WO2012023546A1 - 水素または重水素の製造方法およびそれを利用した有機化合物の水素化または重水素化 - Google Patents

水素または重水素の製造方法およびそれを利用した有機化合物の水素化または重水素化 Download PDF

Info

Publication number
WO2012023546A1
WO2012023546A1 PCT/JP2011/068535 JP2011068535W WO2012023546A1 WO 2012023546 A1 WO2012023546 A1 WO 2012023546A1 JP 2011068535 W JP2011068535 W JP 2011068535W WO 2012023546 A1 WO2012023546 A1 WO 2012023546A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball mill
organic compound
reaction
mmol
water
Prior art date
Application number
PCT/JP2011/068535
Other languages
English (en)
French (fr)
Inventor
弘尚 佐治木
泰也 門口
善成 澤間
近藤 伸一
Original Assignee
シオノケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シオノケミカル株式会社 filed Critical シオノケミカル株式会社
Priority to JP2012529597A priority Critical patent/JP5480386B2/ja
Priority to KR1020187000169A priority patent/KR101899291B1/ko
Priority to US13/817,637 priority patent/US8871980B2/en
Priority to KR1020137003211A priority patent/KR101817820B1/ko
Priority to CN201180040072.3A priority patent/CN103068721B/zh
Priority to BR112013003046A priority patent/BR112013003046A2/pt
Priority to EP11818187.4A priority patent/EP2607300B1/en
Priority to EP20166285.5A priority patent/EP3689817A1/en
Publication of WO2012023546A1 publication Critical patent/WO2012023546A1/ja
Priority to US14/459,673 priority patent/US9676622B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/10Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B4/00Hydrogen isotopes; Inorganic compounds thereof prepared by isotope exchange, e.g. NH3 + D2 → NH2D + HD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B31/00Reduction in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/02Reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/06Decomposition, e.g. elimination of halogens, water or hydrogen halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/26Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/20Preparation of ethers by reactions not forming ether-oxygen bonds by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/24Preparation of ethers by reactions not forming ether-oxygen bonds by elimination of halogens, e.g. elimination of HCl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for producing hydrogen or deuterium using a mechanochemical reaction and to hydrogenation or deuteration of an organic compound using the method.
  • hydrogen is expected to be an alternative energy because it does not emit exhaust gas other than water, such as particulate matter and carbon dioxide, even if it is burned.
  • Stacked hydrogen vehicles are on sale, and are used for rocket fuel and fuel cells.
  • this hydrogen is produced in large quantities as a by-product of hydrocarbon steam reforming and partial oxidation (hydrocarbon gas decomposition method).
  • methane gas in natural gas, paraffins, ethylene / propylene, etc. are reacted with water vapor using nickel as a catalyst at a high temperature to form hydrogen and carbon monoxide.
  • carbon dioxide and hydrogen gas are reacted.
  • hydrogen generated as a by-product of seawater electrolysis in the soda and salt industries may be used.
  • the hydrogenation reaction in which an organic compound is reacted with hydrogen is a reaction widely used in organic synthetic chemistry, and many useful compounds are produced by this method.
  • There are many known hydrogenation reactions such as reactions using alkali metals, reactions using metal hydrides or metal hydrogen complexes, reactions using diborane or hydrazine, and reactions using catalytic hydrogenation. Yes.
  • the method using an alkali metal, metal hydride, metal hydrogen complex, diborane, hydrazine, etc. has a problem that the cost of the reaction reagent to be used is high, and that they are dangerous. In addition, there is a problem that it is necessary to use a special metal catalyst even in a method using catalytic hydrogenation.
  • the present invention has been made in view of the above circumstances, and without requiring a large-scale apparatus, can be easily obtained without using a method for easily obtaining hydrogen, without using an expensive reaction reagent or a special catalyst. It is an object of the present invention to provide a method capable of performing a hydrogenation reaction.
  • the inventors of the present invention have conducted many experiments on organic synthesis reactions, and have found that the organic compound added is hydrogenated by reacting the organic compound and water in a specific reaction system. It was also found that hydrogen gas is generated when the above reaction is carried out only with water. Furthermore, the present invention was completed by confirming that deuteration of organic compounds and generation of deuterium gas can be carried out using heavy water instead of water.
  • the present invention is a method for producing hydrogen or deuterium, characterized in that water or heavy water is subjected to a mechanochemical reaction in the presence of a catalytic metal.
  • the present invention is also a method for producing a hydrogenated or deuterated organic compound, characterized in that an organic compound and water or heavy water are subjected to a mechanochemical reaction in the presence of a catalytic metal.
  • the present invention is a method for hydrogenating or deuterating an organic compound, wherein a mechanochemical reaction is performed between the organic compound and water or heavy water in the presence of a catalytic metal.
  • the present invention is a method for dehalogenating a halogen-containing organic compound, characterized by causing a mechanochemical reaction between a halogen-containing organic compound and water or heavy water in the presence of a catalytic metal.
  • the method for producing hydrogen or deuterium of the present invention it is possible to obtain hydrogen or deuterium from water or heavy water without requiring a large-scale device and causing problems such as waste.
  • hydrogenation or deuterium can be easily performed without using an expensive reaction reagent or catalyst. It is possible to obtain a modified organic compound.
  • an organic compound deuterated by a method for producing a deuterated organic compound or a method for deuterating an organic compound is useful as a label compound.
  • a drug composed of a known organic compound is deuterated, the medicinal effect may be increased.
  • the dehalogenation method of the present invention it is possible to easily dehalogenate an organic compound having a halogen without using an expensive reaction reagent or catalyst.
  • this method can be used to detoxify organic compounds having halogens harmful to the human body such as polychlorinated biphenyl (PCB).
  • PCB polychlorinated biphenyl
  • invention relating to a method for producing hydrogen or deuterium of the present invention (hereinafter sometimes referred to as “first aspect invention”), invention relating to a method for producing a hydrogenated or deuterated organic compound (hereinafter referred to as “second aspect invention”)
  • first aspect invention invention relating to a method for producing a hydrogenated or deuterated organic compound
  • second aspect invention A method for hydrogenating or deuterating an organic compound (hereinafter sometimes referred to as “the third aspect invention”) and a dehalogenation method (hereinafter sometimes referred to as “the fourth aspect invention”), It is essential to cause a mechanochemical reaction in the presence of a catalytic metal.
  • heavy water refers to hydrogen ( 1 H) isotopes of 2 H (D) and 3 H (T), oxygen ( 16 O) isotopes of 17 O and 18 O, and combinations thereof.
  • D 2 O, T 2 O and the like can be mentioned.
  • deuterium is hydrogen composed of an isotope of hydrogen, and examples thereof include D 2 and T 2 .
  • deuteration is the replacement of part or all of hydrogen in normal hydrogenation with D or T.
  • the mechanochemical reaction carried out in these inventions is carried out by increasing the activity of the reactant by mechanical energy such as impact and friction, and is usually carried out in an apparatus capable of performing a mechanochemical reaction.
  • an apparatus capable of performing a mechanochemical reaction.
  • an apparatus include a reactor equipped with a reaction vessel and a stirring medium for providing mechanical energy.
  • a ball mill such as a planetary ball mill or a mixer mill, or a mixing device such as a shaker. Machine.
  • This planetary ball mill device is a device that functions to uniformly mix or finely pulverize metal or ceramic powder, and is composed of a planetary ball mill reaction vessel body and an atmosphere control section. Then, after putting a metal or ceramic powder (a material to be crushed) and a ball as a stirring medium into the ball mill reaction vessel and setting it in the equipment, the ball mill reaction vessel is placed in the atmosphere control section. The powder is mixed and pulverized efficiently in a short time by revolving with the movement similar to the movement of the planet while rotating. In addition, since the entire planetary ball mill has a structure in which the atmosphere is controlled, it is possible to mix and pulverize powder that may be altered in air.
  • reaction vessel used in the planetary ball mill apparatus and the stirring medium such as stainless steel, agate, alumina, tungsten carbide, chrome steel, zirconia, and silicon nitride.
  • the thing formed with the material is mentioned.
  • stainless steel which is an alloy of iron and chromium, nickel or the like, is preferable.
  • the size of the container used in the planetary ball mill apparatus is not particularly limited, but is about 1 to 1,000 cm 3 .
  • the size of the ball is not particularly limited, but the diameter is about 2 to 20 mm.
  • particularly preferred planetary ball mills include, for example, a planetary ball mill quartet P-7 (manufactured by Friitch Germany), a planetary ball mill premium line-7 (manufactured by Frisch Germany), and a planetary ball mill. And ball mill PM-100 (manufactured by Lecce, Germany).
  • the catalytic metal in order to cause the mechanochemical reaction in the presence of the catalytic metal, is used in the mechanochemical reaction system in an amount that exhibits catalytic action, for example, in an amount greater than 0.001 mol% with respect to water. It only needs to be present.
  • the catalyst metal include transition metals such as palladium, iron, nickel, and chromium, and oxides thereof, preferably iron, iron (II) hydroxide, nickel, nickel (II) oxide, chromium, chromium oxide ( III), palladium and the like. These catalytic metals can be used alone or in combination of two or more.
  • These catalytic metals may be added to the reaction vessel used for the mechanochemical reaction in the form of a wire or foil, or the reaction vessel, ball, stirring rod, etc. used for the mechanochemical reaction.
  • the stirring medium may be contained, or the stirring medium may be plated.
  • water or heavy water is selected from catalytic metals, preferably iron, iron hydroxide (II), chromium, chromium oxide (III). What is necessary is just to make mechanochemical reaction in presence of 1 type, or 2 or more types of catalyst metals.
  • catalytic metals preferably iron, iron hydroxide (II), chromium, chromium oxide (III).
  • a stirring medium is operated in the presence of a catalytic metal, and a mechanochemical reaction is performed to generate hydrogen or deuterium. Just do it.
  • hydrogen or deuterium accumulated in the reaction vessel may be collected according to a conventional method.
  • the first aspect of the invention is specifically performed using a planetary ball mill.
  • water or heavy water of about 0.1 to 20% by mass (hereinafter simply referred to as “%”) of the vessel capacity is put into a reaction vessel of a planetary ball mill apparatus, and about 1 to 100 stirring media are added thereto.
  • the catalyst metal is added in an amount of about 0.01 to 100 mol% based on the organic compound, and about 0.1 to 12 hours, preferably The stirring may be performed for about 0.5 to 6 hours, at about 400 to 1,200 rpm, preferably at 800 to 1,100 rpm.
  • the conversion efficiency from water or heavy water to hydrogen or deuterium in the first aspect of the invention is about 20 to 100%, although it varies depending on the apparatus used, reaction conditions, and the like.
  • Hydrogen or deuterium obtained by the first aspect of the invention described above can be used for power generation using cold fusion with fuel cells or deuterium.
  • an organic compound and water or deuterium are mixed with a catalyst metal, preferably nickel, nickel (II) oxide, chromium. And mechanochemical reaction in the presence of one or more kinds of catalytic metals selected from chromium (III) oxide and palladium.
  • a catalyst metal preferably nickel, nickel (II) oxide, chromium.
  • mechanochemical reaction in the presence of one or more kinds of catalytic metals selected from chromium (III) oxide and palladium.
  • an organic compound and water or heavy water are placed in a reaction vessel of an apparatus capable of performing the above mechanochemical reaction, a stirring medium is operated in the presence of a catalytic metal, a mechanochemical reaction is performed, and the organic compound is Hydrogenation or deuteration may be performed.
  • the organic compound used in the second aspect of the invention is not particularly limited as long as it is an organic compound that is hydrogenated or deuterated.
  • an unsaturated bond such as a double bond or a triple bond, an aldehyde group , Ketone groups, nitro groups, azido groups and other highly oxidized substituents, halogens and the like in the skeleton.
  • the degree of hydrogenation or deuteration of the organic compound can be adjusted by the addition amount. If you want to increase the degree of hydrogenation or deuteration, add a large amount of water or heavy water, and if the degree of hydrogenation or deuteration may be low, you should conserve the amount of water or heavy water added. .
  • the amount of water or heavy water added is greatly affected by the ease of hydrogenation or deuteration of the organic compound, and may be confirmed experimentally.
  • the degree of hydrogenation or deuteration of the organic compound can be adjusted by controlling mechanical energy such as impact and friction in the mechanochemical reaction.
  • the second aspect of the invention When the second aspect of the invention is carried out as described above, first, water or heavy water in the reaction vessel is converted to hydrogen or deuteration, whereby the organic compound is hydrogenated or deuterated.
  • the conversion efficiency from the organic compound to the hydrogenated or deuterated organic compound in the second aspect of the invention is about 70 to 100%, although it varies depending on the apparatus used, reaction conditions, and the like.
  • an unsaturated bond (double bond or triple bond) in the skeleton of the organic compound can be converted to a saturated bond, and a highly oxidized substituent (aldehyde group, ketone group, nitro group) Can be converted to a substituent having a low degree of oxidation (hydroxyalkyl group, hydroxy group, amino group), or the halogen in the halide can be removed to form a dehalogenated product.
  • a highly oxidized substituent aldehyde group, ketone group, nitro group
  • a substituent having a low degree of oxidation hydroxyalkyl group, hydroxy group, amino group
  • any compound having the following basic skeleton can be converted into a corresponding reductant by hydrogenation or deuteration.
  • the compound which can be hydrogenated or deuterated is illustrated below, the compound which can be hydrogenated or deuterated by 2nd aspect invention is not limited to these.
  • the methyl group is described as representative of an alkyl group (functionalized fatty chain), and benzene or phenyl is an aryl group [functionalized aromatic ring (benzene, furan, pyro- And thiophene, etc.)]].
  • Terminal alkyne methyl acetylene, ethynylbenzene Disubstituted alkyne: diphenylacetylene, dimethylacetylene, methylphenylacetylene ⁇ double bond-containing compound> Monosubstituted alkene: phenylethylene, methylethylene Disubstituted alkene: (E) -1,2-diphenylethylene, (Z) -1,2-diphenylethylene, (E) -1,2-dimethylethylene, (Z ) -1,2-dimethylethylene, 1,1-diphenylethylene, 1,1-dimethylethylene, 1-methyl-1-phenylethylene, (E) -1-methyl-2-phenylethylene, (Z) -1 -Methyl-2-phenylethylene trisubstituted alkene: 1,1,2-triphenylethylene, 1,1,2-trimethylethylene, 1,1-diphenyl-2-methylethylene, 1-phenyl-1
  • a reaction vessel of the planetary ball mill apparatus is equipped with water or heavy water of about 0.1 to 20% of the vessel capacity, and 0.01 to Except for adding about 20% organic compound, it may be the same as the first aspect of the invention.
  • the conversion efficiency from an organic compound to a hydrogenated or deuterated organic compound is about 70 to 100%, although it varies depending on the apparatus used, reaction conditions, and the like.
  • the organic compound deuterated by the above-described second aspect of the invention is useful as a label compound used for structural analysis and elucidation of the mechanism.
  • the drug efficacy may be increased.
  • organic compound hydrogenation or deuteration method according to the third aspect of the present invention may be carried out in the same manner as in the second aspect of the present invention.
  • the above-described dehalogenation method according to the fourth aspect of the present invention may be performed in the same manner as the second aspect of the present invention.
  • this method can dehalogenate organic compounds having halogen harmful to the human body, such as polychlorinated biphenyl (PCB), and thus can be used for detoxifying these organic compounds.
  • PCB polychlorinated biphenyl
  • Example 1 Decomposition of water into hydrogen: Into a planetary ball mill container, 270 ⁇ L (15 mmol) of distilled water (Wako 046-16971) and a stainless ball (50 pieces) were put, then the cap was put on, and the planetary ball mill device was operated at 800 rpm for 6 hours. Rotated (reversed every 30 minutes) and stirred. After stirring, the container was opened and the gas in the container was ignited and burned. From this combustion phenomenon, the generation of hydrogen gas, which is a combustible gas, was confirmed. This reaction is shown by the following formula.
  • Example 2 Hydrogenation reaction of diphenylacetylene (1) Synthesis of 1,2-diphenylethane (2) In a planetary ball mill container, 89.1 mg (0.50 mmol) of diphenylacetylene (1), 270 ⁇ L (15 mmol) of distilled water and stainless steel balls (50 pieces) ) was added, and the mixture was capped and rotated on a planetary ball mill for 12 hours at 800 rpm (reversed every 30 minutes) and stirred. After 12 hours, 10 mL of ethyl acetate was added to a ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite. The filtrate obtained by repeating this operation 5 times was concentrated to obtain 89.4 mg (0.49 mmol) of 1,2-diphenylethane (2). The yield was 98%.
  • Example 3 Synthesis of 4-aminobenzophenone by hydrogenation of 4-azidobenzophenone: After adding 111.6 mg (0.50 mmol) of 4-azidobenzophenone (5), 270 ⁇ L (15 mmol) of distilled water and 50 stainless balls (50) to a planetary ball mill container, the cap was put on the planet, The mixture was rotated and stirred at 800 rpm (reversed every 30 minutes) for 12 hours in a mold ball mill apparatus. After 12 hours, 10 mL of ethyl acetate was added to the ball mill container to obtain a solution containing the reaction product, which was filtered through Celite. The filtrate obtained by repeating this operation 5 times was concentrated to obtain 87.7 mg (0.45 mmol) of 4-aminobenzophenone (6). The yield was 89%. This reaction is shown by the following formula.
  • Example 4 Synthesis of 3-benzyloxy-4-methoxybenzyl alcohol and 3-hydroxy-4-methoxybenzyl alcohol by hydrogenation of 3-benzyloxy-4-methoxybenzaldehyde: After adding 121.1 mg (0.50 mmol) of 3-benzyloxy-4-methoxybenzaldehyde (7), 270 ⁇ L (15 mmol) of distilled water and 50 stainless balls to a planetary ball mill container, The mixture was rotated at 800 rpm (reversed every 30 minutes) with a planetary ball mill for 12 hours and stirred. After 12 hours, 10 mL of ethyl acetate was added to a ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite.
  • Example 5 Synthesis of 4-amino-1-methoxybenzene by hydrogenation reaction of 1-methoxy-4-nitrobenzene: To a planetary ball mill container, 76.6 mg (, 0.50 mmol) of 1-methoxy-4-nitrobenzene (10), 270 ⁇ L (15 mmol) of distilled water and 50 stainless balls (50) were added, and then the lid was closed. Then, it was rotated by a planetary ball mill apparatus at 800 rpm (reversed every 30 minutes) for 12 hours and stirred. After 12 hours, 10 mL of ethyl acetate was added to a ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite. The filtrate obtained by repeating this operation 5 times was concentrated to obtain 48.2 mg (0.39 mmol) of 4-amino-1-methoxybenzene (11). The yield was 78%. This reaction formula is shown by the following formula.
  • Example 7 Synthesis of methoxybenzene by hydrogenation of 4-chloro-1-methoxybenzene: To a planetary ball mill container was added 61.3 ⁇ L (0.50 mmol) of 4-chloro-1-methoxybenzene (14), 270 ⁇ L (15 mmol) of distilled water and 50 stainless balls (50), and then the lid was closed. Then, it was rotated by a planetary ball mill apparatus at 800 rpm (reversed every 30 minutes) for 12 hours and stirred. After 12 hours, 10 mL of ethyl acetate was added to a planetary ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite. The filtrate obtained by repeating this operation 5 times was concentrated to obtain methoxybenzene (15). The conversion efficiency was 100%. This reaction is shown by the following formula.
  • Example 8 Deuteration of diphenylacetylene using heavy water (D 2 O): In a planetary ball mill container, 89.1 mg (0.50 mmol) of diphenylacetylene (1), 272 ⁇ L (15 mmol) of heavy water (Cambridge Isotope Laboratories, Inc .: Cat. No. 15,188-2) and a stainless ball (50 Then, the cap was capped and rotated and stirred in a planetary ball mill for 12 hours at 800 rpm (reversed every 30 minutes). After 12 hours, 10 mL of ethyl acetate was added to a planetary ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite.
  • D 2 O heavy water
  • Example 9 Synthesis of 1-aminonaphthalene by hydrogenation reaction of 1-nitronaphthalene: To a planetary ball mill container, 86.6 mg (0.50 mmol) of 1-nitronaphthalene (17), 270 ⁇ L (15 mmol) of distilled water and 50 stainless balls (50) were added, then the cap was put on, and the planetary type was added. The mixture was rotated on a ball mill apparatus at 800 rpm (reversed every 30 minutes) for 12 hours and stirred. After 12 hours, 10 mL of ethyl acetate was added to a planetary ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite.
  • Example 10 Synthesis of naphthalene by hydrogenation reaction of 1-chloronaphthalene: 1-Chloronaphthalene (19) 68.4 ⁇ L (0.50 mmol), distilled water 270 ⁇ L (15 mmol) and stainless steel balls (50 pieces) were added to a planetary ball mill container, and then the cap was capped to form a planetary type. The mixture was rotated on a ball mill apparatus at 800 rpm (reversed every 30 minutes) for 12 hours and stirred. After 12 hours, 10 mL of ethyl acetate was added to a planetary ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite.
  • Example 11 Inhibition of hydrogenation reaction by tetracyanoquinodimethane (TCNQ): In a planetary ball mill container, 89.1 mg (0.50 mmol) of diphenylacetylene (1), 270 ⁇ L (15 mmol) of distilled water, 10.1 mg (0.05 mmol) of tetracyanoquinodimethane (TCNQ) and a stainless ball After adding (50 pieces), the lid was capped, and the mixture was rotated with a planetary ball mill for 12 hours at 800 rpm (reversed every 30 minutes) and stirred. In this system, the reaction did not proceed at all even when stirring was continued for 12 hours. The reason is presumed that this reaction proceeds via radicals. This reaction is shown by the following formula.
  • Example 12 Synthesis of 4-aminobenzophenone by hydrogenation of 4-nitrobenzophenone: After adding 91.1 mg (0.50 mmol) of 4-nitrobenzophenone (21), 270 ⁇ L (15 mmol) of distilled water and 50 stainless balls to a planetary ball mill container, the cap was capped, and the planetary type The mixture was rotated on a ball mill apparatus at 800 rpm (reversed every 30 minutes) for 12 hours and stirred. After 12 hours, 10 mL of ethyl acetate was added to a planetary ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite. After concentrating the filtrate obtained by repeating this operation 5 times, 4-aminobenzophenone (22) and 4-aminobenzhydrol (23) were obtained in a ratio of 83:17 from 1 H NMR. This reaction is shown by the following formula.
  • Example 13 Synthesis of 4-benzyloxybenzene by hydrogenation reaction of 4-benzyloxybromobenzene
  • a planetary ball mill container 131.6 mg (0.50 mmol) of 4-benzyloxybromobenzene (24), 270 ⁇ L (15 mmol) of distilled water ) And stainless steel balls (50 pieces) were added, and the caps were capped and rotated on a planetary ball mill for 12 hours at 800 rpm (reversed every 30 minutes) and stirred. After 12 hours, 10 mL of ethyl acetate was added to a planetary ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite.
  • Example 14 Hydrogenation reaction by adding palladium foil In a planetary ball mill container, 89.1 mg (0.50 mmol) of diphenylacetylene (1), 270 ⁇ L (15 mmol) of distilled water, 50 stainless balls and palladium foil (made by Aldrich) in the amounts shown in the table below. After the addition, the cap was capped, and the mixture was rotated with a planetary ball mill device at a speed shown in the table below at 800 rpm (reverse rotation every 30 minutes) and stirred. After stirring, 10 mL of ethyl acetate was added to the ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite.
  • Example 15 Dechlorination reaction by adding palladium foil: In a planetary ball mill container, 148.5 mg (0.50 mmol) of 4-chlorododecyloxybenzene (28), 270 ⁇ L (15 mmol) of distilled water and palladium foil (1.9 mg (3.6 mol%)) and stainless steel ball (50 pieces), the cap was capped, and the mixture was rotated with a planetary ball mill for 12 hours at 800 rpm (reversed every 30 minutes) and stirred.After 12 hours, ethyl acetate was put into the ball mill container.
  • Example 16 Hydrogenation reaction of diphenylacetylene To a planetary ball mill vessel, 1.34 g (7.5 mmol) of diphenylacetylene (1), 4.01 mL (225 mmol) of distilled water and stainless steel balls (25) were added, then the cap was put on, and the planet type Using a ball mill, the mixture was rotated for 6 hours at 650 rpm (reversed every 30 minutes) and stirred. After 6 hours, 200 ml of ethyl acetate was added to a ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite. The filtrate was concentrated to obtain a reaction product. This was confirmed by 1 H NMR.
  • Example 17 Examination of hydrogen generation conditions: Into a planetary ball mill container, 270 ⁇ L (15 mmol) of distilled water (Wako 046-16971) and a stainless ball (50 pieces) were placed, then the cap was put on, and the planetary ball mill device was used for 400 hours. Rotate at ⁇ 1,000 rpm (reversed every 30 minutes) or 1,100 rpm (no reversal) for 0.3 hours and stir. The composition of the gas in the container after the stirring was analyzed by GC / TCD (manufactured by Shimadzu Corporation: GC-2014). The results are shown in Table 2.
  • the method of the present invention is an extremely safe hydrogen generation method with little oxygen content.
  • high-purity hydrogen can be generated and collected by previously evacuating the ball mill.
  • Example 18 Synthesis of dodecane by hydrogenation of 6-dodecin: To a planetary ball mill container, 83.2 mg (0.50 mmol) of 6-dodecine (30), 270 ⁇ L (15 mmol) of distilled water and 50 stainless balls were added, and then the cap was closed. -Rotated at 800 rpm (reversed every 30 minutes) for 6 hours in a Lumil apparatus and stirred. After 6 hours, 10 mL of ethyl acetate was added to the ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite. The filtrate obtained by repeating this operation 5 times was concentrated to obtain 51.1 mg (0.30 mmol) of dodecane (31). The yield was 60%. This reaction is shown by the following formula.
  • Example 19 Synthesis of 1-phenylethanol by hydrogenation reaction of 1-phenylethanone: To a planetary ball mill container, 1-phenylethanone (32) 60.1 mg (0.50 mmol), distilled water 270 ⁇ L (15 mmol) and stainless steel balls (50 pieces) were added, then the cap was put on, The mixture was rotated and stirred at 800 rpm (reversed every 30 minutes) in a mold ball mill apparatus for 6 hours. After 6 hours, 10 mL of ethyl acetate was added to the ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite. The filtrate obtained by repeating this operation 5 times was concentrated to obtain 42.8 mg (0.35 mmol) of 1-phenylethanol (33). The yield was 70%. This reaction is shown by the following formula.
  • Example 20 Synthesis of 3-phenyl-1-propanol by hydrogenation of 3-phenyl-2-propen-1-ol: To a planetary ball mill vessel, add 67.1 mg (0.50 mmol) of 3-phenyl-2-propen-1-ol (34), 270 ⁇ L (15 mmol) of distilled water, and 50 stainless balls (50). After that, it was capped and rotated on a planetary ball mill for 6 hours at 800 rpm (reversed every 30 minutes) and stirred. After 6 hours, 10 mL of ethyl acetate was added to the ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite. The filtrate obtained by repeating this operation 5 times was concentrated to obtain 64.7 mg (0.475 mmol) of 3-phenyl-1-propanol (35). The yield was 95%. This reaction is shown by the following formula.
  • Example 21 Synthesis of 1,3-dimethoxybenzene by hydrogenation of 1-chloro-3,5-dimethoxybenzene: To a planetary ball mill container, 86.3 mg (0.50 mmol) of 1-chloro-3,5-dimethoxybenzene (36), 45 ⁇ L (2.5 mmol) of distilled water, and 50 stainless balls were added. Then, it was covered and rotated at 1,100 rpm for 30 minutes in a planetary ball mill apparatus and stirred. After 30 minutes, 10 mL of ethyl acetate was added to the ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite. The filtrate obtained by repeating this operation 5 times was concentrated to obtain 36.6 mg (0.265 mmol) of 1,3-dimethoxybenzene (37). The yield was 53%. This reaction is shown by the following formula.
  • Example 22 Synthesis of 3-phenyl-2,3-didetro-1-propanol by deuteration of 3-phenyl-2-propen-1-ol: To a planetary ball mill container, 67.1 mg (0.50 mmol) of 3-phenyl-2-propen-1-ol (34), 272 ⁇ L (15 mmol) of heavy water and 50 stainless balls were added. Then, it was covered, and it was rotated by a planetary ball mill device for 6 hours at 800 rpm (reversed every 30 minutes) and stirred. After 6 hours, 10 mL of ethyl acetate was added to the ball mill container to obtain a solution containing the reaction mixture, which was filtered through Celite.
  • Example 23 Deuterium addition reaction of benzyl-4-bromophenyl ketone (39): (1) Synthesis of 1- (4-bromophenyl) -2,2-didetro-2-phenylethane (40) Into a planetary ball mill container, 137.6 mg of benzyl-4-bromophenyl ketone (39) (0.50 mmol), 272 ⁇ L of heavy water (15 mmol) and stainless steel balls (50 pieces) were added, then the caps were turned and rotated on a planetary ball mill device for 6 hours at 650 rpm (reversed every 30 minutes). , Stirred.
  • hydrogen or deuterium can be easily generated without requiring a large-scale and complicated apparatus, and the hydrogen or deuterium can be obtained as a gas, or hydrogenated or deuterated. It can be used for reaction.
  • the present invention can be advantageously used in a small-scale hydrogen or deuterium gas production apparatus, or in a simple organic compound hydrogenation or deuteration reaction apparatus.

Abstract

 大規模な装置を必要とすることなく、簡単に水素または重水素を取得する方法や、高価な反応試薬や特殊な触媒を利用することなく、簡単に水素化または重水素化反応を実施できる方法を提供することを目的とする。当該製造方法は、水または重水を、触媒金属の存在下、メカノケミカル反応させることを特徴とする水素または重水素の製造方法および有機化合物と、水または重水とを、触媒金属の存在下、メカノケミカル反応させることを特徴とする水素化または重水素化有機化合物の製造方法である。

Description

水素または重水素の製造方法およびそれを利用した有機化合物の水素化または重水素化
 本発明は、メカノケミカル反応を利用した水素または重水素の製造方法およびそれを利用した有機化合物の水素化または重水素化に関する。
 従来より、水素は、種々の多方面の工業分野に利用されている。例えば、ハ-バ-・ボッシュ法によるアンモニアの製造、塩素ガスとの光反応による塩酸の製造、トウモロコシ油や綿実油等の油脂に添加し、これを硬化(固体化)する改質などの原料として、また、金属鉱石(酸化物)の還元、ニトロベンゼンを還元しアニリンの製造、ナイロン66製造におけるベンゼンの触媒還元、一酸化炭素を還元するメチルアルコ-ル合成、あるいは脱硫などの還元剤などとして使われている。
 更には、水素は燃やしても水以外の排出物、例えば、粒子状物質や二酸化炭素などの排気ガスを出さないことから、代替エネルギ-として期待されており、内燃機関の燃料として水素燃料エンジンを積んだ水素自動車が発売されている他、ロケットの燃料や燃料電池に使用されている。
 この水素は、工業的には、炭化水素の水蒸気改質や部分酸化の副生成物として大量に生産される(炭化水素ガス分解法)。この方法は、天然ガス中のメタンガスや、パラフィン類やエチレン・プロピレンなどを高温下、ニッケルを触媒としながら水蒸気と反応させて水素と一酸化炭素とし、副生される一酸化炭素は更に水蒸気と反応させ、二酸化炭素と水素ガスにする方法である。また、別の方法としては、ソ-ダ工業や製塩業において海水電気分解の副生品として発生する水素が利用されることもある。
 一方、有機化合物に水素を反応させる水素化反応は、有機合成化学において広く使用される反応であり、この方法で多くの有用な化合物が生成される。水素化反応には、アルカリ金属等を利用する反応、金属水素化物あるいは金属水素錯体を利用する反応、ジボランあるいはヒドラジンを利用する反応、接触水素化を利用する反応等、多くの方法が知られている。
 しかし、前記した工業的な水素の製造方法は、大規模な装置を必要とするものであり、簡単に水素ガスを入手したいというときに利用できるものではない。また、実験的には、希酸やアルコ-ル中に金属を溶解させることで発生する水素ガスを利用するという方法もあるが、金属を不可逆的に溶解させることや、金属の溶解した溶液の処理が必要であるという点での問題がある。
 また、上記の水素化反応においても、アルカリ金属、金属水素化物、金属水素錯体、ジボラン、ヒドラジン等を用いる方法は、使用する反応試薬のコストが高いという問題や、それらに危険性があるという問題があり、また、接触水素化を利用する方法でも、特殊な金属触媒を利用する必要があるという問題があった。
 本発明は、上記実情に鑑みなされたものであり、大規模な装置を必要とすることなく、簡単に水素を取得する方法や、高価な反応試薬や特殊な触媒を利用することなく、簡単に水素化反応を実施できる方法の提供を課題とするものである。
 本発明者らは、有機合成反応に関して数多くの実験を行っていたところ、有機化合物と水とを、特定の反応系で反応させることにより、投入した有機化合物が水素化されることを知った。また、上記反応を水のみで行えば水素ガスが発生することを知った。更に、水にかえて重水を用いても、有機化合物の重水素化や重水素ガスの発生が行えることを確認し、本発明を完成した。
 すなわち本発明は、水または重水を、触媒金属の存在下、メカノケミカル反応させることを特徴とする水素または重水素の製造方法である。
 また本発明は、有機化合物と、水または重水とを、触媒金属の存在下、メカノケミカル反応させることを特徴とする水素化または重水素化有機化合物の製造方法である。
 更に本発明は、有機化合物と、水または重水とを、触媒金属の存在下、メカノケミカル反応させることを特徴とする有機化合物の水素化または重水素化方法である。
 また更に本発明は、ハロゲンを有する有機化合物と、水または重水とを、触媒金属の存在下、メカノケミカル反応させることを特徴とするハロゲンを有する有機化合物の脱ハロゲン化方法である。
 本発明の水素または重水素の製造方法によれば、大規模な装置を必要とせず、また廃棄物等の問題を生じることなく水または重水から水素または重水素を得ることが可能である。
 また、本発明の水素化または重水素化有機化合物の製造方法や有機化合物の水素化または重水素化方法によれば、高価な反応試薬や触媒を利用することなく、簡単に水素化または重水素化した有機化合物を得ることが可能である。
 特に重水素化有機化合物の製造方法や有機化合物の重水素化方法により重水素化した有機化合物は、ラベル化合物として有用である。また、公知の有機化合物からなる薬物を重水素化した場合、薬効が高くなる可能性がある。
 更に、本発明の脱ハロゲン化方法によれば、高価な反応試薬や触媒を利用することなく、簡単にハロゲンを有する有機化合物を脱ハロゲン化することが可能である。特にこの方法はポリ塩化ビフェニル(PCB)のような人体に有害なハロゲンを有する有機化合物の無害化に利用できる。
 本発明の水素または重水素の製造方法に関する発明(以下、「第一態様発明」ということがある)、水素化または重水素化有機化合物の製造方法に関する発明(以下、「第二態様発明」ということがある)、有機化合物の水素化または重水素化方法(以下、「第三態様発明」ということがある)および脱ハロゲン化方法(以下、「第四態様発明」ということがある)は、触媒金属の存在下、メカノケミカル反応させることが必須である。
 なお、本発明において重水とは、水素(H)の同位体であるH(D)やH(T)、酸素(16O)の同位体である17Oや18Oおよびこれらの組み合わせからなる水であり、具体的には、DO、TO等が挙げられる。また、重水素とは、水素の同位体からなる水素であり、D、T等が挙げられる。更に、重水素化とは、通常の水素化における水素の一部または全部がDやTに置き換えられることである。
 これらの発明で行われるメカノケミカル反応は、衝撃、摩擦等の機械的エネルギ-により反応物の活性を高めることにより行われるものであり、通常、メカノケミカル反応が行える装置で行われる。このような装置としては、反応容器と機械的エネルギ-を与える撹拌媒体とを備えたものが挙げられ、例えば、遊星型ボ-ルミル、ミキサ-ミル等のボ-ルミル、振とう機等の混合機等が挙げられる。これらの中でも、遊星型ボ-ルミルを用いることが撹拌効率や与えるエネルギ-の点から好ましい。
 この遊星型ボ-ルミル装置は、金属やセラミックスの粉末を均一に混合したり、細かく粉砕する働きを持った機器であり、遊星型ボ-ルミル反応容器本体と雰囲気制御区画からなるものである。そして、金属やセラミックスの粉末(被粉砕体)と撹拌媒体となるボ-ルをボ-ルミル反応容器の中に入れて、機器にセットした後、ボ-ルミル反応容器が雰囲気制御区画の中で自転運動しながら、遊星の動きに似た動きで公転運動することにより、粉末は短時間で効率よく混合・粉砕される。しかも、遊星型ボ-ルミル全体が雰囲気制御される構造となっているため、空気中では変質してしまうような粉末でも混合・粉砕が可能である。
 また、遊星型ボ-ルミル装置に用いられる反応容器および攪拌媒体であるボ-ルとしては、例えば、ステンレススチ-ル、メノウ、アルミナ、タングステンカ-バイド、クロムスチ-ル、ジルコニア、窒化ケイ素等の材質で形成されたものが挙げられる。これら材質の中でも鉄とクロム、ニッケル等との合金であるステンレススチ-ルが好ましい。遊星型ボ-ルミル装置に用いられる容器の大きさは、特に限定するものではないが、1~1,000cm程度のものである。また、ボ-ルの大きさも、特に限定するものではないが、その直径が2~20mm程度のものである。特に好ましい遊星型ボ-ルミルの具体例としては、例えば、遊星型ボ-ル ミルカルテットP-7(ドイツ フリッチュ社製)、遊星型ボ-ルミル プレミアムライン-7(ドイツ フリッチュ社製)、遊星型ボ-ルミル PM-100(ドイツ レッチェ社製)等を挙げることができる。
 これらの発明において、触媒金属の存在下でメカノケミカル反応をさせるには、触媒金属をメカノケミカル反応系に、触媒作用を発揮する量、例えば、水に対し、0.001モル%より多い量で存在させるだけでよい。触媒金属としては、パラジウム、鉄、ニッケル、クロム等の遷移金属やそれらの酸化物等が挙げられ、好ましくは鉄、水酸化鉄(II)、ニッケル、酸化ニッケル(II)、クロム、酸化クロム(III)、パラジウム等が挙げられる。これらの触媒金属は1種または2種以上を組み合わせて使用することもできる。なお、これらの触媒金属は、メカノケミカル反応に用いられる反応容器中に、ワイヤ-やホイル等の形態で添加しても良いし、メカノケミカル反応に用いられる反応容器、ボ-ル、撹拌棒等の撹拌媒体に含まれていても良いし、前記撹拌媒体にメッキ等しても良い。
 本発明の第一態様発明である水素または重水素の製造方法を実施するには、水または重水を触媒金属、好ましくは 鉄、水酸化鉄(II)、クロム、酸化クロム(III)から選ばれる1種または2種以上の触媒金属の存在下、メカノケミカル反応させればよい。具体的には、上記したメカノケミカル反応が行える装置の反応容器中に、水または重水を入れ、触媒金属の存在下、撹拌媒体を作動させ、メカノケミカル反応を行い、水素または重水素を発生させればよい。そして最終的に反応容器中に蓄積された水素または重水素を常法に従って採取すればよい。
 以下、第一態様発明を具体的に遊星型ボ-ルミルを用いて行う場合について説明する。まず、遊星型ボ-ルミル装置の反応容器に、容器容量の0.1~20質量%(以下、単に「%」という)程度の水または重水を入れ、これに1~100個程度の撹拌媒体(ボ-ル)と、反応容器や撹拌媒体に含まれる触媒金属に加えて、必要により触媒金属を有機化合物に対し0.01~100モル%程度入れ、0.1~12時間程度、好ましくは0.5~6時間程度、400~1,200rpm程度、好ましくは 800~1,100rpmで回転させ、撹拌を行えばよい。なお、撹拌の際には、必要に応じて回転方向を適宜逆転させることが好ましく、また、撹拌を連続で行う場合には休止時間を設けることが好ましい。なお、第一態様発明での水または重水から水素または重水素への変換効率は、使用する装置、反応条件等によっても相違するが、20~100%程度である。
 上記した第一態様発明により得られる水素または重水素は燃料電池や重水素による常温核融合を利用した発電に利用できる。
 本発明の第二態様発明である水素化または重水素化有機化合物の製造方法を実施するには、有機化合物と水または重水素とを、触媒金属、好ましくはニッケル、酸化ニッケル(II)、クロム、酸化クロム(III)、パラジウムから選ばれる1種または2種以上の触媒金属の存在下、メカノケミカル反応させればよい。具体的には、上記したメカノケミカル反応が行える装置の反応容器中に、有機化合物と水または重水とを入れ、触媒金属の存在下、撹拌媒体を作動させ、メカノケミカル反応を行い、有機化合物を水素化または重水素化させればよい。なお、有機化合物が水素化または重水素化されたことは、H NMR、GC/MS等の公知の方法で確認することができる。
 第二態様発明において用いられる有機化合物としては、水素化または重水素化される有機化合物であれば、特に限定するものではないが、例えば、二重結合、三重結合等の不飽和結合、アルデヒド基、ケトン基、ニトロ基、アジド基等の酸化度の高い置換基、ハロゲン等をその骨格中に有する有機化合物が挙げられる。
 また、第二態様発明において有機化合物と共に添加される水または重水は、水素または重水素を導くため、添加量により有機化合物の水素化または重水素化の程度を調整することができる。水素化または重水素化の程度を高くしたい場合は、水または重水の添加量を多く、水素化または重水素化の程度が低くて良い場合は、水または重水の添加量を控えめにすればよい。この水または重水の添加量は、有機化合物の水素化または重水素化のされやすさに大きく影響されるので、実験的に確認して実施すればよい。更に、第二態様発明において、有機化合物の水素化または重水素化の程度は、メカノケミカル反応における衝撃、摩擦等の機械的エネルギ-の制御によっても調整することができる。水素化または重水素化の程度を高くしたい場合は、ボ-ルの大きさを大きく、ボ-ルの数を多くまたは回転速度を早くすればよく、水素化または重水素化の程度が低くて良い場合は、ボ-ルの大きさを小さく、ボ-ルの数を少なくまたは回転速度を遅くすればよい。
 上記のようにして第二態様発明を実施すると、まず、反応容器中の水または重水が水素または重水素化に変換され、それにより有機化合物が水素化または重水素化される。なお、第二態様発明での有機化合物から水素化または重水素化有機化合物への変換効率は、使用する装置、反応条件等によっても相違するが、70~100%程度である。
 この第二態様発明によれば、有機化合物の骨格中の不飽和結合(二重結合あるいは三重結合)を飽和結合に変換できる他、酸化度の高い置換基(アルデヒド基、ケトン基、ニトロ基)を酸化度の低い置換基(ヒドロキシアルキル基、ヒドロキシ基、アミノ基)に変換することや、ハロゲン化物中のハロゲンを除去し、脱ハロゲン化物とすることも可能である。
 具体的に、以下の基本骨格を有する化合物であれば、水素化または重水素化により対応する還元体とすることができる。なお、以下では水素化または重水素化できる化合物も例示しているが、第二態様発明により水素化または重水素化できる化合物はこれらに限定されるものではない。また、これらの化合物の中で、メチル基は、アルキル基(官能基化脂肪鎖)を代表して記載され、ベンゼンもしくはフェニルはアリ-ル基[官能基化芳香環(ベンゼン、フラン、ピロ-ル、チオフェン等を含む)]の代表として記載されている。
<三重結合含有化合物>
 末端アルキン体:メチルアセチレン、エチニルベンゼン
 2置換アルキン体:ジフェニルアセチレン、ジメチルアセチレン、メチルフェニルアセチレン
<二重結合含有化合物>
 1置換アルケン体:フェニルエチレン、メチルエチレン
 2置換アルケン体:(E)-1,2-ジフェニルエチレン、(Z)-1,2-ジフェニルエチレン、(E)-1,2-ジメチルエチレン、(Z)-1,2-ジメチルエチレン、1,1-ジフェニルエチレン、1,1-ジメチルエチレン、1-メチル-1-フェニルエチレン、(E)-1-メチル-2-フェニルエチレン、(Z)-1-メチル-2-フェニルエチレン
 3置換アルケン体:1,1,2-トリフェニルエチレン、1,1,2-トリメチルエチレン、1,1-ジフェニル-2-メチルエチレン、1-フェニル-1,2-ジメチルエチレン
 4置換アルケン体:1,1,2,2-テトラフェニルエチレン、1,1,2,2-テトラメチルエチレン、1,1,2-トリフェニル-2-メチルエチレン、1,1-ジフェニル-2,2-ジメチルエチレン、1-フェニル-1,2,2-トリメチルエチレン、(E)-1,2-ジフェニル-1,2-ジメチルエチレン、(Z)-1,2-ジフェニル-1,2-ジメチルエチレン
 芳香環:ベンゼン、ビフェニル、ピリジン、フラン、ピロ-ル、チオフェン、ナフタレン、キノリン、アントラセン、イミダゾ-ル、インド-ル、ベンゾフラン、オキサゾ-ル
<カルボニル基含有化合物
 アルデヒド体:メチルアルデヒド、フェニルアルデヒド
 ケトン体:ジメチルケトン、ジフェニルケトン、メチルフェニルケトン
 イミン体:N-メチル-メチルイミン、N-フェニル-メチルイミン、N-メチル-ジメチルイミン、N-メチル-ジフェニルイミン、N-メチル-メチルフェニルイミン、N-フェニル-ジメチルイミン、N-フェニル-ジフェニルイミン、N-フェニル-メチルフェニルイミン、オキシム:N-ヒドロキシ-メチルイミン、N-ヒドロキシ-ジメチルイミン、N-ヒドロキシ-ジフェニルイミン、N-ヒドロキシ-メチルフェニルイミン
*:カルボニル基の酸素原子が他の原子や基に置換されたものを含む
<ニトロ基含有化合物>
 ニトロ体:ニトロメタン、ニトロベンゼン
<アジド基含有化合物>
 アジド体:アジ化メタン、アジ化ベンゼン
<ハロゲン含有化合物>
 フッ素体:メチルフルオライド、フルオロベンゼン
 クロロ体:メチルクロライド、クロロベンゼン
 ブロモ体:メチルブロマイド、ブロモベンゼン
 ヨウ素体:メチルヨ-ダイド、ヨ-ドベンゼン
<ベンジルエ-テル基含有化合物>
 ベンジルエ-テル体:フェニルメチルオキシメタン、フェニルメチルオキシベンゼン
 第二態様発明で水素化または重水素化される化合物と、その還元体の特に好ましい具体例を以下に示す。
(水素化または重水素化される化合物)    (還元体)
 エチニルベンゼン             エチルベンゼン
 ジフェニルアセチレン           1,2-ジフェニルエタン
 フェニルエチレン             エチルベンゼン
 (E)-1,2-ジフェニルエチレン    1,2-ジフェニルエタン
 (Z)-1,2-ジフェニルエチレン    1,2-ジフェニルエタン
 1,1-ジフェニルエチレン        1,1-ジフェニルエタン
 フェニルアルデヒド            ベンジルアルコ-ル
 メチルフェニルケトン           1-フェニルエタノ-ル
 ニトロベンゼン              アミノベンゼン
 アジ化ベンゼン              アミノベンゼン
 クロロベンゼン              ベンゼン
 フェニルメチルオキシベンゼン       フェノ-ル
 第二態様発明を遊星型ボ-ルミルを用いて行う場合の条件は、遊星型ボ-ルミル装置の反応容器に、容器容量の0.1~20%程度の水または重水と、0.01~20%程度の有機化合物を入れる以外は、第一態様発明と同様でよい。なお、第二態様発明で有機化合物から水素化または重水素化有機化合物への変換効率は、使用する装置、反応条件等によっても相違するが、70~100%程度となる。
 上記した第二態様発明により重水素化された有機化合物は、構造解析やメカニズムの解明に用いられるラベル化合物として有用である。また、第二態様発明により公知の有機化合物からなる薬物を重水素化した場合、薬物の薬効が高くなる可能性がある。
 更に、本発明の第三態様発明である有機化合物の水素化または重水素化方法の実施は、第二態様発明と同様にして行えばよい。
 上記した本発明の第四態様発明である脱ハロゲン化方法の実施も、第二態様発明と同様にして行えばよい。特にこの方法はポリ塩化ビフェニル(PCB)のような人体に有害なハロゲンを有する有機化合物を脱ハロゲン化できるので、これらの有機化合物の無害化に利用できる。
 次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、以下の実施例で使用した遊星型ボ-ルミルは、下記仕様のものである。また、以下の実施例では、特に記載されていない場合であっても、生成物の構造等はGC/MSおよびH NMRで確認している。
<実施例1~15、18~20、22~24>
  使用機器:ドイツ フリッチュ社製 遊星型ボ-ルミル
       カルテットP-7
        自転:公転比率=1:-2
        ボ-ル:直径 5~6mm、材質 ステンレススチ-ル
        容 器:内容量 12mL、材質 ステンレススチ-ル
        ステンレススチ-ルの組成;
         Fe(approx.) 67~70%、
         C  0.12%、
         Si 1%、
         Mn 2%、
         P  0.06%、
         S  0.15~0.35%、
         Cr 17~19%、
         Ni 8~10%
<実施例16>
  使用機器:ドイツ レッチェ社製 遊星型ボ-ルミル PM-100
        自転:公転比率=1:-2
        ボ-ル:直径 10mm、材質 ステンレススチ-ル
        容 器:内容量 250mL、材質 ステンレススチ-ル
        ステンレススチ-ルの組成;
         Fe 82.925%、
         Cr 14.5%、
         Mn 1%、
         Si 1%、
         C  0.5%、
         P  0.045%、
         S  0.03%
<実施例17、21>
  使用機器:ドイツ フリッチュ社製 遊星型ボ-ルミル
       プレミアムライン-7
        自転:公転比率=1:-2
        ボ-ル:直径 5~6mm、材質 ステンレススチ-ル
        容 器:内容量 20mL(実施例17)または
                80mL(実施例21)
            材質  ステンレススチ-ル
        ステンレススチ-ルの組成;
         Fe(approx.) 67~70%、
         C  0.12%、
         Si 1%、
         Mn 2%、
         P  0.06%、
         S  0.15~0.35%、
         Cr 17~19%、
         Ni 8~10%
実 施 例 1
   水の水素への分解:
 遊星型ボ-ルミル容器に、蒸留水(Wako 046-16971)270μL(15mmol)と、ステンレスボ-ル(50個)を入れた後、蓋をし、遊星型ボ-ルミル装置で6時間、800rpm(30分毎に反転)で回転させ、撹拌した。攪拌終了後に容器を開封し、容器内のガスに点火したところ燃焼した。この燃焼現象から、可燃性ガスである水素ガスの生成を確認した。この反応は、下式で示される。
Figure JPOXMLDOC01-appb-C000001
実 施 例 2
   ジフェニルアセチレンの水素添加反応:
(1)1,2-ジフェニルエタン(2)の合成
 遊星型ボ-ルミル容器に、ジフェニルアセチレン(1)89.1mg(0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮したところ、1,2-ジフェニルエタン(2)89.4mg(0.49mmol)を得た。収率は、98%であった。
(2)1,2-ジフェニルエタン(2)、1-シクロヘキシル-2-フェニル
   エタン(3)および1,2-ジシクロヘキシルエタン(4)の合成
 遊星型ボ-ルミル容器に、ジフェニルアセチレン(1)89.1mg(0.50mmol)、蒸留水900μL(50mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮し、反応生成物を得た。これをGC/MSおよびH NMRで確認したところ、1,2-ジフェニルエタン(2)、1-シクロヘキシル-2-フェニルエタン(3)および1,2-ジシクロヘキシルエタン(4)の混合物であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000002
 以上の結果より、有機化合物に添加する水の量を調整することにより、有機化合物の水素化の程度を調整できることがわかった。
実 施 例 3
   4-アジドベンゾフェノンの水素添加反応による4-アミノベンゾ
   フェノンの合成:
 遊星型ボ-ルミル容器に、4-アジドベンゾフェノン(5)111.6 mg(0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮し、4-アミノベンゾフェノン(6)87.7mg(0.45mmol)を得た。収率は89%であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000003
実 施 例 4
   3-ベンジルオキシ-4-メトキシベンズアルデヒドの水素添加反応
   による3-ベンジルオキシ-4-メトキシベンジルアルコ-ルならび
   に3-ヒドロキシ-4-メトキシベンジルアルコ-ルの合成:
 遊星型ボ-ルミル容器に、3-ベンジルオキシ-4-メトキシベンズアルデヒド(7)121.1mg(0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮し、3-ベンジルオキシ-4-メトキシベンジルアルコ-ル(8)74.0mg(0.31mmol)および3-ヒドロキシ-4-メトキシベンジルアルコ-ル(9)6.9mg(0.05mmol)を得た。収率はそれぞれ61%および9%であった。この反応式は、下式で示される。なお、未反応の3-ベンジルオキシ-4-メトキシベンズアルデヒド(7)23.7mg(0.10mmol)を回収した。
Figure JPOXMLDOC01-appb-C000004
実 施 例 5
   1-メトキシ-4-ニトロベンゼンの水素添加反応による4-アミノ
   -1-メトキシベンゼンの合成:
 遊星型ボ-ルミル容器に、1-メトキシ-4-ニトロベンゼン(10)76.6mg(,0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮し、4-アミノ-1-メトキシベンゼン(11)48.2mg(0.39mmol)を得た。収率は78%であった。この反応式は、下式で示される。
Figure JPOXMLDOC01-appb-C000005
実 施 例 6
   4-エチニル-1-メトキシベンゼンの水素添加反応による4-エチ
   ル-1-メトキシベンゼンの合成:
 遊星型ボ-ルミル容器に、4-エチニル-1-メトキシベンゼン(12)64.8μL (0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮後、4-エチル-1-メトキシベンゼン(13)を47.0mg(0.35mmol)得た。収率は、69%であった。この反応式は、下式で示される。
Figure JPOXMLDOC01-appb-C000006
実 施 例 7
   4-クロロ-1-メトキシベンゼンの水素添加反応によるメトキシベ
   ンゼンの合成:
 遊星型ボ-ルミル容器に、4-クロロ-1-メトキシベンゼン(14)61.3μL(0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間経過後、遊星型ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮後、メトキシベンゼン(15)を得た。転換効率は100%であった。この反応は、下式で示される。
Figure JPOXMLDOC01-appb-C000007
実 施 例 8
   重水(DO)を用いたジフェニルアセチレンの重水素化反応:
 遊星型ボ-ルミル容器に、ジフェニルアセチレン(1)89.1mg(0.50mmol)、重水(Cambridge Isotope Laboratories, Inc.:Cat.No.15,188-2)272μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転、撹拌した。12時間経過後、遊星型ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮後、1,2-ジフェニル-1,1,2,2-テトラジュ-トロエタン(16)85.9mg(0.46mmol)を得た。収率は93%であった。なお、このものの構造は、H NMR、GC/MSにより確認した。また、この反応は、下式で示される。
Figure JPOXMLDOC01-appb-C000008
実 施 例 9
   1-ニトロナフタレンの水素添加反応による1-アミノナフタレン
   の合成:
 遊星型ボ-ルミル容器に、1-ニトロナフタレン(17)86.6mg(0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間経過後、遊星型ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮後、1-アミノナフタレン(18)44.3mg(0.31mmol)を得た。収率は62%であった。転換収率は100%であったが、一部減圧留去したため、単離収率に低下が見られた。この反応は、下式で示される。
Figure JPOXMLDOC01-appb-C000009
実 施 例 10
   1-クロロナフタレンの水素添加反応によるナフタレンの合成:
 遊星型ボ-ルミル容器に、1-クロロナフタレン(19)68.4μL(0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間後、遊星型ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮後、ナフタレン(20)を10.4mg(0.08mmol)得た。収率は16%であった。転換収率は100%であるが、一部減圧留去したため、単離収率に低下が見られた。この反応は、下式で示される。
Figure JPOXMLDOC01-appb-C000010
実 施 例 11
   テトラシアノキノジメタン(TCNQ)による水素添加反応抑制
   効果:
 遊星型ボ-ルミル容器に、ジフェニルアセチレン(1)89.1mg(0.50mmol)、蒸留水270μL(15mmol)、テトラシアノキノジメタン(TCNQ)10.1mg(0.05mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。この系では撹拌を12時間継続させても反応は全く進行しなかった。その理由は本反応がラジカル経由で進行すると推測される。この反応は、下式で示される。
Figure JPOXMLDOC01-appb-C000011
実 施 例 12
   4-ニトロベンゾフェノンの水素添加反応による4-アミノベンゾ
   フェノンの合成:
 遊星型ボ-ルミル容器に、4-ニトロベンゾフェノン(21)91.1mg(0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間経過後、遊星型ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮後、H NMRより4-アミノベンゾフェノン(22)と4-アミノベンズヒドロ-ル(23)を83:17の比率で得た。この反応は、下式で示される。
Figure JPOXMLDOC01-appb-C000012
実 施 例 13
   4-ベンジルオキシブロモベンゼンの水素添加反応による4-ベンジ
   ルオキシベンゼンの合成
 遊星型ボ-ルミル容器に、4-ベンジルオキシブロモベンゼン(24)131.6mg( 0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間経過後、遊星型ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮後、H NMRより4-ベンジルオキシブロモベンゼン(24)と4-ベンジルオキシベンゼン(25)を9:91の比率で得た。この反応は、下式で示される。
Figure JPOXMLDOC01-appb-C000013
実 施 例 14
   パラジウムホイル添加による水素添加反応:
 遊星型ボ-ルミル容器に、ジフェニルアセチレン(1)89.1mg(0.50mmol)、蒸留水270μL(15mmol)、ステンレスボ-ル(50個)およびパラジウムホイル(Aldrich製)を下表の量で加えた後、蓋をし、遊星型ボ-ルミル装置で下表の時間、800rpm(30分毎に逆回転)で回転させ、撹拌した。撹拌後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮し、反応生成物を得た。これをH NMRで確認したところ、シス-1,2-ジフェニルエチレン(26)、トランス-1,2-ジフェニルエチレン(27)および1,2-ジフェニルエタン(2)の混合物であった。これらの生成比率を下表の通りであった。この系ではパラジウムホイルを添加することにより、生成に要する時間の短縮や生成比率を改善することができた。また、この反応は下式で示される。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-C000015
実 施 例 15
   パラジウムホイル添加による脱塩素化反応:
 遊星型ボ-ルミル容器に、4-クロロドデシルオキシベンゼン(28)148.5mg(0.50mmol)、蒸留水270μL(15mmol)およびパラジウムホイル(1.9mg(3.6mol%)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で12時間、800rpm(30分毎に反転)で回転させ、撹拌した。12時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮し、ドデシルオキシベンゼン(29)58.7mg(0.22mmol)を45%の収率で得た。転換効率は100%であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000016
実 施 例 16
   ジフェニルアセチレンの水素添加反応:
 遊星型ボ-ルミル容器に、ジフェニルアセチレン(1)1.34g(7.5mmol)、蒸留水4.01mL(225mmol)およびステンレスボ-ル(25個)を加えた後、蓋をし、遊星型ボ-ルミルを用い、6時間、650rpm(30分毎に反転)で回転させ、撹拌した。6時間経過後、ボ-ルミル容器中にエチルアセテ-ト200mlを加え、反応混合物を含む溶液を得、これをセライト濾過した。濾液を濃縮し、反応生成物を得た。これをH NMRで確認したところ、シス-1,2-ジフェニルエチレン(26)、トランス-1,2-ジフェニルエチレン(27)および1,2-ジフェニルエタン(2)の混合物を92:0:8の混合比で得た。収率は92%であった。また、この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000017
実 施 例 17
   水素発生条件の検討:
 遊星型ボ-ルミル容器に、蒸留水(Wako 046-16971)270μL(15mmol)と、ステンレスボ-ル(50個)を入れた後、蓋をし、遊星型ボ-ルミル装置で1時間、400~1,000rpm(30分毎に反転)または0.3時間、1,100rpm(反転なし)で回転させ、撹拌した。攪拌終了後の容器内のガスの組成をGC/TCD(島津製作所製:GC-2014)で分析した。その結果を表2に示した。
Figure JPOXMLDOC01-appb-T000018
 以上の結果から、ボ-ルミルによる水の分解では水素のみが発生し、酸素は増加しないことがわかった。そのため本発明方法は酸素含有の少ない極めて安全な水素発生法である。なお、本発明方法において、予め、ボ-ルミル内を真空にすることで高純度の水素の発生ならびに捕集が可能と考えられる。
実 施 例 18
   6-ドデシンの水素添加反応によるドデカンの合成:
 遊星型ボ-ルミル容器に、6-ドデシン(30)83.2mg(0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で6時間、800rpm(30分毎に反転)で回転させ、撹拌した。6時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮したところ、ドデカン(31)51.1mg(0.30mmol)を得た。収率は、60%であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000019
実 施 例 19
   1-フェニルエタノンの水素添加反応による1-フェニルエタノ-ル
   の合成:
 遊星型ボ-ルミル容器に、1-フェニルエタノン(32)60.1mg(0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で6時間、800rpm(30分毎に反転)で回転させ、撹拌した。6時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮したところ、1-フェニルエタノ-ル(33)42.8mg(0.35mmol)を得た。収率は、70%であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000020
実 施 例 20
   3-フェニル-2-プロペン-1-オ-ルの水素添加による3-フェ
   ニル-1-プロパノ-ルの合成:
 遊星型ボ-ルミル容器に、3-フェニル-2-プロペン-1-オ-ル(34)67.1mg(0.50mmol)、蒸留水270μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で6時間、800rpm(30分毎に反転)で回転させ、撹拌した。6時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮したところ、3-フェニル-1-プロパノ-ル(35)64.7mg(0.475mmol)を得た。収率は、95%であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000021
実 施 例 21
   1-クロロ-3,5-ジメトキシベンゼンの水素添加による1,3-ジ
   メトキシベンゼンの合成:
 遊星型ボ-ルミル容器に、1-クロロ-3,5-ジメトキシベンゼン(36)86.3mg(0.50mmol)、蒸留水 45μL(2.5mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で30分間、1,100rpmで回転させ、撹拌した。30分経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮したところ、1,3-ジメトキシベンゼン(37)36.6mg(0.265mmol)を得た。収率は、53%であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000022
実 施 例 22
   3-フェニル-2-プロペン-1-オ-ルの重水素添加による
   3-フェニル-2,3-ジジュ-トロ-1-プロパノ-ルの
   合成:
 遊星型ボ-ルミル容器に、3-フェニル-2-プロペン-1-オ-ル(34)67.1mg(0.50mmol)、重水272μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で6時間、800rpm(30分毎に反転)で回転させ、撹拌した。6時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮したところ、3-フェニル-2,3-ジジュ-トロ-1-プロパノ-ル(38)60.1mg(0.435mmol)を得た。2位、3位の重水素化率は50%で、収率は、87%であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000023
実 施 例 23
   ベンジル-4-ブロモフェニルケトン(39)の重水素添加反応:
(1)1-(4-ブロモフェニル)-2,2-ジジュ-トロ-2-フェニル
   エタン(40)の合成
 遊星型ボ-ルミル容器に、ベンジル-4-ブロモフェニルケトン(39)137.6mg(0.50mmol)、重水272μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で6時間、650rpm(30分毎に反転)で回転させ、撹拌した。6時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮したところ、1-(4-ブロモフェニル)-2,2-ジジュ-トロ-2-フェニルエタン(40)128.9mg(0.465mmol)を得た。2位の重水素化率は77%で、収率は、93%であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000024
(2)1-(4-ブロモフェニル)-2,2-ジジュ-トロ-2-フェニル
   エタン(40)および 2,2-ジジュ-トロ1,2-ジフェニルエ
   タノン(41)の合成
 遊星型ボ-ルミル容器に、ベンジル-4-ブロモフェニルケトン(39)137.6mg(0.50mmol)、272μL(15mmol)およびステンレスボ-ル(50個)を加えた後、蓋をし、遊星型ボ-ルミル装置で6時間、800rpm(30分毎に反転)で回転させ、撹拌した。6時間経過後、ボ-ルミル容器中にエチルアセテ-ト10mLを加え、反応混合物を含む溶液を得、これをセライト濾過した。この操作を5回繰り返して得られた濾液を濃縮したところ、1-(4-ブロモフェニル)-2,2-ジジュ-トロ-2-フェニルエタン(40)124.7mg(0.45mmol)および2,2-ジジュ-トロ1,2-ジフェニルエタノン(41)5.9mg(0.03mmol)を得た。2位の重水素化率はそれぞれ、96%および98%で、収率は、それぞれ90%および6%であった。この反応は下式で示される。
Figure JPOXMLDOC01-appb-C000025
 以上の結果より、ボ-ルの回転数を少ない方が、ケトンα位の重水素化のみが進行し、ボ-ルの回転数が多い方が、高重水素化率でケトンα位の重水素化体が得られるが、一部ブロモ基の還元が進行することがわかった。従って、撹拌媒体の回転数、つまり、機械的エネルギ-を制御することにより、有機化合物の重水素化の程度を調整できることがわかった。
 本発明によれば、大規模で複雑な装置を必要とすることなく、簡単に水素または重水素を発生させることができ、この水素または重水素をガスとして取得したり、水素化または重水素化反応に使用することができるものである。
 従って本発明は、小規模な水素または重水素ガス製造装置において、あるいは簡単な有機化合物の水素化または重水素化反応装置において有利に利用することができるものである。

Claims (14)

  1.  水または重水を、触媒金属の存在下、メカノケミカル反応させることを特徴とする水素または重水素の製造方法。
  2.  メカノケミカル反応を遊星型ボ-ルミルで行う請求項1記載の水素または重水素の製造方法。
  3.  触媒金属が、遷移金属の1種または2種以上である請求項1または2記載の水素または重水素の製造方法。
  4.  有機化合物と、水または重水とを、触媒金属の存在下、メカノケミカル反応させることを特徴とする水素化または重水素化有機化合物の製造方法。
  5.  メカノケミカル反応を遊星型ボ-ルミルで行う請求項4記載の水素化または重水素化有機化合物の製造方法。
  6.  触媒金属が、遷移金属の1種または2種以上である請求項4または5記載の水素化または重水素化有機化合物の製造方法。
  7.  有機化合物が、ハロゲンを有する有機化合物であり、水素化または重水素化有機化合物が脱ハロゲン化有機化合物である請求項4~6の何れかに記載の水素化または重水素化有機化合物の製造方法。
  8.  有機化合物と、水または重水とを、触媒金属の存在下、メカノケミカル反応させることを特徴とする有機化合物の水素化または重水素化方法。
  9.  メカノケミカル反応を遊星型ボ-ルミルで行う請求項8記載の有機化合物の水素化または重水素化方法。
  10.  触媒金属が、遷移金属の1種または2種以上である請求項8または9記載の有機化合物の水素化または重水素化方法。
  11.  ハロゲンを有する有機化合物と、水または重水とを、触媒金属の存在下、メカノケミカル反応させることを特徴とするハロゲンを有する有機化合物の脱ハロゲン化方法。
  12.  ハロゲンを有する有機化合物が、ポリ塩化ビフェニルである請求項11記載の脱ハロゲン化方法。
  13.  メカノケミカル反応を遊星型ボ-ルミルで行う請求項11または12記載の脱ハロゲン化方法。
  14.  触媒金属が、遷移金属の1種または2種以上である請求項11~13の何れかに記載の脱ハロゲン化方法。
     
PCT/JP2011/068535 2010-08-18 2011-08-16 水素または重水素の製造方法およびそれを利用した有機化合物の水素化または重水素化 WO2012023546A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2012529597A JP5480386B2 (ja) 2010-08-18 2011-08-16 水素または重水素の製造方法およびそれを利用した有機化合物の水素化または重水素化
KR1020187000169A KR101899291B1 (ko) 2010-08-18 2011-08-16 수소 또는 중수소의 제조 방법
US13/817,637 US8871980B2 (en) 2010-08-18 2011-08-16 Process for producing hydrogen or heavy hydrogens, and hydrogenation (protiation, deuteration or tritiation) of organic compounds using same
KR1020137003211A KR101817820B1 (ko) 2010-08-18 2011-08-16 수소 또는 중수소의 제조 방법 및 그것을 이용한 유기 화합물의 수소화 또는 중수소화
CN201180040072.3A CN103068721B (zh) 2010-08-18 2011-08-16 氢或重氢的制造方法及利用该制造方法而进行的有机化合物的氢化或重氢化
BR112013003046A BR112013003046A2 (pt) 2010-08-18 2011-08-16 ''processo para produzir hidrogênio ou hidrogênios pesados, e hidrogenação (protiação, deuteração ou tritiação) de compostos orgnânicos utilizando os mesmos''
EP11818187.4A EP2607300B1 (en) 2010-08-18 2011-08-16 Process for hydrogenation of organic compounds using hydrogen or heavy hydrogen
EP20166285.5A EP3689817A1 (en) 2010-08-18 2011-08-16 Process for producing hydrogen or heavy hydrogens, and hydrogenation (protiation, deuteration or tritiation) of organic compounds using same
US14/459,673 US9676622B2 (en) 2010-08-18 2014-08-14 Process for producing hydrogen or heavy hydrogens, and hydrogenation (protiation, deuteration or tritiation) of organic compounds using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010182826 2010-08-18
JP2010-182826 2010-08-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/817,637 A-371-Of-International US8871980B2 (en) 2010-08-18 2011-08-16 Process for producing hydrogen or heavy hydrogens, and hydrogenation (protiation, deuteration or tritiation) of organic compounds using same
US14/459,673 Continuation US9676622B2 (en) 2010-08-18 2014-08-14 Process for producing hydrogen or heavy hydrogens, and hydrogenation (protiation, deuteration or tritiation) of organic compounds using same

Publications (1)

Publication Number Publication Date
WO2012023546A1 true WO2012023546A1 (ja) 2012-02-23

Family

ID=45605199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068535 WO2012023546A1 (ja) 2010-08-18 2011-08-16 水素または重水素の製造方法およびそれを利用した有機化合物の水素化または重水素化

Country Status (8)

Country Link
US (2) US8871980B2 (ja)
EP (2) EP3689817A1 (ja)
JP (2) JP5480386B2 (ja)
KR (2) KR101899291B1 (ja)
CN (2) CN103068721B (ja)
BR (1) BR112013003046A2 (ja)
TW (2) TWI507355B (ja)
WO (1) WO2012023546A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121997A1 (ja) * 2012-02-17 2013-08-22 シオノケミカル株式会社 水素または重水素の製造方法、水素化または重水素化有機化合物の製造方法、有機化合物の水素化または重水素化方法、ハロゲンを有する有機化合物の脱ハロゲン化方法、メカノケミカル反応用ボ-ル
WO2015115410A1 (ja) * 2014-01-28 2015-08-06 株式会社日本触媒 水素化反応方法
JP2015532195A (ja) * 2012-09-27 2015-11-09 ホワイチャオ・チェン 水蒸気分解用触媒、及びその製造方法、並びに水蒸気分解で得られた水素ガスの燃焼方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068721B (zh) * 2010-08-18 2016-01-13 盐野化学有限公司 氢或重氢的制造方法及利用该制造方法而进行的有机化合物的氢化或重氢化
CN106083620A (zh) * 2016-05-31 2016-11-09 成都东电艾尔科技有限公司 一种酮洛芬药物中间体对氨基二苯酮的合成方法
CN106881343A (zh) * 2016-11-29 2017-06-23 清华大学 一种土壤中卤代持久性有机污染物的机械化学分解的方法
DE102018119695A1 (de) * 2018-08-14 2020-02-20 Albert-Ludwigs-Universität Freiburg Verfahren und Vorrichtung zur Hydrierung und Hyperpolarisierung von Tracer-Molekülen für die Magnetresonanzbildgebung
JP2020062618A (ja) 2018-10-19 2020-04-23 キヤノン株式会社 炭化水素生成方法及び炭化水素生成装置
CN115845840A (zh) * 2022-12-23 2023-03-28 辽宁大学 一种石墨烯负载原子级分散钯基催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517641A (ja) * 1997-09-25 2001-10-09 ビルケ、フォルカー ハロ有機物質を還元的に脱ハロゲン化するための方法
JP2005170780A (ja) * 2003-11-18 2005-06-30 Japan Science & Technology Agency 水の分解装置及び分解方法並びに水分解用メカノ触媒
JP2007031169A (ja) * 2005-07-22 2007-02-08 National Institute For Materials Science 水素の製造方法及び二酸化炭素の固定化方法
JP2010120825A (ja) * 2008-11-21 2010-06-03 Wakasawan Energ Kenkyu Center 海綿鉄を再生可能な循環型水素製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3132188A (en) * 1964-05-05 Preparation of deuterated
US2056822A (en) * 1935-01-11 1936-10-06 Dow Chemcial Company Preparation of phenyl-magnesium chloride
US2690379A (en) * 1942-11-21 1954-09-28 Harold C Urey Process for production of deuterium oxide as a source of deuterium
US4351978A (en) * 1980-07-21 1982-09-28 Osaka Prefectural Government Method for the disposal of polychlorinated biphenyls
JPS5966348A (ja) * 1982-10-07 1984-04-14 Res Assoc Residual Oil Process<Rarop> 重質炭化水素の分解軽質化と水素の製造用触媒
US5648591A (en) * 1992-12-18 1997-07-15 University Of Western Australia Toxic material disposal
JP2001031401A (ja) 1999-07-21 2001-02-06 Kiriu Mach Mfg Co Ltd 水素ガスの製造方法
US6334583B1 (en) * 2000-02-25 2002-01-01 Hui Li Planetary high-energy ball mill and a milling method
CA2301252A1 (en) * 2000-03-17 2001-09-17 Hydro-Quebec Method for producing gaseous hydrogen by chemical reaction of metals or metal hydrides subjected to intense mechanical deformations
TW200413273A (en) * 2002-11-15 2004-08-01 Wako Pure Chem Ind Ltd Heavy hydrogenation method of heterocyclic rings
JP4122426B2 (ja) 2002-12-18 2008-07-23 独立行政法人産業技術総合研究所 水素製造方法
JP2005248027A (ja) * 2004-03-04 2005-09-15 Kyoto Univ ポリマーの重水素化方法
KR100837291B1 (ko) * 2005-01-07 2008-06-11 히다치 막셀 가부시키가이샤 수소발생재료, 수소의 제조장치 및 연료전지
JP4968060B2 (ja) * 2005-01-28 2012-07-04 和光純薬工業株式会社 重水素ガスの製造方法、及びこれにより得られる重水素ガスを用いた接触重水素化方法
CN101028921A (zh) * 2006-03-03 2007-09-05 中国人民解放军63971部队 碳炔的制备
JP2008207044A (ja) * 2006-10-06 2008-09-11 Koji Mitoma 有機ハロゲン化合物を含有する固体の無害化方法
JPWO2009087994A1 (ja) * 2008-01-07 2011-05-26 財団法人名古屋産業科学研究所 芳香族ハロゲン化物の脱ハロゲン化方法
CN103068721B (zh) * 2010-08-18 2016-01-13 盐野化学有限公司 氢或重氢的制造方法及利用该制造方法而进行的有机化合物的氢化或重氢化

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517641A (ja) * 1997-09-25 2001-10-09 ビルケ、フォルカー ハロ有機物質を還元的に脱ハロゲン化するための方法
JP2005170780A (ja) * 2003-11-18 2005-06-30 Japan Science & Technology Agency 水の分解装置及び分解方法並びに水分解用メカノ触媒
JP2007031169A (ja) * 2005-07-22 2007-02-08 National Institute For Materials Science 水素の製造方法及び二酸化炭素の固定化方法
JP2010120825A (ja) * 2008-11-21 2010-06-03 Wakasawan Energ Kenkyu Center 海綿鉄を再生可能な循環型水素製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121997A1 (ja) * 2012-02-17 2013-08-22 シオノケミカル株式会社 水素または重水素の製造方法、水素化または重水素化有機化合物の製造方法、有機化合物の水素化または重水素化方法、ハロゲンを有する有機化合物の脱ハロゲン化方法、メカノケミカル反応用ボ-ル
EP2816008A4 (en) * 2012-02-17 2016-04-20 Shiono Chemical Co Ltd METHOD FOR PRODUCING HYDROGEN OR DEUTERIUM, METHOD FOR PRODUCING A HYDROGENATED OR DEUTERATED ORGANIC COMPOUND, METHOD FOR THE HYDROGENATION OR DEUTERATION OF AN ORGANIC COMPOUND, METHOD FOR THE ENTHALOGENICATION OF A HALOGEN-CONTAINING ORGANIC COMPOUND AND BALL FOR USE IN A CHEMICAL-MECHANICAL REACTION
US9371272B2 (en) 2012-02-17 2016-06-21 Shiono Chemical Co., Ltd. Method for producing hydrogen or heavy hydrogens, method for producing hydrogenated (protiated, deuterated or tritiated) organic compound, method for hydrogenating (protiating, deuterating or tritiating) organic compound, method for dehalogenating organic compound having halogen, and ball for use in mechanochemical reaction
JP2015532195A (ja) * 2012-09-27 2015-11-09 ホワイチャオ・チェン 水蒸気分解用触媒、及びその製造方法、並びに水蒸気分解で得られた水素ガスの燃焼方法
WO2015115410A1 (ja) * 2014-01-28 2015-08-06 株式会社日本触媒 水素化反応方法
JPWO2015115410A1 (ja) * 2014-01-28 2017-03-23 株式会社日本触媒 水素化反応方法
US10106488B2 (en) 2014-01-28 2018-10-23 Nippon Shokubai Co., Ltd. Hydrogenation reaction method

Also Published As

Publication number Publication date
US20140363369A1 (en) 2014-12-11
CN103068721A (zh) 2013-04-24
JPWO2012023546A1 (ja) 2013-10-28
EP2607300A1 (en) 2013-06-26
EP2607300A4 (en) 2017-05-31
KR101899291B1 (ko) 2018-09-14
CN105366638A (zh) 2016-03-02
EP3689817A1 (en) 2020-08-05
BR112013003046A2 (pt) 2016-06-14
US8871980B2 (en) 2014-10-28
TW201601994A (zh) 2016-01-16
US20130150623A1 (en) 2013-06-13
CN105366638B (zh) 2018-01-09
JP5894117B2 (ja) 2016-03-23
CN103068721B (zh) 2016-01-13
TW201219299A (en) 2012-05-16
KR20140002598A (ko) 2014-01-08
TWI507355B (zh) 2015-11-11
US9676622B2 (en) 2017-06-13
EP2607300B1 (en) 2020-05-13
JP5480386B2 (ja) 2014-04-23
KR20180005741A (ko) 2018-01-16
KR101817820B1 (ko) 2018-01-11
JP2013176773A (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5894117B2 (ja) 水素または重水素の製造方法およびそれを利用した有機化合物の水素化または重水素化
JP6408626B2 (ja) 水素または重水素の製造方法
Dai et al. Cobalt in N-doped carbon matrix catalyst for chemoselective hydrogenation of nitroarenes
Fuchibe et al. Hydrodefluorinations by low-valent niobium catalyst
Zhang et al. Competitive adsorption on PtCo/CoBOx catalysts enables the selective hydrogen-reductive-imination of nitroarenes with aldehydes into imines
CN109053398A (zh) 催化氧化烷基芳香烃合成烷基芳香酮及催化剂的制备方法
JP2009046398A (ja) ナフタレン類水素化触媒
Cravotto et al. Oxidation and Reduction by Solid Oxidants and Reducing Agents using Ball-Milling
CN114345370B (zh) 一种光催化芳香类烯烃和卤代烃还原交叉偶联的方法
JP2023139475A (ja) 水素化反応物の製造方法及びメカノケミカル反応装置
Zhou et al. Chemoselective Transfer Hydrogenation of Nitroarenes with Ammonia Borane Catalyzed by Copper N‐heterocyclic Carbene Complexes
Schmitt Plasmonic Gold Nanoplate Perovskites Used in Photocatalytic Organic Transformations/Oxidations
Shiozuka et al. Photoinduced Deaminative Borylation of Unactivated Aromatic Amines Enhanced by CO2
Jia et al. Efficient Photolytic Halogenation and Oxidation of Unactivated Alkyl sp3 C—H Bonds with Iodine (III)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040072.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818187

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012529597

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137003211

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13817637

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011818187

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013003046

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013003046

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130207