WO2013108785A1 - 酸洗後の鋼板表面の黄変防止方法 - Google Patents

酸洗後の鋼板表面の黄変防止方法 Download PDF

Info

Publication number
WO2013108785A1
WO2013108785A1 PCT/JP2013/050678 JP2013050678W WO2013108785A1 WO 2013108785 A1 WO2013108785 A1 WO 2013108785A1 JP 2013050678 W JP2013050678 W JP 2013050678W WO 2013108785 A1 WO2013108785 A1 WO 2013108785A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
steel sheet
pickling
sheet surface
less
Prior art date
Application number
PCT/JP2013/050678
Other languages
English (en)
French (fr)
Inventor
弘之 増岡
安藤 聡
重行 相澤
和樹 中里
平 章一郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020147018456A priority Critical patent/KR101629592B1/ko
Priority to CN201380005825.6A priority patent/CN104053820B/zh
Priority to EP13738039.0A priority patent/EP2806051B1/en
Priority to US14/372,912 priority patent/US20150013716A1/en
Priority to JP2013523799A priority patent/JP5482968B2/ja
Publication of WO2013108785A1 publication Critical patent/WO2013108785A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/085Iron or steel solutions containing HNO3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF

Definitions

  • the present invention relates to a technique for preventing yellowing of a pickled steel sheet surface.
  • Patent Document 1 discloses that a slab is heated at a temperature of 1200 ° C. or higher during hot rolling, descaling is performed at a high pressure, and the surface of the hot rolled steel sheet is a nylon brush containing abrasive grains before pickling.
  • a high-strength cold-rolled steel sheet has been proposed in which the steel sheet is dipped in a 9% hydrochloric acid bath and pickled to reduce the Si concentration on the steel sheet surface.
  • Patent Document 2 proposes a high-strength cold-rolled steel sheet in which the corrosion resistance is improved by setting the line width of a linear oxide containing Si observed at 1 to 10 ⁇ m from the steel sheet surface to 300 nm or less. .
  • Patent Document 3 discloses that the Si-containing oxide concentrated on the surface of the steel sheet in the annealing process or the like is removed by pickling and further an S-based compound is added to the surface.
  • Patent Document 4 discloses a technique for providing a P-based compound instead of an S-based compound in the above technique.
  • Patent Documents 3 and 4 are effective for conventional plain steel sheets, but for high-strength cold-rolled steel sheets containing a large amount of Si, the low temperature of the chemical conversion treatment liquid There is a problem that a sufficient improvement effect that can cope with the transformation cannot be expected.
  • the inventors strongly washed the steel sheet surface that was continuously annealed after cold rolling, and removed the Si-containing oxide layer formed on the steel sheet surface layer during annealing together with the base iron, and the steel sheet surface by the strong pickling.
  • Patent Document 6 spraying of a discoloration preventing agent is started immediately before stopping the line when the line is stopped in the cleaning process by spraying the discoloration preventing agent onto the pickled steel strip. Then, a technique for preventing the discoloration of the steel strip by stopping the injection of the washing water, and then sequentially stopping the passing plate and stopping the spraying of the discoloration preventing agent after passing the plate at a predetermined distance has been proposed.
  • Patent Documents 7 and 8 propose a technique for preventing discoloration by keeping the liquid film pH on the steel sheet low by performing hydrochloric acid spraying between the pickling process and the rinsing process.
  • JP 2004-204350 A JP 2004-244698 A JP 2007-217743 A JP 2007-246951 A JP 2000-178775 A JP 2006-131924 A JP 2003-193275 A Japanese Patent Laid-Open No. 02-270977
  • Patent Documents 5 to 8 Even if the techniques of Patent Documents 5 to 8 are applied, it is difficult to completely prevent discoloration of the steel sheet surface when a strong oxidizing acid such as nitric acid is used as the pickling solution. In addition, when spraying high-concentration anti-yellowing agent or hydrochloric acid, the anti-yellowing agent or hydrochloric acid flows into the subsequent rinsing process. In addition, there is a problem that sufficient corrosion resistance cannot be obtained in a severe corrosion test such as a combined cycle corrosion test.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to prevent yellowing of the steel sheet surface after pickling, and thus it has excellent appearance quality, chemical conversion treatment and coating.
  • the object is to propose a method for stably producing a cold-rolled steel sheet having excellent post-corrosion resistance.
  • the inventors have made extensive studies on a method for preventing yellowing of the steel sheet surface.
  • the method for producing a cold-rolled steel sheet pickling the steel sheet surface, further re-acidifying, then washing with water, and drying, it is preferable to always keep the steel sheet surface wet in all the above steps, more preferably
  • the inventors have found that regulating the concentration of various contaminating components brought into the washing water used for the washing, particularly the iron ion concentration, is extremely effective in preventing yellowing of the steel sheet surface, and has led to the development of the present invention.
  • the present invention is a method for preventing yellowing of the surface of a steel sheet after pickling the steel sheet after continuous annealing to remove the Si-containing oxide layer on the surface of the steel sheet, then re- pickling, washing with water, and drying.
  • a method of preventing yellowing of a steel sheet surface is proposed, characterized in that the steel sheet surface is kept wet between pickling and re-acid cleaning and between re-acid cleaning and water washing.
  • the method for preventing yellowing of the steel sheet surface according to the present invention is characterized in that the water washing is performed using washing water having an iron ion concentration reduced to 20 g / L or less.
  • the washing water further has a nitrate ion concentration of 10 g / L or less, a chloride ion concentration of 5 g / L or less, a fluoride ion concentration of 5 g / L or less, and a sulfate ion.
  • concentration is reduced to 5 g / L or less.
  • the method for preventing yellowing of the steel sheet surface according to the present invention is characterized in that the water washing is performed by immersing in washing water having a temperature of 20 ° C. or more for 3 seconds or more.
  • the method for preventing yellowing of the steel sheet surface according to the present invention is characterized in that the above re-washing is performed using a re-pickling solution whose iron ion concentration is reduced to 40 g / L or less.
  • the re-pickling solution in the present invention is further characterized in that the nitrate ion concentration is further reduced to 20 g / L or less.
  • the method for preventing yellowing of the steel sheet surface according to the present invention is characterized in that the re- pickling is performed using a non-oxidizing acid.
  • the non-oxidizing acid is any one of hydrochloric acid, sulfuric acid, phosphoric acid, pyrophosphoric acid, formic acid, acetic acid, citric acid, hydrofluoric acid, oxalic acid, and acids obtained by mixing two or more of these. It is characterized by that.
  • the non-oxidizing acid in the present invention includes hydrochloric acid having a concentration of 0.1 to 50 g / L, sulfuric acid having a concentration of 0.1 to 150 g / L, and hydrochloric acid having a concentration of 0.1 to 20 g / L and 0.1 It is characterized by being any acid mixed with ⁇ 60 g / L sulfuric acid.
  • the method for preventing yellowing of the steel sheet surface according to the present invention is characterized in that the pickling is performed using any one of nitric acid, hydrochloric acid, hydrofluoric acid, sulfuric acid and an acid obtained by mixing two or more thereof as a pickling solution.
  • the method for preventing yellowing of the steel sheet surface according to the present invention is characterized in that the pickling is performed using an acid mixed with nitric acid and hydrochloric acid or an acid mixed with nitric acid and hydrofluoric acid as a pickling solution. To do.
  • the steel sheet in the method for preventing yellowing of the steel sheet surface according to the present invention is a cold-rolled steel sheet containing Si: 1.0 to 2.0 mass%.
  • the steel sheet has C: 0.01 to 0.20 mass%, Mn: 1.0 to 3.3 in addition to Si: 1.0 to 2.0 mass%. It contains 0 mass%, P: 0.05 mass% or less, S: 0.005 mass% or less, Al: 0.06 mass% or less.
  • the steel sheet in the method for preventing yellowing of the steel sheet surface of the present invention is characterized in that the Si content ratio (Si / Mn) to Mn is more than 0.4.
  • the Si—Mn based complex oxide is easily dissolved in acid, but SiO 2 is hardly soluble, and is formed not only on the surface of the steel sheet but also inside the base iron. Therefore, it is known that the etching property of the steel sheet surface in the chemical conversion treatment (phosphate treatment) performed as a base treatment for electrodeposition coating is inhibited, and the formation of a healthy chemical conversion coating film is adversely affected.
  • the inventors have studied a method for improving the chemical conversion treatment property of the steel sheet as described above, and as a result, the surface of the cold-rolled steel sheet after continuous annealing is pickled using a strong acid such as nitric acid, thereby performing continuous annealing.
  • the present inventors have found that it is effective to remove the Si-containing oxide layer on the surface layer of the steel plate formed by the same method as the base iron.
  • the Si-containing oxide is a SiO 2 or Si—Mn based composite oxide formed along the grain boundaries on the steel sheet surface or inside the steel sheet during annealing after slab heating, hot rolling or cold rolling.
  • the range in which these Si-containing oxides are present varies depending on the steel plate components and annealing conditions (temperature, time, atmosphere), etc., but is usually said to be about 1 ⁇ m from the steel plate surface. .
  • the steel sheet surface after continuous annealing was strongly pickled using nitric acid to remove the Si-containing oxide layer present in the surface layer, and further generated by strong pickling using a non-oxidizing acid.
  • the chemical conversion processability is greatly improved.
  • the surface of the steel sheet sometimes turns yellow (hereinafter also referred to as “yellowing”).
  • yellowed steel plate and the corrosion resistance after coating were investigated, it became clear that all were greatly inferior compared with the steel plate without discoloration.
  • the inventors have investigated the cause of the yellowing described above. As a result, when the steel plate taken out from the pickling tank is dried before entering the next re-pickling tank, or further out of the re-pickling tank. Yellowing occurs when the steel plate is dried before entering the next washing tank, and once this yellowing occurs, it remains without being easily removed by the next re-acid washing or water washing. It was also found that it adversely affects subsequent chemical conversion properties and post-coating corrosion resistance.
  • the inventors have found that the steel sheet surface needs to be always kept in a wet state (water wet state), and more preferably, used for the water washing. It has been found that it is important to limit the concentration of contaminating components, particularly iron ions, contained in the washing water and the re-pickling solution used for re-pickling.
  • the inventors consider as follows.
  • the pickling solution film dries in the drying process on the steel sheet surface, and the pickling solution concentrates.
  • the iron dissolution reaction continues and iron ions ( (Fe 2+ , Fe 3+, etc.) simultaneously generate hydrogen and raise the pH, so that the iron ions are deposited on the steel sheet surface as iron-based hydroxides.
  • iron ions generated in the pickling solution due to pickling are brought in along with the steel sheet and are present in large quantities. Deposits on the steel plate surface. Furthermore, the washing water and the re-pickling solution contain nitrate ions and fluoride ions that are also brought from the pickling solution. When these concentrations are high, the iron dissolution reaction occurs on the steel sheet surface. Proceeds to produce iron ions, further increasing iron hydroxide. If this iron-based hydroxide remains wet, it is removed by subsequent water washing, but the steel sheet surface is once dried to remove water molecules from the iron-based hydroxide. When it adheres to the surface, it cannot be easily removed by subsequent water washing or re-acid washing, and it is considered that yellowing of the steel sheet surface is caused.
  • the steel plate before pickling in the present invention is a steel plate that has been continuously annealed after cold rolling, and its component composition is preferably in the following range.
  • Si 1.0 to 2.0 mass%
  • Si is an element effective in achieving high strength of steel because it has a high solid solution strengthening capability and increases the strength of the steel without significantly impairing the workability.
  • addition of 1.0 maas% or more is preferable.
  • Si is an element that adversely affects chemical conversion treatment properties and post-coating corrosion resistance. However, if it is less than 1.0 mass%, the influence of deterioration of chemical conversion treatment conditions is small.
  • Si addition amount is 2.0 mass% or less, the bad influence on productivity by the fall of hot rolling property and cold rolling property will be small, and the ductility fall of a product steel plate will not be caused. Therefore, Si is preferably added in the range of 1.0 to 2.0 mass%, more preferably in the range of 1.0 to 1.6 mass%.
  • the steel sheet of the present invention when applied to a high-strength cold-rolled steel sheet having a tensile strength TS of 590 MPa or more used for an automobile body or the like, it preferably has the following component composition in addition to the Si.
  • C 0.01-0.20 mass%
  • C is an element effective for increasing the strength of steel, and is also an element effective for generating retained austenite, bainite, and martensite having a TRIP (Transformation Induced Plasticity) effect. is there. If C is 0.01 mass% or more, the above effect can be obtained. Moreover, if C is 0.20 mass% or less, the weldability does not deteriorate. Therefore, C is preferably added in the range of 0.01 to 0.20 mass%, and more preferably in the range of 0.10 to 0.20 mass%.
  • Mn 1.0 to 3.0 mass%
  • Mn is an element having an effect of enhancing the hardenability by solid solution strengthening of steel, enhancing hardenability, and promoting the formation of retained austenite, bainite, and martensite. Such an effect is manifested by addition of 1.0 mass% or more. On the other hand, if Mn is 3.0 mass% or less, the above effect can be obtained without causing an increase in cost. Therefore, Mn is preferably added in the range of 1.0 to 3.0 mass%, more preferably in the range of 1.0 to 2.8 mass%.
  • P 0.05 mass% or less
  • P is an element that does not impair the drawability for a large solid solution strengthening ability, and is an element effective for achieving high strength. Therefore, it is preferable to contain 0.005 mass% or more.
  • P is an element which impairs spot weldability, if it is 0.05 mass% or less, a problem will not arise. Therefore, P is preferably 0.05 mass% or less, and more preferably 0.03 mass% or less.
  • S 0.005 mass% or less
  • S is an impurity element inevitably mixed in steel, and is a harmful component that precipitates as MnS and lowers the stretch flangeability of the steel sheet. Therefore, in order not to lower the stretch flangeability, S is preferably limited to 0.005 mass% or less. More preferably, it is 0.003 mass% or less.
  • Al 0.06 mass% or less
  • Al is an element added as a deoxidizer in the steelmaking process, and is an effective element for separating non-metallic inclusions that reduce stretch flangeability as slag. Therefore, it is preferable to contain 0.01 mass% or more.
  • the upper limit is preferably 0.06 mass%. More preferably, it is in the range of 0.02 to 0.04 mass%.
  • the Si content ratio (Si / Mn) to Mn is preferably more than 0.4. This is because by setting (Si / Mn) to more than 0.4, it is possible to easily achieve both high strength of 590 MPa or more and excellent workability. More preferably, it is 0.6 or more.
  • the balance other than the above components in the steel sheet of the present invention is Fe and inevitable impurities. However, addition of other components is not rejected as long as it is within the composition range of a normal cold-rolled steel sheet and does not impair the effects of the present invention.
  • the method for producing a cold-rolled steel sheet according to the present invention comprises heating a steel material (slab) containing a component that is more oxidizable than Fe such as Si and Mn, followed by hot rolling, and if necessary, hot-rolled sheet annealing. After pickling, pickling, cold rolling and continuous annealing to give the desired strength and workability, pickling using a strong oxidizing acid such as nitric acid as the pickling solution, After removing the contained oxide layer together with the ground iron, the iron-based oxide generated on the steel plate surface by the above pickling is removed by re-acid picking using a non-oxidizing acid, and then adheres to the steel plate surface. The pickling solution and the re-pickling solution and the reaction product produced by the pickling and re-pickling are washed and removed, and then dried.
  • the said manufacturing method may carry out according to a conventionally well-known conventional method until a continuous annealing process, and there is no restriction
  • the subsequent steps after pickling are preferably carried out under the conditions described below.
  • from the above pickling to re-pickling and from re-pickling to washing with water without drying the steel sheet surface in between, always keep in a wet state (water wet state), more preferably, the concentration of iron ions in the washing water used for the above washing and the re-pickling solution used for re-acid washing It is important to reduce it below a predetermined value.
  • the conditions after the pickling step will be specifically described.
  • Si-containing oxides such as SiO 2 and Si-Mn based composite oxides are formed on the surface layer of the steel sheet after continuous annealing containing easily oxidizable components such as Si and Mn exceeding 0.5 mass%. In this state, the chemical conversion properties and the corrosion resistance after coating are significantly reduced. Therefore, the Si-containing oxide on the surface layer of the steel plate after continuous annealing needs to be pickled and removed using any acid, for example, nitric acid, hydrochloric acid, hydrofluoric acid, sulfuric acid, or a mixed acid thereof. .
  • the SiO 2 is hardly soluble in acid, it is desirable to remove the whole iron of the steel plate using nitric acid or hydrofluoric acid, which is a strong acid, for removal by pickling.
  • nitric acid is strongly oxidizing, Fe eluted by pickling oxidizes to produce an iron-based oxide and covers the steel sheet surface, which adversely affects subsequent chemical conversion properties and corrosion resistance after coating. Therefore, when nitric acid is used, the nitric acid concentration is preferably in the range of 100 to 200 g / L in order to suppress the above-described adverse effects. If it is 100 g / L or more, the pickling power is sufficient. Moreover, it is because the production amount of an iron-type oxide will not increase if it is 200 g / L or less. More preferably, it is in the range of 110 to 150 g / L.
  • the pickling is preferably performed using an acid mixed so that the concentration ratio R (HCl / HNO 3 ) to nitric acid is in the range of 0.01 to 0.25. If the said ratio R is 0.01 or more, the production
  • the concentration is preferably in the range of 30 to 70 g / L.
  • the pickling is preferably carried out at a temperature of the pickling solution of 20 to 70 ° C. and a pickling time of 3 to 30 seconds, regardless of which pickling solution is used.
  • the acid used for this re- pickling is a non-oxidizing acid, specifically, hydrochloric acid, sulfuric acid, phosphoric acid, pyrophosphoric acid, formic acid, acetic acid, citric acid, hydrofluoric acid, oxalic acid and a mixture of two or more of these. It is preferred to use any of the acids prepared.
  • the acid used for the re-acid pickling is 0.1 to 50 g / L of hydrochloric acid
  • sulfuric acid when used, the sulfuric acid concentration is 0.1 to 150 g / L.
  • an acid mixed with hydrochloric acid and sulfuric acid is used for re-acid washing, an acid mixed with a hydrochloric acid concentration of 0.1 to 20 g / L and a sulfuric acid concentration of 0.1 to 60 g / L is used. Is preferred.
  • phosphoric acid is 0.1 to 130 g / L
  • pyrophosphoric acid is 0.1 to 240 g / L
  • formic acid is 0.1-60 g / L
  • acetic acid 0.1-80 g / L citric acid 0.1-260 g / L
  • hydrofluoric acid 0.1-30 g / L
  • oxalic acid 0.1-120 g / L It is preferable to set the concentration range.
  • the re-pickling is preferably carried out at a re-pickling solution temperature of 20 to 70 ° C. and a treatment time of 1 to 30 seconds, regardless of which of the above re-pickling solutions is used.
  • iron ions contained in the pickling solution and re-pickling solution and nitrate ions adhering to the steel plate surface A large amount of iron ions generated as a result of dissolution reaction due to, for example, iron-based hydroxides. This is because when these are dried, iron-based oxides and iron-based hydroxides change in quality and cause yellowing.
  • the method for maintaining the steel sheet surface in a wet state is not particularly limited. For example, water is sprayed on the steel sheet surface between pickling and re-acid pickling and between re-acid pickling and water washing. Or spraying with mist, or by increasing the humidity to suppress drying.
  • the water sprayed on the steel plate surface is fresh water.
  • it is preferably fresh water with pH ⁇ 6, and more preferably fresh water with pH: 6-7.
  • a re-pickling solution may be used between pickling and re-pickling.
  • the concentration of iron ions contained in the washing water used for washing may be limited to 20 g / L or less. preferable. More preferably, it is 10 g / L or less.
  • the wash water contains a large amount of nitrate ions, chloride ions, hydrofluoric acid ions, sulfate ions, etc. that are brought into the steel plate from the pickling solution and re-pickling solution. Yes. If these are attached to the steel sheet surface, the iron base is dissolved to increase the iron ion concentration on the steel sheet surface, and iron hydroxide may be generated and deposited on the steel sheet surface. Therefore, it is desirable to reduce these ion concentrations.
  • nitrate ions 10 g / L or less, chloride ions: 5 g / L or less, fluoride ions: 5 g / L or less, sulfate ions: 5 g / L It is preferable to limit to L or less. More preferably, nitrate ion: 5 g / L or less, chloride ion: 2.5 g / L or less, fluoride ion: 2.5 g / L or less, sulfate ion: 2.5 g / L or less.
  • iron ions, nitrate ions, and the like in the washing water are mainly brought in due to the contaminating components in the re-pickling solution in the re-pickling step adhering to the steel plate surface. Therefore, in order to reduce iron ions and nitrate ions in the washing water, it is desirable to provide an upper limit for the concentration of iron ions and nitrate ions in the re-pickling solution. Therefore, in the present invention, it is preferable to limit iron ions in the re-pickling solution to 40 g / L or less and nitrate ions to 20 g / L or less. More preferably, iron ions are 20 g / L or less, and nitrate ions are 10 g / L or less.
  • the temperature of the washing water being 20 ° C. or higher and immersing for 3 seconds or more. If the temperature of the washing water is 20 ° C. or more and the washing time is 3 seconds or more, the steel sheet surface can be sufficiently washed. On the other hand, if the temperature of the washing water is 70 ° C. or less, the energy cost is not increased. Moreover, if the washing time is 30 seconds or less, there is no need to increase the equipment length or decrease the sheet passing speed, which is preferable. More preferably, the temperature of the washing water is in the range of 30 to 50 ° C., and the immersion time is in the range of 4 to 20 seconds.
  • the steel materials A to F shown in Table 1 containing a large amount of Si and Mn are hot-rolled, pickled hot-rolled, cold-rolled and continuously annealed. Thus, pickling, re- pickling, washing with water, and drying were performed to obtain high-strength cold-rolled steel sheets having various strengths. Next, a sample was taken from each of the above high-strength cold-rolled steel sheets, and the degree of yellowing of the steel sheet surface was evaluated by the following method.
  • the corrosion resistance after coating was evaluated by subjecting it to three types of corrosion tests, namely, an immersion test, a salt spray test, and a combined cycle corrosion test.
  • ⁇ Salt warm water immersion test> The surface of the test piece subjected to chemical conversion treatment and electrodeposition coating was applied with a 45 mm long crosscut wrinkle with a cutter, and then the test piece was immersed in a 5 mass% NaCl solution (60 ° C.) for 240 hours, and then After washing with water, drying, and sticking an adhesive tape on the cut collar, a tape peeling test was conducted to peel it off, and the maximum width of the entire peel that combined the left and right sides of the cut collar was measured. If this maximum peeling full width is 5.0 mm or less, it can be evaluated that the corrosion resistance in the salt warm water immersion test is good.
  • the technique of the present invention is not limited to high-strength cold-rolled steel sheets containing a large amount of Si or Mn, and can be applied to all steel sheets that are pickled to produce products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

連続焼鈍後の鋼板を酸洗して鋼板表層のSi含有酸化物層を除去した後、再酸洗し、水洗し、乾燥した鋼板表面の黄変を防止する方法において、上記酸洗と再酸洗の間および再酸洗と水洗の間の鋼板表面をウェット状態に保持する、好ましくはさらに、上記水洗を、鉄イオン濃度を20g/L以下に低減した洗浄水を用いて行うことによって酸洗後の鋼板表面の黄変を防止し、もって、外観品質に優れると共に、化成処理性や塗装後耐食性にも優れる冷延鋼板を安定して製造する。

Description

酸洗後の鋼板表面の黄変防止方法
 本発明は、酸洗した鋼板表面の黄変を防止する技術に関するものである。
 近年、地球環境を保護する観点から、自動車の燃費改善が強く求められている。また、衝突時における乗員の安全を確保する観点から、自動車の安全性向上も強く要求されている。それらの要求に応えるためには、自動車車体の軽量化と高強度化を同時に達成する必要があり、自動車部材の素材となる冷延鋼板においては、高強度化による薄肉化が積極的に進められている。しかし、自動車部材の多くは鋼板を成形加工して製造されることから、これらの鋼板には、高い強度に加えて、優れた成形性が求められる。
 冷延鋼板の強度を高めるには種々の方法があるが、成形性を大きく損なわずに高強度化を図ることができる方法の一つとして、SiやMn添加による固溶強化法が挙げられる。しかし、冷延鋼板に多量のSiやMn、特に0.5mass%以上のSiを添加した場合には、スラブ加熱時や熱間圧延、あるいは冷間圧延後の焼鈍時に、鋼板表面にSiOやSi-Mn系複合酸化物等のSi含有酸化物が形成されることが知られている。このSi含有酸化物は、化成処理性を著しく低下させるため、Siを多く含む高強度冷延鋼板は、化成処理性に劣るだけでなく、電着塗装後に、塩温水浸漬試験や湿潤-乾燥を繰り返す複合サイクル腐食試験のような過酷な腐食環境に曝されると、通常の鋼板に比べて塗膜剥離を起こし易く、塗装後耐食性に劣るという問題がある。
 この問題に対する方策としては、例えば、特許文献1には、熱延時にスラブを1200℃以上の温度で加熱し、高圧でデスケーリングし、酸洗前に熱延鋼板の表面を砥粒入りナイロンブラシで研削し、9%塩酸槽に2回浸漬して酸洗を行い、鋼板表面のSi濃度を低下させた高強度冷延鋼板が提案されている。また、特許文献2には、鋼板表面から1~10μmに観察されるSiを含む線状酸化物の線幅を300nm以下とすることで耐食性を向上させた高強度冷延鋼板が提案されている。
 しかし、特許文献1に記載された高強度冷延鋼板では、冷間圧延前に鋼板表面のSi濃度を低減しても、冷間圧延後の焼鈍によって鋼板表面にSi含有酸化物が形成されるため、塗装後耐食性の改善は望めない。また、特許文献2に記載された高強度冷延鋼板では、JIS Z2371に規定された塩水噴霧試験のような腐食環境では耐食性が問題となることはないが、塩温水浸漬試験や複合サイクル腐食試験のような過酷な腐食環境では、十分な塗装後耐食性が得られない。すなわち、熱間圧延後の鋼板表面のSi濃度を低減したり、Siを含む線状酸化物を低減したりするだけでは、塗装後耐食性に優れた高強度冷延鋼板が得られない。
 そこで、上記問題点を解決する技術として、特許文献3には、焼鈍工程等で鋼板表面に濃化したSi含有酸化物を酸洗により除去し、更にその表面にS系化合物を付与することで、化成処理液との反応性を高めて、化成処理性を向上させる技術が開示されている。また、特許文献4には、上記技術において、S系化合物に代わり、P系化合物を付与する技術が開示されている。
 一方、近年、産業廃棄物の低減(スラッジの生成抑制)およびランニングコストの削減を目的として、化成処理液の低温度化が進んでおり、従来の化成処理条件に比較して、鋼板に対する化成処理液の反応性が大きく低下してきている。上記処理液の低温度化は、従来から使用されてきた合金添加量の少ない普通鋼板では、化成処理前の表面調整技術の改良等によって問題となることはない。しかし、Siを多量に添加している高強度冷延鋼板では、焼鈍工程で鋼板表層に形成されたSi含有酸化物の影響によって化成処理液との反応性が著しく低下するため、何らかの手段で鋼板側から反応性を高めることが必要である。しかし、特許文献3および4に開示された技術では、従来の普通鋼板には有効ではあっても、Siを多量に含有している高強度冷延鋼板に対しては、化成処理液の低温度化にも対応できる十分な改善効果が期待できないという問題がある。
 そこで、発明者らは、冷間圧延後、連続焼鈍した鋼板表面を強酸洗して、焼鈍時に鋼板表層に形成されたSi含有酸化物層を地鉄ごと除去すると共に、上記強酸洗よって鋼板表面に生成した鉄系酸化物を再酸洗して除去することで、化成処理性に優れるとともに、塗装後耐食性にも優れる冷延鋼板を製造する技術を開発し、その結果を、特願2011-177861として出願した。
 しかし、連続焼鈍した鋼板を酸洗し、再酸洗し、水洗(リンス)し、乾燥して製造した冷延鋼板は、時として、鋼板表面が黄色に変色し、著しく外観品質を損ねることがある。
 上記黄変を防止する技術としては、これまでに幾つかの提案がなされている。例えば、特許文献5には、鋼帯を酸洗する酸洗処理のリンス工程において、黄変抑制薬剤を含むリンス液と窒素ガスとを混合して鋼帯に吹き付けることで鋼帯の変色を防止する技術が、また、特許文献6には、酸洗した鋼帯に変色防止剤を噴霧することで洗浄工程において、ラインを停止する際、ラインの停止直前に、変色防止剤の噴霧を開始し、次いで、洗浄水の噴射を停止し、その後、所定距離の通板の後に、通板の停止と変色防止剤の噴霧停止を順次行うことで鋼帯の変色を防止する技術が提案されている。また、特許文献7および8には、酸洗処理からリンス工程間で塩酸スプレーを行うことで、鋼板上の液膜pHを低い状態に保ち、変色を防止する技術が提案されている。
特開2004-204350号公報 特開2004-244698号公報 特開2007-217743号公報 特開2007-246951号公報 特開2000-178775号公報 特開2006-131924号公報 特開2003-193275号公報 特開平02-270977号公報
 しかしながら、上記特許文献5~8の技術を適用したとしても、上記酸洗液として硝酸のような強力な酸化性の酸を用いる場合には、鋼板表面の変色を完全に防止することは難しい。また、高濃度の黄変防止薬剤や塩酸をスプレーする場合には、続くリンス工程に黄変防止薬剤や塩酸が流入するため、却って化成処理性が低下したり、塗装後に行われる塩温水浸漬試験や複合サイクル腐食試験のような過酷な腐食試験で十分な耐食性を得ることができなかったりするという問題がある。
 本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、酸洗後の鋼板表面の黄変を防止し、もって、外観品質に優れると共に、化成処理性や塗装後耐食性にも優れる冷延鋼板を安定して製造する方法を提案することにある。
 発明者らは、上記課題を解決するべく、鋼板表面の黄変防止方法について鋭意検討を重ねた。その結果、鋼板表面を酸洗し、さらに再酸洗し、その後、水洗し、乾燥する冷延鋼板の製造方法において、上記全ての工程において鋼板表面を常にウェット状態に保持すること、さらに好ましくは、上記水洗に用いる洗浄水に持ち込まれる各種汚染成分の濃度、特に鉄イオン濃度を規制することが、鋼板表面の黄変防止に極めて有効であることを見出し、本発明を開発するに至った。
 すなわち本発明は、連続焼鈍後の鋼板を酸洗して鋼板表層のSi含有酸化物層を除去した後、再酸洗し、水洗し、乾燥した鋼板表面の黄変を防止する方法において、上記酸洗と再酸洗の間および再酸洗と水洗の間の鋼板表面をウェット状態に保持することを特徴とする鋼板表面の黄変防止方法を提案する。
 本発明の鋼板表面の黄変防止方法は、上記水洗を、鉄イオン濃度を20g/L以下に低減した洗浄水を用いて行うことを特徴とする。
 また、本発明の鋼板表面の黄変防止方法における上記洗浄水は、さらに硝酸イオン濃度を10g/L以下、塩化物イオン濃度を5g/L以下、弗化物イオン濃度を5g/L以下、硫酸イオン濃度を5g/L以下に低減したものであることを特徴とする。
 本発明の鋼板表面の黄変防止方法は、上記水洗を、温度が20℃以上の洗浄水中に、3秒以上浸漬して行うことを特徴とする。
 また、本発明の鋼板表面の黄変防止方法は、上記再酸洗を、鉄イオン濃度を40g/L以下に低減した再酸洗液を用いて行うことを特徴する。
 また、本発明における上記再酸洗液は、さらに硝酸イオン濃度を20g/L以下に低減したものであることを特徴とする。
 また、本発明の鋼板表面の黄変防止方法は、上記再酸洗を、非酸化性の酸を用いて行うことを特徴とする。
 また、本発明における上記非酸化性の酸は、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、シュウ酸およびこれらの2種以上を混合した酸のいずれかであることを特徴とする。
 また、本発明における上記非酸化性の酸は、濃度が0.1~50g/Lの塩酸、0.1~150g/Lの硫酸、および、0.1~20g/Lの塩酸と0.1~60g/Lの硫酸を混合した酸のいずれかであることを特徴とする。
 また、本発明の鋼板表面の黄変防止方法は、上記酸洗を、硝酸、塩酸、弗酸、硫酸およびそれらを2種以上混合した酸のいずれかを酸洗液に用いて行うことを特徴とする。
 また、本発明の鋼板表面の黄変防止方法は、上記酸洗を、硝酸と塩酸を混合した酸、または、硝酸と弗酸を混合した酸、を酸洗液に用いて行うことを特徴とする。
 また、本発明の鋼板表面の黄変防止方法における上記鋼板は、Si:1.0~2.0mass%を含有する冷延鋼板であることを特徴とする。
 また、本発明の鋼板表面の黄変防止方法における上記鋼板は、Si:1.0~2.0mass%の他に、C:0.01~0.20mass%、Mn:1.0~3.0mass%、P:0.05mass%以下、S:0.005mass%以下、Al:0.06mass%以下を含有することを特徴とする。
 また、本発明の鋼板表面の黄変防止方法における上記鋼板は、Mnに対するSiの含有量比(Si/Mn)が0.4超えであることを特徴とする。
 本発明によれば、酸洗処理後の鋼板表面の黄変を防止することができるので、外観品質に優れるだけでなく、化成処理性や塗装後耐食性にも優れる冷延鋼板を安定して製造することが可能となる。
 まず、本発明の基本的な技術思想について説明する。
 近年、高強度冷延鋼板は、冷間圧延した冷延鋼板を再結晶させると同時に、所望の強度と加工性を付与するため、連続焼鈍炉で仕上焼鈍して製造することが多くなっている。連続焼鈍炉では、通常、雰囲気ガスとして非酸化性または還元性のガスが用いられており、露点も厳格に管理されている。しかし、焼鈍時の雰囲気ガスの成分や露点をいかに厳格に管理しても、Feと比較して易酸化性であるSiやMn等の元素は、鋼板表面にSi酸化物(SiO)やSi-Mn系複合酸化物等のSi含有酸化物層を形成する。このうち、Si-Mn系複合酸化物は酸に容易に溶解するが、SiOは難溶性であり、鋼板表面だけでなく、地鉄の内部にまで形成される。そのため、電着塗装の下地処理として施される化成処理(リン酸塩処理)における鋼板表面のエッチング性を阻害し、健全な化成処理皮膜の形成に悪影響を及ぼすことが知られている。
 そこで、発明者らは、上記のような鋼板の化成処理性を向上させる方法について検討した結果、連続焼鈍後の冷延鋼板表面を、硝酸等の強酸を用いて酸洗することで、連続焼鈍等で形成された鋼板表層のSi含有酸化物層を地鉄ごと除去することが有効であることを見出した。ここで、上記Si含有酸化物とは、スラブ加熱や熱間圧延あるいは冷間圧延後の焼鈍時に、鋼板表面や鋼板内部の結晶粒界に沿って形成されるSiOやSi-Mn系複合酸化物のことをいい、これらのSi含有酸化物が存在する範囲は、鋼板成分や焼鈍条件(温度、時間、雰囲気)等によっても変化するが、通常、鋼板表面から1μm程度であるといわれている。
 しかし、硝酸は強酸化性であるため、硝酸で酸洗した場合には、鋼板表層のSi含有酸化物は除去できるものの、酸洗後の鋼板表面に新たな鉄系酸化物が生成し、沈着する。この鉄系酸化物の表面被覆率が高くなると、化成処理性や塗装後耐食性が却って低下してしまう。そこで、発明者らは、この鉄系酸化物を、非酸化性の酸で再酸洗して溶解・除去する技術を開発し、先述した特願2011-177861として出願した。
 上記技術を適用し、連続焼鈍後の鋼板表面を、硝酸を用いて強酸洗して表層に存在するSi含有酸化物層を除去し、さらに、非酸化性の酸を用いて強酸洗で生成した鉄系酸化物を除去することで、化成処理性は大幅に改善される。
 しかしながら、上記のような強酸洗を行った場合には、時として鋼板表面が黄色く変色する場合がある(以降、「黄変」ともいう。)。そして、この黄変した鋼板の化成処理性や塗装後耐食性を調査したところ、変色のない鋼板と比較して、いずれも大きく劣っていることが明らかとなった。
 発明者らは、上記黄変が発生する原因について究明したところ、酸洗槽から出た鋼板が次の再酸洗槽に入るまでの間に乾燥した場合、あるいはさらに、再酸洗槽から出た鋼板が次の水洗槽に入るまでの間に乾燥した場合に、黄変が起こること、そして、この黄変は、一旦発生すると、次の再酸洗や水洗でも容易に除去されずに残存し、その後の化成処理性や塗装後耐食性に悪影響を及ぼすことがわかった。
 そこで、発明者らは、上記鋼板表面の黄変を防止する方法について検討した結果、鋼板表面を常にウェット状態(水濡れ状態)に保持する必要があること、さらに、好ましくは、上記水洗に用いる洗浄水や、再酸洗に用いる再酸洗液の中に含まれる汚染成分、特に、鉄イオンの濃度を制限することが重要であることを見出した。
 なお、上記黄変が起こる原因については、まだ、十分に明らかとなっていないが、発明者らは以下のように考えている。
 硝酸による強酸洗では、鋼板表層のSi含有酸化物層は除去されるものの、酸洗後の鋼板表面には、水洗までの間、酸化力の強い硝酸成分を含む酸洗液膜が残存する。その結果、鋼板表面では乾燥過程で酸洗液膜が乾燥し、酸洗液が濃縮していくこと、および、酸洗液膜中では、鉄溶解反応が継続して進行して、鉄イオン(Fe2+やFe3+等)と同時に水素が発生してpHを上昇させるため、上記鉄イオンは鉄系水酸化物として鋼板表面へ沈着することになる。また、洗浄水や再酸洗液中には、酸洗によって酸洗液中に生じた鉄イオンが鋼板に付随して持ち込まれて多量に存在しているため、やはり、鉄系水酸化物として鋼板表面に沈着する。さらに、上記洗浄水や再酸洗液中には、同じく酸洗液から持ち込まれた硝酸イオンや弗化物イオン等が含まれており、これらの濃度が高い場合には、鋼板表面で鉄溶解反応が進行して鉄イオンを生成し、鉄系水酸化物をさらに増大させることになる。この鉄系水酸化物は、水濡れ状態のままであれば、その後の水洗で除去されるが、鋼板表面が一旦乾燥して鉄系水酸化物から水分子が取れ、鉄系酸化物として鋼板表面に付着した場合には、その後の水洗や再酸洗では容易に除去することができず、鋼板表面の黄変を引き起こすものと考えられる。
 次に、本発明における酸洗前の鋼板は、冷間圧延後、連続焼鈍した鋼板であり、その成分組成は以下の範囲であることが好ましい。
Si:1.0~2.0mass%
 Siは、固溶強化能が大きく、加工性を大きく損なうことなく鋼の強度を高めるため、鋼の高強度化を達成するのに有効な元素である。高強度達成手段として添加する場合には、1.0maas%以上の添加が好ましい。また、Siは、化成処理性や塗装後耐食性に悪影響を及ぼす元素でもあるが、1.0mass%未満では、化成処理条件の悪化による影響は小さい。また、Si添加量が2.0mass%以下であれば、熱間圧延性や冷間圧延性の低下による生産性への悪影響が小さく、また、製品鋼板の延性低下を招くことがない。よって、Siは1.0~2.0mass%の範囲で添加するのが好ましく、より好ましくは1.0~1.6mass%の範囲である。
 また、本発明の鋼板は、自動車車体等に用いられる引張強さTSが590MPa以上の高強度冷延鋼板に適用する場合には、上記Siの他に、以下の成分組成を有することが好ましい。
C:0.01~0.20mass%
 Cは、鋼を高強度化するのに有効な元素であり、さらに、TRIP(変態誘起塑性:Transformation induced Plasticity)効果を有する残留オーステナイトや、ベイナイト、マルテンサイトを生成させるのにも有効な元素である。Cが0.01mass%以上であれば上記効果が得られる。また、Cが0.20mass%以下であれば、溶接性の低下が生じない。よって、Cは0.01~0.20mass%の範囲で添加するのが好ましく、0.10~0.20mass%の範囲で添加するのがより好ましい。
Mn:1.0~3.0mass%
 Mnは、鋼を固溶強化して高強度化するとともに、焼入性を高め、残留オーステナイトやベイナイト、マルテンサイトの生成を促進する作用を有する元素である。このような効果は、1.0mass%以上の添加で発現する。一方、Mnが3.0mass%以下であれば、コストの上昇を招かずに上記効果を得ることができる。よって、Mnは1.0~3.0mass%の範囲で添加するのが好ましく、1.0~2.8mass%の範囲で添加するのがより好ましい。
P:0.05mass%以下
 Pは、固溶強化能の大きい割に絞り性を害さない元素であり、高強度化を達成するのに有効な元素である。そのため、0.005mass%以上含有させることが好ましい。ただし、Pは、スポット溶接性を害する元素であるが、0.05mass%以下であれば問題は生じない。よって、Pは0.05mass%以下が好ましく、0.03mass%以下とするのがより好ましい。
S:0.005mass%以下
 Sは、鋼中に不可避的に混入してくる不純物元素であり、MnSとして析出し、鋼板の伸びフランジ性を低上させる有害な成分である。したがって、伸びフランジ性を低下させないためには、Sは0.005mass%以下に制限するのが好ましい。より好ましくは0.003mass%以下である。
Al:0.06mass%以下
 Alは、製鋼工程で脱酸剤として添加される元素であり、また、伸びフランジ性を低下させる非金属介在物をスラグとして分離するのに有効な元素である。したがって、0.01mass%以上含有させるのが好ましい。一方、Al添加量が0.06mass%以下であれば、原料コストの上昇を招かずに上記効果を得ることができるので、上限は0.06mass%とするのが好ましい。より好ましくは0.02~0.04mass%の範囲である。
Si/Mn:0.4超え
 本発明の鋼板は、Mnに対するSiの含有量比(Si/Mn)が0.4超えであることが好ましい。(Si/Mn)を0.4超えとすることによって、590MPa以上の高強度と優れた加工性を両立させ易くすることができるからである。より好ましくは0.6以上である。
 本発明の鋼板における上記成分以外の残部は、Feおよび不可避的不純物である。ただし、通常の冷延鋼板が有する組成範囲でかつ本発明の作用効果を害しない範囲であれば、その他の成分の添加を拒むものではない。
 次に、本発明における冷延鋼板の製造方法について説明する。
 本発明の冷延鋼板の製造方法は、SiやMn等のFeよりも易酸化性の成分を含有する鋼素材(スラブ)を加熱後、熱間圧延し、必要に応じて熱延板焼鈍し、酸洗板酸洗し、冷間圧延し、連続焼鈍して所望の強度、加工性を付与した後、硝酸等の強酸化性酸を酸洗液に用いて酸洗して鋼板表層のSi含有酸化物層を地鉄ごと除去した後、さらに、上記酸洗で鋼板表面に生成した鉄系酸化物を非酸化性の酸を用いて再酸洗して除去し、次いで、鋼板表面に付着した酸洗液や再酸洗液および上記酸洗や再酸洗で生成した反応生成物を水洗して除去した後、乾燥する工程からなる。
 上記製造方法において、連続焼鈍工程までは、従来公知の常法に準じて行えばよく、特に制限はない。しかし、その後の酸洗以降の工程については、以下に説明する条件で行うことが好ましく、特に、本発明においては、上記酸洗から再酸洗までの間、および、再酸洗から水洗までの間の鋼板表面を乾燥させることなく、常にウェット状態(水濡れ状態)に保持すること、さらに好ましくは、上記水洗に用いる洗浄水および再酸洗に用いる再酸洗液中の鉄イオンの濃度を所定値以下に低減することが重要である。
 以下、酸洗工程以降の条件について具体的に説明する。
<酸 洗>
 0.5mass%を超えるSiやMn等の易酸化性成分を含有する連続焼鈍後の鋼板表層には、SiOやSi-Mn系複合酸化物等のSi含有酸化物が多量に形成されており、このままでは化成処理性や塗装後耐食性が著しく低下する。そこで、連続焼鈍後の鋼板表層のSi含有酸化物は、何らかの酸、例えば、硝酸、塩酸、弗酸、硫酸およびそれらを混合した酸等のいずれかを用いて酸洗し、除去する必要がある。
 上記SiOは、酸に対して難溶性であるため、酸洗で除去するには強酸である硝酸や弗酸を用いて、鋼板の地鉄ごと取り除くのが望ましい。しかし、硝酸は、強酸化性であるため、酸洗で溶出したFeが、酸化して鉄系酸化物を生成して鋼板表面を覆い、その後の化成処理性や塗装後耐食性に悪影響を及ぼす。そこで、硝酸を用いる場合には、上記弊害を抑制するため、硝酸濃度は100~200g/Lの範囲とするのが好ましい。100g/L以上であれば酸洗力は十分となる。また、200g/L以下であれば、鉄系酸化物の生成量が増大しないからである。より好ましくは110~150g/Lの範囲である。
 しかし、硝酸濃度を上記範囲に制限しただけでは、鋼板表面に生成する鉄系酸化物の生成を抑制することは難しい。そこで、上記酸洗後の鋼板表面への鉄系酸化物の生成をより確実に抑制するためには、硝酸濃度を上記範囲に制限することに加えてさらに、酸化膜破壊効果のある塩酸を、硝酸に対する濃度比R(HCl/HNO)が0.01~0.25の範囲となるよう混合した酸を用いて酸洗することが好ましい。上記比率Rが0.01以上であれば、鉄系酸化物の生成抑制効果が十分に得られる。また、0.25以下であれば、鋼板の溶解量が減少せず、容易にSi含有酸化物層を除去することができる。
 また、上記硝酸と塩酸を混合した酸に代えて、弗酸を用いる場合には、濃度を30~70g/Lの範囲とすることが好ましい。さらに、硝酸と弗酸を混合した酸を用いる場合には、硝酸に対する濃度比R(HF/HNO)が0.01~0.25の範囲となるよう混合した酸を用いて酸洗することが好ましい。上記比率Rが0.01以上であれば、鉄系酸化物の生成抑制効果が十分に得られる。また、0.25以下であれば、鋼板の溶解量が減少せず、容易にSi含有酸化物層を除去することができる。
 なお、上記酸洗は、いずれの酸洗液を用いる場合でも、酸洗液の温度を20~70℃とし、酸洗時間を3~30秒の範囲として行うのが好ましい。特に、優れた鉄系酸化物の生成抑制効果およびSi含有酸化物層の除去効果が得られることから、硝酸と塩酸を混合した酸、または硝酸と弗酸を混合した酸を用いることが好ましい。さらに硝酸と塩酸を混合した酸を用いることが好ましい。
<再酸洗>
 上記酸洗後の鋼板は、その後、酸洗により鋼板表面に生成した鉄系酸化物を溶解・除去するための再酸洗を行う必要がある。この再酸洗に用いる酸は、非酸化性の酸、具体的には、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、シュウ酸およびこれらの2種以上を混合した酸のいずれかを用いることが好ましい。再酸洗に用いる酸は、例えば、塩酸を用いる場合には、塩酸濃度を0.1~50g/Lとして、また、硫酸を用いる場合には、硫酸濃度を0.1~150g/Lとして用いるのが好ましく、また、塩酸と硫酸を混合した酸を再酸洗に用いる場合は、塩酸濃度を0.1~20g/L、硫酸濃度を0.1~60g/Lとして混合した酸を用いるのが好ましい。さらに、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸およびシュウ酸を用いる場合には、リン酸は0.1~130g/L、ピロリン酸は0.1~240g/L、ギ酸は0.1~60g/L、酢酸は0.1~80g/L、クエン酸は0.1~260g/L、弗酸は0.1~30g/L、シュウ酸は0.1~120g/Lの濃度範囲とするのが好ましい。
 なお、上記再酸洗は、上記いずれの再酸洗液を用いる場合でも、再酸洗液の温度を20~70℃とし、処理時間を1~30秒として行うのが好ましい。
<水洗、乾燥>
 上記再酸洗後の鋼板は、その後、洗浄水中に浸漬したり、洗浄水をスプレーしたり、ブラッシングしたりして、鋼板表面に付着した酸洗液や再酸洗液、および、酸洗や再酸洗で生成した反応生成物を鋼板表面から除去する水洗工程を経た後、乾燥むらが出ないよう急速乾燥して製品板とする。
<キープウェット>
 上記酸洗、再酸洗、水洗、乾燥工程からなる本発明の製造工程において重要なことは、鋼板表面の黄変を防止するため、上記酸洗後の鋼板が次の再酸洗工程に至るまでの間、および、再酸洗後の鋼板が次の水洗工程に至るまでの間、鋼板表面を乾燥させることなく、常にウェット状態(水濡れ状態)に保持する必要があることである。酸洗後および再酸洗後の鋼板表面には、酸洗によって生成した鉄系酸化物が存在する他、酸洗液や再酸洗液中に含まれる鉄イオンや鋼板表面に付着した硝酸イオン等による溶解反応により発生した鉄イオンが、鉄系水酸化物として多量に付着している。これらが乾燥すると、鉄系酸化物や鉄系水酸化物が変質して黄変を起こすからである。
 なお、鋼板表面をウェット状態に保持する方法については、特に制限はなく、例えば、および、酸洗~再酸洗までの間および再酸洗~水洗までの間において、鋼板表面に水をスプレーしたりミスト噴霧したり、また、湿度を高めて乾燥を抑制したりする方法等で行うことができる。なお、鋼板表面にスプレーする水は、真水であることが好ましい。特に、再酸洗~水洗間では、pH≧6の真水であることが好ましく、pH:6~7の真水であることがさらに好ましい。ただし、酸洗~再酸洗間では、再酸洗液を用いてもよい。
<洗浄水、再酸洗液>
 上記のように鋼板表面を常にウェット状態に保持することで、鋼板表面に付着した鉄系酸化物や鉄系水酸化物が変質して生じる黄変はある程度防止することができる。しかし、黄変を起こす原因となる鉄系水酸化物は低減されていないため、十分な効果が得られない場合がある。そこで、本発明では、鉄系水酸化物の原因となる鉄イオンの鋼板表面への付着を防止するため、水洗に用いる洗浄水中に含まれる鉄イオンの濃度を20g/L以下に制限することが好ましい。より好ましくは10g/L以下である。
 なお、洗浄水中には、上記鉄イオンの他に、酸洗液や再酸洗液から鋼板に付随して持ち込まれる硝酸イオンや塩化物イオン、弗酸イオン、硫酸イオン等も多量に含まれている。これらが鋼板表面に付着していると、地鉄を溶解して鋼板表面の鉄イオン濃度を上昇させ、鉄系水酸化物を生成して鋼板表面に沈着するおそれがある。そこで、これらのイオン濃度についても低減することが望ましく、具体的には、硝酸イオン:10g/L以下、塩化物イオン:5g/L以下、弗化物イオン:5g/L以下、硫酸イオン:5g/L以下に制限するのが好ましい。より好ましくは硝酸イオン:5g/L以下、塩化物イオン:2.5g/L以下、弗化物イオン:2.5g/L以下、硫酸イオン:2.5g/L以下である。
 また、上述した洗浄水中の鉄イオンや硝酸イオン等は、主として再酸洗工程における再酸洗液中の汚染成分が鋼板表面に付着することで持ち込まれたものである。したがって、洗浄水中の鉄イオンや硝酸イオンを低減するためには、再酸洗液中の鉄イオンや硝酸イオンの濃度についても上限を設けることが望ましい。そこで、本発明では、再酸洗液中の鉄イオンは40g/L以下、硝酸イオンは20g/L以下に制限することが好ましい。より好ましくは、鉄イオンは20g/L以下、硝酸イオンは10g/L以下である。
 なお、上記水洗は、洗浄水の温度を20℃以上とし、3秒以上浸漬して行うことが好ましい。洗浄水の温度が20℃以上かつ水洗時間が3秒以上であれば、鋼板表面を十分に洗浄することができる。一方、洗浄水の温度が70℃以下であれば、エネルギーコストの上昇を招くことがない。また、水洗時間が30秒以下であれば、設備長を長くしたり、通板速度を落としたりする必要がなく、好ましいからである。より好ましくは、洗浄水の温度は30~50℃の範囲、浸漬時間は4~20秒の範囲である。
 SiおよびMnを多量に含有する、表1に示したA~Fの鋼素材を熱間圧延し、熱延板酸洗し、冷間圧延し、連続焼鈍した後、表2に示した各種条件で、酸洗し、再酸洗し、水洗し、乾燥して種々の強度を有する高強度冷延鋼板とした。次いで、上記各々の高強度冷延鋼板からサンプルを採取して、下記の方法で鋼板表面の黄変の程度を評価すると共に、同じく下記の条件で化成処理および塗装処理を施した後、塩温水浸漬試験、塩水噴霧試験および複合サイクル腐食試験の3種の腐食試験に供して、塗装後耐食性を評価した。
(1)黄変の評価
 上記高強度冷延鋼板から採取したサンプルから70mm×150mmの試験片を切り出し、目視にて、黄変発生部分の面積率を測定した。
(2)塗装後耐食性の評価
a.化成処理条件
 上記黄変の評価に用いた各試験片に、日本パーカライジング社製の脱脂剤:FC-E2011、表面調整剤:PL-Xおよび化成処理剤:パルボンドPB-L3065を用いて、下記の標準条件および化成処理液の温度を下げて低温度化した比較条件の2条件で、化成処理皮膜付着量が1.7~3.0g/mとなるよう化成処理を施した。
<標準条件>
・脱脂工程;処理温度:40°C、処理時間:120秒
・スプレー脱脂、表面調整工程;pH:9.5、処理温度:室温、処理時間:20秒
・化成処理工程;化成処理液の温度:35℃、処理時間:120秒
<低温度化条件>
 上記標準条件における化成処理液の温度を33℃に低下した条件
b.腐食試験
 上記化成処理を施した試験片の表面に、日本ペイント社製の電着塗料:V-50を用いて、膜厚が25μmとなるように電着塗装を施し、下記3種類の腐食試験に供した。
<塩温水浸漬試験>
 化成処理および電着塗装を施した上記試験片の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片を、5mass%NaCl溶液(60℃)に240時間浸漬し、その後、水洗し、乾燥し、カット疵部に粘着テープを貼り付けた後、引き剥がすテープ剥離試験を行い、カット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が5.0mm以下であれば、耐塩温水浸漬試験における耐食性は良好と評価することができる。
<塩水噴霧試験(SST)>
 化成処理、電着塗装を施した上記試験片の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片を、5mass%NaCl水溶液を使用して、JIS Z2371:2000に規定される中性塩水噴霧試験に準拠して1000時間の塩水噴霧試験を行った後、クロスカット疵部についてテープ剥離試験し、カット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が4.0mm以下であれば、塩水噴霧試験における耐食性は良好と評価することができる。
<複合サイクル腐食試験(CCT)>
 化成処理、電着塗装を施した上記試験片の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片を、塩水噴霧(5mass%NaCl水溶液:35℃、相対湿度:98%)×2時間→乾燥(60℃、相対湿度:30%)×2時間→湿潤(50℃、相対湿度:95%)×2時間、を1サイクルとして、これを90サイクル繰り返す腐食試験後、水洗し、乾燥した後、カット疵部についてテープ剥離試験し、カット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が6.0mm以下であれば、複合サイクル腐食試験での耐食性は良好と評価できる。
 上記試験の結果を表2に併記した。この結果から、連続焼鈍後、本発明に適合する条件で酸洗し、再酸洗し、水洗して得た本発明の鋼板は、黄変の程度が小さく、かつ、塩温水浸漬試験、塩水噴霧試験および複合サイクル腐食試験のいずれにおいても最大剥離全幅が小さく、良好な塗装後耐食性を示していることがわかる。一方、本発明の酸洗条件を満たさない比較例の鋼板は、黄変が発生しているか、いずれも塗装後耐食性に劣っていることがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の技術は、SiやMnを多量に含有する高強度冷延鋼板に限定されるものではなく、酸洗して製品を製造するすべての鋼板にも適用することができる。
 

Claims (14)

  1. 連続焼鈍後の鋼板を酸洗して鋼板表層のSi含有酸化物層を除去した後、再酸洗し、水洗し、乾燥した鋼板表面の黄変を防止する方法において、上記酸洗と再酸洗の間および再酸洗と水洗の間の鋼板表面をウェット状態に保持することを特徴とする鋼板表面の黄変防止方法。
  2. 上記水洗を、鉄イオン濃度を20g/L以下に低減した洗浄水を用いて行うことを特徴とする請求項1に記載の鋼板表面の黄変防止方法。
  3. 上記洗浄水は、さらに硝酸イオン濃度を10g/L以下、塩化物イオン濃度を5g/L以下、弗化物イオン濃度を5g/L以下および硫酸イオン濃度を5g/L以下に低減したものであることを特徴とする請求項2に記載の鋼板表面の黄変防止方法。
  4. 上記水洗を、温度が20℃以上の洗浄水中に、3秒以上浸漬して行うことを特徴とする請求項1~3のいずれか1項に記載の鋼板表面の黄変防止方法。
  5. 上記再酸洗を、鉄イオン濃度を40g/L以下に低減した再酸洗液を用いて行うことを特徴する請求項1~4のいずれか1項に記載の鋼板表面の黄変防止方法。
  6. 上記再酸洗液は、さらに硝酸イオン濃度を20g/L以下に低減したものであることを特徴とする請求項5に記載の鋼板表面の黄変防止方法。
  7. 上記再酸洗を、非酸化性の酸を用いて行うことを特徴とする請求項1~6のいずれか1項に記載の鋼板表面の黄変防止方法。
  8. 上記非酸化性の酸は、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、シュウ酸およびこれらの2種以上を混合した酸のいずれかであることを特徴とする請求項7に記載の鋼板表面の黄変防止方法。
  9. 上記非酸化性の酸は、濃度が0.1~50g/Lの塩酸、0.1~150g/Lの硫酸、および、0.1~20g/Lの塩酸と0.1~60g/Lの硫酸を混合した酸のいずれかであることを特徴とする請求項7に記載の鋼板表面の黄変防止方法。
  10. 上記酸洗を、硝酸、塩酸、弗酸、硫酸およびそれらを2種以上混合した酸のいずれかを酸洗液に用いて行うことを特徴とする請求項1~9のいずれか1項に記載の鋼板表面の黄変防止方法。
  11. 上記酸洗を、硝酸と塩酸を混合した酸、または、硝酸と弗酸を混合した酸、を酸洗液に用いて行うことを特徴とする請求項1~9のいずれか1項に記載の鋼板表面の黄変防止方法。
  12. 上記鋼板は、Si:1.0~2.0mass%を含有する冷延鋼板であることを特徴とする請求項1~11のいずれか1項に記載の鋼板表面の黄変防止方法。
  13. 上記鋼板は、Si:1.0~2.0mass%の他に、C:0.01~0.20mass%、Mn:1.0~3.0mass%、P:0.05mass%以下、S:0.005mass%以下、Al:0.06mass%以下を含有することを特徴とする請求項1~12のいずれか1項に記載の鋼板表面の黄変防止方法。
  14. 上記鋼板は、Mnに対するSiの含有量比(Si/Mn)が0.4超えであることを特徴とする請求項1~13のいずれか1項に記載の鋼板表面の黄変防止方法。
     
     
PCT/JP2013/050678 2012-01-18 2013-01-16 酸洗後の鋼板表面の黄変防止方法 WO2013108785A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147018456A KR101629592B1 (ko) 2012-01-18 2013-01-16 산세 후의 강판 표면의 황변 방지 방법
CN201380005825.6A CN104053820B (zh) 2012-01-18 2013-01-16 防止酸洗后的钢板表面的黄变的方法
EP13738039.0A EP2806051B1 (en) 2012-01-18 2013-01-16 Method for prevention of yellowing on surface of steel sheet after pickling
US14/372,912 US20150013716A1 (en) 2012-01-18 2013-01-16 Method for prevention of yellowing on surface of steel sheet after pickling
JP2013523799A JP5482968B2 (ja) 2012-01-18 2013-01-16 酸洗後の鋼板表面の黄変防止方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012007739 2012-01-18
JP2012-007739 2012-01-18

Publications (1)

Publication Number Publication Date
WO2013108785A1 true WO2013108785A1 (ja) 2013-07-25

Family

ID=48799210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050678 WO2013108785A1 (ja) 2012-01-18 2013-01-16 酸洗後の鋼板表面の黄変防止方法

Country Status (6)

Country Link
US (1) US20150013716A1 (ja)
EP (1) EP2806051B1 (ja)
JP (1) JP5482968B2 (ja)
KR (1) KR101629592B1 (ja)
CN (1) CN104053820B (ja)
WO (1) WO2013108785A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133077A1 (ja) * 2014-03-04 2015-09-11 Jfeスチール株式会社 冷延鋼板およびその製造方法、ならびに自動車部材
CN106605010A (zh) * 2014-09-02 2017-04-26 杰富意钢铁株式会社 冷轧钢板、冷轧钢板的制造方法、汽车构件及冷轧钢板的制造设备
JP6191810B1 (ja) * 2017-03-24 2017-09-06 新日鐵住金株式会社 鋼板の製造方法
JP2022133914A (ja) * 2021-03-02 2022-09-14 Jfeスチール株式会社 鋼帯の製造方法および製造設備
JP2023507725A (ja) * 2019-12-17 2023-02-27 ポスコホールディングス インコーポレーティッド 耐黄変性及びリン酸塩処理性が向上した鋼板及びその製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017003104A (es) * 2014-09-10 2017-08-15 Nakagawa Special Steel Inc Metodo y aparato para limpieza de alambron.
CN104451717A (zh) * 2014-11-25 2015-03-25 三达奥克化学股份有限公司 不锈钢工件焊接探伤剂磁粉硬化层专用清洗剂及制备方法
CN104476139A (zh) * 2014-12-17 2015-04-01 常熟市华星精密铸件有限公司 一种atm机用防盗螺丝的加工工艺
WO2016143131A1 (ja) * 2015-03-12 2016-09-15 株式会社 東芝 対話支援装置、方法およびプログラム、および端末
JP6667638B2 (ja) 2015-12-18 2020-03-18 ポスコPosco 酸洗鋼板の水洗用組成物及びこれを用いた酸洗鋼板の水洗方法、これにより得られた鋼板
TWI613297B (zh) * 2017-03-27 2018-02-01 Nippon Steel & Sumitomo Metal Corp 鋼板的製造方法
CN109183049A (zh) * 2018-10-10 2019-01-11 高飞 一种去铬锰合金材料表面氧化膜的酸洗液及使用方法
CN109207978A (zh) * 2018-10-10 2019-01-15 高飞 一种含锰铬碳钢表面氧化处理方法
US20220064752A1 (en) * 2019-01-09 2022-03-03 Jfe Steel Corporation High-strength cold-rolled steel sheet and production method for same
JP7147988B2 (ja) * 2019-07-24 2022-10-05 日本製鉄株式会社 マルテンサイト系ステンレス鋼管及びその製造方法
KR102500481B1 (ko) * 2020-12-21 2023-02-16 주식회사 포스코 인산염 처리성이 우수한 냉연강판 제조방법 및 인산염 처리성이 우수한 냉연강판
CN115404475B (zh) * 2021-05-28 2023-09-12 宝山钢铁股份有限公司 一种具有优良可磷化性能的钢板酸洗工艺
CN115198180B (zh) * 2022-06-27 2023-09-22 邢台新翔金属材料科技股份有限公司 一种套筒扳手精制线材的生产方法
CN116699097B (zh) * 2023-07-28 2023-10-10 北京科技大学 一种汽车用高强钢凝固组织的无损检测方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270977A (ja) 1989-04-13 1990-11-06 Kobe Steel Ltd 鋼板の連続酸洗処理方法
JPH07258873A (ja) * 1994-03-24 1995-10-09 Sumitomo Metal Ind Ltd 連続焼鈍ラインにおける鋼板表面変色防止方法
JP2000178775A (ja) 1998-12-21 2000-06-27 Nippon Steel Corp 鋼帯の変色防止方法及び装置
JP2003193275A (ja) 2001-12-25 2003-07-09 Nippon Steel Corp 酸洗工程における鋼板の変色防止方法
JP2004204350A (ja) 2002-12-10 2004-07-22 Nippon Steel Corp 塗装後耐食性に優れた良加工性高強度冷延鋼板
JP2004244698A (ja) 2003-02-17 2004-09-02 Kobe Steel Ltd 高強度冷延鋼板
JP2005314725A (ja) * 2004-04-27 2005-11-10 Sumitomo Metal Ind Ltd Si含有鋼板の製造方法
JP2006131924A (ja) 2004-11-02 2006-05-25 Sumitomo Metal Ind Ltd 鋼帯の変色防止方法および鋼帯の製造方法
JP2006322028A (ja) * 2005-05-18 2006-11-30 Nippon Steel Corp P添加鋼板の合金化溶融亜鉛メッキ方法
JP2007217743A (ja) 2006-02-16 2007-08-30 Jfe Steel Kk 塗装後耐食性に優れた高強度冷延鋼板の製造方法
JP2007246951A (ja) 2006-03-14 2007-09-27 Jfe Steel Kk 成形性、化成処理性および塗装後耐食性に優れた高強度冷延鋼板およびその製造方法
JP2009221586A (ja) * 2008-03-19 2009-10-01 Jfe Steel Corp 化成処理性および塗装後耐食性に優れる高強度冷延鋼板およびその製造方法
WO2009145353A1 (ja) * 2008-05-30 2009-12-03 新日本製鐵株式会社 鋼板の酸洗処理方法、及び酸洗処理装置
JP2011021240A (ja) * 2009-07-16 2011-02-03 Mitsubishi-Hitachi Metals Machinery Inc 鋼帯のスケール除去方法及びその実施に使用する設備
JP2011177861A (ja) 2010-03-03 2011-09-15 Toshiba Corp 半導体装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE483353A (ja) * 1947-06-25
JPS5650750B2 (ja) * 1973-12-26 1981-12-01
JPS5096618U (ja) * 1974-01-11 1975-08-12
US3973998A (en) * 1975-05-05 1976-08-10 Celanese Coatings & Specialties Company Rinsing solutions for acid cleaned iron and steel surfaces
JP2849274B2 (ja) * 1992-05-19 1999-01-20 川崎製鉄株式会社 冷延鋼板の酸化膜除去方法
JPH0596618U (ja) * 1992-05-28 1993-12-27 株式会社大井製作所 自動変速機のシフトレバー装置
US6491761B1 (en) * 2000-07-24 2002-12-10 Bethlelem Steel Corporation Process for removing stains from steel sheet in a continuous pickling line
JP2002294476A (ja) * 2001-03-29 2002-10-09 Kawasaki Steel Corp 酸洗工程における鋼板の変色防止方法及び酸洗設備
JP3992977B2 (ja) * 2001-12-25 2007-10-17 株式会社パーカーコーポレーション ステンレス鋼のデスケール後の表面仕上げ方法
AT413217B (de) * 2002-02-04 2005-12-15 Andritz Ag Maschf Vorrichtung zum beizen von band- oder drahtförmigem material
JP4184832B2 (ja) * 2003-02-27 2008-11-19 株式会社神戸製鋼所 鋼材表面の処理方法および鋼材の製造方法
JP4206029B2 (ja) * 2003-11-05 2009-01-07 新日本製鐵株式会社 化成処理性に優れた熱延鋼板およびその製造方法
DE102008005605A1 (de) * 2008-01-22 2009-07-23 Thyssenkrupp Steel Ag Verfahren zum Beschichten eines 6 - 30 Gew. % Mn enthaltenden warm- oder kaltgewalzten Stahlflachprodukts mit einer metallischen Schutzschicht
KR101373975B1 (ko) * 2008-11-14 2014-03-12 에이케이 스틸 프로퍼티즈 인코포레이티드 제2철 이온을 함유하는 산성 산세척액으로 규소강을 산세척하는 방법
JP5510118B2 (ja) * 2010-06-28 2014-06-04 Jfeスチール株式会社 化成処理性に優れた高張力鋼板の製造方法およびその製造装置
JP5919920B2 (ja) * 2011-03-28 2016-05-18 Jfeスチール株式会社 Si含有冷延鋼板の製造方法及び装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270977A (ja) 1989-04-13 1990-11-06 Kobe Steel Ltd 鋼板の連続酸洗処理方法
JPH07258873A (ja) * 1994-03-24 1995-10-09 Sumitomo Metal Ind Ltd 連続焼鈍ラインにおける鋼板表面変色防止方法
JP2000178775A (ja) 1998-12-21 2000-06-27 Nippon Steel Corp 鋼帯の変色防止方法及び装置
JP2003193275A (ja) 2001-12-25 2003-07-09 Nippon Steel Corp 酸洗工程における鋼板の変色防止方法
JP2004204350A (ja) 2002-12-10 2004-07-22 Nippon Steel Corp 塗装後耐食性に優れた良加工性高強度冷延鋼板
JP2004244698A (ja) 2003-02-17 2004-09-02 Kobe Steel Ltd 高強度冷延鋼板
JP2005314725A (ja) * 2004-04-27 2005-11-10 Sumitomo Metal Ind Ltd Si含有鋼板の製造方法
JP2006131924A (ja) 2004-11-02 2006-05-25 Sumitomo Metal Ind Ltd 鋼帯の変色防止方法および鋼帯の製造方法
JP2006322028A (ja) * 2005-05-18 2006-11-30 Nippon Steel Corp P添加鋼板の合金化溶融亜鉛メッキ方法
JP2007217743A (ja) 2006-02-16 2007-08-30 Jfe Steel Kk 塗装後耐食性に優れた高強度冷延鋼板の製造方法
JP2007246951A (ja) 2006-03-14 2007-09-27 Jfe Steel Kk 成形性、化成処理性および塗装後耐食性に優れた高強度冷延鋼板およびその製造方法
JP2009221586A (ja) * 2008-03-19 2009-10-01 Jfe Steel Corp 化成処理性および塗装後耐食性に優れる高強度冷延鋼板およびその製造方法
WO2009145353A1 (ja) * 2008-05-30 2009-12-03 新日本製鐵株式会社 鋼板の酸洗処理方法、及び酸洗処理装置
JP2011021240A (ja) * 2009-07-16 2011-02-03 Mitsubishi-Hitachi Metals Machinery Inc 鋼帯のスケール除去方法及びその実施に使用する設備
JP2011177861A (ja) 2010-03-03 2011-09-15 Toshiba Corp 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2806051A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3115482A1 (en) * 2014-03-04 2017-01-11 JFE Steel Corporation Cold-rolled steel sheet, manufacturing method therefor, and car part
JPWO2015133077A1 (ja) * 2014-03-04 2017-04-06 Jfeスチール株式会社 冷延鋼板の製造方法
EP3115482A4 (en) * 2014-03-04 2017-05-10 JFE Steel Corporation Cold-rolled steel sheet, manufacturing method therefor, and car part
WO2015133077A1 (ja) * 2014-03-04 2015-09-11 Jfeスチール株式会社 冷延鋼板およびその製造方法、ならびに自動車部材
US20170306507A1 (en) * 2014-09-02 2017-10-26 Jfe Steel Corporation Cold-rolled steel sheet, method of manufacturing cold-rolled steel sheet, automobile member and facility for manufacturing cold-rolled steel sheet
CN106605010A (zh) * 2014-09-02 2017-04-26 杰富意钢铁株式会社 冷轧钢板、冷轧钢板的制造方法、汽车构件及冷轧钢板的制造设备
KR20190091306A (ko) 2017-03-24 2019-08-05 닛폰세이테츠 가부시키가이샤 강판의 제조 방법
WO2018173287A1 (ja) 2017-03-24 2018-09-27 新日鐵住金株式会社 鋼板の製造方法
JP6191810B1 (ja) * 2017-03-24 2017-09-06 新日鐵住金株式会社 鋼板の製造方法
CN110121573A (zh) * 2017-03-24 2019-08-13 日本制铁株式会社 钢板的制造方法
EP3604616A4 (en) * 2017-03-24 2020-12-16 Nippon Steel Corporation STEEL SHEET MANUFACTURING PROCESS
US11401567B2 (en) 2017-03-24 2022-08-02 Nippon Steel Corporation Manufacturing method of steel sheet
JP2023507725A (ja) * 2019-12-17 2023-02-27 ポスコホールディングス インコーポレーティッド 耐黄変性及びリン酸塩処理性が向上した鋼板及びその製造方法
JP7395749B2 (ja) 2019-12-17 2023-12-11 ポスコホールディングス インコーポレーティッド 耐黄変性及びリン酸塩処理性が向上した鋼板及びその製造方法
JP2022133914A (ja) * 2021-03-02 2022-09-14 Jfeスチール株式会社 鋼帯の製造方法および製造設備
JP7380615B2 (ja) 2021-03-02 2023-11-15 Jfeスチール株式会社 鋼帯の製造方法および製造設備

Also Published As

Publication number Publication date
CN104053820B (zh) 2016-03-02
EP2806051A1 (en) 2014-11-26
JPWO2013108785A1 (ja) 2015-05-11
KR101629592B1 (ko) 2016-06-13
EP2806051B1 (en) 2016-04-06
EP2806051A4 (en) 2015-03-11
JP5482968B2 (ja) 2014-05-07
KR20140099320A (ko) 2014-08-11
US20150013716A1 (en) 2015-01-15
CN104053820A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5482968B2 (ja) 酸洗後の鋼板表面の黄変防止方法
JP5729211B2 (ja) 冷延鋼板の製造方法、冷延鋼板および自動車部材
JP5835558B2 (ja) 冷延鋼板の製造方法
KR20170032469A (ko) 냉연 강판, 냉연 강판의 제조 방법, 자동차 부재 및 냉연 강판의 제조 설비
JP5818046B2 (ja) Si含有高強度冷延鋼板の製造方法
JP5896165B2 (ja) 酸洗後の鋼板表面の黄変防止方法
JP2013173976A (ja) 冷延鋼板の製造方法およびその製造設備
JP6041079B1 (ja) 冷延鋼帯の製造方法及び製造設備
US20160002807A1 (en) Process of manufacturing high-strength cold rolled steel sheets
CN107709620B (zh) 冷轧钢带的制造方法及制造设备
JP5835545B2 (ja) Si含有熱延鋼板の製造方法
JP5168793B2 (ja) 塗装後耐食性に優れた高強度冷延鋼板の製造方法
JP6160655B2 (ja) 熱延鋼板及びその製造方法
JP6108028B2 (ja) 冷延鋼板の製造方法
CN108026617B (zh) 钢板
JP5682366B2 (ja) Si含有冷延鋼板の製造方法
JP6123754B2 (ja) 化成処理性に優れるSi含有熱延鋼板およびその製造方法
JP4940691B2 (ja) 塗装後耐食性に優れた高強度冷延鋼板およびその製造方法
JP2007126747A (ja) 成形性および塗装後耐食性に優れた高強度冷延鋼板およびその製造方法
JP5962635B2 (ja) 熱延鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013523799

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147018456

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013738039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201404308

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14372912

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE