WO2018055882A1 - 非水系二次電池用セパレータ及び非水系二次電池 - Google Patents

非水系二次電池用セパレータ及び非水系二次電池 Download PDF

Info

Publication number
WO2018055882A1
WO2018055882A1 PCT/JP2017/025813 JP2017025813W WO2018055882A1 WO 2018055882 A1 WO2018055882 A1 WO 2018055882A1 JP 2017025813 W JP2017025813 W JP 2017025813W WO 2018055882 A1 WO2018055882 A1 WO 2018055882A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous layer
resin
separator
mass
porous
Prior art date
Application number
PCT/JP2017/025813
Other languages
English (en)
French (fr)
Inventor
貴 中広
本多 勧
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2017554611A priority Critical patent/JP6334071B1/ja
Priority to KR1020197003617A priority patent/KR102434168B1/ko
Priority to CN201780048839.4A priority patent/CN109565021B/zh
Publication of WO2018055882A1 publication Critical patent/WO2018055882A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/21Paper; Textile fabrics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/12Coating on the layer surface on paper layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/33Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/26Presence of textile or fabric
    • C09J2400/263Presence of textile or fabric in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/28Presence of paper
    • C09J2400/283Presence of paper in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2427/00Presence of halogenated polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a non-aqueous secondary battery and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries represented by lithium ion secondary batteries are widely used as power sources for portable electronic devices such as notebook computers, mobile phones, digital cameras, and camcorders.
  • portable electronic devices such as notebook computers, mobile phones, digital cameras, and camcorders.
  • the non-aqueous secondary battery exterior has been simplified and reduced in weight, and aluminum cans have been developed instead of stainless steel cans as exterior materials.
  • packs made of aluminum laminate film have been developed.
  • an aluminum laminate film pack is soft, a battery (so-called soft pack battery) using the pack as an outer packaging material (a so-called soft pack battery) has an electrode and a separator formed by impact from the outside or expansion and contraction of the electrode accompanying charge / discharge. A gap is easily formed between the two, and the cycle life of the battery may be reduced.
  • dry heat press heat press treatment without impregnating the electrolyte in the separator
  • the laminate in which the separator is disposed between the positive electrode and the negative electrode for the purpose of improving the manufacturing yield of the battery. May be applied.
  • a separator excellent in adhesion between the positive electrode and the negative electrode by dry heat press is desired.
  • the present disclosure is a separator provided with a porous layer containing a polyvinylidene fluoride resin on both surfaces of a porous substrate, and is excellent in adhesion to a positive electrode and a negative electrode by dry heat press. It aims at providing the separator for batteries, and makes it a subject to solve this.
  • the present disclosure provides, as a second embodiment, a separator provided with an adhesive porous layer containing a polyvinylidene fluoride-based resin, which is excellent in adhesion to an electrode by dry heat press, for a non-aqueous secondary battery.
  • the purpose is to solve this.
  • the first form of the present disclosure includes the following forms.
  • a second porous layer comprising a layer, and a porous layer provided on the other surface of the porous substrate, the polyvinylidene fluoride resin and a resin having a glass transition temperature of 30 ° C. to 120 ° C. And a separator for a non-aqueous secondary battery.
  • the second porous layer wherein the polyvinylidene fluoride resin and the resin having a glass transition temperature of 30 ° C. to 120 ° C. are included in a compatible state. Separator for non-aqueous secondary battery.
  • the content of the resin having a glass transition temperature of 30 ° C. to 120 ° C. in the second porous layer is 5% by mass to 50% by mass of the total amount of all resins contained in the second porous layer. %, The separator for non-aqueous secondary batteries according to [1] or [2].
  • the first porous layer further contains an inorganic filler, and the content of the inorganic filler in the first porous layer is the total resin and the inorganic contained in the first porous layer.
  • the second porous layer further contains an inorganic filler, and the content of the inorganic filler in the second porous layer is the total resin and the inorganic contained in the second porous layer.
  • the resin having a glass transition temperature of 30 ° C. to 120 ° C. is at least one selected from the group consisting of acrylic resins, vinyl acetate resins and vinyl chloride resins.
  • the separator for non-aqueous secondary batteries in any one of. [7] A positive electrode, a negative electrode, and the separator for a nonaqueous secondary battery according to any one of [1] to [6] disposed between the positive electrode and the negative electrode. A non-aqueous secondary battery that obtains an electromotive force by doping.
  • the second embodiment of the present disclosure includes the following embodiments.
  • a porous substrate and an adhesive porous layer provided on one or both surfaces of the porous substrate comprising a vinylidene fluoride monomer unit and a hexafluoropropylene monomer unit, A polyvinylidene fluoride resin having a hexafluoropropylene monomer unit content of 5% by mass to 20% by mass of the total monomer units and a weight average molecular weight of 100,000 to 1,500,000, and a glass transition temperature of A separator for a non-aqueous secondary battery comprising an adhesive porous layer containing a resin having a temperature of 30 ° C to 120 ° C.
  • the content of the resin having a glass transition temperature of 30 ° C. to 120 ° C. in the adhesive porous layer is 5% by mass to 50% by mass of the total amount of all the resins contained in the adhesive porous layer.
  • the adhesive porous layer further contains an inorganic filler, and the content of the inorganic filler in the adhesive porous layer is the sum of the total resin and the inorganic filler contained in the adhesive porous layer.
  • the separator for a non-aqueous secondary battery according to any one of [11] to [13], which is 5 to 75% by mass of the amount.
  • the resin having a glass transition temperature of 30 ° C. to 120 ° C. is at least one selected from the group consisting of acrylic resins, vinyl acetate resins and vinyl chloride resins.
  • the separator for non-aqueous secondary batteries in any one of.
  • a separator having a porous layer containing a polyvinylidene fluoride-based resin on both surfaces of a porous base material, which is excellent in adhesion between a positive electrode and a negative electrode by dry heat press.
  • a separator for a secondary battery is provided.
  • a separator provided with an adhesive porous layer containing a polyvinylidene fluoride-based resin, which is excellent in adhesion to an electrode by dry heat press, is provided for a non-aqueous secondary battery separator.
  • process is not only an independent process, but is included in this term if the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • the amount of each component in the composition when there are a plurality of substances corresponding to each component in the composition, the plurality of the substances present in the composition unless otherwise specified. It means the total amount of substance.
  • machine direction means the long direction in the porous substrate and separator manufactured in a long shape
  • width direction means the direction orthogonal to the “machine direction”.
  • machine direction is also referred to as “MD direction”
  • width direction is also referred to as “TD direction”.
  • the “monomer unit” of the polyvinylidene fluoride resin means a constituent unit of the polyvinylidene fluoride resin, which is obtained by polymerizing the monomers.
  • a separator for a non-aqueous secondary battery of a first form (also referred to as a “first form of separator”) includes a porous substrate and a first porous layer provided on one surface of the porous substrate. And a second porous layer provided on the other surface of the porous substrate.
  • the first porous layer and the second porous layer exist as outermost layers of the separator and are layers that adhere to the electrode.
  • the first porous layer has a vinylidene fluoride monomer unit and a hexafluoropropylene monomer unit, and the content of the hexafluoropropylene monomer unit is all monomer units.
  • a polyvinylidene fluoride resin having a mass average molecular weight of 100,000 to 1,500,000 is contained.
  • the second porous layer contains a polyvinylidene fluoride-based resin and a resin having a glass transition temperature of 30 ° C. to 120 ° C.
  • VDF unit a vinylidene fluoride monomer unit
  • HFP unit a hexafluoropropylene monomer unit
  • HFP-HFP co-polymer a polyvinylidene fluoride resin having a VDF unit and an HFP unit
  • VDF-HFP co-polymer A VDF-HFP copolymer having a content of HFP units of 3% to 20% by mass of the total monomer units and a weight average molecular weight of 100,000 to 1,500,000 is referred to as “specific VDF- Also referred to as “HFP copolymer (1)”.
  • the separator of the first form includes a first porous layer containing the specific VDF-HFP copolymer (1), a polyvinylidene fluoride resin, and a resin containing a glass transition temperature of 30 ° C. to 120 ° C.
  • the separator of the first form has a first porous layer containing the specific VDF-HFP copolymer (1) on one surface for the following reasons, and has a glass transition temperature of 30 ° C. with the polyvinylidene fluoride resin.
  • a second porous layer containing a resin at ⁇ 120 ° C. is provided on the other side.
  • the positive electrode generally has a structure in which a positive electrode active material layer including a positive electrode active material and a binder resin is disposed on a current collector.
  • a binder resin of the positive electrode active material layer a polyvinylidene fluoride resin is mainly used. Used.
  • the negative electrode generally has a structure in which a negative electrode active material layer including a negative electrode active material and a binder resin is disposed on a current collector, and the binder resin of the negative electrode active material layer is mainly styrene butadiene rubber or Polyvinylidene fluoride resin is used.
  • the combination of the binder resin for the positive electrode and the binder resin for the negative electrode includes a form in which both are mainly polyvinylidene fluoride resins and a form in which one is mainly polyvinylidene fluoride resins and the other is mainly styrene butadiene rubber.
  • the first type of separator includes a VDF-HFP copolymer as a polyvinylidene fluoride resin in the first porous layer.
  • the HFP unit content of the VDF-HFP copolymer is 3% by mass or more, the mobility of the polymer chain is high when dry heat pressing is performed, and the polymer chain enters the unevenness of the electrode surface, thereby exhibiting an anchor effect. And improving the adhesion of the first porous layer to the electrode.
  • the HFP unit content of the VDF-HFP copolymer is 3% by mass or more, more preferably 5% by mass or more, and further preferably 6% by mass or more.
  • the HFP unit content of the VDF-HFP copolymer is 20% by mass or less, more preferably 18% by mass or less, and further preferably 15% by mass or less.
  • the range of the weight average molecular weight of the VDF-HFP copolymer is controlled as follows.
  • the first porous layer can secure mechanical properties that can withstand the adhesion treatment with the electrode, and the adhesion with the electrode is good. Further, if the Mw of the VDF-HFP copolymer is 100,000 or more, it is difficult to dissolve in the electrolytic solution, so that the adhesion between the electrode and the first porous layer is maintained inside the battery. From these viewpoints, the MDF of the VDF-HFP copolymer is 100,000 or more, more preferably 200,000 or more, further preferably 300,000 or more, and further preferably 500,000 or more.
  • the Mw of the VDF-HFP copolymer When the Mw of the VDF-HFP copolymer is 1.5 million or less, the viscosity of the coating liquid used for coating the first porous layer does not become too high, and the moldability and crystal formation are good. The surface property of the porous layer is highly uniform, and as a result, the adhesion of the first porous layer to the electrode is good. In addition, when the Mw of the VDF-HFP copolymer is 1,500,000 or less, the polymer chain has high mobility when dry heat pressing is performed, the polymer chain enters the irregularities of the electrode surface, and an anchor effect is exhibited. Improve adhesion of the first porous layer to the electrode. From these viewpoints, the Mw of the VDF-HFP copolymer is 1.5 million or less, more preferably 1.2 million or less, and still more preferably 1 million or less.
  • the second porous layer contains a polyvinylidene fluoride resin and a resin having a glass transition temperature of 30 ° C. to 120 ° C.
  • a resin having a glass transition temperature of 30 ° C. to 120 ° C. enhances the fluidity of the second porous layer during dry heat pressing, so that a polymer chain enters the irregularities on the electrode surface, and an anchor effect is exhibited, and the electrode Improve the adhesion of the second porous layer to.
  • the glass transition temperature of the resin having a glass transition temperature of 30 ° C. to 120 ° C. is 120 ° C. or less, more preferably 115 ° C. or less, more preferably 110 ° C. or less, from the viewpoint of developing fluidity by heat application of a dry heat press. More preferably, from the viewpoint of ensuring the heat resistance of the second porous layer, it is 30 ° C. or higher, more preferably 35 ° C. or higher, and even more preferably 40 ° C. or higher.
  • the first porous layer and the second porous layer is opposed to the positive electrode and the other is opposed to the negative electrode.
  • Either of the porous layers may be opposed to the positive electrode, and may be selected according to the material of the positive electrode active material layer or the material of the negative electrode active material layer.
  • the positive electrode active material layer includes a polyvinylidene fluoride resin as a binder resin
  • the negative electrode active material layer includes styrene butadiene rubber as a binder resin
  • the first-type separator has the first porous layer as the positive electrode.
  • the second porous layer is preferably disposed so as to face the negative electrode.
  • the separator according to the first embodiment is excellent in adhesion between the positive electrode and the negative electrode by dry heat press, and therefore, the separator is less likely to be misaligned with the electrode in the battery manufacturing process, thereby improving the battery manufacturing yield.
  • the first type of separator improves the cycle characteristics (capacity retention rate) of the battery because it is excellent in adhesion between the positive electrode and the negative electrode by dry heat pressing.
  • porous substrate the first porous layer, and the second porous layer included in the first-type separator will be described.
  • the porous substrate means a substrate having pores or voids therein.
  • a substrate include a microporous film; a porous sheet made of a fibrous material such as a nonwoven fabric and paper; a composite porous material in which one or more other porous layers are laminated on the microporous film or the porous sheet. Quality sheet; and the like.
  • the porous substrate is preferably a microporous membrane from the viewpoint of thinning the separator and strength.
  • a microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, allowing gas or liquid to pass from one surface to the other. To do.
  • the material for the porous substrate is preferably an electrically insulating material, and may be either an organic material or an inorganic material.
  • the porous substrate contains a thermoplastic resin in order to give the porous substrate a shutdown function.
  • the shutdown function refers to a function of preventing the thermal runaway of the battery by blocking the movement of ions by dissolving the constituent materials and closing the pores of the porous base material when the battery temperature rises.
  • the thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is preferable.
  • the thermoplastic resin include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; among these, polyolefins are preferable.
  • a microporous membrane containing polyolefin As the porous substrate, a microporous membrane containing polyolefin (referred to as “polyolefin microporous membrane”) is preferable.
  • polyolefin microporous membrane examples include a polyolefin microporous membrane applied to conventional battery separators, and it is preferable to select one having sufficient mechanical properties and ion permeability.
  • the polyolefin microporous membrane preferably contains polyethylene from the viewpoint of exhibiting a shutdown function, and the polyethylene content is preferably 95% by mass or more of the total mass of the polyolefin microporous membrane.
  • the polyolefin microporous membrane is preferably a polyolefin microporous membrane containing polyethylene and polypropylene from the viewpoint of imparting heat resistance that does not easily break when exposed to high temperatures.
  • a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one layer.
  • the microporous membrane preferably contains 95% by mass or more of polyethylene and 5% by mass or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance. From the viewpoint of achieving both a shutdown function and heat resistance, a polyolefin microporous membrane having a laminated structure of two or more layers, at least one layer containing polyethylene and at least one layer containing polypropylene is also preferable.
  • the polyolefin contained in the polyolefin microporous membrane is preferably a polyolefin having a weight average molecular weight (Mw) of 100,000 to 5,000,000.
  • Mw weight average molecular weight
  • the Mw of the polyolefin is 100,000 or more, sufficient mechanical properties can be imparted to the microporous membrane.
  • the Mw of the polyolefin is 5 million or less, the shutdown characteristics of the microporous film are good and the microporous film can be easily molded.
  • a melted polyolefin resin is extruded from a T-die to form a sheet, which is crystallized and then stretched, and then heat treated to form a microporous membrane: liquid paraffin, etc.
  • Examples include a method in which a polyolefin resin melted together with a plasticizer is extruded from a T-die, cooled, formed into a sheet, and stretched, and then the plasticizer is extracted and heat-treated to form a microporous film.
  • porous sheets made of fibrous materials include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; heat-resistant resins such as aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide; cellulose And a porous sheet made of a fibrous material such as non-woven fabric and paper.
  • the heat resistant resin refers to a resin having a melting point of 200 ° C. or higher, or a resin having no melting point and a decomposition temperature of 200 ° C. or higher.
  • Examples of the composite porous sheet include a sheet obtained by laminating a functional layer on a porous sheet made of a microporous film or a fibrous material. Such a composite porous sheet is preferable from the viewpoint of further function addition by the functional layer.
  • Examples of the functional layer include a porous layer made of a heat resistant resin and a porous layer made of a heat resistant resin and an inorganic filler from the viewpoint of imparting heat resistance.
  • Examples of the heat resistant resin include one or more heat resistant resins selected from aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone and polyetherimide.
  • Examples of the inorganic filler include metal oxides such as alumina; metal hydroxides such as magnesium hydroxide.
  • a method of applying a functional layer to a microporous membrane or a porous sheet a method of bonding the microporous membrane or porous sheet and the functional layer with an adhesive, a microporous membrane or a porous sheet, Examples include a method of thermocompression bonding with the functional layer.
  • the surface of the porous substrate may be subjected to various surface treatments within the range that does not impair the properties of the porous substrate for the purpose of improving the wettability with the coating liquid for forming the porous layer. Good.
  • Examples of the surface treatment include corona treatment, plasma treatment, flame treatment, and ultraviolet irradiation treatment.
  • the thickness of the porous substrate is preferably 5 ⁇ m to 25 ⁇ m from the viewpoint of obtaining good mechanical properties and internal resistance.
  • the Gurley value (JIS P8117: 2009) of the porous substrate is preferably 50 seconds / 100 cc to 200 seconds / 100 cc from the viewpoint of suppressing short circuit of the battery and obtaining sufficient ion permeability.
  • the porosity of the porous substrate is preferably 20% to 60% from the viewpoint of obtaining an appropriate film resistance and shutdown function.
  • the puncture strength of the porous base material is preferably 300 g or more from the viewpoint of improving the separator manufacturing yield and the battery manufacturing yield.
  • the piercing strength of a porous substrate is measured by performing a piercing test using a Kato Tech KES-G5 handy compression tester under the conditions of a radius of curvature of the needle tip of 0.5 mm and a piercing speed of 2 mm / sec. (G).
  • the first porous layer and the second porous layer have a large number of micropores inside, and have a structure in which these micropores are connected. From one surface to the other, a gas or liquid Can pass through.
  • Each of the first porous layer and the second porous layer is a layer provided on the porous substrate as the outermost layer of the separator, and when the separator and the electrode are stacked and pressed or hot pressed, It is a layer to be bonded.
  • the first porous layer is a porous layer containing at least the specific VDF-HFP copolymer (1) provided on one surface of the porous substrate.
  • the first porous layer may further contain a resin other than the specific VDF-HFP copolymer (1), an inorganic filler, an organic filler, and the like.
  • the second porous layer is a porous layer provided on the other surface of the porous substrate and containing at least a polyvinylidene fluoride resin and a resin having a glass transition temperature of 30 ° C. to 120 ° C. .
  • the second porous layer may further contain a resin other than the above, an inorganic filler, an organic filler, and the like.
  • Polyvinylidene fluoride resin includes homopolymers of vinylidene fluoride (ie, polyvinylidene fluoride); copolymers of vinylidene fluoride and other copolymerizable monomers (polyvinylidene fluoride copolymer) And a mixture thereof.
  • Examples of the monomer copolymerizable with vinylidene fluoride include tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, chlorotrifluoroethylene, trichloroethylene, vinyl fluoride, and the like, and one or more of them are used. Can do.
  • the polyvinylidene fluoride resin contained in the second porous layer preferably has a weight average molecular weight (Mw) of 100,000 to 3,000,000.
  • Mw weight average molecular weight
  • the Mw of the polyvinylidene fluoride resin is 100,000 or more, the mechanical properties of the second porous layer are excellent.
  • the Mw of the polyvinylidene fluoride resin is 3 million or less, the viscosity of the coating liquid used for coating molding of the second porous layer does not become too high, and the moldability and crystal formation are good.
  • the porous layer has good porosity.
  • the Mw of the polyvinylidene fluoride resin is more preferably 300,000 to 2,000,000, still more preferably 500,000 to 1,500,000.
  • a VDF-HFP copolymer is preferable from the viewpoint of adhesion to the electrode.
  • By copolymerizing hexafluoropropylene with vinylidene fluoride it is possible to control the crystallinity, heat resistance, resistance to electrolyte solution, and the like of the polyvinylidene fluoride resin to an appropriate range.
  • the content of HFP units is 3% by mass to 20% by mass of the total monomer units, and the weight average molecular weight (Mw) is 100,000-150.
  • Polyvinylidene fluoride-based resin, that is, specific VDF-HFP copolymer (1) is preferable. The reason is the same as the reason for applying the specific VDF-HFP copolymer (1) to the first porous layer.
  • the specific VDF-HFP copolymer (1) may occupy 90% by mass or more of the total amount of the polyvinylidene fluoride resin contained in the second porous layer. Yes, it may occupy 95% by mass or more, and may occupy 100% by mass.
  • the specific VDF-HFP copolymer (1) includes both a copolymer having only VDF units and HFP units, and a copolymer having other monomer units.
  • monomers that form other monomer units include fluorine-containing monomers such as tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, and vinyl fluoride.
  • Monomer units derived from species or two or more species may be contained in the specific VDF-HFP copolymer (1).
  • the specific VDF-HFP copolymer (1) is preferably a binary copolymer having only VDF units and HFP units.
  • the content of HFP units is 3% by mass to 20% by mass of the total monomer units.
  • the HFP unit content in the specific VDF-HFP copolymer (1) is more preferably 5% by mass or more as a lower limit, further preferably 6% by mass or more, and more preferably 18% by mass or less as an upper limit. A mass% or less is more preferable.
  • the specific VDF-HFP copolymer (1) has a weight average molecular weight (Mw) of 100,000 to 1,500,000.
  • Mw weight average molecular weight
  • the lower limit of Mw of the specific VDF-HFP copolymer (1) is more preferably 200,000 or more, further preferably 300,000 or more, further preferably 500,000 or more, and the upper limit is more preferably 1,200,000 or less. One million or less is more preferable.
  • Examples of the method for producing the specific VDF-HFP copolymer (1) include emulsion polymerization and suspension polymerization. It is also possible to select a commercially available VDF-HFP copolymer that satisfies the content of HFP units and the weight average molecular weight.
  • the specific VDF-HFP copolymer (1) may occupy 90% by mass or more of the total amount of all resins contained in the first porous layer, and 95 May occupy 100% by mass or more.
  • Resin having a glass transition temperature of 30 ° C. to 120 ° C. As a resin having a glass transition temperature of 30 ° C. to 120 ° C., from the viewpoint of better adhesion to the electrode by dry heat press, an acrylic resin, vinyl acetate At least one selected from the group consisting of a vinyl resin and a vinyl chloride resin is preferable.
  • an acrylic ester such as methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, etc. is used alone.
  • Polymerized or copolymerized polymer methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, Polymers obtained by homopolymerizing or copolymerizing methacrylic acid esters such as hydroxypropyl methacrylate and diethylaminoethyl methacrylate; at least one acrylic ester and at least one methacrylate Copolymer with a phosphate ester; a copolymer of at least one selected from acrylic acid esters and methacrylic acid esters and at least one selected from acrylic acid, methacrylic acid, acrylamide, N-methylolacrylamide, diacetone acrylamide, etc. Polymerized copolymer; and the like.
  • PMMA polymethyl methacrylate resin
  • PMMA may be a homopolymer of methyl methacrylate or a copolymer obtained by copolymerizing other monomers other than methyl methacrylate.
  • examples of other monomers to be copolymerized include methyl acrylate, acrylic At least one selected from acids and methacrylic acid is preferred.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 50,000 to 1,000,000.
  • Mw weight average molecular weight
  • the acrylic resin has an Mw of 50,000 or more, the film-forming property is good and the characteristics of the second porous layer are excellent.
  • the Mw of the acrylic resin is 1,000,000 or less, the viscosity of the coating liquid used for coating molding of the second porous layer does not become too high, and the productivity of the separator is improved.
  • vinyl acetate resin examples include at least one selected from polyvinyl acetate (PVAc), which is a homopolymer of vinyl acetate; vinyl acetate, unsaturated carboxylic acid, olefin, vinyl ether, unsaturated sulfonic acid, and the like. Copolymer with seeds; and the like.
  • PVAc polyvinyl acetate
  • the weight average molecular weight (Mw) of the vinyl acetate resin is preferably 50,000 to 500,000.
  • Mw of the vinyl acetate resin is 50,000 or more, the film-forming property is good and the characteristics of the second porous layer are excellent.
  • Mw of the vinyl acetate resin is 500,000 or less, the viscosity of the coating liquid used for coating molding of the second porous layer does not become too high, and the productivity of the separator is improved.
  • the vinyl chloride resin may be a homopolymer or a copolymer.
  • polyvinyl chloride (PVC) chlorinated polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, vinyl chloride-vinyl acetate copolymer Polymer, vinyl chloride-ethylene copolymer, vinyl chloride-propylene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-isobutylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-styrene-anhydrous malein Acid copolymer, vinyl chloride-styrene-acrylonitrile copolymer, vinyl chloride-butadiene copolymer, vinyl chloride-isoprene copolymer, vinyl chloride-chlorinated propylene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate copolymer Polymer, vinyl chloride-male
  • the weight average molecular weight (Mw) of the vinyl chloride resin is preferably 5000 to 150,000.
  • Mw of the vinyl chloride resin is 5000 or more, the film-forming property is good and the characteristics of the second porous layer are excellent.
  • Mw of the vinyl chloride resin is 150,000 or less, the viscosity of the coating liquid used for coating molding of the second porous layer does not become too high, and the productivity of the separator is improved.
  • the second porous layer may contain only one kind of resin having a glass transition temperature of 30 ° C. to 120 ° C., or may contain two or more kinds.
  • the content of the resin having a glass transition temperature of 30 ° C. to 120 ° C. in the second porous layer is the second porous layer from the viewpoint of increasing the peel strength between the porous substrate and the second porous layer.
  • 5 mass% or more of the total amount of all the resin contained in a quality layer is preferable, 7 mass% or more is more preferable, 10 mass% or more is further more preferable, 15 mass% or more is still more preferable.
  • the total amount of all resins contained in the second porous layer is preferably 50% by mass or less, more preferably 45% by mass or less, and 40% by mass. The following is more preferable, and 35% by mass or less is more preferable.
  • the form of the polyvinylidene fluoride-based resin and the resin having a glass transition temperature of 30 ° C. to 120 ° C. includes (a) a form in which the former and the latter are compatible; (b) Examples include the form in which the latter is present as a dispersed phase in the former continuous phase; (c) the form in which the latter is dispersed in the form of particles in the former continuous phase;
  • (a) the uniformity of the shape and size of the holes is increased, and the adhesion points to the electrode are scattered with high uniformity on the surface of the second porous layer, and the adhesion to the electrode is excellent.
  • (A), (b) and (c) can be confirmed by observing the cross section of the second porous layer with an electron microscope.
  • the total of the polyvinylidene fluoride resin and the resin having a glass transition temperature of 30 ° C. to 120 ° C. is the total amount of all the resins contained in the second porous layer. It may occupy 90% by mass or more, may occupy 95% by mass or more, and may occupy 100% by mass.
  • the 1st porous layer may contain other resins other than specific VDF-HFP copolymer (1).
  • the second porous layer may contain a resin other than the polyvinylidene fluoride resin and a resin having a glass transition temperature of 30 ° C. to 120 ° C.
  • Examples of the resin that may be contained in the first porous layer or the second porous layer include a fluorine-based rubber, a styrene-butadiene copolymer, a homopolymer of a vinyl nitrile compound (acrylonitrile, methacrylonitrile, etc.) Examples thereof include copolymers, carboxymethyl cellulose, hydroxyalkyl cellulose, polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, and polyethers (polyethylene oxide, polypropylene oxide, etc.).
  • the 1st porous layer or the 2nd porous layer may contain the filler which consists of an inorganic substance or an organic substance in order to improve the slipperiness and heat resistance of a separator. In that case, it is preferable to make it content and particle size of the grade which does not disturb the effect of the first form.
  • the filler is preferably an inorganic filler from the viewpoint of improving cell strength and ensuring battery safety.
  • the average particle diameter of the filler is preferably 0.01 ⁇ m to 5 ⁇ m.
  • the lower limit is more preferably 0.1 ⁇ m or more, and the upper limit is more preferably 1 ⁇ m or less.
  • an inorganic filler that is stable with respect to the electrolytic solution and electrochemically stable is preferable.
  • metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, cerium hydroxide, nickel hydroxide, boron hydroxide; alumina, titania, magnesia, Metal oxides such as silica, zirconia, and barium titanate; carbonates such as calcium carbonate and magnesium carbonate; sulfates such as barium sulfate and calcium sulfate; clay minerals such as calcium silicate and talc; These inorganic fillers may be used alone or in combination of two or more.
  • the inorganic filler may be surface-modified with a silane coupling agent or the like.
  • the inorganic filler is preferably at least one of a metal hydroxide and a metal oxide from the viewpoint of ensuring the stability in the battery and the safety of the battery, and from the viewpoint of imparting flame retardancy and neutralizing effect, metal hydroxide Products are preferred, and magnesium hydroxide is more preferred.
  • the particle shape of the inorganic filler is not limited, and may be a shape close to a sphere or a plate shape, but from the viewpoint of suppressing short circuit of the battery, it should be a plate-like particle or a non-aggregated primary particle. Is preferred.
  • the content of the inorganic filler in the first porous layer or the second porous layer is included in each porous layer. 5% by mass to 75% by mass of the total amount of the total resin and the inorganic filler is preferred.
  • the content of the inorganic filler is 5% by mass or more, thermal contraction of the separator is suppressed when heat is applied, which is preferable from the viewpoint of dimensional stability. From this viewpoint, the content of the inorganic filler is more preferably 10% by mass or more, and further preferably 20% by mass or more.
  • the content of the inorganic filler is 75% by mass or less, it is preferable from the viewpoint of ensuring adhesion of the porous layer to the electrode. From this viewpoint, the content of the inorganic filler is more preferably 70% by mass or less, and further preferably 65% by mass or less.
  • organic filler examples include cross-linked acrylic resins such as cross-linked polymethyl methacrylate, cross-linked polystyrene, and the like, and cross-linked polymethyl methacrylate is preferable.
  • the 1st porous layer and the 2nd porous layer may contain additives, such as dispersing agents, such as surfactant, a wetting agent, an antifoamer, and a pH adjuster.
  • the dispersant is added to a coating solution used for coating and forming the porous layer for the purpose of improving dispersibility, coating properties, and storage stability.
  • Wetting agents, antifoaming agents, and pH adjusters are used in coating liquids used for coating and forming porous layers, for example, for the purpose of improving familiarity with porous substrates, and for entraining air in the coating liquid. It is added for the purpose of suppressing or adjusting the pH.
  • the thickness of the porous layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more from the viewpoint of adhesion to the electrode on one side of the porous substrate, and from the viewpoint of the energy density of the battery, 8. 0 ⁇ m or less is preferable, and 6.0 ⁇ m or less is more preferable.
  • the difference between the thickness of the first porous layer and the thickness of the second porous layer is preferably 20% or less of the total thickness of both surfaces, and the lower the better.
  • the weight of the porous layer is preferably 0.5 g / m 2 or more, more preferably 0.75 g / m 2 or more, from the viewpoint of adhesion to the electrode on one side of the porous substrate, and an ion permeability viewpoint. Therefore, 5.0 g / m 2 or less is preferable, and 4.0 g / m 2 or less is more preferable.
  • the porosity of the porous layer is preferably 30% or more from the viewpoint of ion permeability, preferably 80% or less, more preferably 60% or less from the viewpoint of mechanical strength.
  • the method for obtaining the porosity of the porous layer in the first embodiment is the same as the method for obtaining the porosity of the porous substrate.
  • the average pore diameter of the porous layer is preferably 10 nm or more from the viewpoint of ion permeability, and preferably 200 nm or less from the viewpoint of adhesiveness with the electrode.
  • the average pore diameter of the porous layer in the first embodiment is calculated by the following formula, assuming that all the pores are cylindrical.
  • d represents the average pore diameter (diameter) of the porous layer
  • V represents the pore volume per 1 m 2 of the porous layer
  • S represents the pore surface area per 1 m 2 of the porous layer.
  • the pore volume V per 1 m 2 of the porous layer is calculated from the porosity of the porous layer.
  • the pore surface area S per 1 m 2 of the porous layer is determined by the following method. First, a specific surface area of the porous substrate (m 2 / g) and specific surface area of the separator (m 2 / g), by applying the BET equation to the nitrogen gas adsorption method, is calculated from the nitrogen gas adsorption. The specific surface area (m 2 / g) is multiplied by the basis weight (g / m 2 ) to calculate the pore surface area per 1 m 2 . Then, by subtracting the pore surface area of the porous substrate 1 m 2 per the pore surface area per separator 1 m 2, to calculate the pore surface area S per porous layer 1 m 2.
  • the peel strength between the porous substrate and the porous layer is preferably 0.20 N / 10 mm or more.
  • the peel strength is more preferably 0.30 N / 10 mm or more, and the higher the better.
  • the upper limit of the peel strength is not limited, but is usually 2.0 N / 10 mm or less.
  • the thickness of the first form separator is preferably 5 ⁇ m or more from the viewpoint of mechanical strength, and preferably 35 ⁇ m or less from the viewpoint of the energy density of the battery.
  • the puncture strength of the first form separator is preferably 250 to 1000 g, more preferably 300 to 600 g.
  • the method for measuring the puncture strength of the separator is the same as the method for measuring the puncture strength of the porous substrate.
  • the porosity of the separator of the first form is preferably 30% to 65%, more preferably 30% to 60% from the viewpoints of adhesion to electrodes, handling properties, ion permeability, and mechanical strength.
  • the Gurley value (JIS P8117: 2009) of the separator of the first form is preferably 100 seconds / 100 cc to 300 seconds / 100 cc from the viewpoint of mechanical strength and battery load characteristics.
  • the separator of the first form can be produced, for example, by a wet coating method having the following steps (i) to (iv).
  • a second coating liquid containing a polyvinylidene fluoride resin and a resin having a glass transition temperature of 30 ° C. to 120 ° C. is applied to the other surface of the porous substrate to form a second coating layer.
  • Process. (Iii) The porous base material on which the first coating layer and the second coating layer are formed is immersed in a coagulating liquid, and the resin is solidified while inducing phase separation in the first coating layer and the second coating layer. The process of forming a 1st porous layer and a 2nd porous layer on a porous base material, and obtaining a composite film.
  • coating liquid when the matters common to the first coating liquid and the second coating liquid are described, both are collectively referred to as “coating liquid” and are common to the first coating layer and the second coating layer.
  • coating layer when explaining matters to be performed, both are collectively referred to as “coating layer”, and when explaining matters common to the first porous layer and the second porous layer, both are collectively referred to as “porous layer”.
  • the coating solution is prepared by dissolving or dispersing polyvinylidene fluoride resin and other resins in a solvent.
  • the filler is contained in the porous layer, the filler is dispersed in each coating solution.
  • the solvent used for preparing the coating solution includes a solvent that dissolves the polyvinylidene fluoride resin (hereinafter, also referred to as “good solvent”).
  • good solvent include polar amide solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylformamide.
  • the solvent used for preparing the coating liquid preferably contains a phase separation agent that induces phase separation from the viewpoint of forming a porous layer having a good porous structure. Therefore, the solvent used for preparing the coating liquid is preferably a mixed solvent of a good solvent and a phase separation agent.
  • the phase separation agent is preferably mixed with a good solvent in an amount within a range that can ensure a viscosity suitable for coating. Examples of the phase separation agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
  • the solvent used for the preparation of the coating liquid is a mixed solvent of a good solvent and a phase separation agent from the viewpoint of forming a good porous structure, including 60% by mass or more of the good solvent, and 40% of the phase separation agent. % Is preferable.
  • the resin concentration of the coating solution is preferably 1% by mass to 20% by mass from the viewpoint of forming a good porous structure.
  • Examples of means for applying the coating liquid to the porous substrate include a Mayer bar, a die coater, a reverse roll coater, and a gravure coater. From the viewpoint of productivity, it is preferable to apply the first coating liquid and the second coating liquid to the porous substrate at the same time.
  • the coagulation liquid generally contains a good solvent and a phase separation agent used for preparing the coating liquid, and water. It is preferable in production that the mixing ratio of the good solvent and the phase separation agent is matched to the mixing ratio of the mixed solvent used for preparing the coating liquid.
  • the content of water in the coagulation liquid is preferably 40% by mass to 90% by mass from the viewpoint of formation of a porous structure and productivity.
  • the temperature of the coagulation liquid is, for example, 20 ° C. to 50 ° C.
  • the separator of the first form can also be manufactured by a dry coating method.
  • the dry coating method is a method in which a coating liquid containing a resin is applied to a porous substrate to form a coating layer, and then the coating layer is dried to solidify the coating layer. This is a method of forming a porous layer.
  • the wet coating method is preferable from the viewpoint of obtaining a good porous structure.
  • the separator of the first form can also be produced by a method in which a porous layer is produced as an independent sheet, and this porous layer is stacked on a porous substrate and laminated by thermocompression bonding or an adhesive.
  • a method for producing the porous layer as an independent sheet include a method in which the wet coating method or the dry coating method described above is applied to form a porous layer on the release sheet, and the release sheet is peeled off from the porous layer. It is done.
  • the non-aqueous secondary battery separator of the second form (also referred to as “second form of separator”) includes a porous substrate and an adhesive porous layer provided on one or both sides of the porous substrate. Prepare.
  • the adhesive porous layer has a vinylidene fluoride monomer unit and a hexafluoropropylene monomer unit, and the content of the hexafluoropropylene monomer unit is 5 of all monomer units.
  • a polyvinylidene fluoride resin having a mass average molecular weight of 100,000 to 1,500,000 and a glass transition temperature of 30 ° C. to 120 ° C.
  • the adhesive porous layer may be present only on one side of the porous substrate or on both sides of the porous substrate. When the adhesive porous layer is present only on one surface of the porous substrate, the other surface of the porous substrate may not have a layer and may have another layer.
  • VDF unit a vinylidene fluoride monomer unit
  • HFP unit a hexafluoropropylene monomer unit
  • HFP-HFP co-polymer a polyvinylidene fluoride resin having a VDF unit and an HFP unit
  • VDF-HFP co-polymer A VDF-HFP copolymer having a content of HFP units of 5% to 20% by mass of all monomer units and a weight average molecular weight of 100,000 to 1,500,000 is also referred to as “specific VDF- Also referred to as “HFP copolymer (2)”.
  • the adhesive porous layer is an outermost layer of the separator and is a layer that adheres to the electrode.
  • the separator of the second form comprises an adhesive porous layer containing a specific VDF-HFP copolymer (2) and a resin having a glass transition temperature of 30 ° C. to 120 ° C. Excellent adhesion. This mechanism is not necessarily clear, but is presumed as follows.
  • a VDF-HFP copolymer is preferable from the viewpoint of adhesion to electrodes.
  • the separator of the second form is a specific VDF in which the content of HFP units is 5% by mass to 20% by mass of the total monomer units and the weight average molecular weight (Mw) is 100,000 to 1.5 million for the following reasons.
  • -The HFP copolymer (2) is included in the adhesive porous layer.
  • the HFP unit content of the VDF-HFP copolymer is 5% by mass or more, the polymer chain has high mobility when dry heat pressing is performed, and the polymer chain enters the irregularities on the electrode surface, thereby exhibiting an anchor effect. And improving the adhesion of the adhesive porous layer to the electrode. From this viewpoint, the HFP unit content of the VDF-HFP copolymer is 5% by mass or more, more preferably 5.5% by mass or more, and further preferably 6% by mass or more.
  • the HFP unit content of the VDF-HFP copolymer is 20% by mass or less, it is difficult to dissolve in the electrolyte solution and does not swell excessively, so that adhesion between the electrode and the adhesive porous layer is maintained inside the battery. Be drunk. From this viewpoint, the HFP unit content of the VDF-HFP copolymer is 20% by mass or less, more preferably 18% by mass or less, and further preferably 15% by mass or less.
  • the adhesive porous layer can secure the mechanical properties that can withstand the adhesion treatment with the electrode, and the adhesion with the electrode is good. Further, if the Mw of the VDF-HFP copolymer is 100,000 or more, it is difficult to dissolve in the electrolytic solution, so that the adhesion between the electrode and the adhesive porous layer is maintained inside the battery. From these viewpoints, the MDF of the VDF-HFP copolymer is 100,000 or more, more preferably 200,000 or more, further preferably 300,000 or more, and further preferably 500,000 or more.
  • the Mw of the VDF-HFP copolymer When the Mw of the VDF-HFP copolymer is 1.5 million or less, the viscosity of the coating liquid used for coating and forming the adhesive porous layer is not too high, and the moldability and crystal formation are good. The uniformity of the surface properties of the layer is high, and as a result, the adhesion of the adhesive porous layer to the electrode is good.
  • the Mw of the VDF-HFP copolymer is 1,500,000 or less, the polymer chain has high mobility when dry heat pressing is performed, the polymer chain enters the irregularities of the electrode surface, and an anchor effect is exhibited. Improve adhesion of the adhesive porous layer to the electrode. From these viewpoints, the Mw of the VDF-HFP copolymer is 1.5 million or less, more preferably 1.2 million or less, and still more preferably 1 million or less.
  • the resin having a glass transition temperature of 30 ° C. to 120 ° C. contained in the adhesive porous layer enhances the fluidity of the adhesive porous layer during dry heat pressing.
  • a polymer chain enters the unevenness of the electrode surface to develop an anchor effect and improve the adhesion of the adhesive porous layer to the electrode.
  • the glass transition temperature of the resin having a glass transition temperature of 30 ° C. to 120 ° C. is 120 ° C. or less, more preferably 115 ° C. or less, more preferably 110 ° C. or less, from the viewpoint of developing fluidity by heat application of a dry heat press. More preferably, from the viewpoint of ensuring the heat resistance of the adhesive porous layer, it is 30 ° C. or higher, more preferably 35 ° C. or higher, and still more preferably 40 ° C. or higher.
  • the separator of the second form is excellent in adhesion with the electrode by dry heat press, it is difficult to be displaced from the electrode in the battery manufacturing process, and the manufacturing yield of the battery is improved.
  • the second form of the separator improves the cycle characteristics (capacity retention rate) of the battery because it is excellent in adhesion to the electrode by dry heat press.
  • porous substrate The porous substrate in the second form is synonymous with the porous substrate in the first form.
  • the specific form and preferred form of the porous substrate in the second form are the same as the specific form and preferred form of the porous base in the first form.
  • the adhesive porous layer is a layer that is provided on one or both sides of the porous substrate as the outermost layer of the separator and adheres to the electrode when the separator and the electrode are stacked and pressed or hot pressed.
  • the adhesive porous layer has a large number of micropores inside and has a structure in which these micropores are connected, and gas or liquid can pass from one surface to the other. It has become.
  • the adhesive porous layer comprises at least the specific VDF-HFP copolymer (2) and a resin having a glass transition temperature of 30 ° C. to 120 ° C. provided on one or both sides of the porous substrate. It is a porous layer to contain.
  • the adhesive porous layer may further contain a resin other than the above, an inorganic filler, an organic filler, and the like.
  • the adhesive porous layer is preferably on both sides rather than only on one side of the porous substrate from the viewpoint of excellent battery cycle characteristics. This is because when the adhesive porous layer is on both sides of the porous substrate, both sides of the separator are well adhered to both electrodes via the adhesive porous layer.
  • the specific VDF-HFP copolymer (2) includes both a copolymer having only VDF units and HFP units, and a copolymer having other monomer units.
  • monomers that form other monomer units include fluorine-containing monomers such as tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, and vinyl fluoride.
  • Monomer units derived from species or two or more species may be contained in the specific VDF-HFP copolymer (2).
  • the specific VDF-HFP copolymer (2) is preferably a binary copolymer having only VDF units and HFP units.
  • the content of HFP units is 5% by mass to 20% by mass of the total monomer units.
  • the lower limit of the HFP unit content in the specific VDF-HFP copolymer (2) is more preferably 5.5% by mass or more, still more preferably 6% by mass or more, and the upper limit is more preferably 18% by mass or less. 15% by mass or less is more preferable.
  • the specific VDF-HFP copolymer (2) has a weight average molecular weight (Mw) of 100,000 to 1,500,000.
  • Mw weight average molecular weight
  • the lower limit of Mw of the specific VDF-HFP copolymer (2) is more preferably 200,000 or more, further preferably 300,000 or more, further preferably 500,000 or more, and the upper limit is more preferably 1,200,000 or less. One million or less is more preferable.
  • Examples of the method for producing the specific VDF-HFP copolymer (2) include emulsion polymerization and suspension polymerization. It is also possible to select a commercially available VDF-HFP copolymer that satisfies the content of HFP units and the weight average molecular weight.
  • the lower limit of the content of the specific VDF-HFP copolymer (2) in the adhesive porous layer is preferably 50% by mass or more based on the total amount of all resins contained in the adhesive porous layer, and 55% by mass. % Or more, more preferably 60% by weight or more, still more preferably 65% by weight or more, and the upper limit is preferably 95% by weight or less, more preferably 93% by weight or less, still more preferably 90% by weight or less, 85 A mass% or less is more preferable.
  • Resin having a glass transition temperature of 30 ° C. to 120 ° C. As a resin having a glass transition temperature of 30 ° C. to 120 ° C., from the viewpoint of better adhesion to the electrode by dry heat press, an acrylic resin, vinyl acetate At least one selected from the group consisting of a vinyl resin and a vinyl chloride resin is preferable.
  • an acrylic ester such as methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, etc. is used alone.
  • Polymerized or copolymerized polymer methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, Polymers obtained by homopolymerizing or copolymerizing methacrylic acid esters such as hydroxypropyl methacrylate and diethylaminoethyl methacrylate; at least one acrylic ester and at least one methacrylate Copolymer with a phosphate ester; a copolymer of at least one selected from acrylic acid esters and methacrylic acid esters and at least one selected from acrylic acid, methacrylic acid, acrylamide, N-methylolacrylamide, diacetone acrylamide, etc. Polymerized copolymer; and the like.
  • PMMA polymethyl methacrylate resin
  • PMMA may be a homopolymer of methyl methacrylate or a copolymer obtained by copolymerizing other monomers other than methyl methacrylate.
  • examples of other monomers to be copolymerized include methyl acrylate, acrylic At least one selected from acids and methacrylic acid is preferred.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 50,000 to 1,000,000.
  • Mw weight average molecular weight
  • the acrylic resin has an Mw of 50,000 or more, the film-forming property is good and the properties of the adhesive porous layer are excellent.
  • the Mw of the acrylic resin is 1,000,000 or less, the viscosity of the coating liquid used for coating molding of the adhesive porous layer does not become too high, and the productivity of the separator is improved.
  • vinyl acetate resin examples include at least one selected from polyvinyl acetate (PVAc), which is a homopolymer of vinyl acetate; vinyl acetate, unsaturated carboxylic acid, olefin, vinyl ether, unsaturated sulfonic acid, and the like. Copolymer with seeds; and the like.
  • PVAc polyvinyl acetate
  • the weight average molecular weight (Mw) of the vinyl acetate resin is preferably 50,000 to 500,000.
  • Mw of the vinyl acetate resin is 50,000 or more, the film-forming property is good and the properties of the adhesive porous layer are excellent.
  • Mw of the vinyl acetate resin is 500,000 or less, the viscosity of the coating liquid used for coating molding of the adhesive porous layer does not become too high, and the productivity of the separator is improved.
  • the vinyl chloride resin may be a homopolymer or a copolymer.
  • polyvinyl chloride (PVC) chlorinated polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, vinyl chloride-vinyl acetate copolymer Polymer, vinyl chloride-ethylene copolymer, vinyl chloride-propylene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-isobutylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-styrene-anhydrous malein Acid copolymer, vinyl chloride-styrene-acrylonitrile copolymer, vinyl chloride-butadiene copolymer, vinyl chloride-isoprene copolymer, vinyl chloride-chlorinated propylene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate copolymer Polymer, vinyl chloride-male
  • the weight average molecular weight (Mw) of the vinyl chloride resin is preferably 5000 to 150,000.
  • Mw of the vinyl chloride resin is 5000 or more, the film-forming property is good and the properties of the adhesive porous layer are excellent.
  • Mw of the vinyl chloride resin is 150,000 or less, the viscosity of the coating liquid used for coating molding of the adhesive porous layer does not become too high, and the productivity of the separator is improved.
  • the adhesive porous layer may contain only one kind of resin having a glass transition temperature of 30 ° C. to 120 ° C., or may contain two or more kinds.
  • the content of the resin having a glass transition temperature of 30 ° C. to 120 ° C. in the adhesive porous layer is not limited to the adhesive porous layer from the viewpoint of increasing the peel strength between the porous substrate and the adhesive porous layer. 5 mass% or more of the total amount of all resins contained is preferable, 7 mass% or more is more preferable, 10 mass% or more is further more preferable, and 15 mass% or more is still more preferable. On the other hand, from the viewpoint of suppressing cohesive failure of the adhesive porous layer, 50% by mass or less of the total amount of all resins contained in the adhesive porous layer is preferable, 45% by mass or less is more preferable, and 40% by mass or less is more preferable. Preferably, 35 mass% or less is more preferable.
  • the specific VDF-HFP copolymer (2) and the resin having a glass transition temperature of 30 ° C. to 120 ° C. include (a) a form in which the former and the latter are compatible (B) a form in which the latter is present as a dispersed phase in the former continuous phase; (c) a form in which the latter is dispersed in the form of particles in the former continuous phase; preferable.
  • (a) the uniformity of the shape and size of the holes is increased, and the adhesion points with respect to the electrodes are scattered with high uniformity on the surface of the adhesive porous layer, and the adhesion to the electrodes is excellent.
  • (A), (b) and (c) can be confirmed by observing the cross section of the adhesive porous layer with an electron microscope.
  • the total resin including the specific VDF-HFP copolymer (2) and the resin having a glass transition temperature of 30 ° C. to 120 ° C. is included in the adhesive porous layer. May occupy 90% by mass or more of the total amount, may occupy 95% by mass or more, and may occupy 100% by mass.
  • the adhesive porous layer may contain other resin other than the specific VDF-HFP copolymer (2) and a resin having a glass transition temperature of 30 ° C. to 120 ° C.
  • Examples of the polyvinylidene fluoride resin other than the specific VDF-HFP copolymer (2) include, for example, a VDF-HFP copolymer in which the content of HFP units is different from that of the specific VDF-HFP copolymer (2); And a homopolymer of vinylidene (that is, polyvinylidene fluoride); a copolymer of vinylidene fluoride and at least one selected from tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, vinyl fluoride, and the like.
  • Resins other than polyvinylidene fluoride resins include fluorine rubber, styrene-butadiene copolymers, homopolymers or copolymers of vinyl nitrile compounds (acrylonitrile, methacrylonitrile, etc.), carboxymethyl cellulose, hydroxyalkyl cellulose , Polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, polyether (polyethylene oxide, polypropylene oxide, etc.) and the like.
  • the adhesive porous layer may contain a filler made of an inorganic material or an organic material for the purpose of improving the slipperiness and heat resistance of the separator. In that case, it is preferable to set it as content and particle
  • the filler is preferably an inorganic filler from the viewpoint of improving cell strength and ensuring battery safety.
  • the average particle diameter of the filler is preferably 0.01 ⁇ m to 5 ⁇ m.
  • the lower limit is more preferably 0.1 ⁇ m or more, and the upper limit is more preferably 1 ⁇ m or less.
  • an inorganic filler that is stable with respect to the electrolytic solution and electrochemically stable is preferable.
  • metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, cerium hydroxide, nickel hydroxide, boron hydroxide; alumina, titania, magnesia, Metal oxides such as silica, zirconia, and barium titanate; carbonates such as calcium carbonate and magnesium carbonate; sulfates such as barium sulfate and calcium sulfate; clay minerals such as calcium silicate and talc; These inorganic fillers may be used alone or in combination of two or more.
  • the inorganic filler may be surface-modified with a silane coupling agent or the like.
  • the inorganic filler is preferably at least one of a metal hydroxide and a metal oxide from the viewpoint of ensuring the stability in the battery and the safety of the battery, and from the viewpoint of imparting flame retardancy and neutralizing effect, metal hydroxide Products are preferred, and magnesium hydroxide is more preferred.
  • the particle shape of the inorganic filler is not limited, and may be a shape close to a sphere or a plate shape, but from the viewpoint of suppressing short circuit of the battery, it should be a plate-like particle or a non-aggregated primary particle. Is preferred.
  • the content of the inorganic filler in the adhesive porous layer is 5% by mass to 75% of the total amount of all resins and inorganic fillers contained in the adhesive porous layer. Mass% is preferred.
  • the content of the inorganic filler is 5% by mass or more, thermal contraction of the separator is suppressed when heat is applied, which is preferable from the viewpoint of dimensional stability.
  • the content of the inorganic filler is more preferably 10% by mass or more, and further preferably 20% by mass or more.
  • the content of the inorganic filler is preferably 75% by mass or less from the viewpoint of ensuring adhesion of the adhesive porous layer to the electrode. From this viewpoint, the content of the inorganic filler is more preferably 70% by mass or less, and further preferably 65% by mass or less.
  • organic filler examples include cross-linked acrylic resins such as cross-linked polymethyl methacrylate, cross-linked polystyrene, and the like, and cross-linked polymethyl methacrylate is preferable.
  • the adhesive porous layer may contain additives such as a dispersant such as a surfactant, a wetting agent, an antifoaming agent, and a pH adjusting agent.
  • a dispersant such as a surfactant, a wetting agent, an antifoaming agent, and a pH adjusting agent.
  • the dispersant is added to a coating solution used for coating and forming the adhesive porous layer for the purpose of improving dispersibility, coating properties, and storage stability.
  • Wetting agents, antifoaming agents, and pH adjusters are used in coating liquids used for coating and forming porous adhesive layers, for example, to improve compatibility with porous substrates. It is added for the purpose of suppressing the loading or for the purpose of adjusting the pH.
  • the thickness of the adhesive porous layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more from the viewpoint of adhesion to the electrode on one side of the porous substrate, and from the viewpoint of battery energy density, 8.0 ⁇ m or less is preferable, and 6.0 ⁇ m or less is more preferable.
  • the difference between the thickness of the adhesive porous layer on one surface and the thickness of the adhesive porous layer on the other surface is the sum of both surfaces It is preferable that it is 20% or less of the thickness of this, and it is so preferable that it is low.
  • the weight of the adhesive porous layer is preferably 0.5 g / m 2 or more, more preferably 0.75 g / m 2 or more, from the viewpoint of adhesion to the electrode on one side of the porous substrate, and ion permeability.
  • 5.0 g / m 2 or less is preferable, and 4.0 g / m 2 or less is more preferable.
  • the porosity of the adhesive porous layer is preferably 30% or more from the viewpoint of ion permeability, preferably 80% or less, more preferably 60% or less from the viewpoint of mechanical strength.
  • the method for obtaining the porosity of the adhesive porous layer in the second embodiment is the same as the method for obtaining the porosity of the porous substrate.
  • the average pore diameter of the adhesive porous layer is preferably 10 nm or more from the viewpoint of ion permeability, and 200 nm or less is preferable from the viewpoint of adhesion to the electrode.
  • the peel strength between the porous substrate and the adhesive porous layer is preferably 0.20 N / 10 mm or more.
  • the peel strength is 0.20 N / 10 mm or more, the separator is easily handled in the battery manufacturing process. From this viewpoint, the peel strength is more preferably 0.30 N / 10 mm or more, and the higher the better.
  • the upper limit of the peel strength is not limited, but is usually 2.0 N / 10 mm or less.
  • the thickness of the second form separator is preferably 5 ⁇ m or more from the viewpoint of mechanical strength, and is preferably 35 ⁇ m or less from the viewpoint of the energy density of the battery.
  • the pin puncture strength of the second form separator is preferably 250 g to 1000 g, more preferably 300 g to 600 g.
  • the method for measuring the puncture strength of the separator is the same as the method for measuring the puncture strength of the porous substrate.
  • the porosity of the separator of the second form is preferably 30% to 65%, more preferably 30% to 60% from the viewpoints of adhesion to the electrode, handling properties, ion permeability, and mechanical strength.
  • the Gurley value (JIS P8117: 2009) of the separator of the second form is preferably 100 seconds / 100 cc to 300 seconds / 100 cc from the viewpoint of mechanical strength and battery load characteristics.
  • the separator of the second form can be produced, for example, by a wet coating method having the following steps (i) to (iii).
  • the porous base material on which the coating layer is formed is immersed in a coagulation liquid, and the polyvinylidene fluoride resin is solidified while inducing phase separation in the coating layer, thereby forming the porous layer on the porous base material. And obtaining a composite membrane.
  • the coating solution is prepared by dissolving or dispersing a polyvinylidene fluoride resin and a resin having a glass transition temperature of 30 ° C. to 120 ° C. in a solvent.
  • the filler is contained in the adhesive porous layer, the filler is dispersed in the coating liquid.
  • the solvent used for preparing the coating solution includes a solvent that dissolves the polyvinylidene fluoride resin (hereinafter, also referred to as “good solvent”).
  • good solvent include polar amide solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylformamide.
  • the solvent used for preparing the coating liquid preferably contains a phase separation agent that induces phase separation from the viewpoint of forming a porous layer having a good porous structure. Therefore, the solvent used for preparing the coating liquid is preferably a mixed solvent of a good solvent and a phase separation agent.
  • the phase separation agent is preferably mixed with a good solvent in an amount within a range that can ensure a viscosity suitable for coating. Examples of the phase separation agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
  • the solvent used for the preparation of the coating liquid is a mixed solvent of a good solvent and a phase separation agent from the viewpoint of forming a good porous structure, including 60% by mass or more of the good solvent, and 40% of the phase separation agent. % Is preferable.
  • the resin concentration of the coating solution is preferably 1% by mass to 20% by mass from the viewpoint of forming a good porous structure.
  • Examples of means for applying the coating liquid to the porous substrate include a Mayer bar, a die coater, a reverse roll coater, and a gravure coater.
  • a coating liquid When forming a porous layer on both surfaces of a porous base material, it is preferable from a viewpoint of productivity to apply a coating liquid to a base material simultaneously on both surfaces.
  • the coagulation liquid generally contains a good solvent and a phase separation agent used for preparing the coating liquid, and water. It is preferable in production that the mixing ratio of the good solvent and the phase separation agent is matched to the mixing ratio of the mixed solvent used for preparing the coating liquid.
  • the content of water in the coagulation liquid is preferably 40% by mass to 90% by mass from the viewpoint of formation of a porous structure and productivity.
  • the temperature of the coagulation liquid is, for example, 20 ° C. to 50 ° C.
  • the second type separator can also be manufactured by a dry coating method.
  • the dry coating method is a method in which a coating liquid containing a resin is applied to a porous substrate to form a coating layer, and then the coating layer is dried to solidify the coating layer. This is a method of forming a porous layer.
  • the wet coating method is preferable from the viewpoint of obtaining a good porous structure.
  • the separator of the second form can also be produced by a method in which a porous layer is produced as an independent sheet, and this porous layer is stacked on a porous substrate and laminated by thermocompression bonding or an adhesive.
  • a method for producing the porous layer as an independent sheet include a method in which the wet coating method or the dry coating method described above is applied to form a porous layer on the release sheet, and the release sheet is peeled off from the porous layer. It is done.
  • the non-aqueous secondary battery of the present disclosure is a non-aqueous secondary battery that obtains an electromotive force by doping or dedoping lithium, and includes a positive electrode, a negative electrode, and a separator for the non-aqueous secondary battery of the present disclosure.
  • Doping means occlusion, loading, adsorption, or insertion, and means a phenomenon in which lithium ions enter an active material of an electrode such as a positive electrode.
  • the non-aqueous secondary battery of the present disclosure has, for example, a structure in which a battery element in which a negative electrode and a positive electrode are opposed to each other with a separator enclosed in an exterior material together with an electrolytic solution.
  • the nonaqueous secondary battery of the present disclosure is suitable for a nonaqueous electrolyte secondary battery, particularly a lithium ion secondary battery.
  • the non-aqueous secondary battery provided with the first form separator has a high production yield because the first form separator is excellent in adhesion between the positive electrode and the negative electrode by dry heat press.
  • the non-aqueous secondary battery provided with the first type separator is excellent in the cycle characteristics (capacity maintenance ratio) of the battery because the first type separator is excellent in adhesion between the positive electrode and the negative electrode by dry heat press.
  • the non-aqueous secondary battery provided with the second type separator has a high production yield because the second type separator is excellent in adhesion to an electrode by dry heat press.
  • the non-aqueous secondary battery provided with the second type separator is excellent in the cycle characteristics (capacity maintenance ratio) of the battery because the second type separator is excellent in adhesion to the electrode by dry heat press.
  • the positive electrode there is a structure in which an active material layer including a positive electrode active material and a binder resin is disposed on a current collector.
  • the active material layer may further contain a conductive additive.
  • the positive electrode active material include lithium-containing transition metal oxides. Specifically, LiCoO 2 , LiNiO 2 , LiMn 1/2 Ni 1/2 O 2 , LiCo 1/3 Mn 1/3 Ni 1 / 3 O 2, LiMn 2 O 4 , LiFePO 4, LiCo 1/2 Ni 1/2 O 2, LiAl 1/4 Ni 3/4 O 2 and the like.
  • the binder resin include polyvinylidene fluoride resins and styrene-butadiene copolymers.
  • the conductive aid include carbon materials such as acetylene black, ketjen black, and graphite powder.
  • the current collector include aluminum foil, titanium foil, and stainless steel foil having a thickness of 5 ⁇ m to 20 ⁇ m.
  • the polyvinylidene fluoride resin contained in the porous layer of the first type separator is excellent in oxidation resistance. It is easy to apply LiMn 1/2 Ni 1/2 O 2 , LiCo 1/3 Mn 1/3 Ni 1/3 O 2, etc. that can be operated at a high voltage.
  • the polyvinylidene fluoride resin contained in the adhesive porous layer of the separator of the second form is excellent in oxidation resistance.
  • LiMn 1/2 Ni 1/2 O 2 , LiCo 1/3 Mn 1/3 Ni 1 that can be operated at a high voltage of 4.2 V or more as a positive electrode active material by being arranged on the positive electrode side of the water-based secondary battery. / 3 O 2 etc. are easy to apply.
  • Examples of embodiments of the negative electrode include a structure in which an active material layer including a negative electrode active material and a binder resin is disposed on a current collector.
  • the active material layer may further contain a conductive additive.
  • Examples of the negative electrode active material include materials that can occlude lithium electrochemically, and specific examples include carbon materials; alloys of silicon, tin, aluminum, and the like with lithium; wood alloys.
  • Examples of the binder resin include polyvinylidene fluoride resins and styrene-butadiene copolymers.
  • Examples of the conductive aid include carbon materials such as acetylene black, ketjen black, and graphite powder.
  • Examples of the current collector include copper foil, nickel foil, and stainless steel foil having a thickness of 5 ⁇ m to 20 ⁇ m. Moreover, it may replace with said negative electrode and may use metal lithium foil as a negative electrode.
  • the electrolytic solution is a solution in which a lithium salt is dissolved in a non-aqueous solvent.
  • the lithium salt include LiPF 6 , LiBF 4 , LiClO 4, and the like.
  • the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, and fluorine-substituted products thereof; and cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone. These may be used alone or in combination.
  • cyclic carbonate and chain carbonate were mixed at a mass ratio (cyclic carbonate: chain carbonate) of 20:80 to 40:60, and lithium salt was dissolved in 0.5 mol / L to 1.5 mol / L.
  • a solution is preferred.
  • Examples of exterior materials include metal cans and aluminum laminate film packs.
  • the battery has a square shape, a cylindrical shape, a coin shape, and the like, but the separator of the present disclosure is suitable for any shape.
  • a method for producing a non-aqueous secondary battery according to the present disclosure includes a method of performing a heat press treatment (referred to as “dry heat press” in the present disclosure) without impregnating a separator with an electrolyte and bonding the separator to an electrode.
  • a production method including impregnating the separator with an electrolytic solution and performing a heat press treatment referred to as “wet heat press” in the present disclosure) to adhere to the electrode.
  • a manufacturing method in which dry heat pressing is performed is preferable.
  • the manufacturing method includes, for example, a stacking process for manufacturing a laminate in which the separator of the present disclosure is disposed between a positive electrode and a negative electrode, and a dry bonding process in which a dry heat press is performed on the stack to bond the electrode and the separator.
  • the method of disposing the separator between the positive electrode and the negative electrode may be a method of laminating at least one layer of the positive electrode, the separator, and the negative electrode in this order (so-called stack method).
  • stack method A method of overlapping in order and rolling in the length direction may be used.
  • the dry adhesion step may be performed before the laminate is accommodated in an exterior material (for example, an aluminum laminate film pack) or may be performed after the laminate is accommodated in the exterior material. That is, the laminate in which the electrode and the separator are bonded by dry heat pressing may be accommodated in the exterior material, and after the laminate is accommodated in the exterior material, dry heat press is performed from above the exterior material to remove the electrode and separator. It may be adhered.
  • an exterior material for example, an aluminum laminate film pack
  • the pressing temperature in the dry bonding step is preferably 70 ° C. to 120 ° C., more preferably 75 ° C. to 110 ° C., and still more preferably 80 ° C. to 100 ° C. Within this temperature range, the adhesion between the electrode and the separator is good, and since the separator can expand appropriately in the width direction, short-circuiting of the battery is unlikely to occur.
  • the press pressure in the dry bonding step is preferably 0.5 kg to 40 kg as a load per 1 cm 2 of electrode.
  • the pressing time is preferably adjusted according to the pressing temperature and pressing pressure, and is adjusted, for example, in the range of 0.5 minutes to 60 minutes.
  • the laminate may be temporarily bonded by performing room temperature press (pressurization at room temperature) on the laminate before dry heat pressing.
  • an electrolytic solution is injected into the exterior material containing the laminate, and the exterior material is sealed.
  • the laminate may be further wet heat pressed from above the exterior material.
  • the inside of the exterior body is preferably in a vacuum state. Examples of a method for sealing the exterior material include a method in which the opening of the exterior material is bonded with an adhesive, and a method in which the opening of the exterior material is heated and pressed to be thermocompression bonded.
  • the separator and the non-aqueous secondary battery of the present disclosure will be described more specifically with reference to examples.
  • the materials, amounts used, ratios, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present disclosure. Therefore, the range of the separator and the nonaqueous secondary battery of the present disclosure should not be limitedly interpreted by the specific examples shown below.
  • composition of polyvinylidene fluoride resin 20 mg of a polyvinylidene fluoride resin was dissolved in 0.6 ml of heavy dimethyl sulfoxide at 100 ° C., a 19 F-NMR spectrum was measured at 100 ° C., and the composition of the polyvinylidene fluoride resin was determined from the NMR spectrum.
  • Weight average molecular weight of polyvinylidene fluoride resin The weight average molecular weight (Mw) of the polyvinylidene fluoride resin was determined using a gel permeation chromatography analyzer (JASCO GPC-900), two Tosoh TSKgel SUPER AWM-H columns, and N, N solvents. -Measured as a molecular weight in terms of polystyrene using dimethylformamide under conditions of a temperature of 40 ° C and a flow rate of 10 ml / min.
  • the glass transition temperature of the resin was determined from a differential scanning calorimetry curve (DSC curve) obtained by performing differential scanning calorimetry (DSC).
  • the glass transition temperature is a temperature at a point where a straight line obtained by extending the base line on the low temperature side to the high temperature side and a tangent line of the curve of the step-like change portion and the maximum gradient.
  • the film thickness ( ⁇ m) of the porous substrate and the separator was determined by measuring 20 points with a contact-type thickness meter (LITEMATIC, Mitutoyo Corp.) and averaging them.
  • the measurement terminal was a cylindrical terminal having a diameter of 5 mm, and was adjusted so that a load of 7 g was applied during the measurement.
  • Gurley value The Gurley value (second / 100 cc) of the porous substrate and the separator was measured using a Gurley type densometer (Toyo Seiki G-B2C) according to JIS P8117: 2009.
  • the porosity (%) of the porous substrate and the porous layer was determined according to the following formula.
  • is a porosity (%)
  • Ws is a basis weight (g / m 2 )
  • ds is a true density (g / cm 3 )
  • t is a thickness ( ⁇ m).
  • ⁇ 1-Ws / (ds ⁇ t) ⁇ ⁇ 100
  • Adhesive tape was applied to one surface of the separator (when the adhesive was applied, the length direction of the adhesive tape was matched with the MD direction of the separator), and the separator was cut out in the TD direction 1.2 cm and MD direction 7 cm together with the adhesive tape. It was.
  • the adhesive tape was peeled off together with the porous layer directly below, and the two separated ends were held by Tensilon (RTC-1210A manufactured by Orientec Co., Ltd.), and a T-shaped peel test was performed.
  • an adhesive tape is used as a support body for peeling a porous layer from a porous base material.
  • the tensile speed of the T-peel test was 20 mm / min, and the load (N) when the porous layer was peeled from the porous substrate was measured. After the start of measurement, loads from 10 mm to 40 mm were sampled at intervals of 0.4 mm, the average was calculated, converted to a load per 10 mm width (N / 10 mm), and the measured values of three test pieces were averaged, The peel strength (N / 10 mm) was used.
  • Adhesive strength between positive electrode and first porous layer 89.5 g of lithium cobaltate powder as a positive electrode active material, 4.5 g of acetylene black as a conductive auxiliary agent, and 6 g of polyvinylidene fluoride as a binder are mixed with N-methyl so that the concentration of polyvinylidene fluoride is 6% by mass. -Dissolved in pyrrolidone and stirred in a double-arm mixer to prepare a positive electrode slurry. This positive electrode slurry was applied to one side of an aluminum foil having a thickness of 20 ⁇ m, dried and pressed to obtain a positive electrode having a positive electrode active material layer.
  • the positive electrode obtained above was cut into a width of 1.5 cm and a length of 7 cm, and a separator was cut into a TD direction of 1.8 cm and an MD direction of 7.5 cm.
  • the first porous layer of the separator was stacked to face the positive electrode, and was hot-pressed under conditions of a temperature of 85 ° C., a pressure of 1.0 MPa, and a time of 10 seconds to bond the positive electrode and the separator, and this was used as a test piece. .
  • the separator is slightly peeled off from the positive electrode, and the two separated ends are held by Tensilon (RTC-1210A manufactured by Orientec Co., Ltd.) to conduct a T-shaped peel test. went.
  • the tensile speed of the T-peel test is 20 mm / min
  • the load (N) when the separator peels from the positive electrode is measured
  • the load from 10 mm to 40 mm is sampled at intervals of 0.4 mm after the measurement is started, and the average is calculated.
  • the measured values of the three test pieces were averaged to obtain the adhesive strength (N) between the positive electrode and the first porous layer.
  • Tables 1 to 4 show percentages (%) obtained by dividing the adhesive strength of the separators of Examples and Comparative Examples by the adhesive strength of the separators of Comparative Example 1.
  • Adhesive strength between negative electrode and second porous layer 300 g of artificial graphite as negative electrode active material, 7.5 g of water-soluble dispersion containing 40% by mass of modified styrene-butadiene copolymer as binder, 3 g of carboxymethyl cellulose as thickener, and appropriate amount of water The mixture was stirred with a type mixer to prepare a negative electrode slurry. This negative electrode slurry was applied to one side of a 10 ⁇ m thick copper foil, dried and pressed to obtain a negative electrode having a negative electrode active material layer.
  • the negative electrode obtained above was cut into a width of 1.5 cm and a length of 7 cm, and the separator was cut into a TD direction of 1.8 cm and an MD direction of 7.5 cm.
  • the second porous layer of the separator was stacked facing the negative electrode, and was hot-pressed under conditions of a temperature of 85 ° C., a pressure of 1.0 MPa, and a time of 10 seconds to bond the negative electrode and the separator, and this was used as a test piece. .
  • the test piece was subjected to a T-shaped peel test in the same manner as in [First embodiment: Adhesive strength between positive electrode and first porous layer], and the adhesive strength between negative electrode and second porous layer (N). Asked.
  • Tables 1 to 4 show percentages (%) obtained by dividing the adhesive strength of the separators of Examples and Comparative Examples by the adhesive strength of the separators of Comparative Example 1.
  • the conditions for hot pressing were a temperature of 90 ° C., a load of 20 kg per 1 cm 2 of electrode, and a pressing time of 2 minutes.
  • an electrolytic solution (1 mol / L LiPF 6 -ethylene carbonate: ethyl methyl carbonate [mass ratio 3: 7]) was injected into the pack, and the laminate was impregnated with the electrolytic solution. was sealed under vacuum to obtain a battery.
  • the battery was charged and discharged for 300 cycles under an environment of a temperature of 30 ° C.
  • the charging was a constant current and constant voltage charging of 1C and 4.2V, and the discharging was a constant current discharging of 1C and 2.75V cut-off.
  • the discharge capacity at the 300th cycle was divided by the initial capacity, the average of 10 batteries was calculated, and the obtained value (%) was taken as the capacity retention rate.
  • a battery was produced in the same manner as the battery production in [Cycle characteristics (capacity maintenance ratio)].
  • the battery was charged and discharged in an environment at a temperature of 25 ° C., the discharge capacity when discharged at 0.2 C and the discharge capacity when discharged at 2 C were measured, the latter was divided by the former, and 10 batteries were The average was calculated, and the obtained value (%) was taken as the load characteristic.
  • the charging conditions were 0.2 C, 4.2 V constant current constant voltage charging for 8 hours, and the discharging conditions were 2.75 V cut-off constant current discharging.
  • polyvinylidene fluoride resin VDF-HFP copolymer, HFP unit content 6 mass%, weight average
  • acrylic resin methyl methacrylate-methacrylic acid copolymer, polymerization ratio [mass ratio] 90:10, weight average molecular weight 85,000, glass transition temperature 80 ° C.
  • a second coating solution for forming a two-porous material was prepared.
  • the mass ratio of the polyvinylidene fluoride resin and the acrylic resin contained in the second coating liquid was 75:25, and the resin concentration of the second coating liquid was 5.0 mass%.
  • the first coating liquid is applied to one side of the polyethylene microporous membrane (film thickness 9.0 ⁇ m, Gurley value 150 seconds / 100 cc, porosity 43%), which is a porous substrate, and the second coating is applied to the other side.
  • Example 2 A separator was prepared in the same manner as in Example 1 except that the acrylic resin for preparing the second coating solution was changed to a vinyl acetate resin (polyvinyl acetate, weight average molecular weight 15,000, glass transition temperature 30 ° C.). Produced.
  • a vinyl acetate resin polyvinyl acetate, weight average molecular weight 15,000, glass transition temperature 30 ° C.
  • Example 3 A separator was prepared in the same manner as in Example 1 except that the acrylic resin for preparing the second coating solution was changed to a vinyl chloride resin (polyvinyl chloride, weight average molecular weight 20,000, glass transition temperature 40 ° C.). .
  • a vinyl chloride resin polyvinyl chloride, weight average molecular weight 20,000, glass transition temperature 40 ° C.
  • Examples 4 to 9 A separator was produced in the same manner as in Example 1 except that the contents of the polyvinylidene fluoride resin and acrylic resin contained in the second coating solution were changed as shown in Table 1.
  • Example 10 To the first coating liquid and the second coating liquid, magnesium hydroxide particles (volume average particle diameter of primary particles 0.8 ⁇ m, BET specific surface area 6.8 m 2 / A separator was prepared in the same manner as in Example 1 except that g) was dispersed.
  • Example 11 To the first coating liquid and the second coating liquid, magnesium hydroxide particles (volume average particle diameter of primary particles 0.8 ⁇ m, BET specific surface area 6.8 m 2 / A separator was prepared in the same manner as in Example 2 except that g) was dispersed.
  • Example 12 To the first coating liquid and the second coating liquid, magnesium hydroxide particles (volume average particle diameter of primary particles 0.8 ⁇ m, BET specific surface area 6.8 m 2 / A separator was prepared in the same manner as in Example 3 except that g) was dispersed.
  • Examples 13 to 14 Except that the contents of the resin and magnesium hydroxide particles contained in the first coating liquid and the contents of the resin and magnesium hydroxide particles contained in the second coating liquid were changed as shown in Table 2, A separator was prepared in the same manner as in Example 10.
  • Example 1 except that the polyvinylidene fluoride resin for preparing the first coating liquid was changed to another polyvinylidene fluoride resin (VDF-HFP copolymer having the composition and weight average molecular weight shown in Table 3). In the same manner, a separator was produced.
  • VDF-HFP copolymer having the composition and weight average molecular weight shown in Table 3
  • Example 19 Example 1 except that the polyvinylidene fluoride resin for preparing the second coating solution was changed to another polyvinylidene fluoride resin (VDF-HFP copolymer having the composition and weight average molecular weight shown in Table 3). In the same manner, a separator was produced.
  • VDF-HFP copolymer having the composition and weight average molecular weight shown in Table 3
  • Tables 1 to 4 show the physical properties and evaluation results of the separators of Examples 1 to 19 and Comparative Examples 1 to 8.
  • Example 102 A separator was produced in the same manner as in Example 101 except that the acrylic resin was changed to a vinyl acetate resin (polyvinyl acetate, weight average molecular weight 15,000, glass transition temperature 30 ° C.).
  • Example 103 A separator was produced in the same manner as in Example 101 except that the acrylic resin was changed to a vinyl chloride resin (polyvinyl chloride, weight average molecular weight 20,000, glass transition temperature 40 ° C.).
  • a vinyl chloride resin polyvinyl chloride, weight average molecular weight 20,000, glass transition temperature 40 ° C.
  • Example 104 to 109 A separator was produced in the same manner as in Example 101 except that the mass ratio of the polyvinylidene fluoride resin and the acrylic resin contained in the coating liquid was changed as shown in Table 5.
  • Example 110 Except that magnesium hydroxide particles (volume average particle size of primary particles 0.8 ⁇ m, BET specific surface area 6.8 m 2 / g) were further dispersed in the coating solution so as to have the contents shown in Table 6. A separator was produced in the same manner as in Example 101.
  • Example 111 Except that magnesium hydroxide particles (volume average particle size of primary particles 0.8 ⁇ m, BET specific surface area 6.8 m 2 / g) were further dispersed in the coating solution so as to have the contents shown in Table 6. A separator was produced in the same manner as in Example 102.
  • Example 112 Except that magnesium hydroxide particles (volume average particle size of primary particles 0.8 ⁇ m, BET specific surface area 6.8 m 2 / g) were further dispersed in the coating solution so as to have the contents shown in Table 6. A separator was produced in the same manner as in Example 103.
  • Example 113 to 114 A separator was produced in the same manner as in Example 110 except that the contents of the polyvinylidene fluoride resin, the acrylic resin, and the magnesium hydroxide particles were changed as shown in Table 6.
  • Example 115 to 118 A separator was produced in the same manner as in Example 101 except that the polyvinylidene fluoride resin was changed to another polyvinylidene fluoride resin (VDF-HFP copolymer having the composition and weight average molecular weight shown in Table 6). .
  • Example 101 A separator was produced in the same manner as in Example 101 except that the coating liquid did not contain an acrylic resin.
  • Example 102 A separator was prepared in the same manner as in Example 110 except that the coating liquid did not contain an acrylic resin and the contents of the polyvinylidene fluoride resin and magnesium hydroxide particles were changed as shown in Table 7.
  • Example 101 A separator Except for changing the polyvinylidene fluoride resin to another polyvinylidene fluoride resin (VDF-HFP copolymer or polyvinylidene fluoride having the composition and weight average molecular weight shown in Table 7), the same as Example 101 A separator was produced.
  • Example 104 and 107 Except for changing the polyvinylidene fluoride resin to another polyvinylidene fluoride resin (VDF-HFP copolymer or polyvinylidene fluoride having the composition and weight average molecular weight shown in Table 7), the same as Example 102 A separator was produced.
  • VDF-HFP copolymer or polyvinylidene fluoride having the composition and weight average molecular weight shown in Table 7 the same as Example 102 A separator was produced.
  • Example 105 and 108 Except for changing the polyvinylidene fluoride resin to another polyvinylidene fluoride resin (VDF-HFP copolymer or polyvinylidene fluoride having the composition and weight average molecular weight shown in Table 7), the same as Example 103 A separator was produced.
  • VDF-HFP copolymer or polyvinylidene fluoride having the composition and weight average molecular weight shown in Table 7 the same as Example 103 A separator was produced.
  • Tables 5 to 7 show the physical properties and evaluation results of the separators of Examples 101 to 118 and Comparative Examples 101 to 108.

Abstract

多孔質基材と、前記多孔質基材の一方の面に設けられた多孔質層であって、HFP単位の含有量が3質量%~20質量%であり且つ重量平均分子量が10万~150万であるPVDF系樹脂を含有する第一多孔質層と、前記多孔質基材の他方の面に設けられた多孔質層であって、PVDF系樹脂とガラス転移温度が30℃~120℃である樹脂とを含有する第二多孔質層と、を備えた非水系二次電池用セパレータ。 多孔質基材と、前記多孔質基材の片面又は両面に設けられた接着性多孔質層であって、HFP単位の含有量が5質量%~20質量%であり且つ重量平均分子量が10万~150万であるPVDF系樹脂と、ガラス転移温度が30℃~120℃である樹脂とを含有する接着性多孔質層と、を備えた非水系二次電池用セパレータ。

Description

非水系二次電池用セパレータ及び非水系二次電池
 本発明は、非水系二次電池用セパレータ及び非水系二次電池に関する。
 リチウムイオン二次電池に代表される非水系二次電池は、ノートパソコン、携帯電話、デジタルカメラ、カムコーダ等の携帯型電子機器の電源として広く用いられている。携帯型電子機器の小型化及び軽量化に伴い、非水系二次電池の外装の簡素化及び軽量化がなされており、外装材としてステンレス製の缶にかわって、アルミ製の缶が開発され、さらに金属製の缶にかわって、アルミラミネートフィルム製のパックが開発されている。ただし、アルミラミネートフィルム製パックは軟らかいが故に、該パックを外装材とする電池(所謂ソフトパック電池)においては、外部からの衝撃や、充放電に伴う電極の膨張及び収縮によって、電極とセパレータとの間に隙間が形成されやすく、電池のサイクル寿命が低下することがある。
 上記の課題を解決するため、電極とセパレータとの接着を高める技術が提案されている。その技術の一つとして、多孔質基材上にポリフッ化ビニリデン系樹脂を含む多孔質層を備えたセパレータが知られている(例えば、特許文献1参照)。
 ほかに、ハンドリング性とイオン透過性とを向上させることを目的に、ポリフッ化ビニリデン系樹脂と、該ポリフッ化ビニリデン系樹脂に分散したアクリル樹脂粒子とを含有する多孔質層を備えたセパレータが提案されている(例えば、特許文献2参照)。
特許第4127989号公報 国際公開第2016/098684号
 電池を製造する際に、電池の製造歩留りを向上させる目的で、正極と負極との間にセパレータを配置した積層体にドライヒートプレス(セパレータに電解液を含浸させずに行う熱プレス処理)を施す場合がある。電池の製造歩留りをより向上させるため、また、電池性能を向上させるため、ドライヒートプレスによる正極及び負極との接着に優れるセパレータが望まれている。
 本開示は、上記状況のもとになされた。
 本開示は、第一形態として、ポリフッ化ビニリデン系樹脂を含む多孔質層を多孔質基材の両面に備えたセパレータであって、ドライヒートプレスによる正極及び負極との接着に優れる非水系二次電池用セパレータを提供することを目的とし、これを解決することを課題とする。
 本開示は、第二形態として、ポリフッ化ビニリデン系樹脂を含む接着性多孔質層を備えたセパレータであって、ドライヒートプレスによる電極との接着に優れる非水系二次電池用セパレータを提供することを目的とし、これを解決することを課題とする。
 本開示の第一形態には、以下の形態が含まれる。
[1] 多孔質基材と、前記多孔質基材の一方の面に設けられた多孔質層であって、フッ化ビニリデン単量体単位及びヘキサフルオロプロピレン単量体単位を有し、ヘキサフルオロプロピレン単量体単位の含有量が全単量体単位の3質量%~20質量%であり、且つ重量平均分子量が10万~150万であるポリフッ化ビニリデン系樹脂を含有する第一多孔質層と、前記多孔質基材の他方の面に設けられた多孔質層であって、ポリフッ化ビニリデン系樹脂と、ガラス転移温度が30℃~120℃である樹脂とを含有する第二多孔質層と、を備えた非水系二次電池用セパレータ。
[2] 前記第二多孔質層において、前記ポリフッ化ビニリデン系樹脂と前記ガラス転移温度が30℃~120℃である樹脂とが相溶した状態で含まれている、[1]に記載の非水系二次電池用セパレータ。
[3] 前記第二多孔質層における前記ガラス転移温度が30℃~120℃である樹脂の含有量が、前記第二多孔質層に含まれる全樹脂の総量の5質量%~50質量%である、[1]又は[2]に記載の非水系二次電池用セパレータ。
[4] 前記第一多孔質層が、さらに無機フィラーを含有し、前記第一多孔質層における前記無機フィラーの含有量が、前記第一多孔質層に含まれる全樹脂と前記無機フィラーの合計量の5質量%~75質量%である、[1]~[3]のいずれかに記載の非水系二次電池用セパレータ。
[5] 前記第二多孔質層が、さらに無機フィラーを含有し、前記第二多孔質層における前記無機フィラーの含有量が、前記第二多孔質層に含まれる全樹脂と前記無機フィラーの合計量の5質量%~75質量%である、[1]~[4]のいずれかに記載の非水系二次電池用セパレータ。
[6] 前記ガラス転移温度が30℃~120℃である樹脂が、アクリル系樹脂、酢酸ビニル系樹脂及び塩化ビニル系樹脂からなる群から選ばれる少なくとも1種である、[1]~[5]のいずれかに記載の非水系二次電池用セパレータ。
[7] 正極と、負極と、前記正極及び前記負極の間に配置された[1]~[6]のいずれかに記載の非水系二次電池用セパレータと、を備え、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池。
 本開示の第二形態には、以下の形態が含まれる。
[11] 多孔質基材と、前記多孔質基材の片面又は両面に設けられた接着性多孔質層であって、フッ化ビニリデン単量体単位及びヘキサフルオロプロピレン単量体単位を有し、ヘキサフルオロプロピレン単量体単位の含有量が全単量体単位の5質量%~20質量%であり、且つ重量平均分子量が10万~150万であるポリフッ化ビニリデン系樹脂と、ガラス転移温度が30℃~120℃である樹脂とを含有する接着性多孔質層と、を備えた非水系二次電池用セパレータ。
[12] 前記接着性多孔質層において、前記ポリフッ化ビニリデン系樹脂と前記ガラス転移温度が30℃~120℃である樹脂とが相溶した状態で含まれている、[11]に記載の非水系二次電池用セパレータ。
[13] 前記接着性多孔質層における前記ガラス転移温度が30℃~120℃である樹脂の含有量が、前記接着性多孔質層に含まれる全樹脂の総量の5質量%~50質量%である、[11]又は[12]に記載の非水系二次電池用セパレータ。
[14] 前記接着性多孔質層が、さらに無機フィラーを含有し、前記接着性多孔質層における前記無機フィラーの含有量が、前記接着性多孔質層に含まれる全樹脂と前記無機フィラーの合計量の5質量%~75質量%である、[11]~[13]のいずれかに記載の非水系二次電池用セパレータ。
[15] 前記ガラス転移温度が30℃~120℃である樹脂が、アクリル系樹脂、酢酸ビニル系樹脂及び塩化ビニル系樹脂からなる群から選ばれる少なくとも1種である、[11]~[14]のいずれかに記載の非水系二次電池用セパレータ。
[16] 正極と、負極と、前記正極及び前記負極の間に配置された[11]~[15]のいずれかに記載の非水系二次電池用セパレータと、を備え、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池。
 本開示の第一形態によれば、ポリフッ化ビニリデン系樹脂を含む多孔質層を多孔質基材の両面に備えたセパレータであって、ドライヒートプレスによる正極及び負極との接着に優れる非水系二次電池用セパレータが提供される。
 本開示の第二形態によれば、ポリフッ化ビニリデン系樹脂を含む接着性多孔質層を備えたセパレータであって、ドライヒートプレスによる電極との接着に優れる非水系二次電池用セパレータが提供される。
 以下に、発明の実施形態について説明する。これらの説明及び実施例は実施形態を例示するものであり、実施形態の範囲を制限するものではない。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数種存在する場合には、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
 本開示において、「機械方向」とは、長尺状に製造される多孔質基材及びセパレータにおいて長尺方向を意味し、「幅方向」とは、「機械方向」に直交する方向を意味する。本開示において、「機械方向」を「MD方向」ともいい、「幅方向」を「TD方向」ともいう。
 本明細書において、ポリフッ化ビニリデン系樹脂の「単量体単位」とは、ポリフッ化ビニリデン系樹脂の構成単位であって、単量体が重合してなる構成単位を意味する。
<第一形態の非水系二次電池用セパレータ>
 第一形態の非水系二次電池用セパレータ(「第一形態のセパレータ」ともいう。)は、多孔質基材と、多孔質基材の一方の面に設けられた第一多孔質層と、多孔質基材の他方の面に設けられた第二多孔質層を備える。第一形態のセパレータにおいて第一多孔質層及び第二多孔質層は、セパレータの最外層として存在し、電極と接着する層である。
 第一形態のセパレータにおいて第一多孔質層は、フッ化ビニリデン単量体単位及びヘキサフルオロプロピレン単量体単位を有し、ヘキサフルオロプロピレン単量体単位の含有量が全単量体単位の3質量%~20質量%であり、且つ重量平均分子量が10万~150万であるポリフッ化ビニリデン系樹脂を含有する。第一形態のセパレータにおいて第二多孔質層は、ポリフッ化ビニリデン系樹脂と、ガラス転移温度が30℃~120℃である樹脂とを含有する。
 以下、フッ化ビニリデン単量体単位を「VDF単位」ともいい、ヘキサフルオロプロピレン単量体単位を「HFP単位」ともいい、VDF単位及びHFP単位を有するポリフッ化ビニリデン系樹脂を「VDF-HFP共重合体」ともいい、HFP単位の含有量が全単量体単位の3質量%~20質量%であり且つ重量平均分子量が10万~150万であるVDF-HFP共重合体を「特定VDF-HFP共重合体(1)」ともいう。
 第一形態のセパレータは、特定VDF-HFP共重合体(1)を含有する第一多孔質層と、ポリフッ化ビニリデン系樹脂及びガラス転移温度が30℃~120℃である樹脂を含有する第二多孔質層とを備えることによって、ドライヒートプレスによる正極及び負極との接着に優れる。
 第一形態のセパレータは、以下の理由から、特定VDF-HFP共重合体(1)を含有する第一多孔質層を一方の面に備え、ポリフッ化ビニリデン系樹脂とガラス転移温度が30℃~120℃である樹脂とを含有する第二多孔質層をもう一方の面に備える。
 正極は、一般的に、正極活物質及びバインダ樹脂を含む正極活物質層が集電体上に配置された構造を有し、正極活物質層のバインダ樹脂としては、主としてポリフッ化ビニリデン系樹脂が用いられる。一方、負極は、一般的に、負極活物質及びバインダ樹脂を含む負極活物質層が集電体上に配置された構造を有し、負極活物質層のバインダ樹脂としては、主としてスチレンブタジエンゴム又はポリフッ化ビニリデン系樹脂が用いられる。したがって、正極のバインダ樹脂と負極のバインダ樹脂との組合せとしては、双方が主としてポリフッ化ビニリデン系樹脂である形態と、一方が主としてポリフッ化ビニリデン系樹脂で他方が主としてスチレンブタジエンゴムである形態とが、一般的にあり得る。
 そこで、上記の2形態いずれにも対応するために、
(a)セパレータの多孔質層を両面ともポリフッ化ビニリデン系樹脂を含む多孔質層としつつ、
(b)一方の多孔質層を、ポリフッ化ビニリデン系樹脂の組成を制御することによって、ポリフッ化ビニリデン系樹脂を主たるバインダ樹脂とする電極活物質層に対して、優れて接着する多孔質層(第一多孔質層)とし、
(c)他方の多孔質層を、ポリフッ化ビニリデン系樹脂以外の樹脂も共に含有させることによって、ポリフッ化ビニリデン系樹脂を主たるバインダ樹脂とする電極活物質層に対しても、スチレンブタジエンゴムを主たるバインダ樹脂とする電極活物質層に対しても、優れて接着する多孔質層(第二多孔質層)とする。
 上記(b)は、具体的には、下記によって実現される。
 VDF-HFP共重合体は、HFP単位を含まないポリフッ化ビニリデンに比較し、加熱された際のポリマー鎖の運動性が高い。そこで、第一形態のセパレータは、第一多孔質層において、ポリフッ化ビニリデン系樹脂としてVDF-HFP共重合体を含む。VDF-HFP共重合体のHFP単位含有量が3質量%以上であると、ドライヒートプレスを行った際のポリマー鎖の運動性が高く、電極表面の凹凸にポリマー鎖が入り込んでアンカー効果が発現し、電極に対する第一多孔質層の接着を向上させる。この観点から、VDF-HFP共重合体のHFP単位含有量は、3質量%以上であり、5質量%以上がより好ましく、6質量%以上が更に好ましい。一方で、VDF-HFP共重合体のHFP単位含有量が20質量%以下であると、電解液に溶解しにくく過度に膨潤することもないので、電池内部において電極と第一多孔質層との接着が保たれる。この観点から、VDF-HFP共重合体のHFP単位含有量は、20質量%以下であり、18質量%以下がより好ましく、15質量%以下が更に好ましい。
 さらに、上記(b)をより効果的に実現するために、VDF-HFP共重合体の重量平均分子量の範囲を下記のとおりに制御する。
 VDF-HFP共重合体のMwが10万以上であると、第一多孔質層が電極との接着処理に耐え得る力学特性を確保でき、電極との接着がよい。また、VDF-HFP共重合体のMwが10万以上であると、電解液に溶解しにくいので、電池内部において電極と第一多孔質層との接着が保たれる。これらの観点から、VDF-HFP共重合体のMwは、10万以上であり、20万以上がより好ましく、30万以上が更に好ましく、50万以上が更に好ましい。
 VDF-HFP共重合体のMwが150万以下であると、第一多孔質層の塗工成形に用いられる塗工液の粘度が高くなり過ぎず成形性及び結晶形成がよく、第一多孔質層の表面性状の均一性が高く、その結果として、電極に対する第一多孔質層の接着が良好である。また、VDF-HFP共重合体のMwが150万以下であると、ドライヒートプレスを行った際のポリマー鎖の運動性が高く、電極表面の凹凸にポリマー鎖が入り込んでアンカー効果が発現し、電極に対する第一多孔質層の接着を向上させる。これらの観点から、VDF-HFP共重合体のMwは、150万以下であり、120万以下がより好ましく、100万以下が更に好ましい。
 上記(c)は、具体的には、下記によって実現される。
 第二多孔質層は、ポリフッ化ビニリデン系樹脂と、ガラス転移温度が30℃~120℃である樹脂とを含有する。ガラス転移温度が30℃~120℃である樹脂が、ドライヒートプレスの際に第二多孔質層の流動性を高めるので、電極表面の凹凸にポリマー鎖が入り込んでアンカー効果が発現し、電極に対する第二多孔質層の接着を向上させる。ガラス転移温度が30℃~120℃である樹脂のガラス転移温度は、ドライヒートプレスの熱印加によって流動性を発現する観点から、120℃以下であり、115℃以下がより好ましく、110℃以下が更に好ましく、第二多孔質層の耐熱性を確保する観点から、30℃以上であり、35℃以上がより好ましく、40℃以上が更に好ましい。
 第一形態のセパレータは、電池を製造する際において、第一多孔質層及び第二多孔質層の一方を正極に対向させ他方を負極に対向させる。どちらの多孔質層を正極に対向させてもよく、正極活物質層の材料又は負極活物質層の材料に応じて選択すればよい。正極活物質層にバインダ樹脂としてポリフッ化ビニリデン系樹脂が含まれ、負極活物質層にバインダ樹脂としてスチレンブタジエンゴムが含まれる電池においては、第一形態のセパレータは、第一多孔質層を正極に対向させ、第二多孔質層を負極に対向させて配置されることが好ましい。
 第一形態のセパレータは、ドライヒートプレスによる正極及び負極との接着に優れるが故に、電池の製造工程において電極と位置ずれしにくくなり、電池の製造歩留りを向上させる。
 第一形態のセパレータは、ドライヒートプレスによる正極及び負極との接着に優れるが故に、電池のサイクル特性(容量維持率)を向上させる。
 以下に、第一形態のセパレータが有する多孔質基材、第一多孔質層及び第二多孔質層の詳細を説明する。
[多孔質基材]
 本開示において多孔質基材とは、内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜;繊維状物からなる、不織布、紙等の多孔性シート;これら微多孔膜や多孔性シートに他の多孔性の層を1層以上積層した複合多孔質シート;などが挙げられる。多孔質基材としては、セパレータの薄膜化及び強度の観点から、微多孔膜が好ましい。微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
 多孔質基材の材料としては、電気絶縁性を有する材料が好ましく、有機材料及び無機材料のいずれでもよい。
 多孔質基材は、多孔質基材にシャットダウン機能を付与するため、熱可塑性樹脂を含むことが望ましい。シャットダウン機能とは、電池温度が高まった際に、構成材料が溶解して多孔質基材の孔を閉塞することによりイオンの移動を遮断し、電池の熱暴走を防止する機能をいう。熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が好ましい。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;などが挙げられ、中でもポリオレフィンが好ましい。
 多孔質基材としては、ポリオレフィンを含む微多孔膜(「ポリオレフィン微多孔膜」という。)が好ましい。ポリオレフィン微多孔膜としては、例えば、従来の電池セパレータに適用されているポリオレフィン微多孔膜が挙げられ、この中から十分な力学特性とイオン透過性を有するものを選択することが好ましい。
 ポリオレフィン微多孔膜は、シャットダウン機能を発現する観点から、ポリエチレンを含むことが好ましく、ポリエチレンの含有量としては、ポリオレフィン微多孔膜全体の質量の95質量%以上が好ましい。
 ポリオレフィン微多孔膜は、高温に曝されたときに容易に破膜しない程度の耐熱性を付与する観点からは、ポリエチレン及びポリプロピレンを含むポリオレフィン微多孔膜が好ましい。このようなポリオレフィン微多孔膜としては、ポリエチレンとポリプロピレンが1つの層において混在している微多孔膜が挙げられる。該微多孔膜においては、シャットダウン機能と耐熱性の両立という観点から、95質量%以上のポリエチレンと5質量%以下のポリプロピレンとを含むことが好ましい。また、シャットダウン機能と耐熱性の両立という観点からは、2層以上の積層構造を備え、少なくとも1層はポリエチレンを含み、少なくとも1層はポリプロピレンを含む構造のポリオレフィン微多孔膜も好ましい。
 ポリオレフィン微多孔膜に含まれるポリオレフィンとしては、重量平均分子量(Mw)が10万~500万のポリオレフィンが好ましい。ポリオレフィンのMwが10万以上であると、微多孔膜に十分な力学特性を付与できる。一方、ポリオレフィンのMwが500万以下であると、微多孔膜のシャットダウン特性が良好であるし、微多孔膜の成形がしやすい。
 ポリオレフィン微多孔膜の製造方法としては、溶融したポリオレフィン樹脂をT-ダイから押し出してシート化し、これを結晶化処理した後延伸し、次いで熱処理をして微多孔膜とする方法:流動パラフィンなどの可塑剤と一緒に溶融したポリオレフィン樹脂をT-ダイから押し出し、これを冷却してシート化し、延伸した後、可塑剤を抽出し熱処理をして微多孔膜とする方法;などが挙げられる。
 繊維状物からなる多孔性シートとしては、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱性樹脂;セルロース;などの繊維状物からなる、不織布、紙等の多孔性シートが挙げられる。耐熱性樹脂とは、融点が200℃以上の樹脂、又は、融点を有さず分解温度が200℃以上の樹脂を指す。
 複合多孔質シートとしては、微多孔膜や繊維状物からなる多孔性シートに、機能層を積層したシートが挙げられる。このような複合多孔質シートは、機能層によってさらなる機能付加が可能となる観点から好ましい。機能層としては、例えば耐熱性を付与するという観点からは、耐熱性樹脂からなる多孔性の層や、耐熱性樹脂及び無機フィラーからなる多孔性の層が挙げられる。耐熱性樹脂としては、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン及びポリエーテルイミドから選ばれる1種又は2種以上の耐熱性樹脂が挙げられる。無機フィラーとしては、アルミナ等の金属酸化物;水酸化マグネシウム等の金属水酸化物;などが挙げられる。複合化の手法としては、微多孔膜や多孔性シートに機能層を塗工する方法、微多孔膜や多孔性シートと機能層とを接着剤で接合する方法、微多孔膜や多孔性シートと機能層とを熱圧着する方法等が挙げられる。
 多孔質基材の表面には、多孔質層を形成するための塗工液との濡れ性を向上させる目的で、多孔質基材の性質を損なわない範囲で、各種の表面処理を施してもよい。表面処理としては、コロナ処理、プラズマ処理、火炎処理、紫外線照射処理等が挙げられる。
[多孔質基材の特性]
 多孔質基材の厚さは、良好な力学特性と内部抵抗を得る観点から、5μm~25μmが好ましい。
 多孔質基材のガーレ値(JIS P8117:2009)は、電池の短絡の抑制及び十分なイオン透過性を得る観点から、50秒/100cc~200秒/100ccが好ましい。
 多孔質基材の空孔率は、適切な膜抵抗やシャットダウン機能を得る観点から、20%~60%が好ましい。多孔質基材の空孔率は、下記の算出方法に従って求める。即ち、構成材料がa、b、c、…、nであり、各構成材料の質量がWa、Wb、Wc、…、Wn(g/cm)であり、各構成材料の真密度がda、db、dc、…、dn(g/cm)であり、膜厚をt(cm)としたとき、空孔率ε(%)は以下の式より求められる。
ε={1-(Wa/da+Wb/db+Wc/dc+…+Wn/dn)/t}×100
 多孔質基材の突刺強度は、セパレータの製造歩留り及び電池の製造歩留りを向上させる観点から、300g以上が好ましい。多孔質基材の突刺強度は、カトーテック社KES-G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行って測定する最大突刺荷重(g)を指す。
[第一多孔質層及び第二多孔質層]
 第一多孔質層及び第二多孔質層は、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となっている。
 第一多孔質層及び第二多孔質層はそれぞれ、セパレータの最外層として多孔質基材上に設けられた層であり、セパレータと電極とを重ねてプレス又は熱プレスしたときに電極と接着する層である。
 第一多孔質層は、多孔質基材の一方の面に設けられた、少なくとも特定VDF-HFP共重合体(1)を含有する多孔質層である。第一多孔質層は、さらに、特定VDF-HFP共重合体(1)以外の樹脂、無機フィラー、有機フィラー等を含んでもよい。
 第二多孔質層は、多孔質基材のもう一方の面に設けられた、少なくともポリフッ化ビニリデン系樹脂とガラス転移温度が30℃~120℃である樹脂とを含有する多孔質層である。第二多孔質層は、さらに、上記以外の樹脂、無機フィラー、有機フィラー等を含んでもよい。
・ポリフッ化ビニリデン系樹脂
 ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体(即ちポリフッ化ビニリデン);フッ化ビニリデンと他の共重合可能なモノマーとの共重合体(ポリフッ化ビニリデン共重合体);これらの混合物;が挙げられる。フッ化ビニリデンと共重合可能なモノマーとしては、例えば、テトラフルオロエチレン、ヘキサフルオロプロピレン、トリフルオロエチレン、クロロトリフルオロエチレン、トリクロロエチレン、フッ化ビニル等が挙げられ、1種又は2種以上を用いることができる。
 第二多孔質層に含まれるポリフッ化ビニリデン系樹脂は、重量平均分子量(Mw)が10万~300万であることが好ましい。ポリフッ化ビニリデン系樹脂のMwが10万以上であると、第二多孔質層の力学特性が優れる。一方、ポリフッ化ビニリデン系樹脂のMwが300万以下であると、第二多孔質層の塗工成形に用いられる塗工液の粘度が高くなり過ぎず成形性及び結晶形成がよく、第二多孔質層の多孔化が良好である。ポリフッ化ビニリデン系樹脂のMwは、より好ましくは30万~200万であり、更に好ましくは50万~150万である。
 第二多孔質層に含まれるポリフッ化ビニリデン系樹脂としては、電極に対する接着性の観点から、VDF-HFP共重合体が好ましい。ヘキサフルオロプロピレンをフッ化ビニリデンと共重合することで、ポリフッ化ビニリデン系樹脂の結晶性、耐熱性、電解液に対する耐溶解性などを適度な範囲に制御できる。
 第二多孔質層に含まれるポリフッ化ビニリデン系樹脂としては、HFP単位の含有量が全単量体単位の3質量%~20質量%であり且つ重量平均分子量(Mw)が10万~150万であるポリフッ化ビニリデン系樹脂、すなわち特定VDF-HFP共重合体(1)が好ましい。その理由は、第一多孔質層に特定VDF-HFP共重合体(1)を適用する理由と同じである。
 第二多孔質層の実施形態例においては、特定VDF-HFP共重合体(1)が、第二多孔質層に含まれるポリフッ化ビニリデン系樹脂の総量の90質量%以上を占めることがあり、95質量%以上を占めることがあり、100質量%を占めることがある。
・特定VDF-HFP共重合体(1)
 特定VDF-HFP共重合体(1)には、VDF単位とHFP単位のみを有する共重合体、及び、さらに他の単量体単位を有する共重合体のいずれも含まれる。他の単量体単位を形成する単量体としては、例えば、テトラフルオロエチレン、トリフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニル等の含フッ素単量体が挙げられ、これら単量体の1種又は2種以上に由来する単量体単位が特定VDF-HFP共重合体(1)に含まれていてもよい。特定VDF-HFP共重合体(1)としては、VDF単位とHFP単位のみを有する二元共重合体が好ましい。
 特定VDF-HFP共重合体(1)は、HFP単位の含有量が全単量体単位の3質量%~20質量%である。特定VDF-HFP共重合体(1)におけるHFP単位含有量は、下限としては、5質量%以上がより好ましく、6質量%以上が更に好ましく、上限としては、18質量%以下がより好ましく、15質量%以下が更に好ましい。
 特定VDF-HFP共重合体(1)は、重量平均分子量(Mw)が10万~150万である。特定VDF-HFP共重合体(1)のMwは、下限としては、20万以上がより好ましく、30万以上が更に好ましく、50万以上が更に好ましく、上限としては、120万以下がより好ましく、100万以下が更に好ましい。
 特定VDF-HFP共重合体(1)を製造する方法としては、乳化重合や懸濁重合が挙げられる。また、HFP単位の含有量及び重量平均分子量を満足する市販のVDF-HFP共重合体を選択することも可能である。
 第一多孔質層の実施形態例においては、特定VDF-HFP共重合体(1)が、第一多孔質層に含まれる全樹脂の総量の90質量%以上を占めることがあり、95質量%以上を占めることがあり、100質量%を占めることがある。
・ガラス転移温度が30℃~120℃である樹脂
 ガラス転移温度が30℃~120℃である樹脂としては、ドライヒートプレスによる電極との接着がより良好になる観点から、アクリル系樹脂、酢酸ビニル系樹脂及び塩化ビニル系樹脂からなる群から選ばれる少なくとも1種が好ましい。
 アクリル系樹脂としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸ヒドロキシプロピル等のアクリル酸エステルを単独重合した又は共重合した重合体;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチル等のメタクリル酸エステルを単独重合した又は共重合した重合体;少なくとも1種のアクリル酸エステルと少なくとも1種のメタクリル酸エステルとの共重合体;アクリル酸エステル及びメタクリル酸エステルから選ばれる少なくとも1種と、アクリル酸、メタクリル酸、アクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド等から選ばれる少なくとも1種とを共重合した共重合体;が挙げられる。
 アクリル系樹脂としては、メタクリル酸メチルを主たる重合成分とする樹脂であるポリメタクリル酸メチル樹脂(polymethyl methacrylate、PMMA)が好ましい。PMMAは、メタクリル酸メチルの単独重合体でもよく、メタクリル酸メチル以外の他の単量体が共重合した共重合体でもよく、共重合される他の単量体としては、アクリル酸メチル、アクリル酸、及びメタクリル酸から選ばれる少なくとも1種が好ましい。
 アクリル系樹脂の重量平均分子量(Mw)は5万~100万が好ましい。アクリル系樹脂のMwが5万以上であると、製膜性がよく、また、第二多孔質層の特性が優れる。一方、アクリル系樹脂のMwが100万以下であると、第二多孔質層の塗工成形に用いられる塗工液の粘度が高くなり過ぎず、セパレータの生産性が向上する。
 酢酸ビニル系樹脂としては、例えば、酢酸ビニルの単独重合体であるポリ酢酸ビニル(polyvinyl acetate、PVAc);酢酸ビニルと、不飽和カルボン酸、オレフィン、ビニルエーテル、不飽和スルホン酸等から選ばれる少なくとも1種との共重合体;などが挙げられる。
 酢酸ビニル系樹脂の重量平均分子量(Mw)は5万~50万が好ましい。酢酸ビニル系樹脂のMwが5万以上であると、製膜性がよく、また、第二多孔質層の特性が優れる。一方、酢酸ビニル系樹脂のMwが50万以下であると、第二多孔質層の塗工成形に用いられる塗工液の粘度が高くなり過ぎず、セパレータの生産性が向上する。
 塩化ビニル系樹脂としては、単独重合体でも共重合体でもよく、例えば、ポリ塩化ビニル(polyvinyl chloride、PVC)、塩素化ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-プロピレン共重合体、塩化ビニル-スチレン共重合体、塩化ビニル-イソブチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-スチレン-無水マレイン酸共重合体、塩化ビニル-スチレン-アクリロニトリル共重合体、塩化ビニル-ブタジエン共重合体、塩化ビニル-イソプレン共重合体、塩化ビニル-塩素化プロピレン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-メタクリル酸エステル共重合体、塩化ビニル-アクリロニトリル共重合体、塩化ビニル-ビニルエーテル共重合体等が挙げられる。
 塩化ビニル系樹脂の重量平均分子量(Mw)は5000~15万が好ましい。塩化ビニル系樹脂のMwが5000以上であると、製膜性がよく、また、第二多孔質層の特性が優れる。一方、塩化ビニル系樹脂のMwが15万以下であると、第二多孔質層の塗工成形に用いられる塗工液の粘度が高くなり過ぎず、セパレータの生産性が向上する。
 第二多孔質層は、ガラス転移温度が30℃~120℃である樹脂を1種のみ含んでもよく、2種以上含んでもよい。
 第二多孔質層におけるガラス転移温度が30℃~120℃である樹脂の含有量は、多孔質基材と第二多孔質層との間の剥離強度を高める観点から、第二多孔質層に含まれる全樹脂の総量の、5質量%以上が好ましく、7質量%以上がより好ましく、10質量%以上が更に好ましく、15質量%以上が更に好ましい。一方、第二多孔質層の凝集破壊を抑制する観点から、第二多孔質層に含まれる全樹脂の総量の、50質量%以下が好ましく、45質量%以下がより好ましく、40質量%以下が更に好ましく、35質量%以下が更に好ましい。
 第二多孔質層において、ポリフッ化ビニリデン系樹脂と、ガラス転移温度が30℃~120℃である樹脂とが成す形態としては、(a)前者と後者とが相溶した形態;(b)前者の連続相中に後者が分散相として存在する形態;(c)前者の連続相中に後者が粒子状に分散して存在する形態;などが挙げられ、中でも(a)が好ましい。(a)であると、孔の形状及び大きさの均一性が高まり、電極に対する接着点が第二多孔質層表面に均一性高く散在することになり、電極との接着性に優れる。(a)、(b)及び(c)は、第二多孔質層の断面を電子顕微鏡で観察することにより確認できる。
 第二多孔質層の実施形態例においては、ポリフッ化ビニリデン系樹脂とガラス転移温度が30℃~120℃である樹脂との合計が、第二多孔質層に含まれる全樹脂の総量の90質量%以上を占めることがあり、95質量%以上を占めることがあり、100質量%を占めることがある。
・その他の樹脂
 第一多孔質層は、特定VDF-HFP共重合体(1)以外のその他の樹脂を含んでいてもよい。第二多孔質層は、ポリフッ化ビニリデン系樹脂及びガラス転移温度が30℃~120℃である樹脂以外のその他の樹脂を含んでいてもよい。
 第一多孔質層又は第二多孔質層に含まれることがある樹脂としては、フッ素系ゴム、スチレン-ブタジエン共重合体、ビニルニトリル化合物(アクリロニトリル、メタクリロニトリル等)の単独重合体又は共重合体、カルボキシメチルセルロース、ヒドロキシアルキルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリエーテル(ポリエチレンオキサイド、ポリプロピレンオキサイド等)などが挙げられる。
・フィラー
 第一多孔質層又は第二多孔質層は、セパレータの滑り性や耐熱性を向上させる目的で、無機物又は有機物からなるフィラーを含んでいてもよい。その場合、第一形態の効果を妨げない程度の含有量や粒子サイズとすることが好ましい。フィラーとしては、セル強度の向上及び電池の安全性確保の観点から、無機フィラーが好ましい。
 フィラーの平均粒子径は、0.01μm~5μmが好ましい。その下限値としては0.1μm以上がより好ましく、上限値としては1μm以下がより好ましい。
 無機フィラーとしては、電解液に対して安定であり、且つ、電気化学的に安定な無機フィラーが好ましい。具体的には例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化セリウム、水酸化ニッケル、水酸化ホウ素等の金属水酸化物;アルミナ、チタニア、マグネシア、シリカ、ジルコニア、チタン酸バリウム等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の炭酸塩;硫酸バリウム、硫酸カルシウム等の硫酸塩;ケイ酸カルシウム、タルク等の粘土鉱物;などが挙げられる。これらの無機フィラーは、1種を単独で使用しても2種以上を組み合わせて使用してもよい。無機フィラーは、シランカップリング剤等により表面修飾されたものでもよい。
 無機フィラーとしては、電池内での安定性及び電池の安全性確保の観点から、金属水酸化物及び金属酸化物の少なくとも1種が好ましく、難燃性付与や除電効果の観点から、金属水酸化物が好ましく、水酸化マグネシウムが更に好ましい。
 無機フィラーの粒子形状には制限はなく、球に近い形状でもよく、板状の形状でもよいが、電池の短絡抑制の観点からは、板状の粒子や、凝集していない一次粒子であることが好ましい。
 第一多孔質層又は第二多孔質層に無機フィラーが含まれている場合、第一多孔質層又は第二多孔質層における無機フィラーの含有量は、各多孔質層に含まれる全樹脂と無機フィラーの合計量の5質量%~75質量%が好ましい。無機フィラーの含有量が5質量%以上であると、熱が印加された際にセパレータの熱収縮が抑制され寸法安定性の観点から好ましい。本観点から、無機フィラーの含有量は、10質量%以上がより好ましく、20質量%以上が更に好ましい。一方、無機フィラーの含有量が75質量%以下であると、多孔質層の電極への接着が確保される観点から好ましい。本観点から、無機フィラーの含有量は、70質量%以下がより好ましく、65質量%以下が更に好ましい。
 有機フィラーとしては、例えば、架橋ポリメタクリル酸メチル等の架橋アクリル樹脂、架橋ポリスチレンなどが挙げられ、架橋ポリメタクリル酸メチルが好ましい。
・その他の成分
 第一多孔質層及び第二多孔質層は、界面活性剤等の分散剤、湿潤剤、消泡剤、pH調整剤などの添加剤を含んでいてもよい。分散剤は、多孔質層の塗工成形に用いられる塗工液に、分散性、塗工性及び保存安定性を向上させる目的で添加される。湿潤剤、消泡剤、pH調整剤は、多孔質層の塗工成形に用いられる塗工液に、例えば、多孔質基材とのなじみをよくする目的、塗工液へのエア噛み込みを抑制する目的、又はpH調整の目的で添加される。
[第一多孔質層及び第二多孔質層の特性]
 以下において、第一多孔質層と第二多孔質層とに共通する特性を説明する場合、双方をまとめて「多孔質層」という。
 多孔質層の厚さは、多孔質基材の片面において、電極との接着性の観点から、0.5μm以上が好ましく、1.0μm以上がより好ましく、電池のエネルギー密度の観点から、8.0μm以下が好ましく、6.0μm以下がより好ましい。
 第一多孔質層の厚さと、第二多孔質層の厚さとの差は、両面合計の厚さの20%以下であることが好ましく、低いほど好ましい。
 多孔質層の重量は、多孔質基材の片面において、電極との接着性の観点から、0.5g/m以上が好ましく、0.75g/m以上がより好ましく、イオン透過性の観点から、5.0g/m以下が好ましく、4.0g/m以下がより好ましい。
 多孔質層の空孔率は、イオン透過性の観点から、30%以上が好ましく、力学的強度の観点から、80%以下が好ましく、60%以下がより好ましい。第一形態における多孔質層の空孔率の求め方は、多孔質基材の空孔率の求め方と同様である。
 多孔質層の平均孔径は、イオン透過性の観点から、10nm以上が好ましく、電極との接着性の観点から、200nm以下が好ましい。第一形態における多孔質層の平均孔径は、すべての孔が円柱状であると仮定し、下記の式によって算出する。式中、dは多孔質層の平均孔径(直径)を表し、Vは多孔質層1m当たりの空孔体積を表し、Sは多孔質層1m当たりの空孔表面積を表す。
d=4V/S
 多孔質層1m当たりの空孔体積Vは、多孔質層の空孔率から算出する。
 多孔質層1m当たりの空孔表面積Sは、次の方法で求める。まず、多孔質基材の比表面積(m/g)とセパレータの比表面積(m/g)とを、窒素ガス吸着法にBET式を適用することにより、窒素ガス吸着量から算出する。これらの比表面積(m/g)にそれぞれの目付(g/m)を乗算して、それぞれの1m当たりの空孔表面積を算出する。そして、多孔質基材1m当たりの空孔表面積をセパレータ1m当たりの空孔表面積から減算して、多孔質層1m当たりの空孔表面積Sを算出する。
 多孔質基材と多孔質層との間の剥離強度は、0.20N/10mm以上が好ましい。該剥離強度が0.20N/10mm以上であると、電池の製造工程においてセパレータのハンドリング性に優れる。この観点からは、該剥離強度は、0.30N/10mm以上がより好ましく、高いほど好ましい。該剥離強度の上限は制限されるものではないが、通常は2.0N/10mm以下である。
[第一形態のセパレータの特性]
 第一形態のセパレータの厚さは、機械的強度の観点からは、5μm以上が好ましく、電池のエネルギー密度の観点からは、35μm以下が好ましい。
 第一形態のセパレータの突刺強度は、250g~1000gが好ましく、300g~600gがより好ましい。セパレータの突刺強度の測定方法は、多孔質基材の突刺強度の測定方法と同様である。
 第一形態のセパレータの空孔率は、電極に対する接着性、ハンドリング性、イオン透過性、及び機械的強度の観点から、30%~65%が好ましく、30%~60%がより好ましい。
 第一形態のセパレータのガーレ値(JIS P8117:2009)は、機械的強度と電池の負荷特性の観点から、100秒/100cc~300秒/100ccが好ましい。
[第一形態のセパレータの製造方法]
 第一形態のセパレータは、例えば、下記工程(i)~(iv)を有する湿式塗工法によって製造することができる。
(i)特定VDF-HFP共重合体(1)を含む第一塗工液を多孔質基材の一方の面に塗工し、第一塗工層を形成する工程。
(ii)ポリフッ化ビニリデン系樹脂及びガラス転移温度が30℃~120℃である樹脂を含む第二塗工液を多孔質基材の他方の面に塗工し、第二塗工層を形成する工程。
(iii)第一塗工層及び第二塗工層を形成した多孔質基材を凝固液に浸漬し、第一塗工層及び第二塗工層において相分離を誘発しつつ樹脂を固化させ、多孔質基材上に第一多孔質層及び第二多孔質層を形成し、複合膜を得る工程。
(iv)複合膜を水洗及び乾燥する工程。
 以下において、第一塗工液と第二塗工液とに共通する事項を説明する場合、双方をまとめて「塗工液」といい、第一塗工層と第二塗工層とに共通する事項を説明する場合、双方をまとめて「塗工層」といい、第一多孔質層と第二多孔質層とに共通する事項を説明する場合、双方をまとめて「多孔質層」という。
 塗工液は、ポリフッ化ビニリデン系樹脂及びその他の樹脂を溶媒に溶解又は分散させて調製する。多孔質層にフィラーを含有させる場合は、それぞれの塗工液中にフィラーを分散させる。
 塗工液の調製に用いる溶媒は、ポリフッ化ビニリデン系樹脂を溶解する溶媒(以下、「良溶媒」ともいう。)を含む。良溶媒としては、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミド等の極性アミド溶媒が挙げられる。
 塗工液の調製に用いる溶媒は、良好な多孔構造を有する多孔質層を形成する観点から、相分離を誘発させる相分離剤を含むことが好ましい。したがって、塗工液の調製に用いる溶媒は、良溶媒と相分離剤との混合溶媒であることが好ましい。相分離剤は、塗工に適切な粘度が確保できる範囲の量で良溶媒と混合することが好ましい。相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール等が挙げられる。
 塗工液の調製に用いる溶媒としては、良好な多孔構造を形成する観点から、良溶媒と相分離剤との混合溶媒であって、良溶媒を60質量%以上含み、相分離剤を40質量%以下含む混合溶媒が好ましい。
 塗工液の樹脂濃度は、良好な多孔構造を形成する観点から、1質量%~20質量%が好ましい。
 多孔質基材への塗工液の塗工手段としては、マイヤーバー、ダイコーター、リバースロールコーター、グラビアコーター等が挙げられる。生産性の観点からは、第一塗工液と第二塗工液とを同時に多孔質基材へ塗工することが好ましい。
 凝固液は、塗工液の調製に用いた良溶媒及び相分離剤と、水とを含むことが一般的である。良溶媒と相分離剤の混合比は、塗工液の調製に用いた混合溶媒の混合比に合わせるのが生産上好ましい。凝固液中の水の含有量は40質量%~90質量%であることが、多孔構造の形成および生産性の観点から好ましい。凝固液の温度は、例えば20℃~50℃である。
 第一形態のセパレータは、乾式塗工法でも製造し得る。乾式塗工法とは、樹脂を含む塗工液を多孔質基材に塗工して塗工層を形成した後、塗工層を乾燥させて塗工層を固化させ、多孔質基材上に多孔質層を形成する方法である。ただし、乾式塗工法は湿式塗工法と比べて多孔質層が緻密になりやすいので、良好な多孔構造を得られる観点から湿式塗工法の方が好ましい。
 第一形態のセパレータは、多孔質層を独立したシートとして作製し、この多孔質層を多孔質基材に重ねて、熱圧着や接着剤によって積層する方法によっても製造し得る。多孔質層を独立したシートとして作製する方法としては、上述した湿式塗工法又は乾式塗工法を適用して剥離シート上に多孔質層を形成し、多孔質層から剥離シートを剥離する方法が挙げられる。
<第二形態の非水系二次電池用セパレータ>
 第二形態の非水系二次電池用セパレータ(「第二形態のセパレータ」ともいう。)は、多孔質基材と、多孔質基材の片面又は両面に設けられた接着性多孔質層とを備える。
 第二形態のセパレータにおいて接着性多孔質層は、フッ化ビニリデン単量体単位及びヘキサフルオロプロピレン単量体単位を有し、ヘキサフルオロプロピレン単量体単位の含有量が全単量体単位の5質量%~20質量%であり、且つ重量平均分子量が10万~150万であるポリフッ化ビニリデン系樹脂と、ガラス転移温度が30℃~120℃である樹脂とを含有する。当該接着性多孔質層は、多孔質基材の片面のみに有ってもよく、多孔質基材の両面に有ってもよい。当該接着性多孔質層が多孔質基材の片面のみに有る場合、多孔質基材のもう一方の面には、層が無くてもよく、他の層が有ってもよい。
 以下、フッ化ビニリデン単量体単位を「VDF単位」ともいい、ヘキサフルオロプロピレン単量体単位を「HFP単位」ともいい、VDF単位及びHFP単位を有するポリフッ化ビニリデン系樹脂を「VDF-HFP共重合体」ともいい、HFP単位の含有量が全単量体単位の5質量%~20質量%であり且つ重量平均分子量が10万~150万であるVDF-HFP共重合体を「特定VDF-HFP共重合体(2)」ともいう。
 第二形態のセパレータにおいて接着性多孔質層は、セパレータの最外層として存在し、電極と接着する層である。
 第二形態のセパレータは、特定VDF-HFP共重合体(2)とガラス転移温度が30℃~120℃である樹脂とを含有する接着性多孔質層を備えることによって、ドライヒートプレスによる電極との接着に優れる。このメカニズムは、必ずしも明らかではないが、以下のように推測される。
 接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂としては、電極に対する接着性の観点から、VDF-HFP共重合体が好ましい。ヘキサフルオロプロピレンをフッ化ビニリデンと共重合することで、ポリフッ化ビニリデン系樹脂の結晶性、耐熱性、電解液に対する耐溶解性などを適度な範囲に制御できる。第二形態のセパレータは、以下の理由から、HFP単位の含有量が全単量体単位の5質量%~20質量%であり且つ重量平均分子量(Mw)が10万~150万である特定VDF-HFP共重合体(2)を接着性多孔質層に含む。
 VDF-HFP共重合体のHFP単位含有量が5質量%以上であると、ドライヒートプレスを行った際のポリマー鎖の運動性が高く、電極表面の凹凸にポリマー鎖が入り込んでアンカー効果が発現し、電極に対する接着性多孔質層の接着を向上させる。この観点から、VDF-HFP共重合体のHFP単位含有量は、5質量%以上であり、5.5質量%以上がより好ましく、6質量%以上が更に好ましい。
 VDF-HFP共重合体のHFP単位含有量が20質量%以下であると、電解液に溶解しにくく過度に膨潤することもないので、電池内部において電極と接着性多孔質層との接着が保たれる。この観点から、VDF-HFP共重合体のHFP単位含有量は、20質量%以下であり、18質量%以下がより好ましく、15質量%以下が更に好ましい。
 VDF-HFP共重合体のMwが10万以上であると、接着性多孔質層が電極との接着処理に耐え得る力学特性を確保でき、電極との接着がよい。また、VDF-HFP共重合体のMwが10万以上であると、電解液に溶解しにくいので、電池内部において電極と接着性多孔質層との接着が保たれる。これらの観点から、VDF-HFP共重合体のMwは、10万以上であり、20万以上がより好ましく、30万以上が更に好ましく、50万以上が更に好ましい。
 VDF-HFP共重合体のMwが150万以下であると、接着性多孔質層の塗工成形に用いられる塗工液の粘度が高くなり過ぎず成形性及び結晶形成がよく、接着性多孔質層の表面性状の均一性が高く、その結果として、電極に対する接着性多孔質層の接着が良好である。また、VDF-HFP共重合体のMwが150万以下であると、ドライヒートプレスを行った際のポリマー鎖の運動性が高く、電極表面の凹凸にポリマー鎖が入り込んでアンカー効果が発現し、電極に対する接着性多孔質層の接着を向上させる。これらの観点から、VDF-HFP共重合体のMwは、150万以下であり、120万以下がより好ましく、100万以下が更に好ましい。
 加えて、第二形態のセパレータは、接着性多孔質層に含まれるガラス転移温度が30℃~120℃である樹脂が、ドライヒートプレスの際に接着性多孔質層の流動性を高めるので、電極表面の凹凸にポリマー鎖が入り込んでアンカー効果が発現し、電極に対する接着性多孔質層の接着を向上させる。ガラス転移温度が30℃~120℃である樹脂のガラス転移温度は、ドライヒートプレスの熱印加によって流動性を発現する観点から、120℃以下であり、115℃以下がより好ましく、110℃以下が更に好ましく、接着性多孔質層の耐熱性を確保する観点から、30℃以上であり、35℃以上がより好ましく、40℃以上が更に好ましい。
 第二形態のセパレータは、ドライヒートプレスによる電極との接着に優れるが故に、電池の製造工程において電極と位置ずれしにくくなり、電池の製造歩留りを向上させる。
 第二形態のセパレータは、ドライヒートプレスによる電極との接着に優れるが故に、電池のサイクル特性(容量維持率)を向上させる。
 以下に、第二形態のセパレータを構成する構成要素、及び構成要素に含まれる成分について説明する。
[多孔質基材]
 第二形態における多孔質基材は、第一形態における多孔質基材と同義である。第二形態における多孔質基材の具体的形態及び好ましい形態は、第一形態における多孔質基材の具体的形態及び好ましい形態と同じである。
[接着性多孔質層]
 第二形態において接着性多孔質層は、多孔質基材の片面又は両面にセパレータの最外層として設けられ、セパレータと電極とを重ねてプレス又は熱プレスしたときに電極と接着する層である。
 第二形態において接着性多孔質層は、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となっている。
 第二形態において接着性多孔質層は、多孔質基材の片面又は両面に設けられた、少なくとも特定VDF-HFP共重合体(2)とガラス転移温度が30℃~120℃である樹脂とを含有する多孔質層である。接着性多孔質層は、さらに、上記以外の樹脂、無機フィラー、有機フィラー等を含んでもよい。
 第二形態において接着性多孔質層は、多孔質基材の片面のみにあるよりも両面にある方が、電池のサイクル特性が優れる観点から好ましい。接着性多孔質層が多孔質基材の両面にあると、セパレータの両面が接着性多孔質層を介して両電極とよく接着するからである。
・特定VDF-HFP共重合体(2)
 特定VDF-HFP共重合体(2)には、VDF単位とHFP単位のみを有する共重合体、及び、さらに他の単量体単位を有する共重合体のいずれも含まれる。他の単量体単位を形成する単量体としては、例えば、テトラフルオロエチレン、トリフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニル等の含フッ素単量体が挙げられ、これら単量体の1種又は2種以上に由来する単量体単位が特定VDF-HFP共重合体(2)に含まれていてもよい。特定VDF-HFP共重合体(2)としては、VDF単位とHFP単位のみを有する二元共重合体が好ましい。
 特定VDF-HFP共重合体(2)は、HFP単位の含有量が全単量体単位の5質量%~20質量%である。特定VDF-HFP共重合体(2)におけるHFP単位含有量は、下限としては、5.5質量%以上がより好ましく、6質量%以上が更に好ましく、上限としては、18質量%以下がより好ましく、15質量%以下が更に好ましい。
 特定VDF-HFP共重合体(2)は、重量平均分子量(Mw)が10万~150万である。特定VDF-HFP共重合体(2)のMwは、下限としては、20万以上がより好ましく、30万以上が更に好ましく、50万以上が更に好ましく、上限としては、120万以下がより好ましく、100万以下が更に好ましい。
 特定VDF-HFP共重合体(2)を製造する方法としては、乳化重合や懸濁重合が挙げられる。また、HFP単位の含有量及び重量平均分子量を満足する市販のVDF-HFP共重合体を選択することも可能である。
 接着性多孔質層における特定VDF-HFP共重合体(2)の含有量は、接着性多孔質層に含まれる全樹脂の総量を基準として、下限としては、50質量%以上が好ましく、55質量%以上がより好ましく、60質量%以上が更に好ましく、65質量%以上が更に好ましく、上限としては、95質量%以下が好ましく、93質量%以下がより好ましく、90質量%以下が更に好ましく、85質量%以下が更に好ましい。
・ガラス転移温度が30℃~120℃である樹脂
 ガラス転移温度が30℃~120℃である樹脂としては、ドライヒートプレスによる電極との接着がより良好になる観点から、アクリル系樹脂、酢酸ビニル系樹脂及び塩化ビニル系樹脂からなる群から選ばれる少なくとも1種が好ましい。
 アクリル系樹脂としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸ヒドロキシプロピル等のアクリル酸エステルを単独重合した又は共重合した重合体;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸ブチル、メタクリル酸イソブチル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチル等のメタクリル酸エステルを単独重合した又は共重合した重合体;少なくとも1種のアクリル酸エステルと少なくとも1種のメタクリル酸エステルとの共重合体;アクリル酸エステル及びメタクリル酸エステルから選ばれる少なくとも1種と、アクリル酸、メタクリル酸、アクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド等から選ばれる少なくとも1種とを共重合した共重合体;が挙げられる。
 アクリル系樹脂としては、メタクリル酸メチルを主たる重合成分とする樹脂であるポリメタクリル酸メチル樹脂(polymethyl methacrylate、PMMA)が好ましい。PMMAは、メタクリル酸メチルの単独重合体でもよく、メタクリル酸メチル以外の他の単量体が共重合した共重合体でもよく、共重合される他の単量体としては、アクリル酸メチル、アクリル酸、及びメタクリル酸から選ばれる少なくとも1種が好ましい。
 アクリル系樹脂の重量平均分子量(Mw)は5万~100万が好ましい。アクリル系樹脂のMwが5万以上であると、製膜性がよく、また、接着性多孔質層の特性が優れる。一方、アクリル系樹脂のMwが100万以下であると、接着性多孔質層の塗工成形に用いられる塗工液の粘度が高くなり過ぎず、セパレータの生産性が向上する。
 酢酸ビニル系樹脂としては、例えば、酢酸ビニルの単独重合体であるポリ酢酸ビニル(polyvinyl acetate、PVAc);酢酸ビニルと、不飽和カルボン酸、オレフィン、ビニルエーテル、不飽和スルホン酸等から選ばれる少なくとも1種との共重合体;などが挙げられる。
 酢酸ビニル系樹脂の重量平均分子量(Mw)は5万~50万が好ましい。酢酸ビニル系樹脂のMwが5万以上であると、製膜性がよく、また、接着性多孔質層の特性が優れる。一方、酢酸ビニル系樹脂のMwが50万以下であると、接着性多孔質層の塗工成形に用いられる塗工液の粘度が高くなり過ぎず、セパレータの生産性が向上する。
 塩化ビニル系樹脂としては、単独重合体でも共重合体でもよく、例えば、ポリ塩化ビニル(polyvinyl chloride、PVC)、塩素化ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-プロピレン共重合体、塩化ビニル-スチレン共重合体、塩化ビニル-イソブチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-スチレン-無水マレイン酸共重合体、塩化ビニル-スチレン-アクリロニトリル共重合体、塩化ビニル-ブタジエン共重合体、塩化ビニル-イソプレン共重合体、塩化ビニル-塩素化プロピレン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-メタクリル酸エステル共重合体、塩化ビニル-アクリロニトリル共重合体、塩化ビニル-ビニルエーテル共重合体等が挙げられる。
 塩化ビニル系樹脂の重量平均分子量(Mw)は5000~15万が好ましい。塩化ビニル系樹脂のMwが5000以上であると、製膜性がよく、また、接着性多孔質層の特性が優れる。一方、塩化ビニル系樹脂のMwが15万以下であると、接着性多孔質層の塗工成形に用いられる塗工液の粘度が高くなり過ぎず、セパレータの生産性が向上する。
 接着性多孔質層は、ガラス転移温度が30℃~120℃である樹脂を1種のみ含んでもよく、2種以上含んでもよい。
 接着性多孔質層におけるガラス転移温度が30℃~120℃である樹脂の含有量は、多孔質基材と接着性多孔質層との間の剥離強度を高める観点から、接着性多孔質層に含まれる全樹脂の総量の5質量%以上が好ましく、7質量%以上がより好ましく、10質量%以上が更に好ましく、15質量%以上が更に好ましい。一方、接着性多孔質層の凝集破壊を抑制する観点から、接着性多孔質層に含まれる全樹脂の総量の50質量%以下が好ましく、45質量%以下がより好ましく、40質量%以下が更に好ましく、35質量%以下が更に好ましい。
 接着性多孔質層において、特定VDF-HFP共重合体(2)と、ガラス転移温度が30℃~120℃である樹脂とが成す形態としては、(a)前者と後者とが相溶した形態;(b)前者の連続相中に後者が分散相として存在する形態;(c)前者の連続相中に後者が粒子状に分散して存在する形態;などが挙げられ、中でも(a)が好ましい。(a)であると、孔の形状及び大きさの均一性が高まり、電極に対する接着点が接着性多孔質層表面に均一性高く散在することになり、電極との接着性に優れる。(a)、(b)及び(c)は、接着性多孔質層の断面を電子顕微鏡で観察することにより確認できる。
 接着性多孔質層の実施形態例においては、特定VDF-HFP共重合体(2)とガラス転移温度が30℃~120℃である樹脂との合計が、接着性多孔質層に含まれる全樹脂の総量の90質量%以上を占めることがあり、95質量%以上を占めることがあり、100質量%を占めることがある。
・その他の樹脂
 接着性多孔質層は、特定VDF-HFP共重合体(2)及びガラス転移温度が30℃~120℃である樹脂以外のその他の樹脂を含んでいてもよい。
 特定VDF-HFP共重合体(2)以外のポリフッ化ビニリデン系樹脂としては、例えば、HFP単位の含有量が特定VDF-HFP共重合体(2)と相違するVDF-HFP共重合体;フッ化ビニリデンの単独重合体(即ちポリフッ化ビニリデン);フッ化ビニリデンと、テトラフルオロエチレン、トリフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニル等から選ばれる少なくとも1種との共重合体;が挙げられる。
 ポリフッ化ビニリデン系樹脂以外の他の樹脂としては、フッ素系ゴム、スチレン-ブタジエン共重合体、ビニルニトリル化合物(アクリロニトリル、メタクリロニトリル等)の単独重合体又は共重合体、カルボキシメチルセルロース、ヒドロキシアルキルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、ポリエーテル(ポリエチレンオキサイド、ポリプロピレンオキサイド等)などが挙げられる。
・フィラー
 接着性多孔質層は、セパレータの滑り性や耐熱性を向上させる目的で、無機物又は有機物からなるフィラーを含んでいてもよい。その場合、第二形態の効果を妨げない程度の含有量や粒子サイズとすることが好ましい。フィラーとしては、セル強度の向上及び電池の安全性確保の観点から、無機フィラーが好ましい。
 フィラーの平均粒子径は、0.01μm~5μmが好ましい。その下限値としては0.1μm以上がより好ましく、上限値としては1μm以下がより好ましい。
 無機フィラーとしては、電解液に対して安定であり、且つ、電気化学的に安定な無機フィラーが好ましい。具体的には例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化セリウム、水酸化ニッケル、水酸化ホウ素等の金属水酸化物;アルミナ、チタニア、マグネシア、シリカ、ジルコニア、チタン酸バリウム等の金属酸化物;炭酸カルシウム、炭酸マグネシウム等の炭酸塩;硫酸バリウム、硫酸カルシウム等の硫酸塩;ケイ酸カルシウム、タルク等の粘土鉱物;などが挙げられる。これらの無機フィラーは、1種を単独で使用しても2種以上を組み合わせて使用してもよい。無機フィラーは、シランカップリング剤等により表面修飾されたものでもよい。
 無機フィラーとしては、電池内での安定性及び電池の安全性確保の観点から、金属水酸化物及び金属酸化物の少なくとも1種が好ましく、難燃性付与や除電効果の観点から、金属水酸化物が好ましく、水酸化マグネシウムが更に好ましい。
 無機フィラーの粒子形状には制限はなく、球に近い形状でもよく、板状の形状でもよいが、電池の短絡抑制の観点からは、板状の粒子や、凝集していない一次粒子であることが好ましい。
 接着性多孔質層に無機フィラーが含まれている場合、接着性多孔質層における無機フィラーの含有量は、接着性多孔質層に含まれる全樹脂と無機フィラーの合計量の5質量%~75質量%が好ましい。無機フィラーの含有量が5質量%以上であると、熱が印加された際にセパレータの熱収縮が抑制され寸法安定性の観点から好ましい。本観点から、無機フィラーの含有量は、10質量%以上がより好ましく、20質量%以上が更に好ましい。一方、無機フィラーの含有量が75質量%以下であると、接着性多孔質層の電極への接着が確保される観点から好ましい。本観点から、無機フィラーの含有量は、70質量%以下がより好ましく、65質量%以下が更に好ましい。
 有機フィラーとしては、例えば、架橋ポリメタクリル酸メチル等の架橋アクリル樹脂、架橋ポリスチレンなどが挙げられ、架橋ポリメタクリル酸メチルが好ましい。
・その他の成分
 接着性多孔質層は、界面活性剤等の分散剤、湿潤剤、消泡剤、pH調整剤などの添加剤を含んでいてもよい。分散剤は、接着性多孔質層の塗工成形に用いられる塗工液に、分散性、塗工性及び保存安定性を向上させる目的で添加される。湿潤剤、消泡剤、pH調整剤は、接着性多孔質層の塗工成形に用いられる塗工液に、例えば、多孔質基材とのなじみをよくする目的、塗工液へのエア噛み込みを抑制する目的、又はpH調整の目的で添加される。
[接着性多孔質層の特性]
 接着性多孔質層の厚さは、多孔質基材の片面において、電極との接着性の観点から、0.5μm以上が好ましく、1.0μm以上がより好ましく、電池のエネルギー密度の観点から、8.0μm以下が好ましく、6.0μm以下がより好ましい。
 接着性多孔質層が多孔質基材の両面に設けられている場合、一方の面における接着性多孔質層の厚さと、他方の面における接着性多孔質層の厚さとの差は、両面合計の厚さの20%以下であることが好ましく、低いほど好ましい。
 接着性多孔質層の重量は、多孔質基材の片面において、電極との接着性の観点から、0.5g/m以上が好ましく、0.75g/m以上がより好ましく、イオン透過性の観点から、5.0g/m以下が好ましく、4.0g/m以下がより好ましい。
 接着性多孔質層の空孔率は、イオン透過性の観点から、30%以上が好ましく、力学的強度の観点から、80%以下が好ましく、60%以下がより好ましい。第二形態における接着性多孔質層の空孔率の求め方は、多孔質基材の空孔率の求め方と同様である。
 接着性多孔質層の平均孔径は、イオン透過性の観点から、10nm以上が好ましく、電極との接着性の観点から、200nm以下が好ましい。第二形態における接着性多孔質層の平均孔径は、第一形態における多孔質層の平均孔径と同じく、式:d=4V/Sによって算出する。
 多孔質基材と接着性多孔質層との間の剥離強度は、0.20N/10mm以上が好ましい。該剥離強度が0.20N/10mm以上であると、電池の製造工程においてセパレータのハンドリング性に優れる。この観点からは、該剥離強度は、0.30N/10mm以上がより好ましく、高いほど好ましい。該剥離強度の上限は制限されるものではないが、通常は2.0N/10mm以下である。
[第二形態のセパレータの特性]
 第二形態のセパレータの厚さは、機械的強度の観点からは、5μm以上が好ましく、電池のエネルギー密度の観点からは、35μm以下が好ましい。
 第二形態のセパレータの突刺強度は、250g~1000gが好ましく、300g~600gがより好ましい。セパレータの突刺強度の測定方法は、多孔質基材の突刺強度の測定方法と同様である。
 第二形態のセパレータの空孔率は、電極に対する接着性、ハンドリング性、イオン透過性、及び機械的強度の観点から、30%~65%が好ましく、30%~60%がより好ましい。
 第二形態のセパレータのガーレ値(JIS P8117:2009)は、機械的強度と電池の負荷特性の観点から、100秒/100cc~300秒/100ccが好ましい。
[第二形態のセパレータの製造方法]
 第二形態のセパレータは、例えば、下記工程(i)~(iii)を有する湿式塗工法によって製造することができる。
(i)特定VDF-HFP共重合体(2)及びガラス転移温度が30℃~120℃である樹脂を含む塗工液を多孔質基材に塗工し、塗工層を形成する工程。
(ii)塗工層を形成した多孔質基材を凝固液に浸漬し、塗工層において相分離を誘発しつつポリフッ化ビニリデン系樹脂を固化させ、多孔質基材上に多孔質層を形成し、複合膜を得る工程。
(iii)複合膜を水洗及び乾燥する工程。
 塗工液は、ポリフッ化ビニリデン系樹脂と、ガラス転移温度が30℃~120℃である樹脂とを溶媒に溶解又は分散させて調製する。接着性多孔質層にフィラーを含有させる場合は、塗工液中にフィラーを分散させる。
 塗工液の調製に用いる溶媒は、ポリフッ化ビニリデン系樹脂を溶解する溶媒(以下、「良溶媒」ともいう。)を含む。良溶媒としては、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミド等の極性アミド溶媒が挙げられる。
 塗工液の調製に用いる溶媒は、良好な多孔構造を有する多孔質層を形成する観点から、相分離を誘発させる相分離剤を含むことが好ましい。したがって、塗工液の調製に用いる溶媒は、良溶媒と相分離剤との混合溶媒であることが好ましい。相分離剤は、塗工に適切な粘度が確保できる範囲の量で良溶媒と混合することが好ましい。相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール等が挙げられる。
 塗工液の調製に用いる溶媒としては、良好な多孔構造を形成する観点から、良溶媒と相分離剤との混合溶媒であって、良溶媒を60質量%以上含み、相分離剤を40質量%以下含む混合溶媒が好ましい。
 塗工液の樹脂濃度は、良好な多孔構造を形成する観点から、1質量%~20質量%が好ましい。
 多孔質基材への塗工液の塗工手段としては、マイヤーバー、ダイコーター、リバースロールコーター、グラビアコーター等が挙げられる。多孔質層を多孔質基材の両面に形成する場合、塗工液を両面同時に基材へ塗工することが生産性の観点から好ましい。
 凝固液は、塗工液の調製に用いた良溶媒及び相分離剤と、水とを含むことが一般的である。良溶媒と相分離剤の混合比は、塗工液の調製に用いた混合溶媒の混合比に合わせるのが生産上好ましい。凝固液中の水の含有量は40質量%~90質量%であることが、多孔構造の形成および生産性の観点から好ましい。凝固液の温度は、例えば20℃~50℃である。
 第二形態のセパレータは、乾式塗工法でも製造し得る。乾式塗工法とは、樹脂を含む塗工液を多孔質基材に塗工して塗工層を形成した後、塗工層を乾燥させて塗工層を固化させ、多孔質基材上に多孔質層を形成する方法である。ただし、乾式塗工法は湿式塗工法と比べて多孔質層が緻密になりやすいので、良好な多孔構造を得られる観点から湿式塗工法の方が好ましい。
 第二形態のセパレータは、多孔質層を独立したシートとして作製し、この多孔質層を多孔質基材に重ねて、熱圧着や接着剤によって積層する方法によっても製造し得る。多孔質層を独立したシートとして作製する方法としては、上述した湿式塗工法又は乾式塗工法を適用して剥離シート上に多孔質層を形成し、多孔質層から剥離シートを剥離する方法が挙げられる。
<非水系二次電池>
 本開示の非水系二次電池は、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池であり、正極と、負極と、本開示の非水系二次電池用セパレータとを備える。ドープとは、吸蔵、担持、吸着、又は挿入を意味し、正極等の電極の活物質にリチウムイオンが入る現象を意味する。
 本開示の非水系二次電池は、例えば、負極と正極とがセパレータを介して対向した電池素子が電解液と共に外装材内に封入された構造を有する。本開示の非水系二次電池は、非水電解質二次電池、特にリチウムイオン二次電池に好適である。
 第一形態のセパレータを備えた非水系二次電池は、第一形態のセパレータがドライヒートプレスによる正極及び負極との接着に優れるが故に、製造歩留りが高い。
 第一形態のセパレータを備えた非水系二次電池は、第一形態のセパレータがドライヒートプレスによる正極及び負極との接着に優れるが故に、電池のサイクル特性(容量維持率)に優れる。
 第二形態のセパレータを備えた非水系二次電池は、第二形態のセパレータがドライヒートプレスによる電極との接着に優れるが故に、製造歩留りが高い。
 第二形態のセパレータを備えた非水系二次電池は、第二形態のセパレータがドライヒートプレスによる電極との接着に優れるが故に、電池のサイクル特性(容量維持率)に優れる。
 以下、本開示の非水系二次電池が備える正極、負極、電解液及び外装材の形態例を説明する。
 正極の実施形態例としては、正極活物質及びバインダ樹脂を含む活物質層が集電体上に配置された構造が挙げられる。活物質層は、さらに導電助剤を含んでもよい。正極活物質としては、例えば、リチウム含有遷移金属酸化物が挙げられ、具体的にはLiCoO、LiNiO、LiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3、LiMn、LiFePO、LiCo1/2Ni1/2、LiAl1/4Ni3/4等が挙げられる。バインダ樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、スチレン-ブタジエン共重合体等が挙げられる。導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、黒鉛粉末等の炭素材料が挙げられる。集電体としては、例えば厚さ5μm~20μmの、アルミ箔、チタン箔、ステンレス箔等が挙げられる。
 第一形態のセパレータを備えた非水系二次電池においては、第一形態のセパレータの多孔質層に含まれるポリフッ化ビニリデン系樹脂が耐酸化性に優れるため、正極活物質として、4.2V以上の高電圧で作動可能なLiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3等を適用しやすい。
 第二形態のセパレータを備えた非水系二次電池においては、第二形態のセパレータの接着性多孔質層に含まれるポリフッ化ビニリデン系樹脂が耐酸化性に優れるため、接着性多孔質層を非水系二次電池の正極側に配置することで、正極活物質として、4.2V以上の高電圧で作動可能なLiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3等を適用しやすい。
 負極の実施形態例としては、負極活物質及びバインダ樹脂を含む活物質層が集電体上に配置された構造が挙げられる。活物質層は、さらに導電助剤を含んでもよい。負極活物質としては、リチウムを電気化学的に吸蔵し得る材料が挙げられ、具体的には例えば、炭素材料;ケイ素、スズ、アルミニウム等とリチウムとの合金;ウッド合金;などが挙げられる。バインダ樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、スチレン-ブタジエン共重合体等が挙げられる。導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、黒鉛粉末等の炭素材料が挙げられる。集電体としては、例えば厚さ5μm~20μmの、銅箔、ニッケル箔、ステンレス箔等が挙げられる。また、上記の負極に代えて、金属リチウム箔を負極として用いてもよい。
 電解液は、リチウム塩を非水系溶媒に溶解した溶液である。リチウム塩としては、例えば、LiPF、LiBF、LiClO等が挙げられる。非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、ビニレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、及びそのフッ素置換体等の鎖状カーボネート;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル;などが挙げられ、これらは単独で用いても混合して用いてもよい。電解液としては、環状カーボネートと鎖状カーボネートとを質量比(環状カーボネート:鎖状カーボネート)20:80~40:60で混合し、リチウム塩を0.5mol/L~1.5mol/L溶解した溶液が好適である。
 外装材としては、金属缶、アルミラミネートフィルム製パック等が挙げられる。電池の形状は角型、円筒型、コイン型等があるが、本開示のセパレータはいずれの形状にも好適である。
 本開示の非水系二次電池の製造方法としては、セパレータに電解液を含浸させずに熱プレス処理(本開示において「ドライヒートプレス」という。)を行って電極に接着させることを含む製造方法;セパレータに電解液を含浸させて熱プレス処理(本開示において「ウェットヒートプレス」という。)を行って電極に接着させることを含む製造方法;が挙げられる。
 本開示の非水系二次電池の製造方法としては、ドライヒートプレスを行う製造方法が好ましい。該製造方法は、例えば、正極と負極との間に本開示のセパレータを配置した積層体を製造する積層工程と、積層体にドライヒートプレスを行って電極とセパレータとを接着させるドライ接着工程と、を有する。
 積層工程において、正極と負極との間にセパレータを配置する方式は、正極、セパレータ、負極をこの順に少なくとも1層ずつ積層する方式(所謂スタック方式)でもよく、正極、セパレータ、負極、セパレータをこの順に重ね、長さ方向に捲き回す方式でもよい。
 ドライ接着工程は、積層体を外装材(例えばアルミラミネートフィルム製パック)に収容する前に行ってもよく、積層体を外装材に収容した後に行ってもよい。つまり、ドライヒートプレスによって電極とセパレータとが接着した積層体を外装材に収容してもよく、積層体を外装材に収容した後に外装材の上からドライヒートプレスを行って電極とセパレータとを接着させてもよい。
 ドライ接着工程におけるプレス温度は、70℃~120℃が好ましく、75℃~110℃がより好ましく、80℃~100℃が更に好ましい。この温度範囲であると、電極とセパレータとの接着が良好であり、また、セパレータが幅方向に適度に膨張し得るので、電池の短絡が起こりにくい。ドライ接着工程におけるプレス圧は、電極1cm当たりの荷重として0.5kg~40kgが好ましい。プレス時間は、プレス温度及びプレス圧に応じて調節することが好ましく、例えば0.5分間~60分間の範囲で調節する。
 上記製造方法においては、ドライヒートプレスする前に積層体に常温プレス(常温下での加圧)を施して、積層体を仮接着してもよい。
 上記製造方法においては、ドライヒートプレスを行った後、積層体を収容している外装材に電解液を注入し、外装材の封止を行う。電解液を注入した後、外装材の上からさらに積層体をウェットヒートプレスしてもよい。封止前に、外装体の内部は真空状態にすることが好ましい。外装材の封止の方式としては、例えば、外装材の開口部を接着剤で接着する方式、外装材の開口部を加熱加圧して熱圧着する方式が挙げられる。
 以下に実施例を挙げて、本開示のセパレータ及び非水系二次電池をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理手順等は、本開示の趣旨を逸脱しない限り適宜変更することができる。したがって、本開示のセパレータ及び非水系二次電池の範囲は、以下に示す具体例により限定的に解釈されるべきではない。
<測定方法、評価方法>
 実施例及び比較例で適用した測定方法及び評価方法は、以下のとおりである。以下において、第一多孔質層、第二多孔質層及び接着性多孔質層に共通する事項を説明する場合、これらをまとめて「多孔質層」という。
[ポリフッ化ビニリデン系樹脂の組成]
 ポリフッ化ビニリデン系樹脂20mgを重ジメチルスルホキシド0.6mlに100℃にて溶解し、100℃で19F-NMRスペクトルを測定し、NMRスペクトルからポリフッ化ビニリデン系樹脂の組成を求めた。
[ポリフッ化ビニリデン系樹脂の重量平均分子量]
 ポリフッ化ビニリデン系樹脂の重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー分析装置(日本分光社GPC-900)を用い、カラムに東ソー社TSKgel SUPER AWM-Hを2本用い、溶媒にN,N-ジメチルホルムアミドを使用し、温度40℃、流量10ml/minの条件で、ポリスチレン換算の分子量として測定した。
[樹脂のガラス転移温度]
 樹脂のガラス転移温度は、示差走査熱量測定(Differential Scanning Calorimetry、DSC)を行って得た示差走査熱量曲線(DSC曲線)から求めた。ガラス転移温度は、低温側のベースラインを高温側に延長した直線と、階段状変化部分の曲線の接線であって勾配が最大の接線とが交わる点の温度である。
[多孔質層における樹脂の状態]
 セパレータを、ウルトラミクロトーム装置により厚さ方向に切断し、薄片試料を作製した。薄片試料を25℃のデシケータ内で重金属染色法により24時間染色した。染色した薄片試料を、透過型電子顕微鏡(日本電子株式会社製JEM-1400Plus)を使用して観察し、ポリフッ化ビニリデン系樹脂とそれ以外の樹脂とが相溶しているか否か確認した。
[多孔質基材及びセパレータの膜厚]
 多孔質基材及びセパレータの膜厚(μm)は、接触式の厚み計(ミツトヨ社LITEMATIC)にて20点を測定し、これを平均することで求めた。測定端子は直径5mmの円柱状の端子を用い、測定中に7gの荷重が印加されるように調整した。
[多孔質層の層厚]
 セパレータの膜厚から多孔質基材の膜厚を減算し、その値の半分を、多孔質基材の片面における多孔質層の層厚(μm)とした。
[ガーレ値]
 多孔質基材及びセパレータのガーレ値(秒/100cc)は、JIS P8117:2009に従い、ガーレ式デンソメータ(東洋精機社G-B2C)を用いて測定した。
[空孔率]
 多孔質基材及び多孔質層の空孔率(%)は、下記の式に従って求めた。式中、εは空孔率(%)、Wsは目付(g/m)、dsは真密度(g/cm)、tは厚さ(μm)である。
ε={1-Ws/(ds・t)}×100
[多孔質基材と多孔質層との間の剥離強度]
 セパレータの一方の表面に粘着テープを貼り(貼る際に、粘着テープの長さ方向をセパレータのMD方向に一致させた。)、セパレータを粘着テープごと、TD方向1.2cm、MD方向7cmに切り出した。粘着テープを直下の多孔質層と共に少し剥がし、2つに分離した端部をテンシロン(オリエンテック社製RTC-1210A)に把持させてT字剥離試験を行った。なお、粘着テープは、多孔質層を多孔質基材から剥がすための支持体として用いたものである。T字剥離試験の引張速度は20mm/minとし、多孔質基材から多孔質層が剥離する際の荷重(N)を測定した。測定開始後10mmから40mmまでの荷重を0.4mm間隔で採取しその平均を算出し、幅10mmあたりの荷重(N/10mm)に換算し、さらに試験片3枚の測定値を平均して、剥離強度(N/10mm)とした。
[第一形態:正極と第一多孔質層との接着強度]
 正極活物質であるコバルト酸リチウム粉末89.5g、導電助剤であるアセチレンブラック4.5g、及びバインダであるポリフッ化ビニリデン6gを、ポリフッ化ビニリデンの濃度が6質量%となるようにN-メチル-ピロリドンに溶解し、双腕式混合機にて攪拌し、正極用スラリーを作製した。この正極用スラリーを厚さ20μmのアルミ箔の片面に塗布し、乾燥後プレスして、正極活物質層を有する正極を得た。
 上記で得た正極を幅1.5cm、長さ7cmに切り出し、セパレータをTD方向1.8cm、MD方向7.5cmに切り出した。セパレータの第一多孔質層を正極に対向させて重ね、温度85℃、圧力1.0MPa、時間10秒間の条件で熱プレスして、正極とセパレータとを接着させ、これを試験片とした。試験片の長さ方向(即ちセパレータのMD方向)の一端において正極からセパレータを少し剥がし、2つに分離した端部をテンシロン(オリエンテック社製RTC-1210A)に把持させてT字剥離試験を行った。T字剥離試験の引張速度は20mm/minとし、正極からセパレータが剥離する際の荷重(N)を測定し、測定開始後10mmから40mmまでの荷重を0.4mm間隔で採取しその平均を算出し、さらに試験片3枚の測定値を平均して、正極と第一多孔質層との接着強度(N)とした。表1~表4には、実施例及び比較例の各セパレータの接着強度を、比較例1のセパレータの接着強度で除して求めた百分率(%)を示す。
[第一形態:負極と第二多孔質層との接着強度]
 負極活物質である人造黒鉛300g、バインダであるスチレン-ブタジエン共重合体の変性体を40質量%含む水溶性分散液7.5g、増粘剤であるカルボキシメチルセルロース3g、及び適量の水を双腕式混合機にて攪拌し、負極用スラリーを作製した。この負極用スラリーを厚さ10μmの銅箔の片面に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
 上記で得た負極を幅1.5cm、長さ7cmに切り出し、セパレータをTD方向1.8cm、MD方向7.5cmに切り出した。セパレータの第二多孔質層を負極に対向させて重ね、温度85℃、圧力1.0MPa、時間10秒間の条件で熱プレスして、負極とセパレータとを接着させ、これを試験片とした。この試験片に、前記[第一形態:正極と第一多孔質層との接着強度]と同様にしてT字剥離試験を行い、負極と第二多孔質層との接着強度(N)を求めた。表1~表4には、実施例及び比較例の各セパレータの接着強度を、比較例1のセパレータの接着強度で除して求めた百分率(%)を示す。
[第二形態:正極と接着性多孔質層との接着強度]
 前記[第一形態:正極と第一多孔質層との接着強度]と同様にして、試験片を作製し、T字剥離試験を行い、正極と接着性多孔質層との接着強度(N)を求めた。表5~表7には、実施例及び比較例の各セパレータの接着強度を、比較例101のセパレータの接着強度で除して求めた百分率(%)を示す。
[第二形態:負極と接着性多孔質層との接着強度]
 前記[第一形態:負極と第二多孔質層との接着強度]と同様にして、試験片を作製し、T字剥離試験を行い、負極と接着性多孔質層との接着強度(N)を求めた。表5~表7には、実施例及び比較例の各セパレータの接着強度を、比較例101のセパレータの接着強度で除して求めた百分率(%)を示す。
[サイクル特性(容量維持率)]
 前記の正極及び負極にリードタブを溶接し、正極、セパレータ、負極の順に積層した。この際に、第一形態においては、セパレータの第一多孔質層を正極に対向させ、第二多孔質層を負極に対向させた。この積層体をアルミラミネートフィルム製のパック中に挿入し、真空シーラーを用いてパック内を真空状態にして仮封止し、パックごと積層体の積層方向に熱プレス機を用いて熱プレスを行い、これにより、電極とセパレータとの接着を行った。熱プレスの条件は、温度90℃、電極1cm当たり20kgの荷重、プレス時間2分間とした。次いで、パック内に電解液(1mol/L LiPF-エチレンカーボネート:エチルメチルカーボネート[質量比3:7])を注入し、積層体に電解液をしみ込ませた後、真空シーラーを用いてパック内を真空状態にして封止し、電池を得た。
 温度30℃の環境下で、電池に300サイクルの充放電を行った。充電は1C且つ4.2Vの定電流定電圧充電、放電は1C且つ2.75Vカットオフの定電流放電とした。300サイクル目の放電容量を初期容量で除し、電池10個の平均を算出し、得られた値(%)を容量維持率とした。
[負荷特性]
 前記[サイクル特性(容量維持率)]における電池製造と同様にして電池を製造した。温度25℃の環境下、電池に充放電を行い、0.2Cで放電した際の放電容量と、2Cで放電した際の放電容量とを測定し、後者を前者で除し、電池10個の平均を算出し、得られた値(%)を負荷特性とした。充電条件は0.2C、4.2Vの定電流定電圧充電8時間とし、放電条件は2.75Vカットオフの定電流放電とした。
<第一形態のセパレータの作製>
[実施例1]
 ジメチルアセトアミドとトリプロピレングリコールの混合溶媒(ジメチルアセトアミド:トリプロピレングリコール=80:20[質量比])に、ポリフッ化ビニリデン系樹脂(VDF-HFP共重合体、HFP単位含有量12.4質量%、重量平均分子量86万)を溶解させ、第一多孔質形成用の第一塗工液を作製した。第一塗工液の樹脂濃度を5.0質量%とした。
 ジメチルアセトアミドとトリプロピレングリコールの混合溶媒(ジメチルアセトアミド:トリプロピレングリコール=80:20[質量比])に、ポリフッ化ビニリデン系樹脂(VDF-HFP共重合体、HFP単位含有量6質量%、重量平均分子量85万)と、アクリル系樹脂(メタクリル酸メチル-メタクリル酸共重合体、重合比[質量比]90:10、重量平均分子量8.5万、ガラス転移温度80℃)とを溶解させ、第二多孔質形成用の第二塗工液を作製した。第二塗工液に含まれるポリフッ化ビニリデン系樹脂とアクリル系樹脂の質量比を75:25とし、第二塗工液の樹脂濃度を5.0質量%とした。
 多孔質基材であるポリエチレン微多孔膜(膜厚9.0μm、ガーレ値150秒/100cc、空孔率43%)の一方の面に第一塗工液を、他方の面に第二塗工液を、両面同時塗工し(その際、表裏の塗工量が等量になるように塗工した)、凝固液(水:ジメチルアセトアミド:トリプロピレングリコール=62.5:30:7.5[質量比]、液温35℃)に浸漬して固化させた。次いで、これを水洗し乾燥して、ポリエチレン微多孔膜の両面に多孔質層が形成されたセパレータを得た。
[実施例2]
 第二塗工液を調製するアクリル系樹脂を酢酸ビニル系樹脂(ポリ酢酸ビニル、重量平均分子量1.5万、ガラス転移温度30℃)に変更した以外は、実施例1と同様にしてセパレータを作製した。
[実施例3]
 第二塗工液を調製するアクリル系樹脂を塩化ビニル系樹脂(ポリ塩化ビニル、重量平均分子量2万、ガラス転移温度40℃)に変更した以外は、実施例1と同様にしてセパレータを作製した。
[実施例4~9]
 第二塗工液に含まれるポリフッ化ビニリデン系樹脂及びアクリル系樹脂の含有量を表1に記載のとおりに変更した以外は、実施例1と同様にしてセパレータを作製した。
[実施例10]
 第一塗工液及び第二塗工液に、表2に記載の含有量になるように、さらに水酸化マグネシウム粒子(一次粒子の体積平均粒径0.8μm、BET比表面積6.8m/g)を分散した以外は、実施例1と同様にしてセパレータを作製した。
[実施例11]
 第一塗工液及び第二塗工液に、表2に記載の含有量になるように、さらに水酸化マグネシウム粒子(一次粒子の体積平均粒径0.8μm、BET比表面積6.8m/g)を分散した以外は、実施例2と同様にしてセパレータを作製した。
[実施例12]
 第一塗工液及び第二塗工液に、表2に記載の含有量になるように、さらに水酸化マグネシウム粒子(一次粒子の体積平均粒径0.8μm、BET比表面積6.8m/g)を分散した以外は、実施例3と同様にしてセパレータを作製した。
[実施例13~14]
 第一塗工液に含まれる樹脂及び水酸化マグネシウム粒子の含有量、並びに第二塗工液に含まれる樹脂及び水酸化マグネシウム粒子の含有量を表2に記載のとおりに変更した以外は、実施例10と同様にしてセパレータを作製した。
[実施例15~18]
 第一塗工液を調製するポリフッ化ビニリデン系樹脂を別のポリフッ化ビニリデン系樹脂(表3に記載の組成及び重量平均分子量を有するVDF-HFP共重合体)に変更した以外は、実施例1と同様にしてセパレータを作製した。
[実施例19]
 第二塗工液を調製するポリフッ化ビニリデン系樹脂を別のポリフッ化ビニリデン系樹脂(表3に記載の組成及び重量平均分子量を有するVDF-HFP共重合体)に変更した以外は、実施例1と同様にしてセパレータを作製した。
[比較例1]
 第二塗工液にアクリル系樹脂を含まない以外は、実施例1と同様にしてセパレータを作製した。
[比較例2]
 第二塗工液にアクリル系樹脂を含まず、第二塗工液に含まれる樹脂及び水酸化マグネシウム粒子の含有量を表4に記載のとおりに変更した以外は、実施例10と同様にしてセパレータを作製した。
[比較例3、6]
 第一塗工液を調製するポリフッ化ビニリデン系樹脂を別のポリフッ化ビニリデン系樹脂(表4に記載の組成及び重量平均分子量を有するVDF-HFP共重合体又はポリフッ化ビニリデン)に変更した以外は、実施例1と同様にしてセパレータを作製した。
[比較例4、7]
 第一塗工液を調製するポリフッ化ビニリデン系樹脂を別のポリフッ化ビニリデン系樹脂(表4に記載の組成及び重量平均分子量を有するVDF-HFP共重合体又はポリフッ化ビニリデン)に変更した以外は、実施例2と同様にしてセパレータを作製した。
[比較例5、8]
 第一塗工液を調製するポリフッ化ビニリデン系樹脂を別のポリフッ化ビニリデン系樹脂(表4に記載の組成及び重量平均分子量を有するVDF-HFP共重合体又はポリフッ化ビニリデン)に変更した以外は、実施例3と同様にしてセパレータを作製した。
 実施例1~19及び比較例1~8の各セパレータの物性及び評価結果を表1~表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
<第二形態のセパレータの作製>
[実施例101]
 ジメチルアセトアミドとトリプロピレングリコールの混合溶媒(ジメチルアセトアミド:トリプロピレングリコール=80:20[質量比])に、ポリフッ化ビニリデン系樹脂(VDF-HFP共重合体、HFP単位含有量12.4質量%、重量平均分子量86万)と、アクリル系樹脂(メタクリル酸メチル-メタクリル酸共重合体、重合比[質量比]90:10、重量平均分子量8.5万、ガラス転移温度80℃)とを溶解させ、接着性多孔質形成用の塗工液を作製した。塗工液に含まれるポリフッ化ビニリデン系樹脂とアクリル系樹脂の質量比を75:25とし、塗工液の樹脂濃度を5.0質量%とした。
 塗工液を、多孔質基材であるポリエチレン微多孔膜(膜厚9.0μm、ガーレ値150秒/100cc、空孔率43%)の両面に塗工し(その際、表裏の塗工量が等量になるように塗工した)、凝固液(水:ジメチルアセトアミド:トリプロピレングリコール=62.5:30:7.5[質量比]、液温35℃)に浸漬して固化させた。次いで、これを水洗し乾燥して、ポリエチレン微多孔膜の両面に接着性多孔質層が形成されたセパレータを得た。
[実施例102]
 アクリル系樹脂を酢酸ビニル系樹脂(ポリ酢酸ビニル、重量平均分子量1.5万、ガラス転移温度30℃)に変更した以外は、実施例101と同様にしてセパレータを作製した。
[実施例103]
 アクリル系樹脂を塩化ビニル系樹脂(ポリ塩化ビニル、重量平均分子量2万、ガラス転移温度40℃)に変更した以外は、実施例101と同様にしてセパレータを作製した。
[実施例104~109]
 塗工液に含まれるポリフッ化ビニリデン系樹脂とアクリル系樹脂の質量比を表5に記載のとおりに変更した以外は、実施例101と同様にしてセパレータを作製した。
[実施例110]
 塗工液に、表6に記載の含有量になるように、さらに水酸化マグネシウム粒子(一次粒子の体積平均粒径0.8μm、BET比表面積6.8m/g)を分散した以外は、実施例101と同様にしてセパレータを作製した。
[実施例111]
 塗工液に、表6に記載の含有量になるように、さらに水酸化マグネシウム粒子(一次粒子の体積平均粒径0.8μm、BET比表面積6.8m/g)を分散した以外は、実施例102と同様にしてセパレータを作製した。
[実施例112]
 塗工液に、表6に記載の含有量になるように、さらに水酸化マグネシウム粒子(一次粒子の体積平均粒径0.8μm、BET比表面積6.8m/g)を分散した以外は、実施例103と同様にしてセパレータを作製した。
[実施例113~114]
 ポリフッ化ビニリデン系樹脂、アクリル系樹脂及び水酸化マグネシウム粒子の含有量を表6に記載のとおりに変更した以外は、実施例110と同様にしてセパレータを作製した。
[実施例115~118]
 ポリフッ化ビニリデン系樹脂を別のポリフッ化ビニリデン系樹脂(表6に記載の組成及び重量平均分子量を有するVDF-HFP共重合体)に変更した以外は、実施例101と同様にしてセパレータを作製した。
[比較例101]
 塗工液にアクリル系樹脂を含まない以外は、実施例101と同様にしてセパレータを作製した。
[比較例102]
 塗工液にアクリル系樹脂を含まず、ポリフッ化ビニリデン系樹脂及び水酸化マグネシウム粒子の含有量を表7に記載のとおりに変更した以外は、実施例110と同様にしてセパレータを作製した。
[比較例103、106]
 ポリフッ化ビニリデン系樹脂を別のポリフッ化ビニリデン系樹脂(表7に記載の組成及び重量平均分子量を有するVDF-HFP共重合体又はポリフッ化ビニリデン)に変更した以外は、実施例101と同様にしてセパレータを作製した。
[比較例104、107]
 ポリフッ化ビニリデン系樹脂を別のポリフッ化ビニリデン系樹脂(表7に記載の組成及び重量平均分子量を有するVDF-HFP共重合体又はポリフッ化ビニリデン)に変更した以外は、実施例102と同様にしてセパレータを作製した。
[比較例105、108]
 ポリフッ化ビニリデン系樹脂を別のポリフッ化ビニリデン系樹脂(表7に記載の組成及び重量平均分子量を有するVDF-HFP共重合体又はポリフッ化ビニリデン)に変更した以外は、実施例103と同様にしてセパレータを作製した。
 実施例101~118及び比較例101~108の各セパレータの物性及び評価結果を表5~表7に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 2016年9月21日に出願された日本国出願番号第2016-184346号の開示は、その全体が参照により本明細書に取り込まれる。2016年9月21日に出願された日本国出願番号第2016-184347号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (11)

  1.  多孔質基材と、
     前記多孔質基材の一方の面に設けられた多孔質層であって、フッ化ビニリデン単量体単位及びヘキサフルオロプロピレン単量体単位を有し、ヘキサフルオロプロピレン単量体単位の含有量が全単量体単位の3質量%~20質量%であり、且つ重量平均分子量が10万~150万であるポリフッ化ビニリデン系樹脂を含有する第一多孔質層と、
     前記多孔質基材の他方の面に設けられた多孔質層であって、ポリフッ化ビニリデン系樹脂と、ガラス転移温度が30℃~120℃である樹脂とを含有する第二多孔質層と、
     を備えた非水系二次電池用セパレータ。
  2.  前記第二多孔質層において、前記ポリフッ化ビニリデン系樹脂と前記ガラス転移温度が30℃~120℃である樹脂とが相溶した状態で含まれている、請求項1に記載の非水系二次電池用セパレータ。
  3.  前記第二多孔質層における前記ガラス転移温度が30℃~120℃である樹脂の含有量が、前記第二多孔質層に含まれる全樹脂の総量の5質量%~50質量%である、請求項1又は請求項2に記載の非水系二次電池用セパレータ。
  4.  前記第一多孔質層が、さらに無機フィラーを含有し、
     前記第一多孔質層における前記無機フィラーの含有量が、前記第一多孔質層に含まれる全樹脂と前記無機フィラーの合計量の5質量%~75質量%である、請求項1~請求項3のいずれか1項に記載の非水系二次電池用セパレータ。
  5.  前記第二多孔質層が、さらに無機フィラーを含有し、
     前記第二多孔質層における前記無機フィラーの含有量が、前記第二多孔質層に含まれる全樹脂と前記無機フィラーの合計量の5質量%~75質量%である、請求項1~請求項4のいずれか1項に記載の非水系二次電池用セパレータ。
  6.  多孔質基材と、
     前記多孔質基材の片面又は両面に設けられた接着性多孔質層であって、フッ化ビニリデン単量体単位及びヘキサフルオロプロピレン単量体単位を有し、ヘキサフルオロプロピレン単量体単位の含有量が全単量体単位の5質量%~20質量%であり、且つ重量平均分子量が10万~150万であるポリフッ化ビニリデン系樹脂と、ガラス転移温度が30℃~120℃である樹脂とを含有する接着性多孔質層と、
     を備えた非水系二次電池用セパレータ。
  7.  前記接着性多孔質層において、前記ポリフッ化ビニリデン系樹脂と前記ガラス転移温度が30℃~120℃である樹脂とが相溶した状態で含まれている、請求項6に記載の非水系二次電池用セパレータ。
  8.  前記接着性多孔質層における前記ガラス転移温度が30℃~120℃である樹脂の含有量が、前記接着性多孔質層に含まれる全樹脂の総量の5質量%~50質量%である、請求項6又は請求項7に記載の非水系二次電池用セパレータ。
  9.  前記接着性多孔質層が、さらに無機フィラーを含有し、
     前記接着性多孔質層における前記無機フィラーの含有量が、前記接着性多孔質層に含まれる全樹脂と前記無機フィラーの合計量の5質量%~75質量%である、請求項6~請求項8のいずれか1項に記載の非水系二次電池用セパレータ。
  10.  前記ガラス転移温度が30℃~120℃である樹脂が、アクリル系樹脂、酢酸ビニル系樹脂及び塩化ビニル系樹脂からなる群から選ばれる少なくとも1種である、請求項1~請求項9のいずれか1項に記載の非水系二次電池用セパレータ。
  11.  正極と、負極と、前記正極及び前記負極の間に配置された請求項1~請求項10のいずれか1項に記載の非水系二次電池用セパレータと、を備え、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池。
PCT/JP2017/025813 2016-09-21 2017-07-14 非水系二次電池用セパレータ及び非水系二次電池 WO2018055882A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017554611A JP6334071B1 (ja) 2016-09-21 2017-07-14 非水系二次電池用セパレータ及び非水系二次電池
KR1020197003617A KR102434168B1 (ko) 2016-09-21 2017-07-14 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지
CN201780048839.4A CN109565021B (zh) 2016-09-21 2017-07-14 非水系二次电池用隔膜及非水系二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016184347 2016-09-21
JP2016184346 2016-09-21
JP2016-184346 2016-09-21
JP2016-184347 2016-09-21

Publications (1)

Publication Number Publication Date
WO2018055882A1 true WO2018055882A1 (ja) 2018-03-29

Family

ID=61690344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025813 WO2018055882A1 (ja) 2016-09-21 2017-07-14 非水系二次電池用セパレータ及び非水系二次電池

Country Status (4)

Country Link
JP (1) JP6334071B1 (ja)
KR (1) KR102434168B1 (ja)
CN (1) CN109565021B (ja)
WO (1) WO2018055882A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210066692A1 (en) * 2018-09-21 2021-03-04 Lg Chem, Ltd. Separator and electrochemical device comprising same
JP2021528813A (ja) * 2018-09-28 2021-10-21 エルジー・ケム・リミテッド 電気化学素子用分離膜及びこれを製造する方法
WO2022004148A1 (ja) * 2020-07-01 2022-01-06 東レ株式会社 電池用セパレータ
CN114335899A (zh) * 2022-01-30 2022-04-12 中材锂膜有限公司 复合涂层隔膜及其制备方法
EP4024598A4 (en) * 2019-10-29 2022-12-07 Lg Energy Solution, Ltd. LITHIUM SECONDARY BATTERY SEPARATOR WITH IMPROVED ADHESION TO ELECTRODE AND IMPROVED RESISTANCE CHARACTERISTICS AND LITHIUM SECONDARY BATTERY WITH LITHIUM SECONDARY BATTERY SEPARATOR
JP2023518499A (ja) * 2020-04-06 2023-05-01 エルジー エナジー ソリューション リミテッド 電気化学素子用の分離膜及びその製造方法
JP2023521137A (ja) * 2020-04-14 2023-05-23 エルジー エナジー ソリューション リミテッド 電気化学素子用の分離膜及びその製造方法
JP2023527809A (ja) * 2020-10-16 2023-06-30 エルジー エナジー ソリューション リミテッド リチウム二次電池用分離膜及びその製造方法
JP7483039B2 (ja) 2020-04-14 2024-05-14 エルジー エナジー ソリューション リミテッド 電気化学素子用の分離膜及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655044B (zh) 2018-03-14 2019-04-01 國立臺北科技大學 具有研磨顆粒之割線的製造方法與系統以及使用該方法所製造的割線
US20230282939A1 (en) * 2020-08-28 2023-09-07 Lg Energy Solution, Ltd. Separator for electrochemical device and electrochemical device including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293719A (ja) * 2007-05-23 2008-12-04 Sony Corp ゲル状電解質二次電池
JP2012089346A (ja) * 2010-10-19 2012-05-10 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2012153897A (ja) * 2004-12-22 2012-08-16 Lg Chem Ltd 多孔性高分子フィルム
JP2014041818A (ja) * 2012-07-25 2014-03-06 Samsung Sdi Co Ltd リチウム二次電池用セパレータ、及びこれを含むリチウム二次電池
WO2014083988A1 (ja) * 2012-11-30 2014-06-05 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2014160665A (ja) * 2010-02-25 2014-09-04 Lg Chem Ltd セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307735A (ja) * 2000-04-17 2001-11-02 Matsushita Electric Ind Co Ltd リチウム二次電池
JP4127989B2 (ja) 2001-09-12 2008-07-30 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
CN103222087B (zh) * 2010-10-29 2016-08-10 帝人株式会社 非水电解质电池用隔膜及非水电解质二次电池
US20140315068A1 (en) * 2011-10-21 2014-10-23 Teijin Limited Non-aqueous secondary battery separator and non-aqueous secondary battery
US9431638B2 (en) * 2011-10-21 2016-08-30 Teijin Limited Non-aqueous secondary battery separator and non-aqueous secondary battery
JP2015028840A (ja) * 2011-11-29 2015-02-12 日立マクセル株式会社 非水電解液電池用セパレータおよび非水電解液電池
HUE052426T2 (hu) * 2012-03-28 2021-04-28 Asahi Chemical Ind Porózus film és többrétegû porózus film
JP5652572B2 (ja) * 2012-03-28 2015-01-14 日本ゼオン株式会社 二次電池用多孔膜及びその製造方法、二次電池用電極、二次電池用セパレーター並びに二次電池
US9385358B2 (en) * 2012-07-25 2016-07-05 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery, and rechargeable lithium battery including the same
KR102066490B1 (ko) * 2012-09-28 2020-01-15 제온 코포레이션 2 차 전지용 다공막 세퍼레이터 및 그 제조 방법, 그리고 2 차 전지
CN104737326A (zh) * 2012-10-22 2015-06-24 大金工业株式会社 隔膜和二次电池
JP5647378B1 (ja) * 2013-03-19 2014-12-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP6135258B2 (ja) * 2013-04-05 2017-05-31 日本ゼオン株式会社 二次電池多孔膜用スラリー、二次電池用多孔膜及びその製造方法、並びに用途
WO2015076574A1 (ko) * 2013-11-21 2015-05-28 삼성에스디아이 주식회사 분리막 및 이를 이용한 이차 전지
WO2015076573A1 (ko) * 2013-11-21 2015-05-28 삼성에스디아이 주식회사 이차 전지
CN107004812B (zh) 2014-12-15 2020-07-21 帝人株式会社 非水电解质电池用隔膜、非水电解质电池及非水电解质电池的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012153897A (ja) * 2004-12-22 2012-08-16 Lg Chem Ltd 多孔性高分子フィルム
JP2008293719A (ja) * 2007-05-23 2008-12-04 Sony Corp ゲル状電解質二次電池
JP2014160665A (ja) * 2010-02-25 2014-09-04 Lg Chem Ltd セパレータの製造方法、その方法によって形成されたセパレータ、及びそれを含む電気化学素子の製造方法
JP2012089346A (ja) * 2010-10-19 2012-05-10 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2014041818A (ja) * 2012-07-25 2014-03-06 Samsung Sdi Co Ltd リチウム二次電池用セパレータ、及びこれを含むリチウム二次電池
WO2014083988A1 (ja) * 2012-11-30 2014-06-05 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210066692A1 (en) * 2018-09-21 2021-03-04 Lg Chem, Ltd. Separator and electrochemical device comprising same
US11784377B2 (en) * 2018-09-21 2023-10-10 Lg Energy Solution, Ltd. Separator including porous coating layer with amorphous adhesive binder polymer and fluorinated binder polymer and electrochemical device including the same
JP2021528813A (ja) * 2018-09-28 2021-10-21 エルジー・ケム・リミテッド 電気化学素子用分離膜及びこれを製造する方法
JP7374134B2 (ja) 2018-09-28 2023-11-06 エルジー エナジー ソリューション リミテッド 電気化学素子用分離膜及びこれを製造する方法
EP4024598A4 (en) * 2019-10-29 2022-12-07 Lg Energy Solution, Ltd. LITHIUM SECONDARY BATTERY SEPARATOR WITH IMPROVED ADHESION TO ELECTRODE AND IMPROVED RESISTANCE CHARACTERISTICS AND LITHIUM SECONDARY BATTERY WITH LITHIUM SECONDARY BATTERY SEPARATOR
JP2023518499A (ja) * 2020-04-06 2023-05-01 エルジー エナジー ソリューション リミテッド 電気化学素子用の分離膜及びその製造方法
JP7476339B2 (ja) 2020-04-06 2024-04-30 エルジー エナジー ソリューション リミテッド 電気化学素子用の分離膜及びその製造方法
JP2023521137A (ja) * 2020-04-14 2023-05-23 エルジー エナジー ソリューション リミテッド 電気化学素子用の分離膜及びその製造方法
JP7483039B2 (ja) 2020-04-14 2024-05-14 エルジー エナジー ソリューション リミテッド 電気化学素子用の分離膜及びその製造方法
WO2022004148A1 (ja) * 2020-07-01 2022-01-06 東レ株式会社 電池用セパレータ
JP2023527809A (ja) * 2020-10-16 2023-06-30 エルジー エナジー ソリューション リミテッド リチウム二次電池用分離膜及びその製造方法
CN114335899A (zh) * 2022-01-30 2022-04-12 中材锂膜有限公司 复合涂层隔膜及其制备方法

Also Published As

Publication number Publication date
KR20190049692A (ko) 2019-05-09
KR102434168B1 (ko) 2022-08-19
CN109565021A (zh) 2019-04-02
CN109565021B (zh) 2021-12-31
JP6334071B1 (ja) 2018-05-30
JPWO2018055882A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6334071B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP6054001B2 (ja) 非水電解質電池用セパレータ、非水電解質電池、および、非水電解質電池の製造方法
JP6171117B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP6205525B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
KR102612838B1 (ko) 비수계 이차전지용 세퍼레이터, 및 비수계 이차전지
JP6487130B1 (ja) 非水系二次電池用セパレータ、非水系二次電池および非水系二次電池の製造方法
JP5952509B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
US20140255754A1 (en) Separator for a non-aqueous secondary battery and non-aqueous secondary battery
TW201729449A (zh) 非水系二次電池用隔板及非水系二次電池
JP6325180B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
KR20180094779A (ko) 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
JP2018163872A (ja) 非水系二次電池用セパレータ及び非水系二次電池
JPWO2019176290A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7054997B2 (ja) 非水系二次電池用セパレータ、非水系二次電池、非水系二次電池用セパレータの製造方法、および、非水系二次電池用コーティング組成物
JP6779157B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7054996B2 (ja) 非水系二次電池用セパレータ、非水系二次電池および非水系二次電池用セパレータの製造方法
JP6890019B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2018147656A (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2016181439A (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2019029315A (ja) 非水系二次電池用セパレータ、非水系二次電池
EP3920266B1 (en) Separator for non-aqueous secondary cell, and non-aqueous secondary cell
WO2021241689A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2022041296A (ja) 非水系二次電池用セパレータ及び非水系二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017554611

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003617

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852663

Country of ref document: EP

Kind code of ref document: A1