WO2013125514A1 - ポリフェニレンサルファイド繊維、ポリフェニレンサルファイド繊維からなる濾布およびポリフェニレンサルファイド繊維の製造方法 - Google Patents
ポリフェニレンサルファイド繊維、ポリフェニレンサルファイド繊維からなる濾布およびポリフェニレンサルファイド繊維の製造方法 Download PDFInfo
- Publication number
- WO2013125514A1 WO2013125514A1 PCT/JP2013/053967 JP2013053967W WO2013125514A1 WO 2013125514 A1 WO2013125514 A1 WO 2013125514A1 JP 2013053967 W JP2013053967 W JP 2013053967W WO 2013125514 A1 WO2013125514 A1 WO 2013125514A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyphenylene sulfide
- pps
- fiber
- sulfide fiber
- heat treatment
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/76—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
- D01F6/765—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products from polyarylene sulfides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/08—Filter cloth, i.e. woven, knitted or interlaced material
- B01D39/083—Filter cloth, i.e. woven, knitted or interlaced material of organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/12—Stretch-spinning methods
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
- D04H1/46—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
- D04H1/46—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
- D04H1/492—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/0604—Arrangement of the fibres in the filtering material
- B01D2239/0618—Non-woven
Definitions
- the present invention relates to polyphenylene sulfide fiber.
- Polyphenylene sulfide (hereinafter sometimes abbreviated as PPS) resin has properties suitable for engineering plastics such as excellent heat resistance, barrier properties, chemical resistance, electrical insulation properties, and heat and moisture resistance, and is injection molded. It is used for various electric parts, electronic parts, machine parts, automobile parts, films, fibers, etc. mainly for extrusion molding.
- PPS materials are widely used for filter cloths used in various industrial filters such as bag filters for collecting waste gas dust.
- a filter cloth include those obtained by laminating PPS short fibers on a base cloth made from spun yarns of PPS short fibers, and integrating them by needle punching.
- Such filter cloth is used for collecting dust in waste gas and exhausting the waste gas that does not contain dust to the outside, but it is important to keep it clog free for a long time. Therefore, it is always desired to extend the life of such filter cloth performance.
- the pulse jet method is often adopted as a method for efficiently separating dust adhering to the filter cloth.
- the filter cloth is vibrated by periodically blowing a high-speed air current on the filter cloth to wipe off the dust attached to the surface of the filter cloth. It is a method.
- Such a pulse jet method makes it possible to remove dust, but naturally, a high-speed air flow applied as an external force tends to lower the mechanical strength of the filter cloth over time. If the mechanical strength of the filter cloth and the dimensional stability of the filter cloth are insufficient when an external force is regularly applied, there is a problem that the filter cloth is broken and cannot function as a bag filter.
- the waste gas of the incineration equipment is high temperature, and the exhaust gas contains gas that chemically degrades PPS. That is, it is pointed out that the filter cloth used for the bag filter is used under severe conditions, and the strength of the filter cloth decreases due to chemical deterioration at high temperatures when used for a long time. . Further, it has been disclosed that polyphenylene sulfide fibers having excellent tensile strength are capable of suppressing a decrease in tensile strength due to chemical deterioration at high temperatures (see Patent Document 3). Moreover, in the Example of this patent document, although it describes only at the time of use of Toray Co., Ltd.
- filter cloth used as a bag filter is important for mechanical strength and dimensional stability of the filter cloth, and further suppresses the temporal decrease in tensile strength against chemical degradation at high temperatures. It was considered important.
- JP-A-4-222217 Japanese Patent No. 2764911 JP 2008-266869 A
- the inventors of the present invention as a bag filter filter cloth, it is important not to break when an external force is regularly applied by a pulse jet or the like. In order to absorb the impact, it is also necessary to suppress a decrease in the tensile elongation with time. That is, it has been found that for chemical degradation at high temperatures, it is important to suppress the temporal deterioration of toughness, which is the product of tensile strength and tensile elongation of fiber properties. That is, in order to suppress a decrease in the toughness of the filter cloth due to long-term use, it was considered that a PPS fiber that is unlikely to deteriorate with time due to chemical deterioration at high temperatures is necessary. The technology was still insufficient to suppress the toughness drop over time due to chemical degradation at high temperatures.
- an object of the present invention is to provide a PPS fiber that is suitably used as a bag filter and that suppresses a decrease in tensile strength and toughness over time against chemical deterioration at high temperatures.
- the present invention comprises a polyphenylene sulfide resin having a weight average molecular weight of 50,000 or more and 80,000 or less, wherein the rigid amorphous amount is 50% or more, and the crystallite size in the (111) crystal plane direction is 5 nm or more.
- Polyphenylene sulfide fiber having a weight average molecular weight of 50,000 or more and 80,000 or less, wherein the rigid amorphous amount is 50% or more, and the crystallite size in the (111) crystal plane direction is 5 nm or more.
- the tensile strength is 5.0 cN / dtex or more, and the toughness reduction rate after heat treatment for 24 weeks at a temperature of 180 ° C. is 30% or less.
- a filter cloth can be produced using the polyphenylene sulfide fiber.
- a polyphenylene sulfide resin having a weight average molecular weight of 50,000 or more and 80,000 or less is melted at 280 ° C. or more and 340 ° C. or less and spun from a spinneret, and 500 m / min or more and 5000 m / min or less.
- the undrawn yarn was collected at a take-off speed of 2, and then the undrawn yarn was heat-drawn at 2 to 4 times and subjected to constant-length heat treatment at 190 to 270 ° C. for 4 to 12 seconds, A relaxation heat treatment is performed at 50 ° C. or higher and 150 ° C. or lower for 5 minutes or longer and 60 minutes or less to impart crimps, and cut into a predetermined length.
- a PPS fiber that is suitably used as a bag filter and that suppresses a decrease in tensile strength and toughness over time against chemical deterioration at high temperatures.
- the polyphenylene sulfide fiber of the present invention is a polyphenylene sulfide fiber comprising a polyphenylene sulfide resin having a weight average molecular weight of 50,000 or more and 80,000 or less, a rigid amorphous amount of 50% or more, and a crystallite size in the (111) crystal plane direction of 5 nm or more. is there.
- PPS used in the present invention means a polymer containing a phenylene sulfide unit such as a p-phenylene sulfide unit or an m-phenylene sulfide unit represented by the following structural formula (I) as a repeating unit.
- the PPS may be a homopolymer or a copolymer having both p-phenylene sulfide units and m-phenylene sulfide units, and may be copolymerized with other aromatic sulfides as long as the effects of the present invention are not impaired. It may be a combination or a mixture.
- the p-phenylene sulfide unit composed of the repeating unit represented by the structural formula (I) is preferably 70 mol% or more, more preferably PPS resin containing 90 mol% or more is preferably used.
- the other copolymerization component in the PPS resin is preferably m-phenylene sulfide units or other aromatic sulfide units.
- Examples of commercially available products of PPS resin include “Torelina” (registered trademark) manufactured by Toray Industries, Inc. and “Fortron” (registered trademark) manufactured by Polyplastics Co., Ltd.
- the weight average molecular weight of the PPS resin forming the PPS fiber of the present invention is 50000 or more and 80000 or less, and the weight average molecular weight is preferably 50500 or more, more preferably 51000 or more. Moreover, Preferably it is 70000 or less, and is 600000 or less.
- Rigid amorphous refers to an intermediate state between polymer crystals and completely amorphous. In fibers, it is one of the factors that develops strength in the same way as the crystal part, and has a clear relationship with strength and durability. I found out that there was sex. It has been found that by increasing the amount of rigid amorphous, it is possible to obtain fibers excellent in durability and heat resistance in comparison with conventional raw cotton.
- the PPS fiber of the present invention has a rigid amorphous amount of 50% or more, and the rigid amorphous amount is preferably 55% or more. If the rigid amorphous amount is less than 50%, it will be difficult to obtain toughness maintenance performance, as will be described later. On the other hand, the upper limit of the amount of rigid amorphous that can be achieved as the internal structure of the PPS fiber is considered to be around 65%.
- the (111) crystallite size was determined by a wide-angle X-ray diffraction method and found to be closely related to the strength of the fiber as well as the rigid amorphous amount.
- the crystallite size in the (111) crystal plane direction is 5 nm or more, preferably 5.2 nm or more, and more preferably 5.4 nm or more.
- the upper limit of the crystallite size in the (111) crystal plane direction that can be achieved as the internal structure in the PPS fiber is preferably 8 nm or less.
- the crystallite size is preferably 8 nm or less, more preferably 7 nm or less, an extremely high viscosity resin is not required, and the occurrence of spinning failure such as yarn breakage can be suppressed, and high-quality fibers are obtained. be able to.
- the rigid amorphous amount is 50% or more and the crystallite size in the (111) crystal plane direction is 5 nm or more. If the (111) crystallite size is less than 5 nm even if the rigid amorphous amount is 50% or more, or if the rigid amorphous amount is less than 50% even if the (111) crystallite size satisfies 5 nm Further, since the maintenance performance of toughness is low and the durability is inferior, the fiber which is the object of the present invention cannot be obtained.
- the tensile strength of the PPS fiber of the present invention is preferably 5.0 cN / dtex or more, more preferably 5.2 cN / dtex, and still more preferably 5.3 cN / dtex or more. If the tensile strength is less than 5.0 cN / dtex, it may not be possible to obtain a PPS fiber that can withstand the use of the present invention under long-term high temperatures.
- the toughness reduction rate after heat treatment at 180 ° C. for 24 weeks is preferably 30% or less, more preferably 28% or less, and further preferably 25%. PPS fibers with a reduction rate exceeding 30% may not be PPS fibers that can withstand the use of the present invention under long-term high temperatures.
- Patent Document 3 a treatment for 2000 hours at a temperature of 200 ° C. is adopted as an index of tensile strength due to chemical deterioration during long-term use, but the temperature range in which the bag filter is actually used is as follows. The temperature is 160 to 180 ° C, and the usage time of the bag filter is several years. Therefore, the toughness reduction rate after heat treatment for 24 weeks (about 4000 hours) at a temperature of 180 ° C.
- the toughness reduction rate after heat treatment for 24 weeks at a temperature of 180 ° C. can be made suitable. That is, the present inventors have found that the toughness reduction rate after heat treatment for 24 weeks at a temperature of 180 ° C.
- a PPS resin having a weight average molecular weight of 50,000 to 80,000 as described above is melted and spun from a spinneret, and an undrawn yarn is collected at a spinning speed of preferably 500 m / min or more, more preferably 600 m / min or more. To do.
- the upper limit of the spinning speed is preferably about 5000 m / min, more preferably 4000 m / min or less.
- the hot stretching is usually performed in warm water having a temperature of 90 to 98 ° C., and a stretching ratio of preferably 2 to 4 times, more preferably 3 to 4 times is employed.
- Examples of the heating method during stretching other than warm water include dry heat and steam.
- constant-length heat treatment refers to heat treatment performed while maintaining the length of the yarn substantially constant.
- the length is constant between a plurality of rollers having substantially the same peripheral speed, and at least one of the rollers is fixed.
- the part is used as a heating roller, or a heating process is performed by separately providing a heating means.
- the constant length heat treatment of the present invention does not necessarily need to keep the yarn length substantially constant like the conventional constant length heat treatment, and may be 0.90 to 1.10 times.
- the ratio is preferably 0.95 to 1.05 times, and more preferably 0.99 to 1.01 times. Further, it may not be 0.9 to 1.1 times between all of the plurality of rollers, and there may be between rollers less than 0.9 times or more than 1.1 times.
- the present inventors have found that the rigid amorphous amount and (111) crystallite size can be made suitable by subjecting fibers made of PPS resin having a specific weight average molecular weight to a constant length heat treatment. That is, the present inventors have found that PPS fibers having a rigid amorphous amount of 50% or more and a (111) crystallite size of 5 nm or more are subjected to constant-length heat treatment on fibers made of PPS resin having a weight average molecular weight of less than 50,000.
- the constant length heat treatment temperature is preferably 190 ° C. or higher and 270 ° C. or lower.
- the constant-length heat treatment temperature is preferably 190 ° C. or higher, more preferably 200 ° C. or higher, and further preferably 220 ° C.
- the fiber made of PPS resin having a weight average molecular weight of 50,000 or higher has a rigid amorphous amount as described above.
- (111) crystallite size can be suitably provided.
- the constant length heat treatment temperature preferably 270 ° C. or less, more preferably 240 ° C. or less, pseudo-adhesion between fibers can be suitably suppressed.
- the constant length heat treatment time is preferably 5 seconds or more. By setting the constant length heat treatment time to 5 seconds or more, fiber crystallization is promoted. If the constant-length heat treatment time is less than 5 seconds, a sufficient rigid amorphous amount or (111) crystallite size may not be obtained. On the other hand, since the degree of fiber crystallinity is saturated even if the constant length heat treatment time is too long, the upper limit value of the constant length heat treatment time is preferably about 12 seconds.
- the yarn relaxed after the constant length heat treatment is crimped using a stuffing box type crimper or the like. At that time, the crimp may be heat-fixed by steam or the like.
- an oil agent is preferably applied in an amount of 0.01 to 3.0% by mass with respect to the amount of raw cotton, and a relaxation heat treatment is preferably performed at a temperature of 50 to 150 ° C. for 5 to 60 minutes. And it cut
- the PPS short fibers thus obtained usually have a single fiber fineness of about 0.01 to 20 dtex, a tensile strength of 5.0 cN / dtex or more, preferably 5.3 cN / dtex or more, and a tensile elongation of 10 It is -100%, preferably 20-60%, and is suitably used as a filter cloth for bag filters.
- Nonwoven fabric is usually used as the filter cloth for bag filters.
- the non-woven fabric can be obtained by a non-woven fabric manufacturing method such as wet, needle punch and water jet punch.
- the single fiber fineness and fiber length of the PPS short fibers used are determined.
- the wet method requires a short fiber having a fineness of 0.01 to 1 dtex and a fiber length of about 0.5 to 15 mm
- the needle punch method has a fineness of 2 to 15 dtex and a fiber length of 38 to 76 mm. Short fibers are often required.
- the PPS short fiber of the present invention can be once made into a spun yarn, and the spun yarn can be used to make a fabric such as a woven fabric or a knitted fabric.
- the weight average molecular weight of PPS was computed in polystyrene conversion by gel permeation chromatography (GPC) which is a kind of size exclusion chromatography (SEC).
- GPC gel permeation chromatography
- SEC size exclusion chromatography
- the crystallinity (Xc) by dividing the difference between the heat of fusion ( ⁇ Hm) and the heat of cold crystallization ( ⁇ Hc) by the heat of fusion ( ⁇ Hm 0 ) of the complete crystal PPS.
- the movable amorphous amount (Xma) was obtained by dividing the specific heat difference ( ⁇ Cp) before and after the Tg by the specific heat difference before and after the Tg of the completely amorphous PPS by the following formula (2).
- the rigid amorphous amount (Xra) was calculated from the difference between the crystallinity (Xc) from the whole and the movable amorphous amount (Xma) by the following equation (3).
- ⁇ X-ray generator 4036A2 type, manufactured by Rigaku Corporation
- X-ray source CuK ⁇ ray (using Ni filter)
- Output 40kV-20mA -Goniometer: 2155D type manufactured by Rigaku Corporation
- Slit 2mm ⁇ width 1 ° height 1 °
- Detector Scintillation counter Attachment: manufactured by Rigaku Corporation
- Fiber sample table / counting recording device RAD-C type, manufactured by Rigaku Corporation / scanning method: 2 ⁇ - ⁇ step scan Measurement range (2 ⁇ ): 5-60 ° Measurement step (2 ⁇ ): 0.05 ° Counting time: 2 seconds
- Scanning method ⁇ step scan
- Diffraction peak: 2 ⁇ around 20 ° Measurement range (2 ⁇ ): 90-270 ° Measurement step (2 ⁇ ): 0.5 ° Counting time: 2 seconds.
- Crystallite size (nm) ⁇ / ⁇ cos ⁇
- ⁇ , ⁇ , ⁇ e, and ⁇ o are as follows.
- ⁇ 0.15418nm
- ⁇ ( ⁇ e 2 - ⁇ o 2 ) 1/2
- ⁇ e half width of diffraction peak
- ⁇ o correction value of half width (0.6 °).
- Example 1 Toray Industries, Inc. PPS granular material E2180 (weight average molecular weight: 51500) is a biaxial extruder with a vent (TEX30 type, manufactured by Nippon Steel Works, Ltd.) with a vacuum of 1.3 kPa and a cylinder temperature of 290 ° C. And melted by rotating the screw at 160 rpm, extruded from a circular hole (hole area: 15.9 mm 2 ), and cut into a length of 3 mm by a strand cutter to obtain a pellet. The obtained pellets were vacuum dried at a temperature of 160 ° C. for 5 hours.
- TEX30 type manufactured by Nippon Steel Works, Ltd.
- the pellets obtained as described above were supplied to an extruder-type spinning machine, melt-spun at a spinning temperature of 320 ° C. and a discharge rate of 400 g / min, and taken up at a take-up speed of 800 m / min to obtain an undrawn yarn. .
- the obtained undrawn yarn was drawn in warm water at a temperature of 95 ° C. with a draw ratio of 3.4 times, treated at a constant length heat treatment temperature of 240 ° C. for 9 seconds, and then crimped with a stuffing box type crimper. After applying, drying, and applying the oil, it was cut to obtain PPS short fibers.
- Example 2 PPS short fibers were obtained in the same manner as in Example 1 except that the constant length heat treatment temperature was changed as shown in Table 1.
- Example 3 A PPS fiber was obtained in the same manner as in Example 1 except that the constant length heat treatment time was changed as shown in Table 1.
- Example 4 A PPS fiber was obtained in the same manner as in Example 1 except that the resin weight average molecular weight, heat draw ratio, and constant length heat treatment time were changed as shown in Table 1.
- Example 5 A PPS fiber was obtained in the same manner as in Example 1 except that the resin weight average molecular weight was changed as shown in Table 1.
- Example 1 A PPS fiber was obtained in the same manner as in Example 1 except that the resin weight average molecular weight was changed as shown in Table 1.
- Table 1 below shows the results of measuring the PPS fibers obtained as described above by the above [Measuring method].
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Artificial Filaments (AREA)
- Filtering Materials (AREA)
- Woven Fabrics (AREA)
Abstract
Description
また、この特許文献の実施例では、東レ(株)製粉粒体E2280使用時のみ記載しているが、この粉粒体では化学的な劣化による引張強度の経時的低下を抑制するには、なお不十分である。つまりは、バグフィルターとして使用される濾布は、機械強度や濾布の寸法安定性が重要であり、更に高温下での化学的な劣化に対しては、引張強度の経時的低下を抑制することが重要と考えられていた。
本発明者等は、後述するように、従来では手に入らなかった、剛直非晶量が50%以上で(111)結晶子サイズが5nm以上のPPS繊維を得ることができた。そして、特定の剛直非晶量および特定の(111)結晶子サイズのPPS繊維を用いることによって、180℃の温度で24週間熱処理後のタフネス低下率を好適にすることができることを見出した。すなわち、本発明者等は、剛直非晶量が50%未満あるいは(111)結晶子サイズが5nm未満のPPS樹脂を用いても、180℃の温度で24週間熱処理後のタフネス低下率を30%以下のPPS繊維を得ることはできないが、驚くべきことに、剛直非晶量が50%以上で(111)結晶子サイズが5nm以上のPPS樹脂からなる繊維を用いれば、180℃の温度で24週間熱処理後のタフネス低下率を30%以下のPPS繊維を得ることができることを、見出したものである。
(1)引張強度と引張伸度
引張り試験機(オリエンテック社製“テンシロン”)を用いて、JIS L1015(2010)記載の方法により、試料長2cm、引張り速度2cm/分の条件で応力-歪み曲線を求め、これらから切断時の引張強度と引張伸度を求めた。
上記(1)で得られた引張強度(cN/dtex)と引張伸度(%)を用い、次式によりタフネスを求めた。
・タフネス=引張強度×(引張伸度)1/2
(3)タフネス低下率
測定対象のPPS繊維について、長期熱処理前のタフネスaと、長期熱処理後のタフネスbとを上記(1)と(2)により測定した。長期熱処理は、熱風乾燥機で180℃の温度で24週間施した。長期熱処理前後のタフネスaとbから、次式によりタフネス低下率を算出した。
・タフネス低下率(%)=((a-b)/a)×100
a:長期熱処理前のタフネス
b:180℃の温度で24週間処理した後のタフネス。
PPSの重量平均分子量は、サイズ排除クロマトグラフィー(SEC)の一種であるゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算で算出した。GPCの測定条件を、次に示す。
・装置:センシュー科学社製 SSC-7100
・カラム名:センシュー科学社製 GPC3506
・溶離液:1-クロロナフタレン
・検出器:示差屈折率検出器
・カラム温度:210℃
・プレ恒温槽温度:250℃
・ポンプ恒温槽温度:50℃
・検出器温度:210℃
・流量:1.0mL/min
・試料注入量:300μL(スラリー状:約0.2重量%)。
TA Instruments社製示差走査熱量測定(DSC)Q1000を用い、以下の条件にて測定し、融解熱量(ΔHm)と冷結晶化熱量(ΔHc)を求めた。ΔHmおよびΔHcは、測定により得られたチャートのピークの最大値とした。同一機器の温度変調DSCを以下の条件にて測定し、得られたチャートのガラス転移温度(Tg)前後のベースラインに補助線を引き、その差を比熱差(ΔCp)とし、次式(1)により、融解熱量(ΔHm)と冷結晶化熱量(ΔHc)の差を完全結晶PPSの融解熱量(ΔHm0)で割り、結晶化度(Xc)を求めた。また、次式(2)により、Tg前後での比熱差(ΔCp)を完全非晶PPSのTg前後での比熱差で割り可動非晶量(Xma)を求めた。さらに、次式(3)により、全体からの結晶化度(Xc)と可動非晶量(Xma)の差から剛直非晶量(Xra)を算出した。
<DSC>
・雰囲気:窒素流(50mL/分)
・温度・熱量校正:高純度インジウム
・比熱校正:サファイア
・温度範囲:0~350℃
・昇温速度:10℃/分
・試料量:5mg
・試料容器:アルミニウム製標準容器
<温度変調DSC>
・雰囲気:窒素流(50mL/分)
・温度・熱量校正:高純度インジウム
・比熱校正:サファイア
・温度範囲:0~250℃
・昇温速度:2℃/分
・試料量:5mg
・試料容器:アルミニウム製標準容器
・Xc(%)=(ΔHm-ΔHc)/ΔHm0×100 (1)
・Xma(%)=ΔCp/ΔCp0×100 (2)
・Xra(%)=100-(Xc+Xma) (3)
ここで、
ΔHm0:完全結晶PPSの融解熱量(146.2J/g)
ΔCp0:完全非晶PPSのTg前後での比熱差(0.2699J/g℃)。
長さ4cmに切断したPPS繊維の試料を20mg秤量し、試料の繊維軸を揃えて束ね、広角X線回析法(透過法)で測定した。測定条件を、次に示す。
・X線発生装置:理学電機社製4036A2型
X線源:CuKα線(Niフィルター使用)
出力:40kV-20mA
・ゴニオメーター:理学電機社製2155D型
スリット:2mmφ幅1°高さ1°
検出器:シンチレーションカウンター
・アタッチメント:理学電機社製 繊維試料台
・計数記録装置:理学電機社製RAD-C型
・スキャン方式:2θ-θステップスキャン
測定範囲(2θ):5~60°
測定ステップ(2θ):0.05°
計数時間:2秒
・スキャン方式:βステップスキャン
回析ピーク:2θ=20°付近
測定範囲(2θ):90~270°
測定ステップ(2θ):0.5°
計数時間:2秒。
・結晶子サイズ(nm)=λ/βcosθ
ここに、λ、β、βeおよびβoは、次のとおりである。
λ=0.15418nm
β=(βe2-βo2)1/2
βe:回析ピークの半値幅
βo:半値幅の補正値(0.6°)。
東レ(株)製PPS粉粒体E2180(重量平均分子量:51500)を、2軸方式のベント付きエクストルーダー((株)日本製鋼所製TEX30型)で、真空度 1.3kPa、シリンダー温度290℃に設定し、160rpmのスクリュー回転にて溶融し、円形の孔(孔面積:15.9mm2)から押出して、ストランドカッターにより長さ3mmに切断することによりペレットを得た。得られたペレットについて、160℃の温度で5時間真空乾燥行った。
定長熱処理温度を表1のとおり変更したこと以外は、実施例1と同様にしてPPS短繊維を得た。
定長熱処理時間を表1のとおり変更したこと以外は、実施例1と同様にしてPPS繊維を得た。
樹脂重量平均分子量および熱延伸倍率、定長熱処理時間を表1のとおり変更したこと以外は、実施例1と同様にしてPPS繊維を得た。
樹脂重量平均分子量を表1のとおり変更したこと以外は、実施例1と同様にしてPPS繊維を得た。
樹脂重量平均分子量を表1のとおり変更したこと以外は、実施例1と同様にしてPPS繊維を得た。
定長熱処理温度を表1のとおり変更したこと以外は、実施例1と同様にしてPPS繊維を得た。
樹脂重量平均分子量および定長熱処理温度と時間を表1のとおり変更したこと以外は、実施例1と同様にしてPPS繊維を得た。
樹脂重量平均分子量および延伸倍率を表1のとおり変更したこと以外は、実施例1と同様にしてPPS繊維を得た。
樹脂重量平均分子量および定長熱処理時間を表1のとおり変更したこと以外は、実施例1と同様にしてPPS繊維を得た。
Claims (4)
- 重量平均分子量50000以上80000以下のポリフェニレンサルファイド樹脂からなり、剛直非晶量が50%以上で、かつ(111)結晶面方向の結晶子サイズが5nm以上であることを特徴とするポリフェニレンサルファイド繊維。
- ポリフェニレンサルファイド繊維の引張強度が5.0cN/dtex以上であり、かつ180℃の温度で24週間熱処理後のタフネス低下率が30%以下である請求項1記載のポリフェニレンサルファイド繊維。
- 請求項1または2記載のポリフェニレンサルファイド繊維からなる濾布。
- 重量平均分子量50000以上80000以下のポリフェニレンサルファイド樹脂を、280℃以上340℃以下で溶融して紡糸口金から紡出し、500m/分以上5000m/分以下の引取速度で未延伸糸を採取し、次いで未延伸糸を2倍以上4倍以下で熱延伸し、190℃以上270℃以下で4秒以上12秒以下にて定長熱処理を行った後、50℃以上150℃以下で5分以上60分以下にて弛緩熱処理を行って捲縮付与し、所定の長さに切断することを特徴とするポリフェニレンサルファイド繊維の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2862779A CA2862779A1 (en) | 2012-02-24 | 2013-02-19 | Polyphenylene sulfide fiber, filter cloth made from polyphenylene sulfide fiber, and method for producing polyphenylene sulfide fiber |
EP13751597.9A EP2818587B1 (en) | 2012-02-24 | 2013-02-19 | Polyphenylene sulfide fiber, filter cloth comprising polyphenylene sulfide fiber, and method for producing polyphenylene sulfide fiber |
KR1020147023233A KR101958692B1 (ko) | 2012-02-24 | 2013-02-19 | 폴리페닐렌설파이드 섬유, 폴리페닐렌설파이드 섬유로 이루어지는 여포 및 폴리페닐렌설파이드 섬유의 제조 방법 |
US14/378,542 US9365954B2 (en) | 2012-02-24 | 2013-02-19 | Polyphenylene sulfide fiber, filter cloth comprising polyphenylene sulfide fiber, and method for producing polyphenylene sulfide fiber |
CN201380010529.5A CN104145055B (zh) | 2012-02-24 | 2013-02-19 | 聚苯硫醚纤维、包含聚苯硫醚纤维的滤布以及聚苯硫醚纤维的制造方法 |
JP2013510406A JP6376549B2 (ja) | 2012-02-24 | 2013-02-19 | ポリフェニレンサルファイド繊維、ポリフェニレンサルファイド繊維からなる濾布およびポリフェニレンサルファイド繊維の製造方法 |
ZA2014/05509A ZA201405509B (en) | 2012-02-24 | 2014-07-25 | Polyphenylene sulfide fiber, filter cloth comprising polyphenylene sulfide fiber, and method for producing polyphenylene sulfide fiber |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012038367 | 2012-02-24 | ||
JP2012-038367 | 2012-02-24 | ||
JP2013-014099 | 2013-01-29 | ||
JP2013014099 | 2013-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013125514A1 true WO2013125514A1 (ja) | 2013-08-29 |
Family
ID=49005699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/053967 WO2013125514A1 (ja) | 2012-02-24 | 2013-02-19 | ポリフェニレンサルファイド繊維、ポリフェニレンサルファイド繊維からなる濾布およびポリフェニレンサルファイド繊維の製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US9365954B2 (ja) |
EP (1) | EP2818587B1 (ja) |
JP (1) | JP6376549B2 (ja) |
KR (1) | KR101958692B1 (ja) |
CN (1) | CN104145055B (ja) |
CA (1) | CA2862779A1 (ja) |
TW (1) | TWI591222B (ja) |
WO (1) | WO2013125514A1 (ja) |
ZA (1) | ZA201405509B (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016052295A1 (ja) * | 2014-09-30 | 2016-04-07 | 東レ株式会社 | ポリフェニレンスルフィド繊維 |
WO2019124189A1 (ja) | 2017-12-21 | 2019-06-27 | 東レ株式会社 | ポリフェニレンサルファイド短繊維、繊維構造体、フィルター用フェルトおよびバグフィルター |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7008918B2 (ja) * | 2016-05-29 | 2022-01-25 | 東京エレクトロン株式会社 | 選択的窒化シリコンエッチングの方法 |
CN112513973B (zh) * | 2018-07-12 | 2024-05-17 | 雅马哈株式会社 | 弓毛材料以及拉弦乐器用弓 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04222217A (ja) | 1990-03-23 | 1992-08-12 | Kureha Chem Ind Co Ltd | ポリフェニレンスルフィド繊維およびその製造方法 |
JP2764911B2 (ja) | 1988-03-16 | 1998-06-11 | 東洋紡績株式会社 | 高巻縮・低収縮性ステープル繊維 |
JP2003221731A (ja) * | 2002-01-28 | 2003-08-08 | Toray Ind Inc | ポリフェニレンサルファイド短繊維 |
JP2004263332A (ja) * | 2003-03-03 | 2004-09-24 | Toray Ind Inc | ポリフェニレンサルファイド短繊維およびそれからなる布帛 |
JP2008266869A (ja) | 2007-03-29 | 2008-11-06 | Toray Ind Inc | ポリフェニレンサルファイド短繊維およびその製造方法 |
JP2010196187A (ja) * | 2009-02-24 | 2010-09-09 | Toray Ind Inc | ポリフェニレンサルファイド短繊維およびその製造方法 |
JP2011106060A (ja) * | 2009-11-18 | 2011-06-02 | Toray Ind Inc | ポリアリーレンスルフィド繊維 |
JP2012136797A (ja) * | 2010-12-27 | 2012-07-19 | Toray Ind Inc | ポリフェニレンサルファイド繊維の製造方法 |
WO2012165608A1 (ja) * | 2011-06-02 | 2012-12-06 | 東レ株式会社 | ポリフェニレンスルフィド繊維および不織布 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3708528B2 (ja) | 2003-02-28 | 2005-10-19 | 大王製紙株式会社 | フロスの処理方法及び古紙から再生紙原料を製造する方法 |
JP2005146428A (ja) | 2003-11-11 | 2005-06-09 | Toray Ind Inc | 不織布 |
CN1281798C (zh) * | 2004-11-29 | 2006-10-25 | 四川省纺织工业研究所 | 一种线性高分子量聚苯硫醚纤维熔融纺丝、拉伸热定型方法 |
JP2008266868A (ja) * | 2007-03-29 | 2008-11-06 | Toray Ind Inc | ポリフェニレンサルファイド短繊維およびその製造方法 |
CN101275303B (zh) * | 2008-04-24 | 2010-11-10 | 江苏瑞泰科技有限公司 | 一种聚苯硫醚短纤维的拉伸-紧张-松弛定型方法 |
-
2013
- 2013-02-19 CN CN201380010529.5A patent/CN104145055B/zh active Active
- 2013-02-19 EP EP13751597.9A patent/EP2818587B1/en not_active Not-in-force
- 2013-02-19 US US14/378,542 patent/US9365954B2/en not_active Expired - Fee Related
- 2013-02-19 WO PCT/JP2013/053967 patent/WO2013125514A1/ja active Application Filing
- 2013-02-19 CA CA2862779A patent/CA2862779A1/en not_active Abandoned
- 2013-02-19 JP JP2013510406A patent/JP6376549B2/ja active Active
- 2013-02-19 KR KR1020147023233A patent/KR101958692B1/ko active IP Right Grant
- 2013-02-22 TW TW102106116A patent/TWI591222B/zh not_active IP Right Cessation
-
2014
- 2014-07-25 ZA ZA2014/05509A patent/ZA201405509B/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2764911B2 (ja) | 1988-03-16 | 1998-06-11 | 東洋紡績株式会社 | 高巻縮・低収縮性ステープル繊維 |
JPH04222217A (ja) | 1990-03-23 | 1992-08-12 | Kureha Chem Ind Co Ltd | ポリフェニレンスルフィド繊維およびその製造方法 |
JP2003221731A (ja) * | 2002-01-28 | 2003-08-08 | Toray Ind Inc | ポリフェニレンサルファイド短繊維 |
JP2004263332A (ja) * | 2003-03-03 | 2004-09-24 | Toray Ind Inc | ポリフェニレンサルファイド短繊維およびそれからなる布帛 |
JP2008266869A (ja) | 2007-03-29 | 2008-11-06 | Toray Ind Inc | ポリフェニレンサルファイド短繊維およびその製造方法 |
JP2010196187A (ja) * | 2009-02-24 | 2010-09-09 | Toray Ind Inc | ポリフェニレンサルファイド短繊維およびその製造方法 |
JP2011106060A (ja) * | 2009-11-18 | 2011-06-02 | Toray Ind Inc | ポリアリーレンスルフィド繊維 |
JP2012136797A (ja) * | 2010-12-27 | 2012-07-19 | Toray Ind Inc | ポリフェニレンサルファイド繊維の製造方法 |
WO2012165608A1 (ja) * | 2011-06-02 | 2012-12-06 | 東レ株式会社 | ポリフェニレンスルフィド繊維および不織布 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2818587A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016052295A1 (ja) * | 2014-09-30 | 2016-04-07 | 東レ株式会社 | ポリフェニレンスルフィド繊維 |
KR20170058949A (ko) | 2014-09-30 | 2017-05-29 | 도레이 카부시키가이샤 | 폴리페닐렌술피드 섬유 |
JPWO2016052295A1 (ja) * | 2014-09-30 | 2017-07-13 | 東レ株式会社 | ポリフェニレンスルフィド繊維 |
US10106655B2 (en) | 2014-09-30 | 2018-10-23 | Toray Industries, Inc. | Polyphenylene sulfide fiber |
KR102259621B1 (ko) | 2014-09-30 | 2021-06-02 | 도레이 카부시키가이샤 | 폴리페닐렌술피드 섬유 |
WO2019124189A1 (ja) | 2017-12-21 | 2019-06-27 | 東レ株式会社 | ポリフェニレンサルファイド短繊維、繊維構造体、フィルター用フェルトおよびバグフィルター |
Also Published As
Publication number | Publication date |
---|---|
CN104145055B (zh) | 2016-05-04 |
TW201343997A (zh) | 2013-11-01 |
EP2818587B1 (en) | 2017-05-03 |
CN104145055A (zh) | 2014-11-12 |
US9365954B2 (en) | 2016-06-14 |
ZA201405509B (en) | 2015-12-23 |
JPWO2013125514A1 (ja) | 2015-07-30 |
TWI591222B (zh) | 2017-07-11 |
KR20140143747A (ko) | 2014-12-17 |
KR101958692B1 (ko) | 2019-03-15 |
US20150013296A1 (en) | 2015-01-15 |
CA2862779A1 (en) | 2013-08-29 |
EP2818587A4 (en) | 2015-09-09 |
JP6376549B2 (ja) | 2018-08-22 |
EP2818587A1 (en) | 2014-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0352749B1 (en) | A filament comprising a tetrafluoroethylene polymer and a process for producing the same | |
JP6376549B2 (ja) | ポリフェニレンサルファイド繊維、ポリフェニレンサルファイド繊維からなる濾布およびポリフェニレンサルファイド繊維の製造方法 | |
WO2019124189A1 (ja) | ポリフェニレンサルファイド短繊維、繊維構造体、フィルター用フェルトおよびバグフィルター | |
JP2008266868A (ja) | ポリフェニレンサルファイド短繊維およびその製造方法 | |
JP4968124B2 (ja) | ポリフェニレンサルファイド短繊維およびその製造方法 | |
AU2012263373A1 (en) | Polyphenylene sulfide fibers and nonwoven fabric | |
TWI653370B (zh) | Polyphenylene sulfide fiber | |
JP2007031845A (ja) | 不織布、不織布の製造方法およびバグフィルター | |
EP2221400A1 (en) | Square-analogous four-hole hollow staple fiber | |
TWI651343B (zh) | 聚伸苯硫纖維及其製造方法 | |
JP4617872B2 (ja) | ポリ乳酸繊維 | |
JP2017214681A (ja) | ポリフェニレンスルフィド繊維の製造方法 | |
JP2001172821A (ja) | ポリオキシメチレン繊維の製造方法 | |
JP2003221731A (ja) | ポリフェニレンサルファイド短繊維 | |
JP4450313B2 (ja) | ポリフェニレンサルファイド繊維および工業用織物 | |
JP4418912B2 (ja) | ポリフェニレンサルファイド繊維および工業用織物 | |
US10837126B2 (en) | Vinylidene fluoride resin fibers and sheet-like structure | |
JP2019099959A (ja) | ポリフェニレンサルファイド繊維および繊維構造体 | |
JP2023051860A (ja) | ポリエーテルサルホン繊維、繊維パッケージ、不織布およびポリエーテルサルホン繊維の製造方法 | |
JP2022130318A (ja) | ポリフェニレンサルファイド繊維 | |
KR101149810B1 (ko) | 시트벨트용 폴리에틸렌테레프탈레이트 멀티 필라멘트와 그 제조 방법 | |
JP2004176212A (ja) | 糸斑の低減されたポリイミド繊維及びその製造方法 | |
JP2009270219A (ja) | 成型加工性の優れたポリフェニレンサルファイド繊維 | |
JP2004016973A (ja) | 濾過材用紡績粗糸および濾過材 | |
JP2009297680A (ja) | フィルター用布帛及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380010529.5 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2013510406 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13751597 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013751597 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013751597 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2862779 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14378542 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147023233 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |