impurity in the alloy. The remaining Al becomes oxide inclusions in the alloy, which deteriorates the cleanliness of the alloy and may adversely affect the corrosion resistance and mechanical properties of the alloy. Therefore, the Al content is desirably 0.5% or less.
  • N 0.20% or less N may not be contained, but the chromium-containing austenitic alloy targeted by the present invention usually contains about 0.01% of N as an impurity. However, if N is positively contained, the strength can be increased without deteriorating the corrosion resistance. However, since corrosion resistance will fall when it contains exceeding 0.20%, the upper limit in the case of making it contain shall be 0.20%.
  • the above alloy (a) contains 14.0 to 17.0% of Cr and 70 to 80% of Ni. Therefore, the alloy is excellent in corrosion resistance in an environment containing chloride.
  • the Fe content is preferably 6.0 to 10.0% from the viewpoint of the balance between the Ni content and the Cr content.
  • the alloy (b) contains 27.0 to 31.0% of Cr and 55 to 65% of Ni, so that it has excellent corrosion resistance in high-temperature pure water and alkaline environments in addition to chloride-containing environments. It is an alloy.
  • the Fe content is preferably 7.0 to 11.0% from the viewpoint of the balance between the Ni content and the Cr content.
  • An ingot obtained by melting and casting an alloy having a chemical composition shown in Table 1 (690 alloy) in a vacuum was hot forged to produce a billet.
  • the obtained billet was formed into a tube shape having an outer diameter of 19 mm and a wall thickness of 1 mm by hot working and cold working. After performing the annealing heat treatment at 1100 ° C., a film formation treatment was performed on the inner surface of the tube under the conditions shown in Table 2.
  • the film formation treatment was performed by flowing an oxidizing gas having a predetermined concentration into the pipe while each alloy pipe was heated, held and cooled to a predetermined temperature in the furnace.
  • the “film formation treatment temperature” in Table 2 is a temperature range exposed to an oxidizing atmosphere
  • the “heating time”, “holding time”, and “cooling time” are the oxidizing atmosphere at each stage.
  • Exposure time, and “film formation processing time” is the total processing time in each stage.
  • the film thickness five arbitrary positions of the SEM image (magnification of 100,000 times) were measured, and the average value thereof was defined as the film thickness.
  • a test piece having a measurement surface of 10 mm ⁇ 10 mm on the inner surface was prepared, and critical passivating current density (CPCD) measurement was performed with 0.1 M sulfuric acid + 0.01 M sodium thiosulfate solution degassed at 30 ° C. The maximum current density was obtained. The results are also shown in Table 2.
  • Ni elution was performed as follows using said sample. After filling a certain amount of a solution simulating the reactor primary system into a test tube, both ends were sealed using a titanium lock, and an elution test was performed in an autoclave.
  • the simulated solution is distilled water containing 500 ppm B + 2 ppm Li, and after degassing by bubbling high-purity argon gas, the mixed gas of hydrogen and argon is pressurized to be equivalent to dissolved hydrogen 30 cc-STP / kgH 2 O. did.
  • the test temperature was 325 ° C. and the test time was 500 hours.
  • the adhesion of the film was investigated by observing cracks after the bending test.
  • the sample after the surface treatment was formed into a vertically halved shape with a length of 80 mm, and then both ends were supported by a support so as to be parallel with the inner surface of the tube facing down.
  • the spacing between the support members was 50 mm.
  • an R8 mm jig was pressed near the center in the longitudinal direction from the top, and reverse U-shaped bending was performed.
  • the pressing height was about 20 mm for one of the vertically split samples, and about 30 mm for the other sample. After that, the inner surface was observed with a SEM at a magnification of 2000 times.
  • test No. which is a comparative example. 10 and 11 are inferior in Ni elution resistance because the film is not continuous.
  • Test No. Nos. 12 and 13 had a large film thickness and good Ni elution in the elution test, but cracks were observed in the bending test.
  • test No. which is an example of the present invention. Nos. 1 to 9 are excellent in Ni elution resistance because they are uniformly formed although the film thickness is small, and no cracks are generated.
  • a chromium oxide film can be uniformly and inexpensively formed on the surface of a chromium-containing austenitic alloy.
  • the chromium-containing austenitic alloy according to the present invention has a very low elution of Ni even when used for a long time in a high-temperature water environment, for example, a high-temperature water environment in a nuclear power plant.
  • -It is suitable for members used in high-temperature water such as finger springs, channel fasteners and lid nozzles, especially for nuclear power plants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Fuel Cell (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

 合金が有する面のうち少なくとも一つの表面に厚さ5nm以上50nm未満の連続したクロム酸化物皮膜を有するクロム含有オーステナイト合金。クロム酸化物皮膜が連続していれば、臨界不動態化電流密度法における最大電流密度が0.1μA/cm以下となる。母材の化学組成は、質量%で、C:0.15%以下、Si:1.00%以下、Mn:2.0%以下、P:0.030%以下、S:0.030%以下、Cr:10.0~40.0%、Ni:8.0~80.0%、Ti:0.5%以下、Cu:0.6%以下、Al:0.5%以下およびN:0.20%以下と、残部Feおよび不純物とからなることが望ましい。

Description

クロム含有オーステナイト合金
 本発明は、クロム含有オーステナイト合金に係り、特に、原子力プラント等の高温水環境における耐全面腐食性に優れたクロム含有オーステナイト合金に関する。
 原子力プラントに用いられる蒸気発生器用伝熱管(以下、単に「SG管」ともいう。)には、600合金、690合金等のクロム含有オーステナイト合金が使用されている。これら合金は、高温水環境において優れた耐食性を有しているからである。
 これらの部材は、数年から数10年の間、原子炉の炉水環境である300℃前後の高温水の環境で用いられることになる。原子力プラント用SG管として用いられるクロム含有オーステナイト合金は、Niを多く含み耐食性に優れており腐食速度は遅いものの、長期間の使用により微量のNiが母材から溶出する。
 溶出したNiは、炉水が循環する過程で、炉心部に運ばれ燃料の近傍で中性子の照射を受ける。Niが中性子照射を受けると核反応により放射性Coに変換する。この放射性Coは、半減期が非常に長いため、放射線を長期間放出し続ける。したがって、Niの溶出量が多くなると、放出される放射線量が適正値に低下するまで定期検査に着手できないため、定期検査の期間が延び、経済的な損失を被る。
 Niの溶出量を少なくすることは、軽水炉を長期にわたり使用していく上で非常に重要な課題である。そのため、これまでにも材料側の耐食性の改善や原子炉水の水質を制御することにより合金中のNiの溶出を防止する対策が採られてきた。
 特許文献1には、Ni基合金伝熱管を10-2~10-4Torrという真空度の雰囲気で、400~750℃の温度域で焼鈍してクロム酸化物を主体とする酸化物皮膜を形成させ、耐全面腐食性を改善する方法が開示されている。
 特許文献2には、Ni基析出強化型合金の溶体化処理後に、10-3Torr~大気圧空気下の酸化雰囲気で時効硬化処理および酸化物皮膜形成処理の少なくとも一部を兼ねて行なう加熱処理を施す原子力プラント用部材の製造方法が開示されている。
 特許文献3には、Ni基合金製品を露点が-60℃~+20℃である水素または水素とアルゴンの混合雰囲気中で熱処理するNi基合金製品の製造方法が開示されている。
 特許文献4には、ニッケルとクロムとを含有する合金ワークピースを、水蒸気と少なくとも1種の非酸化性ガスとのガス混合物に曝して、クロム富化層を形成させる方法が開示されている。
 特許文献5には、含Crニッケル基合金管を酸化性ガスを含んだ非酸化性ガスからなる雰囲気で処理することによって、管内面に所定厚みを有したクロム酸化物皮膜を形成させる製造方法が開示されている。
特開昭64-55366号公報 特開平8-29571号公報 特開2002-121630号公報 特開2002-322553号公報 国際公開第2012/026344号
杉本克久:ドライコーティングTiN薄膜のピンホール欠陥評価、材料と環境、44(1995)、第259-261頁
 特許文献1~5に記載の方法で形成される酸化皮膜の厚さは、特許文献1では500~5000Å、特許文献2では1000~8000Å、特許文献3では180~1500nm、特許文献4では250~400nm、特許文献5では50~1500nmである。一般的に皮膜が薄いと耐食性は低下する傾向にあるため、特許文献1~5に記載の方法では、耐溶出性を向上させるため、比較的厚い皮膜を形成することとしている。
 一方、クロム酸化物皮膜を有するクロム含有オーステナイト合金の製品において、皮膜が厚いと、曲げ等の加工をした際に、割れ、剥離等が生じるおそれがあり、また外観を損なうため、皮膜厚さはできるだけ小さくするのが好ましい。
 本発明者らは、クロム酸化物皮膜を有するクロム含有オーステナイト合金について、皮膜の厚さを薄くしても金属溶出防止効果を損なわない方法を鋭意検討した結果、以下の知見を得るに至った。
 皮膜を薄くした際に溶出性が低下する要因は、皮膜が表面に対して連続的に形成されにくく、部分的に母材が露出してしまうためである。
 クロム酸化物皮膜の厚さが50nm未満であっても表面に連続した皮膜を形成すれば、高い耐金属溶出性を有するクロム含有オーステナイト合金が得られる。
 本発明は、上記の知見に基づいて完成されたものであり、下記の(1)~(4)に示すクロム含有オーステナイト合金を要旨とする。
 (1)合金が有する面のうち少なくとも一つの表面に厚さ5nm以上50nm未満の連続したクロム酸化物皮膜を有することを特徴とするクロム含有オーステナイト合金。
 (2)臨界不動態化電流密度法における最大電流密度が0.1μA/cm以下であることを特徴とする上記(1)に記載のクロム含有オーステナイト合金。
 (3)母材の化学組成が、質量%で、C:0.15%以下、Si:1.00%以下、Mn:2.0%以下、P:0.030%以下、S:0.030%以下、Cr:10.0~40.0%、Ni:8.0~80.0%、Ti:0.5%以下、Cu:0.6%以下、Al:0.5%以下およびN:0.20%以下と、残部Feおよび不純物とからなることを特徴とする上記(1)または(2)に記載のクロム含有オーステナイト合金。
 (4)合金が、原子力プラント用部材として用いられることを特徴とする上記(1)~(3)のいずれかに記載のクロム含有オーステナイト合金。
 なお、「クロム酸化物皮膜」とは、Cr3を主体とする酸化物皮膜を意味し、Cr23以外の酸化物、例えば、FeCr、MnCr24、TiO2、Al23、SiO2などの酸化物が含まれていても良い。また、クロム含有オーステナイト合金の表面にクロム酸化物からなる酸化物皮膜を有するのであれば、クロム酸化物層の上層(外側の層)および/または下層(内側の層)に他の酸化物層が形成されていても良い。
 本発明によれば、クロム含有オーステナイト合金の表面に、安価で、かつ均一にクロム酸化物皮膜を形成させることができる。本発明に係るクロム含有オーステナイト合金は、高温水環境、例えば、原子力発電プラントにおける高温水環境で長時間にわたり使用してもNiの溶出が極めて少ないから、蒸気発生器用伝熱管等の高温水中で使用される部材、特に原子力プラント用部材に好適である。
 1.酸化物皮膜
 本発明に係るクロム含有オーステナイト合金は、合金が有する面のうち少なくとも一つの表面に厚さ5nm以上50nm未満の連続したクロム酸化物皮膜を有する必要がある。皮膜厚さを50nm未満とすることによって皮膜の割れ、剥離等の発生を抑制することができる。皮膜厚さは40nm以下であることが望ましい。また、安定して連続したクロム酸化物皮膜を形成させるためには、皮膜厚さは5nm以上とする必要がある。皮膜厚さは10nm以上であることが望ましい。
 なお、皮膜の厚さは、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)により直接測定しても良いし、X線光電子分光法(XPS)、オージェ電子分光法(AES)、グロー放電発光分光法(GDS)等の深さ方向分析により測定しても良い。この際、皮膜厚さの測定を複数カ所で行いその平均値を求めるなどして、皮膜全体の平均的な厚さを求めることに留意するのが良い。
 本発明において、合金表面に形成されたクロム酸化物皮膜が連続しているとは、母材の露出がないことを指す。酸化物皮膜が連続していることを示す評価方法として、臨界不動態化電流密度法を用いるのが良い。非特許文献1に記載されているように、臨界不動態化電流密度法とは、コーティングにおけるピンホール等の物理的な欠陥を調べる手法の1つである。
 希硫酸に濡れ性を高めるためチオ硫酸ナトリウムを添加した溶液中でアノード分極測定を行うと、物理的な欠陥のない連続皮膜が形成された合金の場合、最大電流密度は小さい値となる。一方、皮膜が物理的な欠陥を有し、合金母材が露出している場合、最大腐食電流密度の値が高くなる。したがって、表面に形成された酸化皮膜の物理的な欠陥の有無、即ち、合金表面が酸化物皮膜で連続的に覆われており露出がないかどうかの指標を得ることができる。
 5nm以上50nm未満の連続したクロム酸化物皮膜を得るためには、皮膜形成処理条件の適正化が重要である。具体的には、酸素ポテンシャルと処理温度と処理時間とを適正化することが重要となる。クロム酸化物が生成する酸素ポテンシャル、処理温度および処理時間の範囲内において、酸素ポテンシャルを低くし、処理温度を低温としてクロム酸化物の成長を抑えた上で、時間を制御することで、目標とする厚さの皮膜を連続的に形成させることができる。
 酸素ポテンシャルの制御方法としては、非酸化性ガスに酸化性ガスを含有させ、酸化性ガスの濃度により制御する方法が望ましい。真空度により制御する方法では、酸素、水蒸気等複数の種類の酸化性ガスを含むため酸素ポテンシャルの精密な制御は難しい。非酸化性ガスとしてはアルゴン等の希ガスや水素ガスなどがある。酸化性ガスとしては水蒸気、二酸化炭素、酸素ガス等が挙げられる。
 酸素ガスは非酸化性ガスに水素を用いた場合、爆発の危険がある。また、二酸化炭素を酸化性ガスとして用いた場合、金属酸化後に発生した一酸化炭素によって合金表層が浸炭し、粒界強度が高まることで耐食性が低下するおそれがある。したがって、酸化性ガスとしては水蒸気が最も望ましい。
 水蒸気の濃度は低すぎると酸化物皮膜が形成されず、高すぎるとクロム以外の成分も酸化されてしまい、純粋なクロム酸化物皮膜が得られにくいため、500~15000ppmとするのが望ましい。水蒸気濃度は1000ppm以上とするのがより望ましく、3000ppm以上とするのがより望ましい。
 皮膜形成処理温度は、上記の酸素ポテンシャルと処理時間との兼ね合いで適正な皮膜厚さを形成させるために制御すれば良い。通常の熱処理工程においては、合金を所定の処理温度まで加熱し、その処理温度のまま保持し、その後冷却させる。皮膜の形成処理は、上記の処理工程中において、昇温を開始して合金の表面温度が500℃になってから所定温度に到達する間(加熱段階)、所定温度に保持している間(保持段階)、および冷却を開始してから合金の表面温度が500℃となるまでの間(冷却段階)に、合金を酸化雰囲気にさらすことで行われる。そして、上記の全段階で合金を継続して酸化雰囲気にさらしても良いが、例えば、加熱段階、保持段階および冷却段階のいずれかまたは複数の段階を適宜選択して酸化雰囲気として皮膜を形成させても良い。
 また、本発明における皮膜形成処理温度とは、皮膜形成のために、酸化雰囲気にさらされる温度範囲をいう。その加熱段階、保持段階および冷却段階の全てで酸化性ガスにさらす場合は、皮膜形成処理温度を均一な厚さの皮膜が形成できる500℃から加熱保持される温度までの温度範囲を皮膜形成処理温度とした。例えば、全段階ではなく所定温度に保持する保持段階だけ酸化性ガスにさらす場合は、皮膜形成処理温度は保持温度となる。また、保持温度は処理中に段階的に温度を変化させても良い。
 皮膜形成のための処理温度が500℃未満では、クロムの酸化が非常に遅く現実的でない。一方、750℃を超えると酸化速度が速くなりすぎ、均一な皮膜厚さの制御が難しくなる。したがって、処理温度は500~750℃の範囲内の温度とするのが望ましい。
 皮膜形成処理時間は、上記の酸素ポテンシャルと処理温度との兼ね合いで適正な皮膜厚さを形成させるために制御すれば良い。皮膜形成処理時間は、上記の加熱段階、保持段階および冷却段階において酸化雰囲気にさらされた時間をいう。さらに、各段階で酸化雰囲気にさらす時間を「加熱時間」、「保持時間」および「冷却時間」といい、各段階での時間を合計したものを「皮膜形成処理時間」または単に「処理時間」という。
 皮膜形成処理時間は、クロム酸化物を主体とする酸化物皮膜を形成するためには、1分以上とすることが望ましい。一方、3時間を超えて加熱処理しても、酸化物皮膜はほとんど成長せず、製造コスト面からも不利となる。したがって、処理時間は3時間以下とするのが望ましい。処理時間は5分以上とすることがより望ましく、100分以下とすることがより望ましい。また、皮膜形成処理温度が600℃以上である場合、処理時間は1時間以下とすることが望ましい。
 皮膜形成処理を行う場合、適正な材料の機械的特性を得るため、事前に焼きなまし処理を行うことができる。また、皮膜形成処理の前後または同時に結晶粒界の耐食性を向上させる目的で700~750℃で5~15時間の熱処理を行っても良い。
 2.化学組成
 本発明に係るクロム含有オーステナイト合金の母材の化学組成については、特に制約はないが、質量%で、C:0.15%以下、Si:1.00%以下、Mn:2.0%以下、P:0.030%以下、S:0.030%以下、Cr:10.0~40.0%、Ni:8.0~80.0%、Ti:0.5%以下、Cu:0.6%以下、Al:0.5%以下およびN:0.20%以下と、残部Feおよび不純物とからなるものであることが望ましい。
 ここで「不純物」とは、合金を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
 C:0.15%以下
 Cは、合金の粒界強度を高める効果を有するため、含有させても良い。ただし、0.15%を超えて含有させると、耐応力腐食割れ性が劣化するおそれがある。したがって、Cを含有させる場合には、その含有量を0.15%以下とするのが望ましい。C含有量は、0.06%以下とするのがより望ましい。なお、上記の効果を得るためには、Cの含有量は0.01%以上とするのが望ましい。
 Si:1.00%以下
 Siは、製錬時の脱酸材として使用され、合金中に不純物として残存する。その含有量が過剰な場合、合金の清浄度が低下することがあるため、Siの含有量は1.00%以下とするのが望ましく、0.50%以下とするのがより望ましい。なお、Siの脱酸剤としての効果が顕著となるのは、Siの含有量が0.05%以上の場合である。
 Mn:2.0%以下
 Mnは、SをMnSとして固定し、熱間加工性を確保するのに有効な元素である。Mnは、Crに比べて酸化物の生成自由エネルギーが低く、加熱によりMnCr24として析出する。また、拡散速度も比較的速いため、通常は、加熱により母材近傍にCr23が優先的に生成し、その外側に上層としてMnCr24が形成される。MnCr24層が存在すれば、使用環境中においてCr23層が保護され、また、Cr23層が何らかの理由で破壊された場合でもMnCr24によりCr23の修復が促進される。ただし、その含有量が過剰な場合、合金の耐食性を低下させることがあるため、Mnの含有量は2.0%以下とするのが望ましく、1.0%以下とするのがより望ましい。なお、上記の効果を得るためには、Mnの含有量は0.1%以上とするのが望ましく、0.2%以上とするのがより望ましい。
 P:0.030%以下
 Pは、合金中に不純物として存在する元素である。その含有量が0.030%を超えると耐食性に悪影響を及ぼすことがある。したがって、P含有量は、0.030%以下とするのが望ましい。
 S:0.030%以下
 Sは、合金中に不純物として存在する元素である。その含有量が0.030%を超えると耐食性に悪影響を及ぼすことがある。したがって、S含有量は、0.030%以下とするのが望ましい。
 Cr:10.0~40.0%
 Crは、クロム酸化物からなる酸化物皮膜を生成させるために必要な元素である。合金表面にそのような酸化物皮膜を生成させるためには、10.0%以上含有させるのが望ましい。しかし、40.0%を超えると加工性が劣化するおそれがある。したがって、Crの含有量は10.0~40.0%とするのが望ましい。
 Ni:8.0~80.0%
 Niは、オーステナイト合金の耐食性を確保するために必要な元素であり、8.0%以上含有させるのが望ましい。一方、Niは高価であるため、用途に応じて必要最小限含有させれば良く、80.0%以下とするのが望ましい。Niの含有量は45.0%以上とするのがより望ましい。
 Ti:0.5%以下
 Tiは、合金の加工性を向上させ、溶接時における粒成長を抑制するのに有効な元素である。しかし、その含有量が0.5%を超えると、合金の清浄性を劣化させるおそれがある。したがって、Tiの含有量は0.5%以下とするのが望ましく、0.4%以下とするのがより望ましい。なお、上記の効果を得るためには、Ti含有量は0.1%以上とするのが望ましい。
 Cu:0.6%以下
 Cuは、合金中に不純物として存在する元素である。その含有量が0.6%を超えると合金の耐食性が低下することがある。したがって、Cu含有量は0.6%以下とするのが望ましい。
 Al:0.5%以下
 Alは、製鋼時の脱酸材として使用され、合金中に不純物として残存する。残存したAlは、合金中で酸化物系介在物となり、合金の清浄度を劣化させ、合金の耐食性および機械的性質に悪影響を及ぼすおそれがある。したがって、Al含有量は、0.5%以下とするのが望ましい。
 N:0.20%以下
 Nは、含有させなくても良いが、本発明が対象とするクロム含有オーステナイト合金中には、通常、0.01%程度のNが不純物として含有されている。しかし、Nを積極的に含有させれば、耐食性を劣化させることなく、強度を高めることができる。ただし、0.20%を超えて含有させると耐食性が低下するので、含有させる場合の上限は0.20%とする。
 上記クロム含有オーステナイト合金の組成として代表的なものは、以下の二種類である。
 (a)C:0.15%以下、Si:1.00%以下、Mn:2.0%以下、P:0.030%以下、S:0.030%以下、Cr:14.0~17.0%、Fe:6.0~10.0%、Ti:0.5%以下、Cu:0.5%以下およびAl:0.5%以下と、残部Niおよび不純物とからなるNi基合金。
 (b)C:0.06%以下、Si:1.00%以下、Mn:2.0%以下、P:0.030%以下、S:0.030%以下、Cr:27.0~31.0%、Fe:7.0~11.0%、Ti:0.5%以下、Cu:0.5%以下およびAl:0.5%以下と、残部Niおよび不純物とからなるNi基合金。
 上記(a)の合金は、Crを14.0~17.0%含み、Niを70~80%含むため、塩化物を含む環境での耐食性に優れる合金である。この合金においては、Ni含有量とCr含有量とのバランスの観点からFeの含有量は6.0~10.0%とするのが望ましい。
 上記(b)の合金は、Crを27.0~31.0%含み、Niを55~65%含むため、塩化物を含む環境のほか、高温における純水およびアルカリ環境での耐食性にも優れる合金である。この合金においてもNi含有量とCr含有量とのバランスの観点からFeの含有量は7.0~11.0%とするのが望ましい。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す化学組成の合金(690合金)を真空中で溶解、鋳造して得たインゴットを熱間鍛造してビレットを作製した。得られたビレットを熱間加工および冷間加工により外径19mm、肉厚1mmの管形状に成形した。1100℃で焼きなまし熱処理を行った後に、表2に示す条件で管内面への皮膜形成処理を行った。
 なお、皮膜形成処理は、各合金管を炉内で所定の温度まで加熱、保持および冷却する間に、管内に所定の濃度の酸化性ガスを流入させることで行った。上述のように、表2における「皮膜形成処理温度」とは、酸化性雰囲気にさらす温度範囲であり、「加熱時間」、「保持時間」および「冷却時間」は、各段階で酸化性雰囲気にさらす時間であり、「皮膜形成処理時間」が各段階での処理時間の合計時間である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 皮膜厚さについては、SEM画像(倍率10万倍)の任意の5カ所を測定し、それらの平均値を皮膜厚さとした。また、内表面に10mm×10mmの領域を測定面とした試験片を作製し、温度30℃の脱気した0.1M硫酸+0.01Mチオ硫酸ナトリウム溶液で臨界不動態化電流密度(CPCD)測定を行い、最大電流密度を求めた。その結果を表2に併せて示す。
 また、上記の試料を用いてNi溶出性の評価を下記のとおり実施した。試験管へ原子炉一次系を模擬した溶液を一定量満たした後、チタン製のロックを用いて両端を封止し、オートクレーブ中で溶出試験を行った。なお、模擬溶液は、500ppm B+2ppm Liを含む蒸留水であり、高純度アルゴンガスをバブリングして脱気した後、水素とアルゴンの混合ガスを加圧して溶存水素30cc-STP/kgHO相当にした。試験温度は325℃、試験時間は500時間とした。試験終了後、直ちに溶液を誘導結合プラズマ分析装置(ICP-MS)により分析し、試験片の単位表面積当たりのNiイオン溶出量(g/m)を調べた。その結果を表2に併せて示す。
 皮膜の密着性を曲げ試験後の割れ観察により調査した。表面処理後の試料を長さ80mmの縦半割形状にした後、管内面を下側にして、並行になるように両端を支持具で支えた。なお、支持具同士の間隔は50mmとした。その後、長手方向中央付近に上からR8mmの冶具を押しつけて、逆U字曲げを行った。押し付け高さについては、縦半割形状とした試料の一方については、約20mmとし、もう一方については、約30mmとした。その後内表面をSEMにより2000倍で観察し、押し付け高さが20mmおよび30mmの双方の曲げ試験において割れが観察されなかったものを◎、30mmの曲げ試験では割れが認められたものの、20mmでは割れが観察されなかったものを○、押し付け高さが20mmおよび30mmの双方の曲げ試験において割れが観察されたものを×とした。
 表2に示すように、比較例である試験No.10および11は皮膜が連続でないため耐Ni溶出性が劣る。また、試験No.12および13は皮膜厚さが厚く、溶出試験でのNi溶出性は良好であるが、曲げ試験で割れが認められた。それに対して、本発明例である試験No.1~9は、皮膜厚さが小さいものの均一に形成されているため耐Ni溶出性に優れており、割れも発生していない。
 本発明によれば、クロム含有オーステナイト合金の表面に、安価で、かつ均一にクロム酸化物皮膜を形成させることができる。本発明に係るクロム含有オーステナイト合金は、高温水環境、例えば、原子力発電プラントにおける高温水環境で長時間にわたり使用してもNiの溶出が極めて少ないから、蒸気発生器用伝熱管、スペーサースプリング・コイルスプリング・フィンガスプリング・チャンネルファスナ、蓋用管台等の高温水中で使用される部材、特に原子力プラント用部材に好適である。

Claims (4)

  1.  合金が有する面のうち少なくとも一つの表面に厚さ5nm以上50nm未満の連続したクロム酸化物皮膜を有することを特徴とするクロム含有オーステナイト合金。
  2.  臨界不動態化電流密度法における最大電流密度が0.1μA/cm以下であることを特徴とする請求項1に記載のクロム含有オーステナイト合金。
  3.  母材の化学組成が、質量%で、C:0.15%以下、Si:1.00%以下、Mn:2.0%以下、P:0.030%以下、S:0.030%以下、Cr:10.0~40.0%、Ni:8.0~80.0%、Ti:0.5%以下、Cu:0.6%以下、Al:0.5%以下およびN:0.20%以下と、残部Feおよび不純物とからなることを特徴とする請求項1または請求項2に記載のクロム含有オーステナイト合金。
  4.  合金が、原子力プラント用部材として用いられることを特徴とする請求項1から請求項3までのいずれかに記載のクロム含有オーステナイト合金。
PCT/JP2013/059194 2012-04-04 2013-03-28 クロム含有オーステナイト合金 WO2013150947A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP13772668.3A EP2835443B1 (en) 2012-04-04 2013-03-28 Cr-containing austenitic alloy
JP2013514258A JP5561431B2 (ja) 2012-04-04 2013-03-28 クロム含有オーステナイト合金
KR1020147029771A KR20140137451A (ko) 2012-04-04 2013-03-28 크롬 함유 오스테나이트 합금
CA2869122A CA2869122C (en) 2012-04-04 2013-03-28 Chromium-containing austenitic alloy
US14/390,058 US9493860B2 (en) 2012-04-04 2013-03-28 Chromium-containing austenitic alloy
CN201380023251.5A CN104271790B (zh) 2012-04-04 2013-03-28 含铬奥氏体合金
KR1020167036357A KR101996712B1 (ko) 2012-04-04 2013-03-28 크롬 함유 오스테나이트 합금
ES13772668T ES2721668T3 (es) 2012-04-04 2013-03-28 Aleación austenítica que contiene cromo
ZA2014/07204A ZA201407204B (en) 2012-04-04 2014-10-03 Cr-containing austenitic alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-085137 2012-04-04
JP2012085137 2012-04-04

Publications (1)

Publication Number Publication Date
WO2013150947A1 true WO2013150947A1 (ja) 2013-10-10

Family

ID=49300437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059194 WO2013150947A1 (ja) 2012-04-04 2013-03-28 クロム含有オーステナイト合金

Country Status (9)

Country Link
US (1) US9493860B2 (ja)
EP (1) EP2835443B1 (ja)
JP (1) JP5561431B2 (ja)
KR (2) KR20140137451A (ja)
CN (1) CN104271790B (ja)
CA (1) CA2869122C (ja)
ES (1) ES2721668T3 (ja)
WO (1) WO2013150947A1 (ja)
ZA (1) ZA201407204B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052551A1 (ja) * 2014-09-29 2016-04-07 新日鐵住金株式会社 Ni基合金管
WO2016208569A1 (ja) * 2015-06-26 2016-12-29 新日鐵住金株式会社 原子力用Ni基合金管

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2706182T3 (es) * 2012-03-28 2019-03-27 Nippon Steel & Sumitomo Metal Corp Aleación austenitica que contiene Cr
JP6599475B2 (ja) * 2015-11-11 2019-10-30 Ykk株式会社 ファスナーストリンガー及びその製造方法、並びにスライドファスナー
KR20170002568U (ko) 2016-01-06 2017-07-17 전남도립대학교산학협력단 노약자 및 장애인을 위한 전동 트랙체어
CN106433706B (zh) * 2016-11-22 2020-04-10 刘艳 一种耐高温水汽环境的蒸馏炭化装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455366A (en) 1987-08-26 1989-03-02 Sumitomo Metal Ind Heat treatment for heat-transfer pipe
JPH0829571A (ja) 1994-07-11 1996-02-02 Toshiba Corp 原子力プラント用部材の製造方法
JP2000208431A (ja) * 1999-01-13 2000-07-28 Tadahiro Omi 酸化クロム不働態膜が形成された金属材料及びその製造方法並びに接流体部品及び流体供給・排気システム
JP2002121630A (ja) 2000-08-11 2002-04-26 Sumitomo Metal Ind Ltd Ni基合金製品とその製造方法
JP2002322553A (ja) 2001-03-30 2002-11-08 Babcock & Wilcox Canada Ltd オーステナイト合金の不動態化のための高温ガス状酸化
JP2002348655A (ja) * 2001-05-18 2002-12-04 Sumitomo Metal Mining Co Ltd スケール付着防止膜付き部材およびその製造方法
JP2007131921A (ja) * 2005-11-11 2007-05-31 Tamura Seisakusho Co Ltd ステンレス鋼及びその製造方法並びにこれを用いたはんだ付装置
JP2007257883A (ja) * 2006-03-20 2007-10-04 Aisin Takaoka Ltd 燃料電池セパレータ及びその製造方法
WO2008136306A1 (ja) * 2007-04-27 2008-11-13 Nippon Kinzoku Co., Ltd. ステンレス鋼製導電性部材およびその製造方法
JP2011042862A (ja) * 2009-08-24 2011-03-03 Toyota Central R&D Labs Inc 耐食耐摩耗部材およびその製造方法
WO2012026344A1 (ja) 2010-08-26 2012-03-01 住友金属工業株式会社 含Crオーステナイト合金管およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188714A (en) * 1991-05-03 1993-02-23 The Boc Group, Inc. Stainless steel surface passivation treatment
EP0725160A1 (en) * 1991-11-20 1996-08-07 OHMI, Tadahiro Method of forming passive oxide film based on chromium oxide and stainless steel
JP3379070B2 (ja) 1992-10-05 2003-02-17 忠弘 大見 クロム酸化物層を表面に有する酸化不動態膜の形成方法
JP3218802B2 (ja) 1993-05-07 2001-10-15 株式会社神戸製鋼所 半導体製造装置用ステンレス鋼材の表面処理法
JP2991050B2 (ja) * 1994-08-23 1999-12-20 住友金属工業株式会社 高純度ガス用ステンレス鋼管
JP4104026B2 (ja) 1996-06-20 2008-06-18 財団法人国際科学振興財団 酸化不働態膜の形成方法並びに接流体部品及び流体供給・排気システム
JP2006164824A (ja) * 2004-12-09 2006-06-22 Nisshin Steel Co Ltd 固体高分子型燃料電池用ステンレス鋼製セパレータ及び固体高分子型燃料電池
JP4813965B2 (ja) 2006-05-16 2011-11-09 日本特殊陶業株式会社 スパークプラグ
JP4720590B2 (ja) * 2006-04-12 2011-07-13 住友金属工業株式会社 含Crニッケル基合金管の製造方法
WO2008010965A1 (en) 2006-07-18 2008-01-24 Exxonmobil Research And Engineering Company High performance coated material with improved metal dusting corrosion resistance
JP2008047381A (ja) * 2006-08-14 2008-02-28 Toyo Seikan Kaisha Ltd 燃料電池用ステンレス部材
JP5448425B2 (ja) 2008-11-21 2014-03-19 公益財団法人国際超電導産業技術研究センター 超電導膜成膜用基板、超電導線材及びそれらの製造方法
ES2706182T3 (es) * 2012-03-28 2019-03-27 Nippon Steel & Sumitomo Metal Corp Aleación austenitica que contiene Cr

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455366A (en) 1987-08-26 1989-03-02 Sumitomo Metal Ind Heat treatment for heat-transfer pipe
JPH0829571A (ja) 1994-07-11 1996-02-02 Toshiba Corp 原子力プラント用部材の製造方法
JP2000208431A (ja) * 1999-01-13 2000-07-28 Tadahiro Omi 酸化クロム不働態膜が形成された金属材料及びその製造方法並びに接流体部品及び流体供給・排気システム
JP2002121630A (ja) 2000-08-11 2002-04-26 Sumitomo Metal Ind Ltd Ni基合金製品とその製造方法
JP2002322553A (ja) 2001-03-30 2002-11-08 Babcock & Wilcox Canada Ltd オーステナイト合金の不動態化のための高温ガス状酸化
JP2002348655A (ja) * 2001-05-18 2002-12-04 Sumitomo Metal Mining Co Ltd スケール付着防止膜付き部材およびその製造方法
JP2007131921A (ja) * 2005-11-11 2007-05-31 Tamura Seisakusho Co Ltd ステンレス鋼及びその製造方法並びにこれを用いたはんだ付装置
JP2007257883A (ja) * 2006-03-20 2007-10-04 Aisin Takaoka Ltd 燃料電池セパレータ及びその製造方法
WO2008136306A1 (ja) * 2007-04-27 2008-11-13 Nippon Kinzoku Co., Ltd. ステンレス鋼製導電性部材およびその製造方法
JP2011042862A (ja) * 2009-08-24 2011-03-03 Toyota Central R&D Labs Inc 耐食耐摩耗部材およびその製造方法
WO2012026344A1 (ja) 2010-08-26 2012-03-01 住友金属工業株式会社 含Crオーステナイト合金管およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATSUHISA SUGIMOTO, PINHOLE DEFECT EVALUATION OF DRY COATING TIN THIN FILM, ZAIRYO-TO-KANKYO/CORROSION ENGINEERING OF JAPAN, vol. 44, 1995, pages 259 - 261

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052551A1 (ja) * 2014-09-29 2016-04-07 新日鐵住金株式会社 Ni基合金管
JPWO2016052551A1 (ja) * 2014-09-29 2017-07-06 新日鐵住金株式会社 Ni基合金管
CN107075618A (zh) * 2014-09-29 2017-08-18 新日铁住金株式会社 Ni基合金管
EP3202932A4 (en) * 2014-09-29 2018-06-20 Nippon Steel & Sumitomo Metal Corporation Ni-BASED ALLOY PIPE
US10106871B2 (en) 2014-09-29 2018-10-23 Nippon Steel & Sumitomo Metal Corporation Ni-based alloy tube
CN107075618B (zh) * 2014-09-29 2018-12-25 新日铁住金株式会社 Ni基合金管
WO2016208569A1 (ja) * 2015-06-26 2016-12-29 新日鐵住金株式会社 原子力用Ni基合金管
JPWO2016208569A1 (ja) * 2015-06-26 2018-02-08 新日鐵住金株式会社 原子力用Ni基合金管

Also Published As

Publication number Publication date
EP2835443B1 (en) 2019-02-27
US9493860B2 (en) 2016-11-15
EP2835443A1 (en) 2015-02-11
CA2869122A1 (en) 2013-10-10
KR20170003709A (ko) 2017-01-09
JP5561431B2 (ja) 2014-07-30
EP2835443A4 (en) 2016-01-13
ZA201407204B (en) 2017-05-31
KR20140137451A (ko) 2014-12-02
KR101996712B1 (ko) 2019-07-04
US20150064454A1 (en) 2015-03-05
JPWO2013150947A1 (ja) 2015-12-17
CA2869122C (en) 2017-12-12
ES2721668T3 (es) 2019-08-02
CN104271790A (zh) 2015-01-07
CN104271790B (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
JP5561431B2 (ja) クロム含有オーステナイト合金
JP5488762B2 (ja) 含Crオーステナイト合金およびその製造方法
JP4720590B2 (ja) 含Crニッケル基合金管の製造方法
US9255319B2 (en) Cr-containing austenitic alloy tube and method for producing the same
JP4304499B2 (ja) 原子力プラント用Ni基合金材の製造方法
JP4518210B2 (ja) Ni−Cr合金材
JP5459633B1 (ja) オーステナイト合金管
JP4556740B2 (ja) Ni基合金の製造方法
JP2020026544A (ja) Ni基合金材および原子力用管製品
JP2010270400A (ja) 原子力プラント用蒸気発生器管
JP4529761B2 (ja) Ni基合金の製造方法
JP2021011591A (ja) オーステナイト合金材
JP2020026545A (ja) オーステナイト合金材および原子力用管製品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013514258

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2869122

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14390058

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147029771

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013772668

Country of ref document: EP