WO2013121997A1 - 水素または重水素の製造方法、水素化または重水素化有機化合物の製造方法、有機化合物の水素化または重水素化方法、ハロゲンを有する有機化合物の脱ハロゲン化方法、メカノケミカル反応用ボ-ル - Google Patents

水素または重水素の製造方法、水素化または重水素化有機化合物の製造方法、有機化合物の水素化または重水素化方法、ハロゲンを有する有機化合物の脱ハロゲン化方法、メカノケミカル反応用ボ-ル Download PDF

Info

Publication number
WO2013121997A1
WO2013121997A1 PCT/JP2013/053016 JP2013053016W WO2013121997A1 WO 2013121997 A1 WO2013121997 A1 WO 2013121997A1 JP 2013053016 W JP2013053016 W JP 2013053016W WO 2013121997 A1 WO2013121997 A1 WO 2013121997A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
water
mechanochemical reaction
ball
deuterium
Prior art date
Application number
PCT/JP2013/053016
Other languages
English (en)
French (fr)
Inventor
弘尚 佐治木
泰也 門口
善成 澤間
近藤 伸一
泰志 笹井
Original Assignee
シオノケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シオノケミカル株式会社 filed Critical シオノケミカル株式会社
Priority to US14/378,877 priority Critical patent/US9371272B2/en
Priority to EP13748505.8A priority patent/EP2816008B1/en
Priority to JP2013558670A priority patent/JP6334173B2/ja
Priority to KR1020147023428A priority patent/KR102003095B1/ko
Priority to CN201380009787.1A priority patent/CN104114480B/zh
Priority to BR112014020187-0A priority patent/BR112014020187B1/pt
Publication of WO2013121997A1 publication Critical patent/WO2013121997A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B4/00Hydrogen isotopes; Inorganic compounds thereof prepared by isotope exchange, e.g. NH3 + D2 → NH2D + HD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B31/00Reduction in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • C07C5/05Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/78Benzoic acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to an efficient method for producing hydrogen or deuterium using a mechanochemical reaction, a method for producing a hydrogenated or deuterated organic compound, a method for hydrogenating or deuterating an organic compound, an organic compound having a halogen.
  • the present invention relates to a dehalogenation method and a mechanochemical reaction ball.
  • hydrogen is expected to be an alternative energy because it does not emit exhaust gas other than water, such as particulate matter and carbon dioxide, even if it is burned.
  • Stacked hydrogen vehicles are on sale, and are used for rocket fuel and fuel cells.
  • this hydrogen is produced in large quantities as a by-product of hydrocarbon steam reforming and partial oxidation (hydrocarbon gas decomposition method).
  • methane gas in natural gas, paraffins, ethylene / propylene, etc. are reacted with water vapor using nickel as a catalyst at high temperatures to form hydrogen and carbon monoxide.
  • carbon dioxide and hydrogen gas are reacted.
  • hydrogen generated as a by-product of seawater electrolysis in the soda and salt industries may be used.
  • the hydrogenation reaction in which an organic compound is reacted with hydrogen is a reaction widely used in organic synthetic chemistry, and many useful compounds are produced by this method.
  • There are many known hydrogenation reactions such as reactions using alkali metals, reactions using metal hydrides or metal hydrogen complexes, reactions using diborane or hydrazine, and reactions using catalytic hydrogenation. Yes.
  • the method using an alkali metal, metal hydride, metal hydrogen complex, diborane, hydrazine, etc. has a problem that the cost of the reaction reagent to be used is high, and that they are dangerous. In addition, there is a problem that it is necessary to use a special metal catalyst even in a method using catalytic hydrogenation.
  • the present inventors have found that hydrogen or deuterium can be obtained efficiently by giving energy of a specific amount or more to water or heavy water.
  • the present inventors have found that hydrogen or deuterium can be efficiently obtained by using a ball having a specific structure for the mechanochemical reaction, and that an organic compound can be hydrogenated or deuterated.
  • the present inventors have found that hydrogen or deuterium can be efficiently obtained by using a specific catalytic metal in a mechanochemical reaction, and that an organic compound can be hydrogenated or deuterated, thereby completing the present invention. did.
  • the present invention is as described in the following (1) to (10).
  • (1) A method for producing hydrogen or deuterium, in which water or heavy water is subjected to mechanochemical reaction in the presence of a catalytic metal, and the energy density with rotation acceleration of 75 G or more is given to water or heavy water for 25 minutes or more.
  • a process for producing hydrogen or deuterium (2) A mechanochemical reaction ball having a catalytic metal on at least a part of the surface of the ball.
  • a method for producing a hydrogenated or deuterated organic compound wherein an organic compound and water or heavy water are subjected to a mechanochemical reaction using the mechanochemical reaction ball of (2).
  • a method for hydrogenating or deuterating an organic compound wherein a mechanochemical reaction is performed between the organic compound and water or heavy water using the mechanochemical reaction ball of (2).
  • a method for dehalogenating a halogen-containing organic compound characterized in that a mechanochemical reaction is performed between a halogen-containing organic compound and water or heavy water using the mechanochemical reaction ball of (2).
  • Mechanochemical reaction ball substantially free of catalytic metal and transition metal selected from palladium, chromium, nickel, zinc, aluminum, magnesium, platinum, ruthenium and rhodium or water or heavy water A method for producing hydrogen or deuterium, wherein a mechanochemical reaction is carried out using one or more selected from oxides of transition metals.
  • the organic compound and water or heavy water are selected from a mechanochemical reaction ball substantially free of catalytic metals and palladium, chromium, nickel, zinc, aluminum, magnesium, platinum, ruthenium and rhodium.
  • the organic compound and water or heavy water are selected from mechanochemical reaction balls substantially free of catalytic metals and palladium, chromium, nickel, zinc, aluminum, magnesium, platinum, ruthenium and rhodium.
  • the hydrogen or deuterium production method of the present invention (1) has a high conversion rate from water or heavy water to hydrogen or deuterium, hydrogen or deuterium can be obtained efficiently.
  • the mechanochemical reaction ball of the present invention (2) can efficiently advance the mechanochemical reaction and can be reused repeatedly.
  • the hydrogen or deuterium, hydrogenated or deuterated organic compound can be obtained efficiently and repeatedly.
  • the method for dehalogenating an organic compound having halogen according to the present invention (6) uses the ball for mechanochemical reaction according to the present invention (2) to efficiently dehalogenate an organic compound having halogen. Can be made.
  • the method for producing hydrogen or deuterium according to the present invention (7), the method for producing hydrogenated or deuterated organic compound according to (8), and the method for hydrogenating or deuterated organic compound according to (9) are used for mechanochemical reaction. Since the ball and catalyst used are separate, it is easy to control the reaction to produce hydrogen or deuterium, hydrogenated or deuterated organic compound, and the number of contact between water, heavy water, organic compound and catalyst metal Therefore, the reaction can be completed in a short time even at a low rotational speed.
  • the method for dehalogenating a halogen-containing organic compound according to the present invention (10) facilitates control of the reaction for producing a dehalogenated organic compound because the ball and the catalyst used in the mechanochemical reaction are different. Since the number of times of contact between the organic compound containing water, heavy water or halogen and the catalyst metal increases, the reaction can be completed in a short time even at a low rotational speed.
  • heavy water includes 2 H (D) and 3 H (T), which are isotopes of hydrogen ( 1 H), 17 O and 18 O, which are isotopes of oxygen ( 16 O), and combinations thereof.
  • specific examples of the water include D 2 O and T 2 O.
  • deuterium is hydrogen composed of an isotope of hydrogen, and examples thereof include D 2 and T 2 .
  • deuteration is the replacement of part or all of hydrogen in normal hydrogenation with D or T.
  • the present invention (1) is a method for producing hydrogen or deuterium in which water or heavy water is subjected to mechanochemical reaction in the presence of a catalytic metal.
  • the energy density of the acceleration due to rotation of 75 G or more is 25 or more in water or heavy water.
  • This is a method for producing hydrogen or deuterium, characterized in that it is given for more than a minute.
  • the mechanochemical reaction performed by this method is performed by increasing the activity of the reactant by mechanical energy such as impact and friction.
  • the mechanochemical apparatus that can be used in the present invention (1) includes a reaction vessel and a stirring medium that gives mechanical energy, and gives mechanical energy to water or heavy water in the reaction vessel by rotation. Examples thereof include a planetary ball mill, a ball mill, a mixer mill and the like. Among these, it is preferable to use a planetary ball mill in which both the reaction vessel and the stirring medium rotate in view of stirring efficiency and energy to be given.
  • This planetary ball mill device is a device that functions to uniformly mix or finely pulverize metal or ceramic powder, and is composed of a planetary ball mill reaction vessel body and an atmosphere control section. Then, after putting a metal or ceramic powder (a material to be crushed) and a ball as a stirring medium into the ball mill reaction vessel and setting it in the equipment, the ball mill reaction vessel is placed in the atmosphere control section. The powder is mixed and pulverized efficiently in a short time by revolving with the movement similar to the movement of the planet while rotating. In addition, since the entire planetary ball mill has a structure in which the atmosphere is controlled, it is possible to mix and pulverize powder that may be altered in air.
  • reaction vessel and the stirring medium used in the planetary ball mill apparatus examples include stainless steel, agate, alumina, tungsten carbide, chrome steel, zirconia, silicon nitride, and brass. And those formed of a material such as Teflon (registered trademark). Of these materials, stainless steel, which is an alloy of iron and chromium, nickel or the like, is preferable.
  • the size of the container used in the planetary ball mill apparatus is not particularly limited, but is about 1 to 1,000 cm 3 .
  • the size of the ball is not particularly limited, but the diameter is about 2 to 20 mm.
  • particularly preferred planetary ball mills include, for example, a planetary ball mill quartet P-7 (manufactured by Frichiu, Germany), a planetary ball mill premium line-7 (manufactured by Frichew, Germany), and a planetary ball mill.
  • -Lumyl PM-100 manufactured by Lecce, Germany.
  • the catalytic metal in order to cause the mechanochemical reaction in the presence of the catalytic metal, is used in the mechanochemical reaction system in an amount exhibiting a catalytic action, for example, more than 0.001 mol% with respect to water. It only needs to be present in quantity.
  • catalytic metals include transition metals such as palladium, iron, nickel, chromium, magnesium, and zinc, and oxides thereof, preferably iron, iron hydroxide (II), nickel, nickel oxide (II), chromium. , Chromium (III) oxide, palladium and the like. These catalytic metals can be used alone or in combination of two or more.
  • catalytic metals may be added to the reaction vessel used for the mechanochemical reaction in the form of powder, wire, foil, etc., or the reaction vessel, ball, and stirring used for the mechanochemical reaction. It may be contained in a stirring medium such as a rod, or may be plated on the stirring medium.
  • the mechanochemical reaction condition in the present invention (1) is that water or heavy water is given an energy density of 75 G or more, preferably 83 G or more by rotation, for 25 minutes or more, preferably 30 minutes or more. Under these conditions, the conversion efficiency from water or heavy water to hydrogen or deuterium is 60% or more, preferably 70% or more.
  • water or heavy water is placed in a reaction vessel of an apparatus capable of performing the mechanochemical reaction described above, and catalytic metal, preferably iron, iron hydroxide ( II), stirring medium is operated in the presence of one or more kinds of catalytic metals selected from chromium, chromium oxide (III), nickel, magnesium and zinc, and water or heavy water in the reaction vessel is subjected to the above conditions.
  • catalytic metal preferably iron, iron hydroxide ( II)
  • stirring medium is operated in the presence of one or more kinds of catalytic metals selected from chromium, chromium oxide (III), nickel, magnesium and zinc
  • water or heavy water in the reaction vessel is subjected to the above conditions.
  • Hydrogen or deuterium may be generated by applying energy and performing a mechanochemical reaction.
  • hydrogen or deuterium generated in the reaction vessel may be collected according to a conventional method.
  • the present invention (1) is specifically performed using a planetary ball mill (manufactured by Fritsch, Germany: Premium Line-7) will be described.
  • water or heavy water of about 0.1 to 20% by mass (hereinafter simply referred to as “%”) of the container volume is put into a reaction vessel of this apparatus, and about 1 to 100 stirring media (balls) are added thereto.
  • the catalyst metal is added in an amount of about 0.01 to 100 mol% with respect to the organic compound, and is rotated at about 1050 rpm or more, preferably 1100 rpm or more.
  • the stirring may be performed for a minute or more, preferably for 30 minutes or more.
  • the present invention (2) is a mechanochemical reaction ball having a catalytic metal on at least a part of the surface of the ball.
  • the reaction is promoted by the catalytic metal, the mechanochemical reaction can be performed efficiently, and the reaction time can be shortened.
  • This ball serves as a stirring medium in the mechanochemical reaction, and the size of the ball may be appropriately set depending on the size of the reaction vessel, and is not particularly limited, but the diameter is 2 to 20 mm. A degree is preferred.
  • the material of the ball include stainless steel, agate, alumina, tungsten carbide, chrome steel, zirconia, silicon nitride, brass, and Teflon. Of these materials, stainless steel, which is an alloy of iron and chromium, nickel or the like, is preferable.
  • the catalyst metal includes one or more transition elements.
  • transition metals such as palladium, chromium, nickel, zinc, aluminum, magnesium, platinum, ruthenium, rhodium and oxides thereof.
  • nickel, nickel (II) oxide, chromium, chromium (III) oxide, magnesium, and zinc are used.
  • a catalyst metal preferably nickel, nickel oxide (II), chromium, chromium oxide (III), palladium is used. Can be mentioned.
  • a method of drilling a hole on the surface of the ball and embedding the metal line of the catalyst metal therein A method in which the ball is immersed in a salt solution and dried to adhere the catalytic metal to the ball surface.
  • a method of making a hole on the surface of the ball with a drill or the like and embedding a catalyst metal line or the like in the hole is preferable because the ball can be easily reused.
  • the hole for embedding the catalyst metal should be at least one having a diameter of about 1 mm and a depth of about 1 mm.
  • ball A The ball for mechanochemical reaction of the present invention (2) described above (hereinafter referred to as “ball A”) can be used for mechanochemical reaction.
  • the mechanochemical reaction is carried out by increasing the activity of the reactant by mechanical energy such as impact and friction.
  • Examples of the mechanochemical apparatus that can use the ball A of the present invention (2) include a reaction vessel and a ball that is a stirring medium for providing mechanical energy.
  • Examples include a planetary ball mill and a ball mill. Among these, it is preferable to use a planetary ball mill in which both the reaction vessel and the stirring medium rotate in view of stirring efficiency and energy to be given.
  • This planetary ball mill device is a device that functions to uniformly mix or finely pulverize metal or ceramic powder, and is composed of a planetary ball mill reaction vessel body and an atmosphere control section. Then, after putting the metal or ceramic powder (object to be crushed) and the ball A as a stirring medium into the ball mill reaction vessel and setting it in the equipment, the ball mill reaction vessel is placed in the atmosphere control section. The powder is mixed and pulverized efficiently in a short time by revolving with a movement similar to that of a planetary planet. In addition, since the entire planetary ball mill has a structure in which the atmosphere is controlled, it is possible to mix and pulverize powder that may be altered in air.
  • reaction vessel used in the planetary ball mill apparatus examples include those formed of materials such as stainless steel, agate, alumina, tungsten carbide, chrome steel, zirconia, and silicon nitride. It is done. Of these materials, stainless steel, which is an alloy of iron and chromium, nickel or the like, is preferable.
  • the size of the container used in the planetary ball mill apparatus is not particularly limited, but is about 1 to 1,000 cm 3 .
  • Specific examples of particularly preferred planetary ball mills include, for example, a planetary ball mill quartet P-7 (manufactured by Frichiu, Germany), a planetary ball mill premium line-7 (manufactured by Frichew, Germany), and a planetary ball mill. -Lumyl PM-100 (manufactured by Lecce, Germany).
  • the above-mentioned ball A is particularly preferably used in a method for producing hydrogen or deuterium using a mechanochemical reaction, a method for producing a hydrogenated or deuterated organic compound, a method for dehalogenating a halogen-containing organic compound, or the like. Can do. These methods will be described below.
  • water or heavy water may be subjected to a mechanochemical reaction using the ball A.
  • a ball A and water or heavy water are put into a reaction vessel of an apparatus capable of performing the above mechanochemical reaction, the apparatus is operated, and a mechanochemical reaction is performed to generate hydrogen or deuterium. Good.
  • hydrogen or deuterium accumulated in the reaction vessel may be collected according to a conventional method.
  • water or heavy water of about 0.1 to 20% by mass (hereinafter simply referred to as “%”) of the capacity of the vessel is placed in the reaction vessel of the planetary ball mill apparatus, and the ball A alone or above Add about 1 to 100 mechanochemical balls and a ball for mechanochemical use, and add catalytic metal as necessary.
  • stirring it is preferable to reverse a rotation direction suitably as needed, and when stirring is performed continuously, it is preferable to provide a rest time.
  • the conversion efficiency from water or heavy water to hydrogen or deuterium in the first aspect of the invention is about 20 to 100%, although it varies depending on the apparatus used, reaction conditions, and the like.
  • the organic compound and water or heavy water are mechanized using the ball A. What is necessary is just to make it react chemically. Specifically, ball A, an organic compound, and water or heavy water are placed in a reaction vessel of an apparatus capable of performing the above mechanochemical reaction, the apparatus is operated, a mechanochemical reaction is performed, and the organic compound is hydrogenated. Alternatively, deuteration may be performed. In addition, it can confirm that organic compounds were hydrogenated or deuterated by well-known methods, such as ⁇ 1 > H NMR and GC / MS.
  • the organic compound used in the present invention (4) is not particularly limited as long as it is a hydrogenated or deuterated organic compound.
  • an unsaturated bond such as a double bond or a triple bond
  • organic compounds having a highly oxidized substituent such as a group, a ketone group, a nitro group or an azide group, a halogen or the like in its skeleton.
  • the degree of hydrogenation or deuteration of the organic compound can be adjusted by the amount of addition. If you want to increase the degree of hydrogenation or deuteration, add a large amount of water or heavy water, and if the degree of hydrogenation or deuteration may be low, you should conserve the amount of water or heavy water added. .
  • the amount of water or heavy water added is greatly affected by the ease of hydrogenation or deuteration of the organic compound, and may be confirmed experimentally.
  • the degree of hydrogenation or deuteration of the organic compound can be adjusted by controlling mechanical energy such as impact and friction in the mechanochemical reaction.
  • the size of the ball A can be increased, the number of balls A can be increased or the rotational speed can be increased, and the degree of hydrogenation or deuteration can be increased. If it is acceptable, the size of the ball A can be reduced, the number of the balls A can be reduced, or the rotation speed can be reduced.
  • the present invention (4) When the present invention (4) is carried out as described above, first, water or heavy water in the reaction vessel is converted into hydrogen or deuteration, whereby the organic compound is hydrogenated or deuterated.
  • the conversion efficiency from the organic compound to the hydrogenated or deuterated organic compound in the present invention (4) is about 70 to 100%, although it varies depending on the equipment used, reaction conditions, and the like.
  • an unsaturated bond (double bond or triple bond) in the skeleton of an organic compound can be converted into a saturated bond, and a highly oxidized substituent (aldehyde group, ketone group, nitro group) ) Can be converted into a substituent having a low degree of oxidation (hydroxyalkyl group, hydroxy group, amino group), or the halogen in the halide can be removed to form a dehalogenated product.
  • any compound having the following basic skeleton can be converted into a corresponding reductant by hydrogenation or deuteration.
  • the compound which can be hydrogenated or deuterated is illustrated below, the compound which can be hydrogenated or deuterated by this invention (4) is not limited to these.
  • the methyl group is described as representative of an alkyl group (functionalized fatty chain), and benzene or phenyl is an aryl group [functionalized aromatic ring (benzene, furan, pyro- And thiophene, etc.)]].
  • Terminal alkyne methyl acetylene, ethynylbenzene Disubstituted alkyne: diphenylacetylene, dimethylacetylene, methylphenylacetylene ⁇ double bond-containing compound> Monosubstituted alkene: phenylethylene, methylethylene Disubstituted alkene: (E) -1,2-diphenylethylene, (Z) -1,2-diphenylethylene, (E) -1,2-dimethylethylene, (Z ) -1,2-dimethylethylene, 1,1-diphenylethylene, 1,1-dimethylethylene, 1-methyl-1-phenylethylene, (E) -1-methyl-2-phenylethylene, (Z) -1 -Methyl-2-phenylethylene trisubstituted alkene: 1,1,2-triphenylethylene, 1,1,2-trimethylethylene, 1,1-diphenyl-2-methylethylene, 1-phenyl-1
  • the conditions for carrying out the present invention (4) using a planetary ball mill are as follows: a reaction vessel of a planetary ball mill apparatus, water or heavy water of about 0.1 to 20% of the vessel capacity, and 0.01 Except for adding about 20% of organic compound, it may be basically the same as the present invention (3).
  • the conversion efficiency from an organic compound to a hydrogenated or deuterated organic compound is about 70 to 100%, although it varies depending on the apparatus used, reaction conditions, and the like.
  • the organic compound deuterated by the present invention (4) described above is useful as a label compound used for structural analysis and elucidation of the mechanism. Moreover, when the drug which consists of a well-known organic compound by this invention (4) is deuterated, the medicinal effect of a drug may become high.
  • organic compound hydrogenation or deuteration method of the present invention (5) may be carried out in the same manner as in the present invention (4).
  • the organic compound dehalogenation method of the present invention (6) may be carried out in the same manner as in the present invention (4).
  • this method can dehalogenate organic compounds having halogen harmful to the human body, such as polychlorinated biphenyl (PCB), and thus can be used for detoxifying these organic compounds.
  • PCB polychlorinated biphenyl
  • the ball A of the present invention (2) is a mechanochemical reaction ball substantially free of catalytic metal (hereinafter referred to as “ball”).
  • ball a mechanochemical reaction ball substantially free of catalytic metal
  • it may be the same as the present invention (3) to (8) except that a catalyst metal selected from nickel or chromium is separately added to the reaction vessel.
  • the ball B may be formed of a material such as zirconia, alumina, Teflon, or brass.
  • that the ball is substantially free of catalyst metal means that the content is 0.01% or less.
  • the catalytic metal may be added in an amount of 0.1 equivalent or more to the substrate in the form of powder, wire, foil, etc. in the reaction vessel used for the mechanochemical reaction.
  • the planetary ball mill used in the following examples has the following specifications.
  • the acceleration generated by operating the planetary ball mill used in the embodiment at a certain rotational speed is calculated by the following equation (1), and specifically, the planetary ball mill used in the first embodiment.
  • the calculation results in are shown in Table 1.
  • the structure of the product is confirmed by GC / MS and 1 H NMR even if not specifically described.
  • Example 1 Examination of hydrogen generation conditions: After putting 270 ⁇ L (15 mmol) of distilled water (Wako 046-16971) and 100 balls (diameter 5-6 mm) made of stainless steel (SUS304) into a planetary ball mill container (80 mL), The lid was capped and rotated at 400 to 1100 rpm for 5 to 30 minutes with a planetary ball mill device and stirred. The gas in the container after the stirring was collected by water displacement, and the composition was analyzed by GC / TCD (manufactured by Shimadzu Corporation: GC-2014). The results are shown in Table 1.
  • Example 2 Preparation of balls with palladium: A 1mm diameter, 1mm deep hole drilled into a stainless steel (SUS304) ball (diameter 5-6mm) (hereinafter sometimes referred to as "SUS-Ball") used in planetary ball mill equipment was opened, and a palladium wire having a diameter of 1 mm and a length of 1 mm was embedded therein to obtain a palladium-containing ball (hereinafter, this ball is sometimes referred to as “Pd-Ball”).
  • SUS304 stainless steel
  • Pd-Ball palladium wire having a diameter of 1 mm and a length of 1 mm
  • Example 3 Hydrogenation reaction of diphenylacetylene In a planetary ball mill container (12 mL), 89.1 mg (0.50 mmol) of diphenylacetylene (1) and 270 ⁇ L (30 eq.) Of distilled water were added, and the palladium-containing borate prepared in Example 2 was added to this in the following ratio. And a stainless steel (SUS304) ball (diameter 5 to 6 mm) were added to make a total of 50, then the lid was put on, and the planetary ball mill device was set at 800 rpm for 3 hours. Rotated every 30 minutes) and stirred.
  • SUS304 stainless steel
  • Example 4 Preparation of palladium coating ball: A stainless steel (SUS304) ball (5 to 6 mm in diameter) used for the planetary ball mill is immersed in a solution of 158.1 mg of palladium acetate in 30 ml of methanol for 1 week. -A ball whose surface was coated with zero-valent palladium was obtained (hereinafter, this ball is sometimes referred to as "Pd-coated Ball").
  • Example 5 Hydrogenation reaction of 4-chlorobenzoic acid: In a planetary ball mill container (12 mL), 78.3 mg (0.50 mmol) of 4-chlorobenzoic acid (5), 200 ⁇ L of distilled water (22 eq.), And 165 mg (2.4 eq.) Of potassium carbonate were placed. After putting 50 palladium coating balls prepared in Example 4, the cap was covered, and the mixture was rotated by a planetary ball mill apparatus for 12 hours at 800 rpm (reversed every 30 minutes) and stirred. After 12 hours, the reaction product was obtained in the same manner as in Example 3 and analyzed. The reaction product was a mixture containing 4-chlorobenzoic acid (5) and benzoic acid (6). This reaction is shown by the following formula.
  • Example 6 Production of chrome coating balls: In a planetary ball mill container (12 mL), 50 zirconia balls (5 to 6 mm in diameter) and 780 mg (15 mmol) of chromium powder were placed, then the cap was put on, and 3 planetary ball mill devices were used. The ball was rotated at 800 rpm (reversed every 30 minutes) for a period of time and stirred to obtain a ball whose surface was coated with chromium.
  • Example 7 Hydrogenation reaction of diphenylacetylene: A planetary ball mill container (12 mL) was charged with 89.1 mg (0.50 mmol) of diphenylacetylene and 270 ⁇ L (30 eq.) Of distilled water, and the chromium-coated ball (diameter 5-6 mm) prepared in Example 6 was added thereto. ) was put on, and the cap was capped and rotated for 3 hours at 800 rpm (reversed every 30 minutes) in a planetary ball mill apparatus and stirred. After 3 hours, the reaction product was obtained in the same manner as in Example 3 and analyzed. The reaction product was a mixture containing diphenylacetylene, 1,2-diphenylethane, 1-cyclohexyl-2-phenylethane and 1,2-dicyclohexylethane at 14: 4: 20: 62.
  • Example 8 Examination of catalytic metals: In a planetary ball mill container (12 mL), 89.1 mg (0.50 mmol) of diphenylacetylene (1) and 270 ⁇ L (30 eq.) Of distilled water were added, and the following types of balls (diameter 5 to 6 mm) were added thereto. After adding 50 or more additives, the cap was capped, and the mixture was rotated with a planetary ball mill device for 3 hours at 800 rpm (reversed every 30 minutes) and stirred. After 3 hours, the reaction product was obtained in the same manner as in Example 3 and analyzed.
  • the reaction product was a mixture containing diphenylacetylene (1), 1,2-diphenylethane (2), 1-cyclohexyl-2-phenylethane (3) and 1,2-dicyclohexylethane (4). This reaction is shown by the following formula.
  • Example 9 Synthesis of 4-aminobenzophenone by hydrogenation of 4-nitrobenzophenone: In a planetary ball mill container (12 mL), 91.1 mg (0.50 mmol) of 4-nitrobenzophenone (7) and 270 ⁇ L (15 mmol) of distilled water were placed, and a zirconia ball (diameter 5 to 6 mm) was added thereto. And 78 mg (1.5 mmol) of chromium powder were added, and the cap was capped, and the mixture was rotated by a planetary ball mill apparatus for 3 hours at 800 rpm (reversed every 30 minutes) and stirred.
  • Example 10 Synthesis of 4-amino-1-methoxybenzene by hydrogenation reaction of 1-methoxy-4-nitrobenzene: In a planetary ball mill container (12 mL), 76.6 mg (0.50 mmol) of 1-methoxy-4-nitrobenzene (9) and 270 ⁇ L (15 mmol) of distilled water were placed, and a zirconia ball (diameter 5) was added. After adding 50 pieces of ⁇ 6 mm) and 78 mg (1.5 mmol) of chromium powder, the cap was capped, and the mixture was rotated on a planetary ball mill apparatus for 3 hours at 800 rpm (reversed every 30 minutes) and stirred.
  • Example 11 Deuterium addition reaction of diphenylacetylene: In a planetary ball mill container (12 mL), 89.1 mg (0.50 mmol) of diphenylacetylene (1) and 270 ⁇ L (30 eq.) Of heavy water are placed, and a zirconia ball (diameter: 5 to 6 mm) is added to the vessel. After adding individual pieces and 78 mg (1.5 mmol) of chromium powder, the cap was capped and rotated for 3 hours at 800 rpm (reversed every 30 minutes) in a planetary ball mill apparatus and stirred.
  • Example 12 Water addition reaction of methyl 4-chlorobenzoate: In a planetary ball mill container (12 mL), 85.3 mg (0.50 mmol) of methyl 4-chlorobenzoate (11) and 270 ⁇ L (30 eq.) Of distilled water were placed, and a zirconia ball (diameter 5) was added. After adding 50 pieces of ⁇ 6 mm) and 78 mg (1.5 mmol) of chromium powder, the cap was capped, and the mixture was rotated on a planetary ball mill apparatus for 3 hours at 800 rpm (reversed every 30 minutes) and stirred.
  • a halogen-containing organic compound can be dehalogenated by a zirconia ball containing no catalyst metal and chromium powder as the catalyst metal.
  • the present invention can be advantageously used for generation of hydrogen or deuterium, hydrogenation or deuteration of organic compounds, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 効率的に水素や重水素を取得したり、有機化合物を水素化や重水素化する方法やそれに用いる器具等を提供することを目的とし、水または重水を、触媒金属の存在下、メカノケミカル反応させる水素または重水素の製造方法であって、水または重水に、回転による加速度が75G以上のエネルギ-密度を25分間以上与えることを特徴とする水素または重水素の製造方法、水素化または重水素化有機化合物の製造方法、有機化合物の水素化または重水素化方法、ハロゲンを有する有機化合物の脱ハロゲン化方法、メカノケミカル反応用ボ-ルを提供する。

Description

水素または重水素の製造方法、水素化または重水素化有機化合物の製造方法、有機化合物の水素化または重水素化方法、ハロゲンを有する有機化合物の脱ハロゲン化方法、メカノケミカル反応用ボ-ル
 本発明は、メカノケミカル反応を利用した効率的な水素または重水素の製造方法、水素化または重水素化有機化合物の製造方法、有機化合物の水素化または重水素化方法、ハロゲンを有する有機化合物の脱ハロゲン化方法、メカノケミカル反応用ボ-ルに関する。
 従来より、水素は、種々の多方面の工業分野に利用されている。例えば、ハ-バ-・ボッシュ法によるアンモニアの製造、塩素ガスとの光反応による塩酸の製造、トウモロコシ油や綿実油等の油脂に添加し、これを硬化(固体化)する改質などの原料として、また、金属鉱石(酸化物)の還元、ニトロベンゼンを還元しアニリンの製造、ナイロン66製造におけるベンゼンの触媒還元、一酸化炭素を還元するメチルアルコ-ル合成、あるいは脱硫などの還元剤などとして使われている。
 更には、水素は燃やしても水以外の排出物、例えば、粒子状物質や二酸化炭素などの排気ガスを出さないことから、代替エネルギ-として期待されており、内燃機関の燃料として水素燃料エンジンを積んだ水素自動車が発売されている他、ロケットの燃料や燃料電池に使用されている。
 この水素は、工業的には、炭化水素の水蒸気改質や部分酸化の副生成物として大量に生産される(炭化水素ガス分解法)。この方法は、天然ガス中のメタンガスや、パラフィン類やエチレン・プロピレンなどを高温下、ニッケルを触媒としながら水蒸気と反応させて水素と一酸化炭素とし、副生される一酸化炭素は更に水蒸気と反応させ、二酸化炭素と水素ガスにする方法である。また、別の方法としては、ソ-ダ工業や製塩業において海水電気分解の副生品として発生する水素が利用されることもある。
 一方、有機化合物に水素を反応させる水素化反応は、有機合成化学において広く使用される反応であり、この方法で多くの有用な化合物が生成される。水素化反応には、アルカリ金属等を利用する反応、金属水素化物あるいは金属水素錯体を利用する反応、ジボランあるいはヒドラジンを利用する反応、接触水素化を利用する反応等、多くの方法が知られている。
 しかし、前記した工業的な水素の製造方法は、大規模な装置を必要とするものであり、簡単に水素ガスを入手したいというときに利用できるものではない。また、実験的には、希酸やアルコ-ル中に金属を溶解させることで発生する水素ガスを利用するという方法もあるが、金属を不可逆的に溶解させることや、金属の溶解した溶液の処理が必要であるという点での問題がある。
 また、上記の水素化反応においても、アルカリ金属、金属水素化物、金属水素錯体、ジボラン、ヒドラジン等を用いる方法は、使用する反応試薬のコストが高いという問題や、それらに危険性があるという問題があり、また、接触水素化を利用する方法でも、特殊な金属触媒を利用する必要があるという問題があった。
 本発明者らは、上記実情を鑑み、数多くの実験を行った結果、メカノケミカル反応を利用することにより、簡単に水素や重水素を取得する方法等を見出し、特許出願を既に行っている(PCT/JP2011/68535:国際出願日2011年8月16日:優先日2010年8月18日)。本発明は、これらの方法を詳細に研究し、効率的に水素や重水素を取得したり、有機化合物を水素化や重水素化する方法やそれに用いる器具等を提供することを課題とするものである。
 本発明者らは、上記課題を解決するために鋭意研究した結果、水または重水に、特定の量以上のエネルギ-を与えることにより効率的に水素または重水素が得られることを見出した。また、本発明者らは、特定の構造のボ-ルをメカノケミカル反応に用いることにより、効率的に水素または重水素が取得でき、また、有機化合物を水素化や重水素化できることを見出した。更に、本発明者らは、特定の触媒金属をメカノケミカル反応に用いることにより効率的に水素または重水素が取得でき、また、有機化合物を水素化や重水素化できることを見出し、本発明を完成した。
 すなわち本発明は、以下の(1)~(10)に記載のものである。
(1)水または重水を、触媒金属の存在下、メカノケミカル反応させる水素または重水素の製造方法であって、水または重水に、回転による加速度が75G以上のエネルギ-密度を25分間以上与えることを特徴とする水素または重水素の製造方法。
(2)ボ-ルの表面の少なくとも一部に触媒金属を有するメカノケミカル反応用ボ-ル。
(3)水または重水を、(2)のメカノケミカル反応用ボ-ルを用いてメカノケミカル反応させることを特徴とする水素または重水素の製造方法。
(4)有機化合物と、水または重水とを、(2)のメカノケミカル反応用ボ-ルを用いてメカノケミカル反応させることを特徴とする水素化または重水素化有機化合物の製造方法。
(5)有機化合物と、水または重水とを、(2)のメカノケミカル反応用ボ-ルを用いてメカノケミカル反応させることを特徴とする有機化合物の水素化または重水素化方法。
(6)ハロゲンを有する有機化合物と、水または重水とを、(2)のメカノケミカル反応用ボ-ルを用いてメカノケミカル反応させることを特徴とするハロゲンを有する有機化合物の脱ハロゲン化方法。
(7)水または重水を、触媒金属が実質的に含まれていないメカノケミカル反応用ボ-ルとパラジウム、クロム、ニッケル、亜鉛、アルミニウム、マグネシウム、プラチナ、ルテニウムおよびロジウムから選ばれる遷移金属またはこれら遷移金属の酸化物から選ばれる1種または2種以上とを用いてメカノケミカル反応させることを特徴とする水素または重水素の製造方法。
(8)有機化合物と、水または重水とを、触媒金属が実質的に含まれていないメカノケミカル反応用ボ-ルとパラジウム、クロム、ニッケル、亜鉛、アルミニウム、マグネシウム、プラチナ、ルテニウムおよびロジウムから選ばれる遷移金属またはこれら遷移金属の酸化物から選ばれる1種または2種以上とを用いてメカノケミカル反応させることを特徴とする水素化または重水素化有機化合物の製造方法。
(9)有機化合物と、水または重水とを、触媒金属が実質的に含まれていないメカノケミカル反応用ボ-ルとパラジウム、クロム、ニッケル、亜鉛、アルミニウム、マグネシウム、プラチナ、ルテニウムおよびロジウムから選ばれる遷移金属またはこれら遷移金属の酸化物から選ばれる1種または2種以上とを用いてメカノケミカル反応させることを特徴とする有機化合物の水素化または重水素化方法。
(10)ハロゲンを有する有機化合物と、水または重水とを、触媒金属が実質的に含まれていないメカノケミカル反応用ボ-ルとパラジウム、クロム、ニッケル、亜鉛、アルミニウム、マグネシウム、プラチナ、ルテニウムおよびロジウムから選ばれる遷移金属またはこれら遷移金属の酸化物から選ばれる1種または2種以上とを用いてメカノケミカル反応させることを特徴とするハロゲンを有する有機化合物の脱ハロゲン化方法。
 本発明(1)の水素または重水素の製造方法は、水または重水から水素または重水素への変換率が高いため、水素または重水素を効率良く得ることができる。
 本発明(2)のメカノケミカル反応用ボ-ルは、メカノケミカル反応を効率良く進めることができる上、繰り返し再利用ができる。
 本発明(3)の水素または重水素の製造方法、(4)の水素化または重水素化有機化合物の製造方法、(5)の有機化合物の水素化または重水素化方法は、本発明(2)のメカノケミカル反応用ボ-ルを用いることにより、水素または重水素、水素化または重水素化した有機化合物を効率良く、しかも、繰り返し得ることができる。
 本発明(6)のハロゲンを有する有機化合物の脱ハロゲン化方法は、本発明(2)のメカノケミカル反応用ボ-ルを用いることにより、効率良く、しかも、繰り返しハロゲンを有する有機化合物の脱ハロゲン化ができる。
 本発明(7)の水素または重水素の製造方法、(8)の水素化または重水素化有機化合物の製造方法、(9)の有機化合物の水素化または重水素化方法は、メカノケミカル反応に用いるボ-ルと触媒が別々なため、水素または重水素、水素化または重水素化した有機化合物を生成する反応の制御が容易になる上、水、重水、有機化合物と触媒金属との接触回数が増すため、低回転数下でも短時間で反応を完結させることができる。
 本発明(10)のハロゲンを有する有機化合物の脱ハロゲン化方法は、メカノケミカル反応に用いるボ-ルと触媒が別々なため、脱ハロゲン化した有機化合物を生成する反応の制御が容易になる上、水、重水、ハロゲンを有する有機化合物と触媒金属との接触回数が増すため、低回転数下でも短時間で反応を完結させることができる。
 本発明において重水とは、水素(H)の同位体であるH(D)やH(T)、酸素(16O)の同位体である17Oや18Oおよびこれらの組み合わせからなる水であり、具体的には、DO、TO等が挙げられる。また、重水素とは、水素の同位体からなる水素であり、D、T等が挙げられる。更に、重水素化とは、通常の水素化における水素の一部または全部がDやTに置き換えられることである。
 本発明(1)は、水または重水を、触媒金属の存在下、メカノケミカル反応させる水素または重水素の製造方法であって、水または重水に、回転による加速度が75G以上のエネルギ-密度を25分間以上与えることを特徴とする水素または重水素の製造方法である。
 この方法で行われるメカノケミカル反応は、衝撃、摩擦等の機械的エネルギ-により反応物の活性を高めることにより行われるものである。本発明(1)において用いることのできるメカノケミカル装置としては、反応容器と機械的エネルギ-を与える撹拌媒体を備え、回転により反応容器中の水または重水に機械的エネルギ-を与えるものが挙げられ、例えば、遊星型ボ-ルミル、ボ-ルミル、ミキサ-ミル等が挙げられる。これらの中でも、反応容器と撹拌媒体が共に回転する遊星型ボ-ルミルを用いることが撹拌効率や与えるエネルギ-の点から好ましい。
 この遊星型ボ-ルミル装置は、金属やセラミックスの粉末を均一に混合したり、細かく粉砕する働きを持った機器であり、遊星型ボ-ルミル反応容器本体と雰囲気制御区画からなるものである。そして、金属やセラミックスの粉末(被粉砕体)と撹拌媒体となるボ-ルをボ-ルミル反応容器の中に入れて、機器にセットした後、ボ-ルミル反応容器が雰囲気制御区画の中で自転運動しながら、遊星の動きに似た動きで公転運動することにより、粉末は短時間で効率よく混合・粉砕される。しかも、遊星型ボ-ルミル全体が雰囲気制御される構造となっているため、空気中では変質してしまうような粉末でも混合・粉砕が可能である。
 また、遊星型ボ-ルミル装置に用いられる反応容器および攪拌媒体であるボ-ルとしては、例えば、ステンレススチ-ル、メノウ、アルミナ、タングステンカ-バイド、クロムスチ-ル、ジルコニア、窒化ケイ素、真鍮、テフロン(登録商標)等の材質で形成されたものが挙げられる。これら材質の中でも鉄とクロム、ニッケル等との合金であるステンレススチ-ルが好ましい。遊星型ボ-ルミル装置に用いられる容器の大きさは、特に限定するものではないが、1~1,000cm程度のものである。また、ボ-ルの大きさも、特に限定するものではないが、その直径が2~20mm程度のものである。特に好ましい遊星型ボ-ルミルの具体例としては、例えば、遊星型ボ-ルミル カルテットP-7(ドイツ フリッチュ社製)、遊星型ボ-ルミル プレミアムライン-7(ドイツ フリッチュ社製)、遊星型ボ-ルミル PM-100(ドイツ レッチェ社製)等を挙げることができる。
 本発明(1)において、触媒金属の存在下でメカノケミカル反応をさせるには、触媒金属をメカノケミカル反応系に、触媒作用を発揮する量、例えば、水に対し、0.001モル%より多い量で存在させるだけでよい。触媒金属としては、パラジウム、鉄、ニッケル、クロム、マグネシウム、亜鉛等の遷移金属やそれらの酸化物等が挙げられ、好ましくは鉄、水酸化鉄(II)、ニッケル、酸化ニッケル(II)、クロム、酸化クロム(III)、パラジウム等が挙げられる。これらの触媒金属は1種または2種以上を組み合わせて使用することもできる。なお、これらの触媒金属は、メカノケミカル反応に用いられる反応容器中に、粉末、ワイヤ-、ホイル等の形態で添加しても良いし、メカノケミカル反応に用いられる反応容器、ボ-ル、撹拌棒等の撹拌媒体に含まれていても良いし、前記撹拌媒体にメッキ等しても良い。
 本発明(1)におけるメカノケミカル反応条件は、水または重水に、回転による加速度が75G以上、好ましくは83G以上のエネルギ-密度を25分間以上、好ましくは30分間以上与える。この条件であれば水または重水から水素または重水素への変換効率は60%以上、好ましくは70%以上となる。
 本発明(1)の水素または重水素の製造方法を実施するには、上記したメカノケミカル反応が行える装置の反応容器中に、水または重水を入れ、触媒金属、好ましくは鉄、水酸化鉄(II)、クロム、酸化クロム(III)、ニッケル、マグネシウム、亜鉛から選ばれる1種または2種以上の触媒金属の存在下、撹拌媒体を作動させ、反応容器中の水または重水に、上記条件のエネルギ-を与えて、メカノケミカル反応を行い、水素または重水素を発生させればよい。そして反応容器中に発生した水素または重水素を常法に従って採取すればよい。
 本発明(1)を具体的に遊星型ボ-ルミル(ドイツ フリッチュ社製:プレミアムライン-7)を用いて行う場合について説明する。まず、この装置の反応容器に、容器容量の0.1~20質量%(以下、単に「%」という)程度の水または重水を入れ、これに1~100個程度の撹拌媒体(ボ-ル)と、反応容器や撹拌媒体に含まれる触媒金属に加えて、必要により触媒金属を有機化合物に対し0.01~100モル%程度入れ、概ね1050rpm以上、好ましくは 1100rpm以上で回転させ、概ね25分間以上、好ましくは30分間以上、撹拌を行えばよい。
 本発明(2)は、ボ-ルの表面の少なくとも一部に触媒金属を有するメカノケミカル反応用ボ-ルである。このボ-ルを用いることにより反応が触媒金属により促進され、効率良くメカノケミカル反応を行うことができ、反応時間の短縮ができる。
 このボ-ルはメカノケミカル反応において撹拌媒体となるものであり、ボ-ルの大きさは、反応容器の大きさにより適宜設定すればよく、特に限定するものではないが、直径が2~20mm程度のものが好ましい。ボ-ルの材質としては、例えば、ステンレススチ-ル、メノウ、アルミナ、タングステンカ-バイド、クロムスチ-ル、ジルコニア、窒化ケイ素、真鍮、テフロン等が挙げられる。これら材質の中でも鉄とクロム、ニッケル等との合金であるステンレススチ-ルが好ましい。
 そして、触媒金属としては、遷移元素の1種または2種以上が挙げられる。特に、水や重水から水素や重水素を製造するのに用いるのであれば、例えば、パラジウム、クロム、ニッケル、亜鉛、アルミニウム、マグネシウム、プラチナ、ルテニウム、ロジウム等の遷移金属やそれらの酸化物等が挙げられ、好ましくは、ニッケル、酸化ニッケル(II)、クロム、酸化クロム(III)、マグネシウム、亜鉛が挙げられる。また、特に、水や重水で有機化合物を水素化または重水素化するのに用いるのであれば、例えば、触媒金属、好ましくはニッケル、酸化ニッケル(II)、クロム、酸化クロム(III)、パラジウムが挙げられる。
 上記したボ-ル表面の少なくとも一部に触媒金属を有するようにするには、例えば、ボ-ルの表面にドリル等で穴を開け、そこに触媒金属の線等を埋め込む方法、触媒金属の塩の溶液にボ-ルを浸漬し、乾燥させてボ-ル表面に触媒金属を付着させる方法、触媒金属の粉末とボールを遊星型ボールミル装置で撹拌し、ボール表面に触媒金属を付着させる方法、めっきやスパッタにより触媒金属をボ-ル表面に析出させる方法等が挙げられる。これらの方法の中でもボ-ルの表面にドリル等で穴を開け、そこに触媒金属の線等を埋め込む方法がボールの再利用が容易であるため好ましい。触媒金属を埋め込む穴は少なくとも1mm程度の直径のもので深さが1mm程度のものが少なくとも1つあればよい。
 以上説明した本発明(2)のメカノケミカル反応用ボ-ル(以下、「ボ-ルA」という)は、メカノケミカル反応に用いることができる。
 メカノケミカル反応は、衝撃、摩擦等の機械的エネルギ-により反応物の活性を高めることにより行われるものである。本発明(2)のボ-ルAを用いることのできるメカノケミカル装置としては、反応容器と機械的エネルギ-を与えるための撹拌媒体であるボ-ルとを備えたものが挙げられ、例えば、遊星型ボ-ルミル、ボ-ルミル等が挙げられる。これらの中でも、反応容器と撹拌媒体が共に回転する遊星型ボ-ルミルを用いることが撹拌効率や与えるエネルギ-の点から好ましい。
 この遊星型ボ-ルミル装置は、金属やセラミックスの粉末を均一に混合したり、細かく粉砕する働きを持った機器であり、遊星型ボ-ルミル反応容器本体と雰囲気制御区画からなるものである。そして、金属やセラミックスの粉末(被粉砕体)と撹拌媒体となるボ-ルAをボ-ルミル反応容器の中に入れて、機器にセットした後、ボ-ルミル反応容器が雰囲気制御区画の中で自転運動しながら、遊星の動きに似た動きで公転運動することにより、粉末は短時間で効率よく混合・粉砕される。しかも、遊星型ボ-ルミル全体が雰囲気制御される構造となっているため、空気中では変質してしまうような粉末でも混合・粉砕が可能である。
 また、遊星型ボ-ルミル装置に用いられる反応容器としては、例えば、ステンレススチ-ル、メノウ、アルミナ、タングステンカ-バイド、クロムスチ-ル、ジルコニア、窒化ケイ素等の材質で形成されたものが挙げられる。これら材質の中でも鉄とクロム、ニッケル等との合金であるステンレススチ-ルが好ましい。遊星型ボ-ルミル装置に用いられる容器の大きさは、特に限定するものではないが、1~1,000cm程度のものである。特に好ましい遊星型ボ-ルミルの具体例としては、例えば、遊星型ボ-ルミル カルテットP-7(ドイツ フリッチュ社製)、遊星型ボ-ルミル プレミアムライン-7(ドイツ フリッチュ社製)、遊星型ボ-ルミル PM-100(ドイツ レッチェ社製)等を挙げることができる。
 上記したボ-ルAは特にメカノケミカル反応を利用した水素または重水素の製造方法、水素化または重水素化有機化合物の製造方法、ハロゲンを有する有機化合物の脱ハロゲン化方法等に好適に用いることができる。これらの方法について以下に説明する。
 ボ-ルAを用いた水素または重水素の製造方法(本発明(3))を実施するには、水または重水を、ボ-ルAを用いてメカノケミカル反応させればよい。具体的には、上記したメカノケミカル反応が行える装置の反応容器中に、ボ-ルAと水または重水を入れ、装置を作動させ、メカノケミカル反応を行い、水素または重水素を発生させればよい。そして最終的に反応容器中に蓄積された水素または重水素を常法に従って採取すればよい。
 以下、本発明(3)を具体的に遊星型ボ-ルミルを用いて行う場合について説明する。まず、遊星型ボ-ルミル装置の反応容器に、容器容量の0.1~20質量%(以下、単に「%」という)程度の水または重水を入れ、これにボ-ルAを単独または上記ボ-ルと通常用いられるメカノケミカル用ボ-ルを合わせて1~100個程度入れ、必要により触媒金属を追加し、0.1~12時間程度、好ましくは0.5~6時間程度、400~1,200rpm程度、好ましくは 800~1,100rpmで回転させ、撹拌を行えばよい。なお、撹拌の際には、必要に応じて回転方向を適宜逆転させることが好ましく、また、撹拌を連続で行う場合には休止時間を設けることが好ましい。なお、第一態様発明での水または重水から水素または重水素への変換効率は、使用する装置、反応条件等によっても相違するが、20~100%程度である。
 また、ボ-ルAを用いた水素化または重水素化有機化合物の製造方法(本発明(4))を実施するには、有機化合物と水または重水とを、ボ-ルAを用いてメカノケミカル反応させればよい。具体的には、上記したメカノケミカル反応が行える装置の反応容器中に、ボ-ルAと有機化合物と水または重水とを入れ、装置を作動させ、メカノケミカル反応を行い、有機化合物を水素化または重水素化させればよい。なお、有機化合物が水素化または重水素化されたことは、H NMR、GC/MS等の公知の方法で確認することができる。
 本発明(4)において用いられる有機化合物としては、水素化または重水素化される有機化合物であれば、特に限定するものではないが、例えば、二重結合、三重結合等の不飽和結合、アルデヒド基、ケトン基、ニトロ基、アジド基等の酸化度の高い置換基、ハロゲン等をその骨格中に有する有機化合物が挙げられる。
 また、本発明(4)において有機化合物と共に添加される水または重水は、水素または重水素を導くため、添加量により有機化合物の水素化または重水素化の程度を調整することができる。水素化または重水素化の程度を高くしたい場合は、水または重水の添加量を多く、水素化または重水素化の程度が低くて良い場合は、水または重水の添加量を控えめにすればよい。この水または重水の添加量は、有機化合物の水素化または重水素化のされやすさに大きく影響されるので、実験的に確認して実施すればよい。更に、本発明(4)において、有機化合物の水素化または重水素化の程度は、メカノケミカル反応における衝撃、摩擦等の機械的エネルギ-の制御によっても調整することができる。水素化または重水素化の程度を高くしたい場合は、ボ-ルAの大きさを大きく、ボ-ルAの数を多くまたは回転速度を早くすればよく、水素化または重水素化の程度が低くて良い場合は、ボ-ルAの大きさを小さく、ボ-ルAの数を少なくまたは回転速度を遅くすればよい。
 上記のようにして本発明(4)を実施すると、まず、反応容器中の水または重水が水素または重水素化に変換され、それにより有機化合物が水素化または重水素化される。なお、本発明(4)での有機化合物から水素化または重水素化有機化合物への変換効率は、使用する装置、反応条件等によっても相違するが、70~100%程度である。
 この本発明(4)によれば、有機化合物の骨格中の不飽和結合(二重結合あるいは三重結合)を飽和結合に変換できる他、酸化度の高い置換基(アルデヒド基、ケトン基、ニトロ基)を酸化度の低い置換基(ヒドロキシアルキル基、ヒドロキシ基、アミノ基)に変換することや、ハロゲン化物中のハロゲンを除去し、脱ハロゲン化物とすることも可能である。
 具体的に、以下の基本骨格を有する化合物であれば、水素化または重水素化により対応する還元体とすることができる。なお、以下では水素化または重水素化できる化合物も例示しているが、本発明(4)により水素化または重水素化できる化合物はこれらに限定されるものではない。また、これらの化合物の中で、メチル基は、アルキル基(官能基化脂肪鎖)を代表して記載され、ベンゼンもしくはフェニルはアリ-ル基[官能基化芳香環(ベンゼン、フラン、ピロ-ル、チオフェン等を含む)]の代表として記載されている。
<三重結合含有化合物>
 末端アルキン体:メチルアセチレン、エチニルベンゼン
 2置換アルキン体:ジフェニルアセチレン、ジメチルアセチレン、メチルフェニルアセチレン
<二重結合含有化合物>
 1置換アルケン体:フェニルエチレン、メチルエチレン
 2置換アルケン体:(E)-1,2-ジフェニルエチレン、(Z)-1,2-ジフェニルエチレン、(E)-1,2-ジメチルエチレン、(Z)-1,2-ジメチルエチレン、1,1-ジフェニルエチレン、1,1-ジメチルエチレン、1-メチル-1-フェニルエチレン、(E)-1-メチル-2-フェニルエチレン、(Z)-1-メチル-2-フェニルエチレン
 3置換アルケン体:1,1,2-トリフェニルエチレン、1,1,2-トリメチルエチレン、1,1-ジフェニル-2-メチルエチレン、1-フェニル-1,2-ジメチルエチレン
 4置換アルケン体:1,1,2,2-テトラフェニルエチレン、1,1,2,2-テトラメチルエチレン、1,1,2-トリフェニル-2-メチルエチレン、1,1-ジフェニル-2,2-ジメチルエチレン、1-フェニル-1,2,2-トリメチルエチレン、(E)-1,2-ジフェニル-1,2-ジメチルエチレン、(Z)-1,2-ジフェニル-1,2-ジメチルエチレン
 芳香環:ベンゼン、ビフェニル、ピリジン、フラン、ピロ-ル、チオフェン、ナフタレン、キノリン、アントラセン、イミダゾ-ル、インド-ル、ベンゾフラン、オキサゾ-ル
<カルボニル基含有化合物
 アルデヒド体:メチルアルデヒド、フェニルアルデヒド
 ケトン体:ジメチルケトン、ジフェニルケトン、メチルフェニルケトン
 イミン体:N-メチル-メチルイミン、N-フェニル-メチルイミン、N-メチル-ジメチルイミン、N-メチル-ジフェニルイミン、N-メチル-メチルフェニルイミン、N-フェニル-ジメチルイミン、N-フェニル-ジフェニルイミン、N-フェニル-メチルフェニルイミン、オキシム:N-ヒドロキシ-メチルイミン、N-ヒドロキシ-ジメチルイミン、N-ヒドロキシ-ジフェニルイミン、N-ヒドロキシ-メチルフェニルイミン
*:カルボニル基の酸素原子が他の原子や基に置換されたものを含む
<ニトロ基含有化合物>
 ニトロ体:ニトロメタン、ニトロベンゼン
<アジド基含有化合物>
 アジド体:アジ化メタン、アジ化ベンゼン
<ハロゲン含有化合物>
 フッ素体:メチルフルオライド、フルオロベンゼン
 クロロ体:メチルクロライド、クロロベンゼン
 ブロモ体:メチルブロマイド、ブロモベンゼン
 ヨウ素体:メチルヨ-ダイド、ヨ-ドベンゼン
<ベンジルエ-テル基含有化合物>
 ベンジルエ-テル体:フェニルメチルオキシメタン、フェニルメチルオキシベンゼン
 本発明(4)で水素化または重水素化される化合物と、その還元体の特に好ましい具体例を以下に示す。
(水素化または重水素化される化合物)    (還元体)
 エチニルベンゼン             エチルベンゼン
 ジフェニルアセチレン           1,2-ジフェニルエタン
 フェニルエチレン             エチルベンゼン
 (E)-1,2-ジフェニルエチレン    1,2-ジフェニルエタン
 (Z)-1,2-ジフェニルエチレン    1,2-ジフェニルエタン
 1,1-ジフェニルエチレン        1,1-ジフェニルエタン
 フェニルアルデヒド            ベンジルアルコ-ル
 メチルフェニルケトン           1-フェニルエタノ-ル
 ニトロベンゼン              アミノベンゼン
 アジ化ベンゼン              アミノベンゼン
 クロロベンゼン              ベンゼン
 フェニルメチルオキシベンゼン       フェノ-ル
 本発明(4)を遊星型ボ-ルミルを用いて行う場合の条件は、遊星型ボ-ルミル装置の反応容器に、容器容量の0.1~20%程度の水または重水と、0.01~20%程度の有機化合物を入れる以外は、基本的に本発明(3)と同様でよい。なお、本発明(4)で有機化合物から水素化または重水素化有機化合物への変換効率は、使用する装置、反応条件等によっても相違するが、70~100%程度となる。
 上記した本発明(4)により重水素化された有機化合物は、構造解析やメカニズムの解明に用いられるラベル化合物として有用である。また、本発明(4)により公知の有機化合物からなる薬物を重水素化した場合、薬物の薬効が高くなる可能性がある。
 また、本発明(5)である有機化合物の水素化または重水素化方法の実施は、本発明(4)と同様にして行えばよい。
 更に、本発明(6)である有機化合物の脱ハロゲン化方法の実施も、本発明(4)と同様にして行えばよい。特にこの方法はポリ塩化ビフェニル(PCB)のような人体に有害なハロゲンを有する有機化合物を脱ハロゲン化できるので、これらの有機化合物の無害化に利用できる。
 また更に、本発明(7)~(10)については、本発明(2)のボ-ルAを、触媒金属が実質的に含まれていないメカノケミカル反応用ボ-ル(以下、「ボ-ルB」という)に代え、パラジウム、クロム、ニッケル、亜鉛、アルミニウム、マグネシウム、プラチナ、ルテニウム、ロジウムから選ばれる遷移金属またはこれら遷移金属の酸化物から選ばれる1種または2種以上の触媒金属、好ましくはニッケルまたはクロムから選ばれる触媒金属を別途反応容器中に添加する以外は、基本的に本発明(3)~(8)と同様でよい。
 本発明(7)~(10)において、ボ-ルBは、ジルコニア、アルミナ、テフロン、真鍮等の材質で形成されたものが挙げられる。なお、本発明においてボ-ルに触媒金属が実質的に含まれていないとは含有量が0.01%以下であることをいう。
 本発明(7)~(10)において、触媒金属は、メカノケミカル反応に用いられる反応容器中に、粉末、ワイヤ-、ホイル等の形態で基質に対し0.1当量以上添加すればよい。
 本発明(7)~(10)では、メカノケミカル反応に用いるボ-ルと触媒が別々なため、水素または重水素、水素化または重水素化した有機化合物を生成する反応の制御が容易になる上、水、重水、有機化合物と触媒金属との接触回数が増すため、低回転数下でも短時間で反応を完結させることができる。
 次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、以下の実施例で使用した遊星型ボ-ルミルは、下記仕様のものである。なお、実施例で用いられた遊星型ボ-ルミルをある回転数で作動させることにより発生する加速度は、以下式(1)で計算され、具体的に実施例1で用いた遊星型ボ-ルミルにおける計算結果は表1に示される。また、以下の実施例では、特に記載されていない場合であっても、生成物の構造等はGC/MSおよびH NMRで確認している。
<遊星型ボ-ルミル>
 (実施例1)
  使用機器:ドイツ フリッチュ社製 遊星型ボ-ルミル
       プレミアムライン-7
        自転:公転比率=1:-2
        公転半径 0.07m
        容 器:内容量 80mL
            材質  ステンレススチ-ル(SUS304)
            半径  0.0240m
        ステンレススチ-ル(SUS304)の組成;
         Fe(approx.) 67~70%、
         C  0.12%、
         Si 1%、
         Mn 2%、
         P  0.06%、
         S  0.15~0.35%、
         Cr 17~19%、
         Ni 8~10%
 (実施例3、5、7~12)
  使用機器:ドイツ フリッチュ社製 遊星型ボ-ルミル
       カルテットP-7
        自転:公転比率=1:-2
        公転半径 0.067m
        容 器:内容量 12mL
            材質  ステンレススチ-ル(SUS304)
            半径  0.0130m
        ステンレススチ-ル(SUS304)の組成;
         Fe(approx.) 67~70%、
         C  0.12%、
         Si 1%、
         Mn 2%、
         P  0.06%、
         S  0.15~0.35%、
         Cr 17~19%、
         Ni 8~10%
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-T000002
実 施 例 1
   水素発生条件の検討:
 遊星型ボ-ルミル容器(80mL)に、蒸留水(Wako 046-16971)270μL(15mmol)と、ステンレススチ-ル(SUS304)製のボ-ル(直径5~6mm)を100個入れた後、蓋をし、遊星型ボ-ルミル装置で5分~30分間、400~1100rpmで回転させ、撹拌した。攪拌終了後の容器内のガスを水上置換により捕集し、その組成をGC/TCD(島津製作所製:GC-2014)で分析した。その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000003
 以上の結果から、30分間の処理時間において、600rpmで気体の捕集量が急激に増加し、800rpmで気体中の水素比率が増加し、1100rpmで行うことにより急激に気体中の水素比率が高くなることが分かった。
実 施 例 2
   パラジウム入りボ-ルの作製:
 遊星型ボ-ルミル装置に用いるステンレススチ-ル(SUS304)製のボ-ル(直径5~6mm)(以下、「SUS-Ball」ということもある)にドリルで直径1mm、深さ1mmの穴を開け、そこに直径1mm、長さ1mmのパラジウム製のワイヤを埋め込み、パラジウム入りボ-ルを得た(以下、このボ-ルを「Pd-Ball」ということもある)。
実 施 例 3
   ジフェニルアセチレンの水素添加反応:
 遊星型ボ-ルミル容器(12mL)に、ジフェニルアセチレン(1)89.1mg(0.50mmol)、蒸留水270μL(30eq.)を入れ、これに以下の割合で実施例2で作製したパラジウム入りボ-ルと、ステンレススチ-ル(SUS304)製のボ-ル(直径5~6mm)を合計で50個となるよう加えた後、蓋をし、遊星型ボ-ルミル装置で3時間、800rpm(30分毎に反転)で回転させ、撹拌した。3時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮し、反応生成物を得た。これをGC/MSおよびH NMRで確認したところ、ジフェニルアセチレン(1)、1,2-ジフェニルエタン(2)、1-シクロヘキシル-2-フェニルエタン(3)および1,2-ジシクロヘキシルエタン(4)を含む混合物であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-T000005
 以上の結果から、SUS-Ballのみの場合と比較すると、1つでもPd-Ballを添加することで反応性が顕著に高まることが分かった。また、Pd-Ballは繰り返して利用できることも分かった。
実 施 例 4
   パラジウムコ-ティングボ-ルの作製:
 遊星型ボ-ルミル装置に用いるステンレススチ-ル(SUS304)製のボ-ル(直径5~6mm)を、メタノ-ル30mlに酢酸パラジウム158.1mgを溶解した溶液に、1週間浸漬し、ボ-ル表面が0価のパラジウムでコ-ティングされたボ-ルを得た(以下、このボ-ルを「Pd-coated Ball」ということもある)。
実 施 例 5
   4-クロロ安息香酸の水素添加反応:
 遊星型ボ-ルミル容器(12mL)に、4-クロロ安息香酸(5)78.3mg(0.50mmol)、蒸留水 200μL(22eq.)、炭酸カリウム 165mg(2.4eq.)を入れ、これに実施例4で作製したパラジウムコ-ティングボ-ルを50個入れた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間経過後、反応生成物を実施例3と同様に処理して得、分析した。反応生成物は4-クロロ安息香酸(5)と安息香酸(6)を含む混合物であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-T000007
 以上の結果より、SUS-Ballではほとんど進行しない脱塩素化反応が、Pd-coated Ballを用いることで収率良く進行した。
実 施 例 6
   クロムコ-ティングボ-ルの作製:
 遊星型ボ-ルミル容器(12mL)に、ジルコニア製のボ-ル(直径5~6mm)を50個とクロム粉末780mg(15mmol)を入れた後、蓋をし、遊星型ボ-ルミル装置で3時間、800rpm(30分毎に反転)で回転させ、撹拌し、ボール表面がクロムでコ-ティングされたボ-ルを得た。
実 施 例 7
   ジフェニルアセチレンの水素添加反応:
 遊星型ボ-ルミル容器(12mL)に、ジフェニルアセチレン89.1mg(0.50mmol)、蒸留水270μL(30eq.)を入れ、これに実施例6で作製したクロムコーティングボ-ル(直径5~6mm)を50個入れた後、蓋をし、遊星型ボ-ルミル装置で3時間、800rpm(30分毎に反転)で回転させ、撹拌した。3時間経過後、反応生成物を実施例3と同様に処理して得、分析した。反応生成物は、ジフェニルアセチレン、1,2-ジフェニルエタン、1-シクロヘキシル-2-フェニルエタンおよび1,2-ジシクロヘキシルエタンを14:4:20:62で含む混合物であった。
実 施 例 8
   触媒金属の検討:
 遊星型ボ-ルミル容器(12mL)に、ジフェニルアセチレン(1)89.1mg(0.50mmol)、蒸留水270μL(30eq.)を入れ、これに以下の種類のボ-ル(直径5~6mm)を50個単独またはこれに添加物を加えた後、蓋をし、遊星型ボ-ルミル装置で3時間、800rpm(30分毎に反転)で回転させ、撹拌した。3時間経過後、反応生成物を実施例3と同様に処理して得、分析した。反応生成物は、ジフェニルアセチレン(1)、1,2-ジフェニルエタン(2)、1-シクロヘキシル-2-フェニルエタン(3)および1,2-ジシクロヘキシルエタン(4)を含む混合物であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-T000009
 以上の結果より、触媒金属が含まれていないジルコニア製のボ-ルをメカノケミカル反応に用いた場合であっても、ニッケルやクロム、マグネシウム、亜鉛等の触媒金属を添加することにより水から水素が発生し、有機化合物の水素化が行えることが分かった。
実 施 例 9
   4-ニトロベンゾフェノンの水素添加反応による4-アミノベンゾ
   フェノンの合成:
 遊星型ボ-ルミル容器(12mL)に、4-ニトロベンゾフェノン(7)91.1mg(0.50mmol)、蒸留水270μL(15mmol)を入れ、これにジルコニア製のボ-ル(直径5~6mm)を50個とクロム粉末78mg(1.5mmol)を加えた後、蓋をし、遊星型ボ-ルミル装置で3時間、800rpm(30分毎に反転)で回転させ、撹拌した。3時間経過後、遊星型ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮後、H NMRより4-アミノベンゾフェノン(8)が得られたことを確認した。収率は84%であった。この反応は、下式で示される。
Figure JPOXMLDOC01-appb-C000010
実 施 例 10
   1-メトキシ-4-ニトロベンゼンの水素添加反応による4-アミノ
   -1-メトキシベンゼンの合成:
 遊星型ボ-ルミル容器(12mL)に、1-メトキシ-4-ニトロベンゼン(9)76.6mg(0.50mmol)、蒸留水270μL(15mmol)を入れ、これにジルコニア製のボ-ル(直径5~6mm)を50個とクロム粉末78mg(1.5mmol)を加えた後、蓋をし、遊星型ボ-ルミル装置で3時間、800rpm(30分毎に反転)で回転させ、撹拌した。3時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮後、H NMRより4-アミノ-1-メトキシベンゼン(10)が得られたことを確認した。収率は17%であった。この反応式は、下式で示される。
Figure JPOXMLDOC01-appb-C000011
実 施 例 11
   ジフェニルアセチレンの重水素添加反応:
 遊星型ボ-ルミル容器(12mL)に、ジフェニルアセチレン(1)89.1mg(0.50mmol)、重水270μL(30eq.)を入れ、これにジルコニア製のボ-ル(直径5~6mm)を50個とクロム粉末78mg(1.5mmol)を加えた後、蓋をし、遊星型ボ-ルミル装置で3時間、800rpm(30分毎に反転)で回転させ、撹拌した。3時間経過後、遊星型ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮後、H NMRより、重水素化アルケン(2-d、3-d)および重水素化アルカン(4-d)が得られたことを確認した。収率は61%であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000012
 以上の結果より、触媒金属が含まれていないジルコニア製のボ-ルと触媒金属であるクロムの粉末により有機化合物の重水素化が行えることが分かった。
実 施 例 12
   4-クロロ安息香酸メチルの水添加反応:
 遊星型ボ-ルミル容器(12mL)に、4-クロロ安息香酸メチル(11)85.3mg(0.50mmol)、蒸留水 270μL(30eq.)を入れ、これにジルコニア製のボ-ル(直径5~6mm)を50個とクロム粉末78mg(1.5mmol)を加えた後、蓋をし、遊星型ボ-ルミル装置で3時間、800rpm(30分毎に反転)で回転させ、撹拌した。3時間経過後、3時間経過後、遊星型ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮後、H NMRより、4-クロロ安息香酸メチル(11)および安息香酸メチル(12)が得られたことを確認した。収率は11%であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000013
 以上の結果より、触媒金属が含まれていないジルコニア製のボ-ルと触媒金属であるクロムの粉末によりハロゲンを有する有機化合物から脱ハロゲンできることが分かった。
 本発明は、水素または重水素の発生、有機化合物の水素化または重水素化反応等に有利に利用することができる。

Claims (15)

  1.  水または重水を、触媒金属の存在下、メカノケミカル反応させる水素または重水素の製造方法であって、水または重水に、回転による加速度が75G以上のエネルギ-密度を25分間以上与えることを特徴とする水素または重水素の製造方法。
  2.  メカノケミカル反応を遊星型ボ-ルミルで行う請求項1記載の水素または重水素の製造方法。
  3.  触媒金属が、遷移金属の1種または2種以上である請求項1または2記載の水素または重水素の製造方法。
  4.  水または重水から水素または重水素への変換効率が60%以上である請求項1~3の何れかに記載の水素または重水素の製造方法。
  5.  ボ-ルの表面の少なくとも一部に触媒金属を有するメカノケミカル反応用ボ-ル。
  6.  ボ-ルが、ステンレススチ-ル、メノウ、アルミナ、タングステンカ-バイド、クロムスチ-ル、ジルコニアまたは窒化ケイ素から選ばれる材質で形成されたものである請求項5記載のメカノケミカル反応用ボ-ル。
  7.  触媒金属が、パラジウム、クロム、ニッケル、亜鉛、アルミニウム、マグネシウム、プラチナ、ルテニウムおよびロジウムから選ばれる遷移金属またはこれら遷移金属の酸化物から選ばれる1種または2種以上である請求項5記載のメカノケミカル反応用ボ-ル。
  8.  水または重水を、請求項5~7の何れかに記載のメカノケミカル反応用ボ-ルを用いてメカノケミカル反応させることを特徴とする水素または重水素の製造方法。
  9.  有機化合物と、水または重水とを、請求項5~7の何れかに記載のメカノケミカル反応用ボ-ルを用いてメカノケミカル反応させることを特徴とする水素化または重水素化有機化合物の製造方法。
  10.  有機化合物と、水または重水とを、請求項5~7の何れかに記載のメカノケミカル反応用ボ-ルを用いてメカノケミカル反応させることを特徴とする有機化合物の水素化または重水素化方法。
  11.  ハロゲンを有する有機化合物と、水または重水とを、請求項5~7の何れかに記載のメカノケミカル反応用ボ-ルを用いてメカノケミカル反応させることを特徴とするハロゲンを有する有機化合物の脱ハロゲン化方法。
  12.  水または重水を、触媒金属が実質的に含まれていないメカノケミカル反応用ボ-ルとパラジウム、クロム、ニッケル、亜鉛、アルミニウム、マグネシウム、プラチナ、ルテニウムおよびロジウムから選ばれる遷移金属またはこれら遷移金属の酸化物から選ばれる1種または2種以上とを用いてメカノケミカル反応させることを特徴とする水素または重水素の製造方法。
  13.  有機化合物と、水または重水とを、触媒金属が実質的に含まれていないメカノケミカル反応用ボ-ルとパラジウム、クロム、ニッケル、亜鉛、アルミニウム、マグネシウム、プラチナ、ルテニウムおよびロジウムから選ばれる遷移金属またはこれら遷移金属の酸化物から選ばれる1種または2種以上とを用いてメカノケミカル反応させることを特徴とする水素化または重水素化有機化合物の製造方法。
  14.  有機化合物と、水または重水とを、触媒金属が実質的に含まれていないメカノケミカル反応用ボ-ルとパラジウム、クロム、ニッケル、亜鉛、アルミニウム、マグネシウム、プラチナ、ルテニウムおよびロジウムから選ばれる遷移金属またはこれら遷移金属の酸化物から選ばれる1種または2種以上とを用いてメカノケミカル反応させることを特徴とする有機化合物の水素化または重水素化方法。
  15.  ハロゲンを有する有機化合物と、水または重水とを、触媒金属が実質的に含まれていないメカノケミカル反応用ボ-ルとパラジウム、クロム、ニッケル、亜鉛、アルミニウム、マグネシウム、プラチナ、ルテニウムおよびロジウムから選ばれる遷移金属またはこれら遷移金属の酸化物から選ばれる1種または2種以上とを用いてメカノケミカル反応させることを特徴とするハロゲンを有する有機化合物の脱ハロゲン化方法。
     
PCT/JP2013/053016 2012-02-17 2013-02-08 水素または重水素の製造方法、水素化または重水素化有機化合物の製造方法、有機化合物の水素化または重水素化方法、ハロゲンを有する有機化合物の脱ハロゲン化方法、メカノケミカル反応用ボ-ル WO2013121997A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/378,877 US9371272B2 (en) 2012-02-17 2013-02-08 Method for producing hydrogen or heavy hydrogens, method for producing hydrogenated (protiated, deuterated or tritiated) organic compound, method for hydrogenating (protiating, deuterating or tritiating) organic compound, method for dehalogenating organic compound having halogen, and ball for use in mechanochemical reaction
EP13748505.8A EP2816008B1 (en) 2012-02-17 2013-02-08 Method for producing hydrogen or deuterium
JP2013558670A JP6334173B2 (ja) 2012-02-17 2013-02-08 水素化または重水素化有機化合物の製造方法、有機化合物の水素化または重水素化方法、ハロゲンを有する有機化合物の脱ハロゲン化方法
KR1020147023428A KR102003095B1 (ko) 2012-02-17 2013-02-08 수소 또는 중수소의 제조 방법
CN201380009787.1A CN104114480B (zh) 2012-02-17 2013-02-08 氢或重氢的制造方法、氢化或重氢化有机化合物的制造方法、有机化合物的氢化或重氢化方法、具有卤素的有机化合物的脱卤化方法、机械化学反应用球
BR112014020187-0A BR112014020187B1 (pt) 2012-02-17 2013-02-08 Método para produção de hidrogênio ou hidrogênios pesados, método para produção de composto orgânico (protiado, deuterado ou tritiado) hidrogenado, método para hidrogenação (protiação, deuteração ou tritiação) de composto orgânico, método para desalogenação do composto orgânico com halogênio e esfera para uso em reação mecanoquímica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-032585 2012-02-17
JP2012032585 2012-02-17

Publications (1)

Publication Number Publication Date
WO2013121997A1 true WO2013121997A1 (ja) 2013-08-22

Family

ID=48984109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053016 WO2013121997A1 (ja) 2012-02-17 2013-02-08 水素または重水素の製造方法、水素化または重水素化有機化合物の製造方法、有機化合物の水素化または重水素化方法、ハロゲンを有する有機化合物の脱ハロゲン化方法、メカノケミカル反応用ボ-ル

Country Status (8)

Country Link
US (1) US9371272B2 (ja)
EP (1) EP2816008B1 (ja)
JP (2) JP6334173B2 (ja)
KR (1) KR102003095B1 (ja)
CN (1) CN104114480B (ja)
BR (1) BR112014020187B1 (ja)
TW (1) TW201402453A (ja)
WO (1) WO2013121997A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015115410A1 (ja) * 2014-01-28 2017-03-23 株式会社日本触媒 水素化反応方法
WO2019172152A1 (ja) * 2018-03-03 2019-09-12 国立大学法人広島大学 水素の製造方法
JP2020062618A (ja) * 2018-10-19 2020-04-23 キヤノン株式会社 炭化水素生成方法及び炭化水素生成装置
WO2023167321A1 (ja) * 2022-03-04 2023-09-07 国立大学法人北海道大学 メカノケミカル反応用添加剤、メカノケミカル方法、配位子化合物及び錯体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI534131B (zh) 2014-11-27 2016-05-21 財團法人工業技術研究院 氫化4,4’-二胺基二苯甲烷的觸媒與方法
CN107344096A (zh) * 2016-05-06 2017-11-14 北京化工大学 一种能分离和分析氢同位素的气相色谱填料及其制备方法
CN112811392B (zh) * 2021-01-27 2021-12-28 苏州大学 氘气制备方法及以其作为氘源参与的氘代反应
CN114213205B (zh) * 2021-12-17 2023-12-22 安徽秀朗新材料科技有限公司 一种全氘代苯的制备方法
KR102572816B1 (ko) * 2022-07-15 2023-08-31 (주)한빛레이저 산소 동위원소 농축수 제조용 촉매 및 상기 촉매를 이용한 산소 동위원소 농축수의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047026A (ja) * 1999-08-10 2001-02-20 Sumitomo Metal Ind Ltd 有害物に汚染された物質の無害化処理方法
JP2004123517A (ja) * 2002-09-11 2004-04-22 Masao Watanabe 摩擦腐食反応を利用した水素ガス製造方法
JP2007031169A (ja) * 2005-07-22 2007-02-08 National Institute For Materials Science 水素の製造方法及び二酸化炭素の固定化方法
JP2008273758A (ja) * 2007-04-26 2008-11-13 Hitachi Maxell Ltd 水素発生材料組成物および水素発生装置
JP2010120825A (ja) * 2008-11-21 2010-06-03 Wakasawan Energ Kenkyu Center 海綿鉄を再生可能な循環型水素製造方法
WO2012023546A1 (ja) * 2010-08-18 2012-02-23 シオノケミカル株式会社 水素または重水素の製造方法およびそれを利用した有機化合物の水素化または重水素化

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742297C2 (de) * 1997-09-25 2000-06-29 Volker Birke Verfahren zur reduktiven Dehalogenierung von halogenorganischen Stoffen
JP2002102383A (ja) * 2000-09-27 2002-04-09 Taiheiyo Cement Corp 有機ハロゲン化合物の処理方法
JP2003154381A (ja) * 2001-11-26 2003-05-27 Shingo Kaneko 触媒反応・オゾン反応による浄水処理方法及びその浄水処理装置
JP4264629B2 (ja) * 2002-08-02 2009-05-20 ソニー株式会社 磁気テープの処理方法
AU2003282456A1 (en) * 2002-12-03 2004-06-23 Dong-Gak Choi Apparatus for food waste treatment
JPWO2005053854A1 (ja) 2003-12-04 2007-12-06 勇夫 高石 水素の製造方法と装置
JP2005248027A (ja) * 2004-03-04 2005-09-15 Kyoto Univ ポリマーの重水素化方法
JP3785556B1 (ja) * 2005-02-07 2006-06-14 財団法人ひろしま産業振興機構 有機ハロゲン化合物の無害化処理方法及び無害化処理装置
JP2008194060A (ja) * 2006-04-14 2008-08-28 Rabotekku Kk 有機ハロゲン化合物の無害化処理装置
JP2007326742A (ja) * 2006-06-08 2007-12-20 Hitachi Maxell Ltd 水素製造方法
JP2008207044A (ja) * 2006-10-06 2008-09-11 Koji Mitoma 有機ハロゲン化合物を含有する固体の無害化方法
NO332015B1 (no) 2007-05-31 2012-05-21 Rotoboost As Anordning for produksjon av ren hydrogen
JP2010260778A (ja) * 2009-05-07 2010-11-18 Gtr:Kk 水素の製造方法と装置
JP5497543B2 (ja) * 2010-06-09 2014-05-21 愛三工業株式会社 水素発生装置
JP2012017219A (ja) * 2010-07-07 2012-01-26 Hitachi Maxell Energy Ltd 水素製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047026A (ja) * 1999-08-10 2001-02-20 Sumitomo Metal Ind Ltd 有害物に汚染された物質の無害化処理方法
JP2004123517A (ja) * 2002-09-11 2004-04-22 Masao Watanabe 摩擦腐食反応を利用した水素ガス製造方法
JP2007031169A (ja) * 2005-07-22 2007-02-08 National Institute For Materials Science 水素の製造方法及び二酸化炭素の固定化方法
JP2008273758A (ja) * 2007-04-26 2008-11-13 Hitachi Maxell Ltd 水素発生材料組成物および水素発生装置
JP2010120825A (ja) * 2008-11-21 2010-06-03 Wakasawan Energ Kenkyu Center 海綿鉄を再生可能な循環型水素製造方法
WO2012023546A1 (ja) * 2010-08-18 2012-02-23 シオノケミカル株式会社 水素または重水素の製造方法およびそれを利用した有機化合物の水素化または重水素化

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015115410A1 (ja) * 2014-01-28 2017-03-23 株式会社日本触媒 水素化反応方法
WO2019172152A1 (ja) * 2018-03-03 2019-09-12 国立大学法人広島大学 水素の製造方法
JPWO2019172152A1 (ja) * 2018-03-03 2021-04-30 国立大学法人広島大学 水素の製造方法
JP7333078B2 (ja) 2018-03-03 2023-08-24 国立大学法人広島大学 水素の製造方法
JP2020062618A (ja) * 2018-10-19 2020-04-23 キヤノン株式会社 炭化水素生成方法及び炭化水素生成装置
US11981614B2 (en) 2018-10-19 2024-05-14 Canon Kabushiki Kaisha Method of producing hydrocarbon and apparatus for producing hydrocarbon
WO2023167321A1 (ja) * 2022-03-04 2023-09-07 国立大学法人北海道大学 メカノケミカル反応用添加剤、メカノケミカル方法、配位子化合物及び錯体

Also Published As

Publication number Publication date
CN104114480B (zh) 2017-06-13
JPWO2013121997A1 (ja) 2015-05-11
US20150025264A1 (en) 2015-01-22
KR20140126335A (ko) 2014-10-30
EP2816008B1 (en) 2021-01-06
JP2017141157A (ja) 2017-08-17
TW201402453A (zh) 2014-01-16
EP2816008A1 (en) 2014-12-24
TWI562958B (ja) 2016-12-21
JP6408626B2 (ja) 2018-10-17
US9371272B2 (en) 2016-06-21
BR112014020187B1 (pt) 2021-08-31
KR102003095B1 (ko) 2019-07-23
BR112014020187A2 (pt) 2017-06-20
JP6334173B2 (ja) 2018-06-06
BR112014020187A8 (pt) 2019-01-29
EP2816008A4 (en) 2016-04-20
CN104114480A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
JP6408626B2 (ja) 水素または重水素の製造方法
JP5894117B2 (ja) 水素または重水素の製造方法およびそれを利用した有機化合物の水素化または重水素化
Wang et al. Sulfurized graphene as efficient metal-free catalysts for reduction of 4-nitrophenol to 4-aminophenol
Liu et al. Hydrogenation of p-chloronitrobenzene on lanthanum-promoted NiB nanometal catalysts
Cárdenas-Lizana et al. Selective gas phase hydrogenation of p-chloronitrobenzene over Pd catalysts: role of the support
Abazari et al. Pt/Pd/Fe trimetallic nanoparticle produced via reverse micelle technique: synthesis, characterization, and its use as an efficient catalyst for reductive hydrodehalogenation of aryl and aliphatic halides under mild conditions
JP2009046398A (ja) ナフタレン類水素化触媒
Nesbitt et al. Size Effect in Hydrogenation of Nitroaromatics Using Support-Immobilized Atomically Precise Gold Clusters
Ran et al. Critical Review of Pd-Catalyzed Reduction Process for Treatment of Waterborne Pollutants
Movahed et al. Ruthenium nickel bimetallic nanoparticles embedded in nitrogen-doped carbon mesoporous spheres as a superior catalyst for the hydrogenation of toxic nitroarenes
JP2023139475A (ja) 水素化反応物の製造方法及びメカノケミカル反応装置
CN114345370B (zh) 一种光催化芳香类烯烃和卤代烃还原交叉偶联的方法
Hariprasad et al. Supremacy of in situ doping over surface loading technique for the preparation of alkali metal-promoted tellurates as efficient reusable catalysts to approach hydroxylation and dehalogenation of aryl halides
Lamey Rational Catalyst Design for Selective Hydrogenations: Nitroarenes and Alkynes as Case Studies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748505

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013558670

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14378877

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147023428

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013748505

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014020187

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014020187

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140814