WO2013133106A1 - 9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法、その結晶体、及びその結晶体の製造方法 - Google Patents

9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法、その結晶体、及びその結晶体の製造方法 Download PDF

Info

Publication number
WO2013133106A1
WO2013133106A1 PCT/JP2013/055177 JP2013055177W WO2013133106A1 WO 2013133106 A1 WO2013133106 A1 WO 2013133106A1 JP 2013055177 W JP2013055177 W JP 2013055177W WO 2013133106 A1 WO2013133106 A1 WO 2013133106A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorene
bis
hydroxyethoxy
phenyl
crystal
Prior art date
Application number
PCT/JP2013/055177
Other languages
English (en)
French (fr)
Inventor
竜也 岩井
隼 溝口
祥悟 国吉
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Priority to JP2014503791A priority Critical patent/JP6139508B2/ja
Priority to CN201380012361.1A priority patent/CN104144904A/zh
Priority to KR1020147022341A priority patent/KR102077352B1/ko
Publication of WO2013133106A1 publication Critical patent/WO2013133106A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation

Definitions

  • the present invention relates to a method for producing 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene, a crystal body thereof, and a method for producing the crystal body.
  • fluorene derivatives such as 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene have excellent heat resistance and transparency, and have a high refractive index. Therefore, resin raw materials such as epoxy resins, polyesters and polycarbonates are used. As expected.
  • Patent Document 1 and Patent Document 2 describe a method using a sulfuric acid catalyst. Has been. Although the reaction rate is higher than that of other catalysts by such a reaction, a sulfonic acid ester is synthesized as a by-product or sulfonation proceeds easily.
  • Patent Document 2 describes a large number of acid catalysts other than sulfuric acid, but it is not a method having a purification step using butanol after the reaction, but examines the static bulk density and melting point of the obtained purified product. is not.
  • 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene has an endothermic maximum temperature in the differential scanning calorimetry (temperature at which the endothermic amount appearing in the differential scanning calorimetry indicates the maximum value).
  • Patent Document 5 describes that there exists a crystal body (low melting point crystal) having a temperature of 100 to 130 ° C. and a crystal body (high melting point crystal) having an endothermic maximum temperature of 150 to 180 ° C. in differential scanning calorimetry. Yes.
  • the problem to be solved by the present invention is to provide a 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene crystal having a high bulk density and a low melting point, and a method for producing the same. .
  • the present invention employs the following means in order to solve the above problems.
  • 2. The method for producing 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene according to 1, wherein 3 to 10 mol of methanesulfonic acid is used per 1 mol of fluorenone.
  • 9.9-bis (4- (2-hydroxyethoxy) phenyl) fluorene having a maximum endothermic temperature of 105 to 135 ° C.
  • the method for producing 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene in which 9-fluorenone and 2-phenoxyethanol of the present invention are reacted in the presence of a methanesulfonic acid catalyst has a relatively high reaction rate. Therefore, a sufficient reaction rate for industrial implementation can be obtained even under mild temperature conditions.
  • methanesulfonic acid as a catalyst, a reaction liquid with a small amount of by-products such as a product by sulfonation and a sulfonic acid ester can be obtained, and the purity of the product is improved.
  • the purification process after the reaction can be simplified, and at the same time, it can be recovered more efficiently by extracting and separating the catalyst. is there.
  • the static bulk density of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene is lower than that of the conventional low melting point crystal. Since the bulk density is several times higher, the transportation efficiency is improved, and the handling at the time of charging into the reaction vessel becomes easier. And since melting
  • FIG. 1 shows DSC data of the crystal obtained in Example 1.
  • FIG. 2 shows DSC data of the crystal obtained in Example 2.
  • FIG. 3 shows DSC data of the crystal obtained in Example 3.
  • the method for producing 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene according to the present invention is a method of reacting 9-fluorenone with 2-phenoxyethanol, which is represented by the following reaction formula: by.
  • Reaction formula Specifically, in the above reaction, methanesulfonic acid is present as a catalyst in the reaction system.
  • the temperature condition which is the reaction condition described above, is preferably 20 to 70 ° C., more preferably 40 to 60 ° C. If it is less than 20 degreeC, reaction will become slow and the efficiency of manufacture will fall, and if it exceeds 70 degreeC, more by-products may produce
  • the amount of 2-phenoxyethanol used for 9-fluorenone in the above reaction is preferably 3 to 10 mol, more preferably 3 to 8 mol, still more preferably 3.5 to 2-moloxyethanol with respect to 1 mol of 9-fluorenone. ⁇ 5 moles. If the amount of 2-phenoxyethanol used is less than 3 mol, unreacted 9-fluorenone may remain, or the selectivity may be reduced. If it exceeds 10 mol, all 9-fluorenone can be reacted. , Volumetric efficiency deteriorates.
  • the amount of methanesulfonic acid used as a catalyst in the above reaction is preferably 2 to 10 mol, more preferably 3 to 8 mol, and still more preferably 4 to 6 mol of methanesulfonic acid with respect to 1 mol of 9-fluorenone. is there. If the amount is less than 2 mol, the catalyst may not function sufficiently, and the reaction rate may be slow. If the amount exceeds 10 mol, the volumetric efficiency deteriorates with almost no selectivity even if the catalyst is further used.
  • thiols may be present in the reaction system as a promoter.
  • the thiols are not particularly limited as long as they are compounds having a mercapto group. Examples of such compounds include carboxylic acids having a mercapto group such as ⁇ -mercaptopropionic acid and thioglycolic acid, and alkyl mercaptans such as methyl mercaptan, octyl mercaptan, and dodecyl mercaptan.
  • the thiols when thiols are used, the thiols may be used in the form of a sodium salt in an aqueous solution.
  • the amount used when using such thiols is preferably 0.5 to 5 mol%, more preferably 1 to 3 mol%, relative to 1 mol of 9-fluorenone. More preferably, it is 1.5 to 2.5 mol%. If it is less than 0.5 mol%, the function as a cocatalyst cannot be sufficiently exhibited, and if it exceeds 5 mol%, the function as a cocatalyst cannot be exhibited any more, and the selectivity is almost the same. . Furthermore, a solvent can also be used for reaction in the range which does not impair the effect of this invention as needed.
  • an organic solvent used at this time it is necessary to dissolve 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and to have low solubility in water.
  • an aromatic hydrocarbon such as toluene or xylene, an aliphatic hydrocarbon such as cyclohexane or n-heptane, an aliphatic ketone such as methyl isobutyl ketone, or an alcohol solvent such as butanol is employed.
  • methanesulfonic acid is dissolved in the aqueous layer, and 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene as a reaction product is dissolved in the organic solvent layer.
  • the obtained oil layer is added to a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution (or an alkali compound and water), sodium carbonate, potassium carbonate or the like.
  • a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution or an alkali compound and water
  • sodium carbonate, potassium carbonate or the like sodium carbonate, potassium carbonate or the like.
  • An alkaline aqueous solution in which an alkaline compound is dissolved is added and stirred for treatment. After the treatment with stirring, the mixture is allowed to stand to separate and remove the aqueous layer composed of the alkaline aqueous solution from the organic solvent layer.
  • the organic solvent layer is neutralized by adding acid such as phosphoric acid or hydrochloric acid and water, and then the aqueous layer is separated, and then water is added, followed by stirring, standing, and aqueous layer separation / removal operation multiple times. And wash the oil layer. After washing thoroughly, the water-washed oil layer is distilled to remove the solvent and 2-phenoxyethanol. Then, a crystallization solvent is added to the obtained residual liquid for crystallization. Thereafter, the precipitated crystals are separated by filtration to obtain crude crystals.
  • acid such as phosphoric acid or hydrochloric acid
  • water is added, followed by stirring, standing, and aqueous layer separation / removal operation multiple times. And wash the oil layer. After washing thoroughly, the water-washed oil layer is distilled to remove the solvent and 2-phenoxyethanol. Then, a crystallization solvent is added to the obtained residual liquid for crystallization. Thereafter, the precipitated crystals are separated by filtration to obtain crude crystals.
  • purification for obtaining a desired crystal body immediately from a crude crystal may be performed, but before that, purification may be performed by a known means to improve the purity.
  • 9,9-bis (4- (2-hydroxyethoxy) is added to liquid 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene having a temperature close to the melting point obtained by heating and melting a crude crystal.
  • Phenyl) fluorene seed crystal is added to a temperature slightly lower than the melting point, so that the seed crystal is not formed by impurities but only by 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene. Crystal growth is performed as a nucleus. As a result, 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene crystals can be obtained.
  • Recrystallization can also be performed using a solvent.
  • a solvent As the solvent at that time, it is desirable that heating is not particularly required, and it is desirable that the solvent has sufficient temperature dependency of solubility. As long as it has such properties, a plurality of other organic solvents can be used in combination.
  • the solvent used for purification is butanol, and specific examples include 1-butanol, 2-butanol, isobutyl alcohol, and t-butyl alcohol. Of these, 1-butanol is preferred.
  • Such butanol can be mixed with another solvent as long as the effects of the present invention are not impaired.
  • solvents examples include aromatic hydrocarbon solvents such as toluene and xylene, alcohol solvents such as methanol, aliphatic ketone solvents such as acetone, esters such as butyl acetate, and aliphatic hydrocarbons such as n-hexane and cyclohexane.
  • aromatic hydrocarbon solvents such as toluene and xylene
  • alcohol solvents such as methanol
  • aliphatic ketone solvents such as acetone
  • esters such as butyl acetate
  • aliphatic hydrocarbons such as n-hexane and cyclohexane.
  • a solvent, water, etc. are mentioned, It can also be used as a mixed solvent by mixing the 1 type (s) or 2 or more types of solvent selected from these.
  • crystals having a low static bulk density can be obtained, and crystals having a sufficiently high bulk density cannot be obtained.
  • the amount of solvent used is preferably 100 to 500 parts by weight, more preferably 150 parts per 100 parts by weight of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene. It is ⁇ 300 parts by weight, more preferably 180 to 250 parts by weight. If it is less than 100 parts by weight, it does not sufficiently dissolve in butanol, or there is no sufficient purification effect, and if it exceeds 500 parts by weight, it is difficult to recrystallize, or purified 9,9-bis ( The yield and volumetric efficiency of 4- (2-hydroxyethoxy) phenyl) fluorene are reduced.
  • the amount of the organic solvent used together with butanol varies depending on the type of the organic solvent.
  • the amount of toluene used is 50 to 500 per 100 parts by weight of 1-butanol.
  • the weight is preferably 50 parts by weight, more preferably 50 to 400 parts by weight, still more preferably 50 to 300 parts by weight, and particularly preferably 100 to 200 parts by weight. If the amount of toluene used is less than 50 parts by weight, the effect of using toluene is poor. Conversely, if the amount of toluene used exceeds 500 parts by weight, the effect of using 1-butanol may not be exhibited. There is sex. Moreover, you may use a seed crystal in the case of recrystallization.
  • the crystal that can be used for the seed crystal is not particularly limited as long as it is a 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene crystal, and may be a known low-melting crystal or a high-melting crystal. It may be the body.
  • the 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene crystal of the present invention it can be dried at a specific temperature. At that time, drying under reduced pressure is necessary for preventing deterioration of quality at higher temperatures and drying faster.
  • a drying temperature is preferably 50 to 100 ° C., more preferably 50 to 80 ° C., and further preferably 60 to 70 ° C. If the temperature is lower than 50 ° C., the drying rate decreases, and if it exceeds 100 ° C., the target crystal may not be obtained.
  • the crystal of the present invention thus obtained has a static bulk density of 0.3 to 0.6 g / cm 3 , preferably 0.3 to 0.5 g / cm 3 , more preferably 0.35. Is 0.45 g / cm 3 , particularly preferably 0.35 to 0.40 g / cm. If the static bulk density is less than 0.3 g / cm 3 , the crystal is too bulky, resulting in poor transportability, and, for example, poor handling when being put into a reaction vessel.
  • the endothermic maximum temperature of the obtained crystal is 105 to 135 ° C., preferably 110 to 130 ° C., more preferably 115 to 125 ° C., and particularly preferably 117 to 123 ° C. If the endothermic maximum temperature is less than 105 ° C., there is a possibility that sufficient purity may not be provided, and if it exceeds 135 ° C., more energy is required for heating and dissolving.
  • the method for obtaining the purified crystal is from the step of synthesizing 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene, but the present invention can obtain the same crystal.
  • the starting 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene may be either a crude product or a purified product, or may be crystalline or non-crystalline, and may have a low or high melting point.
  • the product may be a crude crystal obtained by a known method after completion of the above reaction, or may be an amorphous crude product obtained by removing raw materials such as a catalyst, a solvent and 2-phenoxyethanol from the reaction solution. Further, it may be obtained by using raw materials other than phenoxyethanol and 9-fluorenone, such as reacting 9,9-bis (4-hydroxyphenyl) fluorene with ethylene carbonate.
  • the purity of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene before purification is preferably 95% or more, more preferably 96% or more, and still more preferably 97% or more.
  • Example Example 1 In a four-necked flask equipped with a thermometer, a stirrer, and a condenser, 544.7 g (3.94 mol) of 2-phenoxyethanol was charged, and the reaction vessel was purged with nitrogen, and then at 84 ° C., 840.7 g of methanesulfonic acid (8. 75 mol) was added. Thereafter, 3.8 g of ⁇ -mercaptopropionic acid was added at 50 ° C., and a solution prepared by dissolving 347.9 g (1.93 mol) of 9-fluorenone in 521.9 g (3.78 mol) of 2-phenoxyethanol was added at 50 ° C. The reaction was conducted dropwise over 1 hour.
  • Example 2 60.0 g of crude crystals obtained by the same method as in Example 1 was charged into a four-necked flask equipped with a thermometer, a stirrer, and a condenser, and purged with nitrogen. Then, 60.0 g of 1-butanol and 60. 0 g was added, and the mixture was heated to 70 ° C. and dissolved. Thereafter, a seed crystal of 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, which is a high melting point crystal, was added at 60 ° C., and the crystal was precipitated while maintaining at 35 ° C. for 30 minutes.
  • Example 3 60.0 g of crude crystals obtained by the same method as in Example 1 was charged into a four-necked flask equipped with a thermometer, a stirrer, and a condenser, and purged with nitrogen. Then, 40.0 g of 1-butanol and 80. 0 g was added, and the mixture was heated to 70 ° C. and dissolved. Thereafter, a seed crystal of 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, which is a high melting point crystal, was added at 60 ° C., and the crystal was precipitated while maintaining at 33 ° C. for 30 minutes.
  • Example 3 The result similar to the result by Example 2 was obtained also by Example 3.
  • Comparative Example 1 60.0 g of crude crystals obtained in the same manner as in Example 1 was charged into a glass autoclave equipped with a thermometer and a stirrer, 180.0 g of methanol was added, nitrogen substitution was performed, and the temperature was raised to 81 ° C. Dissolved. Thereafter, a seed crystal of 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, which is a high-melting crystal, was added at 78 ° C., and the crystal was gradually cooled to 74 ° C. to precipitate a crystal. Thereafter, the temperature was raised to 77 ° C., gradually cooled to 25 ° C., and the precipitated crystals were separated by filtration.
  • the static bulk density is measured on a measuring cell having a capacity of 20 cm 3 using, for example, a multi-functional powder physical property measuring device multi tester (MT-1001 type / manufactured by Seishin Enterprise Co., Ltd.).
  • the crystal is gently put through a sieve so that there is no air gap, and the weight W (g) of the crystal in the cell when the measurement cell is filled with the crystal is measured, and W / 20 (g / cm It shall mean the value calculated in 3 ).

Abstract

 静嵩密度が高くかつ融点が低い9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンを得るために、メタンスルホン酸の存在下にて、9-フルオレノンと2-フェノキシエタノールとを反応させ、ブタノールを用いて精製することを特徴とする9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法。

Description

9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法、その結晶体、及びその結晶体の製造方法
 本発明は、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法、その結晶体、及びその結晶体の製造方法に関する。
 近年、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン等のフルオレン誘導体は、耐熱性、透明性に優れ、高い屈折率を示すため、エポキシ樹脂、ポリエステル、ポリカーボネート等の樹脂原料として期待されている。
 9-フルオレノンと2-フェノキシエタノールとを反応させる9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法としては、硫酸触媒を使用する方法が特許文献1及び特許文献2に記載されている。このような反応によって、反応速度は他の触媒よりも速くなるものの、副生成物としてスルホン酸エステルが合成されたり、スルホン化が進みやすく、結果的に生成物中に硫黄分が残存するために、目的物の色相へ影響を与えることになり光学材料として使用可能な生成物を得ることが困難となると共に、効率よく触媒を分離・回収することが困難である。
 しかも、その後に中和処理を行っても、上記の副生成物であるスルホン酸エステル等が直ちに分解せず、後工程で加水分解等が起こり機器腐食を引き起こす可能性がある。
 また、特許文献2には、硫酸以外の酸触媒が多数記載されているが、反応後にブタノールを用いた精製工程を有する方法ではなく、得られた精製物の静嵩密度や融点について検討するものではない。
 このため硫酸を使用しない反応方法が検討され、それにより得られた、触媒としてイオン交換樹脂触媒を採用した反応も特許文献3に示されるように知られており、さらにヘテロポリ酸触媒を採用した反応も特許文献4に示されるように知られている。
 しかしながら、これらの反応はその反応速度が遅いため、実際には高温下において反応させたり、反応中に副生成物である水を加熱して留出除去する必要があるが、そのような高温で反応させる場合には反応選択率が悪くなるので、9-フルオレノンに対するフェノキシエタノールの使用量を多くする必要があり、容積効率が悪化する。
 また、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンには、示差走査熱分析での吸熱最大温度(示差走査熱量分析において現れる吸熱量が最大値を指すときの温度)が100~130℃である結晶体(低融点結晶)と、示差走査熱分析での吸熱最大温度が150~180℃である結晶体(高融点結晶)が存在することが特許文献5に記載されている。
 従来の低融点の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶は嵩密度が低く、他方、高融点の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶は嵩密度が高いことが知られている。
特開平10-45656号公報 特開2009-256342号公報 特開2009-46416号公報 特開2011-74048号公報 特開2008-222708号公報
 従来の低融点の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶は嵩密度が低いため、工業的な製造や取り扱いにおいて問題があった。つまり、同じ重量の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶であっても、嵩密度が低ければ取り扱いの容量が増加するので、輸送時にはより大容量の容器か又はより多数の容器が必要であり、場合によってはそれらを移送できる装置や器具が必要となる。同じく反応原料として使用する場合には、反応容器に投入する際により多くのエネルギーが必要となるだけでなく、反応容器自体も、より大型化させなければならない場合もある。
 他方、高融点の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶の場合には、嵩密度が高いために工業的な製造上、及び取り扱い上において問題を生じない。
 また硫酸を使用する方法によればスルホン酸エステルの生成と共に、後工程での加水分解による機器の腐食を防止することが必要であった。
 しかし、高融点結晶から樹脂を工業的に製造する等のように、多量の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンを用いてさらに反応を行う等の加工する際には、溶融させるためにより高い温度まで加熱することが必要になるし、あるいは溶剤を用いて溶解させる場合においても、溶解により長時間を要するか、あるいは溶媒量をより多く必要とする。
 これらの問題を解消するために、非晶質の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンを採用することも検討し得るが、一旦、晶析により得られた結晶体を、わざわざ加熱して溶融させる必要があるので、結局9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンをさらなる反応等に使用する際、より多くの手間とエネルギーを要することになる。
 そこで、本発明が解決しようとする課題は、嵩密度が高くかつ融点が低い9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶体及びその製造方法を提供することにある。
 本発明は上記の課題を解決するために以下の手段を採用するものである。
1.メタンスルホン酸の存在下にて、9-フルオレノンと2-フェノキシエタノールとを反応させる工程、ブタノールを用いて精製する工程を有する9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法。
2.フルオレノン1モルに対して3~10モルのメタンスルホン酸を用いることを特徴とする1に記載の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法。
3.示差走査熱量分析による吸熱最大温度が105~135℃であって、静嵩密度が0.3~0.6g/cm3である9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶体。
4.9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとブタノールを含む溶液より、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶を析出させることを特徴とする3に記載の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶体の製造方法。
 本発明の9-フルオレノンと2-フェノキシエタノールとをメタンスルホン酸触媒存在下で反応させる、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法は、比較的反応速度が速いので、穏和な温度条件であっても工業的実施のための十分な反応速度を得ることができる。
 また、触媒としてメタンスルホン酸を採用することにより、スルホン化による生成物やスルホン酸エステル等の副生成物の生成量が少ない反応液を得ることができ、生成物の純度が向上する。
 そのように副生成物の生成量が少ないことによって、反応後の精製工程をより簡略化させることが可能であると同時に、触媒を抽出・分離する等によってより高効率に回収することも可能である。
 また、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの静嵩密度を0.3~0.6g/cm3とすることにより、従来の低融点の結晶と比較して静嵩密度が数倍にもなるので、輸送の効率がよくなり、反応容器に投入する際の取り扱いもより容易となる。しかも融点が低いことによって、低温にて溶融するので、加工時に必要なエネルギー量を低下させることができる。あるいは、結晶を溶剤に溶解させる際に、より早く又は/及びより低温下にて溶剤に溶解させることができるので、このような結晶を使用した場合の製造コストを低下させることができる。
図1は、本実施例1で得られた結晶のDSCデータを示したものである。 図2は、本実施例2で得られた結晶のDSCデータを示したものである。 図3は、本実施例3で得られた結晶のDSCデータを示したものである。
 本発明に係る9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法は9-フルオレノンと2-フェノキシエタノールとを反応させる方法であって、下記の反応式で表される反応による。
反応式
Figure JPOXMLDOC01-appb-I000001
 具体的には、上記の反応において反応系中に触媒としてメタンスルホン酸を存在させておく方法である。
 このような製造方法における上記の反応の条件である温度条件は、好ましくは20~70℃であり、より好ましくは40~60℃である。20℃未満では反応が遅くなり製造の効率が低下し、70℃を超えるとより多くの副生成物が生成する可能性がある。
 上記の反応における9-フルオレノンに対する2-フェノキシエタノールの使用量としては、9-フルオレノン1モルに対して2-フェノキシエタノールを好ましくは3~10モル、より好ましくは3~8モル、さらに好ましくは3.5~5モルである。2-フェノキシエタノールの使用量が3モル未満では未反応の9-フルオレノンが残存するか、又は、選択率が低下する可能性があり、10モルを超えると9-フルオレノンを全て反応させることができるものの、容積効率が悪化する。
 上記の反応における触媒であるメタンスルホン酸の使用量は、9-フルオレノン1モルに対してメタンスルホン酸を好ましくは2~10モル、より好ましくは3~8モル、さらに好ましくは4~6モルである。2モル未満であると触媒として十分に機能せず、反応速度が遅くなる可能性があり、10モルを超えると触媒としてさらに使用しても選択率はほとんどかわらずに容積効率が悪化する。
 本発明の上記の反応は助触媒としてチオール類を反応系内に存在させてもよい。該チオール類としてはメルカプト基を有する化合物であれば特に限定されない。そのような化合物としては、例えば、β-メルカプトプロピオン酸、チオグリコール酸等のメルカプト基を有するカルボン酸類、あるいはメチルメルカプタン、オクチルメルカプタン、ドデシルメルカプタン等のアルキルメルカプタン類が挙げられる。
 本発明の反応において、チオール類を使用する場合には、予め該チオール類をナトリウム塩とし、水溶液とした状態で使用してもよい。
 このようなチオール類を使用する場合の使用量としては、9-フルオレノン1モルに対して好ましくは0.5~5モル%、より好ましくは1~3モル%。さらに好ましくは1.5~2.5モル%である。0.5モル%未満であると助触媒として機能を十分に発揮することができず、5モル%を超えても、それ以上に助触媒として機能を発揮できず、選択率はほとんど同じである。
 さらに、必要に応じて本発明の効果を損なわない範囲で反応に溶媒を使用することもできる。
(9-フルオレノンと2-フェノキシエタノールとの反応)
 このようにして9-フルオレノンと2-フェノキシエタノールとを反応させることにより、目的物である9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンを製造した後、反応系から9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンを分離・回収するために後処理を行う必要がある。
 そのような後処理としては、まず反応系内に残留するメタンスルホン酸を抽出・分離する。そのために反応系内に水及び水に不溶性の有機溶媒を加え十分に撹拌する。このときに使用する有機溶媒としては、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンを溶解し、また水への溶解度が小さいことが必要である。この性質を有する有機溶媒として、トルエン、キシレン等の芳香族炭化水素系、シクロヘキサン、n-ヘプタン等の脂肪族炭化水素系、メチルイソブチルケトン等の脂肪族ケトン系、ブタノール等のアルコール溶媒を採用することができる。
 その結果、メタンスルホン酸は水層に溶解され、反応生成物である9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンは該有機溶剤層に溶解されることになる。
(油層からの粗結晶取り出し)
 上記の工程に引き続き、メタンスルホン酸を多く含んだ水層を除去した後、得られた油層に水酸化ナトリウム水溶液や水酸化カリウム水溶液(若しくはアルカリ化合物と水)、炭酸ナトリウム、炭酸カリウムのようなアルカリ性化合物が溶解されてなるアルカリ性水溶液を加え撹拌して処理する。
 撹拌して処理した後に、静置してアルカリ性水溶液からなる水層を有機溶剤層から分離除去する。
 次いで、有機溶剤層にリン酸や塩酸等の酸と水を加えて中和し、その後、水層を分離した後、水を加えて撹拌、静置、水層分離除去の操作を複数回実施して油層を洗浄する。十分に洗浄した後に引き続き、水洗された油層を蒸留して溶剤と2-フェノキシエタノールを除去する。そして得られた残液に晶析溶媒を添加して晶析する。
 その後、析出した結晶を濾別し、粗製結晶を得る。
(精製)
 精製工程としては、粗製結晶からすぐに目的の結晶体を得る精製を行ってもよいが、その前に、周知の手段で精製して純度を向上させてもよい。例えば、粗製結晶を加熱溶融して得た融点近くの温度の液状の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンに、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの種晶を添加し、融点よりも僅かに低温の状態とすることにより、不純物ではなく9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンのみにより該種晶を核として結晶成長を行なう。その結果、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶を得ることができる。
 また、溶媒を使用して再結晶を行うこともできる。その際の溶媒としては、特に高温に加熱する必要がないこと、及び十分に溶解度の温度依存性を備えることが望ましい。そのような性質を備える限りにおいて複数の他の有機溶剤を併用することもできる。
 次に、本発明の結晶体を得るブタノールを用いた精製方法について説明する。
 精製に使用する溶媒はブタノールであり、具体的には1-ブタノール、2-ブタノール、イソブチルアルコール、t-ブチルアルコールが挙げられる。中でも1-ブタノールが好ましい。
 そのようなブタノールに本発明の効果を損なわない範囲で別の溶媒を混合させることもできる。そのような溶媒としては、トルエン、キシレン等の芳香族炭化水素溶媒、メタノール等のアルコール溶媒、アセトン等の脂肪族ケトン溶媒、酢酸ブチル等のエステル類、n-ヘキサン、シクロヘキサン等の脂肪族炭化水素溶媒、水等が挙げられ、これらより選択される1種又は2種以上の溶媒を混合することによって混合溶媒とし、これを使用することもできる。
 但し、例えばメタノールを主な溶媒として再結晶操作を行うと静嵩密度の低い結晶が得られることになり、十分に嵩密度の高い結晶を得ることができない。
 溶媒を使用する精製工程において、使用する溶媒量としては、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン100重量部に対して好ましくは100~500重量部、より好ましくは150~300重量部、さらに好ましくは180~250重量部である。100重量部未満であるとブタノールに十分に溶解しないか、あるいは十分な精製効果がなく、500重量部を超えると再結晶することが困難であるか、あるいは精製してなる9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの収率や容積効率が低下する。
 ブタノールと共に使用する有機溶媒の量は、その有機溶媒の種類によって異なるが、1-ブタノールと共にトルエンを溶媒として使用する場合には、1-ブタノール100重量部に対してトルエンの使用量を50~500重量部とすることが好ましく、より好ましくは50~400重量部であり、さらに好ましくは50~300重量部であり、特に好ましくは100~200重量部である。トルエンの使用量が50重量部よりも少ないと、トルエンを使用することによる効果に乏しく、逆にトルエンの使用量が500重量部を超えると、1-ブタノールを使用することによる効果を発揮できない可能性がある。また、再結晶の際に種晶を使用してもよい。種晶に使用できる結晶は、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶であれば特に制限はなく、公知の低融点結晶でも高融点結晶でもよく、本願の結晶体でもよい。
(乾燥)
 本発明の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン結晶体を得るために、特定の温度にて乾燥させることもできる。その際に減圧下にて乾燥させることが、より高温下における品質の劣化を防止し、かつより早く乾燥させる上で必要である。
 そのような乾燥温度としては、好ましくは50~100℃であり、より好ましくは50~80℃であり、さらに好ましくは60~70℃である。50℃未満の温度では乾燥速度が低下し、100℃を超えると目的とする結晶が得られない可能性がある。
(精製された結晶)
 このようにして得られた本発明の結晶は、その静嵩密度が0.3~0.6g/cm3であり、好ましくは0.3~0.5g/cm3、より好ましくは0.35~0.45g/cm3であり、特に好ましくは0.35~0.40g/cmである。
 静嵩密度が0.3g/cm3未満であると、結晶が嵩高過ぎるために輸送性に劣ることになり、例えば反応容器に投入する際の取り扱い性も劣ることになる。
 また、得られた結晶の吸熱最大温度としては105~135℃であり、好ましくは110~130℃、より好ましくは115~125℃、特に好ましくは117~123℃である。
 吸熱最大温度が105℃未満であると十分な純度を備えていない可能性があり、135℃を超えると加熱して溶解させるために必要なエネルギーをより多く必要とすることになる。
(精製された結晶を得る別法)
 上記の精製された結晶を得る方法は9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンを合成する段階からの方法であるが、本発明は、同様の結晶を得ることができる限りにおいて、他の手段によることも可能である。
 例えば、原料の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとして、粗製物又は精製物のいずれか、あるいは結晶でも非結晶でもよく、さらには低融点でも高融点でもよい。また、上記の反応終了後に公知の方法で得られた粗製結晶でもよく、反応液から触媒、溶媒、2-フェノキシエタノール等の原料を取り除いた非晶質の粗製物でもよい。また、9,9-ビス(4-ヒドロキシフェニル)フルオレンをエチレンカーボネートと反応させる等、フェノキシエタノール及び9-フルオレノン以外の原料を用いて得られたものであってもよい。
 但し、その精製前の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの純度としては好ましくは95%以上、より好ましくは96%以上、さらに好ましくは純度97%以上である。
実施例
実施例1
 温度計、撹拌機、冷却管を備えた4つ口フラスコに2-フェノキシエタノール544.7g(3.94mol)を仕込み、反応容器を窒素置換した後、40℃でメタンスルホン酸840.7g(8.75mol)を加えた。その後、β-メルカプトプロピオン酸3.8gを50℃で添加し、そこに2-フェノキシエタノール521.9g(3.78mol)に9-フルオレノン347.9g(1.93mol)を溶解させた溶液を50℃で1時間かけて滴下し反応を行った。滴下終了後、50℃で17時間撹拌を行った。検量線を用いて高速液体クロマトグラフィーで反応液を分析した結果、反応液中に存在する9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの収率は85.4%であった。
 反応終了後、撹拌しながらトルエン1287.2g、水890.9gの順で50℃にて加えた後、静置して水層1664gを抜き取った。水層のメタンスルホン酸濃度は48%であり、回収率は95%であった。その後80℃へ昇温し、16%水酸化ナトリウム水溶液1042.4gを加えて3時間撹拌を行った。撹拌後、静置して水層を抜き取った後、水347.9g及び75%リン酸水溶液14.3gを加えて中和を行った。その後、静置して水層を抜き取り、油層に水347.9gを加えて80℃で撹拌した後、水層を分離除去する水洗操作を2回行った。得られた油層からトルエン、過剰の2-フェノキシエタノールを減圧蒸留によって除去した。蒸留後の残液にトルエン2435.3gを添加して均一溶液にした後、65℃にて2時間撹拌を行い結晶を析出させ、除々に25℃まで冷却して析出した結晶をろ別、乾燥して粗製結晶630.4gを得た。高速液体クロマトグラフィー分析による純度は97.6%であった。
 得られた粗製結晶60.0gを温度計、撹拌機、冷却管を備えた4つ口フラスコに仕込み、窒素置換した後、1-ブタノール120.0gを添加し、78℃まで昇温して溶解させた。その後、75℃にて高融点結晶である9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンの種晶を添加し、55℃にて1時間結晶を析出させた。その後65℃まで昇温し、除々に25℃まで冷却して析出した結晶をろ別した。得られた結晶を減圧下、80℃まで昇温して乾燥し、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン52.8gを取得した。粗製結晶に対する収率は88%であり、高速液体クロマトグラフィー分析による純度は98.7%であった。得られた結晶のDSCデータを図1に示す。
  吸熱最大温度:121.1℃(示差走査熱量測定)
  静嵩密度:0.39g/cm3
実施例2
 実施例1と同様の方法で得られた粗製結晶60.0gを温度計、撹拌機、冷却管を備えた4つ口フラスコに仕込み、窒素置換した後、1-ブタノール60.0g、トルエン60.0gを添加し、70℃まで昇温して溶解させた。その後、60℃にて高融点結晶である9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンの種晶を添加し、35℃にて30分間保持しながら結晶を析出させた。その後50℃まで昇温し、除々に25℃まで冷却して析出した結晶をろ別した。得られた結晶を減圧下、80℃まで昇温して乾燥し、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン44.3gを取得した。粗製結晶に対する収率は74%であり、高速液体クロマトグラフィー分析による純度は99.2%であった。得られた結晶のDSCデータを図2に示す。
  吸熱最大温度:119.9℃(示差走査熱量測定)
  静嵩密度:0.39g/cm3
実施例3
 実施例1と同様の方法で得られた粗製結晶60.0gを温度計、撹拌機、冷却管を備えた4つ口フラスコに仕込み、窒素置換した後、1-ブタノール40.0g、トルエン80.0gを添加し、70℃まで昇温して溶解させた。その後、60℃にて高融点結晶である9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンの種晶を添加し、33℃にて30分保持しながら結晶を析出させた。その後50℃まで昇温し、除々に25℃まで冷却して析出した結晶をろ別した。得られた結晶を減圧下、70℃まで昇温して、乾燥し、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン44.3gを取得した。粗製結晶に対する収率は75%であり、高速液体クロマトグラフィー分析による純度は99.0%であった。得られた結晶のDSCデータを図3に示す。
  吸熱最大温度:119.0℃(示差走査熱量測定)
  静嵩密度:0.36g/cm3
 実施例3によっても実施例2による結果と同様の結果が得られた。
比較例1
 実施例1と同様の方法で得られた粗製結晶60.0gを温度計、撹拌機を備えたガラスオートクレーブに仕込み、メタノール180.0gを添加した後、窒素置換を行い81℃まで昇温して溶解させた。その後、78℃にて高融点結晶である9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンの種晶を添加し、74℃まで除々に冷却して結晶を析出させた。その後77℃まで昇温し、除々に25℃まで冷却して析出した結晶をろ別した。得られた結晶を減圧下、80℃まで昇温して乾燥し、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン56.1gを取得した。粗製結晶に対する収率は94%であり、高速液体クロマトグラフィー分析による純度は99.5%であった。
  吸熱最大温度:123.6℃(示差走査熱量測定)
  静嵩密度:0.14g/cm3
 この比較例1の結果によると、精製時に使用する溶媒を1-ブタノールからメタノールに変更することにより、他は同様の操作を行っても静嵩密度が実施例によるものよりも明らかに低い結晶が得られた。このような結晶であると、嵩密度が低いので、輸送性に劣り、また使用時における取扱い性の点においても劣ることになる。
静嵩密度測定方法
 ここで、静嵩密度は、例えば多機能型粉体物性測定器マルチテスター(MT―1001型/(株)セイシン企業製)等を用い、容量20cm3の測定用セルに、空気の隙間ができないように結晶を篩を通して静かに投入し、前記測定用セルが結晶で充たされたときのセル内の結晶の重量W(g)を測定し、W/20(g/cm3)により算出した値をいうものとする。
示差走査熱量測定分析条件
 9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶2~3mg及び別に酸化アルミニウム2~3mgをそれぞれアルミパンに秤取して密閉し、示差走査熱量計((株)島津製作所製 DSC-60)を用い、酸化アルミニウムを対象として下記条件で測定した。
  昇温速度 10℃/min
  測定範囲:30-260℃
  雰囲気 :窒素50ml/min

Claims (4)

  1.  メタンスルホン酸の存在下にて、9-フルオレノンと2-フェノキシエタノールとを反応させる工程、ブタノールを用いて精製する工程を有する9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法。
  2.  フルオレノン1モルに対して3~10モルのメタンスルホン酸を用いることを特徴とする請求項1に記載の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法。
  3.  示差走査熱量分析による吸熱最大温度が105~135℃であって、静嵩密度が0.3~0.6g/cm3である9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶体。
  4.  9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンとブタノールを含む溶液より、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶を析出させることを特徴とする請求項3に記載の9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの結晶体の製造方法。
PCT/JP2013/055177 2012-03-09 2013-02-27 9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法、その結晶体、及びその結晶体の製造方法 WO2013133106A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014503791A JP6139508B2 (ja) 2012-03-09 2013-02-27 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンの製造方法、その結晶体、及びその結晶体の製造方法
CN201380012361.1A CN104144904A (zh) 2012-03-09 2013-02-27 9,9-双(4-(2-羟基乙氧基)苯基)芴的制造方法、其结晶体及其结晶体的制造方法
KR1020147022341A KR102077352B1 (ko) 2012-03-09 2013-02-27 9,9-비스(4-(2-히드록시에톡시)페닐)플루오렌의 제조방법, 그의 결정체 및 그의 결정체의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012053474 2012-03-09
JP2012-053474 2012-03-09

Publications (1)

Publication Number Publication Date
WO2013133106A1 true WO2013133106A1 (ja) 2013-09-12

Family

ID=49116588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055177 WO2013133106A1 (ja) 2012-03-09 2013-02-27 9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法、その結晶体、及びその結晶体の製造方法

Country Status (4)

Country Link
JP (2) JP6139508B2 (ja)
KR (1) KR102077352B1 (ja)
CN (1) CN104144904A (ja)
WO (1) WO2013133106A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114387A (ja) * 2012-12-10 2014-06-26 Taoka Chem Co Ltd フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法
JP2014125489A (ja) * 2012-12-25 2014-07-07 Taoka Chem Co Ltd フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法
JP2015101605A (ja) * 2013-11-21 2015-06-04 田岡化学工業株式会社 ビスフェノールフルオレン骨格を有するエポキシ樹脂
JP2015196676A (ja) * 2014-04-03 2015-11-09 田岡化学工業株式会社 フルオレン構造を有するポリエステル樹脂からビスフェノールフルオレン類を回収する方法
WO2017014141A1 (ja) * 2015-07-21 2017-01-26 田岡化学工業株式会社 フルオレン骨格を有するアルコールの結晶およびその製造方法
JP6156858B1 (ja) * 2016-08-10 2017-07-05 大神薬化株式会社 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン結晶の製造方法
JP2018024630A (ja) * 2017-05-11 2018-02-15 大神薬化株式会社 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン結晶
JP2018048086A (ja) * 2016-09-21 2018-03-29 田岡化学工業株式会社 フルオレン骨格を有するアルコール化合物の結晶およびその製造方法
JP2019108408A (ja) * 2019-04-16 2019-07-04 田岡化学工業株式会社 フルオレン骨格を有するアルコール化合物の結晶およびその製造方法
US10787408B1 (en) * 2019-08-27 2020-09-29 China Petrochemical Development Corporation Method for producing 9,9-bis(3-phenyl-4-(2-hydroxyethoxy)phenyl)fluorene

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106478381B (zh) * 2016-10-16 2019-06-21 武汉轻工大学 一种由环氧乙烷催化制备双醚芴的方法
JP6644719B2 (ja) 2017-01-19 2020-02-12 Jfeケミカル株式会社 フルオレニリデンジアリルフェノール類の製造方法およびフルオレニリデンジアリルフェノール類
CN107935827B (zh) * 2017-12-04 2022-04-12 江苏永星化工股份有限公司 颗粒状9,9-二[3-苯基-4-(2-羟基乙氧基)苯基]芴及其制备方法
KR20210025010A (ko) * 2018-06-27 2021-03-08 혼슈우 카가쿠고교 가부시키가이샤 9,9-비스(4-히드록시페닐)-2,3-벤조플루오렌의 결정체
WO2023063653A1 (ko) * 2021-10-13 2023-04-20 성균관대학교산학협력단 플루오렌 유도체 화합물의 합성방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222708A (ja) * 2007-02-15 2008-09-25 Taoka Chem Co Ltd フルオレン誘導体の結晶多形体およびその製造方法
JP2009013096A (ja) * 2007-07-03 2009-01-22 Osaka Gas Co Ltd 単官能性フルオレン化合物およびその製造方法
JP2009046416A (ja) * 2007-08-20 2009-03-05 Osaka Gas Co Ltd フルオレン骨格を有するアルコール類の製造方法
WO2010143556A1 (ja) * 2009-06-11 2010-12-16 田岡化学工業株式会社 フルオレン誘導体の非晶質形態およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045656A (ja) 1996-07-30 1998-02-17 Taoka Chem Co Ltd フルオレン誘導体の製造法
JPH1045655A (ja) * 1996-07-30 1998-02-17 Taoka Chem Co Ltd フルオレン誘導体の製造方法
JP4434679B2 (ja) * 2003-09-30 2010-03-17 大阪瓦斯株式会社 フルオレン誘導体の製造方法
JP4671235B2 (ja) * 2006-01-26 2011-04-13 田岡化学工業株式会社 フルオレン誘導体の製造方法
JP5179808B2 (ja) * 2007-08-31 2013-04-10 国立大学法人東京工業大学 新規ジベンゾフルオレン化合物
JP5325627B2 (ja) * 2008-03-27 2013-10-23 大阪瓦斯株式会社 フルオレン骨格を有するアルコールの製造方法
CN102388012B (zh) * 2009-04-13 2014-10-15 田冈化学工业株式会社 芴衍生物的制造方法
JP5230019B2 (ja) 2009-10-02 2013-07-10 田岡化学工業株式会社 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンの製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222708A (ja) * 2007-02-15 2008-09-25 Taoka Chem Co Ltd フルオレン誘導体の結晶多形体およびその製造方法
JP2009013096A (ja) * 2007-07-03 2009-01-22 Osaka Gas Co Ltd 単官能性フルオレン化合物およびその製造方法
JP2009046416A (ja) * 2007-08-20 2009-03-05 Osaka Gas Co Ltd フルオレン骨格を有するアルコール類の製造方法
WO2010143556A1 (ja) * 2009-06-11 2010-12-16 田岡化学工業株式会社 フルオレン誘導体の非晶質形態およびその製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114387A (ja) * 2012-12-10 2014-06-26 Taoka Chem Co Ltd フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法
JP2014125489A (ja) * 2012-12-25 2014-07-07 Taoka Chem Co Ltd フルオレン系重合体、フルオレン系ジオール化合物及びその製造方法
JP2015101605A (ja) * 2013-11-21 2015-06-04 田岡化学工業株式会社 ビスフェノールフルオレン骨格を有するエポキシ樹脂
JP2015196676A (ja) * 2014-04-03 2015-11-09 田岡化学工業株式会社 フルオレン構造を有するポリエステル樹脂からビスフェノールフルオレン類を回収する方法
WO2017014141A1 (ja) * 2015-07-21 2017-01-26 田岡化学工業株式会社 フルオレン骨格を有するアルコールの結晶およびその製造方法
TWI658034B (zh) * 2015-07-21 2019-05-01 田岡化學工業股份有限公司 具有茀骨架之醇之結晶及其製造方法
JP2017200901A (ja) * 2015-07-21 2017-11-09 田岡化学工業株式会社 フルオレン骨格を有するアルコールの結晶およびその製造方法
JP2018024611A (ja) * 2016-08-10 2018-02-15 大神薬化株式会社 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン結晶の製造方法
JP6156858B1 (ja) * 2016-08-10 2017-07-05 大神薬化株式会社 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン結晶の製造方法
JP2018048086A (ja) * 2016-09-21 2018-03-29 田岡化学工業株式会社 フルオレン骨格を有するアルコール化合物の結晶およびその製造方法
JP2018024630A (ja) * 2017-05-11 2018-02-15 大神薬化株式会社 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン結晶
JP2019108408A (ja) * 2019-04-16 2019-07-04 田岡化学工業株式会社 フルオレン骨格を有するアルコール化合物の結晶およびその製造方法
US10787408B1 (en) * 2019-08-27 2020-09-29 China Petrochemical Development Corporation Method for producing 9,9-bis(3-phenyl-4-(2-hydroxyethoxy)phenyl)fluorene
JP2021031486A (ja) * 2019-08-27 2021-03-01 中國石油化學工業開發股▲分▼有限公司 9,9−ビス(3−フェニル−4−(2−ヒドロキシエトキシ)フェニル)フルオレンの製造方法
JP2022088526A (ja) * 2019-08-27 2022-06-14 中國石油化學工業開發股▲分▼有限公司 9,9-ビス(3-フェニル-4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法
JP7396941B2 (ja) 2019-08-27 2023-12-12 中國石油化學工業開發股▲分▼有限公司 9,9-ビス(3-フェニル-4-(2-ヒドロキシエトキシ)フェニル)フルオレンの製造方法

Also Published As

Publication number Publication date
JP6139508B2 (ja) 2017-05-31
KR20140131511A (ko) 2014-11-13
KR102077352B1 (ko) 2020-02-13
JPWO2013133106A1 (ja) 2015-07-30
JP6426226B2 (ja) 2018-11-21
CN104144904A (zh) 2014-11-12
JP2017137344A (ja) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6139508B2 (ja) 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレンの製造方法、その結晶体、及びその結晶体の製造方法
JP6484465B2 (ja) 2,2’−ビス(2−ヒドロキシエトキシ)−1,1’−ビナフタレンの結晶多形体およびその製造方法
KR102219152B1 (ko) 2,2'-비스(2-하이드록시에톡시)-1,1'-비나프탈렌의 결정 다형체 및 그 제조 방법
TWI616431B (zh) 二烯丙基雙酚類的連續製造方法
JP2005104898A (ja) フルオレン誘導体の製造方法
JP5731256B2 (ja) 6,6−(9−フルオレニリデン)−ジ(2−ナフトール)の結晶多形体及びその製造方法
TW202112735A (zh) 2,2’-雙(乙氧基羰基甲氧基)-1,1’-聯萘的結晶體
JP6183956B2 (ja) フルオレノン誘導体の製造方法
JP2010024248A (ja) フルオレン誘導体
CN112638852A (zh) 双芴化合物的结晶体
KR102236738B1 (ko) 1,1-비스(4-(2-히드록시에톡시)페닐)-3,3,5-트리메틸시클로헥산의 결정체 및 그의 제조방법
JP6156858B1 (ja) 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン結晶の製造方法
WO2016002607A1 (ja) 新規なビス(ヒドロキシアルコキシフェニル)ジフェニルメタン類
JP4861128B2 (ja) 9,9−ビス(4−ヒドロキシフェニル)フルオレン類の連続製造方法
JP6250453B2 (ja) トリスフェノール化合物
TWI596105B (zh) Phosphorus-series (meth) acrylate compound and its manufacturing method
JP5572430B2 (ja) 9,9−ビス(4−ヒドロキシフェニル)フルオレン類の製造方法
JP2018024889A (ja) 樹脂組成物
CN112334437A (zh) 9,9-双(4-羟基苯基)-2,3-苯并芴的结晶体
JP6312285B2 (ja) 9,9−ビス(4−(2−ヒドロキシエトキシ)フェニル)フルオレン結晶
WO2022215460A1 (ja) 2,2'-ビス(2-ヒドロキシエトキシ)-1,1'-ビナフタレンの製造方法
CN112585111A (zh) 双芴化合物的结晶混合体
JP2023065662A (ja) 9,9-ビス[6-(2-ヒドロキシエトキシ)-2-ナフチル]フルオレンの結晶多形及びその製造方法
TW202104147A (zh) 具有茀骨架之化合物及其之製造方法
JP6234367B2 (ja) 9,9−ビス(ヒドロキシアルコキシフェニル)フルオレン類の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014503791

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147022341

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757538

Country of ref document: EP

Kind code of ref document: A1