WO2010110293A1 - 長繊維不織布の製造方法 - Google Patents

長繊維不織布の製造方法 Download PDF

Info

Publication number
WO2010110293A1
WO2010110293A1 PCT/JP2010/055038 JP2010055038W WO2010110293A1 WO 2010110293 A1 WO2010110293 A1 WO 2010110293A1 JP 2010055038 W JP2010055038 W JP 2010055038W WO 2010110293 A1 WO2010110293 A1 WO 2010110293A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
ejector
long
spinning
woven
Prior art date
Application number
PCT/JP2010/055038
Other languages
English (en)
French (fr)
Inventor
中野洋平
矢掛善和
羽根亮一
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP10756089.8A priority Critical patent/EP2412857B1/en
Priority to RU2011142977/12A priority patent/RU2507325C2/ru
Priority to AU2010228229A priority patent/AU2010228229B2/en
Priority to JP2010522044A priority patent/JP5263294B2/ja
Priority to ES10756089.8T priority patent/ES2493890T3/es
Priority to US13/201,894 priority patent/US8623268B2/en
Priority to CN201080010993.0A priority patent/CN102341536B/zh
Priority to BRPI1006538A priority patent/BRPI1006538A2/pt
Publication of WO2010110293A1 publication Critical patent/WO2010110293A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/865Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to a method for producing a nonwoven fabric composed of long fibers mainly composed of polyphenylene sulfide. More specifically, the present invention produces a non-woven fabric composed of long fibers mainly composed of polyphenylene sulfide having no width, wrinkles and surface irregularities due to thermal shrinkage when a nonwoven web is thermocompression-bonded by a simple process. It relates to a manufacturing method.
  • Polyphenylene sulfide (hereinafter may be abbreviated as “PPS”) resin has excellent heat resistance, chemical resistance, flame retardancy and electrical insulation properties, such as engineer plastic, film, fiber and non-woven fabric. Is preferably used.
  • non-woven fabrics made of PPS fibers are expected to be utilized for industrial applications such as heat-resistant filters, electrical insulating materials, and battery separators by taking advantage of these characteristics.
  • a short fiber nonwoven fabric composed of staple fibers As a method for producing a nonwoven fabric composed of PPS fibers, a short fiber nonwoven fabric composed of staple fibers has been proposed (see Patent Document 1).
  • a PPS resin is melt-spun and then formed into a tow shape. It is concentrated, wet-stretched in a separate process, subjected to tension heat treatment, crimped, cut into staples, and further processed by a mechanical entanglement device such as a card machine or a needle punch in a separate process. It was necessary.
  • a simple manufacturing method based on a so-called spunbond method in which a PPS resin is spun and stretched by an ejector and then directly converted into a long-fiber nonwoven fabric.
  • a long-fiber nonwoven fabric obtained by spinning a PPS resin by a spunbond method to form a fabric, stretching at a temperature equal to or higher than the glass transition point, preferably biaxial stretching, and then embossing is proposed.
  • Patent Document 2 Further, after temporary bonding is performed at a temperature below the first crystal of the fabric obtained by spinning and stretching the PPS resin by the spunbond method, and then heat treatment is performed under a temperature condition above the first crystallization temperature under tension. Has been proposed (see Patent Document 3).
  • Patent Literature 5 a method of producing a heat-resistant nonwoven fabric in which the PPS resin is spun at an extremely high spinning speed to improve the crystallinity of the fiber and suppress thermal shrinkage.
  • the spinning speed is very high (in the example of Patent Document 5, the spinning speed is 7,000 to 11,000 m / min)
  • the fiber cannot follow the deformation.
  • yarn breakage tends to occur frequently and energy consumption is increased because a large amount of compressed air is required.
  • an object of the present invention is to provide a non-woven web in a simplified process that does not involve stretching treatment or / and heat treatment under tension of the non-woven web or fabric.
  • the present invention proposes a production method capable of obtaining a long-fiber nonwoven fabric mainly composed of PPS which has no width, no wrinkles, and no surface irregularities due to heat shrinkage.
  • the present invention employs the following means as a result of intensive studies to solve such problems.
  • the method for producing the long fiber nonwoven fabric of the present invention is (A) The distance from the lower surface of the spinneret to the compressed air outlet of the ejector is 450 for the fiber yarn discharged from the spinneret by melting a resin mainly composed of polyphenylene sulfide in which trichlorobenzene is not substantially copolymerized.
  • the non-woven web is calendered at a temperature lower than the crystallization temperature of the long fiber. It is to carry out a step of performing the temporary pressure bonding.
  • the present invention it is not necessary to perform a stretching treatment or / and a heat treatment under tension of a non-woven web or a fiber fabric for crystallization of PPS which has been conventionally performed. Since the non-woven web can be thermocompression bonded with a heating roll, it becomes possible to obtain a long-fiber nonwoven fabric excellent in dimensional stability, heat resistance and chemical resistance by simplifying the process and at low cost. .
  • FIG. 1 is a graph showing the relationship between the crystallization temperature of PPS fibers and the boiling water shrinkage. The data is based on examples and comparative examples, and the circled numbers in the graph correspond to the corresponding numbers shown in Table 1.
  • FIG. 2 is an example of a cross-sectional view of the spinning portion, and shows the positional relationship between the spinning length and Dn, which will be described later.
  • a resin having PPS as a main component is melted, and the fiber yarn discharged from the spinneret is pulled by an ejector disposed directly under the spinneret, stretched, and moved on the net.
  • a production method by a spunbond method in which thermocompression bonding is performed with a heating roll is used.
  • the resin forming the long fiber nonwoven fabric of the present invention contains PPS as a main component.
  • PPS has phenylene sulfide units such as p-phenylene sulfide units and m-phenylene sulfide units as repeating units. Among them, those containing 90 mol% or more of p-phenylene sulfide units are preferably used from the viewpoint of their heat resistance and spinnability because their molecular chains are substantially linear.
  • trichlorobenzene is not substantially copolymerized with PPS.
  • Trichlorobenzene has three halogen substituents per molecule, gives a branched structure to the molecular chain of PPS, and when this is copolymerized with PPS, the spinnability is inferior, and yarn breakage frequently occurs during spinning drawing. This is because it becomes difficult to achieve stable production.
  • 0.05 mol% or less is preferable, More preferably, it is less than 0.01 mol%.
  • the PPS content in the resin containing PPS as a main component used in the present invention is preferably 85% by mass or more from the viewpoint of heat resistance and chemical resistance, and more preferably. Is 90% by mass or more, more preferably 95% by mass or more.
  • a crystal nucleating agent a matting agent, a pigment, an antifungal agent, an antibacterial agent, a flame retardant, a hydrophilic agent, and the like may be added to the PPS resin as long as the effects of the present invention are not impaired.
  • the PPS resin used in the present invention is a melt flow rate (hereinafter abbreviated as MFR) measured according to ASTM A D1238-70 (measurement temperature 315.5 ° C., measurement load 5 kg load, unit g / 10 min). Is preferably 100 to 300 g / 10 min.
  • a high MFR means that the fluidity of the resin is high, and in order to obtain the strength and heat resistance of the fiber, a low MFR with a high degree of polymerization of PPS is preferable, but the MFR is 100 g / 10 min or more, More preferably, by setting it to 140 g / 10 min or more, an increase in the back pressure of the spinneret can be suppressed, and a drop in spinnability, that is, yarn breakage can be suppressed. On the other hand, when the MFR is 300 g / 10 minutes or less, more preferably 225 g / 10 minutes or less, the strength and heat resistance of the fibers can be maintained to a certain extent.
  • spinneret and the ejector Various shapes such as a round shape and a rectangular shape are known as the spinneret and the ejector. However, it is necessary to achieve a high speed spinning with a rectangular die from the viewpoint that the yarns are hardly fused or scratched. A combination with a rectangular ejector is preferably used because the amount of air used in the high-pressure jet stream is relatively small.
  • the single hole discharge amount discharged from the spinneret is preferably 0.25 to 5.90 g / min, more preferably, in order to obtain fibers having an average single fiber fineness described later at a spinning speed described later. Is 0.50 to 2.90 g / min, more preferably 1.00 to 2.30 g / min.
  • the cross-sectional shape of the PPS fiber may be any shape such as a circular shape, a hollow round shape, an elliptical shape, a flat shape, an irregular shape such as an X shape or a Y shape, a polygonal shape, and a multileaf shape.
  • a fiber obtained by melting a resin mainly composed of PPS, pulling the fiber yarn discharged from the spinneret with an ejector, and drawing the fiber is also referred to as “PPS fiber”. It is extremely important that the temperature be 112 ° C. or lower. The definition and measurement method of the crystallization temperature will be described later in Examples.
  • the present inventors have found a correlation between the crystallization temperature of the PPS fiber and the boiling water shrinkage rate. That is, as shown in FIG. 1 showing the relationship between the crystallization temperature and the boiling water shrinkage rate, when the crystallization temperature is higher than 112 ° C., the boiling water shrinkage rate is as high as 30% or more, but when the crystallization temperature is lower than 112 ° C. The rate decreases rapidly, and the boiling water shrinkage is 111% at 111 ° C.
  • the definition / measurement method of the boiling water shrinkage will be described later in Examples.
  • the boiling water shrinkage ratio is preferably 15% or less, more preferably 10% or less, and still more preferably 8% or less, in order to suppress the formation of width, wrinkles, and surface irregularities due to heat shrinkage.
  • the mechanism showing the correlation as shown in FIG. 1 is not clear, it is considered that the lower the crystallization temperature in the PPS fiber, the more the crystallization proceeds. Therefore, by setting the fiber crystallization temperature to 112 ° C. or lower, preferably 111 ° C. or lower, the non-woven web made of PPS long fibers is stretched without performing heat treatment under tension above the long fiber crystallization temperature. A PPS long fiber nonwoven fabric that does not have wrinkles due to thermal contraction, wrinkles or surface irregularities even when thermocompression-bonded with a heating roll can be obtained.
  • thermocompression processing using a heating roll causes problems due to the width of the nonwoven web due to heat shrinkage and wrinkles.
  • the lower limit of the fiber crystallization temperature is preferably 105 ° C. or higher from the viewpoint of thermocompression bonding.
  • the distance from the lower surface of the spinneret to the compressed air outlet of the ejector (hereinafter also referred to as “Dn”; see FIG. 2) is 450 to 650 mm. It is important to take By doing so, PPS fibers having a crystallization temperature of 112 ° C. or less can be obtained at a spinning speed of 5,000 m / min or more and less than 6,000 m / min. Although the mechanism is not clear, it is presumed that the drawing tension can be applied to a position where the cooling and solidification cannot be completed in the spun yarn, and the oriented crystallization can be promoted together with the thinning of the fiber.
  • Dn exceeds 650 mm
  • Dn exceeds 650 mm
  • the ejector pressure is preferably low. Therefore, Dn is preferably 600 mm or less.
  • Dn is preferably 500 mm or more, and more preferably 550 mm or more.
  • the spinning length is set to 400 mm to 600 mm, preferably 450 to 550 mm, and more preferably 500 to 550 mm, corresponding to the above range of Dn.
  • the spinning speed for spinning the PPS fiber is 5,000 m / min or more and less than 6,000 m / min.
  • the definition and measurement method of the spinning speed will be described later in Examples.
  • the spinning speed is preferably 5,500 m / min or more.
  • the spinning speed of 6,000 m / min is practically almost the limit in the method of pulling and stretching by an ejector. Even when spinning at a spinning speed of 6,000 m / min or more, not only the energy consumption of high-pressure air to be supplied to the ejector becomes enormous, but also the fiber cannot follow the deformation and the yarn breaks frequently.
  • the spinning speed is affected by the amount of molten resin discharged from the spinneret single hole and the cooling conditions under the spinneret, but the pressure of the air supplied to the ejector (hereinafter also referred to as “ejector pressure”). ) And Dn.
  • the average single fiber fineness of the PPS fiber is preferably 0.5 to 10 dtex.
  • the average single fiber fineness of the long fibers is more preferably 1 to 5 dtex from the viewpoint of improving the surface quality by suppressing unevenness of the nonwoven fabric, and from the viewpoint of dust collection performance when applied to a filter or the like. More preferably, it is 2 to 4 dtex.
  • the method for producing a long-fiber nonwoven fabric of the present invention includes a step of thermocompression bonding the obtained nonwoven web with a heating roll.
  • the heating roll to be used include a combination of embossed rolls engraved on a pair of upper and lower roll surfaces, a roll having a flat (smooth) one roll surface, and an embossed engraved on the other roll surface.
  • a combination of rolls or a combination of rolls each having a flat (smooth) roll surface is used.
  • a pair of upper and lower rolls is first used for the purpose of controlling the thickness of the obtained nonwoven fabric and making the thickness variation uniform. It is preferable to perform temporary pressure bonding with a calender roll having a flat surface and then perform heat pressure bonding with a heating roll, preferably an embossing roll.
  • a heating roll preferably an embossing roll.
  • a combination of upper and lower metal rolls or a combination of a metal roll and a resin roll can be used.
  • the temporary pressure bonding temperature by the calender roll may be equal to or lower than the heat pressure bonding temperature to be applied thereafter, but in order to control the thickness of the nonwoven fabric and to effectively perform the heat pressure bonding by the heating roll, the thermal crystal of the PPS fiber is excessive. It is preferable that it is below the crystallization temperature of a fiber so that crystallization may not be promoted. On the other hand, it is preferable that the temperature be 80 ° C. or higher in order to ensure sufficient thickness control and sufficient provisional pressure bonding to obtain a non-woven web.
  • the linear pressure of the calender roll at the time of temporary pressure bonding is preferably 50 to 700 N / cm, more preferably 150 to 400 N / cm.
  • the temporary pressure bonding can be made sufficient, and the sheet transportability can be obtained.
  • the linear pressure to 700 N / cm or less, it is possible to prevent the paper from being too thin, and to prevent damage to the non-woven fabric such as lack of air permeability.
  • the thermocompression bonding temperature by the heating roll is preferably in the range of 260 to 282 ° C.
  • the thermocompression bonding temperature is preferably in the range of 260 to 282 ° C.
  • the area ratio of crimping when an embossing roll is used for thermocompression bonding is preferably 8 to 40%.
  • the pressure-bonding area ratio is 8% or more, more preferably 10% or more, and still more preferably 12% or more, a practically usable strength can be obtained.
  • the pressure-bonding area ratio 40% or less, more preferably 30% or less, and even more preferably 20% or less, it is possible to prevent film-like overall and difficult to obtain features such as air permeability. it can.
  • MFR Melt flow rate
  • Crystallization temperature (° C) The long fiber obtained by pulling and drawing with an ejector was sampled with 3 samples, and 5 mg of the sample was increased at a rate of 10 ° C./min from 30 ° C. to 340 ° C. by differential scanning calorimetry (DSC6200 manufactured by Seiko Instruments Inc.). The temperature at the top of the crystallization peak (exothermic peak) in the obtained differential scanning calorimetry curve was measured, and the average value of the three samples was calculated as the crystallization temperature. When there are a plurality of crystallization peaks, the temperature is set to the peak apex temperature on the highest temperature side.
  • Non-woven fabric thermal shrinkage (%) Measured according to JIS L1906 (2000) 5.9 heat shrinkage. The temperature in the constant temperature dryer was set to 200 ° C. and heat treated for 10 minutes.
  • Example 1 A linear polyphenylene sulfide resin (manufactured by Toray, product number: E2280) in which trichlorobenzene was not intentionally copolymerized with an MFR of 160 g / 10 minutes was dried at a temperature of 160 ° C. for 10 hours in a nitrogen atmosphere. This resin was melted with an extruder, spun at a spinning temperature of 325 ° C., spun at a single hole discharge rate of 1.38 g / min from a rectangular spinner with a hole diameter of 0.30 mm, and discharged in an atmosphere at a room temperature of 20 ° C.
  • E2280 linear polyphenylene sulfide resin in which trichlorobenzene was not intentionally copolymerized with an MFR of 160 g / 10 minutes was dried at a temperature of 160 ° C. for 10 hours in a nitrogen atmosphere. This resin was melted with an extruder, spun at a spinning temperature of 325 ° C., spun at a single
  • a rectangular ejector (distance from the bottom of the spinneret to the compressed air outlet of the ejector (Dn) of 600 mm) arranged at 550 mm (spinning length 550 mm) directly below the spinneret and having a distance of 50 mm from the inlet to the compressed air outlet ) was pulled at an ejector pressure of 0.25 MPa, stretched, and collected on a moving net to form a nonwoven web.
  • the spinnability was good, the average single fiber fineness of the obtained long fibers was 2.4 dtex, the converted spinning speed was 5,726 m / min, the fiber crystallization temperature was 110.9 ° C., and the boiling water shrinkage was 6. 7%.
  • the pressure area ratio of the upper roll made of metal and engraved with a polka dot pattern is 12 % Embossing roll and lower embossing roll composed of a metal flat roll, and thermocompression bonding at a linear pressure of 1000 N / cm and a thermocompression bonding temperature of 275 ° C. to obtain a long fiber nonwoven fabric having a basis weight of 201 g / m 2. It was.
  • the obtained long fiber nonwoven fabric had a longitudinal tensile strength of 305 N / 5 cm, a thermal shrinkage of 0% in the vertical direction, and -0.4% in the transverse direction.
  • Example 2 A long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the position of the ejector was 450 mm (spinning length 450 mm, Dn 500 mm) immediately below the spinneret. The spinnability was good as in Example 1. The average single fiber fineness of the obtained long fibers was 2.3 dtex, the converted spinning speed was 5,897 m / min, the crystallization temperature of the fibers was 110.8 ° C., and the boiling water shrinkage rate was 6.0%. Further, when thermocompression bonding with an embossing roll, there was no large width due to thermal shrinkage, and the quality was good without wrinkles and surface irregularities.
  • the basis weight of the obtained long fiber nonwoven fabric was 201 g / m 2
  • the vertical tensile strength was 306 N / 5 cm
  • the thermal shrinkage was ⁇ 0.1% in the vertical direction, and ⁇ 0.2% in the horizontal direction. .
  • Example 3 A long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the single-hole discharge amount of the resin was 0.83 g / min. When spinning, compared with Example 1, there was a tendency for some yarn breakage to occur, but this was a level with no problem.
  • the obtained long fibers had an average single fiber fineness of 1.6 dtex, a converted spinning speed of 5,188 m / min, a fiber crystallization temperature of 111.0 ° C., and a boiling water shrinkage of 7.0%. Further, when thermocompression bonding with an embossing roll, there was no large width due to thermal shrinkage, and the quality was good without wrinkles or surface irregularities.
  • the obtained non-woven fabric had a basis weight of 202 g / m 2 , a vertical tensile strength of 310 N / 5 cm, a thermal shrinkage of ⁇ 0.1% in the vertical direction, and 0% in the horizontal direction.
  • Example 4 A long fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the single-hole discharge amount of the resin was 0.83 g / min and the position of the ejector was 450 mm (spinning length 450 mm, Dn 500 mm) immediately below the spinneret. When spinning, compared with Example 1, there was a tendency for some yarn breakage to occur, but this was a level with no problem.
  • the obtained long fibers had an average single fiber fineness of 1.5 dtex, a converted spinning speed of 5,497 m / min, a fiber crystallization temperature of 110.4 ° C., and a boiling water shrinkage of 6.7%.
  • the obtained non-woven fabric had a basis weight of 200 g / m 2 , a vertical tensile strength of 312 N / 5 cm, a thermal shrinkage of 0% in the vertical direction and ⁇ 0.1% in the horizontal direction.
  • Comparative Example 1 A long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the ejector pressure was 0.05 MPa.
  • the obtained long fibers had an average single fiber fineness of 5.6 dtex, a converted spinning speed of 2,482 m / min, a fiber crystallization temperature of 123.1 ° C., and a boiling water shrinkage of 55.4%.
  • the width was large due to thermal shrinkage, wrinkles were generated, and a long fiber nonwoven fabric with good quality could not be obtained.
  • this comparative example was in a state in which the width was significantly shrunk and embossed even when compared with Comparative Example 2 described below.
  • Example 2 A long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the ejector pressure was 0.15 MPa. The average single fiber fineness of the obtained long fibers was 3.2 dtex, the converted spinning speed was 4,299 m / min, the crystallization temperature of the fibers was 115.4 ° C., and the boiling water shrinkage rate was 52.3%. At the time of thermocompression bonding with an embossing roll, the width was large due to thermal shrinkage, wrinkles were generated, and a long fiber nonwoven fabric with good quality could not be obtained.
  • Example 3 A long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the position of the ejector was placed 350 mm (spinning length 350 mm, Dn 400 mm) immediately below the spinneret and the ejector pressure was 0.20 MPa. As compared with Example 1, the spinnability was spattered by yarn breakage due to insufficient cooling. The average single fiber fineness of the obtained long fibers was 2.5 dtex, the converted spinning speed was 5,498 m / min, the fiber crystallization temperature was 115.9 ° C., and the boiling water shrinkage rate was 50.0%. At the time of thermocompression bonding with an embossing roll, the width of the nonwoven web was increased due to heat shrinkage, and wrinkles were generated, making it impossible to obtain a high-quality non-woven fabric.
  • Example 4 A long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that the position of the ejector was 350 mm directly below the spinneret (spinning length 350 mm, Dn 400 mm). Spinnability was poor due to frequent yarn breakage due to insufficient cooling.
  • the average single fiber fineness of the obtained long fibers was 2.2 dtex, the converted spinning speed was 6,415 m / min, the crystallization temperature of the fibers was 112.4 ° C., and the boiling water shrinkage rate was 21.0%.
  • wrinkles were generated due to the width of the nonwoven web due to thermal shrinkage, and a high-quality long fiber nonwoven fabric could not be obtained.
  • Example 5 A long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that the position of the ejector was 650 mm directly below the spinneret (spinning length 650 mm, Dn 700 mm). The spinnability was good, the average single fiber fineness of the obtained long fibers was 2.5 dtex, the converted spinning speed was 5,564 m / min, the fiber crystallization temperature was 113.2 ° C., and the boiling water shrinkage was 28. 4%. At the time of thermocompression bonding with an embossing roll, the width of the nonwoven web was increased due to heat shrinkage, and wrinkles were generated, making it impossible to obtain a high-quality non-woven fabric.
  • Example 6 A long-fiber non-woven fabric was obtained in the same manner as in Example 1 except that the position of the ejector was 750 mm (spinning length 750 mm, Dn 800 mm) directly below the spinneret. The spinnability was good, the average single fiber fineness of the obtained long fibers was 2.6 dtex, the converted spinning speed was 5,408 m / min, the fiber crystallization temperature was 114.2 ° C., and the boiling water shrinkage was 44. 7%. At the time of thermocompression bonding with an embossing roll, the width of the nonwoven web was increased due to heat shrinkage, and wrinkles were generated, making it impossible to obtain a high-quality non-woven fabric.
  • Example 1 the fiber yarn discharged from the spinneret was spontaneously dropped and solidified without being pulled or drawn by an ejector, and the solidified fiber was collected. As a result of measuring the crystallization temperature, it was 135.2 ° C.
  • Table 1 shows the results of Examples 1 to 4, and Table 2 shows the results of Comparative Examples 1 to 7 and Reference Example 1.
  • the obtained nonwoven web can be obtained by using an embossing roll without performing a drawing treatment or a heat treatment under tension above the crystallization temperature of the long fibers. It was possible to obtain a non-woven long-fiber nonwoven fabric that was capable of thermocompression bonding and was free of wrinkles and surface irregularities. Moreover, the obtained long fiber nonwoven fabric had almost no thermal shrinkage at a temperature of 200 ° C. and was excellent in thermal dimensional stability.
  • the fiber crystallization temperature could be 112 ° C. or lower.
  • the fiber crystallization temperature could be 112 ° C. or lower.
  • the obtained long fiber nonwoven fabric is excellent in dimensional stability, heat resistance, flame retardancy and chemical resistance, so various industrial filters, electrical insulation materials, battery separators, membrane substrates for water treatment, heat insulation substrates and It can be suitably used for protective clothing.

Abstract

 本発明は、不織ウェブや布帛の加熱下における延伸処理または/および緊張下での熱処理を行うことのない簡便化された工程で、不織繊維ウェブを熱圧着させる際に熱収縮による幅入り、シワおよび表面の凹凸の発生のないPPSを主成分とする長繊維不織布を得ることが可能な製造方法を提案する。本発明の長繊維不織布の製造方法は、(a)ポリフェニレンサルファイドを主成分とする樹脂を溶融し、紡糸口金から吐出した繊維糸条を紡糸口金下面からエジェクターの圧縮空気噴出口までの距離が450~650mmとなるように配設したエジェクターにて、5,000m/分以上、6,000m/分未満の紡糸速度で牽引し延伸して、結晶化温度が112℃以下である長繊維を得る工程、(b)得られた長繊維を移動するネット上に捕集して不織ウェブ化する工程、および、(c)得られた不織ウェブを加熱ロールで熱圧着する工程からなる。

Description

長繊維不織布の製造方法
 本発明は、ポリフェニレンサルファイドを主成分とする長繊維からなる不織布の製造方法に関するものである。さらに詳しくは、本発明は、不織ウェブを熱圧着させる際に熱収縮による幅入り、シワおよび表面の凹凸のないポリフェニレンサルファイドを主成分とする長繊維からなる不織布を、簡便な工程で製造する製造方法に関するものである。
 ポリフェニレンサルファイド(以下、「PPS」と略記することがある。)樹脂は、耐熱性、耐薬品性、難燃性および電気絶縁性に優れた特性を有し、エンジニアプラスチック、フィルム、繊維および不織布等として好適に用いられている。特に、PPS繊維からなる不織布は、これら特性を活かし、耐熱フィルター、電気絶縁材および電池セパレーターなどの産業用途への利用が期待されている。
 PPS繊維からなる不織布の製造方法としては、ステープル繊維からなる短繊維不織布が提案されているが(特許文献1参照。)、不織布を得るためには、PPS樹脂を溶融紡糸した後、トウ状に集束し、別工程で湿式延伸し、緊張熱処理し、捲縮付与し、ステープルに切断し、更に別工程でカード機やニードルパンチなど機械的絡合装置による加工が必要であり、多数の工程が必要であった。
 これらの課題について、PPS樹脂を紡糸し、エジェクターによる延伸を行った後、直接長繊維不織布化する、いわゆるスパンボンド法による簡便な製造方法が提案されている。具体的に、PPS樹脂をスパンボンド法により紡糸し、布帛とし、ガラス転移点以上の温度で延伸処理し、好ましくは2軸延伸処理した後、エンボス加工を施して得られる長繊維不織布が提案されている(特許文献2参照。)。更に、PPS樹脂をスパンボンド法により紡糸延伸して得られる布帛の第1結晶下温度以下で仮接着を施し、その後緊張下で当該第1結晶化温度以上の温度条件で熱処理した後、本接着を施す長繊維不織布の製造方法が提案されている(特許文献3参照。)。この特許文献3における緊張下で熱処理の目的は、紡糸延伸工程でのみでは達成しがたいPPSの結晶化を促進して低収縮化と寸法安定性を実現するものであり、仮に、この接着の前に緊張下での熱処理を行わない場合、または熱処理が不十分である場合はこの接着工程で熱収縮による幅入りの問題があることが示されている。
 すなわち、従来スパンボンド法によって得られたPPS樹脂からなる不織ウェブにエンボス加工などを施して熱接着された不織布を得るには、不織ウェブや布帛の熱接着の前工程として、加熱下における延伸処理または緊張下での熱処理が必要である。この方法は、ポリエステルやポリプロピレンなど汎用の樹脂を用いたスパンボンド不織布を得る製造方法と比較すると、不織ウェブや布帛の加熱延伸または緊張熱処理加工のための設備が必要となり、工程が複雑かつ多段となる他、エネルギー消費量も多くコストアップになるなど、必ずしも好ましい製造方法ではなかった。
 また、PPS樹脂の紡糸工程で寸法安定性を改善することにより、熱処理加工設備を不要とする提案もなされている。例えば、原料による改善手段として、PPS樹脂にトリクロルベンゼンを共重合して紡糸、延伸することにより、熱に対する寸法安定性を改善する方法が提案されている(特許文献4参照。)。しかし、PPS樹脂にトリクロルベンゼンを共重合させると、曳糸性が低下して紡糸延伸時の糸切れが多発し生産安定性に欠けるという問題があった。
 また、紡糸工程における改善手段として、PPS樹脂を極めて高い紡糸速度で紡糸することにより繊維の結晶化度を向上させて熱収縮を抑制した耐熱性不織布を製造する方法が提案されている(特許文献5参照。)。しかしこの方法では、極めて高い紡糸速度(特許文献5の実施例において、紡速7,000~11,000m/分)とすることにより繊維の変形量が増大するため、繊維が変形に追随できず糸切れが多発する傾向にあり、また多くの圧縮空気を必要とするためエネルギー消費量が多くなるという問題があった。
 上述のとおり、PPS樹脂を用いた長繊維不織布について熱収縮による幅入り、シワおよび表面の凹凸の発生のないものを、簡便な工程で安定生産する方法は提案されていないのが現状である。
特許第2764911号公報 特開2005-154919号公報 特開2008-223209号公報 特許第2890470号公報 国際公開WO2008/035775号公報
 そこで本発明の目的は、上記従来技術の問題点に鑑み、不織ウェブや布帛の加熱下における延伸処理または/および緊張下での熱処理を行うことのない簡便化された工程で、不織ウェブを熱圧着させる際に熱収縮による幅入り、シワおよび表面の凹凸の発生のないPPSを主成分とする長繊維不織布を得ることが可能な製造方法を提案することにある。
 本発明は、かかる課題を解決するために鋭意検討の結果、次のような手段を採用するものである。
 すなわち、本発明の長繊維不織布の製造方法は、
(a)トリクロルベンゼンが実質的に共重合されていないポリフェニレンサルファイドを主成分とする樹脂を溶融し、紡糸口金から吐出した繊維糸条を紡糸口金下面からエジェクターの圧縮空気噴出口までの距離が450~650mmとなるように配設したエジェクターにて、5,000m/分以上、6,000m/分未満の紡糸速度で牽引し延伸して、結晶化温度が112℃以下である長繊維を得る工程、
(b)得られた長繊維を移動するネット上に捕集して不織ウェブ化する工程、および
(c)得られた不織ウェブを加熱ロールで熱圧着する工程
からなることを特徴とする長繊維不織布の製造方法である。
 本発明の長繊維不織布の製造方法の好ましい態様によれば、前記の工程(b)と(c)の間に、(d)不織ウェブを、長繊維の結晶化温度未満の温度でカレンダーロールによる仮圧着を行う工程を実施することである。
 本発明によれば、従来、実施されていたPPSの結晶化のための不織ウェブや繊維布帛の加熱下における延伸処理または/および緊張下での熱処理を施す必要もなく、スパンボンド法で得られた不織ウェブを加熱ロールによる熱圧着が可能となるため、工程を簡便化し低コストで、かつ寸法安定性、耐熱性さらには耐薬品性に優れた長繊維不織布を得ることが可能となる。
図1は、PPS繊維の結晶化温度と沸水収縮率との関係を示すグラフである。データは実施例、比較例に基づくものであり、グラフ中の丸数字は表1中に示す対応番号に対応する。 図2は、紡糸部の断面図の一例であり、後述する紡糸長とDnの位置関係を示すものである。
1:紡糸口金
2:糸条
3:エジェクター
4:圧縮空気
5:圧縮空気噴出口
6:紡糸長
7:Dn
 以下、本発明の長繊維不織布の製造方法について詳細に説明する。
 本発明の長繊維不織布の製造方法は、PPSを主成分とする樹脂を溶融し、紡糸口金から吐出した繊維糸条を、紡糸口金直下に配したエジェクターで牽引し、延伸し、移動するネット上に捕集して不織ウェブ化した後、加熱ロールで熱圧着するスパンボンド法による製造方法が用いられる。
 本発明の長繊維不織布を形成する樹脂は、PPSを主成分とする。PPSは、繰り返し単位としてp-フェニレンスルフィド単位やm-フェニレンスルフィド単位等のフェニレンスルフィド単位を有する。なかでも、p-フェニレンスルフィド単位を90モル%以上含むものは、その分子鎖が実質的に線状であり、その耐熱性や曳糸性の観点から好ましく用いられる。
 PPSには、トリクロルベンゼンが実質的に共重合されていないことが好ましい。トリクロルベンゼンは1分子当り3個のハロゲン置換基を有し、PPSの分子鎖に分岐構造を与え、これがPPSに共重合されると曳糸性が劣り、紡糸延伸時の糸切れが多発するなど安定生産を達成することが困難となるからである。実質的に共重合されていない程度としては、0.05モル%以下が好ましく、より好ましくは、0.01モル%未満である。
 本発明で用いられるPPSを主成分とする樹脂(以下、「PPS樹脂」とも呼ぶ。)におけるPPSの含有量としては、耐熱性と耐薬品性などの観点から85質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
 また、本発明の効果を損なわない範囲で、PPS樹脂には、結晶核剤、艶消し剤、顔料、防カビ剤、抗菌剤、難燃剤および親水剤等を添加してもよい。
 また、本発明で使用されるPPS樹脂は、ASTM D1238-70(測定温度315.5℃、測定荷重5kg荷重、単位g/10分)に準じて測定するメルトフローレート(以下、MFRと略記することがある。)が100~300g/10分であることが好ましい。MFRが高いことは樹脂の流動性が高いことを意味し、繊維の強度や耐熱性を得る上で、PPSの重合度が高い低MFRであるものが好ましいが、MFRを100g/10分以上、より好ましくは140g/10分以上とすることで、紡糸口金の背面圧が大きくなるのを抑え、また曳糸性の低下、すなわち糸切れを抑えることができる。一方、MFRを300g/10分以下、より好ましくは225g/10分以下とすることで、繊維の強度や耐熱性を一定程度保つことができる。
 紡糸口金やエジェクターの形状としては、丸形や矩形等種々のものが知られているが、糸条同士の融着や擦過が起こりにくい点から矩形口金と、高速紡糸を達成する上で必要な高圧ジェット流のエア使用量が比較的少ない点から矩形エジェクターとの組み合わせが好ましく用いられる。
 上記繊度範囲を得るにあたり、紡糸口金から吐出する単孔吐出量としては、後述する紡糸速度で後述する平均単繊維繊度の繊維を得る上で0.25~5.90g/分が好ましく、より好ましくは0.50~2.90g/分、さらに好ましくは1.00~2.30g/分である。
 また、PPS繊維の断面形状としては、円形、中空丸形、楕円形、扁平型、あるいはX型、Y型等の異形型、多角型および多葉型などいずれの形状であっても良い。
 本発明において、PPSを主成分とする樹脂を溶融し、紡糸口金から吐出した繊維糸条をエジェクターで牽引し、延伸して得られた繊維(以下、「PPS繊維」とも呼ぶ。)の結晶化温度を112℃以下とすることが極めて重要である。結晶化温度の定義・測定方法については、実施例で後述する。
 本発明者等は、PPS繊維の結晶化温度と沸水収縮率との間に相関を見出している。即ち、図1に結晶化温度と沸水収縮率の関係を示すとおり、結晶化温度が112℃よりも大きいと沸水収縮率は30%以上と大きいが、結晶化温度が112℃以下になると沸水収縮率は急激に低下し、111℃では沸水収縮率は数%となる。沸水収縮率の定義・測定方法については、実施例で後述する。沸水収縮率は、熱収縮による幅入り、シワおよび表面の凹凸の発生を抑える上で15%以下が好ましく、より好ましくは10%以下、さらに好ましくは8%以下である。図1のような相関を示すメカニズムは明らかではないが、PPS繊維において結晶化温度が低いほど結晶化が進んでいるものと考えられる。よって、繊維の結晶化温度を112℃以下、好ましくは111℃以下とすることによって、PPS長繊維からなる不織ウェブを延伸処理、長繊維の結晶化温度以上で緊張下の熱処理を行わずに、加熱ロールで熱圧着加工しても熱収縮による幅入り、シワおよび表面の凹凸の発生がないPPS長繊維不織布を得ることができる。
 繊維の結晶化温度が112℃を超える場合は、加熱ロールによる熱圧着加工を行うと、熱収縮による不織ウェブの幅入りやシワによる問題が生じる。
 繊維の結晶化温度の下限値としては、熱圧着性等の点からは105℃以上であることが好ましい。
 本発明の長繊維不織布の製造方法は、エジェクターの配設位置を、紡糸口金下面からエジェクターの圧縮空気噴出口までの距離(以下、「Dn」とも表す。図2参照。)が450~650mmとなるようにとることが重要である。そうすることにより、5,000m/分以上、6,000m/分未満の紡糸速度で結晶化温度112℃以下のPPS繊維を得ることができる。そのメカニズムは明らかではないが、紡糸糸条において冷却固化が終了しきらない状態の位置に延伸張力をかけることができ、繊維の細化とともに配向結晶化を促進させることができるためと推察する。Dnが650mmを超えると、延伸張力がかかる位置では概ね冷却固化が終了し、配向結晶化が進みにくいと推察する。Dnが650mmを超える場合、より高速の6,000m/分以上で紡糸する必要が生じ、後述するように好ましくない。Dnを短くする方が同じエジェクター圧力でも高紡速度を高くすることができる傾向にあり、エジェクター圧力は経済面からは低い方が好ましいので、その点からはDnは600mm以下とすることが好ましい。
 一方、Dnを450mm未満とすると、冷却が不十分となり糸切れが多発する傾向にある。また、紡糸速度5,000m/分以上で紡糸できても、結晶化温度112℃以下のPPS繊維を得ることは困難である。そのメカニズムは明らかでないが、溶融状態ないしは半溶融の状態の位置に張力がかかる結果、糸条の細化は進んでも繊維の内部構造の流動性が高すぎて配向結晶化が進みにくいためと推察する。その点からはDnは500mm以上が好ましく、よりに好ましくは550mm以上である。
 尚、エジェクターの導入口から圧縮噴出口までの距離が50mmのエジェクターを用いた場合には、紡糸口金下面からエジェクターの導入口間での距離(以下、「紡糸長」と呼ぶ)は、Dnよりも50mm短いことになるので、上記Dnの範囲に対応して、紡糸長は400mm~600mmとし、好ましくは450~550mm、より好ましくは500~550mmとなる。
 PPS繊維を紡糸する紡糸速度は5,000m/分以上、6,000m/分未満とすることが重要である。紡糸速度の定義・測定方法については、実施例で後述する。紡糸速度が5,000m/分未満では、結晶化温度112℃以下の繊維が得られ難い。紡糸速度は好ましくは5,500m/分以上である。一方、紡糸速度6,000m/分は、エジェクターによる牽引、延伸する方法では実用的にはほぼ限界にある。紡糸速度6,000m/分以上で紡糸しても、エジェクターに供給すべき高圧エアの消費エネルギーが膨大なものとなるばかりか、繊維が変形に追従できずに糸切れが多発する。
 紡糸速度は、紡糸口金単孔から吐出される溶融樹脂の吐出量や紡糸口金下の冷却条件に影響されるところもあるが、エジェクターに供給されるエアの圧力(以下、「エジェクター圧力」とも呼ぶ。)やDnにより概ね決定される。
 PPS繊維の平均単繊維繊度としては、0.5~10dtexが好ましい。平均単繊維繊度を0.5dtex以上とすることで、繊維の曳糸性を得て、紡糸中に糸切れが多発するのを抑えることができる。また、平均単繊維繊度を10dtex以下とすることで、紡糸口金単孔当たりの溶融樹脂の吐出量を少なく抑え、十分な冷却を可能とし繊維間の融着を抑えることができる。不織布の目付ムラを抑えて表面の品位を良好なものとする点、またフィルター等に適用する場合のダスト捕集性能の観点から長繊維の平均単繊維繊度は、より好ましくは1~5dtexであり、さらに好ましくは2~4dtexである。
 本発明の長繊維不織布の製造方法は、得られた不織ウェブを加熱ロールで熱圧着する工程を含む。用いられる加熱ロールの態様としては、上下一対のロール表面にそれぞれ彫刻が施されたエンボスロールの組み合わせや、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻が施されたエンボスロールの組み合わせや、それぞれロール表面がフラット(平滑)なロールの組み合わせによるものが使用される。
 なかでも、不織ウェブを得た後、上記加熱ロールによる熱圧着を施す前に、得られる不織布の厚さをコントロールすると共に幅方向の厚さバラツキを均一化させる目的で、先ず上下一対のロール表面がフラットなカレンダーロールによる仮圧着を行い、次いで加熱ロール、好ましくはエンボスロールによる熱圧着を行うことが好ましい。カレンダーロールには、上下金属ロールの組み合わせや金属ロールと樹脂ロールとの組み合わせのものを用いることができる。
 カレンダーロールによる仮圧着温度は、そのあとに施される熱圧着温度以下であればよいが、不織布の厚さのコントロールや加熱ロールによる熱圧着を有効に行う上で、過度にPPS繊維の熱結晶化を促進させることがないように、繊維の結晶化温度以下であることが好ましい。一方、厚みのコントロールを十分なものとし、仮圧着を十分なものとして不織ウェブの搬送性を得るために、80℃以上とすることが好ましい。
 仮圧着の際のカレンダーロールの線圧としては、50~700N/cmであることが好ましく、より好ましくは150~400N/cmである。線圧を50N/cm以上とすることで、仮圧着を十分なものとしシートの搬送性を得ることができる。一方、線圧を700N/cm以下とすることで、厚みが薄くなりすぎペーパーライクとなるのを防ぎ、また通気性に欠けるなど不織布としての特長が損なわれるのを防ぐことができる。
 加熱ロールによる熱圧着温度は、260~282℃の範囲であることが好ましい。熱圧着温度を260℃以上、より好ましくは265℃以上とすることで、熱圧着が不十分となるのを防ぎ、シートの剥離や毛羽が発生を抑えることができる。一方、熱圧着温度を282℃以下、より好ましくは280℃以下とすることで、繊維の融解が生じて圧着部に穴あきが発生するのを防ぐことができる。
 また、熱圧着にエンボスロールを使用したときの圧着面積率は8~40%が好ましい。圧着面積率を8%以上、より好ましくは10%以上、さらに好ましくは12%以上とすることで、実用に供しうる強度を得ることができる。また圧着面積率を40%以下、より好ましくは30%以下、さらに好ましくは20%以下とすることで、全体的にフィルムライクとなり通気性など不織布としての特長が得られ難くなるのを防ぐことができる。
 以下、実施例より本発明の長繊維不織布の製造方法について具体的に説明するが、本発明がこれら実施例に限定されるものではない。実施例における各特性値は、次の方法で測定したものである。
 (1)メルトフローレート(MFR)(g/10分)
 PPSのMFRは、ASTM D1238-70に準じて測定温度315.5℃で、測定荷重5kgの条件で測定した。
 (2)平均単繊維繊度(dtex)
 エジェクターで牽引し、延伸した後、ネット上に捕集した不織ウェブからランダムに小片サンプル10個を採取し、マイクロスコープで500~1000倍の表面写真を撮影し、各サンプルから10本ずつ、計100本の繊維の幅を測定し平均値を算出した。単繊維の幅平均値を、丸形断面形状を有する繊維の平均直径とみなし、使用する樹脂の固形密度から長さ10,000m当たりの重量を平均単繊維繊度として、小数点以下第二位を四捨五入して算出した。
 (3)紡糸速度(m/分)
 繊維の平均単繊維繊度(dtex)と各条件で設定した紡糸口金単孔から吐出される樹脂の吐出量(以下、単孔吐出量と略記する。)(g/分)から、次の式に基づき算出した。
紡糸速度=(10000×単孔吐出量)/平均単繊維繊度 。
 (4)結晶化温度(℃)
 エジェクターで牽引し延伸して得られた長繊維を試料数3でサンプリングし、試料5mgを示差走査熱量測定(セイコーインスツル社製DSC6200)で30℃から340℃の温度まで10℃/分で昇温させ、得られた示差走査熱量測定曲線における結晶化ピーク(発熱ピーク)の頂点の温度を測定し、3試料の平均値を算出して結晶化温度とした。なお、結晶化ピークが複数存在する場合は、最も高温側のピーク頂点の温度とする。
       (5)沸水収縮率(%)
 エジェクターを通過して得られた長繊維を採取し、繊維5本を引き揃えて一つの試料(約10cmの長さ)とした。この試料に下記記載の荷重をかけて長さLを測定した後、試料を無張力状態で沸騰水中に20分間浸漬させた後、沸水中から取り出し、自然乾燥させ、再び同じ荷重をかけて測定した長さLから沸水収縮率を算出し、試料4点の平均値を求めた。荷重と沸水収縮率の算出式を以下に示す。荷重は、小数点以下第三位を四捨五入する。
・荷重(g)=0.9×単孔吐出量(g/分)
・沸水収縮率(%)={(L-L)/L}×100 。
 (6)不織布の目付(g/m
 JIS L1906(2000年) 5.2単位面積当たりの質量に準じて測定した。
 (7)不織布の引張強さ(N/5cm)
 JIS L1906(2000年) 5.3引張強さ及び伸び率(標準時)に準じて測定した。
 (8)不織布の熱収縮率(%)
 JIS L1906(2000年) 5.9熱収縮率に準じて測定した。恒温乾燥機内の温度を200℃とし、10分間熱処理した。
 (実施例1)
 MFRが160g/10分の、トリクロルベンゼンが意図的に共重合されていない線状ポリフェニレンサルファイド樹脂(東レ製、品番:E2280)を、窒素雰囲気中で160℃の温度で10時間乾燥した。この樹脂を押出機で溶融し、紡糸温度325℃で、孔径φ0.30mmの矩形紡糸口金から単孔吐出量1.38g/分で紡出し、室温20℃の雰囲気下で吐出された糸条を紡糸口金直下550mm(紡糸長550mm)に配した、導入口から圧縮空気噴出口までの距離が50mmの矩形エジェクター(紡糸口金下面からエジェクターの圧縮空気噴出口までの距離(Dn)は600mmとなる。)にて、エジェクター圧力0.25MPaで牽引し、延伸し、移動するネット上に捕集して不織ウェブ化した。紡糸性は良好であり、得られた長繊維の平均単繊維繊度は2.4dtex、換算した紡糸速度は5,726m/分、繊維の結晶化温度は110.9℃、沸水収縮率は6.7%であった。
 引き続き、インライン上に設置された金属製上下一対のカレンダーロールで線圧200N/cm、仮圧着温度90℃で仮圧着した後、上ロールが金属製で水玉柄の彫刻がなされた圧着面積率12%のエンボスロール、下ロールが金属製フラットロールで構成される上下一対のエンボスロールで、線圧1000N/cm、熱圧着温度275℃で熱圧着し、目付201g/mの長繊維不織布を得た。エンボスロールによる熱圧着の際、熱収縮による大きな幅入りもなく、シワや表面の凹凸のない品位良好なものであった。 また、得られた長繊維不織布のたて方向引張強さは305N/5cmで、熱収縮率はたて方向0%、よこ方向-0.4%であった。
 (実施例2)
 エジェクターの位置を紡糸口金直下450mm(紡糸長450mm、Dn500mm)としたこと以外は、実施例1と同様にして長繊維不織布を得た。紡糸性は実施例1と同様、良好であった。得られた長繊維の平均単繊維繊度は2.3dtex、換算した紡糸速度は5,897m/分、繊維の結晶化温度は110.8℃、沸水収縮率は6.0%であった。また、エンボスロールによる熱圧着の際、熱収縮による大きな幅入りもなく、シワと表面の凹凸のない品位良好なものであった。また、得られた長繊維不織布の目付は201g/m、たて方向引張強さは306N/5cm、熱収縮率はたて方向-0.1%、よこ方向-0.2%であった。
 (実施例3)
 樹脂の単孔吐出量を0.83g/分としたこと以外は実施例1と同様にして長繊維不織布を得た。紡糸の際、実施例1と比較すると、やや糸切れが発生する傾向にあったが、問題のないレベルであった。得られた長繊維の平均単繊維繊度は1.6dtex、換算した紡糸速度は5,188m/分、繊維の結晶化温度は111.0℃、沸水収縮率は7.0%であった。また、エンボスロールによる熱圧着の際、熱収縮による大きな幅入りもなく、シワや表面の凹凸のない品位良好なものであった。また、得られた長繊維不織布の目付は202g/m、たて方向引張強さは310N/5cm、熱収縮率はたて方向-0.1%、よこ方向0%であった。
 (実施例4)
 樹脂の単孔吐出量を0.83g/分とし、エジェクターの位置を紡糸口金直下450mm(紡糸長450mm、Dn500mm)としたこと以外は実施例1と同様にして、長繊維不織布を得た。紡糸の際、実施例1と比較すると、やや糸切れが発生する傾向にあったが、問題のないレベルであった。得られた長繊維の平均単繊維繊度は1.5dtex、換算した紡糸速度は5,497m/分、繊維の結晶化温度は110.4℃、沸水収縮率は6.7%であった。また、エンボスロールによる熱圧着の際、熱収縮による大きな幅入りもなく、シワや表面の凹凸のない品位良好なものであった。また、得られた長繊維不織布の目付は200g/m、たて方向引張強さは312N/5cm、熱収縮率はたて方向0%、よこ方向-0.1%であった。
 (比較例1)
 エジェクター圧力を0.05MPaとしたこと以外は実施例1と同様にして、長繊維不織布を得た。得られた長繊維の平均単繊維繊度は5.6dtex、換算した紡糸速度は2,482m/分、繊維の結晶化温度は123.1℃、沸水収縮率は55.4%であった。エンボスロールによる熱圧着の際、熱収縮により幅入りが大きく、シワが発生して品位良好な長繊維不織布を得ることができなかった。特に、本比較例は、次述する比較例2と比べても幅入りが著しく収縮固化しエンボス加工ができない状態であった。
 (比較例2)
 エジェクター圧力を、0.15MPaとしたこと以外は実施例1と同様にして、長繊維不織布を得た。得られた長繊維の平均単繊維繊度は3.2dtex、換算した紡糸速度は4,299m/分、繊維の結晶化温度は115.4℃、沸水収縮率は52.3%であった。エンボスロールによる熱圧着の際、熱収縮により幅入りが大きく、シワが発生して品位良好な長繊維不織布を得ることができなかった。
 (比較例3)
 エジェクターの位置を紡糸口金直下350mm(紡糸長350mm、Dn400mm)に配しエジェクター圧力を0.20MPaとしたこと以外は実施例1と同様にして、長繊維不織布を得た。紡糸性は実施例1と比較すると、冷却不足による糸切れの散発がみられた。得られた長繊維の平均単繊維繊度は2.5dtex、換算した紡糸速度は5,498m/分、繊維の結晶化温度は115.9℃、沸水収縮率は50.0%であった。エンボスロールによる熱圧着の際、熱収縮により不織ウェブ幅入りが大きく、シワが発生して品位良好な長繊維不織布を得ることができなかった。
 (比較例4)
 エジェクターの位置を紡糸口金直下350mm(紡糸長350mm、Dn400mm)としたこと以外は実施例1と同様にして、長繊維不織布を得た。紡糸性は冷却不足による糸切れが多発し不良であった。得られた長繊維の平均単繊維繊度は2.2dtex、換算した紡糸速度は6,415m/分、繊維の結晶化温度は112.4℃、沸水収縮率は21.0%であった。エンボスロールによる熱圧着の際、熱収縮により不織ウェブ幅入りにより、シワが発生して品位良好な長繊維不織布を得ることができなかった。
 (比較例5)
 エジェクターの位置を紡糸口金直下650mm(紡糸長650mm、Dn700mm)としたこと以外は実施例1と同様にして、長繊維不織布を得た。紡糸性は良好であり、得られた長繊維の平均単繊維繊度は2.5dtex、換算した紡糸速度は5,564m/分、繊維の結晶化温度は113.2℃、沸水収縮率は28.4%であった。エンボスロールによる熱圧着の際、熱収縮により不織ウェブ幅入りが大きく、シワが発生して品位良好な長繊維不織布を得ることができなかった。
 (比較例6)
 エジェクターの位置を紡糸口金直下750mm(紡糸長750mm、Dn800mm)としたこと以外は実施例1と同様にして、長繊維不織布を得た。紡糸性は良好であり、得られた長繊維の平均単繊維繊度は2.6dtex、換算した紡糸速度は5,408m/分、繊維の結晶化温度は114.2℃、沸水収縮率は44.7%であった。エンボスロールによる熱圧着の際、熱収縮により不織ウェブ幅入りが大きく、シワが発生して品位良好な長繊維不織布を得ることができなかった。
 (比較例7)
 MFRが70g/10分であるトリクロルベンゼンが0.06mol%共重合したポリフェニレンサルファイド樹脂(東レ製、品番:T1881)を用いたこと、樹脂の単孔吐出量を0.83g/分とし、エジェクター圧力を0.20MPaとしたこと以外は実施例1と同様にして、紡糸した。しかしながら、紡糸の際に糸切れが著しく不織ウェブ化を断念した。なお、長繊維の平均単繊維繊度は1.8dtex、換算した紡糸速度は4,511m/分、結晶化温度は112.0℃、沸水収縮率は、10.0%であった。
 (参考例1)
 実施例1において、紡糸口金から吐出された繊維糸条をエジェクターで牽引・延伸することなく自然落下させて固化した繊維を採取し、結晶化温度を測定した結果、135.2℃であった。
 実施例1~4の結果を表1に、また比較例1~7および参考例1の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 長繊維の結晶化温度が112℃以下の実施例1~4は、得られた不織ウェブに延伸処理や該長繊維の結晶化温度以上で緊張下の熱処理を行わなくても、エンボスロールによる熱圧着が可能であり、シワおよび表面の凹凸のない品位良好な長繊維不織布を得ることができた。また、得られた長繊維不織布は、200℃の温度における熱収縮もほとんどなく、熱寸法安定性に優れていた。
 一方、長繊維の結晶化温度が112℃を超える比較例1~6は、いずれの不織ウェブもエンボスロールによる熱圧着の際、熱収縮により幅入りが大きく、シワが発生して品位良好な長繊維不織布を得ることができなかった。
 また、トリクロルベンゼンが共重合されたPPS樹脂を用いた比較例7は、繊維の結晶化温度を112℃以下とすることはできたが、紡糸の際、糸切れが著しく品位良好な不織布を得ることができなかった。
 得られた長繊維不織布は、寸法安定性、耐熱性、難燃および耐薬品性に優れているため、各種工業用フィルター、電気絶縁材、電池セパレーター、水処理用膜基材、断熱基材および防護服などに好適に利用することができる。

Claims (2)

  1.  (a)トリクロルベンゼンが実質的に共重合されていないポリフェニレンサルファイドを主成分とする樹脂を溶融し、紡糸口金から吐出した繊維糸条を紡糸口金下面からエジェクターの圧縮空気噴出口までの距離が450~650mmとなるように配設したエジェクターにて、5,000m/分以上、6,000m/分未満の紡糸速度で牽引し延伸して、結晶化温度が112℃以下である長繊維を得る工程、
    (b)得られた長繊維を移動するネット上に捕集して不織ウェブ化する工程、および
    (c)得られた不織ウェブを加熱ロールで熱圧着する工程からなることを特徴とする長繊維不織布の製造方法。
  2.  工程(b)と(c)の間に、(d)不織ウェブを、長繊維の結晶化温度未満の温度でカレンダーロールによる仮圧着を行う工程を実施する請求項1記載の長繊維不織布の製造方法。
PCT/JP2010/055038 2009-03-25 2010-03-24 長繊維不織布の製造方法 WO2010110293A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP10756089.8A EP2412857B1 (en) 2009-03-25 2010-03-24 Production method for filament non-woven fabric
RU2011142977/12A RU2507325C2 (ru) 2009-03-25 2010-03-24 Способ получения нетканого материала из волокна
AU2010228229A AU2010228229B2 (en) 2009-03-25 2010-03-24 Production method for filament non-woven fabric
JP2010522044A JP5263294B2 (ja) 2009-03-25 2010-03-24 長繊維不織布の製造方法
ES10756089.8T ES2493890T3 (es) 2009-03-25 2010-03-24 Método de producción para tela no tejida de filamentos
US13/201,894 US8623268B2 (en) 2009-03-25 2010-03-24 Production method for filament non-woven fabric
CN201080010993.0A CN102341536B (zh) 2009-03-25 2010-03-24 长纤维非织造布的制造方法
BRPI1006538A BRPI1006538A2 (pt) 2009-03-25 2010-03-24 método para produzir um tecido não-tecido de filamento

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-073481 2009-03-25
JP2009073481 2009-03-25

Publications (1)

Publication Number Publication Date
WO2010110293A1 true WO2010110293A1 (ja) 2010-09-30

Family

ID=42780987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055038 WO2010110293A1 (ja) 2009-03-25 2010-03-24 長繊維不織布の製造方法

Country Status (10)

Country Link
US (1) US8623268B2 (ja)
EP (1) EP2412857B1 (ja)
JP (1) JP5263294B2 (ja)
KR (1) KR101611989B1 (ja)
CN (1) CN102341536B (ja)
AU (1) AU2010228229B2 (ja)
BR (1) BRPI1006538A2 (ja)
ES (1) ES2493890T3 (ja)
RU (1) RU2507325C2 (ja)
WO (1) WO2010110293A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021259A (ja) * 2011-04-06 2012-02-02 Asahi Kasei Fibers Corp 熱可塑性不織布
WO2012165608A1 (ja) * 2011-06-02 2012-12-06 東レ株式会社 ポリフェニレンスルフィド繊維および不織布

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008055823A2 (en) * 2006-11-10 2008-05-15 Oerlikon Textile Gmbh & Co. Kg Process and device for melt-spinning and cooling synthetic filaments
TWI627321B (zh) * 2012-09-20 2018-06-21 Asahi Kasei Fibers Corp Polypropylene non-woven fabric, manufacturing method thereof and sanitary material
KR101483368B1 (ko) * 2013-08-27 2015-01-15 도레이첨단소재 주식회사 열안정성과 기계적 물성이 우수한 장섬유 니들펀칭 부직포 및 그 제조방법
JP6771012B2 (ja) * 2017-12-21 2020-10-21 花王株式会社 メルトブロー不織布
CN108437487A (zh) * 2018-04-08 2018-08-24 武汉纺织大学 一种高玻璃纤维含量的聚苯硫醚复合材料及其制备方法
DK3771762T3 (da) * 2019-07-30 2021-08-30 Reifenhaeuser Masch Indretning og fremgangsmåde til fremstilling af et vliesstof af fibre
TW202146719A (zh) * 2020-02-24 2021-12-16 奧地利商蘭仁股份有限公司 用於製造紡絲黏合不織布之方法
CN112011897B (zh) * 2020-07-20 2022-06-07 福州法莫优科机械科技有限公司 一种适用于熔喷布生产的收集装置
CN112442794A (zh) * 2020-09-30 2021-03-05 漳州怡鹭祥康医疗器械有限公司 一种熔喷布智能化生产系统及生产方法
CN112310557B (zh) * 2020-11-03 2022-12-23 天津工业大学 一种基于粘流改性技术的聚苯硫醚基隔膜的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182961A (ja) * 1988-12-29 1990-07-17 Toray Ind Inc 長繊維不織布およびその製法
JPH05209368A (ja) * 1986-09-29 1993-08-20 Toray Ind Inc ポリフェニレンスルホン繊維の製造方法
JP2764911B2 (ja) 1988-03-16 1998-06-11 東洋紡績株式会社 高巻縮・低収縮性ステープル繊維
JP2890470B2 (ja) 1989-05-26 1999-05-17 東レ株式会社 ポリフェニレンスルフィド繊維からなる紙状材とその製造方法
JP2001262436A (ja) * 2000-03-13 2001-09-26 Toray Ind Inc ポリフェニレンサルファイド繊維の製造方法
JP2005154919A (ja) 2003-11-21 2005-06-16 Toyobo Co Ltd ポリフェニレンスルフィド系長繊維耐熱性布帛及びその製造方法
JP2006257619A (ja) * 2005-02-16 2006-09-28 Toray Ind Inc ポリフェニレンスルフィド・ナノファイバーから成る乾式不織布
WO2008035775A1 (fr) 2006-09-21 2008-03-27 Asahi Kasei Fibers Corporation Tissu non tissé résistant à la chaleur
WO2008099823A1 (ja) * 2007-02-13 2008-08-21 Toyo Boseki Kabushiki Kaisha 長繊維不織布およびそれを用いた繊維資材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691003A (en) * 1986-04-30 1987-09-01 E. I. Du Pont De Nemours And Company Uniform polymeric filaments
CN1077621C (zh) * 1997-08-30 2002-01-09 财团法人工业技术研究院 长纤成网装置及长纤不织布之制造方法
JP2007031845A (ja) * 2005-07-22 2007-02-08 Toray Ind Inc 不織布、不織布の製造方法およびバグフィルター
US20100180558A1 (en) * 2007-05-31 2010-07-22 Toray Industries, Inc Nonwoven fabric for cylindrical bag filter, process for producing the same, and cylindrical bag filter therefrom

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209368A (ja) * 1986-09-29 1993-08-20 Toray Ind Inc ポリフェニレンスルホン繊維の製造方法
JP2764911B2 (ja) 1988-03-16 1998-06-11 東洋紡績株式会社 高巻縮・低収縮性ステープル繊維
JPH02182961A (ja) * 1988-12-29 1990-07-17 Toray Ind Inc 長繊維不織布およびその製法
JP2890470B2 (ja) 1989-05-26 1999-05-17 東レ株式会社 ポリフェニレンスルフィド繊維からなる紙状材とその製造方法
JP2001262436A (ja) * 2000-03-13 2001-09-26 Toray Ind Inc ポリフェニレンサルファイド繊維の製造方法
JP2005154919A (ja) 2003-11-21 2005-06-16 Toyobo Co Ltd ポリフェニレンスルフィド系長繊維耐熱性布帛及びその製造方法
JP2006257619A (ja) * 2005-02-16 2006-09-28 Toray Ind Inc ポリフェニレンスルフィド・ナノファイバーから成る乾式不織布
WO2008035775A1 (fr) 2006-09-21 2008-03-27 Asahi Kasei Fibers Corporation Tissu non tissé résistant à la chaleur
WO2008099823A1 (ja) * 2007-02-13 2008-08-21 Toyo Boseki Kabushiki Kaisha 長繊維不織布およびそれを用いた繊維資材
JP2008223209A (ja) 2007-02-13 2008-09-25 Toyobo Co Ltd 長繊維不織布およびそれを用いた繊維資材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2412857A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021259A (ja) * 2011-04-06 2012-02-02 Asahi Kasei Fibers Corp 熱可塑性不織布
WO2012137379A1 (ja) * 2011-04-06 2012-10-11 旭化成せんい株式会社 熱可塑性不織布
CN103459694A (zh) * 2011-04-06 2013-12-18 旭化成纤维株式会社 热塑性无纺布
CN103459694B (zh) * 2011-04-06 2015-08-12 旭化成纤维株式会社 热塑性无纺布
WO2012165608A1 (ja) * 2011-06-02 2012-12-06 東レ株式会社 ポリフェニレンスルフィド繊維および不織布
CN103562446A (zh) * 2011-06-02 2014-02-05 东丽株式会社 聚苯硫醚纤维及无纺布
KR20140032452A (ko) * 2011-06-02 2014-03-14 도레이 카부시키가이샤 폴리페닐렌술피드 섬유 및 부직포
JPWO2012165608A1 (ja) * 2011-06-02 2015-02-23 東レ株式会社 ポリフェニレンスルフィド繊維および不織布
AU2012263373B2 (en) * 2011-06-02 2016-11-17 Toray Industries, Inc. Polyphenylene sulfide fibers and nonwoven fabric
KR101948637B1 (ko) 2011-06-02 2019-02-15 도레이 카부시키가이샤 폴리페닐렌술피드 섬유 및 부직포

Also Published As

Publication number Publication date
KR20110128814A (ko) 2011-11-30
AU2010228229B2 (en) 2014-12-11
EP2412857B1 (en) 2014-06-04
EP2412857A1 (en) 2012-02-01
EP2412857A4 (en) 2013-10-30
RU2507325C2 (ru) 2014-02-20
CN102341536B (zh) 2014-04-09
ES2493890T3 (es) 2014-09-12
KR101611989B1 (ko) 2016-04-12
JPWO2010110293A1 (ja) 2012-09-27
RU2011142977A (ru) 2013-04-27
BRPI1006538A2 (pt) 2016-03-29
CN102341536A (zh) 2012-02-01
JP5263294B2 (ja) 2013-08-14
AU2010228229A1 (en) 2011-08-11
US8623268B2 (en) 2014-01-07
US20110298148A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5263294B2 (ja) 長繊維不織布の製造方法
US8652977B2 (en) Heat-resistant nonwoven fabric
WO2017110365A1 (ja) フィルター用スパンボンド不織布およびその製造方法
JP5672009B2 (ja) 長繊維不織布の製造方法
JP5867400B2 (ja) ポリフェニレンスルフィド繊維および不織布
JP6575523B2 (ja) メルトブロー不織布およびその製造方法
JP6102932B2 (ja) ポリフェニレンスルフィド複合繊維および不織布
JP5725426B2 (ja) ポリフェニレンスルフィド複合繊維および不織布
JPWO2020004007A1 (ja) フィルター用スパンボンド不織布およびその製造方法
JP6201558B2 (ja) ポリフェニレンスルフィド繊維および不織布
JP6102141B2 (ja) ポリフェニレンスルフィド繊維不織布
JP2014167191A (ja) ポリフェニレンスルフィド複合繊維および不織布
JPH11107147A (ja) 耐薬品性複合化布帛及びそれを用いた成形体
JP5506370B2 (ja) 網状不織シートおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010993.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010522044

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010228229

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010228229

Country of ref document: AU

Date of ref document: 20100324

Kind code of ref document: A

Ref document number: 20117018729

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13201894

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010756089

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7638/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011142977

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1006538

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1006538

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110923