WO2013147071A1 - 多孔膜及び多層多孔膜 - Google Patents

多孔膜及び多層多孔膜 Download PDF

Info

Publication number
WO2013147071A1
WO2013147071A1 PCT/JP2013/059355 JP2013059355W WO2013147071A1 WO 2013147071 A1 WO2013147071 A1 WO 2013147071A1 JP 2013059355 W JP2013059355 W JP 2013059355W WO 2013147071 A1 WO2013147071 A1 WO 2013147071A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
porous
mass
film
multilayer
Prior art date
Application number
PCT/JP2013/059355
Other languages
English (en)
French (fr)
Inventor
村田 博
畑山 博司
優紀 内田
石川 真己
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49260314&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013147071(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to KR1020177020402A priority Critical patent/KR101870098B1/ko
Priority to EP13769838.7A priority patent/EP2833439B1/en
Priority to JP2014508051A priority patent/JP6120828B2/ja
Priority to PL16201654T priority patent/PL3179536T3/pl
Priority to EP16201654.7A priority patent/EP3179536B1/en
Priority to KR1020177020400A priority patent/KR101840616B1/ko
Priority to CN201380017992.2A priority patent/CN104205419B/zh
Priority to KR1020147026416A priority patent/KR20140131544A/ko
Priority to PL16201651T priority patent/PL3179535T3/pl
Priority to PL13769838T priority patent/PL2833439T3/pl
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to US14/387,975 priority patent/US9627672B2/en
Priority to KR1020177007799A priority patent/KR101833693B1/ko
Priority to EP16201651.3A priority patent/EP3179535B1/en
Publication of WO2013147071A1 publication Critical patent/WO2013147071A1/ja
Priority to US15/462,794 priority patent/US9911960B2/en
Priority to US15/462,790 priority patent/US9911959B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a membrane used for separation or purification of various substances, and a porous membrane and a multilayer porous membrane suitably used as a separator disposed between a positive electrode and a negative electrode in a battery. Further, the present invention relates to a non-aqueous electrolyte battery separator and a non-aqueous electrolyte battery using the same.
  • the lithium ion secondary battery incorporates several safety functions, one of which is a separator shutdown function.
  • the shutdown function is a function that when the battery generates abnormal heat, the microporous of the separator is blocked by heat melting or the like to suppress ion conduction in the electrolytic solution and stop the progress of the electrochemical reaction.
  • the lower the shutdown temperature the higher the safety, and one of the reasons why polyethylene is used as a separator material is that it has a proper shutdown temperature.
  • non-aqueous electrolyte batteries such as lithium ion secondary batteries are being rapidly developed into applications that require high current charging / discharging in a short time, such as electric vehicles and hybrid electric vehicles, and thus demand for safety Not only that, but also advanced output characteristics are strongly demanded, and a balance between excellent safety and advanced output characteristics is required.
  • Patent Document 1 discloses a multilayer porous film in which a porous layer having a mass fraction of an inorganic filler of 50% or more and less than 100% is laminated on at least one surface of a porous film containing a polyolefin resin as a main component.
  • the document describes a technology that achieves both excellent heat resistance that can prevent short circuit between both electrodes and a good shutdown function even when the calorific value during abnormal heat generation is large.
  • Patent Document 2 discloses a polyolefin microporous membrane having a fibril diameter of 40 to 100 nm, a microporous diameter of 50 to 100 nm, and a curving rate of 1.4 to 1.8.
  • the document describes a technique capable of obtaining excellent ion conductivity and mechanical strength even when a polyolefin microporous membrane and a heat resistant porous layer are composited.
  • Patent 4789274 gazette JP 2011-210574 A
  • an object of the present invention is to provide a porous membrane and a multilayer porous membrane which are more excellent in ion conductivity than a conventional multilayer porous membrane.
  • the present inventors are the porous layer which consists of an inorganic filler and resin-made binders on the polyolefin porous film which has a specific pore structure, or the polyolefin porous film which has a specific pore structure. It has been found that the multi-layered porous film in which is laminated is remarkably excellent in ion conductivity, and reaches the present invention.
  • a multilayer porous film comprising a porous film containing a polyolefin resin as a main component, and a porous layer containing an inorganic filler and a resin binder laminated on at least one surface of the porous film,
  • a multilayer porous membrane, having a thickness of about 500 / ⁇ m 2 and a thickness L of the porous membrane of L 5 to 22 ⁇ m.
  • the nonaqueous electrolytic solution battery which has a separator for nonaqueous electrolytic solution batteries of the said [5] description, a positive electrode, a negative electrode, and electrolyte solution.
  • a multilayer porous film comprising the porous film according to the above-mentioned [7], and a porous layer containing an inorganic filler and a resinous binder laminated on at least one surface of the porous film.
  • the separator for non-aqueous electrolyte batteries which consists of a porous film as described in said [7], or a multilayer porous film as described in said [8] or [9].
  • the nonaqueous electrolytic solution battery which has a separator for nonaqueous electrolytic solution batteries of the said [10] description, a positive electrode, a negative electrode, and electrolyte solution.
  • a multilayer porous film in which a porous layer (B) containing an inorganic filler and a resin binder is laminated on at least one surface of a porous film (A) containing a polyolefin resin as a main component,
  • the porosity of the porous film (A) is 50% or more and 90% or less, and the number of holes is 100 / ⁇ m 2 or more and 500 / ⁇ m 2 or less
  • the multilayer porous film, wherein the resinous binder in the porous layer (B) is a resinous latex binder having an average particle diameter of 50 nm or more and 500 nm or less.
  • a non-aqueous electrolyte battery comprising the separator for a non-aqueous electrolyte battery according to the above [13], a positive electrode, a negative electrode, and an electrolytic solution.
  • the present invention it is possible to provide a porous film and a multilayer porous film excellent in ion conductivity, a separator for non-aqueous electrolyte batteries using the same, and a non-aqueous electrolyte battery.
  • the multilayer porous film in the first embodiment is a multilayer porous film having a porous film mainly composed of a polyolefin resin, and a porous layer containing an inorganic filler and a resinous binder laminated on at least one surface of the porous film.
  • B 100 to 500 pieces / ⁇ m 2
  • the porous membrane which has polyolefin resin as a main component is explained.
  • the porous film containing a polyolefin resin as a main component is 50% by mass or more and 100% by mass or less of the resin component constituting the porous film from the viewpoint of improving the shutdown performance etc. when the multilayer porous film is used as a battery separator. It is preferable that it is a porous film formed of the polyolefin resin composition which a polyolefin resin occupies.
  • the proportion of the polyolefin resin is more preferably 60% by mass to 100% by mass, and still more preferably 70% by mass to 100% by mass.
  • the polyolefin resin occupies 50 mass% or more and 100 mass% or less of all the components which comprise a porous film.
  • the polyolefin resin is not particularly limited. For example, homopolymers, copolymers, or multistage polymers of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene, etc. Etc. These polyolefin resins may be used alone or in combination of two or more. Specific examples of the polyolefin resin include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, ethylene-propylene random copolymer, polybutene, Ethylene propylene rubber etc. are mentioned.
  • a resin composition mainly composed of high density polyethylene as a polyolefin resin, from the viewpoint of having a low melting point and satisfying the required performance of high strength.
  • a resin composition containing polypropylene and a polyolefin resin other than polypropylene it is more preferable to use a resin composition containing polypropylene and a polyolefin resin other than polypropylene.
  • polypropylene when polypropylene is included as the polyolefin resin, the steric structure of polypropylene is not limited, and any of isotactic polypropylene, syndiotactic polypropylene and atactic polypropylene may be used.
  • the proportion of polypropylene to the total polyolefin in the polyolefin resin composition is preferably 1 to 35% by mass, more preferably 3 to 20% by mass, and still more preferably, from the viewpoint of achieving both heat resistance and a good shutdown function. It is 4 to 10% by mass.
  • the polyolefin resin contained other than polypropylene, for example, homopolymer or copolymer of olefin hydrocarbon such as ethylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene etc. Coalescence is mentioned. Specifically, polyethylene, polybutene, ethylene-propylene random copolymer and the like can be mentioned.
  • Low-density polyethylene, linear low-density polyethylene, and medium polyolefin resins other than polypropylene are required when it is required that the pores be blocked by heat melting and shut down, for example, when a multilayer porous membrane is used as a battery separator
  • polyethylene such as density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene.
  • density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene it is more preferable to use polyethylene having a density of 0.93 g / cm 3 or more as measured in accordance with JIS K 7112 from the viewpoint of improving the strength.
  • the viscosity average molecular weight of the polyolefin resin is preferably 30,000 to 12,000,000, more preferably 50,000 to less than 2,000,000, and still more preferably 100,000 to less than 1,000,000.
  • the viscosity average molecular weight is 30,000 or more, the melt tension at the time of melt molding becomes large and the formability becomes good, and it is preferable because it tends to become high strength due to the entanglement of polymers.
  • the viscosity average molecular weight is 12,000,000 or less, it becomes easy to melt and knead uniformly, which is preferable because it tends to be excellent in sheet formability, particularly thickness stability.
  • the viscosity average molecular weight is less than 1,000,000 because the pores tend to be blocked when the temperature rises and a good shutdown function is obtained.
  • a polyolefin having a viscosity average molecular weight of less than 1,000,000 instead of using a polyolefin having a viscosity average molecular weight of less than 1,000,000 alone, it is a mixture of a polyolefin having a viscosity average molecular weight of 2,000,000 and a polyolefin having a viscosity average molecular weight of 270,000, and the viscosity average molecular weight of the mixture is less than 1,000,000. And mixtures of polyolefins may be used.
  • the polyolefin resin composition can contain any additive.
  • Additives include, for example, polymers other than polyolefins; inorganic fillers; antioxidants such as phenol type, phosphorus type and sulfur type; metal soaps such as calcium stearate and zinc stearate; UV absorbers; light stabilizers; Antistatic agents; Antifogging agents; Color pigments etc. may be mentioned.
  • the total addition amount of these additives is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and still more preferably 5 parts by mass or less with respect to 100 parts by mass of the polyolefin resin composition.
  • the porous film in the first embodiment has a porous structure in which a large number of very small holes are gathered to form a dense communicating hole, so that it is very excellent in ion conductivity and at the same time good in voltage resistance, Moreover, it has a feature of high strength.
  • the average pore diameter d, the curved path ratio ⁇ a and the number B of holes are respectively adjusted in the above ranges, it is possible to achieve both high ion conductivity and withstand voltage.
  • the average pore diameter d is preferably 0.040 to 0.060 ⁇ m, and more preferably 0.042 to 0.060 ⁇ m.
  • the tortuosity tau a is 1.15 to 1.67 and more preferably from 1.18 to 1.66, further preferably 1.20 ⁇ 1.65 .mu.m.
  • the number B of holes is more preferably 120 to 450 / ⁇ m 2 and still more preferably 140 to 400 / ⁇ m 2 .
  • the average pore diameter, the curved path ratio, and the number of holes control the composition ratio, the cooling rate of the extruded sheet, the stretching temperature, the stretching ratio, the heat setting temperature, the stretching ratio during heat setting, and the relaxation rate during heat setting. And can be adjusted by combining them.
  • the film thickness of the porous film is 22 ⁇ m or less, the film resistance decreases, so that there is an advantage that the ion conductivity is improved.
  • the porous layers are stacked to form a multilayer porous film, the effect becomes remarkable.
  • the thickness of the porous film is 5 ⁇ m or more, the withstand voltage characteristics are improved.
  • the thickness of the porous film is more preferably 6 to 21 ⁇ m, and still more preferably 7 to 20 ⁇ m or less.
  • the film thickness of the porous film can be adjusted by controlling the draw ratio in the drawing process.
  • the puncture strength of the porous film in the first embodiment is preferably 400 to 2000 gf in terms of a film thickness of 25 ⁇ m.
  • the puncture strength of the porous film is more preferably 420 to 1800 gf, still more preferably 450 to 1500 gf, and particularly preferably 500 to 1200 gf.
  • the puncture strength of the porous film controls the type and composition ratio of the polyolefin resin, the cooling rate of the extruded sheet, the stretching temperature, the stretching ratio, the heat setting temperature, the stretching ratio during heat setting, and the relaxation rate during heat setting. And can be adjusted by combining them.
  • a well-known manufacturing method is employable. For example, (1) a method of forming a sheet by melt-kneading a polyolefin resin composition and a plasticizer, stretching as necessary, and then extracting the plasticizer to make it porous, (2) polyolefin resin composition The product is melt-kneaded and extruded at a high draw ratio, and then a method of making it porous by peeling off the polyolefin crystal interface by heat treatment and stretching, (3) melt-kneading a polyolefin resin composition and an inorganic filler on a sheet After forming into a porous layer by peeling off the interface between the polyolefin and the inorganic filler by stretching, (4) after dissolving the polyolefin resin composition, it is immersed in a poor solvent for the polyolefin to coagulate the polyolefin at the same time
  • the polyolefin resin composition and the plasticizer are melt-kneaded.
  • a polyolefin resin and optionally other additives are introduced into a resin-kneading apparatus such as an extruder, kneader, laboplast mill, kneading roll, Banbury mixer, etc., while heating and melting resin components.
  • mixing a plasticizer in ratio of 5 is mentioned.
  • non-volatile solvent which can form a uniform solution above the melting point of polyolefin.
  • non-volatile solvents include, for example, hydrocarbons such as liquid paraffin and paraffin wax; esters such as dioctyl phthalate and dibutyl phthalate; higher alcohols such as oleyl alcohol and stearyl alcohol .
  • liquid paraffin is preferable because it is highly compatible with polyethylene and polypropylene, and even if the melt-kneaded product is stretched, interfacial peeling between the resin and the plasticizer hardly occurs and uniform stretching tends to be easily performed. .
  • the ratio of the polyolefin resin composition to the plasticizer is not particularly limited as long as they can be melt-kneaded uniformly and molded into a sheet.
  • the mass fraction of the plasticizer in the composition comprising the polyolefin resin composition and the plasticizer is preferably 30 to 80% by mass, more preferably 40 to 70% by mass.
  • the mass fraction of the plasticizer is 80% by mass or less, the melt tension at the time of melt molding is less likely to be insufficient, and the formability tends to be improved.
  • the mass fraction of the plasticizer is 30% by mass or more, the polyolefin chain is not cut even when the mixture of the polyolefin resin composition and the plasticizer is drawn at a high ratio, and a uniform and fine pore structure is formed. And strength is also easy to increase.
  • melt-kneaded product is formed into a sheet.
  • a melt-kneaded product is extruded into a sheet form through a T die or the like, brought into contact with a heat conductor, and cooled to a temperature sufficiently lower than the crystallization temperature of the resin component.
  • a heat conductor used for cooling solidification, although metal, water, air, or a plasticizer itself etc. is mentioned, since the efficiency of heat conduction is high, it is preferred to use a roll made of metal.
  • the extruded kneaded material is brought into contact with a metal roll, if it is sandwiched between the rolls, the heat conduction efficiency is further enhanced, the sheet is oriented to increase the film strength, and the surface smoothness of the sheet is also improved. It is more preferable because it has a tendency. It is preferable that it is 400 micrometers or more and 3000 micrometers or less, and, as for the die-lip space
  • the die-lip distance is 400 ⁇ m or more, the peel and the like are reduced, the influence on the film quality such as streaks and defects is small, and the risk of the film breakage and the like in the subsequent drawing process can be reduced.
  • the die lip distance is 3000 ⁇ m or less, the cooling rate is fast, the cooling unevenness can be prevented, and the thickness stability of the sheet can be maintained.
  • biaxial stretching is preferable from the viewpoint of improving the strength and the like of the obtained porous film.
  • the stretching method include methods such as simultaneous biaxial stretching, sequential biaxial stretching, multi-stage stretching, multiple stretching, etc. Simultaneous biaxial stretching from the viewpoint of improvement in puncture strength, uniformity of stretching, and shutdown property Stretching is preferred.
  • simultaneous biaxial stretching refers to a stretching method in which stretching in the MD direction (machine direction of the microporous membrane) and stretching in the TD direction (direction crossing the MD of the microporous membrane at an angle of 90 °) are simultaneously performed. No, the draw ratio in each direction may be different.
  • Sequential biaxial stretching refers to a stretching method in which stretching in the MD direction or TD direction is performed independently, and when stretching in the MD direction or TD direction, the other direction is unconstrained or fixed length It is in a fixed state.
  • the stretching ratio is preferably in the range of 20 times to 100 times in terms of area ratio, and more preferably in the range of 25 times to 50 times.
  • the stretching ratio in each axial direction is preferably in the range of 4 to 10 in the MD direction and 4 to 10 in the TD direction, preferably 5 to 8 in the MD direction and 5 in the TD direction. More preferably, it is in the range of 8 times or more.
  • the sheet-like formed body may be rolled.
  • the rolling can be carried out by, for example, a press method using a double belt press or the like.
  • the rolling area magnification is preferably more than one and not more than three times, and more preferably more than one and not more than two times.
  • the rolling ratio exceeds 1 time, the plane orientation tends to increase and the film strength of the finally obtained porous film tends to increase.
  • the rolling ratio is 3 times or less, the difference in orientation between the surface layer portion and the inside of the center is small, and a uniform porous structure tends to be formed in the thickness direction of the film.
  • the plasticizer is removed from the sheet-like molded product to form a porous film.
  • a method of removing a plasticizer the method of immersing a sheet-like molded object in an extraction solvent, extracting a plasticizer, and making it fully dry is mentioned, for example.
  • the plasticizer may be extracted either batchwise or continuously.
  • the remaining amount of plasticizer in the porous membrane is less than 1% by mass with respect to the mass of the whole porous membrane.
  • extraction solvent used when extracting a plasticizer, it is preferable to use a poor solvent for the polyolefin resin and a good solvent for the plasticizer and having a boiling point lower than the melting point of the polyolefin resin.
  • extraction solvents include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane; non-chlorinated such as hydrofluoroether and hydrofluorocarbon Halogenated solvents; alcohols such as ethanol and isopropanol; ethers such as diethyl ether and tetrahydrofuran; and ketones such as acetone and methyl ethyl ketone.
  • hydrocarbons such as n-hexane and cyclohexane
  • halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane
  • non-chlorinated such as hydroflu
  • heat treatment such as heat setting or thermal relaxation may be performed after the stretching step or after the porous film is formed.
  • the porous film may be subjected to post-treatments such as hydrophilization treatment with a surfactant or the like, crosslinking treatment with an ionizing radiation or the like.
  • the porous film is preferably heat-set from the viewpoint of suppressing the shrinkage.
  • a method of heat setting performing relaxation operation by a predetermined temperature atmosphere and a predetermined relaxation rate can be mentioned, and it can be performed using a tenter or a roll drawing machine.
  • a relaxation operation is a reduction operation of the membrane to MD and / or TD.
  • the relaxation rate is the value obtained by dividing the MD dimension of the film after the relaxation operation by the MD dimension of the film before the operation, the value obtained by dividing the TD dimension after the relaxation operation by the TD dimension of the film before the operation, or both MD and TD Is a value obtained by multiplying the relaxation rate of MD and the relaxation rate of TD.
  • the relaxation rate is preferably 1.0 or less, more preferably 0.97 or less, and still more preferably 0.95 or less.
  • the relaxation operation may be performed in both MD and TD directions, but may be performed only in one of MD and TD.
  • the stretching and relaxation operation after this plasticizer extraction is preferably performed in the TD direction.
  • the temperature in the relaxation operation and the stretching step before the relaxation operation is preferably lower than the melting point (Tm) of the polyolefin resin, more preferably in the range of Tm-5 ° C. to Tm-25 ° C., Tm-7 ° C. to Tm-23 ° C. Is more preferable, and the range of Tm-8 ° C.
  • Tm-21 ° C. is particularly preferable. If the temperature in the relaxation operation and the stretching step before the relaxation operation is in the above range, it is easy to obtain a porous film having a small pore diameter and a low curved path, and having a large number of pores and a high porosity.
  • the inorganic filler used in the porous layer is not particularly limited, but preferably has a melting point of 200 ° C. or higher, is highly electrically insulating, and is electrochemically stable in the use range of the lithium ion secondary battery .
  • inorganic fillers include oxide ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide and iron oxide; nitride ceramics such as silicon nitride, titanium nitride and boron nitride; silicon carbide , Calcium carbonate, magnesium sulfate, aluminum sulfate, aluminum hydroxide, aluminum hydroxide oxide, potassium titanate, talc, kaolinite, dicite, nacrite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite, Asbestos, zeolite, calcium silicate, magnesium silicate, kieselguhr, ceramics such as silica sand, glass fibers, etc. may be mentioned, and these may be used alone or in combination.
  • oxide ceramics such as alumina, silica, titania, zirconia, magnesia, c
  • aluminum oxide compounds such as alumina and aluminum hydroxide oxide, and ions such as kaolinite, dicite, nacrite, halloysite and pyrophyllite Preference is given to aluminum silicate compounds which have no exchange capacity.
  • aluminum oxide compound aluminum hydroxide oxide is particularly preferable.
  • aluminum silicate compound having no ion exchange ability kaolin composed mainly of kaolin mineral is more preferable since it is inexpensive and easily available.
  • Kaolin includes wet kaolin and calcined kaolin obtained by subjecting the kaolin to calcination, however, in addition to the fact that water of crystallization is released during calcination, calcined kaolin removes impurities, so that in terms of electrochemical stability. Particularly preferred.
  • the average particle diameter of the inorganic filler is preferably more than 0.1 ⁇ m and not more than 4.0 ⁇ m, more preferably more than 0.2 ⁇ m and not more than 3.5 ⁇ m, and more than 0.4 ⁇ m. More preferably, it is 0 ⁇ m or less. It is preferable to adjust the average particle diameter of the inorganic filler to the above-mentioned range from the viewpoint of suppressing the thermal contraction at high temperature even when the thickness of the porous layer is thin (for example, 7 ⁇ m or less).
  • the proportion of particles having a particle diameter of more than 0.2 ⁇ m and not more than 1.4 ⁇ m in the inorganic filler is preferably 2% by volume or more, more preferably 3% by volume or more, still more preferably 5% by volume.
  • the upper limit is preferably 90% by volume or less, more preferably 80% by volume or less.
  • the proportion of particles having a particle diameter of more than 0.2 ⁇ m and 1.0 ⁇ m or less in the inorganic filler is preferably 1% by volume or more, more preferably 2% by volume or more, and the upper limit Is preferably 80% by volume or less, more preferably 70% by volume or less.
  • the proportion of particles having a particle diameter of more than 0.5 ⁇ m and 2.0 ⁇ m or less in the whole of the inorganic filler is preferably 8% by volume or more, more preferably 10 volumes or more, and the upper limit Is preferably 60% by volume or less, more preferably 50% by volume or less.
  • the proportion of particles having a particle diameter of more than 0.6 ⁇ m and 1.4 ⁇ m or less in the whole of the inorganic filler is preferably 1% by volume or more, more preferably 3% by volume or more.
  • the upper limit is preferably 40% by volume or less, more preferably 30% by volume or less.
  • the particle size distribution of the inorganic filler is preferable to adjust to the above range from the viewpoint of suppressing the thermal contraction at high temperature even if the thickness of the porous layer is thin (for example, 7 ⁇ m or less).
  • pulverizing an inorganic filler using a ball mill, bead mill, jet mill etc., for example, and making a particle size small can be mentioned.
  • the shape of the inorganic filler may, for example, be plate-like, scaly, needle-like, column-like, spherical, polyhedron-like or massive.
  • a plurality of inorganic fillers having the above-mentioned shape may be used in combination.
  • the shape of the inorganic filler is not particularly limited as long as 150 ° C. heat shrinkage described later can be suppressed to 10% or less, but it is composed of a plurality of surfaces from the viewpoint of permeability improvement. Polyhedron shape, columnar shape, spindle shape is preferable.
  • the proportion of the inorganic filler in the porous layer can be appropriately determined from the viewpoint of the binding property of the inorganic filler, the permeability of the multilayer porous membrane, the heat resistance, and the like, but is 50% by mass or more and 100% by mass.
  • the amount is preferably less than 70% by mass, more preferably 70% by mass to 99.99% by mass, still more preferably 80% by mass to 99.9% by mass, and particularly preferably 90% by mass to 99% by mass.
  • the type of the resinous binder is not particularly limited, but it is insoluble in the electrolyte solution of the lithium ion secondary battery when the multilayer porous film in the present embodiment is used as a separator for a lithium ion secondary battery, And, it is preferable to use one that is electrochemically stable in the use range of the lithium ion secondary battery.
  • the resin binder include, for example, polyolefins such as polyethylene and polypropylene; fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene; vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, ethylene-tetra Fluorine-containing rubber such as fluoroethylene copolymer; styrene-butadiene copolymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylate ester- Acrylic acid ester copolymer, styrene-acrylic acid ester copolymer, acrylonitrile-acrylic acid ester copolymer, ethylene propylene rubber, polyvinyl alcohol, polyvinyl acetate, and other rubbers; Cellulose,
  • the saponification degree is 85% or more and 100% or less.
  • the degree of saponification is 85% or more, when using the multilayer porous membrane as a battery separator, the shorting temperature (shorting temperature) is improved, which is preferable because it tends to obtain better safety performance.
  • the degree of saponification is more preferably 90% or more and 100% or less, still more preferably 95% or more and 100% or less, and particularly preferably 99% or more and 100% or less.
  • the polymerization degree of polyvinyl alcohol is preferably 200 or more and 5000 or less, more preferably 300 or more and 4000 or less, and still more preferably 500 or more and 3500 or less.
  • an inorganic filler such as calcined kaolin can be strongly bonded to the porous membrane with a small amount of polyvinyl alcohol, and the air permeability of the multilayer porous membrane by porous layer formation while maintaining the mechanical strength of the porous layer. It is preferable because it tends to be able to suppress the increase in the degree. In addition, it is preferable that the degree of polymerization is 5000 or less because gelation and the like can be prevented when preparing the coating solution.
  • a resin latex binder is preferable.
  • a resin-made latex binder when a porous layer containing an inorganic filler and a binder is laminated on at least one surface of a polyolefin porous film, the ion permeability is unlikely to be reduced and high output characteristics are easily obtained. In addition, even when the temperature rise during abnormal heat generation is fast, smooth shutdown characteristics are exhibited, and high safety can be easily obtained.
  • the obtained solution is laminated on at least one surface of the polyolefin porous film, and the resin binder is made porous by immersion in a poor solvent or solvent removal by drying.
  • bound to a film not only is it difficult to obtain high output characteristics, but also it tends to be difficult to exhibit smooth shutdown characteristics and to be inferior in safety.
  • a resin-made latex binder from the viewpoint of improving the electrochemical stability and binding property, an aliphatic conjugated diene-based monomer, an unsaturated carboxylic acid monomer, and other unity copolymerizable with these Those obtained by emulsion polymerization of the body are preferred.
  • a method of emulsion polymerization A conventionally well-known method can be used.
  • the addition method of the monomer and the other components is not particularly limited, and any of batch addition method, split addition method, continuous addition method can be adopted, and one-stage polymerization, two-stage polymerization or many Any of step polymerization and the like can be employed.
  • the aliphatic conjugated diene monomer is not particularly limited.
  • 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1 And 3-butadiene, substituted linear conjugated pentadienes, substituted and side chain conjugated hexadienes, etc. may be used alone or in combination of two or more.
  • 1,3-butadiene is particularly preferred.
  • the other monomer copolymerizable with these is not particularly limited, and, for example, an aromatic vinyl monomer, a vinyl cyanide monomer, an unsaturated carboxylic acid alkyl ester monomer, a hydroxyalkyl group And unsaturated carboxylic acid amide monomers, etc., which may be used alone or in combination of two or more.
  • unsaturated carboxylic acid alkyl ester monomers are particularly preferred.
  • monomer components other than the above can also be used to improve various qualities and physical properties.
  • the average particle diameter of the resinous binder in Embodiment 1 is preferably 50 to 500 nm, more preferably 60 to 460 nm, and still more preferably 80 to 250 nm.
  • the average particle diameter of the resinous binder is 50 nm or more, when the porous layer containing the inorganic filler and the binder is laminated on at least one surface of the polyolefin porous film, the ion permeability is unlikely to be reduced and high output characteristics are easily obtained. In addition, even when the temperature rise during abnormal heat generation is fast, smooth shutdown characteristics are exhibited, and high safety can be easily obtained.
  • the average particle diameter of the resinous binder is 500 nm or less, good binding property is exhibited, and when it is made a multilayer porous film, heat shrinkage tends to be good and safety tends to be excellent.
  • the average particle diameter of the resinous binder can be controlled by adjusting the polymerization time, the polymerization temperature, the raw material composition ratio, the raw material charging order, the pH and the like.
  • the layer thickness of the porous layer is preferably 1 ⁇ m or more from the viewpoint of improving the heat resistance and the insulating property, and preferably 50 ⁇ m or less from the viewpoint of improving the capacity and permeability of the battery.
  • the layer thickness of the porous layer is more preferably 1.5 ⁇ m to 20 ⁇ m, still more preferably 2 ⁇ m to 10 ⁇ m, still more preferably 3 ⁇ m to 10 ⁇ m, particularly preferably 3 ⁇ m to 7 ⁇ m.
  • the layer density of the porous layer is preferably 0.5 to 2.0 g / cm 3 , and more preferably 0.7 to 1.5 cm 3 .
  • the layer density of the porous layer is 0.5 g / cm 3 or more, the thermal shrinkage at high temperature tends to be good, and when it is 2.0 g / cm 3 or less, the air permeability tends to be lowered. is there.
  • Examples of the method of forming the porous layer include a method of forming a porous layer by applying a coating solution containing an inorganic filler and a resin binder on at least one surface of a porous film containing a polyolefin resin as a main component.
  • the solvent for the coating solution is preferably one capable of uniformly and stably dispersing the inorganic filler and the resin binder, and examples thereof include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, water, Ethanol, toluene, hot xylene, methylene chloride, hexane and the like can be mentioned.
  • a dispersing agent such as a surfactant, a thickener, a wetting agent, an antifoamer, and various additives such as a PH adjusting agent containing an acid and an alkali for improving the dispersion stability and the coating property.
  • a dispersing agent such as a surfactant, a thickener, a wetting agent, an antifoamer, and various additives such as a PH adjusting agent containing an acid and an alkali for improving the dispersion stability and the coating property.
  • additives are preferably those which can be removed at the time of solvent removal, but are electrochemically stable in the use range of the lithium ion secondary battery, porous if they do not inhibit the battery reaction and are stable up to about 200 ° C. It may remain in the layer.
  • the method of dispersing the inorganic filler and the resin binder in the solvent of the coating solution is not particularly limited as long as it can realize the dispersion characteristics of the coating solution necessary for the coating process.
  • a ball mill, a bead mill, a planetary ball mill, a vibrating ball mill, a sand mill, a colloid mill, an attritor, a roll mill, a high speed impeller dispersion, a disperser, a homogenizer, a high speed impact mill, ultrasonic dispersion, mechanical agitation by stirring blades etc. may be mentioned.
  • the method for applying the coating solution to the porous film is not particularly limited as long as the required layer thickness and application area can be realized, and for example, a gravure coater method, a small diameter gravure coater method, a reverse roll coater method, a transfer roll Coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod coater method, squeeze coater method, cast coater method, die coater method, screen printing method, spray coating method, etc. may be mentioned. .
  • a surface treatment to the surface of the porous membrane, since it becomes easy to apply the coating solution and the adhesion between the inorganic filler-containing porous layer after coating and the porous membrane surface is improved.
  • the method for surface treatment is not particularly limited as long as it does not significantly impair the porous structure of the porous membrane, and examples thereof include corona discharge treatment, mechanical surface roughening, solvent treatment, acid treatment, and ultraviolet oxidation. Etc.
  • the method for removing the solvent from the coating film after coating is not particularly limited as long as it does not adversely affect the porous film, for example, a method of drying at a temperature below the melting point while fixing the porous film, low temperature A method of drying under reduced pressure and the like can be mentioned. From the viewpoint of controlling the shrinkage stress in the MD direction of the porous film and the multilayer porous film, it is preferable to appropriately adjust the drying temperature, the winding tension and the like.
  • the porous membrane in the second embodiment is A porous membrane mainly composed of a polyolefin resin,
  • the same ones as those described in the above-mentioned present embodiment 1 can be used.
  • the contraction stress at 85 ° C. is adjusted to 2.2 gf or less.
  • a drying step is often performed before the electrolyte is poured into the battery.
  • the heat treatment is accompanied in many cases, when the porous layer made of the inorganic filler and the resinous binder is formed, the heat shrinkage suppressing effect is large, and therefore the shrinkage of the separator is reduced.
  • the polyolefin resin flows in a complicated manner and the porous structure is changed in the process of returning to the normal temperature after the porous film is heated once in the drying step.
  • the present inventors have found that a polyolefin porous film in which the shrinkage stress at a specific temperature is adjusted to a specific range or less can achieve both high output characteristics and uniformity.
  • the inventors have also found that by laminating a porous layer composed of an inorganic filler and a resin binder on the above-mentioned porous film, it is possible to achieve both higher output characteristics and uniformity.
  • the shrinkage stress at 85 ° C. of the porous film is preferably 2 gf or less, more preferably 1.8 gf or less.
  • the shrinkage stress can be measured by the method (TMA) described in the following examples.
  • the contraction stress is a contraction stress in both MD (machine direction) and TD (direction crossing the machine direction at an angle of 90 °), and both of MD and TD are adjusted to 2.2 gf or less.
  • Thermal relaxation is effective as a method of adjusting the shrinkage stress of the porous film to 2.2 gf or less.
  • a high porosity porous film having a porosity of 51% or more is produced. It is preferable to carry out thermal relaxation at a relaxation rate of less than 1.0.
  • the control of the shrinkage stress by thermal relaxation can be performed by adjusting the relaxation rate, heat treatment temperature, strength, polyolefin resin composition, and the like.
  • the porosity of the porous membrane is preferably 50 to 80%, more preferably 52 to 75%, and still more preferably 55 to 70%.
  • the porosity of the porous film can be controlled by controlling the mixing ratio of the polyolefin resin and the plasticizer, the stretching temperature, the stretching ratio, the heat setting temperature, the draw ratio at the heat setting, and the relaxation rate at the heat setting. It can be adjusted by combining.
  • the description of the physical properties and the manufacturing method of the porous membrane in the second embodiment other than the above is the same as the description in the first embodiment. Further, the description of the porous layer containing the inorganic filler and the resin binder is also the same as the description in the first embodiment.
  • the multilayer porous film in the present embodiment is a multilayer porous film in which a porous layer (B) containing an inorganic filler and a resin binder is laminated on at least one surface of a porous film (A) mainly composed of a polyolefin resin ,
  • the porosity of the porous film (A) is 50% or more and 90% or less, and the number of holes is 100 / ⁇ m 2 or more and 500 / ⁇ m 2 or less
  • the resin binder in the porous layer (B) is a resin latex binder having an average particle diameter of 50 nm or more and 500 nm or less.
  • the porosity is adjusted to 50% or more and 90% or less.
  • the porosity is 50% or more, since the ion permeability is excellent, the output characteristic is excellent when the multilayer porous film is used as a separator for a non-aqueous electrolyte battery.
  • the porosity is 90% or less, when the multilayer porous film is used as a separator for a non-aqueous electrolyte battery, the risk of self-discharge is reduced and the reliability is improved.
  • the porosity of the porous membrane (A) is preferably 50% to 80%, more preferably 52% to 75%, and still more preferably 55% to 70%.
  • the porosity is controlled by controlling the mixing ratio of the polyolefin resin and the plasticizer, the draw ratio of the extruded sheet, the drawing temperature, the drawing ratio, the heat setting temperature, the drawing ratio at the heat setting, the relaxation rate at the heat setting, It is possible to adjust by combining.
  • the number of pores per unit area of the porous membrane (A) is adjusted to 100 / ⁇ m 2 or more and 500 / ⁇ m 2 or less.
  • a porous layer (B) containing an inorganic filler and a binder is formed on the surface of the porous film (A) with the number of pores being 100 / ⁇ m 2 or more and 500 / ⁇ m 2 or less, the inorganic filler or binder
  • the output characteristic is improved because the permeability decrease due to the permeation of the oil, clogging and the like is small.
  • the shutdown property in the case where the temperature rise speed by abnormal heat generation is extremely fast is good, the safety is excellent.
  • the lower limit of the number of pores of the porous membrane (A) is preferably 120 / ⁇ m 2 or more, more preferably 130 / ⁇ m 2 or more, and the upper limit is preferably 460 / ⁇ m 2 or less, more preferably 400 / ⁇ m 2 or less.
  • the number of holes is the mixing ratio of the polyolefin resin and the plasticizer, the cooling speed of the extruded sheet, the rolling degree of the extruded sheet, the stretching temperature, the stretching ratio, the heat setting temperature, the heat setting ratio, the relaxation rate at heat setting, etc. It is possible to control and to adjust by combining these. In particular, the number of holes is largely influenced by the stretching temperature, the stretching ratio, and the heat setting temperature.
  • the thickness of the porous film (A) is preferably in the range of 2 ⁇ m to 40 ⁇ m, more preferably in the range of 5 ⁇ m to 35 ⁇ m, and still more preferably in the range of 5 ⁇ m to 35 ⁇ m.
  • the film thickness is 2 ⁇ m or more, the mechanical strength tends to be sufficient, and when the film thickness is 40 ⁇ m or less, the occupied volume of the separator is reduced, which tends to be advantageous in increasing the capacity of the battery.
  • the air permeability of the porous membrane (A) is preferably in the range of 10 seconds to 500 seconds, more preferably 20 seconds to 400 seconds.
  • the air permeability is 10 seconds or more, the self-discharge tends to decrease when the multilayer porous film is used as a battery separator, and when 500 seconds or less, good charge / discharge characteristics tend to be obtained.
  • the pore diameter of the porous membrane (A) is preferably 0.01 to 3 ⁇ m, more preferably 0.02 to 1 ⁇ m, and still more preferably 0.035 ⁇ m to 0.060 ⁇ m.
  • the porous layer (B) containing the inorganic filler and the binder is formed on the surface of the porous film (A) with the pore diameter of 0.01 ⁇ m or more, the permeability is reduced due to the penetration of the inorganic filler and the binder, clogging, etc.
  • the output characteristics tend to be good because the When the pore size is 5 ⁇ m or less, the self-discharge tends to be reduced when the multilayer porous membrane is used as a battery separator.
  • the pore diameter controls the mixing ratio of the polyolefin resin and the plasticizer, the cooling rate of the extruded sheet, the stretching temperature, the stretching ratio, the heat setting temperature, the stretching ratio at heat setting, the relaxation rate at heat setting, etc. It is possible to adjust by combining.
  • the pore diameter is largely influenced by the mixing ratio of the polyolefin resin and the plasticizer, the stretching temperature, the stretching ratio, and the heat setting temperature.
  • porous layer (B) containing an inorganic filler and a resin binder will be described.
  • the inorganic filler and the resinous binder contained in the porous layer (B) in the third embodiment the same ones as those described in the first embodiment can be used.
  • a resin-made latex binder is used as the resinous binder.
  • “resin latex” indicates a resin in a state of being dispersed in a medium.
  • a resin-made latex binder has a porous layer (B) containing an inorganic filler and a binder laminated on at least one surface of a polyolefin porous film, the ion permeability is unlikely to be reduced and high output characteristics are easily obtained.
  • the temperature rise during abnormal heat generation is fast, smooth shutdown characteristics are exhibited, and high safety can be easily obtained.
  • the average particle diameter of the resin-made latex binder in the third embodiment is adjusted to 50 to 500 nm.
  • the resin-made latex binder average particle size is preferably 60 to 460 nm, more preferably 80 to 220 nm.
  • the average particle diameter is 50 nm or more, when the porous layer (B) containing the inorganic filler and the binder is laminated on at least one surface of the polyolefin porous film, the ion permeability is not easily reduced and high output characteristics are easily obtained. In addition, even when the temperature rise during abnormal heat generation is fast, smooth shutdown characteristics are exhibited, and high safety can be easily obtained.
  • the average particle size is 500 nm or less, good binding properties will be exhibited, and in the case of using a multilayer porous film, the thermal shrinkage tends to be good and the safety tends to be excellent.
  • the average particle size of the resin latex binder can be controlled by adjusting the polymerization time, polymerization temperature, raw material composition ratio, raw material feeding order, pH and the like.
  • the layer thickness of the porous layer (B) is preferably 1 ⁇ m or more from the viewpoint of improving the heat resistance and the insulating property, and preferably 50 ⁇ m or less from the viewpoint of improving the capacity and permeability of the battery.
  • the layer thickness of the porous layer is more preferably 1.5 ⁇ m to 20 ⁇ m, still more preferably 2 ⁇ m to 10 ⁇ m, still more preferably 3 ⁇ m to 10 ⁇ m, particularly preferably 3 ⁇ m to 7 ⁇ m.
  • the description of the method for forming the porous layer (B) is the same as the description in the first embodiment.
  • the porous film or multilayer porous film in the present embodiment is excellent in heat resistance and has a shutdown function, and thus is suitable as a battery separator that isolates the positive electrode and the negative electrode in the battery.
  • the porous film or the multilayer porous film in the present embodiment can be used safely as a separator for high electromotive force batteries because it is difficult to short circuit even at high temperature.
  • a non-aqueous electrolyte battery As a high electromotive force battery, a non-aqueous electrolyte battery is mentioned, for example.
  • the non-aqueous electrolyte battery can be manufactured by a usual method, and for example, is manufactured by disposing the porous film or multilayer porous film of the present embodiment between the positive electrode and the negative electrode and holding the non-aqueous electrolyte. be able to.
  • the positive electrode, the negative electrode, and the non-aqueous electrolyte are not particularly limited, and known ones can be used.
  • lithium-containing composite oxides such as olivine-type LiFePO 4 and the like
  • negative electrode materials include graphitic, non-graphitizable carbonaceous matter, graphitizable carbonaceous matter, and composites Carbon materials such as carbon body; silicon, tin, lithium metal, various alloy materials, etc. may be mentioned.
  • non-aqueous electrolytic solution an electrolytic solution in which an electrolyte is dissolved in an organic solvent
  • organic solvent for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate etc.
  • the electrolyte include lithium salts such as LiClO 4 , LiBF 4 and LiPF 6 .
  • the air permeability of the porous membrane or multilayer porous membrane is preferably 10 seconds / 100 cc or more and 500 seconds / 100 cc or less, more preferably 20 seconds / 100 cc. It is 400 seconds / 100 cc or less, more preferably 30 seconds / 100 cc or more and 300 seconds / 100 cc or less.
  • the air permeability is 10 seconds / 100 cc or more, the self-discharge tends to decrease when used as a battery separator, and when 500 seconds / 100 cc or less, good charge / discharge characteristics tend to be obtained.
  • the thickness of the porous film or the multilayer porous film is preferably 2 ⁇ m to 200 ⁇ m, more preferably 5 ⁇ m to 100 ⁇ m, and still more preferably 7 ⁇ m to 30 ⁇ m.
  • the film thickness is 2 ⁇ m or more, the mechanical strength tends to be sufficient, and when the film thickness is 200 ⁇ m or less, the occupied volume of the separator is reduced, which tends to be advantageous in increasing the capacity of the battery.
  • the thermal shrinkage at 150 ° C. of the porous membrane or multilayer porous membrane is preferably 0% to 15% both in the MD direction and the TD direction, more preferably 0% to 10%, and still more preferably 0%. 5% or less. It is preferable that the thermal contraction rate is 15% or less in both the MD direction and the TD direction, since the film breakage of the multilayer porous film at the time of abnormal heat generation of the battery is suppressed and short circuit hardly occurs.
  • the shutdown temperature of the porous membrane or multilayer porous membrane is preferably 120 ° C. or more and 160 ° C. or less, and more preferably 120 ° C. or more and 150 ° C. or less. It is preferable that the shutdown temperature is 160 ° C. or less because current interruption is promptly promoted even when the battery generates heat, etc., and better safety performance is obtained. On the other hand, when the shutdown temperature is 120 ° C. or higher, the battery can be used at around 100 ° C., which is preferable.
  • the shutdown temperature may be adjusted by controlling the type and composition ratio of the polyolefin resin, the stretching temperature, the stretching ratio, the heat setting temperature, the stretching ratio during heat setting, and the relaxation rate during heat setting, or by combining these. it can.
  • the short temperature of the porous membrane or multilayer porous membrane is preferably 180 ° C. or more and 1000 ° C. or less, more preferably 200 ° C. or more and 1000 ° C. or less. If the short circuit temperature is 180 ° C. or more, even if abnormal heat generation occurs in the battery, the short circuit does not occur immediately, so that heat can be dissipated therebetween, and better safety performance can be obtained.
  • the shorting temperature can be controlled to a desired value by adjusting the content of polypropylene, the type of polyolefin other than polypropylene, the type of inorganic filler, the thickness of the inorganic filler-containing porous layer, and the like.
  • the present embodiment will be more specifically described by way of examples and comparative examples, but the present embodiment is not limited to the following examples as long as the gist thereof is not exceeded.
  • the following first to eleventh examples correspond to the first example of the first embodiment. Physical properties in the examples were measured by the following methods. In addition, what the measurement atmosphere in particular was not specified was measured in 23 degreeC and the atmosphere of 1 atmosphere.
  • R gas was determined from the air permeability (sec) using the following equation.
  • R gas 0.0001 / (air permeability ⁇ (6.424 ⁇ 10 ⁇ 4 ) ⁇ (0.01276 ⁇ 101325))
  • R liq was calculated
  • R liq permeability / 100
  • the water permeability was determined as follows.
  • a porous membrane previously immersed in ethanol was set in a stainless steel liquid-permeable cell with a diameter of 41 mm, and after the ethanol of the membrane was washed with water, water was allowed to permeate at a differential pressure of about 50000 Pa, and 120 seconds elapsed.
  • the water permeation amount per unit time, unit pressure, and unit area was calculated from the water permeation amount (cm 3 ) at that time, and this was taken as the water permeability.
  • the resultant was vacuum-sealed in an aluminum laminate pack so that the tab came out of the aluminum pack.
  • Such cells were produced in an aluminum foil so that one, two and three porous films were formed.
  • the cell was placed in a thermostat at 20 ° C., and the resistance of the cell was measured at an amplitude of 10 mV and a frequency of 100 kHz by an AC impedance method.
  • the measured cell resistance was plotted against the number of porous membranes, and this plot was linearly approximated to determine the slope.
  • the membrane resistance R ( ⁇ ⁇ cm 2 ) per porous film was determined by multiplying this inclination by 2.0 cm ⁇ 1.4 cm which is the electrode area.
  • (11) Average Particle Size of Binder Made of Resin The volume average particle size (nm) was measured using a particle size measurement apparatus (MICROTRACTMUPA 150 manufactured by LEED & NORTHRUP) by a light scattering method to obtain an average particle size.
  • MICROTRACTMUPA 150 manufactured by LEED & NORTHRUP
  • This slurry was applied on one side of a copper foil with a thickness of 12 ⁇ m, which was to be a negative electrode current collector, using a die coater such that the negative electrode active material application amount was 106 g / m 2 .
  • compression molding was performed using a roll press so that the bulk density of the negative electrode active material was 1.35 g / cm 3, and this was used as a negative electrode.
  • This laminate is set on a hot plate, heated at a rate of 15 ° C./min while applying a pressure of 4.1 MPa with a hydraulic press, and the impedance change between positive and negative electrodes is 1 V AC, 1 kHz condition It measured below to 200 degreeC.
  • the temperature at which the impedance reached 1000 ⁇ was taken as the shutdown temperature, and after shutdown, the temperature at which the impedance fell below 1000 ⁇ was taken as the short-circuit temperature.
  • This slurry was applied to one side of a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector using a die coater such that the amount of the positive electrode active material applied was 120 g / m 2 .
  • compression molding was performed using a roll press so that the bulk density of the positive electrode active material was 2.90 g / cm 3 , to obtain a positive electrode. This was punched into a circle with an area of 2.00 cm 2 . b.
  • Negative Electrode 96.6 parts by mass of artificial graphite as a negative electrode active material, 1.4 parts by mass of ammonium salt of carboxymethylcellulose as a resin binder, and 1.7 parts by mass of styrene-butadiene copolymer latex are prepared, and these are purified
  • the slurry was prepared by dispersing in water. This slurry was applied to one side of a copper foil having a thickness of 16 ⁇ m, which was to be a negative electrode current collector, using a die coater such that the amount of negative electrode active material applied was 53 g / m 2 . After drying at 120 ° C.
  • Battery Assembly The negative electrode, the multilayer porous film, and the positive electrode were stacked in this order from the bottom so that the active material surfaces of the positive electrode and the negative electrode faced each other.
  • the laminated body was housed in a lidded stainless metal container in which the container body and the lid are insulated, with the copper foil of the negative electrode and the aluminum foil of the positive electrode in contact with the container body and the lid, respectively.
  • the non-aqueous electrolyte was injected into the container and sealed.
  • Evaluation of rate characteristics d.
  • the simple battery assembled in the above is charged at 25 ° C with a current value of 3 mA (about 0.5 C) to a battery voltage of 4.2 V, and it is started to squeeze the current value from 3 mA while maintaining 4.2 V.
  • the battery was initially charged for about 6 hours in total, and then discharged to a battery voltage of 3.0 V at a current value of 3 mA.
  • the battery After time charging, the battery was discharged to a battery voltage of 3.0 V at a current value of 12 mA (about 2 C), and the discharge capacity at that time was made 2 C discharge capacity (mAh). Next, charge the battery voltage to 4.2 V at a current value of 6 mA (about 1.0 C) at 25 ° C., and start squeezing the current value from 6 mA in a manner to maintain 4.2 V. After time charging, the battery was discharged to a battery voltage of 3.0 V at a current value of 60 mA (about 10 C), and the discharge capacity at that time was made a 10 C discharge capacity (mAh). The ratio of 2 C discharge capacity to 1 C discharge capacity was calculated, and this value was taken as the rate characteristic at 2 C.
  • Example 1 47.5 parts by mass of a 700,000 homopolymer of polyethylene, 47.5 parts by mass of a 250,000 homopolymer of Mv, and 5 parts by mass of a polypropylene, 400,000 homopolymer of Mv were dry-blended using a tumbler blender. One part by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added as an antioxidant to 99 parts by mass of the obtained polymer mixture, By dry blending using a tumbler blender, a mixture of polymers and the like was obtained.
  • the resulting mixture of polymers and the like was substituted with nitrogen and then fed to a twin-screw extruder by a feeder under a nitrogen atmosphere.
  • liquid paraffin kinetic viscosity 7.59 ⁇ 10 ⁇ 5 m 2 / s at 37.78 ° C.
  • the feeder and the pump were adjusted so that the amount ratio of liquid paraffin occupied in the entire mixture extruded by melt-kneading was 67 mass% (the resin composition concentration was 33 mass%).
  • Melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 100 rpm, and a discharge amount of 12 kg / h.
  • the melt-kneaded product was extruded and cast on a cooling roll controlled to have a surface temperature of 25 ° C. through a T-die to obtain a gel sheet with a thickness of 1600 ⁇ m.
  • a simultaneous biaxial tenter stretching machine was performed.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.1 times, and a set temperature of 121 ° C.
  • the film thickness is 17 ⁇ m
  • the porosity is 60%
  • the air permeability is 84 seconds / 100 cc
  • the average pore diameter d calculated by the gas-liquid method is 0.057 ⁇ m
  • the torus ratio ⁇ a 1.45
  • the number of holes B 165 / [mu] m 2
  • the puncture strength was obtained a polyolefin resin porous membrane of 567gf by 25 ⁇ m terms.
  • the coating liquid was prepared by uniformly dispersing in water, and the coating was applied to the surface of the above-mentioned polyolefin resin porous film using a gravure coater. It dried at 60 degreeC and removed water, and obtained the multilayer porous film which formed the 7-micrometer-thick porous layer on the polyolefin resin porous film.
  • a coating solution is prepared by uniformly dispersing 1.0 part by mass of an aqueous solution of ammonium polycarboxylate (SN Disperse 5468, manufactured by Sannopco) in 100 parts by mass of water, and using a microgravure coater on the surface of the polyolefin resin porous film Applied. It dried at 60 degreeC and removed water, and obtained the multilayer porous film which formed the 7-micrometer-thick porous layer on the polyolefin resin porous film.
  • SN Disperse 5468 ammonium polycarboxylate
  • Example 3 The thickness of the gel sheet obtained by casting the melt-kneaded product through a T-die is 1400 ⁇ m, the setting temperature of biaxial stretching in the simultaneous biaxial tenter drawing machine is 119 ° C., the heat setting temperature in the TD tenter is 128 ° C., TD The film thickness is 15 ⁇ m, the porosity is 60%, the air permeability is 90 seconds / 100 cc, and the air-liquid method is calculated in the same manner as in Example 1 except that the maximum magnification is 2.0 and the relaxation rate is 0.88.
  • a polyolefin resin porous film having an average pore diameter d of 0.056 ⁇ m, a tortuosity ⁇ a of 1.54, a number of holes B of 157 / ⁇ m 2 and a piercing strength of 600 gf in terms of 25 ⁇ m was obtained.
  • 95.0 parts by mass of a calcined kaolin (wet kaolin containing kaolinite (Al 2 Si 2 O 5 (OH) 4 ) as a main component at a high temperature, an average particle diameter of 1.8 ⁇ m) and an acrylic latex 5.0 parts by mass (solids concentration 40%, average particle diameter 145 nm, minimum film forming temperature 0 ° C.
  • a calcined kaolin (wet kaolin containing kaolinite (Al 2 Si 2 O 5 (OH) 4 ) as a main component at a high temperature, an average particle diameter of 1.1 ⁇ m) and an acrylic latex (Solid content 40%, average particle diameter 145 nm, minimum film forming temperature 0 ° C. or less)
  • a calcined kaolin (wet kaolin containing kaolinite (Al 2 Si 2 O 5 (OH) 4 ) as a main component at a high temperature, an average particle diameter of 1.1 ⁇ m) and an acrylic latex (Solid content 40%, average particle diameter 145 nm, minimum film forming temperature 0 ° C. or less)
  • a calcined kaolin wet kaolin containing kaolinite (Al 2 Si 2 O 5 (OH) 4 ) as a main component at a high temperature, an average particle diameter of 1.1 ⁇ m
  • an acrylic latex Solid content 40%, average particle diameter
  • the coating liquid was prepared by uniformly dispersing in water, and the coating was applied to the surface of the above-mentioned polyolefin resin porous film using a gravure coater. It dried at 60 degreeC and removed water, and obtained the multilayer porous film which formed the 7-micrometer-thick porous layer on the polyolefin resin porous film.
  • Example 6 The thickness of the gel sheet obtained by casting a melt-kneaded product with a liquid paraffin content ratio of 68% by mass (the resin composition concentration is 32% by mass) in the entire mixture extruded by melt-kneading through a T-die is 1050 ⁇ m
  • the film thickness is 12 ⁇ m and the porosity is 65 in the same manner as in Example 1 except that the setting temperature of biaxial stretching in the simultaneous biaxial tenter stretching machine is 120 ° C. and the heat setting temperature in the TD tenter is 119 ° C.
  • the coating liquid was prepared by uniformly dispersing in a mass part of water, and was applied to the surface of the polyolefin resin porous film using a microgravure coater. It was dried at 60 ° C. to remove water, to obtain a multilayer porous film in which a porous layer having a thickness of 6 ⁇ m was formed on the polyolefin resin porous film.
  • Example 7 95 parts by mass of polyethylene of Mv 250,000 and 5 parts by mass of homopolymer polypropylene of Mv 400,000 were dry-blended using a tumbler blender. One part by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added as an antioxidant to 99 parts by mass of the obtained polymer mixture, By dry blending using a tumbler blender, a mixture of polymers and the like was obtained. The resulting mixture of polymers and the like was substituted with nitrogen and then fed to a twin-screw extruder by a feeder under a nitrogen atmosphere.
  • liquid paraffin kinetic viscosity 7.59 ⁇ 10 ⁇ 5 m 2 / s at 37.78 ° C.
  • the feeder and the pump were adjusted so that the amount ratio of liquid paraffin occupied in the entire mixture extruded by melt-kneading was 62% by mass (the resin composition concentration was 38% by mass).
  • Melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 100 rpm, and a discharge amount of 12 kg / h. Subsequently, the melt-kneaded product was extruded and cast on a cooling roll controlled to have a surface temperature of 25 ° C.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 5.0 times, and a set temperature of 123 ° C.
  • it was introduced into a methyl ethyl ketone tank and thoroughly immersed in methyl ethyl ketone to extract and remove liquid paraffin, and then the methyl ethyl ketone was dried and removed.
  • the heat setting temperature was 125 ° C.
  • the maximum TD magnification was 3.5 times
  • the relaxation rate was 0.94.
  • the film thickness is 11 ⁇ m
  • the porosity is 67%
  • the air permeability is 40 seconds / 100 cc
  • the average pore diameter d calculated by the gas-liquid method is 0.056 ⁇ m
  • the torus ratio ⁇ a is 1.25
  • the number of holes B is 223 [mu] m 2
  • the puncture strength was obtained a polyolefin resin porous membrane of 658gf by 25 ⁇ m terms.
  • 96.0 parts by mass of aluminum hydroxide oxide average particle diameter: 1.0 ⁇ m
  • 4.0 parts by mass of acrylic latex solid concentration: 40%
  • average particle diameter 140 nm
  • a coating solution is prepared by uniformly dispersing 0.5 parts by mass of ammonium polycarboxylate aqueous solution (SN Disperse 5468, manufactured by Sannopco) in 180 parts by mass of water, and using a gravure coater on the surface of the above-mentioned polyolefin resin porous film It applied. It was dried at 60 ° C. to remove water, to obtain a multilayer porous film in which a porous layer having a thickness of 5 ⁇ m was formed on the porous polyolefin resin film.
  • SN Disperse 5468 manufactured by Sannopco
  • Example 8 96.0 parts by mass of aluminum hydroxide oxide (average particle size 1.0 ⁇ m) and 4.0 parts by mass of acrylic latex (solids concentration 40%, average particle size 140 nm, minimum film forming temperature 0 ° C. or less), polycarboxylic acid
  • a coating solution is prepared by uniformly dispersing 0.5 parts by mass of an aqueous ammonium solution (SN Disperse 5468, manufactured by Sannopco) in 180 parts by mass of water, and a microgravure coater on one side of the polyolefin resin porous film obtained in Example 6. Using a microgravure coater on the other side, and then drying at 60 ° C. to remove water, and then apply it on the polyolefin resin porous membrane. A multilayer porous film having a porous layer with a thickness of 6 ⁇ m formed on both sides was obtained.
  • Example 9 Immediately after the heat setting device, a microgravure coater and a dryer are arranged in series, and the heat-set porous polyolefin resin film is directly taken up to the microgravure coater without being taken up once, and the coating liquid is applied to the surface of the polyolefin porous film.
  • a multilayer porous membrane was obtained by the same method as in Example 1 except that the above was applied and dried.
  • Example 10 28.5 parts by mass of copolyethylene of 150,000 Mv (comonomer: propylene, propylene monomer unit content 0.6 mol%, density 0.95), 28.5 parts by mass of homo high density polyethylene of 300,000 Mv, 700,000 14.2 parts of homo-high density polyethylene, 23.8 parts by mass of homo-high molecular weight polyethylene of Mv 2,000,000, and 5 parts by mass of homopolymer polypropylene were dry-blended using a tumbler blender.
  • pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added as an antioxidant to 99 parts by mass of the obtained polymer mixture.
  • a tumbler blender By dry blending using a tumbler blender, a mixture of polymers and the like was obtained.
  • the resulting mixture of polymers and the like was substituted with nitrogen and then fed to a twin-screw extruder by a feeder under a nitrogen atmosphere.
  • liquid paraffin (kinetic viscosity 7.59 ⁇ 10 ⁇ 5 m 2 / s at 37.78 ° C.) was injected into the extruder cylinder by a plunger pump.
  • melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 100 rpm, and a discharge amount of 12 kg / h. Subsequently, the melt-kneaded product was extruded and cast on a cooling roll controlled to have a surface temperature of 25 ° C. through a T-die to obtain a gel sheet with a thickness of 1600 ⁇ m. Next, it was introduced into a simultaneous biaxial tenter stretching machine and biaxial stretching was performed.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.1 times, and a set temperature of 123 ° C. Next, it was introduced into a methyl ethyl ketone tank and thoroughly immersed in methyl ethyl ketone to extract and remove liquid paraffin, and then the methyl ethyl ketone was dried and removed. Next, it was guided to a TD tenter and heat set. The heat setting temperature was 117 ° C., the maximum TD magnification was 2.0, and the relaxation rate was 0.90.
  • the film thickness is 18 ⁇ m
  • the porosity is 57%
  • the air permeability is 116 seconds / 100 cc
  • the average pore diameter d calculated by the gas-liquid method is 0.057 ⁇ m
  • the torus ratio ⁇ a 1.61
  • the number of holes B 138 / [mu] m 2
  • the puncture strength was obtained a polyolefin resin porous membrane of 506gf by 25 ⁇ m terms.
  • the same porous layer as in Example 1 was formed on the surface of the polyolefin resin porous membrane to obtain a multilayer porous membrane.
  • Example 11 96.0 parts by mass of aluminum hydroxide oxide (average particle size 1.0 ⁇ m) and 4.0 parts by mass of acrylic latex (solids concentration 40%, average particle size 140 nm, minimum film forming temperature 0 ° C. or less), polycarboxylic acid A coating solution is prepared by uniformly dispersing 0.5 parts by mass of an aqueous ammonium solution (SN Disperse 5468, manufactured by Sannopco) in 180 parts by mass of water, and a gravure coater is coated on the surface of the polyolefin resin porous film obtained in Example 10. It applied using. It was dried at 60 ° C. to remove water, to obtain a multilayer porous film in which a porous layer having a thickness of 6 ⁇ m was formed on the polyolefin resin porous film.
  • SN Disperse 5468 manufactured by Sannopco
  • Comparative Example 1 High-density polyethylene (weight average molecular weight 250,000, molecular weight distribution 7, density 0.956) 40.5 parts by mass, linear copolymerized polyethylene (melt index 0.017, density 0.930, propylene content 1.6 mol% ) 4.5 parts by mass, 55 parts by mass of liquid paraffin and 0.3 parts by mass of tetrakis- [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) based on the polyethylene]
  • the polymer solution was prepared by kneading propionate] methane using a twin-screw extruder.
  • the obtained polymer solution was cast onto a cooling roll from a hanger coat die of 1.8 mm between the lips to obtain a 1.8 mm thick sheet.
  • the obtained sheet was drawn before extraction by 7 ⁇ 4 times at a drawing temperature of 120 ° C. using a simultaneous biaxial tenter drawing machine, and then immersed in methylene chloride to extract and remove liquid paraffin. Furthermore, using a tenter drawing machine, after drawing 2.8 times in the width direction at a drawing temperature of 110 ° C. and stretching, heat treatment was performed while relaxing the drawing in the width direction by 35%.
  • the film thickness is 26 ⁇ m
  • the porosity is 65%
  • the air permeability is 75 seconds / 100 cc
  • the average pore diameter d calculated by the gas-liquid method is 0.060 ⁇ m
  • the torus ratio ⁇ a is 1.18
  • the number of holes B is 195 / [mu] m 2
  • the puncture strength was obtained a polyolefin resin porous membrane of 339gf by 25 ⁇ m terms.
  • the same porous layer as in Example 2 was formed on the surface of the polyolefin resin porous membrane to obtain a multilayer porous membrane.
  • Comparative Example 2 High-density polyethylene (weight average molecular weight 250,000, molecular weight distribution 7, density 0.956) 28 parts by mass, linear copolymer polyethylene (melt index 0.017, density 0.930, propylene content 1.6 mol%) 12 Parts by weight, 60 parts by weight of liquid paraffin and 0.3 parts by weight of tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane with respect to the polyethylene Before the extraction, 7 ⁇ 7 times before extraction and 1.87 times after extraction, the film thickness is 30 ⁇ m, the porosity is 57%, and the transparency is the same as in Comparative Example 1 except that the relaxation rate is 10%.
  • Comparative Example 3 47.5 parts by mass of a 700,000 homopolymer of polyethylene, 47.5 parts by mass of a 250,000 homopolymer of Mv, and 5 parts by mass of a polypropylene, 400,000 homopolymer of Mv were dry-blended using a tumbler blender. One part by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added as an antioxidant to 99 parts by mass of the obtained polymer mixture, By dry blending using a tumbler blender, a mixture of polymers and the like was obtained.
  • the resulting mixture of polymers and the like was substituted with nitrogen and then fed to a twin-screw extruder by a feeder under a nitrogen atmosphere.
  • liquid paraffin kinetic viscosity 7.59 ⁇ 10 ⁇ 5 m 2 / s at 37.78 ° C.
  • the feeder and the pump were adjusted so that the amount ratio of liquid paraffin occupied in the entire mixture extruded by melt-kneading was 65% by mass.
  • Melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge amount of 12 kg / h.
  • the melt-kneaded product was extruded and cast on a cooling roll controlled to have a surface temperature of 25 ° C. through a T-die to obtain a sheet-like polyolefin composition having a thickness of 1300 ⁇ m.
  • it was introduced into a simultaneous biaxial tenter stretching machine, and simultaneous biaxial stretching was performed 7 times in the MD direction and 6.4 times in the TD direction.
  • the set temperature of the simultaneous biaxial tenter was 118 ° C.
  • it was introduced into a methyl ethyl ketone tank to extract and remove liquid paraffin, and then the methyl ethyl ketone was dried and removed. Next, it was guided to a TD tenter and heat set.
  • the heat setting temperature was 122 ° C.
  • the TD maximum magnification was 1.4 times
  • the relaxation rate was 0.85.
  • the film thickness is 16 ⁇ m
  • the porosity is 47%
  • the air permeability is 163 seconds / 100 cc
  • the average pore diameter d calculated by the gas-liquid method is 0.058 ⁇ m
  • the torus ratio ⁇ a 1.86
  • the number of holes B 91. [mu] m 2
  • the puncture strength was obtained a polyolefin resin porous membrane of 525gf by 25 ⁇ m terms.
  • Comparative Example 4 Forty-seven parts by weight of a 700,000 homopolymer of polyethylene, 46 parts by weight of a 250,000 homopolymer of Mv, and 7 parts by weight of a polypropylene, 400 homopolymer of Mv, were dry-blended using a tumbler blender. To 99 parts by mass of the obtained polymer mixture, 1 part by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] is added as an antioxidant, and the mixture is tumbled again. A blend of polymers and the like was obtained by dry blending using a blender.
  • the resulting mixture of polymers and the like was substituted with nitrogen and then fed to a twin-screw extruder by a feeder under a nitrogen atmosphere.
  • liquid paraffin kinetic viscosity 7.59 ⁇ 10 ⁇ 5 m 2 / s at 37.78 ° C.
  • the feeder and the pump were adjusted so that the amount ratio of liquid paraffin occupied in the entire mixture extruded by melt-kneading was 65% by mass.
  • Melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge amount of 12 kg / h.
  • the melt-kneaded product was extruded and cast on a cooling roll controlled to a surface temperature of 25 ° C. through a T-die to obtain a sheet-like polyolefin composition having a thickness of 2000 ⁇ m.
  • a simultaneous biaxial tenter stretching machine and simultaneous biaxial stretching was performed 7 times in the MD direction and 7 times in the TD direction.
  • the set temperature of the simultaneous biaxial tenter was 125 ° C.
  • it was guided to a TD tenter and heat set.
  • the heat setting temperature was 133 ° C.
  • the maximum TD magnification was 1.9 times
  • the relaxation rate was 0.84.
  • the film thickness is 16 ⁇ m
  • the porosity is 41%
  • the air permeability is 157 seconds / 100 cc
  • the average pore diameter d 0.085 ⁇ m calculated by the gas-liquid method
  • the torality ratio ⁇ a 2.10
  • the number of holes B 36 / [mu] m 2
  • the puncture strength was obtained a polyolefin resin porous membrane of 572gf by 25 ⁇ m terms.
  • the coating liquid was prepared by uniformly dispersing in water, and the coating was applied to the surface of the above-mentioned polyolefin resin porous film using a gravure coater. It was dried at 60 ° C. to remove water, to obtain a multilayer porous film in which a porous layer having a thickness of 6 ⁇ m was formed on the polyolefin resin porous film.
  • Comparative Example 5 The film thickness is 20 ⁇ m, the porosity is 41%, and the transparency is the same as in Comparative Example 4 except that the heat setting temperature in the TD tenter is 125 ° C., the maximum TD magnification is 1.6 times, and the relaxation rate is 0.80.
  • a porous membrane was obtained.
  • the same porous layer as in Comparative Example 3 was formed on the surface of the above-mentioned polyolefin resin porous membrane to obtain a multilayer porous membrane.
  • Comparative Example 6 A porous film was obtained in the same manner as in Example 1 except that the porous layer was not formed. Comparative Example 7 A porous film was obtained in the same manner as in Example 2 except that the porous layer was not formed. Comparative Example 8 A porous film was obtained in the same manner as in Example 3 except that the porous layer was not formed. Comparative Example 9 A porous film was obtained in the same manner as in Example 4 except that the porous layer was not formed. Comparative Example 10 A porous film was obtained in the same manner as in Example 5 except that the porous layer was not formed. Comparative Example 11 A porous film was obtained in the same manner as in Example 6 except that the porous layer was not formed.
  • Comparative Example 12 A porous film was obtained in the same manner as in Example 7 except that the porous layer was not formed.
  • Comparative Example 13 A porous film was obtained in the same manner as in Comparative Example 1 except that the porous layer was not formed.
  • Comparative Example 14 A porous film was obtained in the same manner as in Comparative Example 2 except that the porous layer was not formed.
  • Comparative Example 15 A porous film was obtained in the same manner as in Comparative Example 3 except that the porous layer was not formed.
  • Comparative Example 17 A porous film was obtained in the same manner as in Comparative Example 5 except that the porous layer was not formed.
  • Comparative Example 18 A porous film was obtained in the same manner as in Example 10 except that the porous layer was not formed.
  • Comparative Examples 6 to 12, 18 When compared with the membrane resistance and rate characteristics of the porous films of Comparative Examples 13 to 14, ⁇ a > 1.8, and B ⁇ 100 in which the film thickness is more than 22 ⁇ m, Comparative Examples 6 to 12, 18 It can be seen that the ion conductivity of the porous membrane of the present invention is very excellent. Furthermore, in the porous films of Comparative Examples 6 to 12 and 18, the withstand voltage shows a high value of 0.9 kV or more, and the ion conductivity is improved by forming a fine communicating hole by collecting a large number of very small holes. It is considered that a pore structure is realized which is excellent but in which air discharge in the film thickness direction is less likely to occur.
  • the curved path ratio ⁇ b of each of the porous films of Comparative Examples 6 to 14 and 18 was less than 1.2.
  • the heat shrinkage rate is significantly over 30% in the TD direction, and the short circuit temperature is also about 154 ° C., indicating that the heat resistance characteristics are insufficient.
  • Examples 1 to 11 are multilayer porous films in which a porous layer comprising an inorganic filler and a resin binder is formed on the porous films of Comparative Examples 6 to 12 and 18.
  • a porous layer comprising an inorganic filler and a resin binder is formed on the porous films of Comparative Examples 6 to 12 and 18.
  • Comparative Examples 1 and 2 are multilayer porous films in which a porous layer composed of an inorganic filler and a resin binder is formed on the porous films of Comparative Examples 13 to 14. Although the heat resistance property is improved by forming the porous layer, each shows a large value of 10% or more. Also, the short circuit temperature has been improved, but it has remained at around 165 ° C. Furthermore, it is understood that the rate characteristic at 10 C discharge is 50% or less, and is reduced by 10% or more as compared with the multilayer porous films of Examples 1 to 7.
  • Comparative Examples 3 to 5 are multilayer porous films in which a porous layer composed of an inorganic filler and a resin binder is formed on the porous films of Comparative Examples 15 to 17. By forming the porous layer, the heat resistance property is significantly improved. Although the rate characteristics at 2 C are about 95% and show excellent values equivalent to those of Examples 1 to 11, the rate characteristics at 10 C discharge are not more than 50%, and the multilayer porous films of Examples 1 to 11 and It has fallen by more than 10% in comparison. It can be seen that the rate reduction rate at 10 C is 10% or more in all cases, and the output reduction at high output is large.
  • the following Examples 12 to 15 correspond to the examples of Embodiment 2. Physical properties in the examples were measured by the following methods, and other physical properties were measured by the same methods as in the above examples.
  • Shrinkage stress at 85 ° C. was measured using TMA 50 (trademark) manufactured by Shimadzu Corporation.
  • TMA 50 trademark
  • the sample cut to a width of 3 mm in the TD (MD) direction is fixed to the chuck so that the distance between chucks is 10 mm, and after setting in a dedicated probe, initial load
  • the sample was heated from 30 ° C. to 200 ° C. at a temperature rising rate of 10 ° C./min, and the load (gf) generated at that time was measured.
  • the load (gf) at 85 ° C. was read, and the value was taken as the shrinkage stress at 85 ° C.
  • This slurry was applied to one side of a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector using a die coater such that the amount of the positive electrode active material applied was 120 g / m 2 .
  • compression molding was performed using a roll press so that the bulk density of the positive electrode active material was 2.90 g / cm 3 , to obtain a positive electrode. This was punched into a circle with an area of 2.00 cm 2 . b.
  • Negative Electrode 96.6 parts by mass of artificial graphite as a negative electrode active material, 1.4 parts by mass of ammonium salt of carboxymethylcellulose as a resin binder, and 1.7 parts by mass of styrene-butadiene copolymer latex are prepared, and these are purified
  • the slurry was prepared by dispersing in water. This slurry was applied to one side of a copper foil having a thickness of 16 ⁇ m, which was to be a negative electrode current collector, using a die coater such that the amount of negative electrode active material applied was 53 g / m 2 . After drying at 120 ° C.
  • Battery Assembly The negative electrode, the multilayer porous film, and the positive electrode were stacked in this order from the bottom so that the active material surfaces of the positive electrode and the negative electrode faced each other.
  • a cell is obtained by storing this laminate in a lidded stainless metal container in which the container body and the lid are insulated, the negative copper foil and the positive aluminum foil being in contact with the container body and the lid, respectively.
  • the cell was dried at 70 ° C. for 10 hours under reduced pressure. Thereafter, the non-aqueous electrolytic solution was injected into the container in an argon box and sealed to form an evaluation battery.
  • 10 batteries were produced in the same manner as described above, and evaluation of the rate characteristics was carried out. d.
  • the battery assembled in is charged to a battery voltage of 4.2 V at a current value of 3 mA (about 0.5 C) at 25 ° C., and it is further started to squeeze the current value from 3 mA while holding 4.2 V.
  • the battery was initially charged for about 6 hours in total, and then discharged to a battery voltage of 3.0 V at a current value of 3 mA.
  • the battery After time charging was performed, the battery was discharged to a battery voltage of 3.0 V at a current value of 6 mA, and the discharge capacity at that time was made 1 C discharge capacity (mAh). Next, charge the battery voltage to 4.2 V at a current value of 6 mA (about 1.0 C) at 25 ° C., and start squeezing the current value from 6 mA in a manner to maintain 4.2 V. After time charging, the battery was discharged to a battery voltage of 3.0 V at a current value of 60 mA (about 10 C), and the discharge capacity at that time was made a 10 C discharge capacity (mAh). The ratio of 10 C discharge capacity to 1 C discharge capacity was calculated, and this value was taken as the rate characteristic.
  • Rate characteristics at 10 C (%) (10 C discharge capacity / 1 C discharge capacity) ⁇ 100
  • the rate characteristics at 10C are measured using 10 batteries for each separator, and the output characteristics are uniformed by the difference (R) between the maximum value (max) and the minimum value (min) of the obtained characteristic values. The sex was evaluated.
  • Example 12 47.5 parts by mass of a 700,000 homopolymer of polyethylene, 47.5 parts by mass of a 250,000 homopolymer of Mv, and 5 parts by mass of a polypropylene, 400,000 homopolymer of Mv were dry-blended using a tumbler blender.
  • One part by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added as an antioxidant to 99 parts by mass of the obtained polymer mixture, By dry blending using a tumbler blender, a mixture of polymers and the like was obtained.
  • the resulting mixture of polymers and the like was substituted with nitrogen and then fed to a twin-screw extruder by a feeder under a nitrogen atmosphere.
  • liquid paraffin kinetic viscosity 7.59 ⁇ 10 ⁇ 5 m 2 / s at 37.78 ° C.
  • the feeder and the pump were adjusted so that the amount ratio of liquid paraffin occupied in the entire mixture extruded by melt-kneading was 67 mass% (the resin composition concentration was 33 mass%).
  • Melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 100 rpm, and a discharge amount of 12 kg / h.
  • the melt-kneaded product was extruded and cast on a cooling roll controlled to have a surface temperature of 25 ° C. through a T-die to obtain a gel sheet with a thickness of 1600 ⁇ m.
  • a simultaneous biaxial tenter stretching machine was performed.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.1 times, and a set temperature of 121 ° C.
  • the film thickness is 17 ⁇ m
  • the porosity is 60%
  • the air permeability is 88 seconds / 100 cc
  • the average pore diameter d calculated by the gas-liquid method is 0.057 ⁇ m
  • the torus ratio ⁇ a 1.45
  • the number of holes B 165 [mu] m 2
  • the puncture strength was obtained a polyolefin resin porous membrane of 567gf by 25 ⁇ m terms.
  • the coating liquid was prepared by uniformly dispersing in water, and the coating was applied to the surface of the above-mentioned polyolefin resin porous film using a gravure coater. It dried at 60 degreeC and removed water, and obtained the multilayer porous film which formed the 7-micrometer-thick porous layer on the polyolefin resin porous film.
  • Example 13 The thickness of the gel sheet obtained by casting the melt-kneaded product through a T-die is 1150 ⁇ m, the setting temperature of biaxial stretching in the simultaneous biaxial tenter drawing machine is 120 ° C., and the relaxation rate in the MD direction is 0.92.
  • the film thickness is 13 ⁇ m
  • the porosity is 64%
  • the average pore diameter d calculated by the gas-liquid method is 0.50 ⁇ m
  • the torality ⁇ a A polyolefin resin porous film having a pore number B of 222 / ⁇ m 2 and a piercing strength of 618 gf in terms of 25 ⁇ m was obtained.
  • a coating solution is prepared by uniformly dispersing 0.5 parts by mass of ammonium polycarboxylate aqueous solution (SN Disperse 5468, manufactured by Sannopco) in 180 parts by mass of water, and using a gravure coater on the surface of the above-mentioned polyolefin resin porous film It applied. It dried at 60 degreeC and removed water, and obtained the multilayer porous film which formed the 7-micrometer-thick porous layer on the polyolefin resin porous film.
  • SN Disperse 5468 manufactured by Sannopco
  • Example 14 A multilayer porous film was obtained by the same method as in Example 13 except that the thickness of the porous layer containing aluminum hydroxide oxide formed on the polyolefin resin porous film was 4 ⁇ m.
  • Comparative Example 19 A multilayer porous film was obtained by the same method as in Example 12 except that thermal relaxation in the MD direction was not performed.
  • Comparative Example 20 A multilayer porous film was obtained by the same method as in Example 12 except that the heat setting temperature in the TD tenter was 132 ° C. and heat relaxation in the MD direction was not performed.
  • Comparative Example 21 A multilayer porous film was obtained by the same method as in Example 13 except that thermal relaxation in the MD direction was not performed, and the thickness of the porous layer containing aluminum hydroxide oxide was 2 ⁇ m.
  • Comparative Example 22 47.5 parts by mass of a 700,000 homopolymer of polyethylene, 47.5 parts by mass of a 250,000 homopolymer of Mv, and 5 parts by mass of a polypropylene, 400,000 homopolymer of Mv were dry-blended using a tumbler blender. One part by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added as an antioxidant to 99 parts by mass of the obtained polymer mixture, By dry blending using a tumbler blender, a mixture of polymers and the like was obtained.
  • the resulting mixture of polymers and the like was substituted with nitrogen and then fed to a twin-screw extruder by a feeder under a nitrogen atmosphere.
  • liquid paraffin kinetic viscosity 7.59 ⁇ 10 ⁇ 5 m 2 / s at 37.78 ° C.
  • the feeder and the pump were adjusted so that the amount ratio of liquid paraffin occupied in the entire mixture extruded by melt-kneading was 65% by mass.
  • Melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge amount of 12 kg / h.
  • the melt-kneaded product was extruded and cast on a cooling roll controlled to have a surface temperature of 25 ° C. through a T-die to obtain a sheet-like polyolefin composition having a thickness of 1300 ⁇ m.
  • it was introduced into a simultaneous biaxial tenter stretching machine, and simultaneous biaxial stretching was performed 7 times in the MD direction and 6.4 times in the TD direction.
  • the set temperature of the simultaneous biaxial tenter was 118 ° C.
  • it was introduced into a methyl ethyl ketone tank to extract and remove liquid paraffin, and then the methyl ethyl ketone was dried and removed. Next, it was guided to a TD tenter and heat set.
  • the heat setting temperature was 122 ° C.
  • the TD maximum magnification was 1.4 times
  • the relaxation rate was 0.85.
  • the film thickness is 16 ⁇ m
  • the porosity is 47%
  • the air permeability is 163 seconds / 100 cc
  • the average pore diameter d calculated by the gas-liquid method is 0.058 ⁇ m
  • the torus ratio ⁇ a 1.86
  • the number of holes B 91. [mu] m 2
  • the puncture strength was obtained a polyolefin resin porous membrane of 525gf by 25 ⁇ m terms.
  • Example 15 A porous film was obtained by the same method as in Example 12 except that the inorganic filler porous layer was not formed.
  • Table 3 below shows the physical properties and the evaluation results of the porous film, the porous layer and the multilayer porous film obtained in each Example and Comparative Example.
  • Example 12 to 14 and Comparative Examples 19 and 21 the rate characteristics at the time of 10 C discharge show a very high value of 65% or more.
  • Comparative Examples 19 and 21 although the variation (max-min) of about 10% occurs in the value of the rate characteristic at the time of 10 C discharge, the variations (max-min) in Examples 12 to 14 occur. ) Is as small as 3.5 to 6.4%. This is considered to be because the contraction stress at 85 ° C. is adjusted to a small range of 2.2 gf or less.
  • Example 15 and Comparative Example 23 are compared, Example 15 has smaller variation in rate characteristics (max is -min), and this is because the contraction stress at 85 ° C is adjusted to a small range of 2.2 gf or less. it is conceivable that.
  • Example 13 and 14 when Examples 13 and 14 are compared with Comparative Example 22 and Example 15, the layer thickness of the porous layer in Examples 13 and 14 is 3 ⁇ m or more, and it is understood that not only the heat shrinkage is excellent but also the rate characteristics are excellent. . Further, in Comparative Example 21, since the porosity was low, the rate characteristics were inferior.
  • Examples 16 to 24 correspond to the examples of Embodiment 3. Physical properties in the examples were measured by the following methods, and other physical properties were measured by the same methods as in the above examples.
  • Shutdown speed Prepare 2 sheets (A, B) of nickel foil with a thickness of 10 ⁇ m, and mask and fix the nickel foil A with Teflon tape leaving 10 mm long and 10 mm wide square parts on a slide glass did.
  • Another nickel foil B is placed on a ceramic plate connected with a thermocouple, a microporous film of the measurement sample immersed in a specified electrolyte for 3 hours is placed on this, and the nickel foil A is stuck from above
  • the slide glass was placed and further silicone rubber was placed. After this was set on a hot plate, the temperature was raised at a rate of 2 ° C./min or 18 ° C./min while applying a pressure of 1.5 MPa with a hydraulic press.
  • the impedance change at this time was measured under the conditions of 1 V AC and 1 kHz. In this measurement, the temperature at which the impedance reached 1000 ⁇ was taken as the fuse temperature, and after reaching the hole blocking state, the temperature at which the impedance dropped below 1000 ⁇ was taken as the short circuit temperature.
  • the shutdown speed (R) was the time taken for the impedance to increase with increasing temperature and increase from 100 ⁇ to 1000 ⁇ as the shutdown speed.
  • R (seconds) (t (1000)-t (100)) / V (t) x 60 t (100): Temperature when reaching 100 ⁇ t (1000): Temperature when reaching 1000 ⁇ V (t): Heating rate (2 ° C / min or 18 ° C / min)
  • the positive electrode mixture-containing paste is uniformly applied on both sides of a 20 ⁇ m-thick current collector made of aluminum foil, dried, and compression molded using a roll press to a total thickness of 130 ⁇ m. The thickness of the positive electrode mixture layer was adjusted.
  • a positive electrode was prepared using a rectangular sheet with short sides of 95 mm and long sides of 120 mm, and an active material uncoated aluminum foil with a length of 20 mm above the short sides as lead tabs.
  • a negative electrode mixture-containing paste was prepared by mixing 91 parts by mass of graphite as a negative electrode active material and 9 parts by mass of PVdF as a binder so as to be uniform with NMP as a solvent.
  • the negative electrode mixture-containing paste is uniformly applied on both sides of a 15 ⁇ m-thick current collector made of copper foil, dried, and compression molded using a roll press to a total thickness of 130 ⁇ m. The thickness of the negative electrode mixture layer was adjusted.
  • a negative electrode using a copper foil with no active material coated and a length of 20 mm on top of the short side as a lead tab was produced.
  • An electrode plate laminate was produced by alternately stacking 27 positive electrode sheets and 28 negative electrode sheets described above, and separating each by a separator.
  • the separator was a 125 mm wide strip-like separator, and this was alternately folded into ninety-nine folds to produce an electrode plate laminate.
  • the schematic diagram of an electrode plate laminated body is shown in FIG.
  • the electrode plate laminate was pressed into a flat plate shape, and then stored in an aluminum laminate film, and the three sides were heat sealed.
  • the positive electrode lead tab and the negative electrode lead tab were led out from one side of the laminate film. Furthermore, after drying, the non-aqueous electrolyte was poured into the container, and the remaining one side was sealed.
  • the lithium ion battery thus produced was designed to have a capacity of 10 Ah.
  • ⁇ Steel evaluation> A laminate cell charged with constant current and constant voltage (CCCV) for 3 hours under conditions of current value 3A (0.3C) and final battery voltage of 4.2V is placed on an iron plate in an explosion proof booth, and diameter 2 at the center of the cell.
  • a .5 mm iron nail was penetrated at a speed of 3 mm / sec in an environment around 25 ° C. The nail was maintained in a penetrated state, and those which ignited and exploded within 15 minutes were rejected (x), and those not ignited and detonated were accepted (o).
  • Example 16 47.5 parts by mass of a 700,000 homopolymer of polyethylene, 47.5 parts by mass of a 250,000 homopolymer of Mv, and 5 parts by mass of a polypropylene, 400,000 homopolymer of Mv were dry-blended using a tumbler blender. 1 wt% of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] is added as an antioxidant to 99 wt% of pure polymer, and dry blending is performed again using a tumble blender. By doing this, a mixture of polymers and the like was obtained.
  • liquid paraffin kinetic viscosity 7.59 ⁇ 10 ⁇ 5 m 2 / s at 37.78 ° C.
  • the feeder and the pump were adjusted so that the amount ratio of liquid paraffin occupied in the entire mixture extruded by melt-kneading was 66 wt% (the resin composition concentration was 34%).
  • Melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 100 rpm, and a discharge amount of 12 kg / h.
  • the melt-kneaded product was extruded and cast on a cooling roll controlled to a surface temperature of 25 ° C. through a T-die to obtain a gel sheet with a thickness of 1570 ⁇ m.
  • a simultaneous biaxial tenter stretching machine was performed.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.1 times, and a set temperature of 119 ° C.
  • the heat setting temperature was 127 ° C.
  • the maximum TD magnification was 2.0
  • the relaxation rate was 0.9. Physical properties of the obtained polyolefin resin porous film are described in Table 4.
  • a coating liquid was prepared by uniformly dispersing 1.0 part by weight of (SN-Dispant manufactured by Sannopco 5468) in 100 parts by weight of water, and the coating was applied to the surface of the above-mentioned polyolefin resin porous film using a microgravure coater. It dried at 60 degreeC and removed water, and obtained the multilayer porous film which formed the 7-micrometer-thick porous layer on the polyolefin resin porous film. Physical properties of the obtained multilayer porous layer are described in Table 4.
  • Example 17 The surface of the porous polyolefin resin film obtained in Example 16 was subjected to high temperature firing treatment of wet kaolin containing kaolinite (Al 2 Si 2 O 5 (OH) 4 ) as a main component instead of aluminum hydroxide oxide. A coating layer mainly comprising an average particle diameter of 1.8 ⁇ m) was formed.
  • Example 18 A multilayer porous membrane was obtained in the same manner as in Example 16 except that the heat setting temperature was changed to 121 ° C. Physical properties of the obtained polyolefin resin porous membrane and multilayer porous layer are described in Table 4.
  • Example 19 A multilayer porous film was obtained in the same manner as in Example 18 except that the binder was changed to an acrylic latex suspension with an average particle diameter of 60 nm (solid content 40%, average particle diameter 60 nm). Physical properties of the obtained polyolefin resin porous membrane and multilayer porous layer are described in Table 4.
  • Example 20 A multilayer porous film was obtained in the same manner as in Example 18 except that the binder was changed to an acrylic latex suspension with an average particle diameter of 460 nm (solid content 40%, average particle diameter 460 nm). Physical properties of the obtained polyolefin resin porous membrane and multilayer porous layer are described in Table 4.
  • Example 22 95 parts by mass of polyethylene of Mv 250,000 and 5 parts by mass of homopolymer polypropylene of Mv 400,000 were dry-blended using a tumbler blender. 1 wt% of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] is added as an antioxidant to 99 wt% of pure polymer, and dry blending is performed again using a tumble blender. By doing this, a mixture of polymers and the like was obtained. The resulting mixture of polymers and the like was substituted with nitrogen and then fed to a twin-screw extruder by a feeder under a nitrogen atmosphere. Also, liquid paraffin (kinetic viscosity 7.59 ⁇ 10 ⁇ 5 m 2 / s at 37.78 ° C.) was injected into the extruder cylinder by a plunger pump.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 5.2 times, and a preset temperature of 123 ° C. Next, it was introduced into a methyl ethyl ketone tank and thoroughly immersed in methyl ethyl ketone to extract and remove liquid paraffin, and then the methyl ethyl ketone was dried and removed. Next, it was guided to a TD tenter and heat set. The heat setting temperature was 125 ° C., the maximum TD magnification was 3.5 times, and the relaxation rate was 0.94. Physical properties of the obtained polyolefin resin porous film are described in Table 4.
  • a coating liquid was prepared by uniformly dispersing 1.0 part by weight of (SN-Dispant manufactured by Sannopco 5468) in 100 parts by weight of water, and the coating was applied to the surface of the above-mentioned polyolefin resin porous film using a microgravure coater. It was dried at 60 ° C. to remove water, to obtain a multilayer porous film in which a porous layer having a thickness of 6 ⁇ m was formed on the polyolefin resin porous film. Physical properties of the obtained multilayer porous layer are described in Table 4.
  • Example 23 26 parts by mass of homopolymer of Mv 250,000, 16 parts by mass of homopolymer of Mv 2 million, silica “DM 10 C” having an average primary particle diameter of 15 nm (trademark, hydrophobically treated with Tokuyama dimethyldichlorosilane) 8 parts by mass, liquid paraffin “Smoyl P-350P” (trademark, manufactured by Matsumura Petroleum Institute) as a plasticizer, 10 parts by mass, pentaerythrityl-tetrakis- [3- (3,5) as an antioxidant A mixture obtained by adding 0.3 parts by mass of -di-t-butyl-4-hydroxyphenyl) propionate] was premixed in a super mixer.
  • the resulting mixture was fed by a feeder to a twin screw co-screw extruder feed port.
  • liquid paraffin was side-fed to a twin-screw extruder cylinder such that the amount ratio of liquid paraffin occupied in the entire mixture (100 parts by mass) melt-kneaded and extruded was 65 parts by mass.
  • Melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge amount of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled to have a surface temperature of 25 ° C.
  • Example 24 A coated layer mainly composed of aluminum hydroxide oxide was formed on both surfaces of the polyolefin resin porous film obtained in Example 18. 92.0 parts by mass of aluminum hydroxide oxide (average particle size 1.0 ⁇ m), 8.0 parts by mass of acrylic latex suspension (solid content concentration 40%, average particle size 150 nm), ammonium polycarboxylate aqueous solution (manufactured by Sannopco A dispersion liquid is prepared by uniformly dispersing 1.0 part by weight of SN Dispersant 5468) in 100 parts by weight of water, and coated on one surface of the polyolefin resin porous film obtained in Example 16 using a microgravure coater. did. It was dried at 60 ° C.
  • the coating layer was formed using a polyvinylidene fluoride copolymer as a binder. 100 parts by weight of aluminum hydroxide oxide (average particle diameter 1.8 ⁇ m) is added to 150 parts by weight of polyvinylidene fluoride (PVdF) -hexafluoropropylene (HFP) copolymer solution (HFP 1 mol%, 5 wt% NMP solution) to make uniform The dispersion liquid was dispersed to prepare a coating solution, which was applied to the surface of the polyolefin resin porous film obtained in Example 16 using a microgravure coater. After immersing this in a water bath, NMP is washed with warm water at 60 ° C.
  • PVdF polyvinylidene fluoride
  • HFP hexafluoropropylene
  • Example 26 A multilayer porous film was obtained in the same manner as in Example 18 except that the binder was changed to an acrylic latex suspension with an average particle diameter of 600 nm (solid content 40%, average particle diameter 600 nm). Physical properties of the obtained polyolefin resin porous membrane and multilayer porous layer are described in Table 5.
  • Comparative Example 27 A multilayer porous film was obtained in the same manner as in Example 18 except that the binder was changed to an acrylic latex suspension having an average particle diameter of 40 nm (solid content concentration 40%, average particle diameter 40 nm). Physical properties of the obtained polyolefin resin porous membrane and multilayer porous layer are described in Table 5.
  • Example 28 A multilayer porous membrane was obtained in the same manner as in Example 16 except that the heat setting temperature was changed to 133 ° C., the TD maximum magnification was changed to 2.6 times, and the relaxation rate to 0.96. Physical properties of the obtained polyolefin resin porous membrane and multilayer porous layer are described in Table 5.
  • Comparative Example 29 47.5 parts by mass of a 700,000 homopolymer of polyethylene, 47.5 parts by mass of a 250,000 homopolymer of Mv, and 5 parts by mass of a polypropylene, 400,000 homopolymer of Mv were dry-blended using a tumbler blender. 1% by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added as an antioxidant to 99% by mass of the obtained pure polymer mixture, By dry blending using a tumbler blender, a mixture of polymers and the like was obtained.
  • the resulting mixture of polymers and the like was substituted with nitrogen and then fed to a twin-screw extruder by a feeder under a nitrogen atmosphere.
  • liquid paraffin kinetic viscosity 7.59 ⁇ 10 ⁇ 5 m 2 / s at 37.78 ° C.
  • the feeder and pump were adjusted such that the ratio of the amount of liquid paraffin occupied in the entire mixture extruded by melt-kneading was 68% by mass.
  • Melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge amount of 12 kg / h.
  • the melt-kneaded product was extruded and cast on a cooling roll controlled to have a surface temperature of 25 ° C. through a T-die to obtain a sheet-like polyolefin composition having a thickness of 1300 ⁇ m.
  • it was introduced into a simultaneous biaxial tenter stretching machine, and simultaneous biaxial stretching was performed 7 times in the MD direction and 6.1 times in the TD direction.
  • the set temperature of the simultaneous biaxial tenter was 117 ° C.
  • it was introduced into a methyl ethyl ketone tank to extract and remove liquid paraffin, and then the methyl ethyl ketone was dried and removed.
  • it was guided to a TD tenter and heat set.
  • the heat setting temperature was 122 ° C.
  • the TD maximum magnification was 1.4 times
  • the relaxation rate was 0.85. Physical properties of the obtained polyolefin resin porous film are described in Table 5.
  • a coating liquid was prepared by uniformly dispersing 1.0 part by weight of (SN-Dispant manufactured by Sannopco 5468) in 100 parts by weight of water, and the coating was applied to the surface of the above-mentioned polyolefin resin porous film using a microgravure coater. It dried at 60 degreeC and removed water, and obtained the multilayer porous film which formed the 7-micrometer-thick porous layer on the polyolefin resin porous film. Physical properties of the obtained multilayer porous layer are described in Table 5.
  • Comparative Example 30 Forty-seven parts by weight of a 700,000 homopolymer of polyethylene, 46 parts by weight of a 250,000 homopolymer of Mv, and 7 parts by weight of a polypropylene, 400 homopolymer of Mv, were dry-blended using a tumbler blender. 1% by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added as an antioxidant to 99% by mass of the obtained pure polymer mixture, By dry blending using a tumbler blender, a mixture of polymers and the like was obtained.
  • the resulting mixture of polymers and the like was substituted with nitrogen and then fed to a twin-screw extruder by a feeder under a nitrogen atmosphere.
  • liquid paraffin kinetic viscosity 7.59 ⁇ 10 ⁇ 5 m 2 / s at 37.78 ° C.
  • the feeder and the pump were adjusted so that the amount ratio of liquid paraffin occupied in the whole mixture extruded by melt-kneading was 65% by mass.
  • Melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge amount of 12 kg / h.
  • the melt-kneaded product was extruded and cast on a cooling roll controlled to a surface temperature of 25 ° C. through a T-die to obtain a sheet-like polyolefin composition having a thickness of 1700 ⁇ m.
  • it was introduced into a simultaneous biaxial tenter stretching machine, and simultaneous biaxial stretching was performed 7 times in the MD direction and 6.1 times in the TD direction.
  • the set temperature of the simultaneous biaxial tenter was 125 ° C.
  • it was introduced into a methyl ethyl ketone tank to extract and remove liquid paraffin, and then the methyl ethyl ketone was dried and removed.
  • it was guided to a TD tenter and heat set.
  • the heat setting temperature was 125 ° C.
  • the maximum TD magnification was 1.7 times
  • the relaxation rate was 0.82. Physical properties of the obtained polyolefin resin porous film are described in Table 5.
  • a coating liquid was prepared by uniformly dispersing 1.0 part by weight of (SN-Dispant manufactured by Sannopco 5468) in 100 parts by weight of water, and the coating was applied to the surface of the above-mentioned polyolefin resin porous film using a microgravure coater. It dried at 60 degreeC and removed water, and obtained the multilayer porous film which formed the 7-micrometer-thick porous layer on the polyolefin resin porous film. Physical properties of the obtained multilayer porous layer are described in Table 5.
  • FIG. 1 is a graph of shutdown measurement at a temperature rising rate of 2 ° C./min in Example 16 and Comparative Example 24.
  • FIG. 2 is a graph of shutdown measurement at a temperature rising rate of 18 ° C./min in Example 16 and Comparative Example 24. Indicates When the heating rate was 2 ° C./min, Example 16 and Comparative Example 24 showed similar shutdown rates (Example 14: 24 seconds, Comparative Example 22: 24 seconds), but the heating rate was 18 In the case of ° C./min, a difference is observed in the shutdown speed (Example 14: 8.7 seconds, Comparative Example 22: 21 seconds), and in the case where the heating rate is fast, Example 16 exhibits a shutdown behavior in a short time I understand that.
  • Example 16 did not lead to ignition, and Comparative Example 24 resulted in ignition and explosion.
  • the cell outer surface temperature of Example 16 was around 60 ° C. However, when the cell was disassembled and confirmed after the nail penetration evaluation was completed, the shutdown behavior was confirmed in the nail penetration peripheral part, so the nail peripheral part was sharply It is presumed that the temperature rise occurred above the melting point of the polyolefin.
  • Table 4 shows various properties of Examples 16 to 24 and Table 5 shows various properties of Comparative Examples 24 to 30. It is understood that Examples 18 to 20 are superior in rate characteristics and nail penetration safety to Comparative Examples 24 and 25 in which the binder is not in the form of latex. Furthermore, when a latex binder is used, Comparative Example 26 (average particle diameter 600 nm) and Comparative Example 27 (average particle diameter 40 nm) are inferior in nail penetration safety, and the difference due to the average particle diameter is clear. On the other hand, although Comparative Examples 29 and 30 are excellent in the nailing evaluation, the rate characteristics are significantly inferior and the contribution of the porosity is clear. Further, Comparative Example 28 has a small number of pores in the porous membrane, and is inferior in rate characteristics and safety. In Examples 16 to 24, coexistence of rate characteristics and nailing safety was shown, and it could be confirmed that the separator can be used as a non-aqueous electrolyte battery separator.
  • Japanese Patent Application Nos. 2012-074669, 2012-074689 Japanese Patent Office
  • Japanese Patent Application Nos. 2012-090420, 2012-090470 Japanese Patent Application Nos.
  • porous film and the multilayer porous film in the present embodiment are excellent in output characteristics, and in particular, have industrial applicability as separators of lithium ion secondary batteries and lithium ion capacitors for high output applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Secondary Cells (AREA)

Abstract

 ポリオレフィン樹脂を主成分とする多孔膜と、前記多孔膜の少なくとも片面に積層された無機フィラーと樹脂製バインダを含む多孔層と、を有する多層多孔膜であって、 前記多孔膜の、気液法によって算出した平均孔径d、曲路率τa、及び孔数Bが、それぞれd=0.035~0.060μm、τa=1.1~1.7、B=100~500個/μmであり、かつ前記多孔膜の膜厚LがL=5~22μmである、多層多孔膜。

Description

多孔膜及び多層多孔膜
 本発明は、各種物質の分離や浄化等に用いられる膜、及び電池内で正極と負極の間に配置されるセパレータとして好適に用いられる多孔膜及び多層多孔膜に関する。さらに、それを用いた非水系電解液電池用セパレータ及び非水電解液電池に関する。
 ポリオレフィン多孔膜は優れた電気絶縁性、イオン透過性を示すことから、電池やコンデンサー等におけるセパレータとして広く利用されている。特に近年では、携帯機器の多機能化、軽量化に伴い、その電源として高出力密度、高容量密度のリチウムイオン二次電池が使用されており、このようなリチウムイオン二次電池に使用されるセパレータとして、主にポリオレフィン多孔膜が用いられている。
 リチウムイオン二次電池は高い出力密度、容量密度を有する反面、電解液に有機溶媒を用いているため、短絡や過充電などの異常事態に伴う発熱によって電解液が分解し、最悪の場合には発火に至ることがある。このような事態を防ぐため、リチウムイオン二次電池にはいくつかの安全機能が組み込まれており、その中の一つに、セパレータのシャットダウン機能がある。シャットダウン機能とは、電池が異常発熱を起こした際、セパレータの微多孔が熱溶融等により閉塞して電解液内のイオン伝導を抑制し、電気化学反応の進行をストップさせる機能のことである。一般にシャットダウン温度が低いほど安全性が高いとされ、ポリエチレンがセパレータの材料として用いられている理由の一つに適度なシャットダウン温度を有するという点が挙げられる。しかしながら、高いエネルギーを有する電池においては、シャットダウンにより電気化学反応の進行をストップさせても電池内の温度が上昇し続け、その結果、セパレータが熱収縮して破膜し、両極が短絡(ショート)するという問題がある。
 一方でリチウムイオン二次電池等の非水電解液電池は、電気自動車、ハイブリッド電気自動車などの短時間に大電流の充放電が必要な用途への展開が急速に進んでおり、安全性に対する要求だけではなく、高度な出力特性も強く求められており、優れた安全性と高度な出力特性の両立が求められている。
 特許文献1には、ポリオレフィン樹脂を主成分とする多孔膜の少なくとも片面に、無機フィラーの質量分率が50%以上100%未満である多孔層が積層された多層多孔膜が開示されている。当該文献には、異常発熱時の発熱量が大きい場合においても、両極の短絡を防止できる優れた耐熱性と良好なシャットダウン機能を両立する技術が記載されている。
 特許文献2には、フィブリル径が40~100nmであり、微多孔径が50~100nmであり、曲路率が1.4~1.8であるポリオレフィン微多孔膜が開示されている。当該文献には、ポリオレフィン微多孔膜と耐熱性多孔質層を複合化した場合にも、優れたイオン伝導度及び機械強度を得ることのできる技術が記載されている。
特許第4789274号公報 特開2011-210574号公報
 しかしながら、特許文献1及び2に記載されているような従来の多層多孔膜のイオン伝導性では、車載用途などの高い出力特性の要求に対しては不十分である。
 上記事情に鑑み、本発明は、従来の多層多孔膜よりもイオン伝導性に優れた多孔膜及び多層多孔膜を提供することを目的とする。
 本発明者らは、前記課題を解決するため鋭意検討した結果、特定の孔構造を有するポリオレフィン多孔膜、又は特定の孔構造を有するポリオレフィン多孔膜上に、無機フィラーと樹脂製バインダからなる多孔層が積層された多層多孔膜が、イオン伝導性に顕著に優れることを見出し、本発明に到達した。
 すなわち、本発明は以下のとおりである。
[1]         
 ポリオレフィン樹脂を主成分とする多孔膜と、前記多孔膜の少なくとも片面に積層された無機フィラーと樹脂製バインダを含む多孔層と、を有する多層多孔膜であって、
 前記多孔膜の、気液法によって算出した平均孔径d、曲路率τa、及び孔数Bが、それぞれd=0.035~0.060μm、τa=1.1~1.7、B=100~500個/μmであり、かつ前記多孔膜の膜厚LがL=5~22μmである、多層多孔膜。
[2]
 前記多孔膜の気孔率εがε=50~90%である、上記[1]記載の多層多孔膜。
[3]
 前記多孔膜が、ポリプロピレンと、ポリプロピレン以外のポリオレフィンとを含む樹脂組成物を含有する、上記[1]又は[2]記載の多層多孔膜。
[4]
 前記樹脂組成物中の総ポリオレフィンに対するポリプロピレンの割合が、1~35質量%である、上記[3]記載の多層多孔膜。
[5]
 上記[1]~[4]のいずれか記載の多層多孔膜からなる非水電解液電池用セパレータ。
[6]
 上記[5]記載の非水電解液電池用セパレータと、正極と、負極と、電解液とを有する、非水電解液電池。
[7]
 ポリオレフィン樹脂を主成分とする多孔膜であって、
 前記多孔膜の気孔率εがε=50~90%であり、かつ前記多孔膜の85℃における収縮応力が2.2gf以下である、多孔膜。
[8]
 上記[7]記載の多孔膜と、前記多孔膜の少なくとも片面に積層された無機フィラーと樹脂製バインダを含む多孔層と、を有する多層多孔膜。
[9]
 前記多孔層の厚みが3μm以上50μm以下である、上記[8]記載の多層多孔膜。
[10]
 上記[7]記載の多孔膜或いは上記[8]又は[9]記載の多層多孔膜からなる非水電解液電池用セパレータ。
[11]
 上記[10]記載の非水電解液電池用セパレータと、正極と、負極と、電解液とを有する、非水電解液電池。
[12]
 ポリオレフィン樹脂を主成分とする多孔膜(A)の少なくとも片面に、無機フィラーと樹脂製バインダとを含む多孔層(B)が積層された多層多孔膜であって、
 前記多孔膜(A)の気孔率が50%以上90%以下、孔数が100個/μm以上500個/μm以下であり、
 前記多孔層(B)における樹脂製バインダが、平均粒径が50nm以上500nm以下の樹脂製ラテックスバインダである多層多孔膜。
[13]
 上記[12]記載の多層多孔膜からなる非水電解液電池用セパレータ。
[14]
 上記[13]記載の非水電解液電池用セパレータと、正極と、負極と、電解液とを有する、非水電解液電池。
 本発明によれば、イオン伝導性に優れた多孔膜及び多層多孔膜、それを用いた非水電解液電池用セパレータ及び非水電解液電池を提供することができる。
実施例16、比較例24の昇温速度2℃/min時におけるシャットダウン評価結果 実施例16、比較例24の昇温速度18℃/min時におけるシャットダウン評価結果 実施例16の釘刺評価結果 比較例24の釘刺評価結果 電極板積層体の模式図
 以下、本発明を実施するための形態(以下、「本実施形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[本実施形態1]
 本実施形態1における多層多孔膜は、ポリオレフィン樹脂を主成分とする多孔膜と、該多孔膜の少なくとも片面に積層された無機フィラーと樹脂製バインダを含む多孔層と、を有する多層多孔膜であって、前記多孔膜の、気液法によって算出した平均孔径d、曲路率τa、及び孔数Bが、それぞれd=0.035~0.060μm、τ=1.1~1.7、B=100~500個/μmであり、かつ前記多孔膜の膜厚LがL=5~22μmである。
 ポリオレフィン樹脂を主成分とする多孔膜について説明する。
 ポリオレフィン樹脂を主成分とする多孔膜とは、多層多孔膜を電池用セパレータとして用いた場合のシャットダウン性能等を向上させる観点から、多孔膜を構成する樹脂成分の50質量%以上100質量%以下をポリオレフィン樹脂が占めるポリオレフィン樹脂組成物により形成される多孔膜であることが好ましい。ポリオレフィン樹脂が占める割合は60質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることが更に好ましい。また、多孔膜を構成する全成分の50質量%以上100質量%以下をポリオレフィン樹脂が占めることが好ましい。
 ポリオレフィン樹脂としては、特に限定されず、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、及び1-オクテン等のホモ重合体、共重合体、又は多段重合体等が挙げられる。また、これらのポリオレフィン樹脂は、単独で用いても、2種以上を混合して用いてもよい。ポリオレフィン樹脂の具体例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、エチレン-プロピレンランダム共重合体、ポリブテン、エチレンプロピレンラバー等が挙げられる。
 多層多孔膜を電池用セパレータとして使用する場合、低融点であり、かつ高強度の要求性能を満たす観点から、ポリオレフィン樹脂として特に高密度ポリエチレンを主成分とする樹脂組成物を用いることが好ましい。
 また、多孔膜及び多層多孔膜の耐熱性を向上させる観点から、ポリプロピレンと、ポリプロピレン以外のポリオレフィン樹脂を含む樹脂組成物を用いることがより好ましい。
 ここで、ポリオレフィン樹脂としてポリプロピレンを含む場合、ポリプロピレンの立体構造に限定はなく、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン及びアタクティックポリプロピレンのいずれでもよい。
 ポリオレフィン樹脂組成物中の総ポリオレフィンに対するポリプロピレンの割合は、耐熱性と良好なシャットダウン機能を両立させる観点から、1~35質量%であることが好ましく、より好ましくは3~20質量%、さらに好ましくは4~10質量%である。この場合、ポリプロピレン以外に含まれるポリオレフィン樹脂に限定はなく、例えば、エチレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン等のオレフィン炭化水素の単独重合体又は共重合体が挙げられる。具体的には、ポリエチレン、ポリブテン、エチレン-プロピレンランダム共重合体等が挙げられる。
 多層多孔膜を電池用セパレータとして使用する場合など、孔が熱溶融により閉塞してシャットダウンすることが要求される場合には、ポリプロピレン以外のポリオレフィン樹脂として、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン等のポリエチレンを用いることが好ましい。これらの中でも、強度を向上させる観点から、JIS K 7112に従って測定した密度が0.93g/cm以上であるポリエチレンを使用することがより好ましい。
 ポリオレフィン樹脂の粘度平均分子量は、3万以上1200万以下であることが好ましく、より好ましくは5万以上200万未満、さらに好ましくは10万以上100万未満である。粘度平均分子量が3万以上であると、溶融成形の際のメルトテンションが大きくなり成形性が良好になると共に、重合体同士の絡み合いにより高強度となる傾向にあるため好ましい。一方、粘度平均分子量が1200万以下であると、均一に溶融混練をすることが容易となり、シートの成形性、特に厚み安定性に優れる傾向にあるため好ましい。さらに、本実施形態の多層多孔膜を電池用セパレータとして使用する場合、粘度平均分子量が100万未満であると、温度上昇時に孔を閉塞しやすく良好なシャットダウン機能が得られる傾向にあるため好ましい。なお、例えば、粘度平均分子量100万未満のポリオレフィンを単独で使用する代わりに、粘度平均分子量200万のポリオレフィンと粘度平均分子量27万のポリオレフィンの混合物であって、混合物の粘度平均分子量が100万未満であるポリオレフィン混合物を用いてもよい。
 ポリオレフィン樹脂組成物には、任意の添加剤を含有させることができる。添加剤としては、例えば、ポリオレフィン以外の重合体;無機フィラー;フェノール系、リン系、イオウ系等の酸化防止剤;ステアリン酸カルシウム、ステアリン酸亜鉛等の金属石鹸類;紫外線吸収剤;光安定剤;帯電防止剤;防曇剤;着色顔料等が挙げられる。これらの添加剤の総添加量は、ポリオレフィン樹脂組成物100質量部に対して、20質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下である。
 本実施形態1における多孔膜は、非常に小さな孔が多数集まって緻密な連通孔を形成した多孔構造を有しているため、イオン伝導性に非常に優れると同時に耐電圧特性も良好であり、しかも高強度であるという特徴を有する。本実施形態1における多孔膜は、後述する実施例に記載した気液法によって算出した平均孔径d、曲路率τ、孔数Bが、それぞれd=0.035~0.060μm、τ=1.1~1.7、B=100~500個/μmに調整されている。平均孔径d、曲路率τ、孔数Bが、それぞれ上記範囲に調整されている場合、高いイオン伝導性と耐電圧を両立することが可能となる。
 平均孔径dは0.040~0.060μmであることが好ましく、0.042~0.060μmであることがより好ましい。曲路率τは1.15~1.67であることが好ましく、1.18~1.66であることがより好ましく、1.20~1.65μmであることが更に好ましい。孔数Bは120~450個/μmであることがより好ましく、140~400個/μmであることがさらに好ましい。
 ここで、平均孔径、曲路率、及び孔数は、組成比、押出シートの冷却速度、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率を制御することや、これらを組み合わせることにより調整することができる。
 本実施形態1における多孔膜の膜厚Lは、L=5~22μmに調整されている。多孔膜の膜厚が22μm以下の場合、膜抵抗が低下するため、イオン伝導性が向上するという利点があり、多孔層を積層して多層多孔膜とした場合には、その効果が顕著となる。また、多孔膜の膜厚が5μm以上の場合、耐電圧特性が向上する。多孔膜の膜厚は、6~21μmであることがより好ましく、7~20μm以下であることが更に好ましい。ここで、多孔膜の膜厚は、延伸工程における延伸倍率を制御すること等によって調整することができる。
 本実施形態1における多孔膜の気孔率εは、ε=50~90%であることが好ましい。多孔膜の気孔率が50%以上の場合、膜抵抗が低下する傾向にあるため、それに伴ってイオン伝導性が向上する傾向にある。また、多孔膜の気孔率が90%以下の場合、耐電圧特性が向上する傾向にある。多孔膜の気孔率は、50~80%であることがより好ましく、52~75%であることがさらに好ましく、55~70%であることが特に好ましい。ここで、多孔膜の気孔率は、ポリオレフィン樹脂と可塑剤の混合比率、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率を制御することや、これらを組み合わせることによって調整することができる。
 本実施形態1における多孔膜の突刺強度は、膜厚25μm換算で400~2000gfであることが好ましい。多孔膜の突刺強度は、420~1800gfであることがより好ましく、450~1500gfであることがさらに好ましく、500~1200gfであることが特に好ましい。ここで、多孔膜の突刺強度は、ポリオレフィン樹脂の種類と組成比、押出シートの冷却速度、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率を制御することや、これらを組み合わせることによって調整することができる。
 本実施形態1における多孔膜を製造する方法としては特に制限はなく、公知の製造方法を採用することができる。例えば、(1)ポリオレフィン樹脂組成物と可塑剤とを溶融混練してシート状に成形後、必要に応じて延伸した後、可塑剤を抽出することにより多孔化させる方法、(2)ポリオレフィン樹脂組成物を溶融混練して高ドロー比で押出した後、熱処理と延伸によってポリオレフィン結晶界面を剥離させることにより多孔化させる方法、(3)ポリオレフィン樹脂組成物と無機充填材とを溶融混練してシート上に成形した後、延伸によってポリオレフィンと無機充填材との界面を剥離させることにより多孔化させる方法、(4)ポリオレフィン樹脂組成物を溶解後、ポリオレフィンに対する貧溶媒に浸漬させてポリオレフィンを凝固させると同時に溶剤を除去することにより多孔化させる方法等が挙げられる。
 以下、多孔膜を製造する方法の一例として、ポリオレフィン樹脂組成物と可塑剤とを溶融混練してシート状に成形後、可塑剤を抽出する方法について説明する。
 まず、ポリオレフィン樹脂組成物と可塑剤を溶融混練する。溶融混練方法としては、例えば、ポリオレフィン樹脂及び必要によりその他の添加剤を、押出機、ニーダー、ラボプラストミル、混練ロール、バンバリーミキサー等の樹脂混練装置に投入し、樹脂成分を加熱溶融させながら任意の比率で可塑剤を導入して混練する方法が挙げられる。この際、ポリオレフィン樹脂、その他の添加剤及び可塑剤を樹脂混練装置に投入する前に、予めヘンシェルミキサー等を用いて所定の割合で事前混練しておくことが好ましい。より好ましくは、事前混練において可塑剤の一部のみを投入し、残りの可塑剤を樹脂混練装置にサイドフィードしながら混練する。このような混練方法を用いることにより、可塑剤の分散性が高まり、後の工程で樹脂組成物と可塑剤の溶融混練物のシート状成形体を延伸する際に、破膜することなく高倍率で延伸することができる傾向にある。
 可塑剤としては、特に限定されないが、ポリオレフィンの融点以上において均一溶液を形成しうる不揮発性溶媒を用いることが好ましい。このような不揮発性溶媒の具体例としては、例えば、流動パラフィン、パラフィンワックス等の炭化水素類;フタル酸ジオクチル、フタル酸ジブチル等のエステル類;オレイルアルコール、ステアリルアルコール等の高級アルコール等が挙げられる。
 これらの中でも、流動パラフィンは、ポリエチレンやポリプロピレンとの相溶性が高く、溶融混練物を延伸しても樹脂と可塑剤の界面剥離が起こりにくく、均一な延伸が実施し易くなる傾向にあるため好ましい。
 ポリオレフィン樹脂組成物と可塑剤の比率は、これらを均一に溶融混練して、シート状に成形できる範囲であれば特に限定はない。例えば、ポリオレフィン樹脂組成物と可塑剤とからなる組成物中に占める可塑剤の質量分率は、好ましくは30~80質量%、より好ましくは40~70質量%である。可塑剤の質量分率が80質量%以下であると、溶融成形時のメルトテンションが不足しにくく成形性が向上する傾向にある。一方、可塑剤の質量分率が30質量%以上であると、ポリオレフィン樹脂組成物と可塑剤の混合物を高倍率で延伸した場合でもポリオレフィン鎖の切断が起こらず、均一かつ微細な孔構造を形成し易く、強度も増加し易い。
 次に、溶融混練物をシート状に成形する。シート状成形体を製造する方法としては、例えば、溶融混練物を、Tダイ等を介してシート状に押出し、熱伝導体に接触させて樹脂成分の結晶化温度より充分に低い温度まで冷却して固化する方法が挙げられる。冷却固化に用いられる熱伝導体としては、金属、水、空気、或いは可塑剤自身等が挙げられるが、熱伝導の効率が高いため、金属製のロールを用いることが好ましい。また、押出した混練物を金属製のロールに接触させる際に、ロール間で挟み込むと、熱伝導の効率がさらに高まると共に、シートが配向して膜強度が増し、シートの表面平滑性も向上する傾向にあるためより好ましい。溶融混練物をTダイからシート状に押出す際のダイリップ間隔は400μm以上3000μm以下であることが好ましく、500μm以上2500μm以下であることがより好ましい。ダイリップ間隔が400μm以上であると、メヤニ等が低減され、スジや欠点など膜品位への影響が少なく、その後の延伸工程において膜破断などのリスクを低減することができる。一方、ダイリップ間隔が3000μm以下であると、冷却速度が速く冷却ムラを防げると共に、シートの厚み安定性を維持できる。
 次いで、このようにして得たシート状成形体を延伸することが好ましい。延伸処理としては、一軸延伸又は二軸延伸のいずれも好適に用いることができるが、得られる多孔膜の強度等を向上させる観点から二軸延伸が好ましい。シート状成形体を二軸方向に高倍率延伸すると、分子が面方向に配向し、最終的に得られる多孔膜が裂けにくくなり、高い突刺強度を有するものとなる。延伸方法としては、例えば、同時二軸延伸、逐次二軸延、多段延伸、多数回延伸等の方法を挙げることができ、突刺強度の向上、延伸の均一性、シャットダウン性の観点から同時二軸延伸が好ましい。
 ここで、同時二軸延伸とは、MD方向(微多孔膜の機械方向)の延伸とTD方向(微多孔膜のMDを90°の角度で横切る方向)の延伸が同時に施される延伸方法をいい、各方向の延伸倍率は異なってもよい。逐次二軸延伸とは、MD方向又はTD方向の延伸が独立して施される延伸方法をいい、MD方向又はTD方向に延伸がなされているときは、他方向は非拘束状態又は定長に固定されている状態とする。
 延伸倍率は、面倍率で20倍以上100倍以下の範囲であることが好ましく、25倍以上50倍以下の範囲であることがより好ましい。各軸方向の延伸倍率は、MD方向に4倍以上10倍以下、TD方向に4倍以上10倍以下の範囲であることが好ましく、MD方向に5倍以上8倍以下、TD方向に5倍以上8倍以下の範囲であることがより好ましい。総面積倍率が20倍以上であると、得られる多孔膜に十分な強度を付与できる傾向にあり、一方、総面積倍率が100倍以下であると、延伸工程における膜破断を防ぎ、高い生産性が得られる傾向にある。
 また、シート状成形体を圧延してもよい。圧延は、例えば、ダブルベルトプレス機等を使用したプレス法にて実施することができる。圧延を施すことにより、特に表層部分の配向を増すことができる。圧延面倍率は1倍を超えて3倍以下であることが好ましく、1倍を超えて2倍以下であることがより好ましい。圧延倍率が1倍を超えると、面配向が増加し最終的に得られる多孔膜の膜強度が増加する傾向にある。一方、圧延倍率が3倍以下であると、表層部分と中心内部の配向差が小さく、膜の厚さ方向に均一な多孔構造を形成することができる傾向にある。
 次いで、シート状成形体から可塑剤を除去して多孔膜とする。可塑剤を除去する方法としては、例えば、抽出溶剤にシート状成形体を浸漬して可塑剤を抽出し、充分に乾燥させる方法が挙げられる。可塑剤を抽出する方法はバッチ式、連続式のいずれであってもよい。多孔膜の収縮を抑えるために、浸漬、乾燥の一連の工程中にシート状成形体の端部を拘束することが好ましい。また、多孔膜中の可塑剤残存量は多孔膜全体の質量に対して1質量%未満にすることが好ましい。
 可塑剤を抽出する際に用いられる抽出溶剤としては、ポリオレフィン樹脂に対して貧溶媒で、かつ可塑剤に対して良溶媒であり、沸点がポリオレフィン樹脂の融点より低いものを用いることが好ましい。このような抽出溶剤としては、例えば、n-ヘキサン、シクロヘキサン等の炭化水素類;塩化メチレン、1,1,1-トリクロロエタン等のハロゲン化炭化水素類;ハイドロフルオロエーテル、ハイドロフルオロカーボン等の非塩素系ハロゲン化溶剤;エタノール、イソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン等のケトン類が挙げられる。なお、これらの抽出溶剤は、蒸留等の操作により回収して再利用してよい。
 多孔膜の収縮を抑制するために、延伸工程後、又は、多孔膜形成後に熱固定や熱緩和等の熱処理を行うこともできる。また、多孔膜に、界面活性剤等による親水化処理、電離性放射線等による架橋処理等の後処理を行ってもよい。
 多孔膜には、収縮を抑制する観点から熱固定を施すことが好ましい。熱固定の方法としては、所定の温度雰囲気及び所定の緩和率で緩和操作を行うことが挙げられ、テンターやロール延伸機を用いて行うことができる。緩和操作とは、膜のMD及び/又はTDへの縮小操作のことである。緩和率とは、緩和操作後の膜のMD寸法を操作前の膜のMD寸法で除した値、緩和操作後のTD寸法を操作前の膜のTD寸法で除した値、或いはMD、TD双方を緩和した場合は、MDの緩和率とTDの緩和率を乗じた値のことである。緩和率は、1.0以下であることが好ましく、0.97以下であることがより好ましく、0.95以下であることがさらに好ましい。
 緩和操作は、MD、TD両方向で行ってもよいが、MD或いはTD片方だけ行ってもよい。この緩和操作の前に、MD方向及び/又はTD方向に1.8倍以上、より好ましくは2.0倍以上の延伸を施すことによって、高強度かつ高気孔率な多孔膜が得られ易くなる。この可塑剤抽出後の延伸及び緩和操作は、好ましくはTD方向に行う。緩和操作及び緩和操作前の延伸工程における温度は、ポリオレフィン樹脂の融点(Tm)より低いことが好ましく、Tm-5℃からTm-25℃の範囲がより好ましく、Tm-7℃からTm-23℃の範囲がさらに好ましく、Tm-8℃からTm-21℃の範囲が特に好ましい。緩和操作及び緩和操作前の延伸工程における温度が上記範囲であると、小孔径、低曲路率であり、かつ孔数が多くて高気孔率な多孔膜が得られ易い。
 次に、無機フィラーと樹脂製バインダとを含む多孔層について説明する。
 前記多孔層に使用する無機フィラーとしては、特に限定されないが、200℃以上の融点をもち、電気絶縁性が高く、かつリチウムイオン二次電池の使用範囲で電気化学的に安定であるものが好ましい。
 無機フィラーとしては、例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックス;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、水酸化アルミニウム、水酸化酸化アルミニウム、チタン酸カリウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス、ガラス繊維などが挙げられ、これらは単独で用いてもよいし、複数を併用してもよい。
 上記の中でも、電気化学的安定性及び多層多孔膜の耐熱特性を向上させる観点から、アルミナ、水酸化酸化アルミニウムなどの酸化アルミニウム化合物や、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライトなどのイオン交換能を持たないケイ酸アルミニウム化合物が好ましい。前記酸化アルミニウム化合物としては、水酸化酸化アルミニウムが特に好ましい。イオン交換能を持たないケイ酸アルミニウム化合物としては、安価で入手も容易なため、カオリン鉱物で主に構成されているカオリンがより好ましい。カオリンには湿式カオリン及びこれを焼成処理した焼成カオリンがあるが、焼成カオリンは焼成処理の際に結晶水が放出されるのに加え、不純物が除去されるので、電気化学的安定性の点で特に好ましい。
 前記無機フィラーの平均粒径は、0.1μmを超えて4.0μm以下であることが好ましく、0.2μmを超えて3.5μm以下であることがより好ましく、0.4μmを超えて3.0μm以下であることが更に好ましい。無機フィラーの平均粒径を上記範囲に調整することは、多孔層の厚さが薄い場合(例えば、7μm以下)であっても、高温での熱収縮を抑制する観点から好ましい。
 前記無機フィラーにおいて、0.2μmを超えて1.4μm以下の粒径を有する粒子が無機フィラー全体に占める割合としては、好ましくは2体積%以上、より好ましくは3体積%以上、更に好ましくは5体積%以上であり、上限としては、好ましくは90体積%以下、より好ましくは80体積%以下である。
 前記無機フィラーにおいて、0.2μmを超えて1.0μm以下の粒径を有する粒子が無機フィラー全体に占める割合としては、好ましくは1体積%以上、より好ましくは2体積%以上であり、上限としては、好ましくは80体積%以下、より好ましくは70体積%以下である。
 また、前記無機フィラーにおいて、0.5μmを超えて2.0μm以下の粒径を有する粒子が無機フィラー全体に占める割合としては、好ましくは8体積%以上、より好ましくは10体積以上であり、上限としては、好ましくは60体積%以下、より好ましくは50体積%以下である。
 更に、前記無機フィラーにおいて、0.6μmを超えて1.4μm以下の粒径を有する粒子が無機フィラー全体に占める割合としては、好ましくは1体積%以上、より好ましくは3体積%以上であり、上限としては、好ましくは40体積%以下、より好ましくは30体積%以下である。
 無機フィラーの粒度分布を上記範囲に調整することは、多孔層の厚さが薄い場合(例えば、7μm以下)であっても、高温での熱収縮を抑制する観点から好ましい。なお、無機フィラーの粒径の割合を調整する方法としては、例えば、ボールミル・ビーズミル・ジェットミル等を用いて無機フィラーを粉砕し、粒径を小さくする方法等を挙げることができる。
 無機フィラーの形状としては、板状、鱗片状、針状、柱状、球状、多面体状、塊状等が挙げられ、上記形状を有する無機フィラーを複数種組み合わせて用いてもよい。多層多孔膜とした際に、後述の150℃熱収縮を10%以下に抑制することが可能であれば、無機フィラーの形状は特に限定されないが、透過性向上の観点からは複数の面からなる多面体状、柱状、紡錘状が好ましい。
 前記無機フィラーが、前記多孔層中に占める割合としては、無機フィラーの結着性、多層多孔膜の透過性及び耐熱性等の観点から適宜決定することができるが、50質量%以上100質量%未満であることが好ましく、より好ましくは70質量%以上99.99質量%以下、さらに好ましくは80質量%以上99.9質量%以下、特に好ましくは90質量%以上99質量%以下である。
 樹脂製バインダの種類としては、特に限定されないが、本実施形態における多層多孔膜をリチウムイオン二次電池用セパレータとして使用する場合には、リチウムイオン二次電池の電解液に対して不溶であり、かつリチウムイオン二次電池の使用範囲で電気化学的に安定なものを用いることが好ましい。
 樹脂製バインダの具体例としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等の含フッ素樹脂;フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体等の含フッ素ゴム;スチレン-ブタジエン共重合体及びその水素化物、アクリロニトリル-ブタジエン共重合体及びその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体及びその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類;エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体;ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリアミド、ポリエステル等の融点及び/又はガラス転移温度が180℃以上の樹脂等が挙げられる。
 樹脂製バインダとしてポリビニルアルコールを使用する場合、そのケン化度は85%以上100%以下であることが好ましい。ケン化度が85%以上であると、多層多孔膜を電池用セパレータとして使用した際に、短絡する温度(ショート温度)が向上し、より良好な安全性能が得られる傾向にあるため好ましい。ケン化度は、より好ましくは90%以上100%以下、さらに好ましくは95%以上100%以下、特に好ましくは99%以上100%以下である。また、ポリビニルアルコールの重合度は、200以上5000以下であることが好ましく、より好ましくは300以上4000以下、さらに好ましくは500以上3500以下である。重合度が200以上であると、少量のポリビニルアルコールで焼成カオリン等の無機フィラーを多孔膜に強固に結着でき、多孔層の力学的強度を維持しながら多孔層形成による多層多孔膜の透気度増加を抑えることができる傾向にあるため好ましい。また、重合度が5000以下であると、塗布液を調製する際のゲル化等を防止できる傾向にあるため好ましい。
 樹脂製バインダとしては、樹脂製ラテックスバインダが好ましい。樹脂製ラテックスバインダを用いた場合、無機フィラーとバインダとを含む多孔層をポリオレフィン多孔膜の少なくとも片面に積層した際、イオン透過性が低下しにくく高出力特性が得られやすい。加えて異常発熱時の温度上昇が速い場合においても、円滑なシャットダウン特性を示し、高い安全性が得られやすい。一方、樹脂製バインダの一部又は全てを溶媒に溶解させた後に、得られた溶液をポリオレフィン多孔膜の少なくとも片面に積層し、貧溶媒への浸漬や乾燥による溶媒除去等により樹脂製バインダを多孔膜に結着させた場合は、高出力特性が得られにくいばかりか、円滑なシャットダウン特性を示しにくく安全性に劣る傾向にある。
 樹脂製ラテックスバインダとしては、電気化学的安定性と結着性を向上させる観点から、脂肪族共役ジエン系単量体や不飽和カルボン酸単量体、及びこれらと共重合可能な他の単量体を乳化重合して得られるものが好ましい。乳化重合の方法としては、特に制限はなく、従来公知の方法を用いることができる。単量体及びその他の成分の添加方法については特に制限されるものではなく、一括添加方法、分割添加方法、連続添加方法の何れも採用することができ、また、一段重合、二段重合又は多段階重合等の何れも採用することができる。
 脂肪族共役ジエン系単量体としては、特に限定されず、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3ブタジエン、2-クロル-1,3-ブタジエン、置換直鎖共役ペンタジエン類、置換及び側鎖共役ヘキサジエン類などが挙げられ、これらは1種を単独で用いても、2種以上を併用してもよい。上記の中でも、特に1,3-ブタジエンが好ましい。
 不飽和カルボン酸単量体としては、特に限定されず、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマール酸、イタコン酸などのモノ又はジカルボン酸(無水物)等が挙げられ、これらは1種を単独で用いても、2種以上を併用してもよい。上記の中でも、特にアクリル酸、メタクリル酸が好ましい。
 これらと共重合可能な他の単量体としては、特に限定されず、例えば、芳香族ビニル系単量体、シアン化ビニル系単量体、不飽和カルボン酸アルキルエステル単量体、ヒドロキシアルキル基を含有する不飽和単量体、不飽和カルボン酸アミド単量体等が挙げられ、これらは1種を単独で用いても、2種以上を併用してもよい。上記の中でも、特に不飽和カルボン酸アルキルエステル単量体が好ましい。不飽和カルボ・BR>梼_アルキルエステル単量体としては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジエチルフマレート、ジメチルマレエート、ジエチルマレエート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート、2-エチルヘキシルアクリレート等が挙げられ、これらは1種を単独で用いても、2種以上を併用してもよい。上記の中でも、特にメチルメタクリレートが好ましい。
 なお、これらの単量体に加えて様々な品質及び物性を改良するために、上記以外の単量体成分をさらに使用することもできる。
 本実施形態1における樹脂製バインダの平均粒径は、50~500nmであることが好ましく、より好ましくは60~460nm、更に好ましくは80~250nmである。樹脂製バインダの平均粒径が50nm以上である場合、無機フィラーとバインダとを含む多孔層をポリオレフィン多孔膜の少なくとも片面に積層した際、イオン透過性が低下しにくく高出力特性が得られやすい。加えて異常発熱時の温度上昇が速い場合においても、円滑なシャットダウン特性を示し、高い安全性が得られやすい。樹脂製バインダの平均粒径が500nm以下である場合、良好な結着性を発現し、多層多孔膜とした場合に熱収縮が良好となり安全性に優れる傾向にある。
 樹脂製バインダの平均粒径は、重合時間、重合温度、原料組成比、原料投入順序、pHなどを調整することで制御することが可能である。
 多孔層の層厚は、耐熱性、絶縁性を向上させる観点から1μm以上であることが好ましく、電池の高容量化と透過性を向上させる観点から50μm以下であることが好ましい。多孔層の層厚は、より好ましくは1.5μm以上20μm以下、さらに好ましくは2μm以上10μm以下、さらにより好ましくは3μm以上10μm以下、特に好ましくは3μm以上7μm以下である。
 多孔層の層密度は、0.5~2.0g/cmであることが好ましく、0.7~1.5cmであることがより好ましい。多孔層の層密度が0.5g/cm以上であると、高温での熱収縮率が良好となる傾向にあり、2.0g/cm以下であると、透気度が低下する傾向にある。
 多孔層の形成方法としては、例えば、ポリオレフィン樹脂を主成分とする多孔膜の少なくとも片面に、無機フィラーと樹脂製バインダとを含む塗布液を塗布して多孔層を形成する方法を挙げることができる。
 塗布液の溶媒としては、前記無機フィラー、及び前記樹脂製バインダを均一かつ安定に分散できるものが好ましく、例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、塩化メチレン、ヘキサン等が挙げられる。
 塗布液には、分散安定化や塗工性の向上のために、界面活性剤等の分散剤;増粘剤;湿潤剤;消泡剤;酸、アルカリを含むPH調製剤等の各種添加剤を加えてもよい。これらの添加剤は、溶媒除去の際に除去できるものが好ましいが、リチウムイオン二次電池の使用範囲において電気化学的に安定で、電池反応を阻害せず、かつ200℃程度まで安定ならば多孔層内に残存してもよい。
 前記無機フィラーと前記樹脂製バインダとを、塗布液の溶媒に分散させる方法については、塗布工程に必要な塗布液の分散特性を実現できる方法であれば特に限定はない。例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌等が挙げられる。
 塗布液を多孔膜に塗布する方法については、必要とする層厚や塗布面積を実現できる方法であれば特に限定はなく、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法等が挙げられる。
 さらに、塗布液の塗布に先立ち、多孔膜表面に表面処理を施すと、塗布液を塗布し易くなると共に、塗布後の無機フィラー含有多孔層と多孔膜表面との接着性が向上するため好ましい。表面処理の方法は、多孔膜の多孔質構造を著しく損なわない方法であれば特に限定はなく、例えば、コロナ放電処理法、機械的粗面化法、溶剤処理法、酸処理法、紫外線酸化法等が挙げられる。
 塗布後に塗布膜から溶媒を除去する方法については、多孔膜に悪影響を及ぼさない方法であれば特に限定はなく、例えば、多孔膜を固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法等が挙げられる。多孔膜及び多層多孔膜のMD方向の収縮応力を制御する観点から、乾燥温度、巻取り張力等は適宜調整することが好ましい。
[本実施形態2]
 本実施形態2における多孔膜は、
 ポリオレフィン樹脂を主成分とする多孔膜であって、
 前記多孔膜の気孔率εがε=50~90%であり、かつ前記多孔膜の85℃における収縮応力が2.2gf以下である。
 本実施形態2における多孔膜に含まれるポリオレフィン樹脂及び添加剤については、上記本実施形態1で記載したものと同様のものを用いることができる。
 本実施形態2における多孔膜は、85℃における収縮応力が2.2gf以下に調整されている。
 非水電解液電池において水分の混入は、サイクル寿命の劣化や容量低下などを引き起こす原因となりうる。そこで電池に電解液を注液する前に乾燥工程を施すことが多い。このとき多くの場合、加熱を伴うが、無機フィラーと樹脂製バインダからなる多孔層が形成されていると熱収縮抑制効果が大きいため、セパレータの収縮は低減される。しかしながら、上記乾燥工程で多孔膜が一度加熱された後に常温に戻る過程でポリオレフィン樹脂が複雑に流動し多孔構造が変化してしまうと考えられる。そしてこの現象は、特に気孔率の高い場合に顕著となると考えられる。本発明者らは、上記知見を基に、特定温度における収縮応力が特定範囲以下に調整されたポリオレフィン多孔膜が高い出力特性と均一性を両立し得ることを見出した。そして、上記多孔膜に、無機フィラーと樹脂製バインダからなる多孔層を積層することで、さらに高い出力特性と均一性を両立し得ることを見出した。
 多孔膜の85℃における収縮応力は、好ましくは2gf以下であり、より好ましくは1.8gf以下である。収縮応力は後述の実施例に記載された方法(TMA)により測定することができる。収縮応力とは、MD(機械方向)、TD(機械方向を90°の角度で横切る方向)の両方向における収縮応力をいい、MD、TDのいずれの収縮応力も2.2gf以下に調整する。85℃における収縮応力が2.2gf以下である場合、電池乾燥時においてポリオレフィン多孔構造の変化がほとんど生じず、イオン伝導性やイオン伝導性の均一性が損われ難くなるという利点を有する。
 多孔膜の収縮応力を2.2gf以下に調整する方法としては熱緩和が有効である。例えば、気孔率が50%以上であり、かつ85℃における収縮応力が2.2gf以下である多孔膜を作製するためには、気孔率が51%以上の高気孔率多孔膜を作製した後、緩和率1.0未満で熱緩和することが好ましい。熱緩和による収縮応力の制御は、緩和率、熱処理温度、強度、ポリオレフィン樹脂組成などを調整することにより行うことができる。
 本実施形態2における多孔膜の気孔率εは、ε=50~90%に調整されている。多孔膜の気孔率が50%以上の場合、膜抵抗が低下する傾向にあるため、それに伴ってイオン伝導性が向上する傾向にある。また、多孔膜の気孔率が90%以下の場合、突刺強度が向上する傾向にある。多孔膜の気孔率は、50~80%であることが好ましく、52~75%であることがより好ましく、55~70%であることがさらに好ましい。ここで、多孔膜の気孔率は、ポリオレフィン樹脂と可塑剤の混合比率、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率を制御することや、これらを組み合わせることによって調整することができる。
 本実施形態2における多孔膜の上記以外の物性及び製造方法についての説明は、本実施形態1における説明と同様である。また、無機フィラーと樹脂製バインダとを含む多孔層についての説明も、本実施形態1における説明と同様である。
[本実施形態3]
 本実施形態における多層多孔膜は、ポリオレフィン樹脂を主成分とする多孔膜(A)の少なくとも片面に、無機フィラーと樹脂製バインダとを含む多孔層(B)が積層された多層多孔膜であって、
 前記多孔膜(A)の気孔率が50%以上90%以下、孔数が100個/μm以上500個/μm以下であり、
 前記多孔層(B)における樹脂製バインダが、平均粒径が50nm以上500nm以下の樹脂製ラテックスバインダである。
 本実施形態3における多孔膜に含まれるポリオレフィン樹脂及び添加剤については、上記本実施形態1で記載したものと同様のものを用いることができる。
 本実施形態3におけるポリオレフィン樹脂を主成分とする多孔膜(A)は、気孔率が50%以上90%以下に調整されている。気孔率が50%以上であると、イオン透過性に優れるため、多層多孔膜を非水電解液電池用セパレータとして使用した場合に出力特性に優れる。気孔率が90%以下であると、多層多孔膜を非水電解液電池用セパレータとして使用した場合に、自己放電のリスクが少なく信頼性が向上する。多孔膜(A)の気孔率は、好ましくは50%以上80%以下、より好ましくは52%以上75%以下、さらに好ましくは55%以上70%以下である。
 気孔率は、ポリオレフィン樹脂と可塑剤の混合比率、押出シートのドロー比、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率などを制御することや、これらを組み合わせることにより調整することが可能である。
 多孔膜(A)の単位面積当たりの孔数は、100個/μm以上500個/μm以下に調整されている。孔数が100個/μm以上500個/μm以下であると、多孔膜(A)表面上に、無機フィラーとバインダとを含む多孔層(B)を形成した際に、無機フィラーやバインダの浸透、目詰まり等による透過性低下が小さいために、出力特性が良好となる。また、異常発熱による温度上昇速度が著しく速い場合におけるシャットダウン性が良好であるため、安全性に優れる。多孔膜(A)の孔数の下限は、好ましくは120個/μm以上、より好ましくは130個/μm以上であり、上限は、好ましくは460個/μm以下、より好ましくは400個/μm以下である。
 孔数は、ポリオレフィン樹脂と可塑剤の混合比率、押出シートの冷却速度、押出シートの圧延度合、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率などを制御することや、これらを組み合わせることにより調整することが可能である。特に、孔数は、延伸温度、延伸倍率、熱固定温度の影響が大きい。
 多孔膜(A)の膜厚は、2μm以上40μm以下の範囲が好ましく、5μm以上35μm以下の範囲がより好ましく、5μm以上35μm以下の範囲がさらに好ましい。膜厚が2μm以上であると機械強度が十分となる傾向にあり、40μm以下であるとセパレータの占有体積が減るため、電池の高容量化の点において有利となる傾向にある。
 多孔膜(A)の透気度は、好ましくは10秒以上500秒以下、より好ましくは20秒以上400秒以下の範囲である。透気度が10秒以上であると、多層多孔膜を電池用セパレータとして使用した際に自己放電が少なくなる傾向にあり、500秒以下であると良好な充放電特性が得られる傾向にある。
 多孔膜(A)の孔径は、0.01~3μmが好ましく、より好ましくは0.02~1μm、さらに好ましくは0.035μm~0.060μmである。孔径が0.01μm以上であると、多孔膜(A)表面上に無機フィラーとバインダとを含む多孔層(B)を形成した際に、無機フィラーやバインダの浸透、目詰まり等による透過性低下が小さいために、出力特性が良好となる傾向にある。孔径が5μm以下であると、多層多孔膜を電池用セパレータとして使用した際に自己放電が少なくなる傾向にある。
 孔径は、ポリオレフィン樹脂と可塑剤の混合比率、押出シートの冷却速度、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率などを制御することや、これらを組み合わせることにより調整することが可能である。特に、孔径は、ポリオレフィン樹脂と可塑剤の混合比率、延伸温度、延伸倍率、熱固定温度の影響が大きい。
 次に、無機フィラーと樹脂製バインダとを含む多孔層(B)について説明する。
 本実施形態3における多孔層(B)に含まれる無機フィラー及び樹脂製バインダについては、上記本実施形態1で記載したものと同様のものを用いることができる。
 本実施形態3においては、樹脂性バインダとして樹脂製ラテックスバインダを用いる。なお、本明細書において「樹脂製ラテックス」とは樹脂が媒体に分散した状態のものを示す。樹脂製ラテックスバインダは、無機フィラーとバインダとを含む多孔層(B)をポリオレフィン多孔膜の少なくとも片面に積層した際、イオン透過性が低下しにくく高出力特性が得られやすい。加えて異常発熱時の温度上昇が速い場合においても、円滑なシャットダウン特性を示し、高い安全性が得られやすい。
 本実施形態3における樹脂製ラテックスバインダの平均粒径は、50~500nmに調整されている。樹脂製ラテックスバインダ平均粒径は、好ましくは60~460nm、より好ましくは80~220nmである。平均粒径を50nm以上とした場合、無機フィラーとバインダとを含む多孔層(B)をポリオレフィン多孔膜の少なくとも片面に積層した際、イオン透過性が低下しにくく高出力特性が得られやすい。加えて異常発熱時の温度上昇が速い場合においても、円滑なシャットダウン特性を示し、高い安全性が得られやすい。平均粒径が500nm以下であれば良好な結着性を発現し、多層多孔膜とした場合に熱収縮が良好となり安全性に優れる傾向にある。
 樹脂製ラテックスバインダの平均粒径は、重合時間、重合温度、原料組成比、原料投入順序、pHなどを調整することで制御することが可能である。
 多孔層(B)の層厚は、耐熱性、絶縁性を向上させる観点から1μm以上であることが好ましく、電池の高容量化と透過性を向上させる観点から50μm以下であることが好ましい。多孔層の層厚は、より好ましくは1.5μm以上20μm以下、さらに好ましくは2μm以上10μm以下、さらにより好ましくは3μm以上10μm以下、特に好ましくは3μm以上7μm以下である。
 多孔層(B)の形成方法についての説明は、上記本実施形態1における説明と同様である。
 次に、本実施形態1~3における多孔膜又は多層多孔膜を電池用セパレータとして用いる場合について説明する。
 本実施形態における多孔膜又は多層多孔膜は、耐熱性に優れ、シャットダウン機能を有しているので、電池内で正極と負極を隔離する電池用セパレータとして適している。
 特に、本実施形態における多孔膜又は多層多孔膜は、高温においても短絡し難いため、高起電力電池用のセパレータとして安全に使用できる。
 高起電力電池としては、例えば、非水電解液電池が挙げられる。非水電解液電池は、通常の方法により製造することができ、例えば、本実施形態の多孔膜又は多層多孔膜を正極と負極の間に配置し、非水電解液を保持させることにより製造することができる。
 正極、負極、非水電解液としては、特に限定はなく、公知のものを用いることができる。
 正極材料としては、例えば、LiCoO、LiNiO、スピネル型LiMnO、Li[NiMnCo]O(x、y、zはx+y+z=1かつ0≦x<1、0≦y<1、0≦z<1を満たす)、オリビン型LiFePO等のリチウム含有複合酸化物等が挙げられ、負極材料としては、例えば、黒鉛質、難黒鉛化炭素質、易黒鉛化炭素質、複合炭素体等の炭素材料;シリコン、スズ、金属リチウム、各種合金材料等が挙げられる。
 また、非水電解液としては、電解質を有機溶媒に溶解した電解液を用いることができ、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等が挙げられ、電解質としては、例えば、LiClO、LiBF、LiPF等のリチウム塩が挙げられる。
 多孔膜又は多層多孔膜を電池用セパレータとして使用する場合、多孔膜又は多層多孔膜の透気度は、10秒/100cc以上500秒/100cc以下であることが好ましく、より好ましくは20秒/100cc以上400秒/100cc以下であり、さらに好ましくは30秒/100cc以上300秒/100cc以下である。透気度が10秒/100cc以上であると電池用セパレータとして使用した際の自己放電が少なくなる傾向にあり、500秒/100cc以下であると良好な充放電特性が得られる傾向にある。
 多孔膜又は多層多孔膜の膜厚は、2μm以上200μm以下であることが好ましく、より好ましくは5μm以上100μm以下、さらに好ましくは7μm以上30μm以下である。膜厚が2μm以上であると機械強度が十分となる傾向にあり、200μm以下であるとセパレータの占有体積が減るため、電池の高容量化の点において有利となる傾向にある。
 多孔膜又は多層多孔膜の150℃での熱収縮率は、MD方向、TD方向ともに0%以上15%以下であることが好ましく、より好ましくは0%以上10%以下、さらに好ましくは0%以上5%以下である。熱収縮率がMD方向、TD方向ともに15%以下であると、電池の異常発熱時の多層多孔膜の破膜が抑制され、短絡が起こりにくくなるため好ましい。
 多孔膜又は多層多孔膜のシャットダウン温度は、120℃以上160℃以下であることが好ましく、より好ましくは120℃以上150℃以下である。シャットダウン温度が160℃以下であると、電池が発熱した場合等においても、電流遮断を速やかに促進し、より良好な安全性能が得られる傾向にあるため好ましい。一方、シャットダウン温度が120℃以上であると、電池を100℃前後で使用することができるため好ましい。
 シャットダウン温度は、ポリオレフィン樹脂の種類と組成比、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、熱固定時の緩和率を制御することや、これらを組み合わせることにより調整することができる。
 多孔膜又は多層多孔膜のショート温度は、180℃以上1000℃以下であることが好ましく、より好ましくは200℃以上1000℃以下である。ショート温度が180℃以上であると、電池に異常発熱が発生しても、すぐには短絡が起こらないため、その間に放熱することができ、より良好な安全性能が得られる。
 ショート温度は、ポリプロピレンの含有量や、ポリプロピレン以外のポリオレフィンの種類、無機フィラーの種類、無機フィラー含有多孔層の厚さ等を調整することにより所望の値に制御することができる。
 なお、上述した各種パラメータについては、特に断りのない限り、後述する実施例における測定法に準じて測定される。
 次に、実施例及び比較例を挙げて本実施形態をより具体的に説明するが、本実施形態はその要旨を超えない限り、以下の実施例に限定されるものではない。
 以下の実施例1~11は、本実施形態1の実施例に相当する。
 実施例中の物性は以下の方法により測定した。なお、特に測定雰囲気が明示されていないものは、23℃、1気圧の大気中にて測定した。
(1)ポリオレフィンの粘度平均分子量(Mv)
 ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η](dl/g)を求めた。
 ポリエチレンについては、次式により算出した。
  [η]=6.77×10-4Mv0.67
 ポリプロピレンについては、次式によりMvを算出した。
  [η]=1.10×10-4Mv0.80
(2)多孔膜及び多層多孔膜の膜厚、多孔層の層厚
 多孔膜、多層多孔膜からMD10mm×TD10mmのサンプルを切り出し、格子状に9箇所(3点×3点)を選んで、膜厚をダイヤルゲージ(尾崎製作所製PEACOCK No.25(登録商標))を用いて測定し、9箇所の測定値の平均値を多孔膜、多層多孔膜の膜厚(μm)とした。また、このように測定された多層多孔膜と多孔膜の膜厚の差を多孔層の層厚(μm)とした。
(3)多孔膜の気孔率
 10cm×10cm角の試料を多孔膜から切り取り、その体積(cm)と質量(g)を求め、多孔膜の密度を0.95(g/cm)として、次式を用いて計算した。
   気孔率(%)=(1-質量/体積/0.95)×100
(4)多孔膜及び多層多孔膜の透気度
 JIS P-8117準拠のガーレー式透気度計(東洋精機製G-B2(商標)、内筒質量:567g)を用い、645mmの面積(直径28.6mmの円)の多孔膜及び多層多孔膜について、空気100ccが通過する時間(秒)を測定し、これを多孔膜及び多層多孔膜の透気度(秒/100cc)とした。
(5)無機フィラーの平均粒径
 無機フィラーを蒸留水に加え、ヘキサメタリン酸ナトリウム水溶液を少量添加してから超音波ホモジナイザーで1分間分散させた後、レーザー式粒度分布測定装置(日機装(株)製マイクロトラックMT3300EX)を用いて粒径分布を測定し、累積頻度が50%となる粒径を平均粒径(μm)とした。
(6)気液法から求めた多孔膜の平均孔径、曲路率、及び孔数
 キャピラリー内部の流体は、流体の平均自由工程がキャピラリーの孔径より大きいときはクヌーセンの流れに、小さい時はポアズイユの流れに従うことが知られている。そこで、多孔膜の透気度測定における空気の流れがクヌーセンの流れに、また多孔膜の透水度測定における水の流れがポアズイユの流れに従うと仮定する。
 この場合、多孔膜の平均孔径d(μm)と曲路率τ(無次元)は、空気の透過速度定数Rgas(m/(m・sec・Pa))、水の透過速度定数Rliq(m/(m・sec・Pa))、空気の分子速度ν(m/sec)、水の粘度η(Pa・sec)、標準圧力P(=101325Pa)、気孔率ε(%)、膜厚L(μm)から、次式を用いて求めた。
   d=2ν×(Rliq/Rgas)×(16η/3Ps)×10
   τ=(d×(ε/100)×ν/(3L×P×Rgas))1/2
 ここで、Rgasは透気度(sec)から次式を用いて求めた。
 Rgas=0.0001/(透気度×(6.424×10-4)×(0.01276×101325))
 また、Rliqは透水度(cm/(cm・sec・Pa))から次式を用いて求めた。
 Rliq=透水度/100
 なお、透水度は次のように求めた。直径41mmのステンレス製の透液セルに、あらかじめエタノールに浸しておいた多孔膜をセットし、該膜のエタノールを水で洗浄した後、約50000Paの差圧で水を透過させ、120sec間経過した際の透水量(cm)より、単位時間・単位圧力・単位面積当たりの透水量を計算し、これを透水度とした。
 また、νは気体定数R(=8.314)、絶対温度T(K)、円周率π、空気の平均分子量M(=2.896×10-2kg/mol)から次式を用いて求めた。
    ν=((8R×T)/(π×M))1/2
 さらに、孔数B(個/μm)は、次式より求めた。
    B=4×(ε/100)/(π×d×τ
(7)多孔膜の突刺強度
 カトーテック製のハンディー圧縮試験機KES-G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーで多孔膜を固定した。次に固定された多孔膜の中央部を、針先端の曲率半径0.5mm、突刺速度2mm/secで、25℃雰囲気下にて突刺試験を行うことにより、最大突刺荷重(gf)を求めた。この値に、25/膜厚(μm)を乗じて、膜厚25μmで換算した突刺強度(gf/25μm)を算出した。
(8)多孔膜の膜抵抗
 サンプルを2.6cm×2.0cmのサイズに切り出し、非イオン性界面活性剤(花王社製エマルゲン210P)を3質量%溶解したメタノール溶液に切り出したサンプルを浸漬し、風乾した。厚さ20μmのアルミ箔を2.0cm×1.4cmに切り出し、リードタブを付けた。このアルミ箔を2枚用意して、アルミ箔間に切り出したサンプルをアルミ箔が短絡しないように挟んだ。サンプルに電解液である1MのLiBFプロピレンカーボネート/エチレンカーボネート(1/1質量比)を含浸させた。これをアルミラミネートパック中にタブがアルミパックの外に出るようにして減圧封入した。このようなセルをアルミ箔中に多孔膜が1枚、2枚、3枚となるようにそれぞれ作製した。該セルを20℃の恒温槽中に入れ、交流インピーダンス法で振幅10mV、周波数100kHzにて該セルの抵抗を測定した。測定されたセルの抵抗値を多孔膜の枚数に対してプロットし、このプロットを線形近似し傾きを求めた。この傾きに電極面積である2.0cm×1.4cmを乗じて多孔膜1枚当たりの膜抵抗R(Ω・cm)を求めた。
(9)膜抵抗から求めた多孔膜の曲路率
 多孔膜の膜抵抗R(Ω・cm)、空孔率ε(%)、電解液の比抵抗ρ(Ω・cm)、多孔膜の膜厚L(μm)から次式を用いて求めた。
 τ={(R・ε)/(ρ・L)}(1/2)
 ここで、上記式において、電解液には1MのLiBFプロピレンカーボネート/エチレンカーボネート(1/1質量比)(キシダ化学社製)を20℃で用いたが、この場合のρは2.663×10-2Ω・cmであった。
(10)多孔膜及び多層多孔膜の耐電圧
 直径4cmのアルミニウム製電極で多孔膜及び多層多孔膜を挟み15gの荷重をかけ、これを菊水電子工業製の耐電圧測定機(TOS9201)に繋いで測定を実施した。測定条件は、交流電圧(60Hz)を1.0kV/secの速度でかけていき、短絡した電圧値を多孔膜及び多層多孔膜の耐電圧(kV)とした。
(11)樹脂製バインダの平均粒径
 光散乱法による粒径測定装置(LEED&NORTHRUP社製MICROTRACTMUPA150)を用い、体積平均粒子径(nm)を測定し、平均粒径とした。
(12)150℃における熱収縮率(%)
 セパレータをMD方向に100mm、TD方向に100mmに切り取り、150℃のオーブン中に1時間静置した。このとき、温風が直接サンプルにあたらないよう、サンプルを2枚の紙に挟んだ。サンプルをオーブンから取り出し冷却した後、長さ(mm)を測定し、以下の式にてMD及びTDの熱収縮率を算出した。
  MD熱収縮率(%)=(100―加熱後のMDの長さ)/100×100
  TD熱収縮率(%)=(100―加熱後のTDの長さ)/100×100
(13)多層多孔膜のシャットダウン温度、ショート温度
a.正極の作製
 正極活物質としてリチウムコバルト複合酸化物(LiCoO)を92.2質量部、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量部、樹脂製バインダとしてポリフッ化ビニリデン(PVDF)を3.2質量部用意し、これらをN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターを用いて、正極活物質塗布量が250g/mとなるように塗布した。130℃で3分間乾燥後、ロールプレス機を用いて、正極活物質かさ密度が3.00g/cmとなるように圧縮成形し、これを正極とした。
b.負極の作製
 負極活物質として人造グラファイトを96.6質量部、樹脂製バインダとしてカルボキシメチルセルロースのアンモニウム塩1.4質量部とスチレン-ブタジエン共重合体ラテックス1.7質量部を用意し、これらを精製水中に分散させてスラリーを調製した。このスラリーを、負極集電体となる厚さ12μmの銅箔の片面に、ダイコーターを用いて負極活物質塗布量が106g/mとなるように塗布した。120℃で3分間乾燥後、ロールプレス機を用いて、負極活物質かさ密度が1.35g/cmとなるように圧縮成形し、これを負極とした。
c.非水電解液の調製
 プロピレンカーボネート:エチレンカーボネート:γ-ブチルラクトン=1:1:2(体積比)の混合溶媒に、溶質としてLiBFを濃度1.0mol/Lとなるように溶解させ、非水電解液を調製した。
d.シャットダウン温度、ショート温度の測定
 65mm×20mmに切り出して非水電解液に1分以上浸漬した負極、中央部に直径16mmの穴をあけた9μm(厚さ)×50mm×50mmのアラミドフィルム、65mm×20mmに切り出して非水電解液に1時間以上浸漬した多層多孔膜又は多孔膜、65mm×20mmに切り出して非水電解液に1分以上浸漬した正極、カプトンフィルム、厚さ約4mmのシリコンゴムを用意し、熱電対を接続したセラミックプレート上に、上記の順で積層した。この積層体をホットプレート上にセットし、油圧プレス機にて4.1MPaの圧力をかけた状態で15℃/minの速度で昇温し、正負極間のインピーダンス変化を交流1V、1kHzの条件下で200℃まで測定した。
 インピーダンスが1000Ωに達した時点の温度をシャットダウン温度とし、シャットダウン後、再びインピーダンスが1000Ωを下回った時点の温度をショート温度とした。
(14)多層多孔膜のレート特性
a.正極の作製
 正極活物質としてリチウムニッケルマンガンコバルト複合酸化物(Li[Ni1/3Mn1/3Co1/3]O)を91.2質量部、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量部、樹脂製バインダとしてポリフッ化ビニリデン(PVdF)を4.2質量部用意し、これらをN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターを用いて、正極活物質塗布量が120g/mとなるように塗布した。130℃で3分間乾燥後、ロールプレス機を用いて、正極活物質かさ密度が2.90g/cmとなるように圧縮成形し、正極とした。これを面積2.00cmの円形に打ち抜いた。
b.負極の作製
 負極活物質として人造グラファイトを96.6質量部、樹脂製バインダとしてカルボキシメチルセルロースのアンモニウム塩1.4質量部とスチレン-ブタジエン共重合体ラテックス1.7質量部を用意し、これらを精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ16μmの銅箔の片面にダイコーターを用いて負極活物質塗布量が53g/mとなるように塗布した。120℃で3分間乾燥後、ロールプレス機を用いて、負極活物質かさ密度が1.35g/cmとなるように圧縮成形し、負極とした。これを面積2.05cmの円形に打ち抜いた。
c.非水電解液
 エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0ml/Lとなるように溶解させて非水電解液を調製した。
d.電池組立
 正極と負極の活物質面が対向するように、下から負極、多層多孔膜、正極の順に重ねた。この積層体を、容器本体と蓋が絶縁されている蓋付きステンレス金属製容器に、負極の銅箔、正極のアルミ箔が、それぞれ、容器本体、蓋と接するように収納した。この容器内に、非水電解液を注入して密閉した。
e.レート特性の評価
 d.で組み立てた簡易電池を、25℃において、電流値3mA(約0.5C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計約6時間、電池作成後の最初の充電を行い、その後電流値3mAで電池電圧3.0Vまで放電した。
 次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、その後電流値6mAで電池電圧3.0Vまで放電して、その時の放電容量を1C放電容量(mAh)とした。
 次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、その後電流値12mA(約2C)で電池電圧3.0Vまで放電して、その時の放電容量を2C放電容量(mAh)とした。
 次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、その後電流値60mA(約10C)で電池電圧3.0Vまで放電して、その時の放電容量を10C放電容量(mAh)とした。
 1C放電容量に対する2C放電容量の割合を算出し、この値を2Cでのレート特性とした。
 2Cでのレート特性(%)=(2C放電容量/1C放電容量)×100
 2Cでのレート低下率(%)={(用いた多孔膜の2Cでのレート特性)-(多層多孔膜の2Cでのレート特性)}/(用いた多孔膜の2Cでのレート特性)×100
 1C放電容量に対する10C放電容量の割合を算出し、この値をレート特性とした。
 10Cでのレート特性(%)=(10C放電容量/1C放電容量)×100
 10Cでのレート低下率(%)={(用いた多孔膜の10Cでのレート特性)-(多層多孔膜の10Cでのレート特性)}/(用いた多孔膜の10Cでのレート特性)×100
[実施例1]
 Mv70万のホモポリマーのポリエチレン47.5質量部とMv25万のホモポリマーのポリエチレン47.5質量部とMv40万のホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られたポリマー混合物99質量部に対して酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が67質量%(樹脂組成物濃度が33質量%)となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃であり、スクリュー回転数100rpm、吐出量12kg/hで行った。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚み1600μmのゲルシートを得た。
 次に、同時二軸テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、MD倍率7.0倍、TD倍率6.1倍、設定温度121℃とした。
 次に、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
 次に、TDテンターに導き、熱固定を行った。熱固定温度は120℃で、TD最大倍率を2.0倍、緩和率は0.90とした。その結果、膜厚17μm、気孔率60%、透気度84秒/100cc、気液法によって算出した平均孔径d=0.057μm、曲路率τa=1.45、孔数B=165個/μm、突刺強度が25μm換算で567gfのポリオレフィン樹脂多孔膜を得た。
 次に、焼成カオリン(カオリナイト(AlSi(OH))を主成分とする湿式カオリンを高温焼成処理したもの、平均粒径1.8μm)を95.0質量部とアクリルラテックス(固形分濃度40%、平均粒径220nm、最低成膜温度0℃以下)5.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)0.5質量部を180質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にグラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。
[実施例2]
 溶融混練物をT-ダイを経てキャストして得たゲルシートの厚みを1550μm、同時二軸テンター延伸機での二軸延伸の設定温度を119℃としたこと以外は、実施例1と同様にして、膜厚18μm、気孔率64%、透気度78秒/100cc、気液法によって算出した平均孔径d=0.055μm、曲路率τa=1.38、孔数B=191個/μm、突刺強度が25μm換算で542gfのポリオレフィン樹脂多孔膜を得た。
 次に、水酸化酸化アルミニウム(平均粒径1.0μm)を96.0質量部とアクリルラテックス(固形分濃度40%、平均粒径145nm、最低成膜温度0℃以下)4.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)1.0質量部を100質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。
[実施例3]
 溶融混練物をT-ダイを経てキャストして得たゲルシートの厚みを1400μm、同時二軸テンター延伸機での二軸延伸の設定温度を119℃、TDテンターでの熱固定温度を128℃、TD最大倍率を2.0倍、緩和率は0.88としたこと以外は、実施例1と同様にして、膜厚15μm、気孔率60%、透気度90秒/100cc、気液法によって算出した平均孔径d=0.056μm、曲路率τa=1.54、孔数B=157個/μm、突刺強度が25μm換算で600gfのポリオレフィン樹脂多孔膜を得た。
 次に、焼成カオリン(カオリナイト(AlSi(OH))を主成分とする湿式カオリンを高温焼成処理したもの、平均粒径1.8μm)を95.0質量部とアクリルラテックス(固形分濃度40%、平均粒径145nm、最低成膜温度0℃以下)5.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)0.5質量部を180質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ6μmの多孔層を形成した多層多孔膜を得た。
[実施例4]
 溶融混練物をT-ダイを経てキャストして得たゲルシートの厚みを1150μm、同時二軸テンター延伸機での二軸延伸の設定温度を120℃としたこと以外は、実施例1と同様にして、膜厚13μm、気孔率64%、透気度65秒/100cc、気液法によって算出した平均孔径d=0.050μm、曲路率τa=1.41、孔数B=222個/μm、突刺強度が25μm換算で618gfのポリオレフィン樹脂多孔膜を得た。
 次に、焼成カオリン(カオリナイト(AlSi(OH))を主成分とする湿式カオリンを高温焼成処理したもの、平均粒径1.1μm)を95.0質量部とアクリルラテックス(固形分濃度40%、平均粒径145nm、最低成膜温度0℃以下)5.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)0.5質量部とを180質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ5μmの多孔層を形成した多層多孔膜を得た。
[実施例5]
 溶融混練物をT-ダイを経てキャストして得たゲルシートの厚みを1700μm、同時二軸テンター延伸機での二軸延伸の設定温度を117℃、TDテンターでの熱固定温度を117℃としたこと以外は、実施例1と同様にして、膜厚17μm、気孔率57%、透気度132秒/100cc、気液法によって算出した平均孔径d=0.052μm、曲路率τa=1.64、孔数B=163個/μm、突刺強度が25μm換算で788gfのポリオレフィン樹脂多孔膜を得た。
 次に、焼成カオリン(カオリナイト(AlSi(OH))を主成分とする湿式カオリンを高温焼成処理したもの、平均粒径1.1μm)を96.0質量部とアクリルラテックス(固形分濃度40%、平均粒径145nm、最低成膜温度0℃以下)4.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)1.0質量部を100質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にグラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。
[実施例6]
 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が68質量%(樹脂組成物濃度が32質量%)の溶融混練物をT-ダイを経てキャストすることにより得たゲルシートの厚みを1050μm、同時二軸テンター延伸機での二軸延伸の設定温度を120℃、TDテンターでの熱固定温度を119℃としたこと以外は、実施例1と同様にして、膜厚12μm、気孔率65%、透気度61秒/100cc、気液法によって算出した平均孔径d=0.043μm、曲路率τa=1.36、孔数B=325個/μm、突刺強度が25μm換算で678gfのポリオレフィン樹脂多孔膜を得た。
 次に、酸化アルミニウム(平均粒径1.0μm)を96.5質量部とアクリルラテックス(固形分濃度40%、平均粒径145nm、最低成膜温度0℃以下)3.5質量部とを150質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ6μmの多孔層を形成した多層多孔膜を得た。
[実施例7]
 Mv25万のホモポリマーのポリエチレン95質量部とMv40万のホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られたポリマー混合物99質量部に対して酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が62質量%(樹脂組成物濃度が38質量%)となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃であり、スクリュー回転数100rpm、吐出量12kg/hで行った。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚み1200μmのゲルシートを得た。
 次に、同時二軸テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、MD倍率7.0倍、TD倍率5.0倍、設定温度123℃とした。
 次に、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
 次に、TDテンターに導き、熱固定を行った。熱固定温度は125℃で、TD最大倍率を3.5倍、緩和率は0.94とした。その結果、膜厚11μm、気孔率67%、透気度40秒/100cc、気液法によって算出した平均孔径d=0.056μm、曲路率τa=1.25、孔数B=223個/μm、突刺強度が25μm換算で658gfのポリオレフィン樹脂多孔膜を得た。
 次に、水酸化酸化アルミニウム(平均粒径1.0μm)を96.0質量部とアクリルラテックス(固形分濃度40%、平均粒径140nm、最低成膜温度0℃以下)4.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)0.5質量部を180質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にグラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ5μmの多孔層を形成した多層多孔膜を得た。
[実施例8]
 水酸化酸化アルミニウム(平均粒径1.0μm)を96.0質量部とアクリルラテックス(固形分濃度40%、平均粒径140nm、最低成膜温度0℃以下)4.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)0.5質量部を180質量部の水に均一に分散させて塗布液を調製し、実施例6で得たポリオレフィン樹脂多孔膜の片面にマイクログラビアコーターを用いて塗布し、60℃にて乾燥して水を除去した後、反対面にもマイクログラビアコーターを用いて塗布し、60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ6μmの多孔層を両面に形成した多層多孔膜を得た。
[実施例9]
 熱固定装置の直後に、マイクログラビアコーターと乾燥機を直列に配置し、熱固定後のポリオレフィン樹脂多孔膜をいったん巻き取らずに、直接マイクログラビアコーターに導き、ポリオレフィン多孔膜の表面に、塗布液を塗布・乾燥させたこと以外は実施例1と同様の方法により多層多孔膜を得た。
[実施例10]
 Mv15万の共重合ポリエチレン(コモノマー:プロピレン、プロピレン単量体単位含量0.6モル%、密度0.95)28.5質量部、Mv30万のホモ高密度ポリエチレン28.5質量部、Mv70万のホモ高密度ポリエチレン14.2量部とMv200万のホモ超高分子量ポリエチレン23.8質量部、ホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドした。
 得られたポリマー混合物99質量部に対して酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が62質量%(樹脂組成物濃度が38質量%)となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃であり、スクリュー回転数100rpm、吐出量12kg/hで行った。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚み1600μmのゲルシートを得た。
 次に、同時二軸テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、MD倍率7.0倍、TD倍率6.1倍、設定温度123℃とした。
 次に、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
 次に、TDテンターに導き、熱固定を行った。熱固定温度は117℃で、TD最大倍率を2.0倍、緩和率は0.90とした。その結果、膜厚18μm、気孔率57%、透気度116秒/100cc、気液法によって算出した平均孔径d=0.057μm、曲路率τa=1.61、孔数B=138個/μm、突刺強度が25μm換算で506gfのポリオレフィン樹脂多孔膜を得た。
 上記ポリオレフィン樹脂多孔膜の表面に、実施例1と同じ多孔層を形成して多層多孔膜を得た。
[実施例11]
 水酸化酸化アルミニウム(平均粒径1.0μm)を96.0質量部とアクリルラテックス(固形分濃度40%、平均粒径140nm、最低成膜温度0℃以下)4.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)0.5質量部を180質量部の水に均一に分散させて塗布液を調製し、実施例10で得たポリオレフィン樹脂多孔膜の表面にグラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ6μmの多孔層を形成した多層多孔膜を得た。
[比較例1]
 高密度ポリエチレン(重量平均分子量25万、分子量分布7、密度0.956)40.5質量部、線状共重合ポリエチレン(メルトインデックス0.017、密度0.930、プロピレン含有率1.6モル%)4.5質量部、流動パラフィン55質量部及び該ポリエチレンに対して0.3質量部のテトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンを、2軸押出機を用いて混練することにより高分子溶液を調整した。得られた高分子溶液をリップ間1.8mmのハンガーコートダイから冷却ロール上にキャストして厚さ1.8mmのシートを得た。得られたシートを、同時2軸テンター延伸機を用いて、延伸温度120℃で7×4倍に抽出前延伸し、続いて塩化メチレン中に浸漬して流動パラフィンを抽出除去した。さらに、テンター延伸機を用いて、延伸温度110℃で幅方向に2.8倍抽出後、延伸した後、幅方向の延伸を35%緩和させつつ熱処理した。その結果、膜厚26μm、気孔率65%、透気度75秒/100cc、気液法によって算出した平均孔径d=0.060μm、曲路率τa=1.18、孔数B=195個/μm、突刺強度が25μm換算で339gfのポリオレフィン樹脂多孔膜を得た。
 上記ポリオレフィン樹脂多孔膜の表面に、実施例2と同じ多孔層を形成して多層多孔膜を得た。
[比較例2]
 高密度ポリエチレン(重量平均分子量25万、分子量分布7、密度0.956)28質量部、線状共重合ポリエチレン(メルトインデックス0.017、密度0.930、プロピレン含有率1.6モル%)12質量部、流動パラフィン60質量部及び該ポリエチレンに対して0.3質量部のテトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンを、抽出前延伸7×7倍、抽出後延伸を1.87倍とした後、緩和率を10%としたこと以外は、比較例1と同様にして、膜厚30μm、気孔率57%、透気度172秒/100cc、気液法によって算出した平均孔径d=0.050μm、曲路率τa=1.43、孔数B=203個/μm、突刺強度が25μm換算で415gfのポリオレフィン樹脂多孔膜を得た。
 上記ポリオレフィン樹脂多孔膜の表面に、実施例2と同じ多孔層を形成して多層多孔膜を得た。
[比較例3]
 Mv70万のホモポリマーのポリエチレン47.5質量部とMv25万のホモポリマーのポリエチレン47.5質量部とMv40万のホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られたポリマー混合物99質量部に対して酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、可塑剤として流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。溶融混練し、押し出される全混合物中に占める流動パラフィン量比が65質量%となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hで行った。
 続いて、溶融混練物を、Tダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚さ1300μmのシート状のポリオレフィン組成物を得た。
 次に同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に6.4倍に同時二軸延伸を行った。この時、同時二軸テンターの設定温度は118℃であった。次にメチルエチルケトン槽に導き、流動パラフィンを抽出除去した後、メチルエチルケトンを乾燥除去した。
 次に、TDテンターに導き、熱固定を行った。熱固定温度は122℃で、TD最大倍率を1.4倍、緩和率は0.85とした。その結果、膜厚16μm、気孔率47%、透気度163秒/100cc、気液法によって算出した平均孔径d=0.058μm、曲路率τa=1.86、孔数B=91個/μm、突刺強度が25μm換算で525gfのポリオレフィン樹脂多孔膜を得た。
 次に、焼成カオリン(カオリナイト(AlSi(OH))を主成分とする湿式カオリンを高温焼成処理したもの、平均粒径1.8μm)を95.0質量部とアクリルラテックス(固形分濃度40%、平均粒径220nm、最低成膜温度0℃以下)5.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)0.5質量部を180質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。
[比較例4]
 Mv70万のホモポリマーのポリエチレン47質量部とMv25万のホモポリマーのポリエチレン46質量部とMv40万のホモポリマーのポリプロピレン7質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られたポリマー混合物99質量部に、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、可塑剤として流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。溶融混練し、押し出される全混合物中に占める流動パラフィン量比が65質量%となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hで行った。
 続いて、溶融混練物を、Tダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚さ2000μmのシート状のポリオレフィン組成物を得た。
 次に同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に7倍に同時二軸延伸を行った。この時、同時二軸テンターの設定温度は125℃であった。次にメチルエチルケトン槽に導き、流動パラフィンを抽出除去した後、メチルエチルケトンを乾燥除去した。
 次に、TDテンターに導き、熱固定を行った。熱固定温度は133℃で、TD最大倍率を1.9倍、緩和率は0.84とした。その結果、膜厚16μm、気孔率41%、透気度157秒/100cc、気液法によって算出した平均孔径d=0.085μm、曲路率τa=2.10、孔数B=36個/μm、突刺強度が25μm換算で572gfのポリオレフィン樹脂多孔膜を得た。
 次に、焼成カオリン(カオリナイト(AlSi(OH))を主成分とする湿式カオリンを高温焼成処理したもの、平均粒径1.8μm)を95.0質量部とアクリルラテックス(固形分濃度40%、平均粒径145nm、最低成膜温度0℃以下)5.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)0.5質量部を180質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にグラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ6μmの多孔層を形成した多層多孔膜を得た。
[比較例5]
 TDテンターでの熱固定温度を125℃、TD最大倍率を1.6倍、緩和率を0.80としたこと以外は、比較例4と同様にして、膜厚20μm、気孔率41%、透気度283秒/100cc、気液法によって算出した平均孔径d=0.069μm、曲路率τa=2.29、孔数B=50個/μm、突刺強度が25μm換算で760gfのポリオレフィン樹脂多孔膜を得た。
 上記ポリオレフィン樹脂多孔膜の表面に、比較例3と同じ多孔層を形成して多層多孔膜を得た。
[比較例6]
 多孔層を形成しなかったこと以外は実施例1と同様にして多孔膜を得た。
[比較例7]
 多孔層を形成しなかったこと以外は実施例2と同様にして多孔膜を得た。
[比較例8]
 多孔層を形成しなかったこと以外は実施例3と同様にして多孔膜を得た。
[比較例9]
 多孔層を形成しなかったこと以外は実施例4と同様にして多孔膜を得た。
[比較例10]
 多孔層を形成しなかったこと以外は実施例5と同様にして多孔膜を得た。
[比較例11]
 多孔層を形成しなかったこと以外は実施例6と同様にして多孔膜を得た。
[比較例12]
 多孔層を形成しなかったこと以外は実施例7と同様にして多孔膜を得た。
[比較例13]
 多孔層を形成しなかったこと以外は比較例1と同様にして多孔膜を得た。
[比較例14]
 多孔層を形成しなかったこと以外は比較例2と同様にして多孔膜を得た。
[比較例15]
 多孔層を形成しなかったこと以外は比較例3と同様にして多孔膜を得た。
[比較例16]
 多孔層を形成しなかったこと以外は比較例4と同様にして多孔膜を得た。
[比較例17]
 多孔層を形成しなかったこと以外は比較例5と同様にして多孔膜を得た。
[比較例18]
 多孔層を形成しなかったこと以外は実施例10と同様にして多孔膜を得た。
 以下の表1及び表2に、各実施例及び比較例において得られた多孔膜、多孔層及び多層多孔膜の物性及び評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 比較例6~12、18は、気液法によって算出した平均孔径d・曲路率τ・孔数Bがそれぞれ、d=0.035~0.060μm、τ=1.1~1.7、B=100~500個/μm、かつ膜厚が22μm以下である多孔膜を用いているが、いずれも膜抵抗が1.2Ω・cm未満と非常に低く、10C放電時のレート特性が65%以上と非常に高い値を示している。膜厚が22μm超である比較例13~14、τ>1.8、B<100である比較例15~17の多孔膜の膜抵抗及びレート特性と比較すると、比較例6~12、18の多孔膜のイオン伝導性が非常に優れていることがわかる。さらに比較例6~12、18の多孔膜は、耐電圧が0.9kV以上と高い値を示しており、非常に小さな孔が多数集まって緻密な連通孔を形成することにより、イオン伝導性は優れるが膜厚方向の空中放電が起こりにくい孔構造を実現していると考えられる。なお、比較例6~14、18の多孔膜の、膜抵抗から求めた曲路率τbはいずれも1.2未満であった。一方、熱収縮率はTD方向で30%を大幅に超え、ショート温度も約154℃と、耐熱特性は不十分であることがわかる。
 実施例1~11は、比較例6~12、18の多孔膜上に、無機フィラーと樹脂製バインダからなる多孔層を形成した多層多孔膜である。多孔層を形成したことによって、熱収縮率は150℃でも2%以下と非常に小さい値に抑制され、ショート温度が200℃超まで向上し、耐熱特性が大幅に向上している。さらに耐電圧が1.0kV以上に向上している。10C放電時のレート特性は60%以上を示し、更にレート低下率がいずれも10%未満と小さく、基材である比較例6~12、18の多孔膜の有する優れたイオン透過性を維持していることがわかる。
 比較例1~2は、比較例13~14の多孔膜上に、無機フィラーと樹脂製バインダからなる多孔層を形成した多層多孔膜である。多孔層を形成したことによって耐熱特性は向上しているが、いずれも10%以上と大きい値を示している。また、ショート温度も向上しているが165℃程度にとどまった。さらに、10C放電時のレート特性は50%以下であり、実施例1~7の多層多孔膜と比較して10%以上も低下していることがわかる。基材である比較例1~2の多孔膜のように、気液法によって算出した平均孔径d・曲路率τ・孔数Bがそれぞれ、d=0.035~0.060μm、τ=1.1~1.7、B=100~500個/μmを満たす孔構造を有していても、膜厚が厚い場合は、イオン導電性が悪化するだけでなく、多孔層を付与したことによる耐熱性向上の度合いが小さいことがわかる。
 比較例3~5は、比較例15~17の多孔膜上に、無機フィラーと樹脂製バインダからなる多孔層を形成した多層多孔膜である。多孔層を形成したことによって、耐熱特性は大幅に向上している。2Cでのレート特性は約95%で、実施例1~11と同等の優れた値を示しているが10C放電時のレート特性は50%以下であり、実施例1~11の多層多孔膜と比較して10%以上も低下している。10Cでのレート低下率はいずれも10%以上で、高出力時の出力低下が大きいことがわかる。
 以下の実施例12~15は、本実施形態2の実施例に相当する。
 実施例中の物性は以下の方法により測定し、それ以外の物性は、上記実施例と同様の方法により測定した。
(15)85℃における収縮応力
 85℃における収縮応力は、島津製作所製TMA50(商標)を用いて測定した。MD(TD)方向の値を測定する場合は、TD(MD)方向に幅3mmに切り出したサンプルを、チャック間距離が10mmとなるようにチャックに固定し、専用プローブにセットした後、初期荷重を1.0gとし、30℃から200℃まで10℃/minの昇温速度で加熱し、その時発生する荷重(gf)を測定した。85℃における荷重(gf)を読み取り、その値を85℃における収縮応力とした。
(16)100℃及び150℃における熱収縮率(%)
 セパレータをMD方向に100mm、TD方向に100mmに切り取り、100℃及び150℃のオーブン中に1時間静置した。このとき、温風が直接サンプルにあたらないよう、サンプルを2枚の紙に挟んだ。サンプルをオーブンから取り出し冷却した後、長さ(mm)を測定し、以下の式にてMD及びTDの熱収縮率を算出した。
  MD熱収縮率(%)=(100―加熱後のMDの長さ)/100×100
  TD熱収縮率(%)=(100―加熱後のTDの長さ)/100×100
(17)多孔膜及び多層多孔膜のレート特性
a.正極の作製
 正極活物質としてリチウムニッケルマンガンコバルト複合酸化物(Li[Ni1/3Mn1/3Co1/3]O)を91.2質量部、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量部、樹脂製バインダとしてポリフッ化ビニリデン(PVdF)を4.2質量部用意し、これらをN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターを用いて、正極活物質塗布量が120g/mとなるように塗布した。130℃で3分間乾燥後、ロールプレス機を用いて、正極活物質かさ密度が2.90g/cmとなるように圧縮成形し、正極とした。これを面積2.00cmの円形に打ち抜いた。
b.負極の作製
 負極活物質として人造グラファイトを96.6質量部、樹脂製バインダとしてカルボキシメチルセルロースのアンモニウム塩1.4質量部とスチレン-ブタジエン共重合体ラテックス1.7質量部を用意し、これらを精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ16μmの銅箔の片面にダイコーターを用いて負極活物質塗布量が53g/mとなるように塗布した。120℃で3分間乾燥後、ロールプレス機を用いて、負極活物質かさ密度が1.35g/cmとなるように圧縮成形し、負極とした。これを面積2.05cmの円形に打ち抜いた。
c.非水電解液
 エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0ml/Lとなるように溶解させて調製した。
d.電池組立
 正極と負極の活物質面が対向するように、下から負極、多層多孔膜、正極の順に重ねた。この積層体を、容器本体と蓋が絶縁されている蓋付きステンレス金属製容器に、負極の銅箔、正極のアルミ箔が、それぞれ、容器本体、蓋と接するように収納することによりセルを得た。このセルを、減圧下、70℃で10時間乾燥を行った。その後、アルゴンボックス中でこの容器内に非水電解液を注入して密閉し評価電池とした。
e.レート特性の評価
 各セパレータにおいて、上記と同様の方法により電池を10個ずつ作製しレート特性の評価を実施した。
 d.で組み立てた電池を、25℃において、電流値3mA(約0.5C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計約6時間、電池作成後の最初の充電を行い、その後電流値3mAで電池電圧3.0Vまで放電した。
 次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、その後電流値6mAで電池電圧3.0Vまで放電して、その時の放電容量を1C放電容量(mAh)とした。
 次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、その後電流値60mA(約10C)で電池電圧3.0Vまで放電して、その時の放電容量を10C放電容量(mAh)とした。
 1C放電容量に対する10C放電容量の割合を算出し、この値をレート特性とした。
   10Cでのレート特性(%)=(10C放電容量/1C放電容量)×100
 また、各セパレータにつき10個ずつ作製した電池を用い、10Cでのレート特性を測定し、得られた特性値の最大値(max)と最小値(min)の差(R)により出力特性の均一性を評価した。
〔実施例12〕
 Mv70万のホモポリマーのポリエチレン47.5質量部とMv25万のホモポリマーのポリエチレン47.5質量部とMv40万のホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られたポリマー混合物99質量部に対して酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が67質量%(樹脂組成物濃度が33質量%)となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃であり、スクリュー回転数100rpm、吐出量12kg/hで行った。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚み1600μmのゲルシートを得た。
 次に、同時二軸テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、MD倍率7.0倍、TD倍率6.1倍、設定温度121℃とした。
 次に、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
 次に、TDテンターに導き、熱固定を行った。熱固定温度は120℃で、TD最大倍率を2.0倍、緩和率は0.90とした。続いて、速度可変の熱ロールを用いてMD方向へ緩和を行った。このときの緩和率は0.95とした。その結果、膜厚17μm、気孔率60%、透気度88秒/100cc、気液法によって算出した平均孔径d=0.057μm、曲路率τa=1.45、孔数B=165個/μm、突刺強度が25μm換算で567gfのポリオレフィン樹脂多孔膜を得た。
 次に、焼成カオリン(カオリナイト(AlSi(OH))を主成分とする湿式カオリンを高温焼成処理したもの、平均粒径1.8μm)を95.0質量部とアクリルラテックス(固形分濃度40%、平均粒径220nm、最低成膜温度0℃以下)5.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)0.5質量部を180質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にグラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。
[実施例13]
 溶融混練物をT-ダイを経てキャストして得たゲルシートの厚みを1150μm、同時二軸テンター延伸機での二軸延伸の設定温度を120℃、MD方向への緩和率を0.92としたこと以外は、実施例12と同様にして、膜厚13μm、気孔率64%、透気・BR>X67秒/100cc、気液法によって算出した平均孔径d=0.050μm、曲路率τa=1.41、孔数B=222個/μm、突刺強度が25μm換算で618gfのポリオレフィン樹脂多孔膜を得た。
 次に、水酸化酸化アルミニウム(平均粒径1.0μm)を96.0質量部とアクリルラテックス(固形分濃度40%、平均粒径140nm、最低成膜温度0℃以下)4.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)0.5質量部を180質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にグラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。
[実施例14]
 ポリオレフィン樹脂多孔膜上に形成した水酸化酸化アルミニウムを含む多孔層の厚さを4μmとしたこと以外は実施例13と同様の方法により多層多孔膜を得た。
[比較例19]
 MD方向の熱緩和を実施しなかったこと以外は実施例12と同様の方法により多層多孔膜を得た。
[比較例20]
 TDテンターでの熱固定温度を132℃とし、MD方向の熱緩和を実施しなかったこと以外は実施例12と同様の方法により多層多孔膜を得た。
[比較例21]
 MD方向の熱緩和を実施しなかったこと、水酸化酸化アルミニウムを含む多孔層の厚さを2μmにしたこと以外は実施例13と同様の方法により多層多孔膜を得た。
[比較例22]
 Mv70万のホモポリマーのポリエチレン47.5質量部とMv25万のホモポリマーのポリエチレン47.5質量部とMv40万のホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られたポリマー混合物99質量部に対して酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量部添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、可塑剤として流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。溶融混練し、押し出される全混合物中に占める流動パラフィン量比が65質量%となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hで行った。
 続いて、溶融混練物を、Tダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚さ1300μmのシート状のポリオレフィン組成物を得た。
 次に同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に6.4倍に同時二軸延伸を行った。この時、同時二軸テンターの設定温度は118℃であった。次にメチルエチルケトン槽に導き、流動パラフィンを抽出除去した後、メチルエチルケトンを乾燥除去した。
 次に、TDテンターに導き、熱固定を行った。熱固定温度は122℃で、TD最大倍率を1.4倍、緩和率は0.85とした。その結果、膜厚16μm、気孔率47%、透気度163秒/100cc、気液法によって算出した平均孔径d=0.058μm、曲路率τa=1.86、孔数B=91個/μm、突刺強度が25μm換算で525gfのポリオレフィン樹脂多孔膜を得た。
 次に、焼成カオリン(カオリナイト(AlSi(OH))を主成分とする湿式カオリンを高温焼成処理したもの、平均粒径1.8μm)を95.0質量部とアクリルラテックス(固形分濃度40%、平均粒径220nm、最低成膜温度0℃以下)5.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ社製 SNディスパーサント5468)0.5質量部を180質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。
[実施例15]
 無機フィラー多孔層を形成しなったこと以外は実施例12と同様の方法により多孔膜を得た。
[比較例23]
 無機フィラー多孔層を形成しなったこと以外は比較例19と同様の方法により多孔膜を得た。
 以下の表3に、各実施例及び比較例において得られた多孔膜、多孔層及び多層多孔膜の物性及び評価結果を示す。
Figure JPOXMLDOC01-appb-T000003
 実施例12~14及び比較例19、21は、10C放電時のレート特性が65%以上と非常に高い値を示している。しかしながら、比較例19、21は、10C放電時のレート特性の値に約10%程度のバラツキ(max-min)が生じているのに対して、実施例12~14は、バラツキ(max-min)が3.5~6.4%と小さい。これは85℃における収縮応力が2.2gf以下と小さい範囲に調整されているためと考えられる。
 また、実施例15と比較例23を比較すると、実施例15はレート特性のバラツキ(maxが-min)小さく、これは85℃における収縮応力が2.2gf以下と小さい範囲に調整されているためと考えられる。
 さらに実施例13、14と比較例22、実施例15を比較すると、実施例13、14は多孔層の層厚が3μm以上であり、熱収縮に優れるばかりか、レート特性にも優れることがわかる。
 また、比較例21については、気孔率が低いためレート特性に劣っていた。
 以下の実施例16~24は、本実施形態3の実施例に相当する。
 実施例中の物性は以下の方法により測定し、それ以外の物性は、上記実施例と同様の方法により測定した。
(18)シャットダウン速度
 厚さ10μmのニッケル箔を2枚(A、B)用意し、ニッケル箔Aを、スライドガラス上に、縦10mm、横10mmの正方形部分を残してテフロンテープでマスキングすると共に固定した。
 熱電対を繋いだセラミックスプレート上に、別のニッケル箔Bを載せ、この上に、規定の電解液に3時間浸漬させた測定試料の微多孔膜を置き、その上からニッケル箔Aを貼りつけたスライドガラスを載せ、更にシリコンゴムを載せた。
 これをホットプレート上にセットした後、油圧プレス機にて1.5MPaの圧力をかけた状態で、2℃/minまたは18℃/minの速度で昇温した。
 この際のインピーダンス変化を交流1V、1kHzの条件下で測定した。この測定において、インピーダンスが1000Ωに達した時点の温度をヒューズ温度とし、孔閉塞状態に達した後、再びインピーダンスが1000Ωを下回った時点の温度をショート温度とした。シャットダウン速度(R)は、インピーダンスが温度の上昇とともに増加し、100Ωから1000Ωに増加するのに要した時間をシャットダウン速度とした。
R(秒)=(t(1000)-t(100))/V(t)×60
 t(100):100Ωに達した時点の温度
 t(1000):1000Ωに達した時点の温度
 V(t):昇温速度(2℃/minまたは18℃/min)
 なお、規定の電解液の組成比は以下のとおりである。
 溶媒の組成比(体積比):炭酸プロピレン/炭酸エチレン/γ-ブチルラクトン=1/1/2
 電解液の組成比:LiBFを1mol/リットルの濃度になるように上記溶媒に溶かし、さらに、0.5重量%の濃度になるようにトリオクチルフォスフェイトを加えた。
(19)釘刺評価
<正極の作製>
 正極活物質であるリチウムニッケルマンガンコバルト複合酸化物粉末(LiNi1/3Mn1/3Co1/3)とリチウムマンガン複合酸化物粉末(LiMn)を質量比率70:30で機械混合した混合正極活物質:85質量部、導電助剤であるアセチレンブラック:6質量部、およびバインダーであるPVdF:9質量部を、N-メチル-2-ピロリドン(NMP)を溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。この正極合剤含有ペーストを、アルミニウム箔からなる厚さ20μmの集電体の両面に均一に塗布し、乾燥させた後、ロールプレス機で圧縮成形を行って、全厚が130μmになるように正極合剤層の厚みを調整した。短辺95mm、長辺120mmの長方形状シートに、短辺上部に長さ20mmの活物質未塗工のアルミニウム箔をリードタブとした正極を作製した。
<負極の作製>
 負極活物質である黒鉛:91質量部と、バインダーであるPVdF:9質量部とを、NMPを溶剤として均一になるように混合して、負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、銅箔からなる厚さ15μmの集電体の両面に均一に塗布し、乾燥させた後、ロールプレス機で圧縮成形を行って、全厚が130μmになるように負極合剤層の厚みを調整した。短辺95mm、長辺120mmの長方形状シートに、短辺上部に長さ20mmの活物質未塗工の銅箔をリードタブとした負極を作製した。
<非水電解液の調製>
 非水電解液としてエチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=1:1:1(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/リットルとなるように溶解させて調製した。
<セル作製>
 上記の正極シート27枚、負極シート28枚を交互に重ね、それぞれをセパレータにて隔離することで電極板積層体を作製した。セパレータは125mm幅の帯状のセパレータで、これを交互に九十九折に折りたたむことで電極板積層体を作製した。電極板積層体の模式図を図5に示す。
 この電極板積層体を平板状にプレス後、アルミニウム製ラミネートフィルムに収納し、3辺をヒートシールした。なお正極リードタブ、負極リードタブをラミネートフィルム1辺から導出させた。さらに、乾燥後、この容器内に上記の非水電解液を注入し、残りの1辺を封口した。こうして作製されるリチウムイオン電池は、容量が10Ahとなるように設計された。
<釘刺し評価>
 電流値3A(0.3C)、終止電池電圧4.2Vの条件で3時間定電流定電圧(CCCV)充電したラミネートセルを防爆ブース内の鉄板上に静置し、セル中央部に、直径2.5mmの鉄製釘を、25℃前後の環境下で、3mm/秒の速度で貫通させた。釘は貫通した状態で維持させ、15分以内に発火、爆発したものを不合格(×)とし、発火、爆発しないものを合格(○)とした。
[実施例16]
 Mv70万のホモポリマーのポリエチレン47.5質量部とMv25万のホモポリマーのポリエチレン47.5質量部とMv40万のホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドした。純ポリマー99wt%に酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1wt%添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が66wt%(樹脂組成物濃度が34%)となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数100rpm、吐出量12kg/hで行った。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚み1570μmのゲルシートを得た。
 次に、同時二軸テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、MD倍率7.0倍、TD倍率6.1倍、設定温度119℃とした。
 次に、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
 次に、TDテンターに導き、熱固定を行った。熱固定温度は127℃で、TD最大倍率を2.0倍、緩和率は0.9とした。得られたポリオレフィン樹脂多孔膜の物性を表4に記す。
 次に、水酸化酸化アルミニウム(平均粒径1.0μm)を92.0質量部とアクリルラテックス懸濁液(固形分濃度40%、平均粒径150nm)8.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ製SNディスパーサント5468)1.0重量部を100質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。得られた多層多孔層の物性を表4に記す。
[実施例17]
 実施例16で得られたポリオレフィン樹脂多孔膜の表面に水酸化酸化アルミニウムのかわりに焼成カオリン(カオリナイト(AlSi(OH))を主成分とする湿式カオリンを高温焼成処理したもの、平均粒径1.8μm)を主体とした塗工層を形成した。焼成カオリンを90.0質量部とアクリルラテックス懸濁液(固形分濃度40%、平均粒径150nm)10.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ製SNディスパーサント5468)0.5重量部を180質量部の水に均一に分散させて塗布液を調製し、実施例14で作製したポリオレフィン樹脂多孔膜の表面にグラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。得られたポリオレフィン樹脂多孔膜および多層多孔層の物性を表4に記す。
[実施例18]
 熱固定温度を121℃に変更した以外は、実施例16と同様にして多層多孔膜を得た。得られたポリオレフィン樹脂多孔膜および多層多孔層の物性を表4に記す。
[実施例19]
 バインダを平均粒径60nmのアクリルラテックス懸濁液(固形分濃度40%、平均粒径60nm)に変更した以外は実施例18と同様にして多層多孔膜を得た。得られたポリオレフィン樹脂多孔膜および多層多孔層の物性を表4に記す。
[実施例20]
 バインダを平均粒径460nmのアクリルラテックス懸濁液(固形分濃度40%、平均粒径460nm)に変更した以外は実施例18と同様にして多層多孔膜を得た。得られたポリオレフィン樹脂多孔膜および多層多孔層の物性を表4に記す。
[実施例21]
 TDテンターにて熱固定を実施しなかったこと以外は実施例16と同様にして多層多孔膜を得た。得られたポリオレフィン樹脂多孔膜および多層多孔層の物性を表4に記す。
[実施例22]
 Mv25万のホモポリマーのポリエチレン95質量部とMv40万のホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドした。純ポリマー99wt%に酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1wt%添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が62wt%(PC量が38%)となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数100rpm、吐出量12kg/hで行った。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚み1250μmのゲルシートを得た。
 次に、同時二軸テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、MD倍率7.0倍、TD倍率5.2倍、設定温度123℃とした。
 次に、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
 次に、TDテンターに導き、熱固定を行った。熱固定温度は125℃で、TD最大倍率を3.5倍、緩和率は0.94とした。得られたポリオレフィン樹脂多孔膜の物性を表4に記す。
 次に、水酸化酸化アルミニウム(平均粒径1.0μm)を92.0質量部とアクリルラテックス懸濁液(固形分濃度40%、平均粒径150nm)8.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ製SNディスパーサント5468)1.0重量部を100質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ6μmの多孔層を形成した多層多孔膜を得た。得られた多層多孔層の物性を表4に記す。
[実施例23]
 Mv25万のホモポリマーのポリエチレン26質量部、Mv200万のホモポリマーのポリエチレン16質量部、平均一次粒径が15nmであるシリカ「DM10C」(商標、(株)トクヤマ製 ジメチルジクロロシランで疎水処理実施)を8質量部、可塑剤として流動パラフィン「スモイル P-350P」(商標、(株)松村石油研究所製)を10質量部、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをスーパーミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物(100質量部)中に占める流動パラフィン量比が65質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度25℃に制御された冷却ロール間に押出し、厚み1100μmのシート状のポリオレフィン組成物を得た。次に、同時二軸テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、MD倍率7.0倍、TD倍率6.2倍、設定温度122℃とした。次に塩化メチレン槽に導き、十分に塩化メチレンに浸漬して流動パラフィンを抽出除去した。その後塩化メチレンの乾燥を行った。次に、TDテンターに導き、熱固定を行った。熱固定温度は127℃で、TD最大倍率を2.0倍、緩和率は0.9とした。得られたポリオレフィン樹脂多孔膜の物性を表4に記す。
 次に、水酸化酸化アルミニウム(平均粒径1.0μm)を92.0質量部とアクリルラテックス懸濁液(固形分濃度40%、平均粒径150nm)8.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ製SNディスパーサント5468)1.0重量部を100質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。得られた多層多孔層の物性を表4に記す。
[実施例24]
 実施例18で得られたポリオレフィン樹脂多孔膜の両表面に水酸化酸化アルミニウムを主体とした塗工層を形成した。水酸化酸化アルミニウム(平均粒径1.0μm)を92.0質量部とアクリルラテックス懸濁液(固形分濃度40%、平均粒径150nm)8.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ製SNディスパーサント5468)1.0重量部を100質量部の水に均一に分散させて塗布液を調製し、実施例16で得られたポリオレフィン樹脂多孔膜の片表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ4μmの多孔層を形成した。次に、もう一方の表面に同様の手法で厚さ4μmの多孔層を形成し、3層の多層多孔膜を得た。得られたポリオレフィン樹脂多孔膜および多層多孔層の物性を表4に記す。
[比較例24]
 バインダとしてポリビニルアルコールを用いて塗工層を形成した。ポリビニルアルコール(平均重合度1700、ケン化度99%以上)3.5質量部を150質量部の水に均一溶解させた後、そこに水酸化酸化アルミニウム(平均粒径1.8μm)96.5質量部を添加し均一に分散させて塗布液を調製し、実施例18で得られたポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。得られたポリオレフィン樹脂多孔膜および多層多孔層の物性を表5に記す。
[比較例25]
 バインダとしてポリフッ化ビニリデンコポリマーを用いて塗工層を形成した。ポリフッ化ビニリデン(PVdF)-ヘキサフルオロプロピレン(HFP)共重合体溶液(HFP1mol%、5wt%NMP溶液、)150重量部に水酸化酸化アルミニウム(平均粒径1.8μm)100質量部を添加し均一に分散させて塗布液を調製し、実施例16で得られたポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。これを水浴に浸漬した後、60℃の温水にてNMPを洗浄後、乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。得られたポリオレフィン樹脂多孔膜および多層多孔層の物性を表5に記す。
[比較例26]
 バインダを平均粒径600nmのアクリルラテックス懸濁液(固形分濃度40%、平均粒径600nm)に変更した以外は実施例18と同様にして多層多孔膜を得た。得られたポリオレフィン樹脂多孔膜および多層多孔層の物性を表5に記す。
[比較例27]
 バインダを平均粒径40nmのアクリルラテックス懸濁液(固形分濃度40%、平均粒径40nm)に変更した以外は実施例18と同様にして多層多孔膜を得た。得られたポリオレフィン樹脂多孔膜および多層多孔層の物性を表5に記す。
[比較例28]
 熱固定温度を133℃に、TD最大倍率を2.6倍、緩和率は0.96に変更した以外は、実施例16と同様にして多層多孔膜を得た。得られたポリオレフィン樹脂多孔膜および多層多孔層の物性を表5に記す。
[比較例29]
 Mv70万のホモポリマーのポリエチレン47.5質量部とMv25万のホモポリマーのポリエチレン47.5質量部とMv40万のホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られた純ポリマー混合物99質量%に、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量%添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、可塑剤として流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。溶融混練し、押し出される全混合物中に占める流動パラフィン量比が68質量%となるように、フィーダーおよびポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hで行った。
 続いて、溶融混練物を、Tダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚さ1300μmのシート状のポリオレフィン組成物を得た。
 次に同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に6.1倍に同時二軸延伸を行った。この時、同時二軸テンターの設定温度は117℃であった。次にメチルエチルケトン槽に導き、流動パラフィンを抽出除去した後、メチルエチルケトンを乾燥除去した。次に、TDテンターに導き、熱固定を行った。熱固定温度は122℃で、TD最大倍率を1.4倍、緩和率は0.85とした。得られたポリオレフィン樹脂多孔膜の物性を表5に記す。
 次に、水酸化酸化アルミニウム(平均粒径1.0μm)を92.0質量部とアクリルラテックス懸濁液(固形分濃度40%、平均粒径150nm)8.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ製SNディスパーサント5468)1.0重量部を100質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。得られた多層多孔層の物性を表5に記す。
[比較例30]
 Mv70万のホモポリマーのポリエチレン47質量部とMv25万のホモポリマーのポリエチレン46質量部とMv40万のホモポリマーのポリプロピレン7質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られた純ポリマー混合物99質量%に、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量%添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、可塑剤として流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。溶融混練し、押し出される全混合物中に占める流動パラフィン量比が65質量%となるように、フィーダーおよびポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hで行った。
 続いて、溶融混練物を、Tダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚さ1700μmのシート状のポリオレフィン組成物を得た。
 次に同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に6.1倍に同時二軸延伸を行った。この時、同時二軸テンターの設定温度は125℃であった。次にメチルエチルケトン槽に導き、流動パラフィンを抽出除去した後、メチルエチルケトンを乾燥除去した。次に、TDテンターに導き、熱固定を行った。熱固定温度は125℃で、TD最大倍率を1.7倍、緩和率は0.82とした。得られたポリオレフィン樹脂多孔膜の物性を表5に記す。
 次に、水酸化酸化アルミニウム(平均粒径1.0μm)を92.0質量部とアクリルラテックス懸濁液(固形分濃度40%、平均粒径150nm)8.0質量部、ポリカルボン酸アンモニウム水溶液(サンノプコ製SNディスパーサント5468)1.0重量部を100質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ7μmの多孔層を形成した多層多孔膜を得た。得られた多層多孔層の物性を表5に記す。
 図1に実施例16および比較例24の昇温速度2℃/min時におけるシャットダウン測定のグラフを、図2に実施例16および比較例24の昇温速度18℃/min時におけるシャットダウン測定のグラフを示す。昇温速度が2℃/minの場合は、実施例16と比較例24は同程度のシャットダウン速度(実施例14:24秒、比較例22:24秒)を示したが、昇温速度が18℃/minの場合は、シャットダウン速度に違いが見られ(実施例14:8.7秒、比較例22:21秒)、昇温速度が速い場合、実施例16は短時間でシャットダウン挙動を示すことがわかる。
 図3に実施例16の釘刺評価結果のグラフを、図4に比較例24の釘刺評価結果のグラフを示す。実施例16は発火に至らず、比較例24は発火、爆発に至った。実施例16のセル外表面温度は60℃前後であったが、釘刺評価終了後にセルを解体し確認したところ、釘刺し周辺部においてシャットダウン挙動が確認されたことから、釘周辺部では急激にポリオレフィンの融点以上へ温度上昇が起きたと推察される。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4に実施例16~24の諸特性を、表5に比較例24~30の諸特性を示す。
 実施例18~20は、バインダがラテックス状ではない比較例24,25に対してレート特性、釘刺安全性に優れていることがわかる。さらにラテックスバインダを使用した場合、比較例26(平均粒径600nm)、比較例27(平均粒径40nm)は釘刺安全性に劣り、平均粒径による差異が明確である。
 一方、比較例29,30は釘刺評価に優れるものの、レート特性は顕著に劣り気孔率の寄与が明確である。また比較例28は多孔膜の孔数が少なく、レート特性と安全性に劣る。
 実施例16~24においては、レート特性と釘刺安全性の両立が示され、非水電解液電池用セパレータとして使用可能なものであることが確認できた。
3 セパレータ
11 正極シート
12 アルミニウム箔
21 負極シート
22 銅箔
 本出願は、2012年3月28日に日本国特許庁へ出願された日本特許出願(特願2012-074669、2012-074689)、及び2012年4月11日に日本国特許庁へ出願された日本特許出願(特願2012-090420、2012-090470)に基づくものであり、その内容はここに参照として取り込まれる。
 また、本実施形態における多孔膜及び多層多孔膜は出力特性に優れており、特に高出力用途のリチウムイオン二次電池やリチウムイオンキャパシターのセパレータとしての産業上の利用可能性を有する。

Claims (14)

  1.  ポリオレフィン樹脂を主成分とする多孔膜と、前記多孔膜の少なくとも片面に積層された無機フィラーと樹脂製バインダを含む多孔層と、を有する多層多孔膜であって、
     前記多孔膜の、気液法によって算出した平均孔径d、曲路率τa、及び孔数Bが、それぞれd=0.035~0.060μm、τa=1.1~1.7、B=100~500個/μmであり、かつ前記多孔膜の膜厚LがL=5~22μmである、多層多孔膜。
  2.  前記多孔膜の気孔率εがε=50~90%である、請求項1記載の多層多孔膜。
  3.  前記多孔膜が、ポリプロピレンと、ポリプロピレン以外のポリオレフィンとを含む樹脂組成物を含有する、請求項1又は2記載の多層多孔膜。
  4.  前記樹脂組成物中の総ポリオレフィンに対するポリプロピレンの割合が、1~35質量%である、請求項3記載の多層多孔膜。
  5.  請求項1~4のいずれか1項記載の多層多孔膜からなる非水電解液電池用セパレータ。
  6.  請求項5記載の非水電解液電池用セパレータと、正極と、負極と、電解液とを有する、非水電解液電池。
  7.  ポリオレフィン樹脂を主成分とする多孔膜であって、
     前記多孔膜の気孔率εがε=50~90%であり、かつ前記多孔膜の85℃における収縮応力が2.2gf以下である、多孔膜。
  8.  請求項7記載の多孔膜と、前記多孔膜の少なくとも片面に積層された無機フィラーと樹脂製バインダを含む多孔層と、を有する多層多孔膜。
  9.  前記多孔層の厚みが3μm以上50μm以下である、請求項8記載の多層多孔膜。
  10.  請求項7記載の多孔膜或いは請求項8又は9記載の多層多孔膜からなる非水電解液電池用セパレータ。
  11.  請求項10記載の非水電解液電池用セパレータと、正極と、負極と、電解液とを有する、非水電解液電池。
  12.  ポリオレフィン樹脂を主成分とする多孔膜(A)の少なくとも片面に、無機フィラーと樹脂製バインダとを含む多孔層(B)が積層された多層多孔膜であって、
     前記多孔膜(A)の気孔率が50%以上90%以下、孔数が100個/μm以上500個/μm以下であり、
     前記多孔層(B)における樹脂製バインダが、平均粒径が50nm以上500nm以下の樹脂製ラテックスバインダである多層多孔膜。
  13.  請求項12記載の多層多孔膜からなる非水電解液電池用セパレータ。
  14.  請求項13記載の非水電解液電池用セパレータと、正極と、負極と、電解液とを有する、非水電解液電池。
PCT/JP2013/059355 2012-03-28 2013-03-28 多孔膜及び多層多孔膜 WO2013147071A1 (ja)

Priority Applications (15)

Application Number Priority Date Filing Date Title
EP16201651.3A EP3179535B1 (en) 2012-03-28 2013-03-28 Porous film and multilayer porous film
PL13769838T PL2833439T3 (pl) 2012-03-28 2013-03-28 Membrana porowata i wielowarstwowa membrana porowata
PL16201651T PL3179535T3 (pl) 2012-03-28 2013-03-28 Porowata membrana i wielowarstwowa porowata membrana
PL16201654T PL3179536T3 (pl) 2012-03-28 2013-03-28 Porowata membrana i wielowarstwowa porowata membrana
EP13769838.7A EP2833439B1 (en) 2012-03-28 2013-03-28 Porous film and multilayer porous film
KR1020177020400A KR101840616B1 (ko) 2012-03-28 2013-03-28 다공막 및 다층 다공막
CN201380017992.2A CN104205419B (zh) 2012-03-28 2013-03-28 多孔膜及多层多孔膜
KR1020177020402A KR101870098B1 (ko) 2012-03-28 2013-03-28 다공막 및 다층 다공막
JP2014508051A JP6120828B2 (ja) 2012-03-28 2013-03-28 多孔膜及び多層多孔膜
EP16201654.7A EP3179536B1 (en) 2012-03-28 2013-03-28 Porous film and multilayer porous film
KR1020147026416A KR20140131544A (ko) 2012-03-28 2013-03-28 다공막 및 다층 다공막
US14/387,975 US9627672B2 (en) 2012-03-28 2013-03-28 Separator for nonaqueous electrolyte batteries containing a porous membrane
KR1020177007799A KR101833693B1 (ko) 2012-03-28 2013-03-28 다공막 및 다층 다공막
US15/462,790 US9911959B2 (en) 2012-03-28 2017-03-17 Porous membrane and multilayer porous membrane
US15/462,794 US9911960B2 (en) 2012-03-28 2017-03-17 Porous membrane and multilayer porous membrane

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012074669 2012-03-28
JP2012-074689 2012-03-28
JP2012074689 2012-03-28
JP2012-074669 2012-03-28
JP2012-090420 2012-04-11
JP2012090420 2012-04-11
JP2012090470 2012-04-11
JP2012-090470 2012-04-11

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/387,975 A-371-Of-International US9627672B2 (en) 2012-03-28 2013-03-28 Separator for nonaqueous electrolyte batteries containing a porous membrane
US15/462,794 Division US9911960B2 (en) 2012-03-28 2017-03-17 Porous membrane and multilayer porous membrane
US15/462,790 Division US9911959B2 (en) 2012-03-28 2017-03-17 Porous membrane and multilayer porous membrane

Publications (1)

Publication Number Publication Date
WO2013147071A1 true WO2013147071A1 (ja) 2013-10-03

Family

ID=49260314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059355 WO2013147071A1 (ja) 2012-03-28 2013-03-28 多孔膜及び多層多孔膜

Country Status (9)

Country Link
US (3) US9627672B2 (ja)
EP (3) EP3179535B1 (ja)
JP (2) JP6120828B2 (ja)
KR (4) KR20140131544A (ja)
CN (3) CN104205419B (ja)
HU (3) HUE052426T2 (ja)
PL (3) PL3179536T3 (ja)
TW (2) TWI629176B (ja)
WO (1) WO2013147071A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115723A1 (ja) 2013-01-22 2014-07-31 旭化成株式会社 リチウムイオンキャパシタ
JP2015120786A (ja) * 2013-12-20 2015-07-02 東レバッテリーセパレータフィルム株式会社 微多孔膜およびそれを用いてなるセパレータ
KR20160015006A (ko) * 2014-07-30 2016-02-12 에스케이이노베이션 주식회사 폴리올레핀계 다층 복합 다공막의 제조방법
JP2016072155A (ja) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータの製造方法
JP2016139489A (ja) * 2015-01-26 2016-08-04 旭化成株式会社 電池用セパレータ、及び非水電解液電池
JP2016139490A (ja) * 2015-01-26 2016-08-04 旭化成株式会社 電池用セパレータ、及び非水電解液電池
JP2016155385A (ja) * 2014-02-18 2016-09-01 住友化学株式会社 積層多孔質フィルムおよび非水電解液二次電池
WO2019009121A1 (ja) * 2017-07-07 2019-01-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池素子およびリチウムイオン二次電池
WO2021006357A1 (ja) 2019-07-10 2021-01-14 旭化成株式会社 多層多孔膜
JPWO2020148946A1 (ja) * 2019-01-15 2021-12-02 東レ株式会社 ポリオレフィン微多孔膜の製造方法
JP7551328B2 (ja) 2020-05-01 2024-09-17 旭化成株式会社 蓄電デバイス用積層セパレータ、及び蓄電デバイス

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9348492B1 (en) * 2011-04-22 2016-05-24 Angel A. Penilla Methods and systems for providing access to specific vehicle controls, functions, environment and applications to guests/passengers via personal mobile devices
US10572123B2 (en) * 2011-04-22 2020-02-25 Emerging Automotive, Llc Vehicle passenger controls via mobile devices
KR20140131544A (ko) * 2012-03-28 2014-11-13 아사히 가세이 이-매터리얼즈 가부시키가이샤 다공막 및 다층 다공막
PL3016175T3 (pl) 2013-06-27 2019-05-31 Asahi Chemical Ind Separator dla baterii z niewodnym elektrolitem oraz bateria z niewodnym elektrolitem
US9647256B2 (en) * 2013-10-15 2017-05-09 Sony Corporation Battery, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and power system
US10056589B2 (en) * 2013-10-31 2018-08-21 Lg Chem, Ltd. Method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby
CN104393215B (zh) * 2014-12-01 2017-01-04 天津工业大学 组分比例呈梯度连续变化的多层多孔电池隔膜及其制备方法
WO2017018483A1 (ja) * 2015-07-29 2017-02-02 東レバッテリーセパレータフィルム株式会社 電池用セパレータおよびその製造方法
JP6448498B2 (ja) * 2015-08-04 2019-01-09 日本ゴア株式会社 回路基板製造プロセス液用精密フィルタ
JP6305961B2 (ja) * 2015-08-04 2018-04-04 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
KR20180000561A (ko) * 2016-06-23 2018-01-03 에스케이이노베이션 주식회사 내열성 및 전해액 함침성이 우수한 세퍼레이터
WO2018029832A1 (ja) * 2016-08-10 2018-02-15 日産自動車株式会社 非水電解質二次電池
WO2018055882A1 (ja) * 2016-09-21 2018-03-29 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP6496762B2 (ja) * 2017-03-03 2019-04-03 住友化学株式会社 非水電解液二次電池用セパレータ
EP3598543A4 (en) * 2017-03-13 2021-01-06 Zeon Corporation Sludge composition for functional layers for water-free secondary batteries, functional layer for water-free secondary batteries and water-free secondary batteries
KR101918448B1 (ko) 2017-04-28 2018-11-13 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 절연성 다공질층
JP6567126B2 (ja) 2017-04-28 2019-08-28 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層
WO2019103011A1 (ja) * 2017-11-21 2019-05-31 旭化成株式会社 蓄電デバイス用セパレータ及び蓄電デバイス
EP3719865A4 (en) * 2017-11-28 2021-01-13 Asahi Kasei Kabushiki Kaisha SEPARATOR FOR ENERGY STORAGE DEVICE AND METHOD FOR MANUFACTURING THEREOF, AND ENERGY STORAGE DEVICE AND METHOD FOR MANUFACTURING THEREOF
CN108346764A (zh) * 2017-12-12 2018-07-31 北方华锦化学工业股份有限公司 一种干法双向拉伸锂电池隔膜的制备方法
KR102211371B1 (ko) * 2018-02-12 2021-02-03 삼성에스디아이 주식회사 리튬이차전지용 분리막 및 이를 포함하는 리튬이차전지
CN110364667B (zh) * 2018-04-11 2022-04-22 宁德新能源科技有限公司 多孔膜和锂离子电池
EP4404367A3 (en) 2018-06-22 2024-08-07 LG Energy Solution, Ltd. Separator for electrochemical device and electrochemical device comprising same
CN112514152B (zh) * 2018-08-10 2023-07-14 日本瑞翁株式会社 非水系二次电池粘接层用浆料组合物、粘接层、间隔件以及非水系二次电池
JP7235486B2 (ja) * 2018-11-28 2023-03-08 旭化成株式会社 ポリオレフィン微多孔膜
KR20200065814A (ko) * 2018-11-30 2020-06-09 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지 전지
CN113631644A (zh) * 2019-03-29 2021-11-09 东丽株式会社 聚烯烃微多孔膜、电池用隔板、二次电池和聚烯烃微多孔膜的制造方法
JP7380553B2 (ja) * 2019-03-29 2023-11-15 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
JP7262283B2 (ja) * 2019-04-16 2023-04-21 住友化学株式会社 非水電解液二次電池用多孔質層
JP7351906B2 (ja) * 2019-05-13 2023-09-27 旭化成株式会社 蓄電デバイス用セパレータ及び蓄電デバイス
KR20220041777A (ko) 2019-07-25 2022-04-01 도레이 카부시키가이샤 폴리올레핀 미다공막, 및 비수전해액 이차전지용 세퍼레이터
JP7473641B2 (ja) * 2019-11-05 2024-04-23 クレオニア・セルズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 多孔質フィルムの製造方法
MX2022013666A (es) * 2020-05-01 2022-11-30 Celanese Int Corp Copolimero con temperatura de bloqueo reducida y articulos fabricados con el mismo.
KR20230056023A (ko) 2020-08-24 2023-04-26 셀라니즈 인터내셔날 코포레이션 좁은 분자량 분포를 갖는 고밀도 폴리에틸렌으로 제조된 겔 압출 물품
KR20240060250A (ko) * 2022-10-28 2024-05-08 에스케이온 주식회사 이차전지용 분리막, 이의 제조방법 및 리튬 이차전지

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210794A (ja) * 2007-01-30 2008-09-11 Asahi Kasei Chemicals Corp 多層多孔膜及びその製造方法
JP2009026733A (ja) * 2007-01-30 2009-02-05 Asahi Kasei Chemicals Corp 多層多孔膜及びその製造方法
JP2009129668A (ja) * 2007-11-22 2009-06-11 Asahi Kasei Chemicals Corp 多層多孔膜
JP2010240936A (ja) * 2009-04-03 2010-10-28 Asahi Kasei E-Materials Corp 多層多孔膜
WO2010134585A1 (ja) * 2009-05-21 2010-11-25 旭化成イーマテリアルズ株式会社 多層多孔膜
JP4789274B2 (ja) 2007-06-06 2011-10-12 旭化成イーマテリアルズ株式会社 多層多孔膜
JP2011210574A (ja) 2010-03-30 2011-10-20 Teijin Ltd ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池
WO2012002451A1 (ja) * 2010-06-29 2012-01-05 日本ゼオン株式会社 二次電池負極用水系バインダー組成物
JP2012048918A (ja) * 2010-08-25 2012-03-08 Sony Corp セパレータおよびこれを用いた非水電解質電池

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411139A (en) * 1987-07-03 1989-01-13 Kao Corp Microporous film and production thereof
EP0690881B1 (en) 1993-03-26 1999-04-21 W.L. Gore & Associates, Inc. Process for the preparation of coated articles and the use thereof
JPH11130900A (ja) 1997-10-27 1999-05-18 Asahi Chem Ind Co Ltd ポリエチレン微多孔膜
KR100599898B1 (ko) 2002-08-28 2006-07-19 아사히 가세이 케미칼즈 가부시키가이샤 폴리올레핀제 미다공막 및 그의 평가 방법
US10615388B2 (en) * 2006-03-22 2020-04-07 Celgard, Llc Membrane made of a blend of UHMW polyolefins
JP5172683B2 (ja) 2006-09-20 2013-03-27 旭化成イーマテリアルズ株式会社 ポリオレフィン微多孔膜及び非水電解液電池用セパレータ
EP2116372B1 (en) 2007-01-30 2018-03-28 Asahi Kasei Kabushiki Kaisha Multilayer porous membrane and production method thereof
KR101093858B1 (ko) 2008-09-03 2011-12-13 주식회사 엘지화학 다공성 코팅층을 구비한 세퍼레이터 및 이를 구비한 전기화학소자
JP5154349B2 (ja) * 2008-09-09 2013-02-27 日東電工株式会社 電池用セパレータとその製造方法、並びに、リチウムイオン二次電池とその製造方法
JP2010107248A (ja) * 2008-10-28 2010-05-13 Aion Kk ブロッティング装置及びブロッティング方法
PL2672546T3 (pl) * 2009-03-09 2018-08-31 Asahi Kasei Kabushiki Kaisha Mikroporowata membrana poliolefinowa
JP5420938B2 (ja) * 2009-03-13 2014-02-19 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
JP5323590B2 (ja) 2009-06-19 2013-10-23 旭化成イーマテリアルズ株式会社 多層多孔膜、樹脂製バインダおよび塗布液
US20110223486A1 (en) * 2010-03-12 2011-09-15 Xiaomin Zhang Biaxially oriented porous membranes, composites, and methods of manufacture and use
JP5512461B2 (ja) 2010-08-10 2014-06-04 旭化成イーマテリアルズ株式会社 微多孔性フィルム及び電池用セパレータ
CN103069553B (zh) 2010-08-31 2015-08-19 住友化学株式会社 半导体基板、绝缘栅极型场效应晶体管以及半导体基板的制造方法
JP2012074669A (ja) 2010-08-31 2012-04-12 Kyocera Corp 太陽電池の製造方法
WO2012049748A1 (ja) * 2010-10-13 2012-04-19 トヨタ自動車株式会社 非水電解液リチウム二次電池
JP2012090420A (ja) 2010-10-19 2012-05-10 Toshiba Corp 半導体スイッチ及び充電回路
JP5707846B2 (ja) 2010-10-21 2015-04-30 富士電機株式会社 電力変換装置
JP5942127B2 (ja) * 2010-11-08 2016-06-29 旭化成株式会社 ポリオレフィン微多孔膜、及び蓄電デバイス
KR20140131544A (ko) * 2012-03-28 2014-11-13 아사히 가세이 이-매터리얼즈 가부시키가이샤 다공막 및 다층 다공막

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210794A (ja) * 2007-01-30 2008-09-11 Asahi Kasei Chemicals Corp 多層多孔膜及びその製造方法
JP2009026733A (ja) * 2007-01-30 2009-02-05 Asahi Kasei Chemicals Corp 多層多孔膜及びその製造方法
JP4789274B2 (ja) 2007-06-06 2011-10-12 旭化成イーマテリアルズ株式会社 多層多孔膜
JP2009129668A (ja) * 2007-11-22 2009-06-11 Asahi Kasei Chemicals Corp 多層多孔膜
JP2010240936A (ja) * 2009-04-03 2010-10-28 Asahi Kasei E-Materials Corp 多層多孔膜
WO2010134585A1 (ja) * 2009-05-21 2010-11-25 旭化成イーマテリアルズ株式会社 多層多孔膜
JP2011210574A (ja) 2010-03-30 2011-10-20 Teijin Ltd ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池
WO2012002451A1 (ja) * 2010-06-29 2012-01-05 日本ゼオン株式会社 二次電池負極用水系バインダー組成物
JP2012048918A (ja) * 2010-08-25 2012-03-08 Sony Corp セパレータおよびこれを用いた非水電解質電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833439A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150080596A (ko) 2013-01-22 2015-07-09 아사히 가세이 가부시키가이샤 리튬 이온 캐패시터
WO2014115723A1 (ja) 2013-01-22 2014-07-31 旭化成株式会社 リチウムイオンキャパシタ
US10242807B2 (en) 2013-01-22 2019-03-26 Asahi Kasei Kabushiki Kaisha Lithium ion capacitor
JP2015120786A (ja) * 2013-12-20 2015-07-02 東レバッテリーセパレータフィルム株式会社 微多孔膜およびそれを用いてなるセパレータ
US10290849B2 (en) 2014-02-18 2019-05-14 Sumitomo Chemical Company, Limited Laminated porous film and non-aqueous electrolyte secondary cell
JP2016155385A (ja) * 2014-02-18 2016-09-01 住友化学株式会社 積層多孔質フィルムおよび非水電解液二次電池
KR20160015006A (ko) * 2014-07-30 2016-02-12 에스케이이노베이션 주식회사 폴리올레핀계 다층 복합 다공막의 제조방법
JP2016032934A (ja) * 2014-07-30 2016-03-10 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. ポリオレフィン系多層複合多孔膜の製造方法
KR102299957B1 (ko) 2014-07-30 2021-09-08 에스케이이노베이션 주식회사 폴리올레핀계 다층 복합 다공막의 제조방법
JP2016072155A (ja) * 2014-09-30 2016-05-09 旭化成イーマテリアルズ株式会社 蓄電デバイス用セパレータの製造方法
JP2016139489A (ja) * 2015-01-26 2016-08-04 旭化成株式会社 電池用セパレータ、及び非水電解液電池
JP2016139490A (ja) * 2015-01-26 2016-08-04 旭化成株式会社 電池用セパレータ、及び非水電解液電池
JP2019016522A (ja) * 2017-07-07 2019-01-31 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池素子およびリチウムイオン二次電池
WO2019009121A1 (ja) * 2017-07-07 2019-01-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池素子およびリチウムイオン二次電池
JPWO2020148946A1 (ja) * 2019-01-15 2021-12-02 東レ株式会社 ポリオレフィン微多孔膜の製造方法
JP7234949B2 (ja) 2019-01-15 2023-03-08 東レ株式会社 ポリオレフィン微多孔膜の製造方法
WO2021006357A1 (ja) 2019-07-10 2021-01-14 旭化成株式会社 多層多孔膜
KR20220018549A (ko) 2019-07-10 2022-02-15 아사히 가세이 가부시키가이샤 다층 다공막
JP2022100309A (ja) * 2019-07-10 2022-07-05 旭化成株式会社 多層多孔膜
KR20240144402A (ko) 2019-07-10 2024-10-02 아사히 가세이 가부시키가이샤 다층 다공막
JP7551328B2 (ja) 2020-05-01 2024-09-17 旭化成株式会社 蓄電デバイス用積層セパレータ、及び蓄電デバイス

Also Published As

Publication number Publication date
US9627672B2 (en) 2017-04-18
US20150050545A1 (en) 2015-02-19
KR20170089032A (ko) 2017-08-02
PL2833439T3 (pl) 2018-04-30
KR20140131544A (ko) 2014-11-13
KR101840616B1 (ko) 2018-03-20
PL3179535T3 (pl) 2020-12-14
TW201713500A (zh) 2017-04-16
US20170194612A1 (en) 2017-07-06
JP6120828B2 (ja) 2017-04-26
CN104205419A (zh) 2014-12-10
JP6309661B2 (ja) 2018-04-11
US9911960B2 (en) 2018-03-06
PL3179536T3 (pl) 2021-06-14
KR20170034946A (ko) 2017-03-29
TW201343408A (zh) 2013-11-01
US20170194613A1 (en) 2017-07-06
EP3179535A1 (en) 2017-06-14
TWI629176B (zh) 2018-07-11
CN107053774A (zh) 2017-08-18
CN104205419B (zh) 2017-04-12
KR20170089031A (ko) 2017-08-02
JPWO2013147071A1 (ja) 2015-12-14
HUE052426T2 (hu) 2021-04-28
US9911959B2 (en) 2018-03-06
EP3179536A1 (en) 2017-06-14
EP2833439B1 (en) 2017-09-06
EP2833439A1 (en) 2015-02-04
EP3179536B1 (en) 2020-12-16
HUE035696T2 (en) 2018-05-28
HUE051427T2 (hu) 2021-03-01
CN107093690A (zh) 2017-08-25
KR101870098B1 (ko) 2018-06-22
KR101833693B1 (ko) 2018-02-28
TWI619611B (zh) 2018-04-01
JP2017140840A (ja) 2017-08-17
EP2833439A4 (en) 2016-06-22
EP3179535B1 (en) 2020-07-01
CN107093690B (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
JP6309661B2 (ja) 多孔膜及び多層多孔膜
JP4789274B2 (ja) 多層多孔膜
JP6425484B2 (ja) 電池用セパレータ
JP5511214B2 (ja) 多層多孔膜
JP6345660B2 (ja) 非水系電解液電池用セパレータ及び非水電解液電池
JP5196969B2 (ja) 多層多孔膜
JP6382051B2 (ja) 蓄電デバイス用セパレータ
JP2012221889A (ja) 多層多孔膜用共重合体組成物
JP6378998B2 (ja) 蓄電デバイス用セパレータの製造方法
JP6412760B2 (ja) 蓄電デバイス用セパレータ
JP2011005670A (ja) 多層多孔膜
JP6426422B2 (ja) 蓄電デバイス用セパレータ及び非水電解液電池
JP2020116925A (ja) ポリオレフィン微多孔膜を備える多層多孔膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508051

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147026416

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14387975

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013769838

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013769838

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE