WO2012165608A1 - ポリフェニレンスルフィド繊維および不織布 - Google Patents
ポリフェニレンスルフィド繊維および不織布 Download PDFInfo
- Publication number
- WO2012165608A1 WO2012165608A1 PCT/JP2012/064256 JP2012064256W WO2012165608A1 WO 2012165608 A1 WO2012165608 A1 WO 2012165608A1 JP 2012064256 W JP2012064256 W JP 2012064256W WO 2012165608 A1 WO2012165608 A1 WO 2012165608A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nonwoven fabric
- crystallinity
- fiber
- pps
- spinning
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/76—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
- D01F6/765—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products from polyarylene sulfides
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/76—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/005—Synthetic yarns or filaments
- D04H3/009—Condensation or reaction polymers
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/10—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/14—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/69—Autogenously bonded nonwoven fabric
Definitions
- the present invention relates to a fiber composed of a resin mainly composed of polyphenylene sulfide (hereinafter sometimes abbreviated as “PPS”) and a nonwoven fabric composed of the fiber.
- PPS polyphenylene sulfide
- PPS resin has excellent heat resistance, flame retardancy, and chemical resistance, and is suitably used as engineer plastic, film, fiber, nonwoven fabric, and the like.
- non-woven fabrics are expected to be utilized for industrial applications such as heat-resistant filters, electrical insulating materials, and battery separators by taking advantage of these characteristics.
- An object of the present invention is to provide a fiber mainly composed of a PPS resin that has both excellent heat resistance and thermal adhesiveness, and a nonwoven fabric composed of the fiber, in view of the above-described problems of the prior art.
- the present invention 1 relates to a polyphenylene sulfide fiber, characterized in that the main component is polyphenylene sulfide and the sum of crystallinity and rigid amorphous amount is 30% or more and 90% or less.
- the present invention 2 relates to a non-woven fabric, and is characterized by comprising the polyphenylene sulfide fiber of the present invention 1.
- the polyphenylene sulfide fiber (hereinafter also referred to as PPS fiber) of the present invention 1 has a dimensional stability against heat by making the sum of crystallinity and rigid amorphous amount 30% or more, preferably 35% or more. It becomes an excellent fiber, and the sum of the crystallinity and the rigid amorphous amount is 90% or less, more preferably 70% or less, and further preferably 50% or less. .
- the degree of crystallinity is not limited to a specific range, but is 5% or more, more preferably 10% or more, and still more preferably 15% or more. On the other hand, it is possible to prevent the material from being broken, and on the other hand, by setting the crystallinity to less than 25%, more preferably 23% or less, and still more preferably 20% or less, an amorphous part (rigid amorphous) A large amount of (including)), and a fiber having excellent thermal adhesiveness when the nonwoven web is thermally bonded can be obtained.
- nonwoven fabric is not limited to a specific manufacturing method or structure, and can be manufactured using, for example, a spunbond method, and PPS fibers can be integrated by thermal bonding or mechanical entanglement.
- the PPS fiber of the present invention is excellent in thermal adhesiveness while having the heat resistance, chemical resistance and flame retardancy characteristics of the PPS resin. Therefore, the nonwoven fabric of the present invention has excellent mechanical strength while having the heat resistance, chemical resistance and flame retardancy characteristics of PPS resin, and can be used for various industrial applications.
- the resin used in the present invention contains PPS as a main component.
- PPS resin the resin mainly composed of PPS used in the present invention is also referred to as “PPS resin”.
- PPS is a polymer having phenylene sulfide units such as p-phenylene sulfide units and m-phenylene sulfide units as repeating units.
- a substantially linear polymer containing 90 mol% or more of p-phenylene sulfide units is preferable from the viewpoint of heat resistance and spinnability.
- a polymer in which m-phenylene sulfide units are copolymerized with p-phenylene sulfide units may impair the flame retardancy and chemical resistance of PPS. Since there is no, it is preferable.
- This copolymerized PPS can be suitably used as a component of a composite fiber.
- trichlorobenzene is not substantially copolymerized with PPS.
- Trichlorobenzene has three or more halogen substituents per benzene ring, and copolymerization thereof gives the PPS a branched structure, and the spinnability of the PPS resin is inferior and yarn breakage at the time of spinning and drawing is lost. This is because it tends to occur frequently.
- the extent that trichlorobenzene is not substantially copolymerized is preferably 0.05 mol% or less, and more preferably 0.01 mol% or less.
- the content of PPS with respect to the PPS resin is preferably 85% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more from the viewpoints of heat resistance and chemical resistance.
- a crystal nucleating agent, a matting agent, a pigment, an antifungal agent, an antibacterial agent, a flame retardant, a hydrophilic agent, or the like may be added to the PPS resin as long as the effects of the present invention are not impaired.
- the PPS resin used in the present invention has a melt flow rate (hereinafter sometimes abbreviated as MFR) 100 to 300 g measured according to ASTM D1238-70 (measurement temperature 315.5 ° C., measurement load 5 kg load). / 10 minutes is preferable.
- MFR melt flow rate
- the MFR is 300 g / 10 min or less, more preferably 225 g / 10 min or less, the degree of polymerization or the molecular weight can be appropriately increased, and the strength and heat resistance that can be put to practical use can be obtained.
- the sum of crystallinity and rigid amorphous is 30% or more and 90% or less.
- the crystallinity referred to in the present invention is obtained from measurement by a differential scanning calorimeter (DSC) as will be described later in Examples.
- the rigid amorphous as used in the present invention is the rest of the crystal / amorphous (100%) forming the fiber minus the crystallinity [%] and the movable amorphous amount [%] as shown in the following formula.
- Rigid amorphous amount [%] 100 [%] ⁇ crystallinity [%] ⁇ movable amorphous amount [%].
- the movable amorphous amount referred to in the present invention is obtained from measurement by temperature modulation DSC as described later in Examples.
- the present inventors have found that rigid amorphous influences the dimensional stability against heat in addition to crystals. That is, as shown by the relationship between the degree of crystallinity and the boiling water shrinkage in FIG. 1, in the region where the degree of crystallinity is less than 20%, there is a large difference in the boiling water shrinkage even if the degree of crystallinity is the same. As shown in the relationship between the sum of the degree of crystallinity and the amount of rigid amorphous and the boiling water shrinkage rate, adding a rigid amorphous amount to the degree of crystallinity shows a strong correlation with the boiling water shrinkage rate. It can be seen that has a great influence on the dimensional stability against heat.
- the sum of the crystallinity and the rigid amorphous amount is 30% or more and the boiling water shrinkage is less than 20%, and the sum of the crystallinity and the rigid amorphous amount is 35% or more and the boiling water shrinkage is 10%. %.
- the boiling water shrinkage ratio is preferably 20% or less, more preferably 15% or less, and even more preferably 10% or less, in order to suppress generation of width, wrinkles and surface irregularities due to heat shrinkage. Therefore, by setting the sum of the crystallinity and the rigid amorphous amount to 30% or more, preferably 35% or more, a fiber having excellent dimensional stability against heat can be obtained.
- rigid amorphous but also movable amorphous is preferably 10% or more, more preferably 30% or more, and still more preferably 50% or more, from the viewpoint of thermal adhesiveness.
- the mechanism is not clear, it is considered that when fibers are thermally bonded to each other, the composition including movable amorphous material is likely to cause compositional deformation corresponding to the pressure contact. That is, the sum of the crystallinity and the amount of rigid amorphous in the PPS fiber is preferably 90% or less, more preferably 70% or less, and still more preferably 50% or less.
- the crystallinity degree of the PPS fiber in this invention is 5% or more and less than 25%.
- the degree of crystallinity as described in Patent Document 2 described above, in order to stably impart thermal dimensional stability to PPS fibers, the degree of crystallinity needs to be 25% or more. It was thought.
- the thermal shrinkage of the PPS fiber can be reduced by increasing the rigid amorphous.
- the crystallinity of the PPS fiber is small, there are many amorphous parts and the thermal dimensional stability is poor, and if the crystallinity is large, the amorphous part is small and the thermal adhesiveness is poor.
- it is possible to achieve both good thermal dimensional stability and thermal adhesiveness by enlarging the rigid amorphous in the amorphous part and imparting thermal dimensional stability.
- the sheet By setting the crystallinity of the PPS fiber of the present invention to 5% or more, more preferably 10% or more, and even more preferably 15% or more, the sheet is taken to a roll and fractured when the nonwoven web is thermally bonded. Can be prevented.
- the degree of crystallinity is less than 25%, more preferably 23% or less, and even more preferably 20% or less, a large amount of amorphous part (including rigid amorphous) is present and the nonwoven web is thermally bonded. It can be set as the fiber excellent in thermal adhesiveness.
- the cross-sectional shape of the PPS fiber of the present invention may be any shape such as a circular shape, a hollow round shape, an elliptical shape, a flat shape, a polygonal shape, and a multi-leaf shape (such as X-type and Y-type).
- the PPS fiber of the present invention may be in a composite form. Examples of the composite form include a core-sheath type, a core-sheath eccentric type, a sea-island type, a parallel type, a radiation type, and a multi-leaf type. Of these, a core-sheath type excellent in fiber spinnability is preferable.
- the average single fiber fineness of the PPS fiber of the present invention is preferably 0.5 to 10 dtex.
- the average single fiber fineness is preferably 0.5 dtex or more, more preferably 1 dtex or more, and even more preferably 2 dtex or more, it is possible to maintain the spinnability of the fiber and to prevent frequent yarn breakage during spinning.
- the average single fiber fineness is set to 10 dtex or less, more preferably 5 dtex or less, and even more preferably 4 dtex or less, it is possible to suppress the discharge amount of the molten resin per spinneret single hole and sufficiently cool the fibers. And a reduction in spinnability due to fusion between fibers can be suppressed.
- the fabric weight per unit area when the nonwoven fabric is formed can be suppressed, and the surface quality can be improved.
- the average single fiber fineness is preferably 10 dtex or less, more preferably 5 dtex or less, and further preferably 4 dtex or less.
- the PPS fiber of the present invention can be used as a fiber constituting any fabric such as a woven fabric and a non-woven fabric. However, since it has excellent thermal adhesiveness, it is preferably used as a constituent fiber of a non-woven fabric that fixes the structure by thermocompression bonding. Can do.
- the PPS nonwoven fabric of the present invention can employ either a long fiber or a short fiber, but a long fiber nonwoven fabric by a spunbond method is preferred from the viewpoint of excellent productivity.
- the basis weight of the nonwoven fabric of the present invention is preferably 10 to 1000 g / m 2 .
- the basis weight is preferably 10 to 1000 g / m 2 .
- a filter or the like having a basis weight of 1000 g / m 2 or less, more preferably 700 g / m 2 or less, and even more preferably 500 g / m 2 or less, it has moderate air permeability and high pressure. Loss can be suppressed.
- the PPS nonwoven fabric of the present invention preferably has a thermal shrinkage rate at 200 ° C. of 5% or less in both the vertical direction and the horizontal direction.
- PPS nonwoven fabrics are often used at high temperatures because of their characteristics, and their functional shrinkage due to dimensional changes is suppressed by making heat shrinkage at 200 ° C. 5% or less, more preferably 3% or less, and they are put to practical use. Obtainable.
- the PPS nonwoven fabric of the present invention preferably has a vertical tensile strength retention of 80% or more in a heat resistant exposure test for 1500 hours at a temperature of 210 ° C. in air. If the tensile strength retention is 80% or more, more preferably 85% or more, and still more preferably 90% or more, it can withstand the use of a heat-resistant filter or the like that is used for a long time at a high temperature.
- the upper limit of the tensile strength retention is not particularly defined, but is preferably 150% or less.
- the manufacturing method of the PPS nonwoven fabric by the spunbond method is demonstrated below as a preferable aspect of the PPS fiber and PPS nonwoven fabric of this invention.
- the resin is melted and spun from the spinneret, and then the cooled and solidified yarn is pulled and stretched by an ejector and collected on a moving net to form a nonwoven web, followed by thermal bonding.
- it is a manufacturing method which requires the process of integrating by mechanical confounding.
- the shape of the spinneret or the ejector various shapes such as a round shape and a rectangular shape can be adopted. Among these, a combination of a rectangular base and a rectangular ejector is preferable because the amount of compressed air used is relatively small and the yarns are not easily fused or scratched.
- the spinning temperature in melting and spinning PPS is preferably 290 to 380 ° C., more preferably 295 to 360 ° C., and further preferably 300 to 340 ° C.
- a stable molten state can be obtained, and excellent spinning stability can be obtained.
- a method for cooling the spun fiber yarn for example, a method of forcing cold air to the yarn, a method of natural cooling at the ambient temperature around the yarn, and adjusting the distance between the spinneret and the ejector. Methods or combinations thereof can be employed.
- the cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature, and the like.
- the cooled and solidified yarn is pulled and stretched by compressed air injected from the ejector.
- the method and conditions for pulling and stretching with the ejector are not particularly limited, but as a means for increasing rigid amorphous while suppressing crystallization of PPS fibers, the compressed air injected from the ejector is 100 ° C. or higher, Preferably, a method of heating to 140 ° C. or higher, more preferably 180 ° C. or higher, pulling and stretching is preferably employed.
- heated compressed air the yarn is pulled and drawn, and at the same time, the yarn is heat-treated. However, since the yarn is heat-treated for a very short time, it is a rigid state that is an intermediate state between crystal and amorphous. Amorphous can be increased specifically.
- the temperature upper limit of the heated compressed air is below melting
- the spinning speed is preferably 3,000 m / min or more and less than 6,000 m / min.
- the spinning speed is 3,000 m / min or more, more preferably 3,500 m / min or more, and still more preferably 4,000 m / min or more, the crystallinity of the PPS fibers is increased and the nonwoven web is thermally bonded. It is possible to prevent the sheet from being taken on the roll and broken.
- the PPS fibers obtained by stretching are collected on a moving net to form a nonwoven web, and the nonwoven web obtained is integrated by thermal bonding or mechanical entanglement to obtain a nonwoven fabric.
- a hot embossing roll engraved on each of the upper and lower pair of roll surfaces, a roll with one roll surface flat (smooth) and a roll engraved on the other roll surface The heat-embossing roll that consists of a combination, the thermal calendar method that consists of a combination of a pair of upper and lower flat (smooth) rolls, etc. Can do.
- the shape of the engraving applied to the hot embossing roll can be circular, elliptical, square, rectangular, parallelogram, rhombus, regular hexagon, regular octagon, etc. .
- the surface temperature of the hot embossing roll is preferably ⁇ 30 to ⁇ 5 ° C. with respect to the melting point of PPS.
- the surface temperature of the hot embossing roll is preferably ⁇ 30 ° C. or higher, more preferably ⁇ 25 ° C. or higher, more preferably ⁇ 20 ° C. or higher with respect to the melting point of PPS.
- the linear pressure of the hot embossing roll during heat bonding is preferably 200 to 1500 N / cm.
- the linear pressure of the roll is preferably 200 N / cm or more, more preferably 300 N / cm or more, it is possible to sufficiently heat-bond and suppress the peeling of the sheet and the generation of fluff.
- the linear pressure of the roll is set to 1500 N / cm or less, more preferably 1000 N / cm or less, it is possible to prevent the nonwoven fabric from being peeled off from the roll and preventing the nonwoven fabric from being broken due to the convex portions of the sculpture getting into the nonwoven fabric. Can do.
- the adhesion area by the hot embossing roll is preferably 8 to 40%.
- the adhesion area is 8% or more, more preferably 10% or more, and still more preferably 12% or more, it is possible to obtain strength that can be practically used as a nonwoven fabric.
- the adhesion area is 40% or less, more preferably 30% or less, and even more preferably 20% or less, it is possible to prevent film-like and difficult to obtain the characteristics as a nonwoven fabric such as air permeability.
- adheresive area refers to the ratio of the portion of the nonwoven fabric in which the convex portion of the upper roll and the convex portion of the lower roll overlap and contact the nonwoven web when thermally bonded by a pair of concave and convex rolls.
- corrugation means the ratio which occupies for the whole nonwoven fabric of the part which contact
- the needle shape, the number of needles per unit area, and the like are appropriately selected and adjusted.
- Particularly needle number per unit area is preferably at least 100 / cm 2 or more in terms of strength and shape retention. It is also preferable to spray a silicone-based oil on the nonwoven web before needle punching to prevent the fibers from being cut by the needle and to improve the entanglement between the fibers.
- the water is preferably performed in a columnar flow state.
- a method of ejecting from a nozzle having a diameter of 0.05 to 3.0 mm at a pressure of 1 to 60 MPa is preferably used.
- a pressure for efficiently entwining and integrating the nonwoven web it is preferable to treat at least once with a pressure of 10 MPa or more, and more preferably 15 MPa or more.
- a process of temporarily bonding with a calender roll at a temperature of 70 to 170 ° C. and a linear pressure of 50 to 700 N / cm It can also be applied.
- a calender roll a combination of upper and lower metal rolls or a combination of a metal roll and a resin or paper roll can be used.
- the temperature of the heat treatment is preferably not less than the crystallization temperature of the PPS fibers constituting the nonwoven web or the nonwoven fabric and not more than the melting point.
- MFR Melt flow rate
- Movable amorphous amount (%) Three samples were randomly collected from the drawn fiber, and the temperature and the DSC (TA Instruments, Q1000) were used to calculate the measurement and the amount of movable amorphous under the following conditions and formula, and the average value was calculated. . In addition, the specific heat amount when completely amorphous was 0.2699 J / g ° C.
- Example 1 (PPS resin) A 100 mol% linear polyphenylene sulfide resin (product number: E2280, MFR: 160 g / 10 min, manufactured by Toray Industries, Inc.), in which trichlorobenzene is not intentionally copolymerized, is kept at a temperature of 160 ° C. for 10 hours in a nitrogen atmosphere. Used after drying.
- the PPS resin was melted with an extruder and spun at a spinning temperature of 320 ° C. from a rectangular spinneret having a hole diameter of ⁇ 0.50 mm at a single hole discharge rate of 1.38 g / min.
- the spun yarn was cooled and solidified in a 20 ° C. atmosphere at a distance of 55 cm from the rectangular spinneret to the rectangular ejector.
- the cooled and solidified thread is passed through a rectangular ejector, and the ejector is heated to a temperature of 230 ° C with an air heater and ejected with compressed air at an ejector pressure of 0.15 MPa, pulling, stretching and moving the thread. Collected on top to make a nonwoven web.
- the average filament fineness of the obtained long fiber was 2.8 dtex, the crystallinity was 18.4%, the sum of the rigid amorphous amount and the crystallinity was 38.2%, and the boiling water shrinkage was 2.3%. It was.
- the spinning speed was 4,998 m / min, and the spinnability was as good as 0 yarn breakage during 1 hour spinning.
- the obtained nonwoven web was temporarily bonded at a linear pressure of 200 N / cm and a temporary bonding temperature of 100 ° C. with a pair of upper and lower metal calender rolls installed on the inline.
- a linear pressure of 1000 N / cm and a thermal bonding temperature of 270 are formed by a pair of upper and lower embossed rolls composed of an upper roll made of metal and engraved with a polka dot pattern and a lower roll made of metal and flat.
- the long fiber nonwoven fabric of Example 1 was obtained by heat bonding at ° C.
- the obtained non-woven fabric was of good quality without wrinkles and no wrinkles due to thermal shrinkage during thermal bonding with an embossing roll.
- the basis weight of the obtained long fiber nonwoven fabric is 248 g / m 2 , the vertical tensile strength is 434 N / 5 cm, and the thermal shrinkage is 0.0% in the vertical direction, 0.1% in the horizontal direction, The tensile strength retention rate was 99%.
- Example 2 PPS resin, spinning, non-woven web
- a non-woven web was formed by spinning in the same manner as in Example 1 except that the same PPS resin as that used in Example 1 was used and the temperature of the compressed air was 200 ° C.
- the obtained long fiber had an average single fiber fineness of 2.8 dtex, a crystallinity of 17.3%, a sum of rigid amorphous and crystallinity of 37.3%, and a boiling water shrinkage of 7.0%. It was.
- the spinning speed was 4,991 m / min, and the spinnability was as good as zero yarn breakage during 1 hour spinning.
- Example 2 (Temporary bonding / thermal bonding) Subsequently, the non-woven web was temporarily bonded and thermally bonded in the same manner as in Example 1 to obtain the long fiber nonwoven fabric of Example 2.
- the obtained non-woven fabric was of a good quality without wrinkles, without any large width due to thermal shrinkage, even during thermal bonding with an embossing roll.
- the basis weight of the obtained long fiber nonwoven fabric is 253 g / m 2
- the vertical tensile strength is 454 N / 5 cm
- the thermal shrinkage is 0.1% in the vertical direction
- 0.2% in the horizontal direction.
- the tensile strength retention was 99%.
- Example 3 PPS resin, spinning, non-woven web
- a non-woven web was formed by spinning in the same manner as in Example 1 except that the same PPS resin as that used in Example 1 was used and the temperature of the compressed air was 140 ° C.
- the obtained long fibers had an average single fiber fineness of 2.9 dtex, a crystallinity of 15.1%, a rigid amorphous and a crystallinity of 31.3%, and a boiling water shrinkage of 17.5%. It was.
- the spinning speed was 4,824 m / min, and the spinnability was as good as 0 yarn breakage during 1 hour spinning.
- Example 3 (Temporary bonding / thermal bonding) Subsequently, the nonwoven web was temporarily bonded and thermally bonded in the same manner as in Example 1 to obtain the long fiber nonwoven fabric of Example 3.
- the obtained non-woven fabric was of good quality without wrinkles and no wrinkles due to thermal shrinkage even during thermocompression bonding with an embossing roll.
- the basis weight of the obtained long fiber nonwoven fabric is 245 g / m 2
- the vertical tensile strength is 472 N / 5 cm
- the thermal shrinkage is 0.0% in the vertical direction
- 0.1% in the horizontal direction The tensile strength retention was 99%.
- Example 4 PPS resin, spinning, non-woven web
- the same PPS resin as used in Example 1 was used, and the spinning was performed in the same manner as in Example 1 except that the temperature of the compressed air was 200 ° C. and the ejector pressure was 0.21 MPa. It was.
- the obtained long fibers had an average single fiber fineness of 2.4 dtex, a crystallinity of 24.1%, a rigid amorphous and a sum of crystallinity of 49.2%, and a boiling water shrinkage of 2.2%. It was.
- the spinning speed was 5,663 m / min, and the spinnability was as good as 0 yarn breakage during 1 hour spinning.
- Example 4 (Temporary bonding / thermal bonding) Subsequently, the nonwoven web was temporarily bonded and thermally bonded in the same manner as in Example 1 to obtain the long fiber nonwoven fabric of Example 4.
- the obtained non-woven fabric was of good quality without wrinkles and no wrinkles due to thermal shrinkage even during thermocompression bonding with an embossing roll.
- the basis weight of the obtained long fiber nonwoven fabric is 256 g / m 2
- the vertical tensile strength is 421 N / 5 cm
- the thermal shrinkage is 0.0% in the vertical direction
- 0.1% in the horizontal direction The tensile strength retention was 98%.
- Example 5 PPS resin, spinning, non-woven web
- the same PPS resin as used in Example 1 was used, and the spinning was performed in the same manner as in Example 1 except that the temperature of the compressed air was 200 ° C. and the ejector pressure was 0.25 MPa. It was.
- the obtained long fibers had an average single fiber fineness of 2.2 dtex, a crystallinity of 33.0%, a sum of rigid amorphous and crystallinity of 67.4%, and a boiling water shrinkage of 2.0%. It was. Further, the spinning speed was 6,198 m / min, and the spinnability was broken twice in 1 hour spinning.
- Example 5 (Temporary bonding / thermal bonding) Subsequently, the non-woven web was temporarily bonded and thermally bonded in the same manner as in Example 1 to obtain the long fiber nonwoven fabric of Example 5.
- the obtained non-woven fabric was of good quality without wrinkles and no wrinkles due to thermal shrinkage even during thermocompression bonding with an embossing roll.
- the basis weight of the obtained long fiber nonwoven fabric is 254 g / m 2
- the vertical tensile strength is 245 N / 5 cm
- the thermal shrinkage is 0.0% in the vertical direction
- 0.1% in the horizontal direction The tensile strength retention was 99%.
- Example 6 PPS resin, spinning, non-woven web
- spinning was performed in the same manner as in Example 1 to form a nonwoven web.
- the basis weight of the obtained non-woven fabric is 301 g / m 2
- the vertical tensile strength is 490 N / 5 cm
- the thermal shrinkage is 1.6% in the vertical direction, 1.8% in the horizontal direction
- the vertical tensile strength The retention rate was 99%.
- Example 7 (PPS resin, spinning, non-woven web) Using the same PPS resin as that used in Example 1, spinning was performed in the same manner as in Example 1 to form a nonwoven web.
- Example 7 Temporal bonding, water jet punch
- WJP water jet punch
- the long fiber nonwoven fabric of Example 7 was obtained by performing an entanglement process with and drying with a hot air dryer with a set temperature of 100 ° C.
- the basis weight of the obtained non-woven fabric is 285 g / m 2
- the vertical tensile strength is 462 N / 5 cm
- the thermal shrinkage is 1.4% in the vertical direction, 1.7% in the transverse direction
- the tensile strength is vertical.
- the retention rate was 99%.
- Example 1 (PPS resin, spinning, non-woven web)
- PPS resin PPS resin, spinning, non-woven web
- the same PPS resin as used in Example 1 was used, and the spinning was performed in the same manner as in Example 1 except that the compressed air was at room temperature (30 ° C.) and the ejector pressure was 0.15 MPa. Went.
- the obtained long fiber had an average single fiber fineness of 3.1 dtex, a crystallinity of 8.9%, a sum of rigid amorphous and crystallinity of 10.7%, and a boiling water shrinkage of 61.2%. It was.
- the spinning speed was 4,435 m / min, and the spinning property was as good as 0 yarn breakage during 1 hour spinning.
- Example 2 (PPS resin, spinning, non-woven web)
- PPS resin PPS resin, spinning, non-woven web
- the same PPS resin as used in Example 1 was used, and the spinning was performed in the same manner as in Example 1 except that the compressed air was at room temperature (30 ° C.) and the ejector pressure was 0.20 MPa. Went.
- the obtained long fibers had an average single fiber fineness of 2.6 dtex, a crystallinity of 18.2%, a rigid amorphous and a crystallinity of 25.3%, and a boiling water shrinkage of 28.5%. It was.
- the spinning speed was 5,331 m / min, and the spinnability was as good as 0 yarn breakage during 1 hour spinning.
- Example 3 Temporal bonding / needle punch
- the nonwoven web was temporarily bonded in the same manner as in Example 1 and then needle punched in the same manner as in Example 6 to obtain a long fiber nonwoven fabric of Comparative Example 3.
- the heat shrinkage rate of the obtained long fiber nonwoven fabric was as large as 21.2% in the vertical direction and 23.4% in the transverse direction, and the surface after the heat treatment was wrinkled and uneven.
- the basis weight of the long-fiber non-woven fabric was 295 g / m 2
- the vertical tensile strength was 472 N / 5 cm
- the heat-resistant exposure test was not possible due to large thermal shrinkage.
- Table 1 shows the measurement results of the manufacturing and processing conditions and physical properties of each of the above Examples and Comparative Examples.
- Examples 1 to 5 in which the sum of crystallinity and rigid amorphous is 31.3 to 67.4%, PPS fibers can be thermally bonded to each other by an embossing roll. There was almost no thermal shrinkage at a temperature of 200 ° C., and the thermal dimensional stability was excellent. In particular, Examples 1 to 4 having a crystallinity of 15.1 to 24.1% had good thermal adhesiveness and excellent mechanical strength.
- non-woven fabrics of Examples 6 and 7 obtained by mechanical entanglement with a needle punch or a water jet punch using a nonwoven web having a sum of crystallinity and rigid amorphous of 38.2%. However, there was almost no thermal contraction at a temperature of 200 ° C., and the thermal dimensional stability was excellent.
- the polyphenylene sulfide fiber described in the above embodiments and examples and the nonwoven fabric composed of this fiber are illustrated in order to embody the technical idea of the present invention, and the resin composition, spinning and stretching conditions,
- the nonwoven web forming conditions, single fiber fineness, crystallinity, rigid amorphous amount, etc. are not limited to those of these embodiments and examples, and various modifications are made within the scope of the claims of the present invention.
- the nonwoven web may be formed by other methods. It goes without saying that the type of PPS resin to be used is not limited to that of the above-mentioned embodiment.
- the nonwoven fabric composed of the polyphenylene sulfide fiber of the present invention has the heat resistance, chemical resistance and flame retardancy characteristics of the PPS resin, and is excellent in mechanical strength. Therefore, the heat resistance filter, electrical insulating material, battery separator This is useful for various industrial uses.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Nonwoven Fabrics (AREA)
- Artificial Filaments (AREA)
Abstract
Description
このように、耐熱性と熱接着性を両立するPPS繊維あるいはPPS不織布について何ら提案されていないのが現状である。
また本発明2は不織布に関し、本発明1のポリフェニレンスルフィド繊維から構成されてなることを特徴とする。
PPSは、繰り返し単位としてp-フェニレンスルフィド単位やm-フェニレンスルフィド単位等のフェニレンスルフィド単位を有するポリマーである。なかでも、p-フェニレンスルフィド単位を90モル%以上含む実質的に線状のポリマーが、その耐熱性や曳糸性の点から好ましい。また、PPSを主成分として低融点化を図る場合は、p-フェニレンスルフィド単位にm-フェニレンスルフィド単位が共重合されたポリマーとすることが、PPSの難燃性や耐薬品性を損なうことが無いため好ましい。この共重合PPSは、複合繊維の一成分として好適に用いることができる。
本発明で言う結晶化度とは、実施例で後述するように示差走査熱量計(DSC)による測定から求められるものである。
剛直非晶量[%]=100[%]-結晶化度[%]-可動非晶量[%]。
ここで、本発明で言う可動非晶量とは、実施例で後述するように温度変調DSCによる測定から求められるものである。
すなわち、図1の結晶化度と沸水収縮率の関係で示すとおり、結晶化度20%未満の領域では、結晶化度が同程度でも沸水収縮率に大きな差異が見られるが、図2の結晶化度と剛直非晶量の和と沸水収縮率の関係に示すとおり、結晶化度に剛直非晶量を加えることで沸水収縮率との間に強い相関が見られるようになり、剛直非晶が熱に対する寸法安定性に大きく影響していることがわかる。そのメカニズムは明らかではないが、剛直非晶は非晶でありながら熱に対する寸法安定性については結晶に類似した役割を果たしているものと考えられる。
なお、図1と図2において、データは後述の実施例と比較例に基づくものであり、それぞれグラフ中の()内に示した数字は、後述の表1中に示す対応番号に対応する。
沸水収縮率は、熱収縮による幅入り、シワおよび表面の凹凸の発生を抑える上で20%以下が好ましく、より好ましくは15%以下、さらに好ましくは10%以下である。よって、結晶化度と剛直非晶量の和を30%以上、好ましくは35%以上とすることにより、熱に対する寸法安定性に優れた繊維とすることができる。
結晶化度については、従来は前述の特許文献2にも記載されているように、PPS繊維に熱寸法安定性を安定的に付与するには、結晶化度は25%以上が必要であると考えられていた。しかし、本発明によれば結晶化度が25%未満であっても剛直非晶を増加させることによりPPS繊維の熱収縮を小さくすることができる。従来、PPS繊維の結晶化度が小さければ非晶部分が多く熱寸法安定性に劣り、結晶化度が大きければ非晶部分が少なく熱接着性に劣るという関係にあったが、本発明によれば非晶部分の中でも剛直非晶を大きくし、熱寸法安定性を付与することで、良好な熱寸法安定性と熱接着性の両立が可能となる。
また本発明のPPS繊維は、複合の形態であっても構わない。係る複合形態としては例えば、芯鞘型、芯鞘偏心型、海島型、並列型、放射型、多葉型等をあげることができる。なかでも、繊維の曳糸性に優れる芯鞘型が好ましい。
平均単繊維繊度を0.5dtex以上、より好ましくは1dtex以上、さらに好ましくは2dtex以上とすることにより、繊維の曳糸性を保ち、紡糸中に糸切れが多発するのを抑えることができる。
また、平均単繊維繊度を10dtex以下、より好ましくは5dtex以下、さらに好ましくは4dtex以下とすることで、紡糸口金単孔当たりの溶融樹脂の吐出量を抑え繊維に対して十分な冷却を施すことができ、繊維間の融着による紡糸性の低下を抑えることができる。また、不織布としたときの目付ムラを抑え、表面の品位を優れたものとすることができる。また不織布をフィルター等に適用する場合のダスト捕集性能の観点からも、平均単繊維繊度は10dtex以下が好ましく、より好ましくは5dtex以下、さらに好ましくは4dtex以下である。
本発明のPPS不織布は、長繊維、短繊維のいずれの態様も採用することができるが、生産性に優れる点からスパンボンド法による長繊維不織布が好ましい。
スパンボンド法は、樹脂を溶融し、紡糸口金から紡糸した後、冷却固化した糸条に対し、エジェクターで牽引、延伸し、移動するネット上に捕集して不織ウェブ化した後、熱接着または機械的交絡により一体化する工程を要する製造方法である。
紡糸口金やエジェクターの形状としては、丸形や矩形等種々のものを採用することができる。なかでも、圧縮エアの使用量が比較的少なく、糸条同士の融着や擦過が起こりにくい点から矩形口金と矩形エジェクターの組み合わせが好ましい。
紡出された繊維の糸条を冷却する方法としては例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度にて自然冷却する方法、紡糸口金とエジェクター間の距離を調整する方法、またはこれらの組み合わせを採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸する温度、雰囲気温度等を考慮し適宜調整し採用することができる。
不織布を一体化する方式としては、上下一対のロール表面にそれぞれ彫刻が施された熱エンボスロール、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻が施されたロールとの組み合わせからなる熱エンボスロール、上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど各種ロールにより熱圧着する熱接着法、ニードルパンチやウォータージェットパンチによる機械的交絡法を好適に採用することができる。
(1)メルトフローレート(MFR)(g/10分)
PPSのMFRは、ASTM D1238-70に準じて、測定温度315.5℃、測定荷重5kgの条件で測定した。
ネット上に捕集した不織ウェブからランダムに小片サンプル10個を採取し、マイクロスコープで500~1000倍の表面写真を撮影し、各サンプルから10本ずつ計100本の繊維の幅を測定し、平均値を算出した。単繊維の幅平均値を、丸形断面形状を有する繊維の平均直径とみなし、使用する樹脂の固形密度から長さ10,000m当たりの重量を平均単繊維繊度として、小数点以下第二位を四捨五入して算出した。
繊維の平均単繊維繊度(dtex)と各条件で設定した紡糸口金単孔から吐出される樹脂の吐出量(以下、単孔吐出量と略記する。)(g/分)から、次の式に基づき、紡糸速度を算出した。
紡糸速度=(10000×単孔吐出量)/平均単繊維繊度。
延伸後の繊維からランダムに試料3点を採取し、示差走査熱量計(TA Instruments社製、Q1000)を用いて、次の条件と式で測定と結晶化度を算出し、平均値を算出した。下記の「冷結晶化による発熱量」とは冷結晶化に由来する発熱ピーク面積であり、「融解による吸熱量」とは融解に由来する吸熱ピーク面積である。熱量(ピーク面積)算出時のベースラインは、非晶のガラス転移後の液体状態と結晶の融解後の液体状態の熱流を直線で結んだものとし、このベースラインとDSC曲線の交点を境界として、発熱側と吸熱側を切り分けた。また、完全結晶時の融解熱量を146.2J/gとした。
・測定雰囲気:窒素流(50ml/分)
・温度範囲 :0~350℃
・昇温速度 :10℃/分
・試料量 :5mg
結晶化度={〔(融解による吸熱量[J/g])-(冷結晶化による発熱量[J/g])〕/146.2[J/g]}×100。
延伸後の繊維からランダムに試料3点を採取し、温度変調DSC(TA Instruments社製、Q1000)を用いて、次の条件と式で測定と可動非晶量を算出し、平均値を算出した。また、完全非晶時の比熱量を0.2699J/g℃とした。
・測定雰囲気:窒素流(50ml/分)
・温度範囲 :60~200℃
・昇温速度 :2℃/分
・試料量 :5mg
可動非晶量[%]=(ガラス転移温度前後の比熱変化量[J/g℃])/0.2699[J/g℃]×100。
上記(5)で求めた結晶化度と上記(6)で求めた可動非晶量から、次式にて剛直非晶量を算出した。
剛直非晶量[%]=100[%]-結晶化度[%]-可動非晶量[%]。
延伸後の繊維をランダムに採取し、繊維5本を引き揃えて一つの試料(約10cmの長さ)とした。この試料に下記記載の荷重をかけて長さ(L0)を測定した後、試料を無張力状態で沸騰水中に20分間浸漬させた後、沸水中から取り出し、自然乾燥させ、再び同じ荷重をかけて測定した長さ(L1)から沸水収縮率を算出し、試料4点の平均値を求めた。荷重と沸水収縮率の算出式を以下に示す。荷重は、小数点以下第三位を四捨五入した。
荷重(g)=0.9×単孔吐出量(g/分)
沸水収縮率(%)={(L0-L1)/L0}×100。
JIS L 1913:2010「一般不織布試験方法」の6.2「単位面積当たりの質量(ISO法)」に基づき、20cm×25cmの試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値を1m2当たりの質量(g/m2)で表した。
JIS L 1913:2010「一般不織布試験方法」の、6.3「引張強さ及び伸び率(ISO法)」の6.3.1「標準時」に準じ、サンプルサイズ5cm×30cm、つかみ間隔20cm、引張速度10cm/分の条件でたて方向3点の引張試験を行い、サンプルが破断した時の強力をたて引張強力(N/5cm)平均値について小数点以下第一位を四捨五入して算出した。
JIS L 1913:2010「一般不織布試験方法」の、6.10「寸法変化率(JIS法)」の6.10.3「乾熱寸法変化率」に準じて測定した。恒温乾燥機内の温度を200℃とし、10分間熱処理した。
熱風オーブン(エスペック株式会社製、TABAI SAFETY OVEN SHPS-222)を用い、長さ30cm、幅5cmのたて方向のサンプルを必要数投入し、熱風空気雰囲気下、210℃×1500時間、空気循環量300L/分で曝露させた。耐熱暴露試験前後のサンプルについて、上記(9)に記載の方法で引張強力を測定し、下記式を用いてたて引張強力保持率を算出した。
たて引張強力保持率(%)={耐熱暴露試験後たて引張強力(N/5cm)/耐熱暴露試験前たて引張強力(N/5cm)}×100。
(PPS樹脂)
トリクロルベンゼンが意図的に共重合されていない100モル%の線状ポリフェニレンサルファイド樹脂(東レ株式会社製、品番:E2280、MFR:160g/10分)を、窒素雰囲気中で160℃の温度で10時間乾燥して用いた。
上記PPS樹脂を押出機で溶融し、紡糸温度320℃で、孔径φ0.50mmの矩形紡糸口金から単孔吐出量1.38g/分で紡出した。紡出した糸条を、矩形紡糸口金から矩形エジェクターまでの距離を55cmとして室温20℃の雰囲気下で冷却固化した。冷却固化された糸条を矩形エジェクターに通し、エジェクターから、空気加熱器で230℃の温度に加熱しエジェクター圧力0.15MPaとした圧縮エアを噴射させ、糸条を牽引、延伸し、移動するネット上に捕集して不織ウェブ化した。
得られた長繊維の平均単繊維繊度は2.8dtex、結晶化度は18.4%、剛直非晶量と結晶化度の和は38.2%、沸水収縮率は2.3%であった。また、紡糸速度は4,998m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
引き続き、得られた不織ウェブを、インライン上に設置された金属製の上下一対のカレンダーロールで、線圧200N/cmおよび仮接着温度100℃で仮接着した。次いで、金属製で水玉柄の彫刻がなされた上ロールと金属製でフラットな下ロールとから構成される上下一対の、接着面積12%のエンボスロールにより、線圧1000N/cm、熱接着温度270℃で熱接着し、実施例1の長繊維不織布を得た。
得られた不織布は、エンボスロールによる熱接着の際、熱収縮による大きな幅入りもなく、シワのない品位良好なものであった。また、得られた長繊維不織布の目付は248g/m2、たて方向引張強さは434N/5cmであり、熱収縮率はたて方向で0.0%、よこ方向で0.1%、たて引張強力保持率は99%であった。
(PPS樹脂・紡糸・不織ウェブ化)
実施例1で用いたものと同様のPPS樹脂を用い、圧縮エアの温度を200℃としたこと以外は実施例1と同様にして紡糸し、不織ウェブ化を行った。
得られた長繊維は、平均単繊維繊度は2.8dtex、結晶化度は17.3%、剛直非晶と結晶化度の和は37.3%、沸水収縮率は7.0%であった。また、紡糸速度は4,991m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
引き続き、上記不織ウェブに実施例1と同様にして仮接着および熱接着を施して、実施例2の長繊維不織布を得た。
得られた不織布は、エンボスロールによる熱接着の際も熱収縮による大きな幅入りもなく、シワのない品位良好なものであった。また、得られた長繊維不織布の目付は253g/m2、たて方向引張強さは454N/5cm、熱収縮率はたて方向で0.1%、よこ方向で0.2%、たて引張強力保持率は99%であった。
(PPS樹脂・紡糸・不織ウェブ化)
実施例1で用いたものと同様のPPS樹脂を用い、圧縮エアの温度を140℃としたこと以外は実施例1と同様にして紡糸し、不織ウェブ化を行った。
得られた長繊維は、平均単繊維繊度は2.9dtex、結晶化度は15.1%、剛直非晶と結晶化度の和は31.3%、沸水収縮率は17.5%であった。また、紡糸速度は4,824m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
引き続き、上記不織ウェブに実施例1と同様にして仮接着および熱接着を施して、実施例3の長繊維不織布を得た。
得られた不織布は、エンボスロールによる熱圧着の際も熱収縮による大きな幅入りもなく、シワのない品位良好なものであった。また、得られた長繊維不織布の目付は245g/m2、たて方向引張強さは472N/5cm、熱収縮率はたて方向で0.0%、よこ方向で0.1%、たて引張強力保持率は99%であった。
(PPS樹脂・紡糸・不織ウェブ化)
実施例1で用いたものと同様のPPS樹脂を用い、圧縮エアの温度を200℃、エジェクター圧力を0.21MPaとしたこと以外は実施例1と同様にして紡糸し、不織ウェブ化を行った。
得られた長繊維は、平均単繊維繊度は2.4dtex、結晶化度は24.1%、剛直非晶と結晶化度の和は49.2%、沸水収縮率は2.2%であった。また、紡糸速度は5,663m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
引き続き、上記不織ウェブに実施例1と同様にして仮接着および熱接着を施して、実施例4の長繊維不織布を得た。
得られた不織布は、エンボスロールによる熱圧着の際も熱収縮による大きな幅入りもなく、シワのない品位良好なものであった。また、得られた長繊維不織布の目付は256g/m2、たて方向引張強さは421N/5cm、熱収縮率はたて方向で0.0%、よこ方向で0.1%、たて引張強力保持率は98%であった。
(PPS樹脂・紡糸・不織ウェブ化)
実施例1で用いたものと同様のPPS樹脂を用い、圧縮エアの温度を200℃、エジェクター圧力を0.25MPaとしたこと以外は実施例1と同様にして紡糸し、不織ウェブ化を行った。
得られた長繊維は、平均単繊維繊度は2.2dtex、結晶化度は33.0%、剛直非晶と結晶化度の和は67.4%、沸水収縮率は2.0%であった。また、紡糸速度は6,198m/分であり、紡糸性は1時間の紡糸において糸切れが2回発生した。
引き続き、上記不織ウェブに実施例1と同様にして仮接着および熱接着を施して、実施例5の長繊維不織布を得た。
得られた不織布は、エンボスロールによる熱圧着の際も熱収縮による大きな幅入りもなく、シワのない品位良好なものであった。また、得られた長繊維不織布の目付は254g/m2、たて方向引張強さは245N/5cm、熱収縮率はたて方向で0.0%、よこ方向で0.1%、たて引張強力保持率は99%であった。
(PPS樹脂・紡糸・不織ウェブ化)
実施例1で用いたものと同様のPPS樹脂を用い、実施例1と同様にして紡糸し、不織ウェブ化を行った。
引き続き、上記不織ウェブに実施例1と同様にして仮接着を施した後、油剤(SM7060:東レ・ダウコーニング・シリコーン株式会社製)を繊維重量に対し2重量%付与し、バーブ数1、バーブ深さ0.06mmのニードルを用いて、ニードルパンチを300本/cm2の交絡処理を施して、実施例6の長繊維不織布を得た。
得られた長繊維不織布の目付は301g/m2、たて方向引張強さは490N/5cm、熱収縮率はたて方向で1.6%、よこ方向で1.8%、たて引張強力保持率は99%であった。
(PPS樹脂・紡糸・不織ウェブ化)
実施例1で用いたものと同様のPPS樹脂を用い、実施例1と同様にして紡糸し、不織ウェブ化を行った。
引き続き、上記不織ウェブに実施例1と同様にして仮接着を施した後、ノズルが孔径0.10mm、ピッチ0.1mmであるウォータージェットパンチ(WJP)を用い、表裏を交互に15MPaの圧力で交絡処理を施し、設定温度を100℃とした熱風乾燥機で乾燥させることで、実施例7の長繊維不織布を得た。
得られた長繊維不織布の目付は285g/m2、たて方向引張強さは462N/5cm、熱収縮率はたて方向で1.4%、よこ方向で1.7%、たて引張強力保持率は99%であった。
(PPS樹脂・紡糸・不織ウェブ化)
実施例1で用いたものと同様のPPS樹脂を用い、圧縮エアを常温(30℃)とし、エジェクター圧力を0.15MPaとしたこと以外は実施例1と同様にして紡糸し、不織ウェブ化を行った。
得られた長繊維は、平均単繊維繊度は3.1dtex、結晶化度は8.9%、剛直非晶と結晶化度の和は10.7%、沸水収縮率は61.2%であった。また、紡糸速度は4,435m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
引き続き、上記不織ウェブに実施例1と同様にして仮接着および熱接着を施すことを試みた。しかし、エンボスロールによる熱接着の際、不織ウェブの熱収縮による幅入りが大きく、収縮固化しエンボス加工ができない状態であった。
(PPS樹脂・紡糸・不織ウェブ化)
実施例1で用いたものと同様のPPS樹脂を用い、圧縮エアを常温(30℃)とし、エジェクター圧力を0.20MPaとしたこと以外は実施例1と同様にして紡糸し、不織ウェブ化を行った。
得られた長繊維は、平均単繊維繊度は2.6dtex、結晶化度は18.2%、剛直非晶と結晶化度の和は25.3%、沸水収縮率は28.5%であった。また、紡糸速度は5,331m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
引き続き、上記不織ウェブに実施例1と同様にして仮接着および熱接着を施すことを試みた。しかし、エンボスロールによる熱接着の際、不織ウェブの熱収縮による幅入りが大きく、収縮固化しエンボス加工ができない状態であった。
(PPS樹脂・紡糸・不織ウェブ化)
実施例1で用いたものと同様のPPS樹脂を用い、圧縮エアの温度を230℃とし、エジェクター圧力を0.10MPaとしたこと以外は実施例1と同様にして紡糸し、不織ウェブ化を行った。
得られた長繊維は、平均単繊維繊度は4.9dtex、結晶化度は9.4%、剛直非晶と結晶化度の和は26.8%、沸水収縮率は25.0%であった。また、紡糸速度は2,794m/分であり、紡糸性は1時間の紡糸において糸切れ0回と良好であった。
引き続き、上記不織ウェブに実施例1と同様にして仮接着を施した後、実施例6と同様にニードルパンチを施して、比較例3の長繊維不織布を得た。
しかし、得られた長繊維不織布の熱収縮率はたて方向で21.2%、よこ方向で23.4%と大きく、熱処理後の表面はシワや凹凸が発生していた。なお、その長繊維不織布の目付は295g/m2、たて方向引張強さは472N/5cmであり、耐熱暴露試験は熱収縮が大きいために実施不可であった。
例えば上記の実施例では、スパンボンド法により不織ウエブ化する場合について説明した。しかし本発明では、他の方法により不織ウエブ化したものであってもよい。使用するPPS樹脂の種類は、上記の実施例のものに限定されないことはいうまでもない。
Claims (4)
- ポリフェニレンスルフィドを主成分とし、結晶化度と剛直非晶量との和が30%以上90%以下であることを特徴とするポリフェニレンスルフィド繊維。
- 結晶化度が5%以上25%未満である請求項1記載のポリフェニレンスルフィド繊維。
- 請求項1または2に記載のポリフェニレンスルフィド繊維から構成されてなることを特徴とする不織布。
- 前記不織布が熱接着または機械的交絡により一体化された不織布である、請求項3記載の不織布。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012532391A JP5867400B2 (ja) | 2011-06-02 | 2012-06-01 | ポリフェニレンスルフィド繊維および不織布 |
KR1020137034150A KR101948637B1 (ko) | 2011-06-02 | 2012-06-01 | 폴리페닐렌술피드 섬유 및 부직포 |
US14/122,114 US20140187115A1 (en) | 2011-06-02 | 2012-06-01 | Polyphenylene sulfide fiber and nonwoven fabric |
AU2012263373A AU2012263373B2 (en) | 2011-06-02 | 2012-06-01 | Polyphenylene sulfide fibers and nonwoven fabric |
EP12792614.5A EP2716800A4 (en) | 2011-06-02 | 2012-06-01 | POLY FIBERS (PHENYLENE SULFIDE) AND NONWOVEN FABRIC |
CN201280026741.6A CN103562446B (zh) | 2011-06-02 | 2012-06-01 | 聚苯硫醚纤维及无纺布 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-123994 | 2011-06-02 | ||
JP2011123994 | 2011-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012165608A1 true WO2012165608A1 (ja) | 2012-12-06 |
Family
ID=47259459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/064256 WO2012165608A1 (ja) | 2011-06-02 | 2012-06-01 | ポリフェニレンスルフィド繊維および不織布 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140187115A1 (ja) |
EP (1) | EP2716800A4 (ja) |
JP (1) | JP5867400B2 (ja) |
KR (1) | KR101948637B1 (ja) |
CN (1) | CN103562446B (ja) |
AU (1) | AU2012263373B2 (ja) |
WO (1) | WO2012165608A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013125514A1 (ja) * | 2012-02-24 | 2013-08-29 | 東レ株式会社 | ポリフェニレンサルファイド繊維、ポリフェニレンサルファイド繊維からなる濾布およびポリフェニレンサルファイド繊維の製造方法 |
JP2015067903A (ja) * | 2013-09-26 | 2015-04-13 | 東レ株式会社 | ポリフェニレンスルフィド繊維不織布 |
WO2016052295A1 (ja) * | 2014-09-30 | 2016-04-07 | 東レ株式会社 | ポリフェニレンスルフィド繊維 |
JPWO2016031693A1 (ja) * | 2014-08-27 | 2017-06-08 | 東レ株式会社 | メルトブロー不織布およびその製造方法 |
JP2018168516A (ja) * | 2017-03-30 | 2018-11-01 | 旭化成株式会社 | ポリフェニレンサルファイド不織布 |
JPWO2020066815A1 (ja) * | 2018-09-27 | 2021-08-30 | 東レ株式会社 | 共重合ポリフェニレンスルフィド繊維 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140039158A (ko) * | 2011-03-22 | 2014-04-01 | 도레이 카부시키가이샤 | 폴리페닐렌술피드 복합 섬유 및 부직포 |
WO2017170791A1 (ja) * | 2016-03-30 | 2017-10-05 | 株式会社クラレ | 耐熱性繊維構造体 |
CN112424410A (zh) * | 2018-07-27 | 2021-02-26 | 东丽株式会社 | 纺粘无纺布和由纺粘无纺布构成的空气过滤器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008035775A1 (fr) * | 2006-09-21 | 2008-03-27 | Asahi Kasei Fibers Corporation | Tissu non tissé résistant à la chaleur |
WO2010110293A1 (ja) * | 2009-03-25 | 2010-09-30 | 東レ株式会社 | 長繊維不織布の製造方法 |
WO2011070999A1 (ja) * | 2009-12-09 | 2011-06-16 | 東レ株式会社 | 長繊維不織布の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1260174A (en) * | 1984-06-29 | 1989-09-26 | Kureha Chemical Ind Co Ltd | PARA-PHENYLENE SULPHIDE COPOLYMERS; METHOD OF PREPARATION AND USE |
DE4006397A1 (de) * | 1989-05-17 | 1990-11-29 | Bayer Ag | Verfahren zur herstellung von mono- und multifilamenten sowie stapelfasern auf basis von polyarylensulfiden, sowie hochfeste polyarylensulfid-fasern |
DE3942416A1 (de) * | 1989-09-14 | 1991-03-28 | Bayer Ag | Hochmolekulare copolyarylensulfide und ihre verwendungen |
JP2001329076A (ja) * | 2000-05-25 | 2001-11-27 | Toray Ind Inc | ポリフェニレンスルフィドフィルムおよびコンデンサー |
US7279440B2 (en) * | 2002-05-20 | 2007-10-09 | 3M Innovative Properties Company | Nonwoven amorphous fibrous webs and methods for making them |
WO2008099823A1 (ja) * | 2007-02-13 | 2008-08-21 | Toyo Boseki Kabushiki Kaisha | 長繊維不織布およびそれを用いた繊維資材 |
WO2010007919A1 (ja) * | 2008-07-18 | 2010-01-21 | 東レ株式会社 | ポリフェニレンサルファイド繊維およびその製造方法、湿式不織布、湿式不織布の製造方法 |
EP2414574B1 (en) * | 2009-03-31 | 2018-12-12 | 3M Innovative Properties Company | Dimensionally stable nonwoven fibrous webs and methods of making and using the same |
CN101532212A (zh) * | 2009-04-23 | 2009-09-16 | 华南理工大学 | Pps纺粘非织造布及其复合产品以及制备方法 |
-
2012
- 2012-06-01 AU AU2012263373A patent/AU2012263373B2/en not_active Ceased
- 2012-06-01 CN CN201280026741.6A patent/CN103562446B/zh active Active
- 2012-06-01 JP JP2012532391A patent/JP5867400B2/ja active Active
- 2012-06-01 US US14/122,114 patent/US20140187115A1/en not_active Abandoned
- 2012-06-01 EP EP12792614.5A patent/EP2716800A4/en not_active Withdrawn
- 2012-06-01 WO PCT/JP2012/064256 patent/WO2012165608A1/ja active Application Filing
- 2012-06-01 KR KR1020137034150A patent/KR101948637B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008035775A1 (fr) * | 2006-09-21 | 2008-03-27 | Asahi Kasei Fibers Corporation | Tissu non tissé résistant à la chaleur |
WO2010110293A1 (ja) * | 2009-03-25 | 2010-09-30 | 東レ株式会社 | 長繊維不織布の製造方法 |
WO2011070999A1 (ja) * | 2009-12-09 | 2011-06-16 | 東レ株式会社 | 長繊維不織布の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2716800A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013125514A1 (ja) * | 2012-02-24 | 2013-08-29 | 東レ株式会社 | ポリフェニレンサルファイド繊維、ポリフェニレンサルファイド繊維からなる濾布およびポリフェニレンサルファイド繊維の製造方法 |
JP2015067903A (ja) * | 2013-09-26 | 2015-04-13 | 東レ株式会社 | ポリフェニレンスルフィド繊維不織布 |
JPWO2016031693A1 (ja) * | 2014-08-27 | 2017-06-08 | 東レ株式会社 | メルトブロー不織布およびその製造方法 |
WO2016052295A1 (ja) * | 2014-09-30 | 2016-04-07 | 東レ株式会社 | ポリフェニレンスルフィド繊維 |
US10106655B2 (en) | 2014-09-30 | 2018-10-23 | Toray Industries, Inc. | Polyphenylene sulfide fiber |
JP2018168516A (ja) * | 2017-03-30 | 2018-11-01 | 旭化成株式会社 | ポリフェニレンサルファイド不織布 |
JP6997527B2 (ja) | 2017-03-30 | 2022-01-17 | 旭化成株式会社 | ポリフェニレンサルファイド不織布 |
JPWO2020066815A1 (ja) * | 2018-09-27 | 2021-08-30 | 東レ株式会社 | 共重合ポリフェニレンスルフィド繊維 |
JP7334623B2 (ja) | 2018-09-27 | 2023-08-29 | 東レ株式会社 | 共重合ポリフェニレンスルフィド繊維 |
Also Published As
Publication number | Publication date |
---|---|
CN103562446A (zh) | 2014-02-05 |
CN103562446B (zh) | 2015-11-25 |
AU2012263373A1 (en) | 2014-01-09 |
US20140187115A1 (en) | 2014-07-03 |
JPWO2012165608A1 (ja) | 2015-02-23 |
AU2012263373B2 (en) | 2016-11-17 |
EP2716800A1 (en) | 2014-04-09 |
KR20140032452A (ko) | 2014-03-14 |
KR101948637B1 (ko) | 2019-02-15 |
JP5867400B2 (ja) | 2016-02-24 |
EP2716800A4 (en) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5867400B2 (ja) | ポリフェニレンスルフィド繊維および不織布 | |
JP5263294B2 (ja) | 長繊維不織布の製造方法 | |
JP5672009B2 (ja) | 長繊維不織布の製造方法 | |
US8652977B2 (en) | Heat-resistant nonwoven fabric | |
US9011567B2 (en) | Spunbonded nonwoven fabric and filter using same | |
WO2017110365A1 (ja) | フィルター用スパンボンド不織布およびその製造方法 | |
JP6102932B2 (ja) | ポリフェニレンスルフィド複合繊維および不織布 | |
JP5887799B2 (ja) | 繊維シートの製造方法 | |
JP5464813B2 (ja) | 耐熱性繊維不織布 | |
JP5725426B2 (ja) | ポリフェニレンスルフィド複合繊維および不織布 | |
JP2020006294A (ja) | フィルター濾材貼り合わせ用不織布および積層不織布ならびにそれらの製造方法 | |
JP6102141B2 (ja) | ポリフェニレンスルフィド繊維不織布 | |
JP2014167191A (ja) | ポリフェニレンスルフィド複合繊維および不織布 | |
JP2013245425A (ja) | スパンボンド不織布およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012532391 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12792614 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137034150 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14122114 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2012263373 Country of ref document: AU Date of ref document: 20120601 Kind code of ref document: A |